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Abstract. We study compact Kähler manifolds X admitting nonvanishing holomorphic vector
fields, extending the classical birational classification of projective varieties with tangent vector
fields to a classification modulo deformation in the Kähler case, and biholomorphic in the projec-
tive case. We introduce and analyze a new class of tangential deformations, and show that they
form a smooth subspace in the Kuranishi space of deformations of the complex structure of X. We
extend Calabi’s theorem on the structure of compact Kähler manifolds X with c1(X) = 0 to com-
pact Kähler manifolds with nonvanishing tangent fields, proving that any such manifold X admits
an arbitrarily small tangential deformation which is a suspension over a torus, that is, a quotient
of F × Cs fibering over a torus T = Cs/3. We further show that either X is uniruled or, up to a
finite Abelian covering, it is a small deformation of a product F × T where F is a Kähler manifold
without tangent vector fields and T is a torus. A complete classification when X is a projective
manifold, in which case the deformations may be omitted, or when dimX ≤ s+2, is also given. As
an application, it is shown that the study of the dynamics of holomorphic tangent fields on compact
Kähler manifolds reduces to the case of rational varieties.
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Introduction

This article is devoted to the study of compact Kähler manifolds admitting nonvanishing
holomorphic vector fields or, what is equivalent, endowed with a locally free holomorphic
Cs-action for a certain s > 0. We introduce a particular type of deformations of such
manifolds and, as an application, we describe quite precisely their structure. Our study
relies on the work carried out simultaneously and independently by A. Fujiki [16] and
D. Lieberman [28]. We use especially their deep result on the structure of the group of
holomorphic automorphisms of a compact Kähler manifold (cf. Theorem 1.2).

Our work is a continuation of the classical study of complex projective manifolds
with tangent vector fields, which led to their birational classification up to finite covering,
successively developed by F. Severi, R. Hall and D. Lieberman ([31], [20], [27]). The
conclusions were summarized in Theorem 1 of [27] as

Theorem 0.1. LetX be a complex projective manifold with a holomorphic tangent vector
field v. Then:

(a) X has a finite étale Abelian covering X′ which is birational to a product M × T ×
CP r , where M is another projective manifold, T an Abelian variety, and CP r the
projective space of dimension r ≥ 0, such that the lift of the tangent vector field v to
X′ has trivial component in TM .

(b) If the tangent vector field v on X vanishes at some point then X is ruled.

In Theorem 3.2 below we continue this classification in the case of nonvanishing vector
fields, obtaining a classification up to biholomorphism by using suspensions over Abelian
varieties (see Example 2.4) and repeated étale Abelian coverings in order to exhaust all
tangent vector fields.

Tangent vector fields play a role in the classification of algebraic varieties, specially
in the case of Kodaira dimension 0. The earliest indication of this fact known to the au-
thors is the result stated by Eugenio Calabi in [8]. In that article, E. Calabi formulated
his celebrated conjecture about Kähler manifolds admitting Ricci-flat metrics and, under
the assumption that the conjecture was true, he proved the result stated as Theorem 0.2
below. This theorem describes the structure of compact Kähler manifolds with trivial first
Chern class, i.e. with c1(X) = 0. It was proved for projective manifolds by Y. Mat-
sushima in [30] using previous results by A. Lichnerowicz, but without the assumption of
Calabi’s conjecture, and extended to the general Kähler case by F. A. Bogomolov [6] and
independently by Lieberman [28].

Theorem 0.2 (Calabi, [8], [30], [6], [28]). Let X be a compact Kähler manifold with
c1(X) = 0 and b1(X) > 0. Then X admits, as a finite étale covering, a product X′ =
F × T , with T a complex torus of real dimension b1(X

′) and F a Kähler manifold with
c1(F ) = 0 and b1(F ) = 0. Moreover, X′ is a regular covering space of X and the group
of covering transformations is solvable.

This theorem was improved by Beauville [2], who completely describes the topology and
the geometry of the fiber F .
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The proof of Calabi’s theorem may be succinctly described as follows: Use the trivi-
ality of the canonical bundle to show that X (or a finite covering of it) has q = 1

2b1(X)

linearly independent nonvanishing tangent vector fields; check that the Albanese mor-
phism is onto, the tangent vector fields are lifts from the tangent bundle on the Albanese
torus, and they make X (or a finite covering of it) a suspension with trivial monodromy
over the Albanese torus.

In this work we develop a refinement of the above argument to prove an extension
to general Kähler manifolds of Calabi’s theorem, namely our Theorem 3.2 and Proposi-
tion 7.3 may be condensed as:

Theorem 0.3. Let X be a compact Kähler manifold with s non vanishing tangent vec-
tor fields v1, . . . , vs , defining a locally free Cs-action. Then X admits a small deforma-
tion Xε , which is a suspension over an s-dimensional torus T .

Furthermore, there is a finite Abelian covering X′ε of a small deformation Xε of X,
a torus T ′ of dimension s′ ≥ s and a compact Kähler manifold F without nonvanishing
vector fields in such a way that:

(i) if kod(X) ≥ 0 then X′ε = F × T
′ and F has no vector fields,

(ii) if kod(X) = −∞ then X′ε is a topologically trivial suspension over T ′ and fiber F .

In both cases kod(F ) = kod(X). If X is a complex projective manifold one may omit
the small deformation of the complex structure, and the above decomposition holds for
Xε = X.

Here, kod(X) denotes the Kodaira dimension of X. The definition of a suspension mani-
fold is recalled in Example 2.4.

We notice that a locally free holomorphic Cs-action, i.e. a holomorphic Cs-action
for which every isotropy group is discrete, is determined by s holomorphic vector fields
v1, . . . , vs generating an s-dimensional Abelian Lie algebra a such that each vector field v
in a different from zero is a nonvanishing vector field. On a compact Kähler manifold X,
the set h1 of vector fields having zeros is an ideal of the Lie algebra h of holomorphic
vector fields on X, there is a direct sum decomposition h = h1

⊕ a, where a is an
Abelian subalgebra of h, and X admits a locally free holomorphic Cs-action if and only
if dim a > 0 (cf. Propositions 1.4 and 1.6). Hence the hypothesis in the above theorem
is fulfilled whenever s = dim(h/h1) > 0. This is the case, in particular, if X admits a
nonvanishing vector field.

The small deformation of the complex structure ofX cannot be avoided in the general
Kähler case if c1(X) 6= 0, as shown by the examples discussed in Section 7.

On the other hand, for X compact Kähler with c1(X) = 0, the dimension of the
space of holomorphic vector fields on X is b1(X)/2 and this fact also renders unneces-
sary the small deformation of complex structure, thus Corollary 6.8 to our Theorem 0.3
refines Calabi’s theorem, as we show that the group of covering transformations is in
fact Abelian. This refinement was established in [6] in the case when X is a complex
projective manifold.

Besides this extension of Calabi’s theorem from Calabi–Yau manifolds to any Kähler
manifolds with nonvanishing tangent vector fields, the authors hope that the results of
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this work may have further applications in the case of manifolds of Kodaira dimension
zero. K. Ueno [32, §11] made a conjecture which is the extension of Calabi’s one to this
setting, and was refined by János Kollár [24, 4.16] as:

Conjecture 0.4 (Ueno, Kollár). Let X be a smooth, projective variety with kod(X) = 0.
ThenX has a finite, étale covering X̃ such that X̃ is birational to the product of an Abelian
variety and a simply connected variety F with kod(F ) = 0.

Corollary 8.10 is a modest contribution to this problem, establishing the conjecture if one
has dimX − 2 linearly independent nonvanishing tangent vector fields, a particular case
being threefolds with nonvanishing vector fields.

This corollary is a particular case of the classification of compact Kähler and projec-
tive manifolds with dimX − 2 linearly independent nonvanishing tangent vector fields
carried out in Section 8 based on Theorem 0.3 and the classification of curves and sur-
faces.

In Section 9 we extend the results in [28] concerning the dynamical properties of a
holomorphic tangent vector field v on a compact Kähler manifold X. Applying Theo-
rem 0.3, we show that the dynamical system (X, v) becomes trivial after taking a finite
unramified covering space of X if kod(X) ≥ 0 and that, in all cases, the dynamics of
the system reduce to the dynamics of an Abelian group Cp × (C∗)q acting on a rational
variety (Theorem 9.2).

In order to achieve all the results described above, we introduce the notion of tangen-
tial deformation of a holomorphic group action. A locally free holomorphic action of a
(connected) complex Lie group G on a complex manifold X defines a holomorphic foli-
ation F on X whose leaves are the orbits of the action. G-equivariant deformations of X
change the complex structure of X as well as the holomorphic foliation F . The existence
of a versal space of deformations for equivariant deformations of compact complex man-
ifolds endowed with a holomorphic action was proved by Cathelineau [13]. In this article
we consider equivariant deformations of the locally free G-action for which the folia-
tion F keeps fixed its holomorphic transverse structure. This type of deformations, called
tangential deformations of the action, also admit a versal space of deformations whose
tangent space at the origin is naturally identified to the space of infinitesimal tangential
deformations (Theorem 4.3).

We focus on the case where X is a Kähler manifold. Under that hypothesis and as
a consequence of the above mentioned theorem by Fujiki and Lieberman, the group G
is necessarily Abelian. For a given locally free holomorphic Cs-action on a compact
Kähler manifold X we construct a family XR of tangential deformations of the action
parametrized by a smooth space R with the following properties:

(1) R is an open subset of a Euclidean space CN , complementary to an affine real alge-
braic variety.

(2) The family XR is versal at each point r ∈ R (Theorem 5.5 and Proposition 5.19).
(3) Each element Xr with r ∈ R is a Kähler manifold (Theorem 5.17).

We emphasize that R is a (real) Zariski open set and not merely a small open ball of CN .
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Looking at general properties of tangential deformations of the action, we prove that
the Kodaira dimension kod(X) of X is constant under tangential deformations. We also
relate R to the Kuranishi space KX of X by showing that the forgetful map

R→ KX

has a smooth image of dimension s · b1(X)/2. In particular this shows the following (cf.
Theorem 5.6):

Theorem 0.5. The space H 1(X,2X) of infinitesimal deformations of a compact Kähler
manifold X endowed with a locally free Cs-action contains a subspace of dimension
` = s · b1(X)/2 of unobstructed infinitesimal deformations. Consequently, the Kuranishi
space KX contains a smooth subspace of dimension `.

Many of the results of this article are also valid for manifolds X belonging to the class C,
introduced by A. Fujiki and whose elements are those manifolds that are bimeromorphic
to Kähler manifolds. Hence some of the results are stated in that context. However, we
do not dispose of a characterization of those suspension manifolds that are in C (cf. Re-
mark 2.5). Moreover, C is not stable under small deformations and for these reasons we
do not know if the structure theorems of Section 7 are valid for Fujiki manifolds and we
are able to prove them only in the case of Kähler manifolds.

Even if not explicitly stated, all the group actions considered along this article are
holomorphic and the covering spaces are always unramified (étale).

1. Groups of automorphisms of Kähler manifolds

LetX be a compact complex manifold of dimension n. All along this article, with the only
exception of Section 4, the manifold X will be assumed to be Kähler or, more generally,
to belong to the class C introduced by A. Fujiki in [15]. We recall that a manifold belongs
to the class C (or the Fujiki class) if it is bimeromorphic to a Kähler manifold. Notice
that Moishezon manifolds are in C and that a submanifold of a Fujiki manifold is again
in C. Recently, Demailly and Paun have characterized compact manifolds in C as those
manifolds carrying a Kähler current (cf. [14]).

Compact manifolds X in the class C retain many of the properties of compact Kähler
manifolds. In this article we will make use of the following ones: (i) holomorphic forms
onX are closed, (ii) there are C-antilinear isomorphismsH q(X,�

p
X) ≡ H

p(X,�
q
X), (iii)

the Hodge theorem holds, i.e. Hm(X,C) ≡
⊕
p+q=mH

q(X,�
p
X) and (iv) H 1(X,C) is

isomorphic to H 1(Alb(X),C), where Alb(X) is the Albanese torus of X. For the proof
of the above statements and a general account on the properties of Fujiki manifolds we
refer to [16] and [17]. In sharp contrast, the class C is not stable under small deformations
(cf. [9] and [25]).

Let hX be the Lie algebra of holomorphic vector fields on X and h1
X the subspace of

vector fields annihilated by all the holomorphic 1-forms on X. Since global holomorphic
1-forms are closed, h1

X is an ideal of hX containing the derived subalgebra [hX, hX] of hX.
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The following characterization of h1
X obtained by Carrell and Lieberman [11] was

extended by Fujiki [15] to the class C.

Theorem 1.1 (Carrell–Lieberman [11]). Let X be a compact Kähler manifold. Then h1
X

is the vector space of holomorphic vector fields with zeros. In particular, if X admits a
nonvanishing holomorphic vector field v, then there is a holomorphic 1-form α onX such
that α(v) = 1.

Let φ : X → Alb(X) be the natural map from X to its Albanese torus Alb(X). Each
element of the group AutC(X) of holomorphic automorphisms of X induces an automor-
phism of Alb(X) and the correspondence

8 : AutC(X)→ AutC(Alb(X))

is a group morphism. The map φ is equivariant with respect to the action of AutC(X) on
Alb(X) induced by 8. The connected component of the identity Aut0C(X) of AutC(X) is
mapped by 8 into Aut0C(Alb(X)) ∼= Alb(X) and its image is a subtorus TX of Alb(X).
Notice that TX is contained in the image φ(X) of X into Alb(X).

The following result was obtained independently and at the same time by A. Fujiki and
by D. Lieberman. The latter proved it for Kähler manifolds and the former for manifolds
in the class C.

Theorem 1.2 (Fujiki [16], Lieberman [28]). Let X be a compact complex manifold that
is Kähler or, more generally, that belongs to the Fujiki class. Then there is an exact
sequence of groups

1→ L→ Aut0C(X)
8
→ TX → 1 (1)

where L is a linear algebraic group (so with finitely many connected components) with
Lie algebra h1

X. Moreover, there is a group morphism ι : Cr → Aut0C(X) such that the
composition 8 ◦ ι is the universal covering of TX.

Corollary 1.3. If h1
X = 0 then Aut0C(X) is a complex torus.

Notice that Theorem 1.1 is also a corollary of Theorem 1.2. Another consequence of the
theorem is the following:

Proposition 1.4. There is an Abelian Lie subalgebra a of hX such that

hX = h1
X ⊕ a, (2)

where the direct sum is in the sense of vector spaces.

Remarks 1.5. (a) We denote s = dimC TX = dimC a = dimC hX/h
1
X. Then

s ≤ dimC Alb(X) = b1(X)/2 and s ≤ dimC(X).

(b) The subalgebra a is not unique. Such a Lie subalgebra can be characterized as
a vector subspace of hX of maximal dimension generated by nonvanishing commuting
vector fields.
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(c) Let v1, . . . , vs be a basis of a. Then the vector fields v1, . . . , vs are linearly inde-
pendent at each point of X.

(d) The choice of a basis v1, . . . , vs of a determines an action of Cs on X which is
locally free, i.e. an action which is injective at the Lie algebra level or, what is equivalent,
which has discrete isotropy groups. Conversely, given such a locally free action $ :
Cm ×X→ X, of maximal rank (i.e. m is maximal), one has m = s and the fundamental
vector fields of the action generate a subalgebra of hX complementary to h1

X. If the orbits
are given by a torus action, i.e. the action factorizes through a torus T = Cs/3, then a is
contained in the center of hX.

The following result is stated without proof in [28]. The proof we give here is due to
F. Touzet.

Proposition 1.6. The Abelian subalgebra a of hX satisfying (2) can be chosen in the
center of hX.

Proof. First we notice that L can be assumed to be connected just by replacing TX by
a finite covering, which is again a torus. Let Aut0(h1

X) be the identity component of the
automorphism group of the complex Lie algebra h1

X = Lie(L). Since the group L is
normal in G = Aut0C(X), the adjoint representation

ψ : G→ Aut0(h1
X), g 7→ Adg,

is well defined and induces a group morphism

ψ̃ : TX → H = Aut0(h1
X)/Ad(L).

Notice that Ad(L) is closed in Aut0(h1
X), as L is an algebraic group, and Ad(L) is a

normal subgroup of Aut0(h1
X), as Lie(Ad(L)) is an ideal of Der0(h1

X). Therefore the con-
nected group Ad(L) is a normal and closed subgroup of the algebraic group Aut0(h1

X).
Hence the quotient H is also a linear algebraic group (cf. [22]) and the image under ψ
of the compact group TX is necessarily constant, thus equal to the identity. As a con-
sequence, ψ has image contained in Ad(L). We deduce that, for each v ∈ hX, there is
v1 = v1(v) ∈ h1

X such that

[v,w] = [v1, w] ∀w ∈ h1
X,

that is, v − v1 commutes with all the elements in h1
X.

We now consider v ∈ hX with the property that 8({exp tv}) is dense in the torus TX.
Then v− v1 has the same property. Hence the closure Av−v1 of the group {exp t (v− v1)}

is an Abelian subgroup of G that is mapped onto TX by 8. This implies that v − v1 is in
the center of hX and thereforeAv−v1 is in the center ofG. Now we take a group morphism
ι : Cr → Av−v1 with the property that the composition 8 ◦ ι is the universal covering
of TX. Then the morphism ι determines an Abelian subalgebra a of hX with the required
properties. ut
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Remarks 1.7. (a) It follows from the above proposition that each nonvanishing holomor-
phic vector field v on X is included in an Abelian Lie algebra a satisfying (2).

(b) Assume that the subalgebra a of h with the properties of Proposition 1.4 has been
fixed and set a = 〈v1, . . . , vs〉. The space of holomorphic 1-forms on X can be decom-
posed as

H 0(X,�1
X) = 〈α

1, . . . , αs〉 ⊕ 〈β1, . . . , βp−s〉,

where p = b1(X)/2 = dimC Alb(X), and the forms αi and βk satisfy αi(vj ) = δij and
βk(vj ) = 0 for each j = 1, . . . , s.

Although the forms αi are not uniquely determined unless p = s, the subspace
〈β1, . . . , βp−s〉 is canonically associated to the complex manifoldX. In particular, it does
not depend on the choice of the subalgebra a. In fact, 〈β1, . . . , βp−s〉 is just the kernel of
the natural morphism

H 0(X,�1
X)→ H 0(X,2X)

∨,

where 2X denotes the sheaf of germs of holomorphic vector fields on X.

A manifold X will be called ruled if it is bimeromorphic to a geometrically ruled
manifold, that is ifX is bimeromorphic to the total space of a fiber bundle Y → B, which
is analytically locally trivial over a complex manifold B, has fiber a complex projective
space CP k and has changes of trivialization in the sheaf PGL(k+1,OB). ForX algebraic
this is equivalent, by the GAGA theorem, to X being bimeromorphic to the trivial bundle
CP k×B but this equivalence is no longer true in the setting of Kähler manifolds (cf. [16]).
A manifold X will be called uniruled if every point x ∈ X lies in a rational curve C ⊂ X.

Theorem 1.8 (Fujiki [16]). If a compact manifold X in the class C admits a non-trivial
holomorphic vector field v with vx = 0 for some point x ∈ X, then X is uniruled.

Remark 1.9. If the manifoldX in Theorem 1.8 is complex projective then it follows from
the birational classification theorem (Theorem 0.1) that X is ruled. In [28], Lieberman
states that if X is a compact Kähler manifold then it is also ruled. In the particular case
when the automorphism group of X includes a C∗-action this was proved by Carrell
and Sommese [12]. The authors have not been able to complete Lieberman’s argument
from [28] in the general compact Kähler case.

We end this section by recalling the following result of Lieberman concerning the
Kodaira dimension, kod(X), of X and the dimension of the Lie algebra hX.

Theorem 1.10 (Lieberman [28]). Let X be a compact Kähler manifold. Then

dimC hX + kod(X) ≤ dimCX. (3)
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2. Locally free actions on Kähler and Fujiki manifolds

Let X be a compact manifold endowed with a locally freeG-action. In case X is a Kähler
or Fujiki manifold there are very few possibilities for the Lie groupG. F. Bosio has noted
the following corollary of the above mentioned theorem of Carrell and Lieberman.

Theorem 2.1 (Bosio [7]). Let G be a connected complex Lie group acting locally freely
on a compact manifold X belonging to the class C. Then G is Abelian.

Proof. Theorem 1.1 implies that the induced action of G on the Albanese torus Alb(X)
is also locally free. ut

Here are some examples of compact complex manifolds naturally endowed with locally
free Cs-actions.

Example 2.2 (Tori). Complex tori, that is, Ts = Cs/3 where 3 ∼= Zs is a lattice, are
the only compact manifolds X with a locally free Cs-action such that s = dimCX.

Example 2.3 (Principal torus fibrations). The total space X of a principal torus bundle

Ts X

B

-

?

where B is a compact complex manifold, is endowed with a natural action of Ts and
therefore of Cs . If X is a Kähler manifold then the Kähler metric can be made invariant
by averaging it with respect to the action by the compact group Ts . Hence the base space
B is necessarily a Kähler manifold. Furthermore, it will be seen below (cf. Remark 2.7(a))
that the principal bundle is flat. Conversely, if B is a Kähler manifold and the bundle is
flat then the total space is a Kähler manifold. This follows from a theorem of Blanchard
[5, Théorème principal II].

Example 2.4 (Suspensions over complex tori). Let ρ : 3→ AutC(F ) be a group repre-
sentation, where 3 = 〈τ1, . . . , τ2s〉 ∼= Z2s is a lattice of Cs and F is a compact complex
manifold, and denote fi = ρ(τi) ∈ AutC(F ). The suspension of the representation ρ
is the manifold X = F ×3 Cs obtained as the quotient of the product F × Cs by the
equivalence relation defined by the diagonal action of 3, that is,

(x, z) ∼ (fi(x), z+ τi) for i = 1, . . . , 2s.

The suspension X = F ×3 Cs fibers over the torus Ts = Cs/3 with fiber F and the
natural Cs-action on F × Cs commutes with 3 inducing a locally free action on X. We
say that X is a suspension over Ts . It is proved in [29, Theorem 3.19] that X is a Kähler
manifold if and only if F is Kähler and there are integers ni for i = 1, . . . , s such that
f
ni
i ∈ Aut0C(F ).
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Remark 2.5. The above characterizations of Kähler manifolds that are principal torus
bundles or suspensions over tori stated in the last two examples rely on a criterion, due
to Blanchard [5], for deciding if the total space of a fibration is a Kähler manifold. It is
not known if Blanchard’s criterion can be extended to the class C. Therefore we are not
able to formulate such kind of characterizations for Fujiki manifolds. This is the main
difficulty to extend the structure theorems in Section 7 to manifolds in the class C.

From now on X will denote a given compact manifold in the class C and we will use
the notation introduced in Section 1. We denote b1(X) = 2p. We also assume from now
on that s = dimC h/h1 is strictly positive and we fix a subalgebra a ⊂ hX with h = h1

X⊕a
as well as a basis v1, . . . , vs of a. We denote by $ the locally free Cs-action defined by
the choice of the basis, and by F the induced foliation.

It follows from Theorem 1.2 that there are holomorphic 1-forms α1, . . . , αs such that
αi(vi) = 1 and αj (vi) = 0 if j 6= i. The forms αi generate the cotangent bundle T ∗F
of F at each point and we assume that they have also been fixed. The distribution kerα1

∩

· · ·∩kerαs is integrable and defines a holomorphic foliation G that depends on the choice
of α1, . . . , αs . This foliation is transverse and complementary to F , and also invariant by
the action of Cs . Therefore, we have

Proposition 2.6. A foliation F on a compact manifold X in the class C defined by a
locally free Cs-action$ admits a holomorphic foliation G, which is transverse and com-
plementary to F , and invariant by the action $ .

Remarks 2.7. (a) This proposition implies in particular that a principal torus bundle
whose total space is a manifold in the class C is necessarily flat (cf. Example 2.3).

(b) Notice that all the leaves of G are biholomorphic. If the leaves of G are compact
they define a fibration of X over a complex torus of dimension s and X is a suspension.

We denote by νF the normal bundle of the foliation F , i.e. νF = TX/TF . The
existence of the Cs-invariant foliation G implies that, at each point ofX, we can find local
coordinates (t1, . . . , t s, z1, . . . , zn−s) with the properties

vi =
∂

∂t i
and αi = dt i . (4)

In these coordinates F is defined by zk = const and G by t i = const. As a consequence,
we obtain:

Proposition 2.8. There is a natural isomorphism between the canonical bundleKX of X
and the determinant det ν∗F of the conormal bundle ν∗F of F .

Proof. If (t1i , . . . , t
s
i , z

1
i , . . . , z

n−s
i ) are local coordinates satisfying (4) and we define

ηi = α
1
∧ · · · ∧ αs ∧ dz1

i ∧ · · · ∧ dz
n−s
i , then ηj = gjiηi with

gji = det
(
∂zkj

∂zli

)
.

Hence the cocycle (gji) defines the line bundle KX as well as det ν∗F . ut

We then obtain:
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Corollary 2.9. Assume that X is a suspension F ×3 Cs over a torus T = Cs/3. Then
kod(X) = kod(F ) and c1(F ) = ι

∗c1(X) where ι : F ↪→ X is the identification of F with
a fiber of the projection X→ T .

Proof. Notice that the tangent bundle T F of F is canonically isomorphic to the re-
striction of νF to F . As the Kodaira dimension is invariant by finite coverings we can
assume, using [29, Theorem 3.19], that the monodromy of the suspension has values
in Aut0C(F ). By Proposition 2.8 there are isomorphisms K⊗mX ∼= (det ν∗F)⊗m for ev-
ery m ∈ Z. Consequently, the spaces H 0(X,K⊗mX ) are naturally identified with the
subspaces of H 0(F, (det ν∗F)⊗m) = H 0(F,K⊗mF ) invariant by the monodromy. Ueno
proved [32, Corollary 14.8] that Aut0C(F ) acts trivially on the pluricanonical section
spaces H 0(F,K⊗mF ). Therefore h0(X,K⊗mX ) = h0(F,K⊗mF ) for every m.

The relation between the first Chern classes follows from the adjunction formula. ut

Let �kX be the sheaf of germs of holomorphic k-forms on X. As remarked above, p =
b1(X)/2 ≥ s. We can choose holomorphic 1-forms β1, . . . , βp−s on X such that

{α1, . . . , αs, β1, . . . , βp−s} (5)

is a basis of H 0(X,�1
X) and βj (vi) = 0 for i = 1, . . . , s and j = 1, . . . , p − s. Since

βj are closed, they are in fact basic forms with respect to F . We recall that a differential
form γ is said to be basic with respect to a foliation if iwγ = 0 and iwdγ = 0 for each
local vector field w tangent to the foliation. We shall denote by�k

X/F the subsheaf of�kX
of those k-forms that are basic with respect to F . The following decomposition of global
holomorphic forms on X will be useful.

Lemma 2.10. Each global holomorphic k-form γ on X can be written in a unique way
as a sum

γ =
∑

0≤|I |≤min(k,s)

αI ∧ γ I

with I = (i1, . . . , im), 1 ≤ i1 < · · · < im ≤ s and |I | = m, and where αI = αi1 ∧ · · · ∧
αim and γ I is a holomorphic (k −m)-form basic with respect to F . In particular

H 0(X,�kX)
∼=

min(k,s)⊕
i=0

∧i
〈α1, . . . , αs〉C ⊗H

0(X,�k−i
X/F ).

Proof. Let γ be a global holomorphic k-form on X and set ` = min(k, s). For each
I = (i1, . . . , im) with m ≤ k and 1 ≤ i1 < · · · < im ≤ s, and a given k-form ω, we
denote ωI = ivim ◦ · · · ◦ ivi1ω. We put γ0 = γ and we define γ1, . . . , γ` recursively by

γm+1 = γm −
∑
|I |=`−m

αI ∧ γ Im.

Notice here that the (k−`+m)-forms γ Im are holomorphic global forms and thus they are
closed. Moreover, by construction they satisfy ivγ Im = 0 for each vector v tangent to F .
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Therefore they are basic with respect to F and

γ =
∑̀
m=1

∑
|I |=m

αI ∧ γ I`−m + γ`

is the required decomposition. ut

3. Projective manifolds with nonvanishing tangent fields

In this section we will assume that X is a complex projective manifold. Our study in
this algebraic context becomes a continuation of the classical study of complex projective
manifolds with holomorphic tangent vector fields, which led to their birational classifi-
cation summarized in Theorem 0.1. The Albanese mapping and Poincaré’s reducibility
theorem lead to a biholomorphic classification of these manifolds which is simpler than
in the Kähler case.

In view of Theorem 1.2 and Remark 1.5 about the structure of the Lie algebra of
holomorphic tangent vector fields, the existence of nonvanishing tangent vector fields is
equivalent to the existence of a holomorphic locally free Cr -action on the manifold. We
will work directly with these locally free actions. The basic fact beyond the classical
theory is:

Proposition 3.1. Let X be a complex projective manifold, admitting a locally free holo-
morphic Cr -action. ThenX is a suspension F×3Cs over an Abelian variety of dimension
s ≥ r , with fiber a connected projective manifold F .

Proof. AsX is closed Kähler, the Cr -action can be extended to a locally free holomorphic
action of maximal rank s = dimC TX = dim hX/h

1
X as we have recalled in Section 1.

The Albanese torus Alb(X) of X is an Abelian variety, therefore the subtorus TX ⊂
Alb (X) in the Fujiki–Lieberman structure Theorem 1.2 is also an Abelian variety, and by
Poincaré’s Reducibility Theorem (see [4, §5.3]) it has a complementary Abelian subva-
riety Z such that TX ∩ Z is finite, TX + Z = Alb(X), and the addition law induces an
isogeny c : Alb(X)→ TX × Z.

The composition of the Albanese morphism of X with this isogeny and the natural
projection

X
φ
→ Alb(X)

c
→ TX × Z

p1
→ TX

maps the tangent subspace of X generated by the Cs-action isomorphically into the tan-
gent space of TX. Consequently, X is a suspension over TX, with parallel transport given
by the Cs-action and possibly disconnected fibers. The Stein factorization of X → TX
is thus unramified, and yields a suspension X → NX with connected fiber F , over an
Abelian variety NX isogenous to TX. ut

If X is not ruled, it follows from Theorems 0.1 and 1.2 that Aut0C(X) is an Abelian va-
riety of dimension s = dim hX, isogenous to NX. The suspension morphism X → NX
shows that the natural action of Aut0C(X) onX is holomorphically injective, and the above



Deformations of Kähler manifolds with vector fields 1009

quoted theorems make Proposition 3.1 essentially equivalent to Carrell’s classification
theorem for such actions of Abelian varieties (cf. [10, Thm. 8]).

The classification of projective manifolds with locally free holomorphic Cs-actions
follows from Proposition 3.1 and Theorem 1.8. Putting them together yields:

Theorem 3.2. Let X be a complex projective manifold admitting a locally free holomor-
phic Cr -action.

(a) If X is not uniruled, it is a quotient (F × T )/0, with T an Abelian variety of dimen-
sion s ≥ r , F a projective manifold with no holomorphic tangent vector fields and
kod(F ) = kod(X), and 0 a finite Abelian group of biholomorphisms operating freely
on F × T .

(b) If X is uniruled, it admits a finite, Abelian, étale cover X′ which is a suspension
over an Abelian variety T of dimension s ≥ r , with uniruled fiber F such that any
holomorphic tangent vector field on F has zeros. The monodromy of the suspension
X′→ T has values in the group Aut0C(F ).

Remark 3.3. This theorem proves the algebraic part of Theorem 0.3. Its proof mirrors
that of Proposition 6.5 which deals with the general case of Kähler manifolds. As ex-
amples in Section 7 show, the fact that Poincaré’s reducibility theorem is no longer valid
in the Kähler setting forces the introduction of deformations of the complex structure.

Proof. We may assume that the locally free action on X is of maximal rank s. By Propo-
sition 3.1, X is a suspension over an s-dimensional Abelian variety NX, isogenous to TX,
and with fiber a connected projective manifold F1.

Let the suspension structure on X be given by NX = Cs/3, with 3 = 〈τ1, . . . , τ2s〉

a cocompact lattice defining the torus NX, ρ : 3 → AutC(F ) the monodromy of the
suspension, and fi = ρ(τi) the generators of the monodromy.

By 2.4, the fact that the total space X of the suspension is Kähler implies that all
the monodromy automorphisms have a finite power f nii ∈ Aut0C(F ), i.e. there is a finite
étale Abelian covering T1 → NX such that the pullback of X over T1 is a finite étale
Abelian covering X1 → X, and also a suspension over T1 with fiber F1 and monodromy
automorphisms in Aut0C(F1).

If F1 has no nonvanishing holomorphic tangent vector fields it can be checked that we
have reached the desired cover:

(i) kod(F1) = kod(X) by Corollary 2.9.
(ii) If X is not uniruled, neither is X1 nor F1. Indeed, as all the fibers of X1 → T1 are

isomorphic, if F1 were uniruled there would be a rational curve passing through each
given point of X1. Now Fujiki’s Theorem 1.8 implies that h1

F1
= 0. Therefore the

suspension monodromy has values in Aut0C(F1) = {Id}, i.e. X1 is biholomorphic to
F1 × T1.

(iii) If X is uniruled so is its étale cover X1. Since rational curves map to points in the
suspension basis T1, the fiber F1 is uniruled as well.
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If F1 has nonvanishing holomorphic tangent vector fields, we apply an iterative pro-
cess: let hF1 be the Lie algebra of holomorphic vector fields in F1, and apply Proposi-
tion 1.6 to choose an Abelian subalgebra aF1 corresponding to a Cr -action of maximal
rank in F1, such that aF1 is central in hF1 .

As the monodromy of the suspension X1 → T1 lies in Aut0C(F1) it must commute
with the central algebra aF1 . Therefore its tangent vector fields may be extended by par-
allel transport from the fiber F1 to the suspension total space X1 as nonvanishing tangent
vector fields. These extensions, to be denoted 〈v1, . . . , vr 〉, commute with the horizontal
vector fields 〈h1, . . . , hs〉 which are the lifts to X1 of hT1 = H 0(T1,2T1) defining the
suspension’s parallel transport. Thus aX1 = 〈v1, . . . , vr , h1, . . . , hs〉 is an Abelian sub-
algebra of hX1 , spanned by r + s linearly independent nonvanishing vector fields. It has
maximal rank among such algebras: the algebra hX1 is the direct sum

hX1 = 〈h1, . . . , hs〉 ⊕H
0(X1,Vert)

where Vert is the sheaf spanned by the vector fields vertical with respect to the pro-
jection X1 → T1. As the horizontal fields h1, . . . , hs are central in hX1 , the morphism
H 0(X1,Vert) → hF1 given by restriction to a fiber is injective. This induces a natural
inclusion of Lie algebras

hX1 = 〈h1, . . . , hs〉 ⊕H
0(X1,Vert) ⊂ 〈h1, . . . , hs〉 ⊕ hF1 .

If there existed an Abelian Lie subalgebra ã ⊂ hX1 formed by nonvanishing tangent fields,
with dim ã > r + s, then its inclusion in 〈h1, . . . , hs〉 ⊕ hF1 would have an intersection
with hF1 of dimension > r . This contradicts the maximality of aF1 .

By Proposition 3.1, the algebra aX1 determines a suspension X1 → N1, over an
(r + s)-dimensional Abelian variety, with a connected fiber F2. Again by 2.4, the mon-
odromy automorphisms of this suspension have a finite power in Aut0C(F2). Consequently,
there is a finite étale Abelian covering T2 → N1 such that the pullback X2 of X1 over T2
is a suspension with fiber F2 and monodromy in Aut0C(F2).

The induced map X2 → X1 is also a finite étale Abelian cover. Moreover, the com-
position of coverings X2 → X1 → X is still regular and Abelian. The reason for its
regularity is that the automorphisms of the cover X1 → X are realized by integration up
to time 1 in X1 of suitable linear combinations of the horizontal fields h1, . . . , hs . These
tangent fields have become parallel transport vector fields of the suspension X1 → T1
by our choice of algebra hX1 , and the isogenous base change T2 → T1 lifts canonically
to X2 the vector fields h1, . . . , hs , thus also the integration up to time 1 of their linear
combinations. The Abelianity of the cover follows from the fact that the vector fields
v1, . . . , vr , h1, . . . , hs commute in X1, hence also in X2, and the automorphisms of both
covers X1 → X, X2 → X1 are defined by integration up to time 1 of suitable linear
combinations of them.

The iteration step concludes here. We have obtained a suspension X2 → T2, with
X2 a finite, Abelian étale cover of X, fiber F2 with kod(F2) = kod(X2) = kod(X), and
monodromy in Aut0C(F2).
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Repetition of the above procedure yields a sequence of suspensions Xi → Ti with
fiber Fi , again with Xi Abelian étale covers of X, kod(Fi) = kod(X) and monodromy
in Aut0C(Fi). As the dimension of the basis tori T2, T3, . . . grows strictly the iterative
process must reach a final suspension Xf → Tf such that its fiber Ff does not have any
nonvanishing vector field, i.e. no holomorphic locally free Cr -action.

If X is not uniruled neither is Xf nor Ff . By Fujiki’s Theorem 1.8 we have h1
Ff
= 0.

Hence the fiber Ff cannot have any tangent vector field, so Aut0C(Ff ) = {Id} and the
trivial suspension Xf = Ff × Tf has been reached.

If X is uniruled, so are all its étale covers up to Xf , and the fiber Ff as well because
rational curves in Xf must map to a point in Tf . ut

We can use the structure theorem 3.2 to classify algebraic manifolds with sufficiently
many vector fields and to establish for them Ueno’s conjecture 0.4. This is done in Corol-
laries 8.9 and 8.10 below as specialization of the arguments in the Kähler case.

4. Tangential deformations of locally free holomorphic actions

Throughout this section, X will be an arbitrary compact complex manifold, i.e. not nec-
essarily Kähler or belonging to the Fujiki class. Let us assume that X is endowed with a
holomorphic action $ : G×X→ X, where G is a connected complex Lie group. Such
an action is defined by a representation

ρ : G→ AutC(X) (6)

fromG into the group AutC(X) of holomorphic automorphisms of X. When$ is locally
free, i.e. it has discrete isotropy groups, then it induces a holomorphic foliation F on X
whose leaves are the orbits of the action.

Let F tr denote the transversely holomorphic foliation obtained from F by forgetting
the complex structure along the leaves. One can consider deformations of the holomorphic
foliation F that keep fixed its transversal type; that is, holomorphic deformations Fr
of F such that the transversely holomorphic foliation F tr

r coincides with F tr. This type
of deformations were studied in [19] and [18], where they are called f -deformations.
In [19], Gómez-Mont studies the space of infinitesimal f -deformations of holomorphic
foliations, which is naturally identified to H 1(X, TF), i.e. the first cohomology group
of X with values in the tangent bundle TF of F . The existence of a versal or Kuranishi
space for f -deformations, i.e. a germ of analytic space (Kf , 0) parametrizing a versal
family of f -deformations of F , is proved in [18]. The tangent space to (Kf , 0) at 0 is
H 1(X, TF).

Families of f -deformations of F can be viewed as unfoldings of F , that is, families
of complex structures onX for which F tr becomes holomorphic. More precisely, a family
of f -deformations of F parametrized by a germ of analytic space (R, r0) is given by a
proper and flat morphism π : XR → R, an identification ι : X ↪→ XR of X with the fiber
Xr0 = π−1(r0) and a holomorphic foliation FR on XR of the same codimension as F ,
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which is transverse to the projection π and such that the restriction Fr0 of FR toX ≡ Xr0
coincides with F . Such a family of f -deformations will be denoted by (XR, ι, π,FR).

Notice however that f -deformations Fr of F need not be equivariant, in the sense that
Fr are not necessarily defined by an action. For this reason we give the following defi-
nition, which is inspired by the notion of equivariant deformations of complex manifolds
introduced by Cathelineau [13].

Definition 4.1. Let X be a compact complex manifold endowed with a locally free holo-
morphic action $ : G×X→ X and let F be the foliation defined by $ . By a family of
tangential deformations of $ we mean a family of f -deformations (XR, ι, π,FR) of F
and a holomorphic action $R of G on XR with the following properties:

(i) $R extends the action $ of G on X ≡ ι(X) = Xr0 ,
(ii) $R preserves the fibers of π , and

(iii) the orbits of the action are tangent to FR .

Then $R induces a locally free G-action $r on Xr for each r ∈ R and the leaves of
Fr = F |Xr are the orbits of $r .

Such a family will be denoted by (XR, ι, π,$R) and each pair (Xr ,$r) with r ∈ R
will be called a tangential deformation of (X0,$0) ∼= (X,$). We will just write
(XR,$R) instead of (XR, ι, π,$R) when there is no danger of confusion.

Definition 4.2. Two families (XR, ι, π,$R) and (X′R, ι
′, π ′,$ ′R) of tangential deforma-

tions of (X,$), parametrized by the same germ of analytic space R, are said to be iso-
morphic if there is a G-equivariant biholomorphism φ : XR → X′R satisfying φ ◦ ι = ι′

and π ′ ◦ φ = π .

A family of tangential deformations (XR,$R) of (X,$) is called versal if it has the
following property: for any other family (XS,$S) of tangential deformations of (X,$)
there is an analytic morphism of germs of analytic spaces ϕ : S → R such that

(i) the pull-back family (ϕ∗(XR), ϕ
∗($R)) parametrized by S is isomorphic to

(XS,$S), and
(ii) the tangent map ds0ϕ of ϕ at the distinguished point s0 of S is unique.

If such a versal family exists then it is unique up to isomorphism.
Notice now that the sheaf of germs of holomorphic vector fields tangent to

F is a G-sheaf and therefore we can consider the equivariant cohomology of X
with values in the tangent bundle TF of F , which we denote by H ∗G(X, TF). Let
�0,q(X, TF) be the Fréchet space of (0, q)-forms onX with values in TF and denote by
C
p
h (G,�

0,q(X, TF)) the space of holomorphic p-cochains with values in the G-module
�0,q(X, TF). Then H ∗G(X, TF) is the cohomology of the double complex

((C
p
h (G,�

0,q(X, TF)))p,q , δ, ∂) (7)

where δ denotes the Eilenberg–MacLane coboundary operator and ∂ is the usual delta-
bar operator. As usual, infinitesimal tangential deformations of (X,$) can be defined as
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isomorphism classes of families parametrized by the double point D = {∗,C(t)/(t2)}.
The space of infinitesimal deformations is naturally identified to H 1

G(X, TF). Moreover,
to each family of tangential deformations (XR,$R) of (X,$) there is associated in a
natural way a linear map

κ : Tr0R→ H 1
G(X, TF)

which is called the Kodaira–Spencer map of the family (cf. [13]).
The following theorem states the existence of a versal family and it can be proved

along the same lines as the corresponding statement for equivariant deformations of com-
plex manifolds (cf. [13, Théorème 1 and Proposition 1]).

Theorem 4.3. Let X be a compact complex manifold endowed with a locally free holo-
morphic action $ : G × X → X and let F be the induced holomorphic foliation. Then
there is a germ of analytic space (KtG, 0) parametrizing a versal family of tangential de-
formations of the action $ . The tangent space to KtG at 0 is isomorphic to H 1

G(X, TF)
and it is naturally identified to the space of infinitesimal tangential deformations of $ .

The following proposition is a general fact in deformation theory and can be deduced
easily from the existence of the versal space of tangential deformations.

Proposition 4.4. Let (XR,$R) be a family of tangential deformations of (X,$) whose
parameter space R is smooth and such that the corresponding Kodaira–Spencer map κ
is an isomorphism. Then the family of deformations (XR,$R) is versal.

Associated to the double complex (7) there is a spectral sequence converging to
H ∗G(X, TF) and whose second term is Ep,q2 = H

p
h (G,H

q(X, TF)). Here the index h
denotes cohomology of holomorphic cochains. In particular one has the following exact
sequence that is useful in the computation of H 1

G(X, TF):

0→ H 1
h (G,H

0(X, TF))→ H 1
G(X, TF)

χ
→ H 1(X, TF)G

→ H 2
h (G,H

0(X, TF))→ H 2
G(X, TF). (8)

5. Tangential deformations of locally free Cs-actions on Kähler and Fujiki
manifolds

The aim of this section is to construct the versal family of tangential deformations of a
locally free Cs-action $ on a given compact Kähler or Fujiki manifold X and to study
the properties of that family.

With this purpose we consider the exact sequence (8) whenG is the Abelian group Cs .
In that case TF is trivial as a G-bundle. So G = Cs acts trivially on H 0(X, TF) ≡ Cs
andH 1

h (G,H
0(X, TF)) is just the space of holomorphic group homomorphisms fromG

into Cs , that is, the space EndCs of C-linear endomorphisms of Cs . Moreover, G = Cs
also acts trivially on H 1(X, TF) = H 1(X,OX)

s ∼= H 0(X,�1
X)
s , where the last isomor-

phism is C-antilinear.
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Therefore, the first terms of sequence (8) can be written

0→ EndCs τ
→ H 1

G(X, TF)
χ
→ H 0(X,�1

X)
s
→ · · · . (9)

We will see below that the morphism χ is surjective and therefore H 1
G(X, TF) is iso-

morphic to the direct sum EndCs ⊕H 0(X,�1
X)
s . This motivates the construction of the

family of tangential deformations of (X,$) that follows.
As above, v1, . . . , vs will denote the fundamental vector fields of the action $ corre-

sponding to the canonical basis of Cs , α1, . . . , αs will be holomorphic 1-forms satisfying
αi(vj ) = δ

i
j , and {α1, . . . , αs, β1, . . . , βp−s} a basis of H 0(X,�1

X) where βk are basic
forms. Although the vector fields vi are naturally associated to the action $ , the 1-forms
αi are not uniquely determined. If α̃i is another choice then α̃i−αi are basic forms, hence
vanish on TF .

We denote 4 = EndCs ⊕ H 0(X,�1
X)
s . Given an element r = (C, θ) ∈ 4, where

θ = (θ1, . . . , θ s) and θ i =
∑s
j=1 a

i
jα

j
+
∑p−s

k=1 b
i
kβ
k with aij , b

i
k ∈ C, we set

αir = α
i
+ θ i = αi +

s∑
j=1

aij α
j +

p−s∑
k=1

bik β
k for i = 1, . . . , s. (10)

We set A = (aij ) and

MA =

(
I −A

−A I

)
.

Definition 5.1. Let R0 be the open subset of H 0(X,�1
X)
s of those elements θ =

(θ1, . . . , θ s) for which detMA 6= 0 and denote by R the open subset of 4 whose ele-
ments are the pairs r = (C, θ) satisfying

(i) detC 6= 0, and
(ii) detMA 6= 0,

that is,R = GL(s,C)×R0. The setR is the complement of an affine real algebraic variety
and its tangent space at (id, 0) is naturally identified to 4 = EndCs ⊕H 0(X,�1

X)
s .

The space R will be the parameter space of the versal family of tangential deforma-
tions of (X,$). Moreover, when X is a Kähler manifold, that family will be versal at
each point of R.

Condition (ii) in the above definition implies that α1
r , . . . , α

s
r are linearly indepen-

dent at each point. Hence the forms αir generate a real subbundle Qr of T ∗XC. One has
Qr ∩ν

∗F = 0, so there are well defined complex valued smooth vector fieldsw1, . . . , ws
that are tangent to F and determined by the conditions

αir(wj ) = δ
i
j and αir(wj ) = 0. (11)

We set

w̃i = vi −

s∑
j=1

a
j
i vj for i = 1, . . . , s, (12)
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and we notice that
〈w1, . . . , ws〉C =

〈
w̃1, . . . , w̃s

〉
C
∼= Cs . (13)

Then we define
vri = Cwi . (14)

In this situation one has

Proposition 5.2. Let an element r = (C, θ) of R be given and set N1,0
r = Qr ⊕ ν

∗F1,0.

Then T ∗XC
= N

1,0
r ⊕ N

1,0
r and the almost complex structure so defined is integrable,

defining a complex structure Xr . Moreover, the vector fields vri are holomorphic and in-
duce a locally free Cs-action$r onXr , which is a tangential deformation of$ . This con-
struction defines a family (XR,$R) of tangential deformations of (X,$) parametrized
by R.

Proof. The condition T ∗XC
= N

1,0
r ⊕ N

1,0
r is equivalent to detMA 6= 0. Since αir =

αi + θ
i are closed, the almost complex structure on X defined by N1,0

r is integrable and
induces a complex structure Xr by Newlander–Nirenberg’s theorem.

Since v1, . . . , vs are holomorphic on X we see, using (13), that the vector fields
w1, . . . , ws commute with each other. It is also clear that w̃i are of type (1, 0) on Xr ,
and so are the vector fields wi . It only remains to show that wi are in fact holomorphic
on Xr .

Let (t1, . . . , t s, z1, . . . , zn−s) be local coordinates satisfying (4). A local basis of vec-
tor fields of type (1, 0) on Xr is given by{

w̃1, . . . , w̃s,
∂

∂z1 −

s∑
j=1

c
j

1vj , . . . ,
∂

∂zn−s
−

s∑
j=1

c
j
n−svj

}
, (15)

where cjl =
∑n−s
k=1 b

j
kβ

k(∂/∂zl). Notice that the functions cjl are holomorphic on Xr
and basic with respect to the foliation F , that is, cjl only depend on the coordinates
z1, . . . , zn−s . The vector fields wi are holomorphic if and only if the Lie brackets [wi, w]
are of type (0, 1) on Xr for each local vector field w of type (1, 0) on Xr . But this is a
straightforward computation using the local basis of TX1,0

r given above. ut

Remarks 5.3. (a) Notice that the almost complex structure on X by the decomposition

T ∗XC
= N

1,0
r ⊕N

1,0
r is real-analytic.

(b) The matrix C in r = (C, θ) corresponds to a choice of a basis of fundamental
vector fields of the action. Hence, if r = (C, θ) and r ′ = (C′, θ) with C′ 6= C then the
complex manifolds Xr and Xr ′ are identical, as also are the holomorphic foliations Fr
and Fr ′ , although the actions $r and $r ′ are different.

(c) One can consider what, in principle, could be a more general class of tangential de-
formations of the action, namely those determined by the global 1-forms α̃` on X defined
as

α̃` = α` +
∑

e`j α
j +

∑
f `k β

k +

∑
g`j α

j
+

∑
h`kβ

k, (16)
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where the coefficients e`j , f
`
k , g

`
j , h

`
k are complex numbers. In fact, if these coefficients

are small enough then there are smooth vector fields uniquely defined by the conditions
α̃`(ṽj ) = δ

`
j and α̃`(ṽj ) = 0. Moreover, if we denote by Q̃ the real subbundle of T ∗XC

generated by the 1-forms α̃`, then N1,0
= Q̃⊕ ν∗F1,0 defines an integrable almost com-

plex structure and the vector fields ṽj are holomorphic on the new complex manifold X̃.
Notice however that this complex structure and the vector fields ṽj are the same as the

ones determined by the 1-forms

α` +
∑

e`j α
j +

∑
f `k β

k +

∑
g`j α

j .

Furthermore, X̃ endowed with the Cs-action defined by the vector fields ṽj can be iden-
tified with a suitable (Xr ,$r) in the family constructed above. More precisely, if we
denote by D the invertible matrix (δ`j + g

`
j ) then X̃ coincides with Xr , where r =

(C, (θ1, . . . , θ s)) is determined by C = (cim) = D−1 and θ i =
∑
aij α

j +
∑
bik β

k

with aij =
∑
cime

m
j and bij =

∑
cimf

m
j . Therefore this construction does not provide

more general deformations of (X,$). In fact it is proved in the following theorem that
(XR,$R) is the versal family of tangential deformations of (X,$). In particular the
family is complete and it contains all the small tangential deformations of (X,$) up to
isomorphism.

(d) It follows from the above remark that the family (XR,$R) does not depend on
the choice of the 1-forms αi satisfying αi(vj ) = δij . Therefore that family is naturally
associated to (X,$).

Remark 5.4. Let $ ′ be a locally free Cs-action on a compact complex manifold X′

and assume that (X′,$ ′) coincides with a pair (Xr ,$r) in the family (XR,$R). Then
(X,$) coincides with an element of the family (X′R,$

′

R) associated to (X′,$ ′). There-
fore the original action $ : G × X → X is also a tangential deformation of $r :
G×Xr → Xr for each r ∈ R.

Theorem 5.5. The family (XR,$R) defined above is the versal family of tangential de-
formations of (X,$).

Proof. Let κ : T0R → h1(X, T X) denote the Kodaira–Spencer map associated to the
family (XR,$R) at 0. Let (C = id+C′, θ) be a given element in4 close to (id, 0). Then
(C′, θ) is an element of T0R = EndCs ⊕H 0(X,�1

X)
s , close to zero, that can be seen as

a cocycle in C1
h(C

s, �0,0(X, TF))⊕C0
h(C

s, �0,1(X, TF)). An easy computation shows
that κ(C′, θ) is just the cohomology class in H 1

Cs (X, TF) of that cocycle. This implies
that: (i) the restriction of κ to EndCs is just the map τ in (9), and (ii) the restriction of κ
to T0R0 ≡ H

0(X,�1
X)
s is a section of the morphism χ in (9). Hence κ is an isomorphism

and the statement follows from Proposition 4.4. ut

Let KX denote the Kuranishi space of X, that is, the parameter space of the versal family
of deformations of the complex manifold X. Recall that KX is a (possibly singular) ana-
lytic space whose tangent space at the distinguished point 0 ∈ KX is naturally identified
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to H 1(X,2X). The restriction XR0 to R0 of the family XR can be seen as a family of
deformations of the complex structure of X. Hence there is a well defined forgetful map
of germs of analytic spaces

φ : (R0, 0)→ (KX, 0).

Moreover its tangent map d0φ at 0 coincides with the morphism

H 1(X, TF)→ H 1(X,2X)

induced by the decomposition TX = TF ⊕ T G. More precisely, given an element θ =
(θ1, . . . , θ s) in T0R0 with θ i =

∑
aijα

j
+
∑
bikβ

k , its image d0φ(θ) is the vector valued
(0, 1)-form

θ̃ =
∑

θ i ⊗ vi .

Since holomorphic forms are closed and nonexact, one can see using local coordinates
fufilling (4) that θ̃ defines a cohomology class in H 1(X,2X) which is not trivial unless
θ i = 0 for all i = 1, . . . , s. This implies that φ is an embedding, proving the following
statement.

Theorem 5.6. Let X be a compact manifold in the class C such that s = dimC TX =
dimC hX/h

1
X 6= 0. Then the Kuranishi space KX of X contains a smooth subspace

of dimension s · b1(X)/2. More precisely, the canonical morphism H 1(X, TF) ≡
H 1(X,OX)

s
→ H 1(X,2X) is injective and its image are unobstructed infinitesimal

deformations of the complex structure of X.

We shall distinguish two particular types of tangential deformations defined as follows:

Definition 5.7. Let r = (C, θ) ∈ R be given and set θ = (θ1, . . . , θ s). We say that the
associated tangential deformation (Xr ,$r) is

(i) a purely tangential deformation, or t-deformation, of (X,$) if θ i ∈ 〈α1, . . . , αs〉,
i.e. the coefficients bik in (10) are all zero,

(ii) a basic deformation, or b-deformation, of (X,$) if θ i ∈ 〈β1, . . . , βp−s〉, i.e. the
coefficients aij in (10) are all zero.

Remarks 5.8. (a) The holomorphic and invariant foliation G, which is transversal and
complementary to F , remains holomorphic and invariant for each t-deformation of
(X,$). On the other hand the foliation F remains holomorphic for each b-deformation
of (X,$).

(b) If (Xr ,$r) is a t-deformation (resp. b-deformation) of (X,$) then (X,$) is a
t-deformation (resp. b-deformation) of (Xr ,$r).

Note also that each small tangential deformation (Xr ′ ,$r ′) of (X,$) can be seen as
a b-deformation of a t-deformation (Xr ,$r) of (X,$). More precisely, if Xr ′ is deter-
mined by 1-forms α̃i = αi +

∑
aij α

j +
∑
bik β

k then the manifold Xr determined by the

1-forms α̂i = αi +
∑
aij α

j is a t-deformation of X. Moreover, since α̃i = α̂i +
∑
bik β

k ,
the manifold Xr ′ is a b-deformation of Xr .

Notice that, asX is a tangential deformation ofXr , the previous argument also proves
that (Xr ′ ,$r ′) can be seen as a t-deformation of a b-deformation of (X,$).
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As remarked in the proof of Proposition 5.2, local holomorphic functions on X that
are basic with respect to F are also holomorphic on Xr and basic with respect to Fr .
By definition, the global 1-forms αir are of type (1, 0) on Xr and they are also closed by
construction. Hence αir are holomorphic forms on Xr . It follows that, for each r ∈ R,
one has h1,0(Xr) = h

1,0(X), h0,1(Xr) = h
0,1(X) and b1(X) = h

1,0(Xr) + h
0,1(Xr). In

particular, the space of holomorphic 1-forms on Xr can be decomposed as

H 0(Xr , �
1
Xr
) = 〈α1

r , . . . , α
s
r 〉 ⊕ 〈β

1, . . . , βp−s〉. (17)

Proposition 5.9. Let aX be an Abelian algebra satisfying hX = aX ⊕ h1
X and let Xr be

a tangential deformation of X.

(i) If aX is in the center of hX then h1
Xr
= h1

X.
(ii) If Xr is a b-deformation of X then aX ⊂ hXr and hXr = aX ⊕ h1

Xr
.

If both conditions are fulfilled then hXr = hX.

Proof. (i) Let w ∈ h1
X be given. Notice that αi(w) = αir(w) = 0 for i = 1, . . . , s. Since

[aX, h1
X] = 0, w is written locally as

w =

n−s∑
k=1

f k(z)
∂

∂zk
,

where all f k are holomorphic functions of z1, . . . , zn−s . It follows that w is of type (1, 0)
on Xr . Now the same argument used in the proof of Proposition 5.2 shows that w is in
fact holomorphic in Xr . The original manifold X is a tangential deformation of Xr (cf.
Remark 5.4), so h1

Xr
does not contain any additional tangent fields besides those arising

in X.
(ii) If Xr is a b-deformation of X then the elements v ∈ aX are still holomorphic

on Xr , in view of the identities (11) to (14). ut

We now discuss the tangential deformations of the examples of Kähler manifolds intro-
duced in Section 2.

Example 5.10 (Deformations of tori). If X is a complex torus Ts = Cs/3 then
H 0(Ts, �1

Ts )
s can be identified with the dual space ofH 1(Ts,2Ts ). In that case the space

R is just the product of GL(s,C) with the versal space of deformations of the complex
manifold Ts , as described by Kodaira and Spencer [23].

Example 5.11 (Deformations of principal torus bundles). Assume that X is the total
space of a principal torus bundle Ts → X → B where Ts = Cs/3. As already noticed
(cf. Example 2.3), when X is Kähler then B is also a Kähler manifold and the bundle is
flat. The possible choices of the s-tuple (α1, . . . , αs) correspond exactly to the different
flat connections on that bundle.

In this situation the space of basic deformations of the action is naturally identified
to H 0(B,�1

B)
s ∼= H 1(B,Os

B). The exact sequence of sheaves 0 → 3 → Os
B →

Os
B/3→ 0 over B induces the exact cohomology sequence

· · · → H 1(B,3)→ H 1(B,Os
B)→ H 1(B,Os

B/3)
τ
→ H 2(B,3)→ · · · .
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It follows that H 1(B,Os
B) is mapped onto ker τ , which is the space of (isomorphism

classes of) topologically trivial Cs/3-principal bundles over B. Replacing B by a finite
(unramified) covering we can suppose that H 2(B,3) has no torsion. In that case each
topologically trivial principal torus bundle over B can be obtained from X by a suitable
basic deformation of the action and, in particular, the trivial bundle is a tangential defor-
mation of (X,$).

In general, each tangential deformation of (X,$) is a principal torus bundle over B.
Purely tangential deformations r ∈ R just deform the fiber Cs/3r .

Example 5.12 (Deformations of suspensions). Assume that X is a suspension over a
torus Ts = Cs/3, that is, X = F ×3 Cs . It follows from Remark 5.8(a) that each purely
tangential deformation of X is still a suspension, although this is not true for general
tangential deformations of X.

If X is a suspension one has H 0(X,�1
X/F ) = H

0(F,�1
F ). Therefore if b1(F ) = 0,

or, what is equivalent, b1(X) = 2s, then X has no basic deformations and each tangential
deformation of X is again a suspension.

We end this section stating several general properties of tangential deformations of
compact manifolds of the class C endowed with a locally free Cs-action.

If X̃ → X is an unramified covering then X̃ is also endowed with a locally free Cs-
action in a natural way. Notice however that the maximal rank of such an action on X̃ can
increase, as dimC h

X̃
/h1
X̃
≥ s. The following statement follows straightforward from the

definitions.

Proposition 5.13. A finite covering X′r of a tangential deformation Xr of X is a tangen-
tial deformation of a finite covering X′ of X. Conversely, a tangential deformation X′r of
a finite covering X′ of X is a finite covering of a tangential deformation Xr of X.

Proposition 5.14. Let X be a geometrically ruled manifold in the class C. Then Xr is a
geometrically ruled compact complex manifold for each r ∈ R.

Proof. Let X be a compact manifold in the class C endowed with a locally free Cs-
action$ , and assume thatX is the total space of a locally trivial fiber bundle, ϕ : X→ B,
with fiber CP k and defined by a cocyle {gij } in H 1(B,PGL(k + 1,OB)). Then B is also
in the class C. Since automorphisms of X close to the identity must preserve the fibra-
tion (cf. [5]), each fundamental vector field v of the action $ projects to a nonvanishing
vector field v̂ on B. These vector fields define a locally free Cs-action $̂ on B and the
projection ϕ is equivariant with respect to the Cs-actions. Notice that every global holo-
morphic 1-form on X vanishes on the fibers of ϕ. Hence ϕ∗ : H 0(B,�1

B)→ H 0(X,�1
X)

is an isomorphism. Using this identification, one can associate, to each tangential defor-
mation Xr given by a pair r = (C, θ), a tangential deformation Br defined by the same
expression (10). Then the projection ϕ : Xr → Br is holomorphic.

Now, as the Cs-action $ is transverse and preserves the fibration, the cocycle {gij }
can be chosen to be constant along the orbits of the Cs-action $̂ on B. This implies that
the matrix-valued functions gij are still holomorphic on Br and therefore they define Xr
as a geometrically ruled manifold over Br . ut
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Proposition 5.15. A tangential deformation Xr of X uniquely determines a tangential
deformation Alb(X)r of the Albanese torus Alb(X) of X such that Alb(X)r = Alb(Xr),
i.e. Alb(X)r is the Albanese torus of Xr .

Proof. The locally free Cs-action $ on X induces a locally free Cs-action $̂ on
the corresponding Albanese torus Alb(X) and the natural map φ : X → Alb(X) is
equivariant with respect to these actions. Since the map φ induces an isomorphism
φ∗ : H 0(Alb(X),�1

Alb(X))→ H 0(X,�1
X), there is a natural correspondence, as the one

considered in the proof of the above proposition, associating to each tangential deforma-
tion Xr of X a tangential deformation Alb(X)r of Alb(X). It follows from the definitions
that Alb(X)r = Alb(Xr). ut

Proposition 5.16. The manifolds X and Xr have the same plurigenera for all r ∈ R. In
particular the Kodaira dimension kod(Xr) of Xr is equal to kod(X) for each r ∈ R.

Proof. Let (t1, . . . , t s, z1, . . . , zn−s) be local coordinates ofX satisfying (4) and let αir be
the global holomorphic 1-forms onX defined by (10). Notice that zj are also holomorphic
functions on Xr . A local section of K⊗mXr is of the form f (t, z)ηm where η = α1

∧ · · · ∧

αs ∧ dz1
i ∧ · · · ∧ dz

n−s
i and f = f (t, z) is a holomorphic function.

Nakamura and Ueno have proved that, for each compact complex manifold Y , the
group Aut0C(Y ) acts trivially onH 0(Y,Km

Y ) (cf. [32, Corollary 14.8]). Applying this result
to the Cs-action we see that f is necessarily a basic function, i.e. f = f (z) only depends
on the coordinates (z1, . . . , zn−s) transverse to F . Therefore H 0(Xr ,K

⊗m
Xr
) is naturally

identified to the space of basic global sections of the line bundle (det ν∗Fr)m and this
space is independent of r ∈ R. ut

If X is a Kähler manifold then Kodaira’s stability theorem implies that Xr is also Kähler
for every r in a neighborhood of (id, 0) in R, and we will prove the following result,
stating that the class of Kähler manifolds is stable under tangential deformations. In sharp
contrast the class C is not stable under small deformations. We do not know if tangential
deformations of Fujiki manifolds still belong to the class C.

Theorem 5.17. Assume that X is a Kähler manifold. Then Xr is also a Kähler manifold
for each r ∈ R.

We postpone the proof of this theorem to Section 7, where the assertion will be a corollary
of general results on the structure of such manifolds. Granting the theorem, we can state
the following two propositions:

Proposition 5.18. Assume that X and Xr belong to the class C. Then

(i) hk,0(X) = hk,0(Xr) and h0,k(X) = h0,k(Xr) for each k,
(ii) h1,1(X) = h1,1(Xr).

If X is a Kähler manifold, the above identities hold for each r ∈ R.
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Proof. Lemma 2.10 implies that there is a well defined C-linear map from H 0(X,�kX)

to H 0(Xr , �
k
Xr
) determined by the condition

γ =
∑

0≤|I |≤`

αI ∧ γ I 7→ γr =
∑

0≤|I |≤`

αIr ∧ γ
I ,

where ` = min(k, s), αIr = α
i1
r ∧ · · · ∧ α

i|I |
r , αir = αi + θ i and γ I are global basic

forms. Clearly this map is in fact an isomorphism. Preservation of b2, h
2,0, h0,2 implies

that of h1,1. ut

Proposition 5.19. Assume that X is a Kähler manifold. Then the family (XR,$R) is the
versal family of (Xr ,$r) at each point r ∈ R.

Proof. In that case Xr is a Kähler manifold for each r ∈ R and H 1(Xr ,OXr ) is iso-
morphic to H 0(Xr , �

1
Xr
). Moreover, the dimension of these vector spaces does not vary

with r ∈ R. Hence the argument used to prove Theorem 5.5 also applies to each Xr with
r ∈ R. ut

6. The approximation theorem

In this section we prove a key result for describing the structure of compact complex man-
ifolds X in the class C endowed with a locally free holomorphic Cs-action. Namely, we
prove that such a manifold can be approximated by tangential deformations Xε of X that
are suspensions over a torus of dimension s, i.e. Xε belonging to the class of manifolds
described in Example 2.4.

We shall make use of the following criterion, which is valid for arbitrary compact
complex manifolds.

Lemma 6.1. Let X be a compact complex manifold endowed with a locally free action
of Cs and let v1, . . . , vs be a basis of fundamental vector fields of the action. Then X is
a suspension over a torus T = Cs/3, i.e. X = F ×3 Cs for a suitable representation
3 → AutC(F ), if and only if one can choose holomorphic 1-forms αj on X satisfying
αj (vi) = δ

j
i and such that the set of periods of α1, . . . , αs ,

3 =

{(∫
γ

α1, . . . ,

∫
γ

αs
) ∣∣∣∣ γ ∈ H1(X,Z)

}
is a lattice of Cs .

Proof. For each i = 1, . . . , s let f i be a multivalued holomorphic function such that
αi = df i . If the set of periods 3 is a lattice of Cs then f = (f 1, . . . , f s) is a well
defined holomorphic submersion from X onto Cs/3. The converse is clear. ut
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Remark 6.2. The fiber space F in the above theorem can always be taken connected.
Indeed, if the fibers of the submersion f : X → T are not connected, one can consider
the Stein factorization of f ,

X N

T

-p

@@Rf ?π

Since the map p is finite and f is a submersion, the map π is necessarily an unbranched
cover, thus N is also a torus that covers T . The map p is then the desired suspension.

The following result is an improvement of Theorem 2.16 in [29]. For our purposes
here, the essential point of the theorem is that the manifold Xε , which approximates X
and is a suspension over a torus, can be taken to be a basic deformation of X.

Theorem 6.3. Let X be a compact complex manifold in the class C endowed with a
locally free Cs-action. There is an arbitrarily small b-deformation Xε of X which is
a suspension over a complex torus T = Cs/3. More precisely, there is a connected
compact complex manifold F and a group representation ρ : π1(T ) = 3 → AutC(F )
such that Xε is the suspension of ρ.

Proof. First, we claim that there exist arbitrarily small holomorphic 1-forms θ i, ηi on X
such that, if we set α̃i = αi + θ i + ηi , then

3 =

{(∫
γ

α̃1, . . . ,

∫
γ

α̃s
) ∣∣∣∣ γ ∈ H1(X,Z)

}
is a lattice of Cs . The proof is essentially the same as the one given in [29, p. 490]. Let
{α1, . . . , αs, β1, . . . , βp−s} be the basis ofH 0(X,�1

X) considered in (5). We decompose

θ i = θ it + θ
i
b =

∑
aijα

j
+

∑
bikβ

k, ηi = ηit + η
i
b =

∑
cijα

j
+

∑
d ikβ

k.

It follows from Remark 5.3(c) that the 1-forms αi+θ i+ηit determine a complex manifold
endowed with a Cs-action which is isomorphic to a suitable (Xr ′ ,$r ′) close to (X,$).
Since α̃i are holomorphic 1-forms on Xr ′ , Lemma 6.1 implies that the manifold Xr ′ is a
suspension over a torus.

As noticed in Remark 5.8(b), we can view (Xr ′ ,$r ′) as a t-deformation of a suitable
(Xr ,$r) close to (X,$) with the property that (Xr ,$r) is a b-deformation of (X,$).
But Xr is a suspension over a torus as t-deformations of suspensions are again suspen-
sions (cf. Example 5.12). Hence (Xr ,$r) fulfills the required conditions, as Remark 6.2
ensures that the fiber F of the suspension can always be taken connected. ut

It follows from the above theorem that there is an exact sequence of groups 1→ π1(F )

→ π1(X)→ Z2s
→ 1.
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Remarks 6.4. (a) It follows from Remark 5.3(a) that Xε is real-analytically isomorphic
to X. More precisely, as the two complex manifolds X and Xε have the same underlying
real-analytic structure, the identity map id : X→ Xε is real-analytic.

(b) Assume that X is a suspension over a torus T = Cs/3, i.e. X = F ×3 Cs .
If T ′ is a torus isogenous to T then T ′ = Cs/3′, where 3′ is a sublattice of 3, and
there is an Abelian finite covering X′ of X which is a suspension over T ′. From this
fact one deduces easily that if X is a suspension over an s-dimensional torus, where s =
dimC TX = dimC hX/h

1
X, then X has an Abelian finite covering X′ that is a suspension

over TX = 8(Aut0C(X)) ⊂ Alb(X).
(c) Let X be a Kähler manifold satisfying the hypothesis of the above theorem. Then

Xε is the suspension F ×3 Cs of a representation ρ : 3 → AutC(F ). Since Xε is a
Kähler manifold, there is a sublattice 3′ of 3 such that ρ(3′) ⊂ Aut0C(F ) (cf. 2.4). Then
the suspension X′ε = F ×3′ Cs is an Abelian finite covering of Xε . Notice that X′ε is
topologically isomorphic to the product F × T ′, where T ′ = Cs/3′, and that X′ε can be
seen as a b-deformation of a finite covering X′ of X (cf. 5.13 and 5.4).

(d) Any (unramified) finite covering X′ of X is naturally endowed with a Cs-action
but the maximal rank can increase, that is

dimC hX′/h
1
X′ ≥ dimC hX/h

1
X.

Examples where this inequality is strict can be constructed by considering suspensions of
bielliptic surfaces.

A more precise description of the fiber manifold F and of the representation ρ :
3 → AutC(F ) in the above theorem can be obtained by considering (unramified) finite
coverings X′ of the manifold X. This is the content of the following proposition. It can
be seen as an improvement of the approximation theorem and will play a key role in the
structure theorems of the next section.

Proposition 6.5. Let X be a compact Kähler manifold such that s = dimC TX =
dimC hX/h

1
X > 0. There is a finite Abelian covering X′ε of an arbitrarily small b-

deformation Xε of X, which is the suspension over a torus T = Cs′/3, of dimension
s′ ≥ s, associated to a representation ρ : 3→ AutC(F ) with the following properties:

(i) F is a connected compact Kähler manifold with hF /h
1
F = 0, i.e. F has no nonsingu-

lar holomorphic vector fields,
(ii) ρ(3) ⊂ Aut0C(F ).

Remark 6.6. The manifold X′ε can also be seen as a (small) b-deformation of a finite
Abelian covering X′ of X. This follows from Proposition 5.13.

Proof of Proposition 6.5. Let aX be a central Abelian subalgebra of hX with hX =
aX ⊕ h1

X. It defines a locally free Cs-action on X, and by Theorem 6.3 there is an ar-
bitrarily small b-deformation Xε of X which is the suspension F1 ×31 Cs associated to
a representation ρ1 : 31 → AutC(F1). Notice that, applying Proposition 5.9, we have
aX ⊂ hXε . Therefore we can choose aXε = aX as the complement of h1

Xε
in hXε .
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As in Remark 6.4(c) above, we consider the sublattice 3′1 = ρ
−1
1 (Aut0C(F1)) of 31.

Then the suspension X1
ε = F1 ×3′1

Cs is an Abelian finite covering of Xε = X1
ε/01

where 01 = 31/3
′

1. More precisely, each vector field on Xε lifts to a unique vector field
on X1

ε and therefore we can identify aXε = aX with an Abelian subalgebra of hX1
ε

that
we still denote by aX. Then there are vi ∈ aX such that the monodromies ρ1(γ ) for the
set of elements γ ∈ 31 generating 01 lie in 〈γ1, . . . , γk〉, where γi = exp1(vi).

If F1 has no vector fields without zeros we are done. So, assume that hF1/h
1
F1
6= 0.

In that case we choose a subalgebra aF1 of the center of hF1 such that hF1 = aF1 ⊕ h1
F1

(cf. Proposition 1.6). Since ρ1(3
′

1) is contained in Aut0C(F1), each element ŵ of aF1 is
ρ1(3

′

1)-invariant. This implies that ŵ is the restriction of a globally defined holomorphic
vector field w on X1

ε without zeros and commuting with aX. More precisely, ŵ is the
projection over F1×31 Cs of the vector field (w, 0) on the product manifold F1×Cs . By
construction, aX1

ε
= aX⊕aF1 is Abelian and hX1

ε
= aX1

ε
⊕h1

X1
ε
. Denote r = dim aX1

ε
> s,

and repeat the above construction beginning with X1
ε instead of X.

There is a small b-deformation X1
δ of X1

ε which is the suspension F2 ×32 Cr over a
torus Cr/32, associated to a representation ρ2 : 32 → AutC(F2). We see, using Proposi-
tion 5.13, that X1

δ is a finite Abelian covering of a b-deformation Xδ of X. And, as above,
aX1

ε
is an Abelian subalgebra of hX1

δ
with hX1

δ
= aX1

ε
⊕ h1

X1
δ

. In particular, γi = exp1(vi)

can be seen as holomorphic transformations of X1
δ .

We set 3′2 = ρ−1
2 (Aut0C(F2)) and we define X2

δ = F2 ×3′2
Cr . Then X2

δ is a finite
Abelian covering ofX1

δ = X
2
δ/02 where 02 = 32/3

′

2. Also as above, aX1
ε
= aX⊕aF1 is

naturally included in hX2
δ
. It follows in particular that the automorphisms γi = exp1(vi)

for vi ∈ aX can be lifted as biholomorphisms γ̃i of X2
δ . This already implies that the

composition
X2
δ → X1

δ → Xδ

is a regular covering. Moreover, we can realize the monodromies ρ2(γ ) for a set of el-
ements in 32 generating 02 within a subgroup of automorphisms 〈γ̂1, . . . , γ̂m〉, where
γ̂j = exp1(wj ) and wj ∈ aX1

ε
. Since all the biholomorphisms γ̃i and γ̂j are exponentials

of vector fields belonging to the same Abelian algebra, they commute with each other,
proving that the regular covering X2

δ → Xδ is in fact Abelian.
If F2 does not have nonsingular vector fields we are done. Otherwise we repeat again

the above construction starting with X2
δ . Since the rank of locally free actions is bounded

by the dimension n of X, this procedure ends after a finite number of steps. ut

Remark 6.7. Let hX = aX ⊕ h1
X, with aX central, and let X′ε = F ×3 Cs′ be as in

the above proposition. Along the proof it is shown that the Lie algebra decomposition
hX′ε = aX′ε ⊕ h1

X′ε
can be taken with the property that aX′ε is generated by the projection

over X′ε of linear vector fields on Cs′ and the lift to X′ε of aX = aXε is included in aX′ε .

We are now ready to establish our refinement of Calabi’s Theorem 0.2, which was
originally stated by Calabi in [8] for solvable Galois group 0. It was proved by Bo-
gomolov in [6] for complex projective manifolds X with Abelian 0 and extended by
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Beauville [2] who showed that for a suitable finite 0 the factor F is a simply-connected
manifold with special holonomy.

Corollary 6.8. Let X be a compact Kähler manifold with c1(X) = 0. Then X admits a
finite, Abelian étale covering X′ = F × T with Galois group 0, which is the product
of a complex torus T of dimension b1(X

′)/2 and a compact Kähler manifold F with
c1(F ) = 0 and b1(F ) = 0.

Proof. If a compact Kähler manifold has a trivial first Chern class c1(X) = 0 then the
natural coupling between hX and H 0(M,�1

X) is nondegenerate (cf. [26]). This implies
that Aut0C(X) is a complex torus, and in particular hX = aX. Therefore, in that case there
is a unique locally free Cs-action $ of maximal rank s = dim aX = b1(X)/2.

The nondegeneracy of the above coupling also implies that the foliation F determined
by the action $ does not have basic 1-forms. Hence (X,$) does not have nontrivial b-
deformations and the approximation theorem says in that case that X is already a suspen-
sion F ×3 Cs . Now the statement can be proved as the above theorem by just remarking
that, at each stage, the fiber manifold F also has c1(F ) = 0 (cf. 2.9) and therefore there
is no need to consider tangential deformations. ut

7. Structure of Kähler manifolds with nonvanishing vector fields

With the exception of Proposition 7.1, we assume from now on that the compact complex
manifold X endowed with a locally free Cs-action is of Kähler type. As we pointed out,
examples of such manifolds are (i) complex tori, (ii) flat principal torus bundles over
a Kähler manifold and (iii) suspensions over a torus T = Cs/3 with fiber a Kähler
manifold F and monodromy ρ : 3→ Aut0C(F ).

A natural question is whether that list of examples covers all possible Kähler mani-
folds X with locally free Abelian actions. The answer is positive, up to a finite covering,
if the action has codimension one, i.e. if s = n − 1 (as proved by F. Bosio in [7]), if
c1(M) = 0 (Corollary 6.8) or if the manifold X is projective (as proved in Section 3).

In this section we show that, for a general Kähler manifold, the answer is also positive
but up to a finite covering and up to a (small) tangential deformation of the manifold. The
first two propositions are precise statements of this fact. We also show (Examples 7.6
and 7.7) that tangential deformations cannot be avoided.

Afterwards, combining tangential deformations with deformations of representations,
we are able to give a general structure theorem for Kähler manifolds with locally free
Abelian actions (Theorem 7.11). From it we deduce that such a manifold X has a finite
covering which is a (not necessarily small) deformation of a product F × T . Also as a
corollary of that construction, we prove that the manifolds Xr in the versal family XR of
tangential deformations of X are Kähler manifolds for each r ∈ R.

Assume that the Abelian group defining the action on X is a complex torus. It was
proved by Fujiki [16] and Lieberman [28] that, under this hypothesis, the manifold X is
a Seifert fibration with the torus as the typical fiber. The following statement is a slight
improvement of that result.
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Proposition 7.1. Let X be a compact manifold in the class C endowed with a locally free
Cs-action. Assume that all the orbits of the action are closed. Then X is the quotient by
an Abelian finite group of a flat torus bundle X′,

T X′

F

-

?

where T is a complex torus of dimension s and F is a compact manifold in the class C.
Furthermore, there is an arbitrarily small b-deformation Xε of X such that Xε is a finite
quotient of the product manifold F × T .

Proof. By Theorem 6.3, there is a small b-deformation Xε of X that is the suspension
F×3Cs over a torus T = Cs/3 defined by a representation ρ : 3 = π1(T )→ AutC(F ).
The orbits of the action on Xε are still closed and all orbits are finite coverings of T . In
particular all the elements of H = ρ(3) are of finite order and this implies that the group
H itself is finite (cf. [21]). Hence, the Cs-action on Xε defines a Seifert fibration over
the complex orbifold F̂ = F/H . Notice that the natural projection F → F̂ is a ramified
covering.

Set T0 = Cs/30, where 30 = ker ρ. The pull-back of the fibration Xε → T by
the covering map T0 → T has total space an Abelian finite covering X′ε of Xε naturally
identified to the product F × T0. Indeed, since H = 3/30 we have Xε = F ×H T0.

Finally, notice that there is an Abelian finite covering X′ of X such that X′ε is a b-
deformation of X′ (cf. Proposition 5.13). Then the covering space X′ has the required
properties. ut

Remark 7.2. It follows from the above proof that, under the hypothesis of the theorem,
X is a Seifert fibration over a good orbifold, i.e. an orbifold which is the quotient of a
manifold by a finite group.

Combining previous results we can state

Proposition 7.3. Let X be a compact Kähler manifold endowed with a locally free Cs-
action, where s = dimC hX/h

1
X. There is a finite Abelian covering X′ε of a small b-

deformation Xε of X, a torus T of dimension s′ ≥ s and a compact Kähler manifold F
without nonvanishing vector fields such that

(i) if h1
X = 0 then X′ε = F × T ,

(ii) if h1
X 6= 0 then X′ε is a suspension over T with fiber F , monodromy in Aut0C(F ), and

hF = h1
F 6= 0; in particular F and X are uniruled manifolds.

In both cases kod(F ) = kod(X).

Proof. Recall that h1
X = 0 implies that Aut0C(X) is a torus and in that case the orbits of

the action are closed. Hence case (i) follows from Propositions 6.5 and 7.1.
Without loss of generality we can assume that the subalgebra a has been chosen in the

center of hX. Then the space of vector fields with zeros is the same for every tangential
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deformation of the manifold (cf. Proposition 5.9). Therefore, we can apply again Proposi-
tion 6.5 to case (ii), and we have h1

Xε
6= 0 and also h1

F 6= 0, as vector fields with zeros are
always tangent to fibers in the case of suspensions. In particular the manifolds X and F
are both uniruled by Theorem 1.8.

Finally, the last statement follows directly from Proposition 5.16, Corollary 2.9 and
the fact that taking an (unramified) finite covering does not change the Kodaira dimension.

ut

Remark 7.4. If h1
X 6= 0 then X is a uniruled manifold and therefore kod(X) = −∞. So

there are the following possibilities according to the Kodaira dimension of X:
(a) kod(X) ≥ 0. Then we are in case (i) in the above proposition and the manifold F

fulfills the stronger condition hF = 0, because kod(F ) ≥ 0.
(b) kod(X) = −∞. Since the Cs-action can have closed orbits both possibilities, (i) and

(ii) in the above proposition, can occur.

We are now ready to complete the proof of Theorem 0.3:
Proof of Theorem 0.3. The algebraic case follows from Theorem 3.2. The general state-
ment follows directly from Proposition 7.3, Remark 7.4 and from the observation that,
when kod(X) ≥ 0, the connected component of the identity Aut0C(F ) of the group of
automorphisms of the fiber manifold F reduces to the identity. ut

We give here two examples showing that, in order to obtain a complete classification
up to finite coverings of Kähler manifolds with nonsingular vector fields, one cannot
avoid the use of tangential deformations. More precisely, we exhibit examples of Kähler
manifolds X endowed with a locally free C-action with the property that neither X nor
any finite covering X′ of X are suspensions or torus bundles. We will use the following
characterization of manifolds that are suspensions over a complex torus in terms of their
Albanese torus.

Proposition 7.5. Let X be a compact Kähler manifold with s=dimC TX=dimC hX/h
1
X

> 0. The manifold X is a suspension over an s-dimensional torus Ts with a connected
fiber if and only if the Albanese torus Alb(X) splits, up to isogeny, as a product TX × T ′.
Proof. Assume that p : X→ Ts is a suspension. The universal property of Alb(X) gives
a commutative diagram

X Alb(X)

Ts

-φ

@
@@R

p
?
ψ

Then the restriction of ψ to TX is a surjective group homomorphism with finite kernel
and Alb(X) is isogenous to TX × kerψ .

Conversely, if Alb(X) is isogenous to TX × T ′, there is a surjective group homomor-
phism ψ : Alb(X) → TX. The composition ψ ◦ φ : X → TX is an immersion when
restricted to the orbits of the Cs-action, hence it defines X as a suspension over TX. Fi-
nally, by replacing TX by a finite covering of it, we can assume that the projection ψ ◦ φ
has connected fibers (cf. Remark 6.2). ut
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Example 7.6 (Examples that are not suspensions). Let Cg be a compact Riemann sur-
face of genus g > 1, and 5 its g × 2g period matrix for fixed bases of H1(Cg,Z) and
H 0(Cg, �

1
Cg
). If3 = 5·Z2g is the lattice of Cg generated by the columns of the matrix5

then Alb(Cg) = Cg/3. Let E = C/(Z⊕ Zτ) be a fixed elliptic curve. The complex tori
T that are extensions of the type

0→ E→ T → Alb(Cg)→ 0 (18)

are parametrized by the (g + 1)× (2g + 2) complex matrices of the form
1 τ e1 . . . e2g
0 0
...

... 5

0 0

 .
Denote by Te the extension defined by the fixed period matrices

(
1 τ
)

and 5, and
a given vector e = (e1, . . . , e2g) ∈ C2g . Then Te is the Albanese torus of an elliptic
surface Se, which is the analytically locally trivial fibration

E Se

Cg

-

?

having as monodromy automorphisms the translations by e1, . . . , e2g ∈ E = C/(Z⊕Zτ)
along the selected basis of H1(Cg,Z). That is, Se is the suspension over Cg associated
to the representation pe : π1(Cg) → E induced by the above translations. As the mon-
odromy is isotopic to the identity, Se has even first Betti number and therefore it is a
Kähler surface. Notice also that the Albanese morphism φSe : Se → Te = Alb(Se)
maps Se isomorphically onto its image φSe (Se) ⊂ Te, and φSe identifies E with the
subtorus TSe = 8(Aut0C(Se)) of Alb(Se) canonically associated to Se.

The elliptic surfaces Se are endowed with a locally free holomorphic C-action given
by the constant tangent vector fields of the fiber E, as they are preserved by the mon-
odromy automorphisms of the suspension Se → Cg . By Proposition 7.5, a necessary
condition for Se to be a suspension over a (one-dimensional) torus is that its Albanese
torus Te splits, up to isogeny, as a product E × Alb(Cg). Yet it is known that the exact
sequence (18) splits up to isogeny for only countably many choices modulo isomorphism
equivalence of extension data, while the set of all extensions modulo isomorphism equiv-
alence is a g-dimensional complex analytic variety (cf. [3]).

Therefore, a generic choice of e ∈ C2g yields a Kähler elliptic surface Se, which has a
locally free C-action along its fibers, but is not a suspension over a torus (although it is a
suspension over Cg by construction). Suspensions over tori that are projective manifolds
can be characterized in terms of their Albanese torus as stated in Proposition 8.6. In
particular, by Poincaré’s reducibility theorem, the manifolds Se so constructed are not
projective and their Albanese tori Alb(Se) are not Abelian varieties.

Finally, consider a finite covering S̃e of Se. Necessarily, S̃e is also an Ẽ-principal
fibration over a Riemann surface C̃g , where Ẽ and C̃g are finite coverings of E and Cg
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respectively. If S̃e were a suspension over a torus then it would be a finite quotient of a
product of two Riemann surfaces and hence a projective manifold. In that case Alb(S̃e)
would be an Abelian variety and, as the natural map Alb(S̃e) → Alb(Se) is surjective,
Alb(Se) would also be an Abelian variety, leading to a contradiction.

Example 7.7 (Examples that are neither suspensions nor torus bundles). Using the
above example we now construct a compact Kähler 3-fold X endowed with a locally
free C-action in such a way that neither X nor any of its finite coverings are a suspension
over a torus or a torus bundle.

Choose a closed Riemann surface Cg , an elliptic curve E and a Kähler elliptic sur-
face Se which is not a suspension over a torus, as in Example 7.6. Let L ∈ Pic0(E) be
a flat line bundle over E which is nontorsion. Sum L with the trivial local system to get
a rank 2 one, V = C ⊕ L, and let Y = PE(V ) be the ruled surface over E obtained by
projectivizing the holomorphic rank 2 vector bundle defined by V ⊗OE .

The ruled surface Y admits a locally free holomorphic C-action, given by parallel
transport along the flat connection on V , with the property that the projection Y → E

is equivariant when we consider on E the natural C-action. It induces a group morphism
ν : C→ Aut0C(Y ).

The monodromy morphism pe : π1(Cg) → E defining the elliptic surface Se of
Example 7.6 can be lifted to a morphism p̃e : π1(Cg)→ C from π1(Cg) to the universal
covering C of E. Then the representation

π1(Cg)
p̃e
→ C ν

→ Aut0C(Y )

defines an analytically locally trivial fibration X which is a suspension over Cg with
fiber Y

Y X

Cg

-

?

and it follows from Blanchard’s criterion [5, Théorème principal II] that X is a Kähler
manifold. Notice that the 3-fold X is naturally endowed with a locally free holomorphic
C-action, coming from the flat parallel transport of Y over E, which is invariant under
translations in E and may therefore be glued under the monodromy ν ◦ p̃e.

Each holomorphic vector field on Y projects overE, hence there is a natural surjective
morphism η : Aut0C(Y )→ Aut0C(E) = E satisfying

pe = η ◦ ν ◦ p̃e

so we may glue the projections Y → E to get a commutative diagram of analytically
locally trivial fibrations

X Se

Cg

-

@@R ?

The fibration X → Se has fiber CP 1, so it induces an isomorphism Alb(X) ∼= Alb(Se)
and an identification of the Albanese images φX(X) = φ(Se). Therefore the subtorus
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E ⊂ Alb(X) does not have a complementary subtorus, even up to isogeny, and X is not a
suspension. In particular the manifolds X and Alb(X) are not algebraic.

Moreover, two choices of local systems V = C⊕ L,V ′ = C⊕ L′ yield isomorphic
ruled surfaces Y and Y ′ = PE(V ′) if and only if L′ ∼= L⊗±1 (cf. [1, III.7]). Therefore, the
choice of a nontorsion line bundle L ensures that the orbits of the C-action on Y do not
cover E with finite degree, and this implies that neither Y nor X can have the structure of
a torus bundle.

We remark finally that each unramified finite covering of X has the same properties.
Indeed, a finite covering X̃ of X is necessarily an analytically locally trivial fibration over
a Riemann surface C̃g with fiber a ruled surface Ỹ such that C̃g and Ỹ are finite coverings
of Cg and Y respectively. Moreover, there is a finite covering q : Ẽ → E such that Ỹ is
the projectivization P

Ẽ
(V ′) of the rank 2 bundle V ′ = q∗V = C ⊕ q∗L. Since the line

bundle q∗L over Ẽ is also nontorsion, the manifolds Ỹ , X̃ cannot have the structure of a
torus bundle. The fact that X′ cannot be a suspension over a torus follows from the same
argument used to discuss the previous example.

In order to describe more accurately the structure of Kähler manifolds X having non-
singular vector fields, in particular those satisfying h1

X > 0, we introduce here a more
general class of deformations that combines the notion of tangential deformation intro-
duced above with that of deformation of representations.

In what follows we assume that a lattice 3 of Cs , as well as a set of generators of it,
γ1, . . . , γ2s , have been fixed. We write γj = exp1(ṽj ) with ṽj a linear combination

ṽj =

s∑
i=1

Bij vi (19)

of the coordinate vector fields v1, . . . , vs of Cs and where expt (w) stands for the expo-
nential of a vector field w at time t .

Let us consider the product Z̃ = F ×Cs where F is a fixed compact Kähler manifold.
We assume that F has no vector fields without zeros and we fix an Abelian subalgebra b
of h1

F = hF (we do not exclude the case b = 0). We think of the coordinate vector fields
v1, . . . , vs of Cs as defined on the product Z̃ = F ×Cs and, in the same way, we identify
each w ∈ b with the vector field (w, 0) on Z̃. Then b and the vector fields vi generate an
Abelian Lie algebra z of dimension dimC z = s + dimC b.

We fix vector fields w1, . . . , w2s in b and define ϕj = exp1(ṽj + wj ) for j =
1, . . . , 2s. Then ϕ1, . . . , ϕ2s are commuting biholomorphisms of Z̃ defining a free Z2s-
action on Z̃. The quotient manifold Z is naturally endowed with the locally free Cs-action
induced by the projection of the vector fields vi . Notice that Z is a suspension over the
torus Cs/3 with fiber F . If the vector fields wj are all zero, then the manifold Z is just
the product F × Cs/3.

We now generalize the above construction of the manifold Z in the following way.
We denote by α1, . . . , αs the dual basis of v1, . . . , vs , also thought of as holomorphic
1-forms on Z̃. We consider the tangential deformations of the Cs-action on Z̃ as defined
in Section 5. That is, for a given r = (C, θ) ∈ 4 = EndCs ⊕ 〈α1, . . . , αs〉, we define αir
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as in (10), we denote by R the subset of 4 satisfying the conditions stated in Defini-
tion 5.1 and we define new vector fields vri by the condition vri = Cv

′

i , where v′i are the
vector fields on Z̃ that are tangent to the Cs-action and are determined by the conditions
αir(v

′

j ) = δ
i
j and αir(v

′

j ) = 0.

We denote by Z̃r the product F × Cs endowed with this new complex structure and
with the holomorphic Cs-action determined by the vector fieds vri . Notice that b and
vr1, . . . , v

r
s generate an Abelian Lie algebra zr of holomorphic vector fields on Z̃r . Finally,

we consider the vector fields ṽr1, . . . , ṽ
r
2s on Z̃r defined as

ṽrj =

s∑
i=1

Bij v
r
i (20)

Definition 7.8. Let3 be a fixed lattice of Cs . Let F be a compact Kähler manifold with-
out nonsingular vector fields and let b be an Abelian subalgebra of h1

F = hF . Fix vector
fields w1, . . . , w2s in b, and for a given u = (a1, . . . , a2s) in C2s and r ∈ R, define the
commuting automorphisms ϕju,r of Z̃r by

ϕ
j
u,r = exp1(ṽ

r
j + ajwj ), (21)

where ṽrj are the vector fields defined in (20). Let S be the subset of C2s
× R of those

pairs (u, r) such that the Z2s-action on Z̃r defined by the automorphisms ϕju,r is free. In
that case we denote by Zu,r the quotient manifold.

The familyZS = {Zu,r} is a holomorphic family of deformations of compact complex
manifolds endowed with locally free Cs-actions parametrized by S.

Remarks 7.9. (a) If (u, r) is an element of S then (t · u, r) also belongs to S for each
t ∈ [0, 1], hence S is a connected set containing a neighborhood of R ∼= {0} × R. The
restriction of the family ZS to {0}×R is just the product of F with the family of complex
tori.

(b) The manifolds Zu,r are not necessarily suspensions over a torus. In fact each
(small) tangential deformation of Zu,r is an element of ZS .

Proposition 7.10. The complex manifoldsZu,r of the familyZS defined above are Kähler
manifolds for each (u, r) ∈ S.

Proof. The manifolds Z0,r , being products of F with complex tori, are all Kähler mani-
folds. The stability theorem of Kodaira implies that Zu,r are also Kähler manifolds for u
small enough. Now let an element Zu,r of the family ZS be given. We notice that Zu,r
is a finite covering of the complex manifold Ym defined as the quotient of Z̃r by the
automorphisms

ψj = exp1/m(ṽ
r
j + ajwj ) = exp1

(
1
m
ṽrj +

aj

m
wj

)
where m is a positive integer. Hence it suffices to prove that Ym is a Kähler manifold.
But the map h : F × Cs → F × Cs defined by h(z, t) = (z,mt) is a holomorphic



1032 Jaume Amorós et al.

automorphism of Z̃r that induces a biholomorphism from Ym ontoZu′,r , where u′ = u/m.
Since m can be taken arbitrarily large, Zu′,r is arbitrarily close to Z0,r , and this ends the
proof. ut

Now, we are able to prove the main result of this section:

Theorem 7.11. Let X be a compact Kähler manifold with nonsingular vector fields.
There is a finite Abelian covering X′ of X, a lattice 3 of Cs , a compact Kähler mani-
fold F with h1

F = hF and vector fields w1, . . . , w2s in an Abelian subalgebra b of hF
such that X′ is biholomorphic to a manifold Zu,r in the family ZS constructed above for
a suitable pair (u, r) ∈ S.

Proof. We know the existence of the coveringX′ ofX, a small tangential deformationX′ε
of X′ and a compact Kähler manifold F without nonvanishing vector fields such that X′ε
is the suspension over a torus T = Cs/3 associated to a representation ρ : 3→ Aut0C(F )
(cf. Proposition 6.5). Remark that it is sufficient to prove thatX′ε belongs to the familyZS .

If ρ reduces to the identity then we are in case (i) of Proposition 7.3 and the assertion
is clear as X′ε = F × T . So, assume that ρ is not constant and let γ1, . . . , γ2s be a set
of generators of 3. Notice that Aut0C(F ) is an algebraic group. This is a consequence
of the Fujiki–Lieberman theorem because hF = h1

F . Therefore the Zariski closure B of
ρ(3) in Aut0C(F ) is an Abelian algebraic group and in particular it has a finite number of
connected components. So, replacing X′ by an Abelian finite covering if necessary, we
can assume that the group B is connected. Let b be the Lie algebra of B. As connected
Abelian Lie groups are exponential, we can write ρ(γj ) = exp1(wj ) for j = 1, . . . , 2s
and suitable vector fields wj ∈ b. Then the lattice 3, the Kähler manifold F , the Abelian
Lie algebra b and the vector fields w1, . . . , w2s fulfill the required conditions. ut

As a corollary we obtain

Corollary 7.12. Let X be a compact Kähler manifold endowed with a locally free Cs-
action. Then there is a finite Abelian covering X′ of X, which is a deformation of the
product F × T of a Kähler manifold F without nonvanishing vector fields and a complex
torus T .

Remark 7.13. Notice that s = dimC TX = dimC hX/h
1
X can be smaller than the dimen-

sion of T .

We can now prove Theorem 5.17, i.e. if X is a Kähler manifold then each Xr in the
versal family XR of tangential deformations of (X,$) is also a Kähler manifold.

Proof of Theorem 5.17. Let r ∈ R be given. An easy computation shows that if r ′ is
close enough to (id, 0) thenXr can be identified to an element of the versal family (Xr ′)R
of Xr ′ . Hence we can assume without loss of generality that the Kähler manifold X is
already a suspension over a torus T = Cs/3. Since finite coverings and finite quotients of
Kähler manifolds are Kähler manifolds too, we can also assume that X is the suspension
over T of a representation ρ : 3 → Aut0C(F ), where F is a Kähler manifold without
nonsingular vector fields.
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As in the proof of Theorem 7.11, we can write ρ(γj ) = exp1(wj ), where γ1, . . . , γ2s
are a set of generators of 0 and wj are suitable vector fields in an Abelian subalgebra b
of h1

F . Then, if we set γj = exp1(ṽj ) = exp1(
∑
Bij vi) as in (19), the manifold X is

the quotient of Z̃ = F × Cs by the Abelian group generated by the automorphisms
ϕj = exp1(ṽj + wj ). Hence X is an element of the family ZS associated to 3, F and
the commuting vector fields wj on F . We claim that Xr also belongs to the family ZS .
Indeed, Xr is the quotient of Z̃ by the group generated by the automorphisms

exp1

(∑
Bij v

r
j + wj

)
,

that is, Xr coincides with the manifold Zu1,r where u1 = (1, . . . , 1). Now the statement
is a consequence of Proposition 7.10. ut

8. Locally free Cs-actions on Kähler manifolds with small codimension

In this section we classify compact Kähler manifolds X endowed with a locally free
holomorphic Cs-action when the codimension of the action is n− s ≤ 2. Recall that, by
inequality (3), we have kod(X) ≤ n− s.

If s = n the manifold X is a quotient of Cs , hence we have (notice that the hypothesis
of being Kähler is not needed here)

Proposition 8.1. Assume that s = n = dimCX. Then X is a complex torus.

The case s = n − 1 was first discussed by Bosio (cf. [7]). The following statement is a
slight improvement of Bosio’s result. We give here an alternative and simpler proof.

Proposition 8.2 (Bosio). Assume that s ≥ n− 1.

(i) If kod(X) = 1 then X has a finite Abelian covering X′ which is an (n − 1)-torus
bundle over a Riemann surface Cg of genus g ≥ 2. Moreover, there is a torus T and
a small b-deformation X′ε of X′ such that X′ε = Cg × T .

(ii) If kod(X) = 0 then X has a finite Abelian covering X′ which is a torus.
(iii) If kod(X) = −∞ then X is a suspension over a torus T with fiber CP 1; that is, X

is a flat ruled manifold over T . In this case h1
X 6= 0.

Proof. Notice that a small b-deformation Xε of X is a suspension over a torus T with
a fiber F that can be a Riemann surface of genus g ≥ 2, an elliptic surface or CP 1. As
kod(F ) = kod(Xε) = kod(X) these three cases correspond respectively to kod(X) equal
to 1, 0 or −∞.

The first two statements follow directly from Proposition 7.1 (cf. Remark 7.4).
If kod(X) = −∞ then F = CP 1. But, since in this case b1(F ) = 0, the manifold X

has no b-deformations and X = Xε . Hence X is a flat ruled manifold over T . Notice fi-
nally that, as the monodromy ρ : π1(T )→ PGL(2,C) defining the suspension is Abelian,
it fixes a vector field of CP 1. This proves that h1

X 6= 0. ut
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Remark 8.3. LetX be a compact complex manifold in the class C endowed with a locally
free Cs-action. If n− s ≤ 1 then X is a Kähler manifold. Indeed, if s = n Proposition 8.1
applies and X is a torus. If s = n− 1 then a small tangential deformation Xε is a suspen-
sion over a torus T with fiber a Riemann surface C. Since b2(C) = 1, the suspension Xε
is a Kähler manifold (cf. [29, Corollary 3.21]), and Theorem 5.17 implies that so is X.

Proposition 8.4. Assume that s ≥ n− 2.

(I) If kod(X) ≥ 0 thenX is an (n−2)-torus bundle over a Kähler surface F . Moreover,
there is a torus T , a finite Abelian covering X′ of X and a small b-deformation X′ε
of X′ such that X′ε = F × T . If b1(F ) = 0 then X′ = F × T . Furthermore:

(i) If kod(X) = 2 then F is a surface of general type.
(ii) If kod(X) = 1 then F is an elliptic surface.

(iii) If kod(X) = 0 then the minimal model of F is a K3 surface or a torus. If F is
a torus then X is a quotient of a torus.

(II) If kod(X) = −∞ then the manifoldX is uniruled and it has a finite Abelian covering
X′ which belongs to one of the following types:

(i) A suspension of a group representation ρ : π1(T ) → Aut0C(F ) where F is a
rational surface.

(ii) A small b-deformation of the suspension of a group representation ρ : π1(T )→

Aut0C(F ) where F is a ruled surface over a Riemann surface of genus g ≥ 1. In
this case the manifold X′ is ruled.

Proof. Let us consider a small b-deformation Xε of X which is a suspension over a
torus T with fiber a Kähler surface F . Then kod(F ) = kod(X).

Assume first that kod(X) ≥ 0. In that case the statements follow from Proposition 7.1
and Remark 7.4. We just notice that if kod(X) = 0 then F is a Kähler surface whose
minimal model F0 can be aK3 surface, a torus, an Enriques surface or a bielliptic surface.
Since Enriques surfaces and bielliptic surfaces are Abelian quotients of K3 surfaces and
torus respectively, by considering an appropriate finite covering one can assume that F0
is of one of the first two types.

Suppose now that kod(X) = −∞. A small b-deformation X′ε of an Abelian finite
covering X′ of X is the suspension over a torus T associated to a representation ρ :
π1(T )→ Aut0C(F ), where kod(F ) = −∞. Thus, F is either a rational surface or a ruled
surface over a Riemann surface of genus g ≥ 1.

If F is rational, b1(F ) = 0 and the manifold Xε admits no b-deformations, therefore
X = Xε .

If F is a ruled surface then there is a geometrically ruled surface F̂ obtained by re-
cursively blowing down rational (−1)-curves of F . The set of (−1)-curves is discrete, so
any element of Aut0C(F ) fixes them. Therefore there is a well defined group morphism
Aut0C(F )→ Aut0C(F̂ ). The composition of the monodromy ρ with that morphism defines
a suspension manifold X̂′ε with the following two properties: (i) it is geometrically ruled
and (ii) it is obtained from X′ε by recursively contracting the families of (−1)-curves.
In particular X′ε is bimeromorphic to X̂′ε and ruled. Moreover the nontrivial fibers of the
contraction X′ε → X̂′ε are transverse to the action. This allows us to define a tangential
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deformation X̂′ of X̂′ε so that it is dominated by the tangential deformation X′ of X′ε . By
Proposition 5.14 the manifold X̂′ is geometrically ruled and so X′ is ruled. ut

In the case of kod(X) = −∞ we derive the following consequence:

Theorem 8.5. Assume that s ≥ n − 2 and, in the case s = n − 2, suppose also that
kod(X) = −∞. Then there is an arbitrarily small tangential deformation Xε of X which
is a projective manifold.

In order to prove the theorem we begin by characterizing when a suspension over a torus
is a projective manifold. The following proposition is a direct consequence of a result by
A. Blanchard [5, p. 198] since a manifold is projective if and only if a given (unramified)
covering of it is projective.

Proposition 8.6. Let F be a compact Kähler manifold and T = Cs/3 a complex torus.
Let X be the suspension of a group representation ρ : π1(T ) → AutC(F ) and assume
that it is a Kähler manifold. The following conditions are equivalent:

(i) X is projective.
(ii) F and Alb(X) are projective.

In that case, the complex torus T is projective.

Remark 8.7. An easy computation shows that if ρ(3) ⊂ Aut0C(F ) then Alb(X) is iso-
morphic to the suspension over the torus T of the group representation ρ′ = 8 ◦ ρ :
π1(T )→ Alb(F ), where 8 is the group morphism in the exact sequence (1).

Proposition 8.8. Let F be a compact projective manifold with hF /h
1
F = 0. A Kähler

manifoldX obtained by suspension over a torus T of a group representation ρ : π1(T )→

AutC(F ) is projective if and only if T is projective.

Proof. We can assume that ρ(3) ⊂ Aut0C(F ). As F admits no vector fields without
zeros, the map 8 is identically zero, therefore Alb(X) = Alb(F )× T . ut

Proof of Theorem 8.5. By Proposition 6.5 there is a small tangential deformation X′τ
of a finite covering X′ of X which is a suspension over a torus T and has a fiber F
satisfying hF /h

1
F = 0. With the hypothesis made, F is a projective manifold and the

above Proposition applies.
A t-deformation X′ε of X′τ is still a suspension with the same fiber F and over a

suitable deformation Tε of the torus T (cf. Example 5.12). As Abelian varieties are dense
in the space of complex tori, we can assume that Tε is projective and in that case X′ε is
projective too. Finally, X′ε is a finite covering of a tangential deformation Xε of X which
is also an algebraic manifold. ut

In the case of projective manifolds with kod(X) ≥ 0 we can replace the use of tangential
deformations by Theorem 3.2 and we obtain a more refined classification:
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Corollary 8.9. LetX be a complex projective manifold of dimension n, with kod(X) ≥ 0,
and admitting a locally free holomorphic Cs-action with s ≥ n− 2. Up to a finite, étale,
Abelian covering, X is either of the following:

(i) T n,
(ii) a product Cg × T n−1 with Cg a closed Riemann surface of genus g ≥ 2,

(iii) a product F × T n−2 with F a complex projective surface with kod(F ) = kod(X)
and no tangent vector fields,

with T k denoting an Abelian variety of dimension k.

Applying the classification of compact complex surfaces to Corollary 8.9 we derive the
following

Corollary 8.10. Conjecture 0.4 is true for projective manifolds X with a locally free
holomorphic Cs-action of rank s ≥ dimCX − 2.

Proof. By Corollary 8.9, such an X admits as a finite étale cover either an Abelian va-
riety, or a product F × T n−2 with T n−2 another Abelian variety and F a surface with
kod(F ) = 0. By the Kodaira–Enriques classification of surfaces, F can be an Abelian,
hyperelliptic, K3 or Enriques surface. In the first two cases, a finite étale cover becomes
an Abelian variety. In the last two cases, an étale cover of degree 1 or 2 becomes a torus
times a simply connected F ′ with kod(F ) = 0. ut

9. Dynamics of holomorphic vector fields

A tangent vector field on a manifold defines a 1-parameter flow, consisting of biholomor-
phisms if both are complex analytic. The flow is complete when the manifold is compact.

Consider the continuous dynamical system (X, v), formed by a compact Kähler man-
ifold X and a holomorphic tangent vector field v on X. The classification of compact
Kähler manifolds with tangent vector fields provided in Theorem 0.3 and Proposition 7.3
may be applied to study the dynamics of such dynamical systems. This is a refinement
of the study carried out by D. Lieberman in [27] and [28]. The conclusion is that their
dynamics reduces to the case of an Abelian Lie group action on a rational variety, i.e. on
a variety bimeromorphic to CP n.

The classification of these dynamical systems is based on the decomposition described
in Propositions 1.4 and 1.6 of the Lie algebra hX of holomorphic vector fields on X as a
direct sum

hX = h1
X ⊕ aX ,

where h1
X is the subalgebra of tangent vector fields with zeros and aX is a maximal rank

Abelian subalgebra of vector fields linearly independent at every x ∈ X, which has been
chosen in the center of hX. Recall that, by Fujiki’s Theorem 1.8, if h1

X 6= 0 then X is
uniruled.

In the case of compact Kähler manifolds X with h1
X = 0, Theorem 4.4 in [28] es-

tablishes that the dynamical system (X, v) is integrable, in the sense that X admits a
Seifert fibration by tori defined by the closures of the orbits of the tangent vector fields.
Proposition 7.3 allows us to make the above result more precise:
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Corollary 9.1. Let X be a compact Kähler manifold with h1
X = 0 (e.g., if kod(X) ≥ 0),

and let v be a holomorphic tangent vector field on it. There exists a finite, Abelian, unram-
ified cover X̃→ X such that the dynamical system (X̃, ṽ), where ṽ is the lift of v to X̃, is
real-analytically conjugate to (F × T , v′), where F is a compact Kähler manifold, T is a
complex torus, and v′ is a linear vector field on T .

If X is a complex projective manifold then (X̃, ṽ) is biholomorphic to (F × T , v′).

Proof. Under the hypothesis h1
X = 0, the group Aut0C(X) is a torus and the vector field v

is nonsingular. By Proposition 7.3,X admits a small b-deformationXε and there is a finite
Abelian covering X̃ε → Xε such that X̃ε = F × T where T is a torus and F does not
have vector fields without zeros. Recall that X̃ε can be seen as a b-deformation of a finite
covering X̃ of X. Moreover X̃ε is real-analytically isomorphic to X̃ (cf. 6.4(a)). Notice
also that, by Proposition 5.9, the Lie algebra hXε coincides with hX = aX. As noted
in Remark 6.7, the commutative algebra aX of vector fields on Xε lifts to a subalgebra
of a

X̃ε
, the maximal Abelian algebra of nonvanishing vector fields on X̃ε formed by the

vector fields that are tangent to the factor T . This proves the corollary. Notice that the last
statement follows from Theorem 3.2. ut

We now consider the case h1
X 6= 0.

Theorem 9.2. Let X be a compact Kähler manifold with h1
X 6= 0 and let v be a nonva-

nishing holomorphic tangent vector field on it. There exists a finite, Abelian, unramified
cover X̃ → X such that, if ṽ is the lift to X̃ of v, the dynamical system (X̃, ṽ) is real-
analytically conjugate to (X̃ε, ṽ′ + w̃), where:

(i) X̃ε is a small b-deformation of X̃ which is a suspension F ×3 Cs over a compact
torus T = Cs/3, with fiber an uniruled compact Kähler manifold F without non-
singular vector fields.

(ii) There is a linear algebraic subgroup G ⊂ Aut0C(F ), with G ∼= Cp ⊕ (C∗)q , such
that the monodromy of the suspension ρ : π1(T ) ∼= 3→ Aut0C(F ) has values in G.

(iii) w̃ ∈ Lie(G) ⊂ h1
F .

(iv) The lift of the vector field ṽ′ from F ×3Cs to its cover F ×Cs is a linear vector field
in Cs .

(v) [ṽ′, w̃] = 0.
(vi) The topological closures G · x ⊂ F of the G-orbits are rational varieties.

If the original tangent vector field v vanishes at some point in X, the above conjuga-
tion holds with ṽ′ = 0.

If X is a projective manifold then one may set Xε = X, and (X̃, ṽ) is biholomorphic
to (X̃, ṽ′ + w̃).

Proof. Let aX be a central Abelian subalgebra of hX such that hX = h1
X ⊕ aX. By

Proposition 7.3,X admits a small b-deformationXε and there is a finite Abelian covering
X̃ε → Xε such that X̃ε is the suspension F ×3Cs , over a torus T = Cs/3 and with fiber
a Kähler manifold F without non-singular vector fields, associated to a representation
ρ : 3 = π1(T ) ∼= Z2s

→ Aut0C(F ). As above X̃ε can be seen as a b-deformation of a
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finite covering X̃ of X. We set

3 = π1(T ) = 〈γ1, . . . , γ2s〉.

By Proposition 7.3 and Theorem 1.2, hF = h1
F and Aut0C(F ) is a linear algebraic group.

Hence the Zariski closure of ρ(3) is an Abelian linear algebraic subgroup. In particular it
has a finite number of connected components. By replacing T by a suitable Abelian finite
covering of it, we can assume that γi = exp1(ξi) with ξi holomorphic vector fields on F
generating an Abelian subalgebra of hF = h1

F .
Let us write v = w + v′, where w ∈ h1

X and v′ ∈ aX. If v has zeros then v′ = 0.
The algebra aX is central, so [v′, w] = 0. Using Proposition 5.9, we see that h1

Xε
= h1

X,
aXε = aX and hXε = h1

Xε
⊕ aXε . Hence v,w, v′ are holomorphic vector fields on Xε and

their lifts ṽ, w̃ and ṽ′ to X̃ε still satisfy ṽ = w̃ + ṽ′ ∈ h
X̃ε

and [ṽ′, w̃] = 0. There is a Lie
algebra decomposition h

X̃ε
= h1

X̃ε
⊕ a

X̃ε
where the elements of a

X̃ε
are projections on

X̃ε = F ×3Cs of linear vector fields on Cs and h1
X̃ε

is naturally identified to a subalgebra

of hF = h1
F . On the one hand, we have ṽ′ ∈ a

X̃ε
by Remark 6.7. On the other hand, w̃ is

an element of h1
X̃ε

since it is a vector field with zeros. In particular we can think of w̃ as
a vector field on F which is invariant by the monodromy, that is, w̃ = (ργ )∗w̃ for each
γ ∈ 3 or, what is equivalent,

expk(ξi)∗w̃ = w̃ for 1 = 1, . . . , 2s and k ∈ Z.

Let H be the Abelian subgroup of Aut0C(F ) generated by the elements expk(ξi) and
expt (w̃), where i = 1, . . . , 2s, k ∈ Z and t ∈ C. The Zariski closureG ofH is an Abelian
linear algebraic subgroup and by replacing again T by a suitable Abelian finite covering
we can assume that G is connected. Therefore, the group G is of the form Cp × (C∗)q .

The group Aut0C(F ) not only acts compactifiably on F in the sense of Lieberman but,
by [16, Remark 2.3], it also admits a compactification Aut0C(F )

∗ which is a projective
variety. The group G acts on F as a linear algebraic subgroup of Aut0C(F ). The Zariski
closure G∗ of G in Aut0C(F )

∗ compactifies the action of G in F .
Let x be a point in F and denote byG·x itsG-orbit. ThenG·x = G/Gx , whereGx is

the stabilizer of x. The Zariski closure G∗x of Gx in G∗ is algebraic by GAGA. Therefore
Gx = G ∩ G∗x is an algebraic subgroup of G. Let G0

x be the connected component
of the identity in Gx . It is a connected Abelian linear algebraic subgroup of G, so the
quotient G/G0

x is also an Abelian linear algebraic connected group (cf. [22]). It follows
that G/G0

x is isomorphic to a group of type Cp × (C∗)q . Since the orbit G · x = G/Gx
is a finite quotient of G/G0

x , it is again of type Cp × (C∗)q . As the action of G in F is
compactifiable, by [28, Proposition 3.7] the orbit G · x is a dense Zariski open set of its
closure G · x, which is therefore a rational variety. The fiber F is covered by such orbits,
so it is uniruled.

If X is a projective manifold then there is no need of considering tangential deforma-
tions by virtue of Theorem 3.2. ut
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Remark 9.3. In the case when the tangent field v vanishes at some point, the torus T may
be trivial, and our theorem says that the closures of the orbits of ṽ are rational varieties.
Applied to particular vector fields, this is already the central argument in the proof of
Fujiki’s Theorem 1.8, and Lieberman’s version in [28].

The preceding results mean that, if one forgets linear vector fields on tori, the dynam-
ics of a holomorphic vector field on a compact Kähler manifold reduces to the dynamics
of an Abelian connected linear algebraic group (thus of type Cp × (C∗)q ) acting on a
rational variety.
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