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Abstract. In the recent literature, the phenomenon of phase separation for binary mixtures of
Bose–Einstein condensates is understood, from the mathematical point of view, as governed by
the asymptotic limit of the stationary Gross–Pitaevskii system

−1u+ u3
+ βuv2

= λu,

−1v + v3
+ βu2v = µv,

u, v ∈ H 1
0 (�), u, v > 0,

as the interspecies scattering length β goes to +∞. For this system we consider the associated en-
ergy functionals Jβ , β ∈ (0,+∞), with L2-mass constraints, whose limit J∞ (as β → +∞) is
strongly irregular. For such functionals, we construct multiple critical points via a common min-
imax structure, and prove convergence of critical levels and optimal sets. Moreover we study the
asymptotics of the critical points.

1. Introduction

1.1. Motivations

We are interested in the nonlinear Schrödinger system
−1u+ u3

+ βuv2
= λu,

−1v + v3
+ βu2v = µv,

u, v ∈ H 1
0 (�), u, v > 0,

(1)

with � a smooth bounded domain in RN , N = 2, 3, and λ,µ, β positive parameters,
which arises in several physical contexts such as Bose–Einstein condensation in two hy-
perfine spin states (for all the physical aspects we refer, e.g., to [14, 6] and references
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therein). In our case, the cubic nonlinearities u3, v3 have a positive sign, which in the
literature is called the defocusing case (in opposition to the focusing one, with negative
sign). For different choices of the parameters in (1), existence of solutions for this type of
system has been widely studied, both for the cases of � bounded and for the whole RN
([1, 16, 8, 12] among others). We study solutions of (1) as nonnegative critical points of
the coercive energy functional

Jβ(u, v) =
1
2

∫
�

(|∇u|2 + |∇v|2) dx +
1
4

∫
�

(u4
+ v4) dx +

β

2

∫
�

u2v2 dx

constrained to the manifold

M =

{
(u, v) ∈ H 1

0 (�)×H
1
0 (�) :

∫
�

u2 dx =

∫
�

v2 dx = 1
}
,

so that λ and µ in (1) are understood as Lagrange multipliers. This constraint represents
the standard mass conservation law.

Besides the existence of ground states, because of the invariance of Jβ and M under
the Z2 action (u, v) 7→ (v, u) we expect multiple critical points of minimax type for
each β. We are mainly interested in the behavior of such solutions as β → +∞. In the
context of Bose–Einstein condensation, this models the phenomenon of phase separation
(segregation) that occurs between the two different states. From the mathematical point of
view, this asymptotic study of solutions has been attracting growing attention [20, 21, 19,
3, 10, 5, 13, 11, 18]. In contrast, here we analyze the asymptotics of the whole minimax
structure.

While convergence of minimizers is well understood in the framework of singularly
perturbed equations, this is not the case for minimax critical points. To illustrate this
problem, let us consider the pointwise limit of Jβ as β goes to infinity. It is the extended
real valued functional defined (on M) as

J∞(u, v) = sup
β>0

Jβ(u, v) =

{
J0(u, v) when

∫
�
u2v2 dx = 0,

+∞ otherwise.

Actually, this functional turns out to be also the 0-limit of Jβ (for the definition of 0-
convergence we refer, for instance, to the book by Braides [2]). In this framework, while
it is immediate to check the convergence of the minima of Jβ on M to minima of J∞, it
is not even obvious what should be understood as a critical point of J∞ (because of its
strong irregularity). Also in the case when a notion of critical point is established for the
limiting functional, there need not be convergence: Jerrard and Sternberg [9, Remark 4.5]
exhibit an example of a family {f ε} of functions 0-converging to f , in which a sequence
of critical points of f ε does not converge to a critical point of f .

Similarly to [9], we tackle the problem from an abstract point of view (see Section 2).
In fact, we consider a general family of functionals, depending on a parameter β, and its
0-limit. These functionals share the basic property of being lower semicontinuous (with
respect to a suitable topology) and nondecreasing with respect to β. After the introduction
of a common minimax class, we provide a notion of critical point in connection with a
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choice of decreasing flows. The main problem is that, in our application, the limit of
the gradient flows as β → +∞ need not itself be a continuous decreasing flow for the
limiting functional (such limits were studied in [4] for the related heat equation). This
prevents us from applying the recent theory of 0-convergence of gradient flows developed
in [15]. We stress that, for this reason, we do not assume any relation between the flows
for β <∞ and the limit flow.

To construct the flow for β = +∞, we start from the observation that, in our applica-
tion, the limit problem has a richer structure. Let us consider the equation

−1w + w3
= λw+ − µw−, w ∈ H 1

0 (�), (2)

which is related to the functional J∞, in the case u · v ≡ 0, as follows:

J∞(u, v) = J
∗(u− v), where J ∗(w) =

1
2

∫
�

|∇w|2 dx +
1
4

∫
�

w4 dx (3)

(with
∫
�
(w+)2 =

∫
�
(w−)2 = 1). A first suggestion for studying this relation comes

from the analysis of ground state solutions: as (3) shows, if (u∞, v∞) is a minimizer of
J∞ in M , then w = u∞ − v∞ is a ground state of J ∗ (with the appropriate constraint).
Hence, by the Lagrange multipliers theorem, w solves (2). This suggests understanding
the critical points of J∞ constrained to M as pairs (u, v) such that u · v ≡ 0 and u − v
satisfies equation (2). As a matter of fact, we will establish, also for minimax critical
points, a relation between suitable solutions (uβ , vβ) of (1), for β large, and the pairs1

(w+, w−), where w solves (2) (for suitable λ, µ). Other results in the same direction have
been obtained for radial functions in the recent papers [20, 19] for nonminimal solutions,
whereas, up to our knowledge, there are no results concerning nonradial, excited states.

1.2. A class of minimax problems

To proceed with the exposition of our main results, we need to introduce a suitable mini-
max framework which is admissible for the whole family of functionals. We are inspired
by a recent work by Dancer, Wei and Weth [8], where infinitely many critical levels are
found, in the focusing case, by exploiting the Krasnosel’skiı̆ genus technique (see, for
instance, the book by Struwe [17]) associated with the invariance of the problem when
interchanging the roles of u and v.

In carrying out our asymptotic analysis, we shall take advantage of a strong compact-
ness property that goes beyond the usual Palais–Smale condition; to this end we are led
to develop a genus theory in L2-topology. This is the main reason why we are addressing
here the defocusing case: in the focusing one, indeed, the fact that the associated Nehari
manifold is not L2-closed seems to prevent an analogous analysis. Let us consider the
involution

σ : H 1
0 (�)×H

1
0 (�)→ H 1

0 (�)×H
1
0 (�), (u, v) 7→ σ(u, v) = (v, u),

1 Here, as usual,w±(x) = max{±w(x), 0} denote the positive and negative parts of a functionw.
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and the class of sets

F0 =

A ⊂ M : A is closed in the L2-topology,
(u, v) ∈ A⇒ u ≥ 0, v ≥ 0,
σ (A) = A


(observe that M is L2-closed and that σ(M) = M). We can define the Krasnosel’skiı̆
L2-genus in F0 in the following way.

Definition 1.1. Let A ∈ F0. The L2-genus of A, denoted by γ2(A), is defined as

γ2(A) = inf


m ∈ N : there exists f : A→ Rm \ {0} such that

f is continuous in the L2-topology and
f (σ(u, v)) = −f (u, v) for every (u, v) ∈ A

 .
If no f as above exists, then γ2(A) = +∞, while γ2(∅) = 0. The set of subsets with
L2-genus at least k will be denoted by

Fk = {A ∈ F0 : γ2(A) ≥ k}.

Under the previous notation we define, for 0 < β ≤ +∞, the (candidate) critical levels

ckβ = inf
A∈Fk

sup
(u,v)∈A

Jβ(u, v). (4)

In order to simplify notation, for β <∞ we introduce a map Sβ such that system (1) can
be rewritten as Sβ(u, v; λ,µ) =

(
−1u+ u3

+ βuv2
− λu

−1v + v3
+ βu2v − µv

)
= 0,

u, v ∈ H 1
0 (�), u, v > 0.

(5)

When β < +∞, the (candidate) critical set is defined in the standard way:

Kkβ =


(u, v) ∈ M : u, v ≥ 0,

Jβ(u, v) = c
k
β , and

there exist λ,µ such that Sβ(u, v; λ,µ) = (0, 0)

 .
Coming to the limiting problem, for the reasons given before, we define the critical set as

Kk∞ =


(u, v) ∈ M : u, v ≥ 0,

J∞(u, v) = c
k
∞, and

there exist λ,µ such that u− v solves (2)

 .
Our first main result states existence of critical points and of optimal sets, in the following
sense.

Theorem 1.2. Let k ∈ N+ and 0 < β ≤ +∞ be fixed. Then:

1. Kkβ is nonempty and compact (with respect to the H 1
0 -topology);
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2. there exist Akβ ∈ Fk and (ukβ , v
k
β) ∈ A

k
β ∩K

k
β such that

ckβ = max
Akβ

Jβ = Jβ(u
k
β , v

k
β).

As in the usual genus theory, one can also prove that if ckβ is the same for different k’s,
then the genus of Kkβ is large. This, together with suitable conditions which allow avoiding
fixed points of σ (namely β large enough, see Lemma 3.4), provides the existence of many
distinct critical points of Jβ .

1.3. Limits as β →+∞

Since the same variational argument applies to both the β-finite and the limiting case, the
next step is to compare the limiting behavior of the variational structure as β → +∞
with the actual behavior at β = +∞. When k = 1, the critical points introduced above
correspond to minimal energy solutions; in this case we have

Theorem 1.3. Let (uβ , vβ) ∈ M , for β ∈ (0,+∞), be a minimizer of Jβ constrained
to M . Then, up to subsequences, (uβ , vβ) converges strongly in H 1

∩ C0,α to (u∞, v∞),
a minimizer of J∞ constrained to M . Moreover u∞ − v∞ solves (2).

We shall obtain a proof of this result, as a byproduct of a more general one, at the end of
Section 4. For k ≥ 2 we prove the convergence of both the critical levels and the optimal
sets (in the sense of Theorem 1.2).

Theorem 1.4. Let k ∈ N+ be fixed. As β →+∞ we have

1. ckβ → ck∞;
2. if Akn is any optimal set for ckβn , and βn → +∞, then the set lim supnA

k
n is optimal

for ck∞ (the limit is understood in the L2-sense).

It is worth noticing that, in general, the convergence of the critical levels is a delicate fact
(for instance, it remains an open problem in [12]). As previously mentioned, up to now
there existed results in this direction that concerned only the radial case (in this case the
nodal sets of the limiting equation are easier to handle). Concerning the convergence of
the critical sets, we obtain the following relation.

Theorem 1.5. Let

Kk∗ =


(u, v) : there are sequences (un, vn) ∈ M , nonnegative, and βn→+∞ with

(un, vn)→ (u, v) in L2,

Jβn(un, vn)→ ck∞, and
Sβn(un, vn)→ (0, 0) in L2

 .
Then Kk∗ ∩Kk∞ is not empty.

This result can be better understood in the formulation below. It makes use of the uniform
Hölder bounds obtained in [13], providing that the L2-convergences in the definitions of
lim supβ Kkβ and Kk∗ are in fact strong in H 1

∩ C0,α .
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Corollary 1.6. For every integer k there exist pairs (u∞, v∞), (λ∞, µ∞) satisfying

−1(u∞ − v∞)+ (u∞ − v∞)
3
+ λ∞u∞ − µ∞v∞ = 0,

at level ck∞, and (sub)sequences (uβ , vβ), (hβ , kβ), (λβ , µβ) satisfying


−1uβ + u

3
β + βuβv

2
β − λβuβ = hβ ,

−1vβ + v
3
β + βu

2
βvβ − µβvβ = kβ ,

uβ , vβ ∈ H
1
0 (�), u, v > 0,

such that (λβ , µβ)→ (λ∞, µ∞),

(hβ , kβ)→ (0, 0) in L2 and (uβ , vβ)→ (u∞, v∞) in H 1
∩ C0,α,

with 0 < α < 1 if N = 2, and 0 < α < 1/2 if N = 3.

We address the open question of finding under which conditions a solution of (2) is the
limit of a sequence of solutions of (1).

The paper is structured as follows. In Section 2 we present an abstract framework
of variational type; we introduce a family of functionals enjoying suitable properties and
perform an asymptotic analysis. Section 3 is devoted to fitting (1) into the abstract setting;
this immediately provides the convergence of the critical levels and of the optimal sets.
Finally, in Section 4, we conclude the proof of the main results: we address existence and
asymptotics of the critical points, leaving to Section 5 the technical details about the flows
used in the deformation lemmas.

Note added in proof. The authors point out that the results contained in the recent article by
E. N. Dancer, K. Wang and Z. Zhang [7] allow a substantial improvement of the statement of Corol-
lary 1.6 of the present article. Indeed, it is proved there that all H 1-bounded families of solutions
to (1) do indeed converge to a limiting profile (u∞, v∞) satisfying the first equation in Corollary
1.6. This highly nontrivial fact implies that the forcing terms (hβ , kβ ) can be assumed to vanish
identically.

Notation. In the following, ‖u‖2 =
∫
�
|∇u|2 dx, |u|pp =

∫
�
up dx (sometimes it will

also denote the vectorial norm). We will refer to the topology induced onH 1
0 (�)×H

1
0 (�)

by the L2(�)× L2(�) norm as the L2-topology (and we shall denote by 〈·, ·〉2, dist2 the
associated scalar product and distance respectively). On the other hand, we will call the
usual topology on H 1

0 (�) × H
1
0 (�) the H 1

0 -topology. Finally, recall that, for a sequence
(An)n of sets,

x ∈ lim sup
n

An ⇔ for some nk →+∞ there exist xnk ∈ Ank such that xnk → x.2

2 This is the limit superior in the framework of the Kuratowski convergence.
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2. Topological setting of a class of minimax principles

In this section we will introduce an abstract setting of minimax type in order to obtain
critical values (in a suitable sense) of a given functional. Our aim is to consider a class
of functionals, each fitting in this setting, and to perform an asymptotic analysis of the
variational structure. The asymptotic convergence requires some additional compactness,
in the form of assumptions (F2), (F2′) below. Later on, when applying these results, this
will be achieved by means of weakening the topology; the price to pay will be a loss of
regularity of the functional involved. For this reason, in contrast to the usual variational
schemes, our main task is to work with functionals that are only lower semicontinuous.

Let (M, dist) be a metric space and let us consider a set of subsets of M, F ⊂ 2M.
Given a lower semicontinuous functional J : M→ R ∪ {+∞}, we define the minimax
level

c = inf
A∈F

sup
x∈A

J (x),

and make the following assumptions:

(F1) every A ∈ F is closed in M ;
(F2) there exists c′ > c such that for any given (An)n ⊂ F with An ⊂Mc′ for every n,

we have lim supnAn ∈ F ,

where
Mc′
= {x ∈M : J (x) ≤ c′}.

Moreover from now on we will suppose that c ∈ R, which in particular implies that
F 6= ∅ and ∅ /∈ F . A first consequence of the compactness assumption (F2) is the
existence of an optimal set of the minimax procedure.

Proposition 2.1. Let J : M→ R∪{+∞} be a lower semicontinuous functional, assume
(F2) and suppose moreover that c ∈ R. Then there exists Ā ∈ F such that supĀ J = c.
In this situation, we will say that Ā is optimal for J at c.

Proof. For every n ∈ N let An ∈ F be such that

sup
An

J ≤ c + 1/n

and consider Ā := lim supnAn. On one hand Ā ∈ F by assumption (F2), which provides
supĀ J ≥ c. On the other hand, by the definition of lim sup, for any x ∈ Ā there exists
a sequence (xn)n, xn ∈ An, such that, up to a subsequence, xn → x. But the lower
semicontinuity implies

J (x) ≤ lim inf
n

J (xn) ≤ lim inf
n

(
sup
An

J
)
≤ c,

and the proposition follows by taking the supremum over x ∈ Ā. ut

Due to the lack of regularity of the functional it is not obvious what should be understood
as a critical set. We will give a very general definition of critical set at level c by means
of a “deformation”, defined in some sublevel of J , under which the functional decreases.
To this end we consider, for some c′ > c, a map η : Mc′

→Mc′ such that
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(η1) η(A) ∈ F whenever A ∈ F , A ⊂Mc′ ;
(η2) J (η(x)) ≤ J (x) for every x ∈Mc′ .

We define the critical set of J (relative to η) at level c as

Kc = {x ∈M : J (x) = J (η(x)) = c}

(notice that x ∈ Mc and hence η(x) is well defined). We remark that the definition
depends on the choice of η. In a quite standard way, some more compactness is needed in
the form of a Palais–Smale type assumption.

Definition 2.2. We say that the pair (J, η) satisfies (PS)c if for any given sequence (xn)n
⊂ M such that J (xn) → c, J (η(xn)) → c, there exists x̄ ∈ Kc such that, up to a
subsequence, xn→ x̄ (as above, η(xn) is well defined for n sufficiently large).

Remark 2.3. Incidentally we observe that if in (PS)c one would require x̄ to be also the
limit of η(xn) (we do not assume this in this section, but it will turn out to be true in
the subsequent application), then Kc would coincide with the set of fixed points of η at
level c, providing an alternative—-probably more intuitive—definition of “critical set”
(relative to η).

As usual, (PS)c immediately implies the compactness of Kc. This assumption also
implies the fact that every optimal set for J at level c (recall Proposition 2.1) intersects Kc
(which in particular is nonempty). More precisely

Theorem 2.4. Let J : M→ R ∪ {+∞} be a lower semicontinuous functional, assume
(F1) and (F2), and let η : Mc′

→Mc′ be a map such that (η1) and (η2) hold. Suppose
moreover that (J, η) satisfy (PS)c and that c ∈ R. Thus for every A ∈ F such that
supA J = c there exists x̄ ∈ A ∩Kc. In particular, Kc is nonempty.

Proof. Let A ∈ F be such that supA J = c (which exists by Proposition 2.1). By as-
sumptions (η1) and (η2), η(A) ∈ F and supη(A) J ≤ c, hence supη(A) J = c. Thus we
can find a sequence (xn)n ⊂ A such that J (η(xn))→ c. By using assumption (η2) again,
we infer

c ≥ J (xn) ≥ J (η(xn))→ c,

and therefore (up to a subsequence) xn → x̄ ∈ Kc by (PS)c. On the other hand, since
A ∈ F , assumption (F1) implies that x̄ ∈ A, which concludes the proof. ut

Let us now turn to the asymptotic analysis. First of all we introduce a family of func-
tionals parameterized by β ∈ (0,+∞), Jβ : M → R ∪ {+∞}, each of which is lower
semicontinuous and moreover

(J) Jβ1(x) ≤ Jβ2(x) for every x ∈M whenever 0 < β1 ≤ β2 < +∞.

In such a framework we define the limit functional

J∞(x) := sup
β>0

Jβ(x).
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Lemma 2.5. For every xn, x ∈M such that xn→ x and βn→+∞,

J∞(x) ≤ lim inf
n

Jβn(xn).

In particular, J∞ is lower semicontinuous, and Jβ 0-converges to J∞.

Proof. For every fixed β < +∞,

Jβ(x) ≤ lim inf
n

Jβ(xn) ≤ lim inf
n

Jβn(xn) ≤ lim inf
n

J∞(xn)

(we used the fact that Jβ is lower semicontinuous and that Jβ ≤ Jβn for n sufficiently
large). By taking the supremum over β the lemma follows. ut

Consequently, for 0 < β ≤ +∞, we define the minimax levels

cβ = inf
A∈F

sup
x∈A

Jβ(x).

Remark 2.6. Assumption (J) clearly yields

β1 < β2 < +∞ ⇒ cβ1 ≤ cβ2 ≤ c∞.

This suggests that any constant greater than c∞ is a suitable common bound for all the
functionals. Hence we replace (F2) with

(F2′) for any given (An)n ⊂ F such that, for some β, An ⊂ Mc∞+1
β for every n, we

have lim supnAn ∈ F ,

where
Mc′

β = {x ∈M : Jβ(x) ≤ c′}.

Our first main result is the convergence of both the critical levels and the optimal sets (see
Proposition 2.1).

Theorem 2.7. Let Jβ : M → R ∪ {+∞} (0 < β < +∞) be a family of lower semi-
continuous functionals satisfying (J), and let J∞ be as before. Moreover suppose that
assumption (F2′) holds, and that cβ ∈ R for every 0 < β ≤ +∞. Then

1. for every 0 < β < +∞ there exists an optimal set for Jβ at cβ ;
2. cβ → c∞ as β →+∞;
3. if An ∈ F is optimal for Jβn at cβn and βn → +∞, then A∞ := lim supnAn is

optimal for J∞ at c∞.

Proof. The first item is a direct consequence of Proposition 2.1. Now by Remark 2.6
we know that cβ is monotone in β and that lim cβ ≤ c∞ < +∞ by assumption. Let
βn, An, A∞ be as in the statement. We have supAn Jβ1 ≤ supAn Jβn ≤ c∞, therefore
An ⊂ {Jβ1 ≤ c∞ + 1} and assumption (F2′) provides A∞ ∈ F . Now for every x̄ ∈ A∞
there exists a (sub)sequence xn→ x̄ with xn ∈ An. By Lemma 2.5 we have

J∞(x̄) ≤ lim inf
n

Jβn(xn) ≤ lim inf
n

(
sup
An

Jβn

)
= lim

n
cβn ≤ c∞.

By taking the supremum for x̄ ∈ A∞ (and recalling A∞ ∈ F), the theorem follows. ut
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Next we turn to the study of the corresponding critical sets, by introducing a family of
maps ηβ : Mc∞+1

β →Mc∞+1
β satisfying

(η1)β ηβ(A) ∈ F whenever A ∈ F , A ⊂Mc∞+1
β ;

(η2)β Jβ(ηβ(x)) ≤ Jβ(x), for every x ∈Mc∞+1
β .

Just as before, we define, for every 0 < β ≤ +∞,

Kβ = Kcβ = {x ∈M : Jβ(x) = Jβ(ηβ(x)) = cβ}. (6)

As a straightforward consequence of Theorem 2.4, the following holds.

Theorem 2.8. Let Jβ : M → R ∪ {+∞} (0 < β < +∞) be a family of lower semi-
continuous functionals satisfying (J), and let J∞ be as before. Suppose that (F1), (F2′)
hold, and that, for every 0 < β ≤ +∞, cβ ∈ R and the maps ηβ : Mc∞+1

β →Mc∞+1
β

satisfy (η1)β and (η2)β . Suppose moreover that the pair (Jβ , ηβ) satisfies (PS)cβ . Then
every optimal set for Jβ at cβ intersects Kβ , which in particular is nonempty (β ≤ +∞).

It is now natural to wonder what is the relation between lim supKβ and K∞. The desired
result would be their equality, which could be obtained under some suitable relations
between the deformations ηβ and η∞. However, as we mentioned in the introduction, in
our application such relations do not seem to hold. Instead we will assume a uniform
Palais–Smale type condition, which will lead us to consider a slightly larger set than
lim supKβ . Let us assume that the following holds:

(UPS) if the sequences (xn)n ⊂ M and (βn)n ⊂ R+ are such that βn → +∞ and
Jβn(xn) → c∞, Jβn(ηβn(xn)) → c∞, then there exists x̄ ∈M such that, up to a
subsequence, xn→ x̄ and ηβn(xn)→ x̄

(again, since Jβn(xn)→ c∞, ηβn(xn) is well defined for large n). It is worth pointing out
explicitly the two main differences between (PS) and (UPS), apart from the dependence
on β. On one hand, in the latter we do not obtain x̄ ∈ K∞—see Remark 2.10 below. On
the other hand, in (UPS) we require not only xn but also ηβn(xn) to converge, and the limit
to be the same (to enlighten this choice, see also Remark 2.3). Condition (UPS) suggests
the definition of the set

C∗ =


x ∈M : there exist sequences (xn)n ⊂M, (βn)n ⊂ R+ such that

xn→ x, βn→+∞,

Jβn(xn)→ c∞, and
Jβn(ηβn(xn))→ c∞

 .
Remark 2.9. If (xn)n is a uniform Palais–Smale sequence in the sense of (UPS), then
(up to a subsequence) xn→ x̄ ∈ C∗.

Remark 2.10. By Theorem 2.7, it is immediate that

lim sup
β→+∞

Kβ ⊂ C∗.

Finally if x ∈ C∗ then, by Lemma 2.5, J∞(x) ≤ c∞. Observe that the inequality may be
strict (nonetheless, the following theorem will imply that for some point equality holds).



Convergence of minimax structures and continuation of critical points 1255

Our final result is the following.

Theorem 2.11. Under the assumptions of Theorem 2.8, suppose moreover that (UPS)
holds. Then

C∗ ∩K∞ 6= ∅.

More precisely, for every (An)n ⊂ F , with An optimal for Jβn at cβn , and βn → +∞,
there exists x̄ ∈ C∗ ∩K∞ ∩ lim supnAn.

Proof. Let An be as in the statement, and take Bn = ηβn(An), which is also optimal
for Jβn at cβn by assumptions (η1)βn , (η2)βn . Theorem 2.7 then shows that lim supn Bn =:
B∞ ∈ F is optimal for J∞ at c∞, that is, there exists

ȳ ∈ B∞ ∩K∞.

By definition, up to a subsequence, there exists xn ∈ An such that ηβn(xn) → ȳ. Then
assumption (η2)βn together with Lemma 2.5 provides

c∞ = J∞(ȳ) ≤ lim inf
n

Jβn(ηβn(xn)) ≤ lim inf
n

Jβn(xn) ≤ lim
n

(
sup
An

Jβn

)
= lim

n
cβn = c∞.

In particular this implies that (xn)n is a Palais–Smale sequence in the sense of assumption
(UPS); by using Remark 2.9 we infer that (again up to a subsequence)

xn→ x̄ ∈ lim sup
n

An ∩ C∗.

But (UPS) also implies ηβn(xn)→ x̄ and hence x̄ = ȳ, which concludes the proof. ut

3. Convergence of minimax levels

The rest of the paper is devoted to applying (and refining) the results obtained in the
previous section to the problem discussed in the introduction. In order to apply the abstract
results of Section 2 we need to introduce M, F and ηβ for the present case. In this section
we deal with the asymptotics of the minimax levels and prove Theorem 1.4. The proof of
the remaining results, and in particular the construction of the deformations, will be the
object of the subsequent sections. Since the proof is independent of k, from now on we
assume that k ∈ N+ is fixed (and will often be omitted).

We define

M = {(u, v) ∈ H 1
0 (�)×H

1
0 (�) : u, v ≥ 0 in �, |u|2 = |v|2 = 1},

dist2((u1, v1), (u2, v2)) = |u1 − u2|
2
2 + |v1 − v2|

2
2,

and

Jβ(u, v) =
1
2
(‖u‖2 + ‖v‖2)+

1
4

∫
�

(u4
+ v4) dx +

β

2

∫
�

u2v2 dx
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for 0 < β < +∞. Notice that the limiting functional (as introduced in Section 2) coin-
cides with the one defined in the introduction, i.e.,

J∞(u, v) = sup
β>0

Jβ(u, v) =

{
J0(u, v) when

∫
�
u2v2 dx = 0,

+∞ otherwise.

Moreover we set

F = Fk = {A ∈ F0 : γ2(A) ≥ k} (as in Definition 1.1),

which implies that the critical values cβ introduced in Section 2 coincide with the val-
ues ckβ defined in the introduction.

Remark 3.1. We stress that for any given c′ ∈ R and 0 < β ≤ ∞ the set

Mc′

β = {(u, v) ∈M : Jβ(u, v) ≤ c′}

is L2-compact. This is a consequence of the coercivity of the functional together with the
Sobolev embedding theorem. This motivates our decision of working with this topology.

We start by presenting some properties of the L2-genus (recall Definition 1.1).

Proposition 3.2. (i) Take A ∈ F0 and let Sk−1 be the standard (k − 1)-sphere in Rk .
If there exists an L2-homeomorphism ψ : Sk−1

→ A satisfying ψ(−x) = σ(ψ(x))
then γ2(A) = k.

(ii) Consider A ∈ Fk and let η : A → M be an L2-continuous, σ -equivariant and
sign-preserving map. Then η(A) ∈ Fk .

(iii) If A ∈ F0 is an L2-compact set, then there exists a δ > 0 such that3 γ2(Nδ(A)) =

γ2(A).
(iv) Let (An)n∈N be a sequence in Fk and letX be an L2-compact subset of M such that

An ⊂ X. Then lim supAn ∈ Fk .

Proof. The proofs of the first three properties are similar to the ones of the usual genus,
and therefore we omit them (see for example [17, Proposition 5.4]). As for (iv), let An
and X be as above. By the definition of lim sup it is straightforward to check that the set
lim supnAn belongs to F0, and that it is L2-compact. We now claim that for every δ > 0
there exists n0 ∈ N such that

An ⊂ Nδ(lim supAn) for n ≥ n0,

which together with (iii) yields the desired result. Suppose that our claim is false. Then
there exist δ̄ > 0, nk →+∞ and (unk , vnk ) ∈ Ank such that (unk , vnk ) /∈ Nδ̄(lim supAn).
But since X is sequentially compact, there exists a (u, v) ∈ X ⊂ M such that, up to a
subsequence, (unk , vnk )→ (u, v). Hence (u, v) ∈ lim supAn, a contradiction. ut

3 Here Nδ(A) = {(u, v) ∈M : dist2((u, v), A) < δ}.
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Lemma 3.3. For every β finite, 0 ≤ cβ ≤ c∞ < +∞.

Proof. The proof relies on the fact that, given any k ∈ N, we can construct a setGk ∈ F0
with γ2(Gk) = k. Here we use some ideas of [8, Proposition 4.3]. Indeed, consider k
functions φ1, . . . , φk ∈ H

1
0 (�) such that φi ·φj = 0 a.e. for any i 6= j , with φ+i , φ

−

i 6= 0.
Define

ψ : Sk−1
→M, (t1, . . . , tk) 7→

(
t̄
(∑

i

tiφi

)+
, s̄
(∑

i

tiφi

)−)
,

where

t̄2 =
1

|(
∑
i tiφi)

+|
2
2
=

1
(
∑
i t

2
i |φ
+

i |
2
2)
, s̄2

=
1

|(
∑
i tiφi)

−|
2
2
=

1
(
∑
i t

2
i |φ
−

i |
2
2)
,

and Gk = ψ(Sk−1). It is easy to verify that Gk ∈ F0. Since ψ is an L2-homeomorphism
between Sk−1 and Gk , and σ(ψ(t1, . . . , tk)) = ψ(−t1, . . . ,−tk), Proposition 3.2(i) pro-
vides that γ2(Gk) = k. Since (u, v) ∈ Gk implies u · v ≡ 0, it follows that

c∞ ≤ sup
Gk

J∞ < +∞.

Finally, Remark 2.6 allows us to conclude the proof. ut

We are already in a position to prove the convergence of the minimax levels.

Proof of Theorem 1.4. This is a direct consequence of Theorem 2.7. Let us check its
hypotheses. Under the above definitions, assumption (J) easily holds. For every 0 <

β ≤ +∞, cβ ∈ R (by Lemma 3.3), and moreover (F2′) holds (by recalling Remark
3.1, Proposition 3.2(iv) and by using the fact that c∞ ∈ R). Finally let us check that
each Jβ is a lower semicontinuous functional in (M, dist), for 0 < β < +∞. Indeed,
let (un, vn), (ū, v̄) be couples of H 1

0 functions such that dist((un, vn), (ū, v̄)) → 0. If
lim infn Jβ(un, vn) = +∞ then there is nothing to prove; otherwise, by passing to a sub-
sequence that achieves the lim inf, we find that ‖(un, vn)‖ is bounded. Thus, again up to
a subsequence, (un, vn) weakly converges (in H 1

0 ), and, by uniqueness, the weak limit is
(ū, v̄). Then we can conclude by using the weak lower semicontinuity of ‖ · ‖ (and the
weak continuity of the other terms in Jβ ). ut

Let us conclude this section by recalling that, if β is sufficiently large, we can exclude the
presence of fixed points of σ in the set Kkβ . As in the usual genus theory, this ensures that
if two (or more) critical values coincide, then Kkβ contains an infinite number of elements.

Lemma 3.4. Let k ∈ N be fixed. There exists a (finite) number β̄(k) > 0, depending only
on k, such that, for every β̄(k) ≤ β ≤ +∞,

Kkβ ∩ {(u, u) ∈M} = ∅.
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Proof. When β = +∞ the assertion holds true with no limitations on β, since J∞(u, u)
< +∞ implies u ≡ 0, and (0, 0) 6∈M. For β < +∞ let us consider the problem

inf
(u,u)∈M

Jβ(u, v) = inf
|u|2=1

(
‖u‖2 +

1+ β
2

∫
�

u4 dx

)
≥ inf
|u|2=1

1+ β
2|�|

(∫
�

u2 dx

)2

=
1+ β
2|�|

.

Taking into account Lemma 3.3, the assertion of the lemma is proved once

1+ β
2|�|

> c∞k .

But this is true if we take β ≥ β̄(k) = 2|�|c∞k . ut

4. Existence and asymptotics of the critical points

In this section we prove the remaining results stated in the introduction. To this end we
shall define suitable deformations ηβ , which will allow us to apply the abstract results of
Section 2 that concern the critical sets—namely Theorems 2.8 and 2.11. Afterwards, we
will establish the equivalence between the critical sets defined in the introduction and the
ones of Section 2.

As already mentioned, we need to choose different deformations for our purposes, for
the cases β < +∞ and β = +∞. Let us start with the definition of ηβ for β < +∞
(here β is fixed). The desired map will make use of the parabolic flow associated to Jβ
on M. First we need to fix a relation between (λ, µ) and (u, v).

Remark 4.1. If (u, v) ∈M satisfies system (5) then, by testing the equations with u and
v respectively, one immediately obtains

λ = λ(u, v) =

∫
�
(|∇u|2 + u4

+ βu2v2) dx∫
�
u2 dx

=

∫
�

(|∇u|2 + u4
+ βu2v2) dx,

µ = µ(u, v) =

∫
�
(|∇v|2 + v4

+ βu2v2) dx∫
�
v2 dx

=

∫
�

(|∇v|2 + v4
+ βu2v2) dx.

Motivated by the previous remark and by the definition of Sβ (see (5)), we write, with
some abuse of notation,

Sβ(u, v) = Sβ(u, v; λ(u, v), µ(u, v)), (7)

with λ, µ as above. Then, for (u, v) ∈ M, we consider the initial value problem with
unknowns U(x, t), V (x, t),

∂t (U, V ) = −Sβ(U, V ),

U(·, t), V (·, t) ∈ H 1
0 (�),

U(x, 0) = u(x), V (x, 0) = v(x).
(8)

We have the following existence result.
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Lemma 4.2. For every (u, v) ∈Mc∞+1
β problem (8) has exactly one solution

(U(t), V (t)) ∈ C1((0,+∞);L2(�)× L2(�)) ∩ C([0,+∞);H 1
0 (�)×H

1
0 (�)).

Moreover, for every t > 0, |(U(t), V (t))|2 = 1 and

d

dt
Jβ(U(t), V (t)) = −|Sβ(U(t), V (t))|

2
2 ≤ 0.

We postpone to Section 5 the proofs of this result and of the subsequent properties.

Proposition 4.3. Using the notation of Lemma 4.2, the following properties hold:

(i) U(t) ≥ 0, V (t) ≥ 0, for every (u, v) ∈Mc∞+1
β and t > 0;

(ii) for every fixed t > 0 the map (u, v) 7→ (U(t), V (t)) is L2-continuous from Mc∞+1
β

into itself;
(iii) for (u, v) ∈Mc∞+1

β and s, t ∈ [0,+∞),

dist
(
(U(s), V (s)), (U(t), V (t))

)
≤ |t− s|1/2|Jβ(U(s), V (s))−Jβ(U(t), V (t))|

1/2.

All the previous results allow us to define an appropriate deformation, along with some
key properties.

Proposition 4.4. Define, under the above notation,

ηβ : Mc∞+1
β →Mc∞+1

β , (u, v) 7→ ηβ(u, v) = (U(1), V (1)).

Then ηβ satisfies assumptions (η1)β and (η2)β .

Proof. Lemma 4.2 implies that

Jβ(ηβ(u, v)) = Jβ(U(1), V (1)) ≤ Jβ(U(0), V (0)) = Jβ(u, v)

for every (u, v), which is exactly assumption (η2)β . This together with Proposition 4.3(i)
also implies that, as stated, ηβ(Mc∞+1

β ) ⊆Mc∞+1
β . Moreover we observe that ηβ is σ -

equivariant (by the uniqueness of the initial value problem (8)) and that it isL2-continuous
(Proposition 4.3(ii)). Thus Proposition 3.2(ii) applies, yielding ηβ(A) ∈ Fk . Since A is
L2-compact in M (indeed it is a closed subset of the L2-compact set Mc∞+1

β ), it follows
that ηβ(A) is closed, and therefore assumption (η1)β holds. ut

Before moving to the infinite case, let us prove the validity of a Palais–Smale type con-
dition. It will be the key ingredient in showing that (Jβ , ηβ) satisfies (PS)cβ according to
Definition 2.2.

Lemma 4.5. Let (un, vn) ∈M be such that, as n→+∞,

Jβ(un, vn)→ c and |Sβ(un, vn)|2 → 0

for some c ≥ 0. Then there exists (ū, v̄) ∈ M ∩ (H 2(�) × H 2(�)) such that, up to a
subsequence,

(un, vn)→ (ū, v̄) strongly in H 1
0 and Sβ(ū, v̄) = 0.
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Proof. Since Jβ(un, vn) → c, we immediately infer the existence of (ū, v̄) ∈ M such
that (un, vn) ⇀ (ū, v̄) weakly in H 1

0 , up to a subsequence. Let us first prove the strong
H 1

0 -convergence. From the fact that |Sβ(un, vn)|2 → 0 and that un − ū is L2-bounded,
we deduce

〈Sβ(un, vn), (un−ū, 0)〉2 =
∫
�

[∇un ·∇(un−ū)+(u3
n+βunv

2
n−λ(un, vn)un)(un−ū)] dx

→ 0.

This, together with∣∣∣∣∫
�

(u3
n + βunv

2
n − λ(un, vn)un)(un − ū)dx

∣∣∣∣ ≤ |u3
n + βunv

2
n − λ(un, vn)un|2|un − ū|2

≤ C|un − ū|2 → 0,

implies that
∫
�
∇un · ∇(un − ū) → 0, yielding the desired convergence. The fact that

vn→ v̄ can be proved in a similar way.
Now we pass to the proof of the last part of the statement. A first observation is that

|1un|
2
2 + |1vn|

2
2

≤ 2|Sβ(un, vn)|22+2|u3
n+βunv

2
n−λ(un, vn)un|

2
2+2|v3

n+βu
2
nvn−µ(un, vn)vn|

2
2 ≤ C,

which yields the weak H 2-convergence un ⇀ ū, vn ⇀ v̄ (up to a subsequence). As a
consequence, 〈Sβ(un, vn), (φ, ψ)〉2 → 〈Sβ(ū, v̄), (φ, ψ)〉2 for any given (φ, ψ) ∈ L2.
On the other hand, |Sβ(un, vn)|2 → 0 provides that

〈Sβ(un, vn), (φ, ψ)〉2 → 0,

thus Sβ(ū, v̄) = 0 and the lemma is proved. ut

Let us turn to the definition of the deformation η∞. The main difficulty in this direction
is that J∞ is finite if and only if uv ≡ 0, thus any flux we wish to use must preserve the
disjointness of supports. As we said in the introduction, here the criticality condition will
be given by equation (2). In order to overcome the lack of regularity due to the presence
of the positive/negative parts in the equation, we will use a suitable gradient flow, instead
of a parabolic flow. More precisely we define

S∞ : H 1
0 (�)→ H 1

0 (�)

to be the gradient of the functional J ∗(w) (see equation (3)), constrained to the set∫
�
(w+)2 =

∫
�
(w−)2 = 1. If L denotes the inverse of −1 with Dirichlet boundary

conditions, then we will prove in Section 5 the following result.



Convergence of minimax structures and continuation of critical points 1261

Lemma 4.6. Let R1, R2 > 0 be fixed. For every w ∈ H 1
0 (�) such that

|w+|2, |w
−
|2 ≥ R1 and ‖w‖ ≤ R2

there exist unique λ̃ = λ̃(w), µ̃ = µ̃(w) such that

S∞(w) = w + L(w3
− λ̃w+ + µ̃w−).

Moreover, λ̃ and µ̃ are Lipschitz continuous in w with respect to the L2-topology, with
Lipschitz constants only depending on R1, R2.

For every (u, v) ∈ Mc∞+1
∞ we consider the initial value problem (with unknown W =

W(t, x)) 
∂tW = −S∞(W),

W(·, t) ∈ H 1
0 (�),

W(x, 0) = u(x)− v(x),

(9)

and prove existence and regularity of the solution.

Lemma 4.7. For every (u, v) ∈Mc∞+1
∞ problem (9) has exactly one solution

W(t) ∈ C1((0,+∞);H 1
0 (�)) ∩ C([0,+∞);H

1
0 (�)).

Moreover, for every t , (W+(t),W−(t)) ∈Mc∞+1
∞ and

d

dt
J∞(W

+(t),W−(t)) = −‖S∞(W(t))‖
2
≤ 0.

Again, the proof of this result can be found in Section 5, together with the proof of the
following properties.

Proposition 4.8. Using the notation of Lemma 4.7, the following properties hold:

(i) for every fixed t > 0 the map (u, v) 7→ (W+(t),W−(t)) is L2-continuous from
Mc∞+1
∞ into itself;

(ii) for (u, v) ∈Mc∞+1
∞ and s, t ∈ [0,+∞) we have4

dist((W+(s),W−(s)), (W+(t),W−(t)))

≤ CS |t − s|
1/2
|J∞(W

+(s),W−(s))− J∞(W
+(t),W−(t))|1/2.

Similarly to the case of β finite, the previous properties allow one to define a suitable
deformation (we omit the proof since it is similar to the case of β finite).

Proposition 4.9. Define, under the above notation,

η∞ : Mc∞+1
∞ →Mc∞+1

∞ , (u, v) 7→ η∞(u, v) = (W
+(1),W−(1)).

Then η∞ satisfies assumptions (η1)∞ and (η2)∞.

4 Here CS is the Sobolev constant of the embedding H 1
0 ↪→ L2.
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Turning to the Palais–Smale condition, here is a preliminary result.

Lemma 4.10. Let (un, vn) ∈Mc∞+1
∞ be such that, as n→+∞,

J∞(un, vn)→ c∞ and ‖S∞(un − vn)‖ → 0.

Then there exists w̄ ∈ H 1
0 (�) such that, up to a subsequence,

un − vn→ w̄ strongly in H 1
0 and S∞(w̄) = 0.

Proof. Let (w1, w2) be such that, up to subsequences, un ⇀ w1 and vn ⇀ w2 inH 1
0 (�).

Since J∞(un, vn) < ∞, we have un · vn = 0 and therefore also w1 · w2 = 0. Denote
wn = un − vn and w̄ = w1 − w2, so that

S∞(un − vn) = wn + (−1)
−1(w3

n − λ̃(wn)w
+
n + µ̃(wn)w

−
n ).

Let us prove the H 1
0 -convergence. First observe that wn − w̄ is bounded in H 1

0 , which
implies that −1(wn − w̄) is H−1-bounded. Now since ‖S∞(un − vn)‖ → 0 we obtain

〈−1(wn − w̄), S∞(un − vn)〉H−1 =

∫
�

(
∇wn · ∇(wn − w̄)+ w

3
n(wn − w̄)

− λ̃(wn)w
+
n (wn − w̄)+ µ̃(wn)w

−
n (wn − w̄)

)
dx → 0.

This, together with the fact that∣∣∣∣∫
�

(
w3
n(wn − w̄)− λ̃(wn)w

+
n (wn − w̄)+ µ̃(wn)w

−
n (wn − w̄)

)
dx

∣∣∣∣
≤ |w3

n − λ̃(wn)w
+
n + µ̃(wn)w

−
n |2|wn − w̄|2 → 0

gives
∫
�
∇wn · ∇(wn − w̄)→ 0, which yields the H 1

0 -convergence of wn to w̄.
It remains to show that S∞(w̄) = 0. Now, wn → w̄ in H 1

0 implies that w3
n −

λ̃(wn)w
+
n − µ̃(wn)w

−
n is bounded in L2, which, together with the fact that (−1)−1 is a

compact operator from L2(�) to H 1
0 (�) provides, up to a subsequence, the convergence

(−1)−1(w3
n−λ̃(wn)w

+
n −µ̃(wn)w

−
n )→ (−1)−1(w̄3

−λ̃(w̄)w̄++µ̃(w̄)w̄−) in H 1
0 (�).

Hence also S∞(un − vn)→ S∞(w̄) in H 1
0 (�), which concludes the proof. ut

We are ready to show that the deformations we have defined satisfy the remaining abstract
properties required in Section 2.

Proposition 4.11. For every 0 < β ≤ +∞, the pair (Jβ , ηβ) satisfies (PS)cβ (according
to Definition 2.2).
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Proof. Let first β < ∞. Let (un, vn) ⊂M be a Palais–Smale sequence in the sense of
Definition 2.2, that is, Jβ(un, vn)→ cβ and Jβ(ηβ(un, vn))→ cβ . Let then (ū, v̄) ∈M
be such that, up to a subsequence, (un, vn)→ (ū, v̄) in L2. Define (Un(t), Vn(t)) as the
solution of (8) with initial datum (un, vn) (recall that then ηβ(un, vn) = (Un(1), Vn(1))).
By applying Proposition 4.3(iii) with (s, t) = (0, 1) we obtain

dist((un, vn), ηβ(un, vn)) ≤ |Jβ(un, vn)− Jβ(ηβ(un, vn))|1/2 → 0,

which, together with the L2-continuity of ηβ , yields (ū, v̄) = ηβ(ū, v̄). It only remains to
show that Jβ(ū, v̄) = cβ . Notice that∫ 1

0
|Sβ(Un(t), Vn(t))|

2
2 dt = Jβ(un, vn)− Jβ(ηβ(un, vn))→ 0

(by Lemma 4.2) and hence, for almost every t , |Sβ(Un(t), Vn(t))|2 → 0 (up to a sub-
sequence). Moreover, Jβ being a decreasing functional under the heat flux, we have
Jβ(Un(t), Vn(t))→ cβ . Now Lemma 4.5 applies providing the existence of (u, v) ∈M
such that (Un(t), Vn(t))→ (u, v) in H 1

0 , and in particular Jβ(u, v) = cβ . Finally the use
of Proposition 4.3(iii) with (s, t) = (0, t) allows us to conclude that (u, v) = (ū, v̄), and
the proof is complete.

The case β = +∞ can be treated similarly, by replacing (U(t), V (t)) with
(W+(t),W−(t)) and |Sβ |2 with ‖S∞‖. ut

A uniform Palais–Smale condition also holds, in the sense of assumption (UPS). The
proof is very similar to the one of Proposition 4.11, and hence we omit it.

Proposition 4.12. Assumption (UPS) holds.

The properties collected in this section show that Theorems 2.8 and 2.11 apply to this
framework. Thus we are in a position to conclude the proofs of the results stated in the
introduction.

End of the proof of Theorem 1.2. As Theorem 2.8 holds, the last thing we have to check
is that the critical set Kβ (according to (6)) coincides with the one defined in the intro-
duction. Again, we only present a proof in the case β < +∞. We have to show that
Jβ(u, v) = Jβ(U(1), V (1)) if and only if Sβ(u, v) = 0. But this readily follows from the
fact that, for t ∈ [0, 1],

dist((u, v), (U(t), V (t)))2 ≤
∫ 1

0
|Sβ(U(τ), V (τ))|

2
2 dτ = Jβ(u, v)− Jβ(U(1), V (1)),

once one observes that, by uniqueness, (U(t), V (t)) ≡ (u, v) if and only if Sβ(u, v) = 0.
Finally, the H 1-compactness of Kβ comes directly from Lemmas 4.5 and 4.10. ut

End of the proof of Theorem 1.5. As Theorem 2.11 holds, the result is proved once we
show that C∗ ⊂ K∗. To this end, let (u, v) ∈ C∗ and let, by definition, (un, vn) ∈M be
such that (un, vn)→ (u, v) in L2, Jβn(un, vn)→ c∞ and Jβn(Un(1), Vn(1))→ c∞. By
arguing exactly as in the proof of Proposition 4.11, we infer the existence of a 0 ≤ t ≤ 1
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such that (Un(t), Vn(t)) → (u, v), Jβn(Un(t), Vn(t)) → c∞ and |Sβn(Un(t), Vn(t))|2
→ 0. Therefore (u, v) ∈ K∗. ut

Proof of Corollary 1.6. The only thing left to prove is that, given any (un, vn) ∈M and
βn→+∞ such that (un, vn)→ (ū, v̄) in L2 with Jβn(un, vn)→ c∞ and |Sβn(un, vn)|2
→ 0, then in fact (un, vn) → (ū, v̄) in H 1

∩ C0,α . We shall prove that the sequence
(un, vn) is uniformly bounded in the L∞-norm. This, together with the fact that, by as-
sumption,

−1uβ + u
3
β + βuβv

2
β − λβuβ = hβ → 0 in L2

−1vβ + v
3
β + βu

2
βvβ − µβvβ = kβ → 0 in L2,

allows us to apply Theorem 1.4 of [13], which provides the desired result.
Since Jβn(un, vn)→ c∞, we infer the existence of λmax, µmax ∈ R such that, up to a

subsequence,

(un, vn) ⇀ (ū, v̄) in H 1
0 , λ(un, vn) ≤ λmax, µ(un, vn) ≤ µmax, ∀n.

In order to prove uniform bounds in the L∞-norm, we shall apply a Brezis–Kato type
argument to the sequence (un, vn). Suppose un ∈ L2+2δ(�) for some δ > 0; we can test
with u1+δ

n the inequality
−1un ≤ λ(un, vn)un + hn,

obtaining

1+ δ
(1+ δ/2)2

∫
�

|∇(u
1+δ/2
n )|2 dx ≤ λ(un, vn)

∫
�

u2+δ
n dx +

∫
�

hnu
1+δ
n dx.

Hence, by Sobolev embedding we have5

|un|6+3δ ≤

[
C2
S

(1+ δ/2)2

1+ δ

] 1
2+δ

[λ(un, vn)
∫
�

u2+δ
n dx +

∫
�

hnu
1+δ
n dx]

1
2+δ .

Now apply the Hölder inequality to the right hand side; provided
∫
�
u2+2δ
n dx ≥ 1, we

have

λ(un, vn)

∫
�

u2+δ
n dx ≤ λmax|�|

1/2
|un|

2+δ
2+2δ and

∫
�

hnu
1+δ
n dx ≤ |hn|2|un|

2+δ
2+2δ,

hence, since |hn|2 → 0, we have proved the existence of a constant C, not depending on
n and δ, such that

|un|6+3δ ≤

[
C2
S

(1+ δ/2)2

1+ δ

] 1
2+δ
|un|2+2δ.

Now iterate, letting

δ(1) = 2, 2+ 2δ(k + 1) = 6+ 3δ(k), hence δ(k) ≥ (3/2)k−1.

5 Here CS denotes the Sobolev constant of the embedding H 1
0 ↪→ L6.
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If there exist infinite values δ(k) such that
∫
�
u

2+2δ(k)
n dx < 1, theL∞-estimate is trivially

proved; otherwise the previous estimates hold for δ(k) sufficiently large providing, for
every p > 1,

|un|p ≤ C
′
+

∞∏
k=1

[
C
(1+ δ(k)/2)2

1+ δ(k)

] 1
2+δ(k)
|un|6.

The last inequality provides the desired L∞-estimate since it is easy to verify that

∞∑
k=1

1
2+ δ(k)

log
[
C
(1+ δ(k)/2)2

1+ δ(k)

]
<∞ if δ(k) ≥ (3/2)k−1.

The same calculations clearly hold for vn. ut

We conclude by giving a proof of Theorem 1.3 as a particular case of the theory we
developed (although, as we mentioned, it is possible to give a more elementary proof of
this result).

Proof of Theorem 1.3. The key remark in this framework is that, in fact, for every 0 <
β ≤ +∞ we can write

c1
β = inf

(u,v)∈M
Jβ(u, v).

More precisely,

(uβ , vβ) achieves c1
β ⇒ Aβ = {(uβ , vβ), (vβ , uβ)} is an optimal set for Jβ at c1

β .

Now, the L2-convergence of the minima follows by the convergence of the optimal sets
(Theorem 1.4), while theH 1

∩C0,α-convergence is obtained as in the previous proof. ut

5. Construction of the flows

Proof of Lemma 4.2. In order to prove local existence, we want to apply Theorem 2(b) of
[22], to which we refer for further details. Let us rewrite the problem as

w′ = 1w + F(w),

wherew = (U, V ),w′ = ∂t (U, V ),1 is understood in the vectorial sense and F contains
all the remaining terms. Using the notation of [22] we set E = L2(�) × L2(�) and
EF = H

1
0 (�)×H

1
0 (�). We find that et1 is an analytic semigroup both on E and on EF ,

satisfying6

‖et1w0‖ ≤ Ct
−1/2
|w0|2 for every w0 ∈ E,

6 By using for example the expansion in eigenfunctions of −1 in H 1
0 , one can easily obtain the

required inequality with C = (2e)−1/2.
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so that (2.1) in [22] holds with a = 1/2. Moreover, since all the terms in F are of
polynomial type, it is easy to see that F : EF → E is locally Lipschitz continuous, and

|F(w0)− F(z0)|2 ≤ `(r)‖w0 − z0‖, with `(r) = O(rp) as r →+∞,

whenever ‖w0‖ ≤ r, ‖z0‖ ≤ r (for example, arguing as in Lemma 5.4, this estimate
holds for p = 4). Now, choosing b = 1/(2p) < a, it is immediate to check that

`(r) = O(r(1−a)/b),

thus (2.3) in [22] is also satisfied. In order to apply Theorem 2(b), the last assumption
we need to verify is that, for every w0 ∈ H

1
0 (which is our regularity assumption for the

initial data in (8)),
lim sup
t↓0
‖tbet1w0‖ = 0;

but this follows on recalling that ‖et1w0‖ ≤ ‖w0‖.7 Therefore Theorem 2(b) and Corol-
lary 2.1(b),(c) in [22] apply, yielding the existence of a (unique) maximal solution of (8)

(U(t), V (t)) ∈ C1((0, Tmax);L
2(�)× L2(�)) ∩ C

(
[0, Tmax);H

1
0 (�)×H

1
0 (�)

)
,

with the property that if Tmax < +∞ then ‖(U, V )‖ → +∞ as t → T −max.
Now we want to prove that (U(t), V (t)) ∈M in its interval of definition. To this end

let us consider the C1-function

ρ(t) =

∫
�

U2(x, t) dx,

which is continuous at t = 0. By a straightforward calculation one can see that it satisfies
the initial value problem {

ρ′(t) = a(t)(ρ(t)− 1),
ρ(0) = 1,

where a(t) = 2λ(U(t), V (t)) is a continuous function. Since this problem admits only
one solution, it follows that ρ(t) ≡ 1 in [0, Tmax) (and an analogous result holds for
V (t)). Finally, by integrating by parts (by standard regularity, (U(t), V (t)) belongs toH 2

for t > 0) and by using the fact that
∫
�
UUt dx =

∫
�
VVt dx = 0, one can easily obtain

d

dt
Jβ(U(t), V (t)) =

∫
�

(Ut , Vt ) · Sβ(U, V ) dx = −|Sβ(U, V )|
2
2 ≤ 0.

This implies

‖(U(t), V (t))‖2 ≤ 2Jβ(U(t), V (t)) ≤ 2Jβ(u, v) < +∞ (10)

for every t < Tmax, which provides Tmax = +∞. ut

7 Again, one can obtain this inequality by expanding in eigenfunctions.
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Remark 5.1. Given (u, v) ∈ M let (U, V ) be the corresponding solution of (8). By
taking into consideration inequality (10) we see that the quantities ‖(U(t), V (t))‖,
|(U(t), V (t))|p (with p ≤ 6), λ(U(t), V (t)) and µ(U(t), V (t)) are bounded by constants
which only depend on Jβ(u, v) (in particular, they are independent of t).

Lemma 5.2. Let c ∈ C([0, T ];L3/2(�)) and let U ∈ C1((0, T ];L2(�)) ∩ C([0, T ];
H 1

0 (�)) be a solution of

∂tU −1U = c(x, t)U, U(·, t) ∈ H 1
0 (�), U(x, 0) ≥ 0.

Then U(x, t) ≥ 0 for every t .

Proof. Since c : [0, T ]→ L3/2 we can write |c(x, t)| ≤ k+ c1(x, t), where k is constant
and |c1|3/2 < 1/C2

S (here CS denotes the Sobolev constant of the embedding H 1
0 (�) ↪→

L6(�)). Let

ρ(t) =
1
2

∫
�

|U−(x, t)|2 dx.

We see that ρ ∈ C1((0, T ]) ∩ C([0, T ]) and ρ(0) = 0; moreover,

ρ′(t) = −

∫
�

U−∂tU dx = −

∫
�

(U−1U + c(x, t)|U−|2) dx

≤ −‖U−‖2 + k|U−|22 + |c1|3/2|U
−
|
2
6 ≤ (−1+ C2

S |c1|3/2)‖U
−
‖

2
+ k|U−|22

≤ 2kρ(t).

Thus we deduce that ρ(t) ≤ e2kρ(0) and the lemma follows. ut

Lemma 5.3. Let w ∈ C1((0,+∞);L2(�) × L2(�)) ∩ C([0,+∞);H 1
0 (�) × H

1
0 (�))

be a solution of {
∂tw −1w = F(w),

w(0) = w0,
(11)

where there exists a positive constant C such that∫
�

F(w) · w dx ≤
1
2
‖w‖2 + C|w|22 for every t ≥ 0. (12)

Then there exists a constant C(t) such that

|w(t)|2 ≤ C(t)|w0|2.

Proof. Let

E(t) =
1
2

∫
�

w2(t) dx.

A straightforward computation yields

E′(t) = −

∫
�

|∇w|2 dx +

∫
�

F(w) · w dx ≤ −
1
2
‖w‖2 + C|w|22 ≤ 2CE(t),

from which we obtain E(t) ≤ e2CtE(0), concluding the proof. ut
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Lemma 5.4. For i = 1, 2 take (ui, vi) ∈M and let (Ui(t), Vi(t)) be the corresponding
solution of (8). There exists a constant C, only depending on maxi Jβ(ui, vi), such that,
for every t:

1. |λ(U1(t), V1(t))− λ(U2(t), V2(t))| ≤ C(‖U1(t)− U2(t)‖ + |V1(t)− V2(t)|2);
2. |µ(U1(t), V1(t))− µ(U2(t), V2(t))| ≤ C(‖V1(t)− V2(t)‖ + |U1(t)− U2(t)|2).

Proof. We prove only the first inequality, since the second one is analogous. We have

|λ(U1, V1)− λ(U2, V2)|

≤

∫
�

∣∣|∇U1|
2
− |∇U2|

2∣∣ dx + ∫
�

|U4
1 − U

4
2 | dx + β

∫
�

|U2
1V

2
1 − U

2
2V

2
2 | dx

≤

∫
�

|∇U1 +∇U2| |∇U1 −∇U2| dx +

∫
�

(U2
1 + U

2
2 )|U1 + U2| |U1 − U2| dx

+ β

∫
�

U2
1 |V1 + V2| |V1 − V2| dx + β

∫
�

V 2
2 |U1 + U2| |U1 − U2| dx

≤ ‖U1 + U2‖ ‖U1 − U2‖ + |(U
2
1 + U

2
2 )(U1 + U2)|2|U1 − U2|2

+ |βU2
1 (V1 + V2)|2|V1 − V2|2 + |βV

2
2 (U1 + U2)|2|U1 − U2|2,

from which we can conclude the proof by recalling Remark 5.1 and Poincaré’s inequality.
ut

Corollary 5.5. For i = 1, 2 consider (ui, vi) ∈ M and let (Ui(t), Vi(t)) be the corre-
sponding solution of (8). There exists a constant C = C(t), depending on t (and also on
maxi Jβ(ui, vi)) such that

|(U1(t), V1(t))− (U2(t), V2(t))|2 ≤ C(t)|(u1, v1)− (u2, v2)|2.

Proof. We want to apply Lemma 5.3 tow = (w1, w2) = (U1−U2, V1−V2). Subtracting
the equations for (U1, V1) and (U2, V2) we end up with a system like (11), thus we only
need to check that

F =

(
U3

2 − U
3
1 + β(U2V

2
2 − U1V

2
1 )+ λ(U1, V1)U1 − λ(U2, V2)U2

V 3
2 − V

3
1 + β(U

2
2V2 − U

2
1V1)+ µ(U1, V1)V1 − µ(U2, V2)V2

)
satisfies (12). To make the calculation easier, we split F into four terms, after adding and
subtracting some suitable quantities. The first term is

F1 = −

(
(U2

1 + U1U2 + U
2
2 )w1

(V 2
1 + V1V2 + V

2
2 )w2

)
,

for which we obtain, by recalling Remark 5.1,∫
�

F1(w) · w dx ≤ |U1U2|3|w1|6|w1|2 + |V1V2|3|w2|6|w2|2

≤ C(‖w1‖ |w1|2 + ‖w2‖ |w2|2)

≤
1
2 (‖w1‖

2
+ ‖w2‖

2)+ C′(|w1|
2
2 + |w2|

2
2)
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(where in the last step we have used Young’s inequality). The second term is

F2 = −β

(
U1(V1 + V2)w2 + V

2
2 w1

V1(U1 + U2)w1 + U
2
2w2

)
,

which immediately gives, by reasoning in the same way as above,∫
�

F2(w) · w dx ≤ β
(
|U1(V1 + V2)|3|w2|6|w1|2 + |V

2
2 |3|w1|6|w1|2

+ |V1(U1 + U2)|3|w1|6|w2|2 + |U
2
2 |3|w2|6|w2|2

)
≤ C[‖w1‖(|w1|2 + |w2|2)+ ‖w2‖(|w1|2 + |w2|2)]

≤
1
2 (‖w1‖

2
+ ‖w2‖

2)+ C′(|w1|
2
2 + |w2|

2
2).

The third term is

F3 =

(
λ(U1, V1)w1
µ(U1, V1)w2

)
, for which

∫
�

F3(w) · w dx ≤ C|w|
2
2

(where we used Remark 5.1) again. Finally, the last term is

F4 =

(
(λ(U1, V1)− λ(U2, V2))U2
(µ(U1, V1)− µ(U2, V2))V2

)
,

which can be treated by using Lemma 5.4. We obtain∫
�

F4(w) · w dx ≤ (‖U1(t)− U2(t)‖ + |V1(t)− V2(t)|2)

∫
�

|U2w1| dx

+ C(‖V1(t)− V2(t)‖ + |U1(t)− U2(t)|2)

∫
�

|V2w2| dx

≤
1
2 (‖w1‖

2
+ ‖w2‖

2)+ C′(|w1|
2
2 + |w2|

2
2).

Therefore F = F1+F2+F3+F4 satisfies (12), and hence Lemma 5.3 yields the desired
result. ut

Proof of Proposition 4.3. Properties (i) and (ii) have been proved in Lemma 5.2 and
Corollary 5.5 respectively; let us prove (iii). This is a direct consequence of the estimate
on the derivative of Jβ given in Lemma 4.2. In fact,

dist((U(s), V (s)), (U(t), V (t))) =
∣∣∣∣∫ t

s

∂τ (U(τ), V (τ)) dτ

∣∣∣∣
2

≤ |t − s|1/2
(∫ t

s

|Sβ(U(τ), V (τ))|
2
2 dτ

)1/2

= |t − s|1/2|Jβ(U(s), V (s))− Jβ(U(t), V (t))|
1/2.

ut

We now turn to the construction of the flux η∞.
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Proof of Lemma 4.6. By definition, S∞ is the projection of the gradient of J ∗ at w on the
tangential space of the manifold {w ∈ H 1

0 (�) : (w+, w−) ∈M} at w, thus

S∞(w) = w + Lw3
− λ̃Lw+ + µ̃Lw−,

where the coefficients λ̃, µ̃ are such that
∫
�
w+S∞(w) dx =

∫
�
w−S∞(w) dx = 0, that

is, ( ∫
�
w+Lw+ dx −

∫
�
w+Lw− dx

−
∫
�
w−Lw+ dx

∫
�
w−Lw− dx

)(
λ̃

µ̃

)
=

( ∫
�
(w + Lw3)w+ dx

−
∫
�
(w + Lw3)w− dx

)
.

Denoting by A the coefficient matrix, we compute8

detA =
(∫

�

|∇Lw+|2 dx
)(∫

�

|∇Lw−|2 dx
)
−

(∫
�

∇Lw+ · ∇Lw− dx
)2

≥ 0,

by the Hölder inequality, and detA = 0 if and only if a∇Lw+ + b∇Lw− ≡ 0, for some
a, b not both zero. But this would imply that the H 1

0 (�)-function L(aw+ + bw−) would
have an identically zero gradient and therefore aw+ + bw− ≡ 0, in contradiction with
the fact that, by assumption, |aw+ + bw−|22 ≥ (a2

+ b2)R2
1 . Thus the L2-continuous

function detA is strictly positive on the L2-compact set {w : |w±|2 ≥ R1, ‖w‖ ≤ R2},
i.e. it is larger than a strictly positive constant (only depending on R1, R2). This provides
(existence, uniqueness and) an explicit expression of λ̃(w) and µ̃(w) for any w satisfying
the previous assumptions. The regularity of these functions comes from such explicit ex-
pressions, once one notices that they are both products of Lipschitz continuous functions
(and therefore bounded when ‖w‖ ≤ R2). Just as an example, we prove the Lipschitz
continuity of the term

∫
�
w+Lw3 dx. We have9∣∣∣∣∫

�

w+1 Lw3
1 dx −

∫
�

w+2 Lw3
2 dx

∣∣∣∣ ≤ ∫
�

|w+1 − w
+

2 |Lw
3
1 dx +

∫
�

w+2 |L(w
3
1 − w

3
2)| dx

≤ C|w+1 − w
+

2 |2|w
3
1|2 + |w

+

2 |6/5|L(w
3
1 − w

3
2)|6

≤ CR3
2 |w1 − w2|2 + CR2|w

3
1 − w

3
2|6/5

≤ CR3
2 |w1 − w2|2.

All the other terms can be treated the same way. ut

Remark 5.6. By reasoning as at the end of the previous proof, it can be proved that,
whenever w1, w2 belong to the set

{w ∈ H 1
0 (�) : |w±|2 ≥ R1, ‖w‖ ≤ R2},

there exists a constant L, only depending on R1, R2, such that

|S∞(w1)− S∞(w2)|2 ≤ L|w1 − w2|2, ‖S∞(w1)− S∞(w2)‖ ≤ L‖w1 − w2‖.

8 By using the identity
∫
� fLg dx =

∫
� ∇Lf · ∇Lg dx.

9 Remember that, by standard elliptic regularity results, both L : L2
→ L2 and L : L6/5

→ L6

are continuous.
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Proof of Lemma 4.7. Let us fix 0 < R1 < 1 and R2
2 > 2(c∞ + 1). By Remark 5.6

we know that −S∞, as a map from H 1
0 (�) into itself, is H 1

0 -Lipschitz continuous on the
set mentioned there, with Lipschitz constant only depending on R1, R2; hence we infer
existence (and uniqueness) of a maximal solution of the Cauchy problem, defined on
[0, Tmax). Moreover, for any t ∈ (0, Tmax), we have

d

dt
|W±(t)|22 = ±2

∫
�

W±Wt dx = ∓2
∫
�

W±S∞(W) dx = 0

(by Lemma 4.6), and

d

dt
J∞(W

+(t),W−(t)) =
d

dt

∫
�

(
1
2
|∇W |2 +

1
4
W 4

)
dx =

∫
�

(−1W +W 3)Wt dx

=

∫
�

−1(W + LW 3)Wt dx

=

∫
�

∇(S∞(W)+ L(λ̃W+ − µ̃W−)) · ∇(−S∞(W)) dx

= −‖S∞(W(t))‖
2.

Thus, for any t ∈ (0, Tmax), we obtain |W±(t)|2 = 1 > R1 and ‖W(t)‖2 ≤
2J∞(W+(t),W−(t)) ≤ 2J∞(u, v) < R2

2 . In particular this implies Tmax = +∞, con-
cluding the proof. ut

Proof of Proposition 4.8. (i) Consider (u1, v1), (u2, v2) ∈Mc∞+1
∞ and let W1(t),W2(t)

be the corresponding solutions of (9). We notice first of all that Remark 5.6 applies, pro-
viding the existence of L = L(c∞) such that

d

dt
|W1(t)−W2(t)|

2
2 ≤ 2L|W1(t)−W2(t)|

2
2,

which implies

|W1(t)−W2(t)|
2
2 ≤ e

2Lt
|W1(0)−W2(0)|22.

Therefore

dist2((W+1 (t),W
−

1 (t)), (W
+

2 (t),W
−

2 (t))) ≤ |W1(t)−W2(t)|
2
2

≤ e2Lt
|W1(0)−W2(0)|22

≤ 2e2Lt (|u1 − v1|
2
2 + |u2 − v2|

2
2). ut

(ii) Notice first that

dist2((W+(s),W−(s)), (W+(t),W−(t))) ≤ |W(s)−W(t)|22.
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Now, Lemma 4.7 yields

|W(s)−W(t)|2 ≤ CS‖W(s)−W(t)‖ = CS

∥∥∥∥∫ t

s

∂τW(τ) dτ

∥∥∥∥
≤ CS |t − s|

1/2
(∫ t

s

‖S∞(W(τ))‖
2 dτ

)1/2

= CS |t − s|
1/2
|J∞(W

+(s),W−(s))− J∞(W
+(t),W−(t))|1/2,

and the two inequalities together conclude the proof.
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