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Abstract. The double point relation defines a natural theory of algebraic cobordism for bundles
on varieties. We construct a simple basis (over Q) of the corresponding cobordism groups over
Spec(C) for all dimensions of varieties and ranks of bundles. The basis consists of split bundles
over products of projective spaces. Moreover, we prove that the full theory for bundles on varieties
is an extension of scalars of standard algebraic cobordism.

Introduction

0.1. Algebraic cobordism

A successful theory of algebraic cobordism has been constructed in [6] from Quillen’s
axiomatic perspective. The result �∗ is the universal oriented Borel–Moore homology
theory of schemes, yielding the universal oriented Borel–Moore cohomology theory �∗

for the subcategory of smooth schemes.
Let k be a field of characteristic 0. Let Schk be the category of separated schemes

of finite type over k, and let Smk be the full subcategory of smooth quasi-projective k-
schemes. A geometric presentation of algebraic cobordism in characteristic 0 via double
point relations is given in [7].

0.2. Double point degenerations

Let Y ∈ Smk be of pure dimension. A morphism π : Y → P1 is a double point degen-
eration over 0 ∈ P1 if π−1(0) can be written as π−1(0) = A ∪ B where A and B are
smooth codimension one closed subschemes of Y , intersecting transversely. The intersec-
tionD = A∩B is the double point locus of π over 0 ∈ P1. We do not require A, B, orD
to be connected. Moreover, A, B, and D are allowed to be empty.

Let NA/D and NB/D denote the normal bundles of D in A and B respectively. Since
OD(A+ B) is trivial,

NA/D ⊗NB/D ∼= OD.
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Since OD ⊕NA/D ∼= NA/D ⊗ (OD ⊕NB/D), the projective bundles

P(OD ⊕NA/D)→ D and P(OD ⊕NB/D)→ D (0.1)

are isomorphic. Let P(π)→ D denote either of (0.1).

0.3. M(X)+

For X ∈ Schk , let M(X) denote the set of isomorphism classes over X of projective
morphisms

f : Y → X (0.2)

with Y ∈ Smk . The set M(X) is a monoid under disjoint union of domains and is
graded by the dimension of Y over k. Let M∗(X)

+ denote the graded group comple-
tion of M(X).

Alternatively, Mn(X)
+ is the free abelian group generated by morphisms (0.2) where

Y is irreducible and of dimension n over k. Let [f : Y → X] ∈ M∗(X)
+ denote the

element determined by the morphism.

0.4. Double point relations

Let X ∈ Schk , and let p1 and p2 denote the projections to the first and second factors of
X × P1 respectively.

Let Y ∈ Smk be of pure dimension. Let g : Y → X × P1 be a projective morphism
for which the composition

π = p2 ◦ g : Y → P1 (0.3)

is a double point degeneration over 0 ∈ P1. Let

[A→ X], [B → X], [P(π)→ X] ∈M(X)+

be obtained from the fiber π−1(0) and the morphism p1 ◦ g.

Definition 1. Let ζ ∈ P1(k) be a regular value of π . We call the map g a double point
cobordism with degenerate fiber over 0 and smooth fiber over ζ . The associated double
point relation over X is

[Yζ → X]− [A→ X]− [B → X]+ [P(π)→ X] (0.4)

where Yζ = π−1(ζ ).

The relation (0.4) depends not only on the morphism g and the point ζ , but also on
the choice of decomposition of the fiber π−1(0) = A ∪ B. We view (0.4) as an analog of
the classical relation of rational equivalence of algebraic cycles.

Let R∗(X) ⊂ M∗(X)
+ be the subgroup generated by all double point relations

over X. Since (0.4) is a homogeneous element of M∗(X)
+, R∗(X) is a graded subgroup

of M∗(X)
+.
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Definition 2. For X ∈ Schk , double point cobordism ω∗(X) is defined by the quotient

ω∗(X) =M∗(X)
+/R∗(X). (0.5)

A central result of [7] is the isomorphism

�∗ ∼= ω∗, (0.6)

which provides a geometric presentation of algebraic cobordism. Since resolution of sin-
gularities and Bertini’s results are used, the isomorphism is established only when k has
characteristic 0.

0.5. Over a point

We write �∗(k) and ω∗(k) for �∗(Spec(k)) and ω∗(Spec(k)) respectively. Let L∗ be the
Lazard ring [4]. The canonical map

L∗→ �∗(k)

classifying the formal group law for �∗ is proven to be an isomorphism in [6, Theorem
4.3.7]. By Quillen’s result for complex cobordism (in topology),

Ln ∼= MU−2n(pt),

and the well-known generators of MU∗(pt)Q [11, Chapter VII], we see �∗(k) ⊗Z Q is
generated as a Q-algebra by the classes of projective spaces. Then it is a consequence of
(0.6) that

ω∗(k)⊗Z Q =
⊕
λ

Q[Pλ1 × · · · × Pλ`(λ) ], (0.7)

where the sum is over all partitions λ. The partition λ = ∅ corresponds to [P0] in grade 0.

0.6. Bundles

For X ∈ Schk , let Mn,r(X) denote the set of isomorphism classes over X of pairs
[f : Y → X,E] with Y ∈ Smk of dimension n, f projective, and E a rank r vector bun-
dle on Y . The set Mn,r(X) is a monoid under disjoint union of domains. Let Mn,r(X)

+

denote the group completion of Mn,r(X).
Double point relations are easily defined in the setting of pairs following [7, Sec-

tion 13]. Let Y ∈ Smk be of pure dimension n+ 1. Let g : Y → X × P1 be a projective
morphism for which the composition π = p2◦g : Y → P1 is a double point degeneration
over 0 ∈ P1. Let E be a rank r vector bundle on Y . Let

[A→ X,EA], [B → X,EB ], [P(π)→ X,EP(π)] ∈Mn,r(X)
+

be obtained from the fiber π−1(0) and the morphism p1 ◦ g. Here, EA and EB denote the
restrictions of E to A and B respectively. The restriction EP(π) is defined by pull-back
from Y via P(π)→ D ⊂ Y.
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Definition 3. Let ζ ∈ P1(k) be a regular value of π . The associated double point relation
over X is

[Yζ → X,EYζ ]− [A→ X,EA]− [B → X,EB ]+ [P(π)→ X,EP(π)]

where Yζ = π−1(ζ ).

For X ∈ Schk , let Rn,r(X) ⊂ Mn,r(X)
+ be the subgroup generated by all double

point relations. Double point cobordism theory for bundles on varieties is defined by

ωn,r(X) =Mn,r(X)
+/Rn,r(X).

The sum

ω∗,r(X) =

∞⊕
n=0

ωn,r(X)

is always an ω∗(k)-module via product (and pull-back). If X ∈ Smk , then ω∗,r(X) is also
a module over the ring ω∗(X).

0.7. Basis

The main result of the paper is the construction of a basis of ωn,r(k) analogous to the
fundamental presentation (0.7). Our basis is indexed by pairs of partitions. A partition
pair of size n and type r is a pair (λ, µ) where

(i) λ is a partition of n,
(ii) µ is a subpartition of λ of length `(µ) ≤ r .

Being a subpartition means µ is obtained by deleting parts of λ. The partition µ may be
empty and may equal λ if `(λ) ≤ r . Subpartitions µ,µ′ ⊂ λ are equivalent if they differ
by permuting equal parts of λ.

Let Pn,r be the set of all partition pairs of size n and type r . For example,

P3,2 =

 (3,∅), (3, 3),
(21,∅), (21, 2), (21, 1), (21, 21),
(111,∅), (111, 1), (111, 11)

 .
To each (λ, µ) ∈ Pn,r , we associate an element φ(λ, µ) ∈ ωn,r(k) by the following

construction. Let Pλ = Pλ1 × · · · × Pλ`(λ) . To each part m of µ, let Lm → Pλ be the
line bundle obtained by pulling back OPm(1) via the projection to the factor Pλ → Pm
corresponding to the part m. Since µ ⊂ λ, m is part of λ. We define

φ(λ, µ) =
[
Pλ,Or−`(µ)

⊕

⊕
m∈µ

Lm

]
.

The bundle on Pλ has a trivial factor of rank r − `(µ).



Algebraic cobordism of bundles on varieties 1085

Theorem 1. For n, r ≥ 0, we have

ωn,r(k)⊗Z Q =
⊕

(λ,µ)∈Pn,r
Q · φ(λ, µ).

In other words, the elements φ(λ, µ) determine a basis of ωn,r(k)⊗Z Q. If r = 0, Theo-
rem 1 specializes to (0.7). In case (n, r) = (3, 2), the basis of Theorem 1 is given by

[P3,O2], [P3,O ⊕O(1)],
[P2
× P1,O2], [P2

× P1,O ⊕O(1, 0)],

[P2
× P1,O ⊕O(0, 1)], [P2

× P1,O(1, 0)⊕O(0, 1)],

[P1
× P1

× P1,O2], [P1
× P1

× P1,O ⊕O(1, 0, 0)],

[P1
× P1

× P1,O(1, 0, 0)⊕O(0, 1, 0)].

Theorem 1 is proven in Section 3. The argument requires studying an algebraic cobor-
dism theory for lists of line bundles on varieties developed in Section 2.

The structure of ω∗,r(k) over Z is determined by the following result proven in Sec-
tion 3.3.

Theorem 2. For r ≥ 0, ω∗,r(k) is a free ω∗(k)-module with basis

ω∗,r(k) =
⊕
λ

ω∗(k) · φ(λ, λ)

where the sum is over all partitions λ of length at most r .

0.8. Over X

In fact, ω∗,r(k) determines ω∗,r(X) for all X ∈ Schk . There is a natural map

γX : ω∗(X)⊗ω∗(k) ω∗,r(k)→ ω∗,r(X)

of ω∗(k)-modules defined by

γX
(
[Y

f
→ X]⊗ φ(λ, λ)

)
=

[
Y × Pλ

f ◦pY
−−−→ X,Or−`(λ)

⊕

⊕
m∈λ

p∗Pλ(Lm)
]
.

Here, λ has length at most r , and pY and pPλ are the projections of Y × Pλ to Y and Pλ
respectively.

Theorem 3. For r ≥ 0 and X ∈ Schk , the map γX is an isomorphism of ω∗(k)-modules.

By Theorem 3, the algebraic cobordism theory ω∗,r of bundles on varieties is simply an
extension of scalars of the original theory ω∗.
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0.9. Chern invariants

Let Y be a nonsingular projective variety of dimension n, and let E be a rank r vector
bundle on Y . The Chern invariants of the pair [Y,E] are∫

Y

2
(
c1(TY ), . . . , cn(TY ), c1(E), . . . , cr(E)

)
where 2 is any graded degree n polynomial (with Q-coefficients) of the Chern classes of
the tangent bundle TY and E.

Let Cn,r be the finite-dimensional Q-vector space of graded degree n polynomials in
the Chern classes.

Theorem 4. The Chern invariants respect algebraic cobordism. The resulting map

ωn,r(k)⊗Z Q→ C∗n,r
is an isomorphism.

A simple counting argument (given in Section 1) shows the dimension of Cn,r equals the
cardinality of Pn,r . In case (n, r) = (3, 2), there are nine basic Chern invariants of [Y,E],

c3(TY ), c2(TY )c1(TY ), c1(TY )
3, c2(TY )c1(E), c1(TY )

2c1(E),

c1(TY )c2(E), c1(TY )c1(E)
2, c2(E)c1(E), c1(E)

3.

Theorem 4 is proven jointly with Theorem 1 in Section 3.

0.10. Applications

For studying a theory associated to pairs [Y,E] which admits a multiplicative double
point degeneration formula, algebraic cobordism ωn,r(C) is a useful tool. The full theory
can be calculated from the toric basis elements specified by Theorem 1.

The determinations of ω3(C) and ω2,1(C) have been used in [7] to prove the con-
jectures of [1, 9, 10] governing the degrees of virtual classes on the Hilbert schemes of
points of 3-folds. Recently, Y. Tzeng [13] has used the 4-dimensional basis of ω2,1(C) in
a beautiful proof of Göttsche’s conjecture [3] governing nodal curve counting (interpreted
as degrees of cycles in the Hilbert schemes of points of surfaces). The basis of ωn,r(C)
will be used in [5] for the study of flop invariance of quantum cohomology.

0.11. Speculations

Consider the algebraic group GLr over C. We view ω∗,r(C) as an algebraic model for
MU∗(BGLr). Theorem 4 may be interpreted as saying ω∗,r(C) is dual to

MU∗(BGLr) = MU∗(pt)[[c1, . . . , cr ]].

D. Maulik suggests defining an algebraic cobordism theory ω∗,G for principal G-bundles
on algebraic varieties by the double point relation of Definition 3. Perhaps the resulting
theory over a point for classical groups G is dual to MU∗(BG)?
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An algebraic approach to MU∗(BG) for linear algebraic groups has been proposed
in [2] by limits of�∗ over algebraic approximations to BG. The construction is similar to
Totaro’s definition [12] of the Chow ring of BG, but requires also the coniveau filtration
(see [8] for an alternative limit definition). For many examples, including BGLr , the
isomorphism

�∗(BG) ∼= MU∗(BG)

is obtained [2]. Such isomorphisms were predicted in [14].
Another approach to our paper is perhaps possible via a limit definition of�∗(BGLr).

There should be a map
�∗(BGLr)→ ω∗,r(C)

which is injective by Chern invariants and surjective by Proposition 11.

1. Chern classes

1.1. Cobordism invariance

Let n, r ≥ 0. There is a canonical bilinear map

ρ : Mn,r(k)
+
⊗Z Q× Cn,r → Q

defined by integration,

ρ([Y,E],2) =
∫
Y

2
(
c1(TY ), . . . , cn(TY ), c1(E), . . . , cr(E)

)
.

Proposition 5. The pairing ρ annihilates Rn,r(k).

Proof. In case r = 0, the invariance of the Chern numbers of the tangent bundle is a
well-known property of algebraic cobordism over a Spec(C) (see [6, 11]).

Let Y ∈ Smk be of pure dimension n+ 1. Let

π : Y → P1 (1.1)

be a projective morphism which is a double point degeneration over 0 ∈ P1. Let L be a
line bundle on Y . Suppose L is very ample on Y . Cutting Y with s generic sections of L
yields a nonsingular subvariety of codimension s,

Ds ⊂ Y
π
→ P1.

The composition Ds → P1 is a double point degeneration over 0 ∈ P1.
Let Yζ , A, B, and P(π) be the four spaces which occur in the double point relation

for (1.1) in Definition 3. Let

Yζ ∩D
s, A ∩Ds, B ∩Ds, P(π) ∩Ds
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be the four spaces which occur in the relation for Ds → P1. Since the tangent bundle of
Z ∩Ds satisfies

0→ TZ∩Ds → TZ|Z∩Ds →

s⊕
i=1

L→ 0

in each of the four cases, we have

c(TZ∩Ds ) =
c(TZ)

(1+ c1(L))s
, ci(TZ∩Ds ) = ci(TZ)− s · ci−1(TZ)c1(L)+ · · · ,

where we have suppressed the restrictions. The application of the r = 0 case of the
proposition to the degenerationsDs → P1 for all s implies (by descending induction) the
r = 1 case for double point relations where L is ample.

Similarly if L1, . . . , Lm are very ample line bundles on Y , we can consider

Ds1,...,sm ⊂ Y
π
→ P1

obtained by cutting with s1 sections of L1, s2 sections of L2, . . . , and sm sections of Lm.
The application of the r=0 case of the proposition to the degenerationDs1,...,sm→P1 for
all s1, . . . , sm implies invariance under the double point relation of graded degree n poly-
nomials in the Chern classes of the tangent bundle and the Chern classes of L1, . . . , Lm.

The r = 1 case of the proposition follows since every line bundle L may be written
as the difference of two very ample line bundles.

To prove the r > 1 case, we use a splitting argument. Let π be a double point degen-
eration (1.1). Let E be a rank r bundle on Y . Let

F(E)→ Y
π
→ P1

by the complete flag variety over Y obtained from E. The composition F(E) → P1 is
a double point degeneration with tautological line bundles L1, . . . , Lr which sum in K-
theory to the pull-back of E. The established line bundle results then yield the r > 1
case. ut

As a consequence of Proposition 5, the pairing ρ descends,

ρ : ωn,r(k)⊗Z Q × Cn,r → Q. (1.2)

Our first goal is to bound the rank of the pairing from below.

1.2. Independence

1.2.1. Monomials of Cn,r . For notational convenience, we write elements 2 ∈ Cn,r as
polynomials

2(u1, . . . , un, v1, . . . , vr)

where ui = ci(TY ) and vi = ci(E). Both ui and vi have degree i. A canonical basis
of Cn,r is obtained from monomials of graded degree n.

Let Qn,r be the set of partition pairs (ν, µ) where

(i) µ is a partition of size |µ| ≤ n with largest part at most r ,
(ii) ν is a partition of n− |µ|.
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The correspondence

n∏
i=1

u
li
i

r∏
j=1

v
mj
j ↔ (1l1 · · · nln , 1m1 · · · rmr ) (1.3)

yields a bijection between the monomial basis of Cn,r and the set Qn,r . Let C(ν, µ) denote
the monomial associated to (ν, µ) ∈ Qn,r .

Lemma 6. There is a natural bijection ε : Qn,r → Pn,r .

Proof. Given (ν, µ) ∈ Qn,r , define ε(ν, µ) = (ν ∪ µt , µt ) ∈ Pn,r . Here, µt is the parti-
tion obtained by transposing the Young diagram associated to µ. Hence, µt has length at
most r . ut

1.2.2. Ordering. The v-degree of a monomial in Cn,r is the vector

degv
( n∏
i=1

u
li
i

r∏
j=1

v
mj
j

)
= (m1, . . . , mr) ∈ Zr

≥0.

We define a total ordering on Zr
≥0 by the following rule: (m1, . . . , mr) > (m′1, . . . , m

′
r)

if either mr > m′r , or mj = m′j for all j > i and mi > m′i . The resulting partial order on
the monomials on Cn,r (indexed by Qn,r ) is sensitive only to the variables vi .

1.2.3. Bilinear pairing. Let M be the matrix with rows and columns indexed by Qn,r

and elements
Mn,r [(ν, µ), (ν′, µ′)] = ρ

(
φ(ε(ν, µ)),C(ν′, µ′)

)
for (ν, µ), (ν′, µ′) ∈ Qn,r . Recall that the map φ : Pn,r → ωn,r(k) was defined in
Section 0.7. The rows and columns of Mn,r are ordered by the partial ordering on Qn,r

defined in Section 1.2.2.

Lemma 7. If (ν, µ) < (ν′, µ′) in the partial order of Qn,r , then

Mn,r [(ν, µ), (ν′, µ′)] = 0.

Proof. Letµ = 1m1 · · · rmr andµ′ = 1m
′

1 · · · rm
′
r . If (ν, µ) < (ν′, µ′), then, at the highest

index i where a difference occurs, mi < m′i .
Suppose the difference occurs at i = r . Then mr is the minimal part of µt . For the

pair [Y,E] = φ(ν, µ), the bundle E is a direct sum of r line bundles pulled back from
the O(1) factors of a product of r projective spaces (with minimal dimension mr ). Since
mr < m′r , the class cm

′
r

r (E) vanishes on Y by dimensional considerations.
If the highest difference occurs at i < r , the argument is the same (following again

from elementary dimensional considerations). ut

Proposition 8. Mn,r is a nonsingular matrix.
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Proof. By Lemma 7, the matrix Mn,r is block lower triangular with respect to the partial
ordering on Qn,r . The blocks are determined by all (ν, µ) ∈ Qn,r with the same µ.

Let µ = 1m1 . . . rmr . Consider the bundle

E =
⊕
m∈µt

Lm→ Pµ
t

,

following the notation of Section 0.7. Since∫
Pµt

c1(E)
m1 . . . cr(E)

mr = 1, (1.4)

the block in Mn,r corresponding to µ is the matrix Mn−|µ|,0. The latter is nonsingular by
well-known results about the usual r = 0 theory of algebraic cobordism [6, 11]. ut

As a consequence of Proposition 8, the generators proposed in Theorem 1 span a subspace
of ωn,r(k)⊗Z Q of rank at least |Pn,r |. In particular,

dim(ωn,r(k)⊗Z Q) ≥ |Pn,r |.

Moreover, the pairing (1.2) has rank at least |Pn,r |. To complete the proofs of Theorem 1
and 4, we will prove the reverse inequality dim(ωn,r(k)⊗Z Q) ≤ |Pn,r | in Section 3.

2. Lists of line bundles

2.1. Lists

For X ∈ Schk , let Mn,1r (X) denote the set of isomorphism classes over X of tuples
[f : Y → X,L1, . . . , Lr ] with Y ∈ Smk of dimension n, f projective, and L1, . . . , Lr
an ordered list of line bundles on Y . The set Mn,1r (X) is a monoid under disjoint union
of domains. Let Mn,1r (X)

+ denote the group completion of Mn,1r (X).
Let Y ∈ Smk be of pure dimension n + 1, and let g : Y → X × P1 be a projective

morphism for which the composition π = p2◦g : Y → P1 is a double point degeneration
over 0 ∈ P1. Let L1, . . . , Lr be a list of line bundles on Y . Let

[A→ X,L1,A, . . . Lr,A], [B → X,L1,B . . . Lr,B ],

[P(π)→ X,L1,P(π), . . . , L1,P(π)] ∈Mn,1r (X)
+

be obtained from the fiber π−1(0) and the morphism p1 ◦ g.

Definition 4. Let ζ ∈ P1(k) be a regular value of π . The associated double point relation
over X is

[Yζ → X, {Li,Yζ }]− [A→ X, {Li,A}]− [B → X, {Li,B}]+ [P(π)→ X, {Li,P(π)}]

where Yζ = π−1(ζ ).
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For X ∈ Schk , let Rn,1r (X) ⊂ Mn,1r (X)
+ be the subgroup generated by all double

point relations. Double point cobordism theory for lists of line bundles on varieties is
defined by

ωn,1r (X) =Mn,1r (X)
+/Rn,1r (X).

The sum

ω∗,1r (X) =

∞⊕
n=0

ωn,1r (X)

is always an ω∗(k)-module via product. If X ∈ Smk , then ω∗,1r (X) is also a module over
the ring ω∗(X).

2.2. Basis

A partition list of size n and type r is a tuple (λ, (m1, . . . , mr)) where

(i) λ is a partition of n,
(ii) (m1, . . . , mr) is a list with mi ≥ 0 whose union of non-zero parts is a subpartition

µ ⊂ λ.

Let Pn,1r be the set of all partition lists of size n and type r . For example,

P3,12 =


(3, (0, 0)), (3, (3, 0)), (3, (0, 3)),
(21, (0, 0)), (21, (2, 0)), (21, (1, 0)),

(21, (0, 1)), (21, (0, 2)), (21, (2, 1)), (21, (1, 2)),
(111, (0, 0)), (111, (1, 0)), (111, (0, 1)), (111, (1, 1))

 .
To each (λ, (m1, . . . , mr)) ∈ Pn,1r , we associate an element

φ(λ, (m1, . . . , mr)) ∈ ωn,r(k)

by the following construction. Let Pλ = Pλ1 × . . . × Pλ`(λ) . To each non-zero part mi ,
let Lmi → Pλ be the line bundle obtained by pulling back OPmi (1) via the projection to
the factor Pλ → Pmi corresponding to the part mi . If mi = 0, let Lmi be the trivial line
bundle on Pλ. We define

φ(λ, (m1, . . . , mr)) = [Pλ, (Lm1 , . . . , Lmr ) ].

Theorem 9. For n, r ≥ 0, we have

ωn,1r ⊗Z Q =
⊕

(λ,(m1,...,mr ))∈Pn,1r
Q · φ(λ, (m1, . . . , mr)).

Theorem 9 will be proven in Section 2.6 with a mix of techniques from [6, 7] and new
methods for studying algebraic cobordism relations for line bundles on varieties.
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2.3. Chern invariants

Let Cn,1r be the Q-vector space of graded degree n polynomials in the Chern classes
c1(TY ), . . . , cn(TY ), c1(L1), . . . , c1(Lr). There is a canonical bilinear map

ρ : Mn,1r (k)
+
⊗Z Q × Cn,1r → Q

defined by integration,

ρ([Y,E],2) =
∫
Y

2
(
c1(TY ), . . . , cn(TY ), c1(L1), . . . , c1(Lr)

)
.

The proof of Proposition 5 implies the pairing ρ annihilates Rn,1r (k). Hence, ρ descends,

ρ : ωn,1r (k)⊗Z Q × Cn,1r → Q.

The monomial basis of Cn,1r is easily seen to have the same cardinality as the set Pn,1r .
A straightforward extension of the methods of Section 1.2.3 implies that the elements of

{φ(λ, (m1, . . . , mr)) | (λ, (m1, . . . , mr)) ∈ Pn,1r } ⊂ ωn,1r ⊗Z Q

span a subspace of dimension |Pn,1r |. In particular,

dim(ωn,1r ⊗Z Q) ≥ |Pn,1r |.

2.4. Globally generated line bundles

Let m ⊂ ω∗(k) be the ideal generated by all elements of positive dimension,

0→ m→ ω∗(k)→ Z→ 0.

Since ω∗,1r (k) is an ω∗(k)-module, we can define the graded quotient

ω̃∗,1r (k) =
ω∗,1r (k)

m · ω∗,1r (k)
, ω̃∗,1r (k) =

∞⊕
n=0

ω̃n,1r (k).

For (λ, (m1, . . . , mr)) ∈ Pn,1r , let

φ̃(λ, (m1, . . . , mr)) ∈ ω̃n,1r (k)

denote the class of φ(λ, (m1, . . . , mr)) in the quotient.

Proposition 10. Let Y ∈ Smk be a projective variety of dimension n with line bundles
L1, . . . , Lr all generated by global sections. Then [Y,L1, . . . , Lr ] ∈ ω̃n,1r (k) lies in the
Z-linear span of{

φ̃(λ, (m1, . . . , mr))

∣∣∣ (λ, (m1, . . . , mr)) ∈ Pn,1r ,
r∑
i=1

mi = n
}

in ω̃n,1r (k).



Algebraic cobordism of bundles on varieties 1093

Proof. Since L1, . . . , Lr are all generated by global sections on Y , there exists a projec-
tive morphism

f : Y → Pd1 × · · · × Pdr , Li = f
∗(OPdi (1)).

We view f as determining an element of algebraic cobordism,

[f : Y → Pd1 × · · · × Pdr ] ∈ ωn(Pd1 × · · · × Pdr ).

A fundamental result of [6, Theorem 1.2.19] is the isomorphism

A∗(X) ∼= ω̃∗(X) = ω∗(X)/m · ω∗(X), (2.1)

where A∗(X) is the Chow theory of X (with Z coefficients). The Chow group

An(Pd1 × · · · × Pdr )

is generated by linear subvarieties

ιm1,...,mr : Pm1 × · · · × Pmr ↪→ Pd1 × · · · × Pdr

where
∑r
i=1mi = n. We conclude [f ] is a Z-linear combination of the elements

[ιm1,...,mr ] ∈ ω̃n(P
d1 × · · · × Pdr ).

Relations in ωn(Pd1 × · · · ×Pdr ) lift canonically to ωn,1r (Pd1 × · · · ×Pdr ) by pulling
back the list

OPd1 (1), . . . ,OPdr (1) (2.2)

everywhere. Since all double point relations in ωn(Pd1 × · · · × Pdr ) occur over Pd1 × · · ·

× Pdr , the pull-back of the list (2.2) is well-defined and canonical. The pull-back of the
list (2.2) via ιm1,...,mr yields the element

φ(λ, (m1, . . . , mr)) ∈ ωn,1r (k),

where
∑r
i=1mi = n. Here, λ is obtained simply by removing the 0 partsmi . Hence, after

pushing forward from Pd1 × · · · × Pdr to Spec(k), the argument is complete. ut

2.5. Projective bundles

We will need auxiliary results on projective bundles to remove the global generation hy-
pothesis of Proposition 10.

Let Z ∈ Smk be a projective variety equipped with a list of line bundles L1, . . . , Lr
and a split rank 2 vector bundle

B = OZ ⊕N.

We are interested in the classes

[P(B), L1, . . . , Lr ], [P(B), L1(±1), . . . , Lr(±1)] ∈ ω∗,1r (k).

Here, P(B) denotes the projectivization by sublines, and Li(±1) stands for Li ⊗
OP(B)(±1).
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Let s be the section Z → P(B) determined by the factor N ⊂ B. The divisor s is an
element of the linear series associated to OP(B)(1). The degeneration to the normal cone
of s yields a double point relation in ω∗(Z). After pulling back the list L1, . . . , Lr , we
obtain a double point relation in ω∗,1r (Z). Twisting the list by the exceptional divisor of
the degeneration yields the relation

[P(B), L1, . . . , Lr ]− [P(B), L1(1), . . . , Lr(1)]− [P(OZ ⊕N
∗), L1(−1), . . . Lr(−1)]

+ [P(B), L1 ⊗N
∗, . . . , Lr ⊗N

∗] = 0 in ω∗,1r (Z) .

Since (OZ ⊕N
∗)⊗N ∼= B, we may rewrite the above relation in the following form:

[P(B), L1, . . . , Lr ]−[P(B), L1(1), . . . , Lr(1)]−[P(B), L1⊗N
∗(−1), . . . Lr⊗N∗(−1)]

+ [P(B), L1 ⊗N
∗, . . . , Lr ⊗N

∗] = 0 in ω∗,1r (Z) .

After replacing Li with Li⊗N everywhere, we obtain our main projective bundle relation
in ω∗,1r (Z):

[P(B), L1(−1), . . . Lr(−1)] = [P(B), L1 ⊗N, . . . , Lr ⊗N ]
− [P(B), L1 ⊗N(1), . . . , Lr ⊗N(1)]
+ [P(B), L1, . . . , Lr ] .

Proposition 11. Let Y ∈ Smk be a projective variety of dimension n with arbitrary line
bundles L1, . . . , Lr . Then [Y,L1, . . . , Lr ] ∈ ω̃n,1r (k) lies in the Z-linear span of{

φ̃(λ, (m1, . . . , mr))

∣∣∣ (λ, (m1, . . . , mr)) ∈ Pn,1r ,
r∑
i=1

mi = n
}

in ω̃n,1r (k).

Proof. Let Z ⊂ Y be a nonsingular divisor such that L1(Z), . . . , Lr(Z) are all globally
generated. Consider the double point relation in ωn,1r (Y ) obtained from degenerating to
the normal cone of Z, pulling back the list L1, . . . , Lr , and twisting by the exceptional
divisor of the degeneration:

[Y,L1, . . . , Lr ]− [Y,L1(Z), . . . , Lr(Z)]− [P(OZ ⊕OZ(Z)), L1(−1), . . . Lr(−1)]
+ [P(OZ ⊕OZ(Z)), L1(Z), . . . , Lr(Z)] = 0 in ωn,1r (Y ). (2.3)

Proposition 10 applies to the second and fourth terms of relation (2.3). The third term,
however, requires further analysis. Using our main projective bundle relation in ωn,1r (Z),
we can trade the third term for

− [P(OZ⊕OZ(Z)), L1(Z), . . . , Lr(Z)]+ [P(OZ⊕OZ(Z)), L1(Z)(1), . . . , Lr(Z)(1)]
− [P(OZ ⊕OZ(Z)), L1, . . . , Lr ].

The last two terms are not covered by Proposition 10.
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We have proven the proposition modulo elements of the form

[P(B), L′1, . . . , L
′
r ], [P(B), L′1(1), . . . , L

′
r(1)] ∈ ωn,1r (Z)

where B = OZ ⊕ N is a split rank 2 bundle and L′i are arbitrary line bundles on Z. Let
π : P(B)→ Z be the projection. Let Z′ ⊂ Z be a nonsingular divisor such that

L′1(Z
′), . . . , L′r(Z

′), L′1(Z
′)(1), . . . , L′r(Z

′)(1)

are all globally generated on P(B).
Consider the double point relation in ωn,1r (Z) obtained from degenerating to the nor-

mal cone of π−1(Z′) ⊂ P(B), pulling back the list L′1, . . . , L
′
r , and twisting by the

exceptional divisor of the degeneration:

[P(B), L′1, . . . , L
′
r ]− [P(B), L′1(Z

′), . . . , L′r(Z
′)]

− [P(BZ′)×Z′ P(OZ′ ⊕OZ′(Z
′)), L′1(0,−1), . . . L′r(0,−1)]

+ [P(BZ′)×Z′ P(OZ′ ⊕OZ′(Z
′)), L′1(Z

′), . . . , L′r(Z
′)] = 0 (2.4)

in ωn,1r (Z). A similar relation holds for [P(B), L′1(1), . . . , L
′
r(1)]. We treat the third term

of (2.4) in both cases with our main projective bundle relation for the P(OZ′ ⊕OZ′(Z
′))

projectivization.
We have now proven the proposition modulo elements of the form

[P(B1)×Z′ P(B2), L
′′

1, . . . , L
′′
r ],

[P(B1)×Z′ P(B2), L
′′

1(1, 0), . . . , L′′r (1, 0)],
[P(B1)×Z′ P(B2), L

′′

1(0, 1), . . . , L′′r (0, 1)],
[P(B1)×Z′ P(B2), L

′′

1(1, 1), . . . , L′′r (1, 1)] ∈ ωn,1r (Z′)

where Bi = OZ′ ⊕Ni are split rank 2 bundles and L′′i are arbitrary lines bundles on Z′.
We iterate the procedure by selecting a sufficiently positive divisor Z′′ ⊂ Z′. Since

the dimensions of the divisors are dropping, the procedure terminates when dimension 0
is reached with the elements

[P1
× · · · × P1︸ ︷︷ ︸

n

,O(l1, . . . , ln), . . . ,O(l1, . . . , ln)︸ ︷︷ ︸
r

] ∈ ωn,1r (k)

with li ∈ {0, 1}. These elements are covered by Proposition 10. ut

2.6. Proof of Theorem 9

We prove the result by induction on n. The n = 0 case is clear. We assume the result for
all n′ < n.

Using Theorem 9 for n′ < n, we conclude that the grade n part of m · ω∗,1r ⊗Z Q is
equal to the Q-linear span of{

φ(λ, (m1, . . . , mr))

∣∣∣ (λ, (m1, . . . , mr)) ∈ Pn,1r ,
r∑
i=1

mi < n
}
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in ωn,1r (k)⊗Z Q. By Proposition 11, we see

dim(ωn,1r (k)⊗Z Q) ≤ |Pn,1r |.

Since we have already established the reverse inequality in Section 2.3, we obtain

dim(ωn,1r (k)⊗Z Q) = |Pn,1r |,

concluding the proof of Theorem 9. ut

3. Higher rank

3.1. Splitting

As before, let m ⊂ ω∗(k) be the ideal generated by all elements of positive dimension.
Since ω∗,r(k) is an ω∗(k)-module, we can define the graded quotient

ω̃∗,r(k) = ω∗,r(k)/m · ω∗,r(k), ω̃∗,r(k) =

∞⊕
n=0

ω̃n,r(k).

For (λ, µ) ∈ Pn,r , let φ̃(λ, µ) ∈ ω̃n,r(k) denote the class of φ(λ, µ) in the quotient.

Proposition 12. Let Y ∈ Smk be a projective variety of dimension n with rank r vector
bundle E. Then [Y,E] ∈ ω̃n,r(k) lies in the Z-linear span of

{ φ̃(λ, µ) | (λ, µ) ∈ Pn,r , |µ| = n}

in ω̃n,r(k).

For the proof of Proposition 12, we will require the following basic result.

Lemma 13. There exists a nonsingular projective variety Ŷ and a birational morphism
Ŷ → Y for which the pull-back of E to Ŷ has a filtration by subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E

satisfying rank(Ei/Ei−1) = 1.

Proof. Consider the complete flag variety over Y , π : F(E) → Y. There is a rational
section s of π . The variety Ŷ is obtained from the resolution of singularities of the graph
closure of s in Y × F(E). ut

To prove Proposition 12, let [Y,E] be given. Since

[Ŷ → Y ] = [Y → Y ] ∈ ω̃n(Y )

by (2.1), we conclude

[Ŷ → Y,E] = [Y → Y,E] ∈ ω̃n,r(Y )

as before. After pushing forward to Spec(k), we obtain

[Ŷ , E] = [Y,E] ∈ ω̃n,r(k).
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On Ŷ , let L1, . . . , Lr be the list of line bundle obtained from the subquotients of the
filtration of E. Sending the extension parameters to 0, we see

[Ŷ , E] = [Ŷ , L1 ⊕ · · · ⊕ Lr ] ∈ ωn,r(k).

Finally, Proposition 11 applied to the list [Ŷ , L1, . . . , Lr ] concludes the proof of Propo-
sition 12. ut

3.2. Proofs of Theorems 1 and 4

We prove the result by induction on n. The n = 0 case is clear. We assume the result for
all n′ < n.

Using Theorem 1 for n′ < n, we conclude that the grade n part of m · ω∗,r ⊗Z Q is
equal to the Q-linear span of

{φ̃(λ, µ) | (λ, µ) ∈ Pn,r , |µ| < n}

in ωn,r(k)⊗Z Q. By Proposition 12, we see

dim(ωn,r(k)⊗Z Q) ≤ |Pn,r |.

Since we have already established the reverse inequality in Section 1.2.3, we obtain

dim(ωn,r(k)⊗Z Q) = |Pn,r |,

concluding the proof of Theorems 1 and 4. ut

3.3. Proof of Theorem 2

Since Proposition 12 holds over Z, we see ωn,r(k) is generated over Z by

{φ(λ, µ) | (λ, µ) ∈ Pn,r , |µ| = n}

and the subgroups

ωn(k) · ω0,r(k), ωn−1(k) · ω1,r(k), . . . , ω1(k) · ωn−1,r(k).

We now prove Theorem 2 by induction on n. Certainly, ωi(k) is a free Z-module of
rank equal to the number of partitions of i. Using the induction hypothesis, we see ωn,r(k)
has |Pn,r | generators over Z. Since we know dim(ωn,r(k) ⊗Z Q) = |Pn,r |, no relations
among these generators are possible. ut

3.4. Product structure

There is a natural commutative ring structure on

ω∗,+(k) =

∞⊕
r=1

ω∗,r(k) =

∞⊕
n=0

∞⊕
r=1

ωn,r(k)

given by external product

[Y1, E1] · [Y2, E2] = [Y1 × Y2, p
∗

1(E1)⊗ p
∗

2(E2)].
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Here, p1 and p2 are the projections of Y1 × Y2 onto the first and second factors respec-
tively. There is an inclusion of rings

ω∗(k) ↪→ ω∗,+(k), [Y ] 7→ [Y,O].

By the basis result of Theorem 1, the product on ω∗,+(k)⊗Z Q is completely determined
by the special case

[Pa,O(1)] · [Pb,O(1)] = [Pa × Pb,O(1, 1)].

Question. What is the decomposition of [Pa×Pb,O(1, 1)] in the basis of ωa+b,1(k)⊗ZQ
given in Theorem 1 ?

Of course, Theorem 4 provides a computational approach to the question for any fixed a
and b. Is there a closed formula or any structure in the answer?

4. Results over X

4.1. Surjectivity

Following the notation of Section 2.4, let

ω̃∗,1r (X) = ω∗,1r (X)/m · ω∗,1r (X), ω̃∗,1r (X) =

∞⊕
n=0

ω̃n,1r (X).

Consider the element
[Y → X,L1, . . . , Lr ] ∈ ωn,1r (X).

If all the Li are globally generated on Y , then there exists a projective morphism

f : Y → X × Pd1 × · · · × Pdr , Li = f
∗(OPdi (1)).

We view f as determining an element of algebraic cobordism,

[f : Y → X × Pd1 × · · · × Pdr ] ∈ ωn(X × Pd1 × · · · × Pdr ).

The Chow group An(X × Pd1 × · · · × Pdr ) is generated over A∗(X) by linear subva-
rieties

ιm1,...,mr : Pm1 × · · · × Pmr ↪→ Pd1 × · · · × Pdr

where
∑r
i=1mi ≤ n. Using (2.1) for X × Pd1 × · · · × Pdr , we see [f ] is a Z-linear

combination of elements of the form

[ι× ιm1,...,mr ] ∈ ω̃n(X × Pd1 × · · · × Pdr )

where ι : W → X is a resolution of singularities of an irreducible subvariety of X and

n = dim(W)+
r∑
i=1

mi .
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Concluding as in the proof of Proposition 10, we find that

[Y → X,L1, . . . , Lr ] ∈ ω̃n,1r (X)

lies in the subspace spanned by products of elements of ωδ(X) with basis terms
of ωn−δ,1r (k).

The projective bundle analysis in the proof of Proposition 11 occurs entirely over
Y and thus over X. Hence, we can remove the global generation hypothesis on the
bundles Li just as before.

Since the splitting of Lemma 13 also occurs over Y , we conclude that the composition

ω∗(X)⊗ω∗(k) ω∗,r(k)
γX
−→ ω∗,r(X)→ ω̃∗,r(X)

is surjective.

Proposition 14. The natural map

γX : ω∗(X)⊗ω∗(k) ω∗,r(k)→ ω∗,r(X)

is surjective.

Proof. We have already seen γX surjects onto ω∗,r(X)/m · ω∗,r(X). But then

m · ω∗(X)⊗ω∗(k) ω∗,r(k)

surjects via γX onto m · ω∗,r(X)/m
2
· ω∗,r(X). The result follows by iteration since⋂

i≥1 m
i
= 0. ut

4.2. Injectivity

Let c1, . . . , cr be variables with ci of degree i. Let 9 be the space of polynomials in
c1, . . . , cr with Z coefficients. For homogeneous ψ ∈ 9 of degree d, there are natural
Chern operations

Cψ : ω∗,r(X)→ ω∗−d(X)

defined by

Cψ ([Y
f
→ X,E]) = f∗

(
ψ(c1(E), . . . , cr(E)) ∩ [Y → Y ]

)
∈ ω∗−d(X) (4.1)

where the action of ψ on the right is via the standard Chern class operations [6, Sec-
tion 7.4] in algebraic cobordism.

To show definition (4.1) respects the double point relation in ω∗,r(X), we argue as
follows. Suppose g : Y → X × P1 is a projective morphism for which the composition
π = p2 ◦g : Y → P1 is a double point degeneration over 0 ∈ P1, and E is a rank r vector
bundle on Y . The Chern operation ψ(c1(E), . . . , cr(E)) is well-defined on ω∗(Y ),

ψ : ω∗(Y )→ ω∗−d(Y ).



1100 Y.-P. Lee, R. Pandharipande

Hence, for regular values ζ ∈ P1(k) of π ,

ψ ∩
(
[Yζ → Y ]− [A→ Y ]− [B → Y ]+ [P(π)→ Y ]

)
= 0 in ω∗(Y ).

Pushing forward to X and using the functoriality of the Chern class, we obtain

Cψ ([Yζ → X,EYζ ])− Cψ ([A→ X,EA])

− Cψ ([B → X,EB ])+ Cψ ([P(π)→ X,EP(π)]) = 0 in ω∗(X),

which is the required compatibility.
By the characterization of ω∗,r(k) in Theorem 2, we have

ω∗(X)⊗ω∗(k) ω∗,r(k) =
⊕
λ

ω∗(X)⊗ φ(λ, λ) (4.2)

where the sum is over all partitions λ of length at most r . Consider the pairing

ρX : ω∗(X)⊗ω∗(k) ω∗,r(k)×9 → ω∗(X) defined by ρX
(
ζ, ψ) = Cψ (γX(ζ )).

Using the basis (4.2), we see the pairing ρX is triangular with 1’s on the diagonal by
calculation (1.4). We have proven the following result.

Proposition 15. The natural map

γX : ω∗(X)⊗ω∗(k) ω∗,r(k)→ ω∗,r(X)

is injective.

Propositions 14 and 15 together complete the proof of Theorem 3. In fact, the proof of
Theorem 3 is just a slight abstraction of the original proof of Theorem 1.
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