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Abstract. We consider a smooth and bounded domain� ⊂ Rd of dimension d ≥ 2 with boundary
and we construct sequences of solutions to the wave equation with Dirichlet boundary condition
which fail the Strichartz estimates of the free space, providing losses of derivatives at least for a
subset of the usual range of indices. This is due to microlocal phenomena such as caustics generated
in arbitrarily small time near the boundary. Moreover, the result holds for microlocally strictly
convex domains in Rd .
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1. Introduction

Let � be a smooth manifold of dimension d ≥ 2 with C∞ boundary ∂�, equipped with
a Riemannian metric g. Let 1g be the Laplace–Beltrami operator associated to g on �,
acting on L2(�) with Dirichlet boundary condition. Let 0 < T < ∞ and consider the
wave equation with Dirichlet boundary conditions:

(∂2
t −1g)u = 0 on �× [0, T ],

u|t=0 = u0, ∂tu|t=0 = u1,

u|∂� = 0.

(1.1)

Strichartz estimates are a family of dispersive estimates on solutions u : �× [0, T ]→ C
to the wave equation (1.1). In their most general form, local Strichartz estimates state that

‖u‖Lq ([0,T ],Lr (�)) ≤ C(‖u0‖Ḣ γ (�) + ‖u1‖Ḣ γ−1), (1.2)

where Ḣ γ (�) denotes the homogeneous Sobolev space over � and where the pair (q, r)
is wave admissible in dimension d, i.e. 2 ≤ q ≤ ∞, 2 ≤ r <∞ and

1
q
+
d

r
=
d

2
− γ,

2
q
+
d − 1
r
≤
d − 1

2
. (1.3)
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Parc Valrose, 06108 Nice Cedex 02, France; e-mail: Oana.Ivanovici@math.unice.fr

Mathematics Subject Classification (2010): Primary 35L20; Secondary 58J30, 58J32



1358 Oana Ivanovici

When equality holds in (1.3) the pair (q, r) is called sharp wave admissible in dimen-
sion d . Estimates involving r = ∞ hold when (q, r, d) 6= (2,∞, 3), but typically require
the use of Besov spaces.

Our main result is work in the opposite direction. Roughly speaking, we show that if
� ⊂ Rd is a smooth and bounded domain of Rd and (q, r) is a sharp wave admissible
pair in dimension d ≥ 2 with r > 4, then there exists T = T (�) such that the quotient

‖u‖Lq ([0,T ],Lr (�))

‖u0‖
Ḣ
γ+ 1

6 (
1
4−

1
r )−ε(�)

+ ‖u1‖
Ḣ
γ+ 1

6 (
1
4−

1
r )−1−ε

(�)

takes arbitrarily large values for suitable initial data (u0, u1), which means that a loss of
at least 1

6

( 1
4 −

1
r

)
− ε derivatives is unavoidable in the Strichartz estimates for the flow.

The main motivation for the above types of Strichartz estimates comes from applica-
tions to harmonic analysis and the study of nonlinear dispersive equations. Estimates like
(1.2) can be used to prove existence theorems for nonlinear wave equations.

In Rd and for gij = δij , Strichartz estimates in the context of the wave and Schrödin-
ger equations have a long history, beginning with Strichartz’s pioneering work [25], where
he proved the particular case q = r for the wave and (classical) Schrödinger equation.
This was later generalized to mixed Lq((−T , T ), Lr(�)) norms by Ginibre and Velo [7]
for the Schrödinger equation, where (q, r) is sharp admissible and q > 2; the wave
estimates were obtained independently by Ginibre–Velo [8] and Lindblad–Sogge [17],
following earlier work by Kapitanski [13]. The remaining endpoints for both equations
were finally settled by Keel and Tao [15]. In that case γ = d+1

2

( 1
2−

1
r

)
and one can obtain

a global estimate with T = ∞ (see also Kato [14] and Cazenave–Weissler [5]).
Let us recall the result for the flat space: if 1 is the Euclidian Laplace operator, then

the Strichartz estimates for the wave equation on Rd read as follows (see [15]):

Proposition 1.1. Let (q, r) be a wave admissible pair in dimension d ≥ 2. If u satisfies

(∂2
t −1)u = 0 on [0, T ]× Rd , u|t=0 = u0, ∂tu|t=0 = u1

for some 0 < T <∞, u0, u1 ∈ C
∞(Rd), then there is a constant C = CT such that

‖u‖Lq ([0,T ],Lr (Rd )) ≤ C(‖u0‖
Ḣ
d+1

2 ( 1
2−

1
r )(Rd )

+ ‖u1‖
Ḣ
d+1

2 ( 1
2−

1
r )−1

(Rd )
).

In the variable coefficients case, even without boundary, the situation is much more com-
plicated: we simply recall here the pioneering work of Staffilani and Tataru [24], dealing
with compact, nontrapping perturbations of the flat metric and recent work of Bouclet
and Tzvetkov [2] in the context of the Schrödinger equation, which considerably weak-
ens the decay of the perturbation (retaining the nontrapping character at spatial infinity).
On compact manifolds without boundary, due to the finite speed of propagation, it is
enough to work in coordinate charts and to establish local Strichartz estimates for vari-
able coefficients wave operators in Rd : we recall here the works by Kapitanski [12] and
Mockenhaupt, Seeger and Sogge [19] in the case of smooth coefficients when one can use
the Lax parametrix construction to obtain the appropriate dispersive estimates. In the case
of C1,1 coefficients, Strichartz estimates were shown in the works by Smith [21] and by



Counterexamples to the Strichartz inequalities for the wave equation 1359

Tataru [26], the latter work establishing the full range of local estimates; here the lack of
smoothness prevents the use of Fourier integral operators and instead wave packets and
coherent state methods are used to construct parametrices for the wave operator. In these
situations, if the metric is sufficiently smooth (if it has at least two derivatives bounded),
the Strichartz estimates hold as in the Euclidian case.

Even though the case without boundary has been well understood for some time,
obtaining results for manifolds with boundary has been surprisingly elusive.

For a manifold with smooth, strictly geodesically concave boundary (i.e. for which the
second fundamental form is strictly negative definite), the Melrose and Taylor parametrix
yields the Strichartz estimates for the wave equation with Dirichlet boundary condition
for the range of exponents in (1.3) (not including the endpoints), as shown in the paper of
Smith and Sogge [22]. If the concavity assumption is removed, however, the presence of
multiply reflecting geodesic and their limits, the gliding rays, prevents the construction of
a similar parametrix.

Note that on an exterior domain a source point does not generate caustics and that
the presence of caustics generated in small time near a source point is what makes things
difficult inside a strictly convex set.

Recently, Burq, Lebeau and Planchon [3], [4] established Strichartz type inequalities
on a manifold with boundary using the Lr(�) estimates for the spectral projectors ob-
tained by Smith and Sogge [23]. The range of triples (q, r, γ ) that can be obtained in this
manner, however, is restricted by the allowed range of r in the square function estimate
for the wave equation, which controls the norm of u in the space Lr(�,L2(−T , T )) (see
[23]). In dimension 3, for example, this restricts the indices to q, r ≥ 5. The work of
Blair, Smith and Sogge [1] expands the range of indices q and r obtained in [3]: specif-
ically, they show that if � is a compact manifold with boundary and (q, r, γ ) is a triple
satisfying the first condition in (1.3) together with the restriction

3
q
+
d − 1
r
≤
d − 1

2
, d ≤ 4,

1
q
+

1
r
≤

1
2
, d ≥ 4,

(1.4)

then the Strichartz estimates (1.2) hold true for solutions u to (1.1) satisfying Dirichlet or
Neumann homogeneous boundary conditions, with a constant C depending on � and T .

In this paper we prove that Strichartz estimates for the wave equation inside the do-
main � suffer losses when compared to the usual case of Rd , at least for a subset of the
usual range of indices, under our assumption that there exists a point in T ∗∂� where the
second fundamental form on the boundary of the manifold has a strictly positive eigen-
function. Precisely, our assumption reads as follows:

Assumption 1.2. Let � be a smooth manifold of dimension d ≥ 2 with C∞ boundary
∂�. We assume that there exists a bicharacteristic that intersects ∂� × R tangentially at
some point (ρ0, ϑ0) ∈ T

∗(∂�×R) having exactly second order contact with the boundary
at (ρ0, ϑ0) and which remains in the complement of �̄× R. We call the point (ρ0, ϑ0) a
gliding point.
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Remark 1.3. In particular, any smooth and bounded domain of Rd , d ≥ 2, satisfies the
condition in Assumption 1.2.

Our main result reads as follows:

Main Theorem 1.4. Let (�, g) satisfy the conditions in Assumption 1.2 with d∈{2, 3, 4}.
Then there exists T = T (�) ∈ (0,∞) and for every small ε > 0 there exist sequences
Vh,j,ε ∈ C

∞(�̄), j ∈ {0, 1}, such that the solution Vh,ε to the wave equation with Dirich-
let boundary conditions

(∂2
t −1g)Vh,ε = 0,

Vh,ε |t=0 = Vh,0,ε, ∂tVh,ε |t=0 = Vh,1,ε,

Vh,ε |∂�×[0,T ] = 0,

(1.5)

satisfies

sup
ε>0, h∈(0,1], j

h−
d+1

2 ( 1
2−

1
r
)− 1

6 (
1
4−

1
r
)+2ε+j

‖Vh,j,ε‖L2(�) ≤ 1 (1.6)

and
lim
h→0
‖Vh,ε‖Lqt ([0,T ],Lr (�)) = ∞, (1.7)

for every sharp wave admissible pair (q, r) in dimension d with r > 4. Moreover Vh,ε
has compact support for the normal variable in a neighborhood of the boundary of size
h(1−ε)/2 and is well localized at spatial frequency 1/h in the tangential variable.

Remark 1.5. Notice that Theorem 1.4 shows an explicit loss of at least 1
6

( 1
4 −

1
r

)
deriva-

tives in the Strichartz estimates for domains � satisfying Assumption 1.2 compared to
the Euclidian case (see Proposition 1.1).

Remark 1.6. The proof of Theorem 1.4 will show that the restriction on the dimension
comes only from the fact that for d ≥ 5 all admissible pairs (q, r) satisfy r ≤ 4.

Remark 1.7. From Remarks 1.3 and 1.6 it follows that Theorem 1.4 holds true if � is
any smooth, bounded domain in Rd with d ∈ {2, 3, 4}.

Remark 1.8. In [10] we proved Theorem 1.4 in the particular case of the two-dimen-
sional half-space {(x, y) | x > 0, y ∈ R} with Laplace operator given by ∂2

x + (1+ x)∂
2
y .

We notice that the half-space together with the metric inherited from the above Laplace
operator becomes a strictly convex domain (called Friedlander’s model domain).

In this paper we generalize the result of [10] to any smooth domain satisfying As-
sumption 1.2 using Melrose’s theorem on glancing surfaces.

Remark 1.9. Notice that Theorem 1.4 states for instance that the scale-invariant Stri-
chartz estimates fail for 3/q+1/r > 15/24, whereas the result of Blair, Smith and Sogge
states that such estimates hold if 3/q + 1/r ≤ 1/2. Of course, the counterexample places
a lower bound on the loss for such indices (q, r), and the work [1] would place some
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upper bounds, but this concise statement shows one explicit gap in our knowledge that
remains to be filled.

A very interesting and natural question would be to determine the sharp range of
exponents for (1.2) in any dimension d ≥ 2.

A classical way to prove Strichartz inequalities is to use dispersive estimates: the fact
that weakened dispersive estimates can still imply optimal (and scale invariant) Strichartz
estimates for the solution of the wave equation was first noticed by Lebeau who an-
nounced in [16] that a loss of derivatives is unavoidable for the wave equation inside
a strictly convex domain, and this appears because of swallowtail type caustics in the
wave front set of u:

|χ(hDt )u(t, x)| . h
−d min(1, (h/t)

d−2
2 +

1
4 ). (1.8)

As shown in [11] (where a detailed proof of (1.8) is given), the estimates (1.8), although
optimal for the dispersion, imply Strichartz type inequalities without losses, but with in-
dices (q, r, d) satisfying

1
q
≤

(
d − 2

2
+

1
4

)(
1
2
−

1
r

)
.

In dimension d ≥ 3 and in the case of strictly convex domains, this range of indices
generalizes the one in (1.4) obtained in [1].

In the proof of Theorem 1.4 we use conormal waves with multiply reflected cusps at
the boundary, together with Melrose’s theorem on glancing rays, to reduce the study of the
iterated boundary operators to Friedlander’s model, and hence to [10]. The construction
of a parametrix for (1.1) is in the same spirit as in the classical paper by J. Ralston [20],
which however deals with a very different geometric situation.

The organization of the paper is as follows: In Section 2 we show that in order to
prove Theorem 1.4 it is enough to consider the two-dimensional case. In Section 3 we
recall the construction in the model case of a strictly convex domain of dimension two we
dealt with in [10] and use it to determine an approximate solution of (1.5) which satisfies
the conclusion of Theorem 1.4.

2. Reduction to the two-dimensional case

Let � satisfy the assumptions of Theorem 1.4. Write local coordinates on � as
(x, y1, . . . , yd−1) with x > 0 on �, ∂� = {(0, y) | y = (y1, . . . , yd−1) ∈ Rd−1

},
and local coordinates induced by the product X = �× Rt as (x, y, t).

Local coordinates on the base induce local coordinates on the cotangent bundle,
namely (ρ, ϑ) = (x, y, t, ξ, η, τ ) on T ∗X near π−1(q), q ∈ T ∗∂X, where π :
T ∗X→ bT ∗X is the canonical inclusion from the cotangent bundle into the b-cotangent
bundle defined by bT ∗X = T ∗X̊ ∪ T ∗∂X. The corresponding local coordinates on the
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boundary are denoted (y, t, η, τ ) (on a neighborhood of a point q in T ∗∂X). The metric
function in T ∗� has the form

g(x, y, ξ, η) = A(x, y)ξ2
+ 2

d−1∑
j=1

Cj (x, y)ξηj +

d−1∑
j,k=1

Bj,k(x, y)ηjηk,

with A, Bj,k , Cj smooth. Moreover, these coordinates can be chosen so that A(x, y) = 1
and Cj (x, y) = 0 (see [9, Appendix C]). Thus, in this coordinate chart the metric on the
boundary reads

g(0, y, ξ, η) = ξ2
+

d−1∑
j,k=1

Bj,k(0, y)ηjηk.

On T ∗∂� the metric g takes an even simpler form, since introducing geodesic coordinates
we can assume moreover that, locally,

B1,1(0, y) = 1, B1,j (0, y) = 0 ∀j ∈ {2, . . . , d − 1}.

Hence, if we write R(x, y, η) :=
∑d−1
j,k=1 Bj,k(x, y)ηjηk , then for small x we have

R(x, y, η) = (1+ x∂xB1,1(0, y1, y
′))η2

1

+

d−1∑
j=1

(x∂xB1,j (0, y)+O(x2))η1ηj +

d−1∑
j,k=2

Bj,k(x, y)ηjηk. (2.1)

Assumption 1.2 on the domain � is equivalent to saying that there exists a point
(0, y0, ξ0, η0) on T ∗� where the boundary is microlocally strictly convex, i.e. there ex-
ists a bicharacteristic passing through this point that intersects ∂� tangentially having
exactly second order contact with the boundary and remaining in the complement of ∂�̄.
If p ∈ C∞(T ∗X \o) (where we write o for the zero section) denotes the principal symbol
of the wave operator ∂2

t −1g , this last condition translates into

τ 2
= R(0, y0, η0), {p, x} =

∂p

∂ξ
= 2ξ0 = 0, (2.2)

{{p, x}, p} =

{
∂p

∂ξ
, p

}
= 2∂xR(0, y0, η0) > 0, (2.3)

where {f1, f2} denotes the Poisson bracket

{f1, f2} =
∂f1

∂ϑ

∂f2

∂ρ
−
∂f1

∂ρ

∂f2

∂ϑ
.

Denote the gliding point (in T ∗�× R) provided by Assumption 1.2 by

(ρ0, ϑ0) =
(
0, y0, 0, 0, η0, τ0 = −

√
R(0, y0, η0)

)
.

We start the proof of Theorem 1.4 by reducing the problem to the two-dimensional case.
Consider the following assumption:
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Assumption 2.1. Let (�̃, g̃) be a smooth manifold of dimension 2 with C∞ boundary
and Riemannian metric g̃. Assume that in local coordinates �̃ = {(x, ỹ) | x > 0, ỹ ∈ R}
and that the Laplace–Beltrami operator associated to g̃ is given by

∂2
x + (1+ xb(ỹ))∂

2
ỹ ,

where b(ỹ) is a smooth function. Suppose in addition that there exists a bicharacteristic
which intersects the boundary tangentially at (0, ỹ0, ξ̃0, η̃0) ∈ T

∗�̃ having exactly second
order contact with the boundary and which remains in the complement of �̃. This is
equivalent to saying that at (0, ỹ0, ξ̃0, η̃0),

ξ̃0 = 0, 2b(ỹ0) > 0.

We suppose in addition (without loss of generality, since we can always rescale the normal
variable x) that b(ỹ0) = 1.

Theorem 2.2. Let (�̃, g̃) satisfy Assumption 2.1. Then there exists T = T (�̃) ∈ (0,∞)
and for every ε > 0 small enough there exist sequences Ṽh,j,ε , j ∈ {0, 1}, and approxi-
mate solutions Ṽh,ε to the wave equation on �̃ with Dirichlet boundary conditions

∂2
t V − ∂

2
xV − (1+ xb(ỹ))∂

2
ỹ
V = 0 on �̃× R,

V |t=0 = Ṽh,0,ε, ∂tV |t=0 = Ṽh,1,ε,

V |∂�̃×[0,T ] = 0,

(2.4)

which satisfy the following conditions:

(i) First, Ṽh,ε is an approximate solution to (2.4) in the sense that

∂2
t Ṽh,ε − ∂

2
x Ṽh,ε − (1+ xb(ỹ))∂

2
ỹ Ṽh,ε = OL2(�̃)(1/h), ‖Ṽh,ε‖L2(�̃) ≤ 1.

(ii) Secondly, Ṽh,ε can be written as a sum

Ṽh,ε(x, ỹ, t) =

N∑
n=0

vnh,ε(x, ỹ, t), (2.5)

where 1 ≤ N ' h−(1−ε)/4 and where the functions vnh,ε(x, ỹ, t) satisfy the following
conditions:

• for 4 < r <∞: ‖v
n
h,ε(·, t)‖Lr (�̃) ≥ Ch

−
3
2 (

1
2−

1
r
)− 1

6 (
1
4−

1
r
)+2ε,

sup
ε>0

(
‖vnh,ε(·, t)‖L2(�̃) + h‖∂tv

n
h,ε(·, t)‖L2(�̃)

)
≤ 1, (2.6)

where the constant C = C(T ) > 0 is independent of h, ε and n;
• vnh,ε(x, ỹ, t) are essentially supported for the time variable t in almost disjoint

intervals of time In satisfying |I0| ' |In| ' h
(1−ε)/4 for all n ∈ {0, . . . , N}, and

also supported for the tangential variable ỹ in almost disjoint intervals;
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• Ṽh,ε are supported for the normal variable 0 ≤ x . h(1−ε)/2 (where the implied
constant depends only on �̃) and localized at spatial frequency 1/h in the tangen-
tial variable ỹ. Moreover, uniformly in ε > 0,

sup
ε>0
‖Ṽh,ε‖L2(�̃) . 1, sup

ε>0
‖∂ỹ Ṽh,ε‖L2(�̃) .

1
h
, sup

ε>0
‖∂2
ỹ Ṽh,ε‖L2(�̃) .

1
h2 .

(2.7)

In the rest of this section we show how Theorem 2.2 implies Theorem 1.4. Assume we
have proved Theorem 2.2. Let (�, g) be a Riemannian manifold of dimension d > 2
satisfying our assumptions in Theorem 1.4 and let (0, y0, ξ0, η0) ∈ T

∗� be a point sat-
isfying (2.2), (2.3). From (2.1) it follows that local coordinates can be chosen such that
y0 = 0 ∈ Rd−1, η0 = (1, 0, . . . , 0) ∈ Rd−1 and such that the Laplace–Beltrami operator
1g is given by

1g = ∂
2
x +

d−1∑
j,k=1

Bj,k(x, y)∂j∂k, (2.8)

where for x small enough

B1,1(x, y) = 1+ x∂xB1,1(0, y)+O(x2), ∂xB1,1(0, y) > 0

and for j ∈ {2, . . . , d − 1} we have B1,j (0, y) = 0. By rescaling the normal variable x,
we can assume without loss of generality that ∂xB1,1(0, 0) = 1.

We can now define �̃, locally in a neighborhood of (x = 0, y1 = 0, ξ = 0, η1 = 0),
to be the two-dimensional half-space �̃ := {(x, y1) | x > 0, y1 ∈ R} equipped with the
metric

g̃(x, y1, ξ, η1) := ξ2
+ (1+ xb(y1))η

2
1, b(y1) := ∂xB1,1(0, y1, 0).

Recall that we have assumed b(0) = 1. Applying Theorem 2.2 near (0, y1 = 0, 0, η1 = 1)
∈ T ∗�̃ we obtain, for ε > 0 small enough, sequences Ṽh,ε,j , j ∈ {0, 1}, such that
the solution Ṽh,ε to (2.4) satisfies (2.5)–(2.7). Let χ ∈ C∞0 (R

d−2) be a cut-off function
supported in the coordinate chart such that χ = 1 in a neighborhood of 0 ∈ Rd−2, and
for j ∈ {0, 1} set

Vh,ε,j (x, y1, y
′) := h−(d−2)/4Ṽh,ε/3,j (x, y1)e

−
|y′|2

2h χ(y′). (2.9)

Proposition 2.3. Let 1g be given by (2.8). Then the solution Vh,ε to the wave equation
(1.5) with Dirichlet boundary conditions and with initial data (Vh,ε,0, Vh,ε,1) defined in
(2.9) satisfies (1.6), (1.7).

Remark 2.4. Notice that Proposition 2.3 immediately implies Theorem 1.4.
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Proof. We proceed by contradiction. Let (q, r) be a sharp wave admissible pair in dimen-
sion d ∈ {2, 3, 4} with r > 4 and set

β(r, d) =
d + 1

2

(
1
2
−

1
r

)
+

1
6

(
1
4
−

1
r

)
.

We suppose to the contrary that the operator

sin(t
√
−1g) : L2(�)→ Lq([0, T ], Lr(�))

is bounded by h−β(r,d)+2ε , where T = T (�̃) is given by Theorem 2.2. Let Ṽh,ε/3 be the
approximate solution to (2.4) with initial data (Ṽh,ε/3,j )j=0,1 satisfying all the conditions
in Theorem 2.2. For t ∈ [0, T ] we define

Wh,ε(x, y, t) := h−(d−2)/4Ṽh,ε/3(x, y1, t)e
−
|y′|2

2h χ(y′).

Lemma 2.5. There exists a constant c(T ) > 0 independent of h such that

‖Wh,ε‖Lq ([0,T ],Lr (�)) ≥ c(T )h
−β(r,d)+2ε/3, (2.10)

‖Wh,ε |t=0‖L2(�) + h‖∂tWh,ε |t=0‖L2(�) . 1. (2.11)

Proof. Indeed, using the special form of Ṽh,ε provided by Theorem 2.2 we can estimate

‖Wh,ε‖
q

Lq ([0,T ],Lr (�)) =

∫ T

0
‖Wh,ε‖

q

Lr (�) dt

=

(∫ T

0

∥∥∥ N∑
n=0

vnh,ε/3

∥∥∥q
Lr (�̃)

dt

)
× ‖h−(d−2)/4e−

|y′|2
2h χ(y′)‖

q

Lr (Rd−2)

≥ ch−
q(d−2)

2 ( 1
2−

1
r
)
∑
k≤N

∫
Ik

∥∥∥ N∑
n=0

vnh,ε/3

∥∥∥q
Lr (�̃)

dt +O(h∞)

' ch−
q(d−2)

2 ( 1
2−

1
r
)
∑
k≤N

|Ik| ‖v
0
h,ε/3‖

q

Lr (�̃)
+O(h∞)

' cT h−
q(d−2)

2 ( 1
2−

1
r
)
‖v0
h,ε/3‖

q

Lr (�̃)
+O(h∞)

≥ cT h(−β(r,d)+2ε/3)q .

We used here the fact that each vnh,ε/3 provided by Theorem 2.2 is essentially supported
in time in an interval In of size 1/N and that (In)n∈{0,...,N} are almost disjoint. Take
c(T ) = (cT )1/q , where c is the bound from below of the integral in the d − 2 tangential
variables.

To estimate the L2(�) norm we use again the fact that vnh,ε and its time derivative
have disjoint essential supports in the tangential variable y1. For Wh,ε(·, 0) we have, for
instance,

‖Wh,ε |t=0‖L2(�) = ‖Ṽh,ε/3,0‖L2(x,y1)
‖h−(d−2)/4e−

|y′|2
2h χ(y′)‖L2(Rd−2) . 1. ut
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Let Vh,ε be the solution to (1.5) with data (Vh,ε,j )j=0,1 defined in (2.9) and write

Vh,ε = Wh,ε + wh,ε,err.

If we denote 1g̃ = ∂2
x + (1+ xb(y1))∂

2
y1

, �g̃ = ∂2
t −1g̃ , then Wh,ε solves


�g̃Wh,ε = �g̃Ṽh,ε/3h−(d−2)/4e−

|y′|2
2h χ(y′),

Wh,ε |t=0 = Vh,ε,0, ∂tWh,ε |t=0 = Vh,ε,1,

Wh,ε |∂�×[0,T ] = 0.

Since Vh,ε is a solution to (1.5), wh,ε,err must satisfy

�gwh,ε,err =−�g̃Ṽh,ε/3h
−(d−2)/4e−

|y′|2
2h χ(y′)− (1+ xb(y1))∂

2
y1
Wh,ε

+

d−1∑
j,k=1

Bj,k(x, y)∂
2
yj ,yk

Wh,ε,

wh,ε,err|t=0 = 0, ∂twh,ε,err|t=0 = 0,

wh,ε,err|∂�×[0,T ] = 0,

(2.12)

where we set �g := ∂2
t −1g and we used that

1g −1g̃ = −(1+ xb(y1))∂
2
y1
+

d−1∑
j,k=1

Bj,k(x, y)∂
2
yj ,yk

.

Lemma 2.6. For t ∈ [0, T ] the solution wh,ε,err to the wave equation (2.12) satisfies

‖(∂2
t −1g)wh,ε,err(·, t)‖L2(�) . h

−2(1−(1−ε/3)/2)
‖wh,ε,err‖L2(�) ' h

−1−ε/3, (2.13)

‖(∂2
t −1g)wh,ε,err(·, t)‖Ḣ−1(�) . h

−ε/3
‖wh,ε,err‖L2(�) ' h

−ε/3, (2.14)

where the estimates hold uniformly in t ∈ [0, T ] with constants independent of ε and of h.
Moreover,

‖wh,ε,err‖Lq ([0,T ],Lr (�)) ≤ Ch
−β(r,d)+2ε−ε/3, (2.15)

where C = C(T ) > 0 is independent of ε.

Proof. We start with (2.15). Assume we have already proved (2.14). The Duhamel for-
mula for wh,ε,err reads

wh,ε,err(x, y, t) =

∫ t

0

sin((t − s)
√
−1g)√

−1g

(
(∂2
t −1g)wh,ε,err(x, y, s)

)
ds.
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Using the Minkowski inequality together with (2.13) we find

‖wh,ε,err(·, t)‖Lr (�) =

∥∥∥∥∫ t

0

sin((t − s)
√
−1g)√

−1g

(
(∂2
t −1g)wh,ε,err(·, s)

)
ds

∥∥∥∥
Lr (�)

.
∫ t

0

∥∥∥∥ sin((t − s)
√
−1g)√

−1g

(
(∂2
t −1g)wh,ε,err(·, s)

)∥∥∥∥
Lr (�)

ds

. h−β(r,d)+2ε
‖(
√
−1g)

−1(∂2
t −1g)wh,ε,err‖L1([0,T ],L2(�))

' h−β(r,d)+2ε
‖(∂2

t −1g)wh,ε,err‖L1([0,T ],Ḣ−1(�))

. h−β(r,d)+2ε−ε/3,

where in the third line we used that the wave operator sin(t
√
−1g) was supposed to be

bounded by h−β(r,d)+2ε and where in the last line we used (2.13). The implied constant
in the last inequality depends only on T and the estimates hold uniformly with respect to
t ∈ [0, T ].

To prove (2.13) and (2.14), we use the special form of 1g and the fact that
Ṽh,ε/3(x, y1, t) (and thereforee Vh,ε) is supported in 0 ≤ x . h(1−ε/3)/2. The inho-
mogeneous part of the equation in (2.12) reads

�Ṽh,ε/3h
−(d−2)/4e−

|y′|2
2h χ(y′)+(1+xb(y1))∂

2
y1
Wh,ε−

d−1∑
j,k=1

Bj,k(x, y)∂
2
yj ,yk

Wh,ε . (2.16)

The L2(�) norm of �Ṽh,ε/3h−(d−2)/4e−|y
′
|
2/(2h)χ(y′) is estimated using the last condi-

tion in Theorem 2.2 and its contribution to the norm of the nonlinear term of (2.12) is
OL2(�)(1/h). We estimate the second term in (2.16) as follows:

− (1+ xb(y1))∂
2
y1
Wh,ε + B1,1(x, y)∂

2
y1,y1

Wh,ε

= h−(d−2)/4e−
|y′|2

2h χ(y′)∂2
y1
Ṽh,ε/3

(
B1,1(x, y)− 1− b(y1)

)
.

The last term in (2.16) splits into two sums, corresponding to k = 1,

d−1∑
j=1

B1,j (x, y)∂
2
y1,yj

Wh,ε

= −h−(d−2)/4e−
|y′|2

2h
1
h
∂y1 Ṽh,ε/3

d−1∑
j=2

B1,j (x, y)
(
yjχ(y

′)+ h∂yjχ(y
′)
)
, (2.17)

and k ∈ {2, . . . , d − 1}, respectively,

d−1∑
j,k=2

Bj,k(x, y)∂
2
yj ,yk

Wh,ε = h
−(d−2)/4e−

|y′|2
2h

1
h2Bj,k(x, y)Ṽh,ε/3

×

d−1∑
j,k=2

(
yjykχ(y

′)− h(yj∂ykχ(y
′)+ yk∂yjχ(y

′)+ δj=k)+ h
2∂2
yj ,yk

χ(y′)
)
. (2.18)
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If |y′| ≥ h(1−ε
′)/2 for some ε′ > 0, then e−|y

′
|
2/(2h)

≤ CMh
M for all M ≥ 0, thus taking

ε′ = ε/3 we can estimate the L2(�) norm of (2.17) and (2.18) as follows:

∥∥∥−(1+ xb(y1))∂
2
y1
Wh,ε +

d−1∑
j,k=1

Bj,k(x, y)∂yj ∂ykWh,ε

∥∥∥
L2(�)

. h−2+(1−ε/3)
‖Ṽh,ε/3‖L2(�̃) . h

−1−ε/3,

where we used that

sup
ε>0
‖Ṽh,ε/3‖L2(�̃) . 1, sup

ε>0
‖∂y1 Ṽh,ε/3‖L2(�̃) .

1
h
, sup

ε>0
‖∂2
y1
Ṽh,ε/3‖L2(�̃) .

1
h2 .

In the same way we obtain the bounds

∥∥∥−(1+ xb(y1))∂
2
y1
Wh,ε +

d−1∑
j,k=1

Bj,k(x, y)∂
2
yj ,yk

Wh,ε

∥∥∥
Ḣ−1(�)

. h
∥∥∥−(1+ xb(y1))∂

2
y1
Wh,ε +

d−1∑
j,k=1

Bj,k(x, y)∂
2
yj ,yk

Wh,ε

∥∥∥
L2(�)

. h−ε/3.

For the last inequality we used the following lemma (see [10, Prop. 5.4] for the proof):

Lemma 2.7. Let f (x, y) : � → R be localized at frequency 1/h in the y ∈ Rd−1

variable, i.e. such that there exists ψ ∈ C∞0 (R
d−1
\ {0}) with ψ(hDy)f = f . Then there

exists a constant C > 0 independent of h such that

‖f ‖Ḣ−1(�) ≤ Ch‖f ‖L2(�). ut

End of proof of Proposition 2.3. Recall that we have assumed that the operator

sin(t
√
−1g) : L2(�)→ Lq([0, T ], Lr(�))

is bounded by h−β(r,d)+2ε . This assumption implies

‖Vh,ε‖Lq ([0,T ],Lr (�)) ≤ Ch
−β(r,d)+2ε(‖Vh,ε,0‖L2(�) + ‖Vh,ε,1‖Ḣ−1(�))

≤ C̃h−β(r,d)+2ε, (2.19)

where C, C̃ > 0 are independent of h. Now (2.19) together with (2.10) gives

h−β(r,d)+2ε/3 . ‖Wh,ε‖Lq ([0,T ],Lr (�))

. (‖Vh,ε‖Lq ([0,T ],Lr (�)) + ‖wh,ε,err‖Lq ([0,T ],Lr (�))).

The last estimate together with (2.15) and (2.19) gives a contradiction, since it would
imply

h−β(r,d)+2ε/3 . h−β(r,d)+2ε
+ h−β(r,d)+2ε−ε/3,

which obviously cannot be true. The proof is complete. ut
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3. Proof of Theorem 1.4

In order to finish the proof of Theorem 1.4 it remains to prove Theorem 2.2. Let (�, g)
be a Riemannian manifold of dimension d = 2 with C∞ boundary ∂�. Suppose that
local coordinates can be chosen near (x = 0, y = 0) such that in a neighborhood of this
point � is given by

� = {(x, y) | x > 0, y ∈ R},

and the Laplace–Beltrami operator 1g associated to the metric g is given by

1g = ∂
2
x + (1+ xb(y))∂

2
y , (3.1)

where b is a smooth function with b(0) = 0. Let Y > 0 be such that for y ∈ [0, Y ] we
have |b1/3(y) − 1| ≤ 1

10 . We proceed with the proof of Theorem 2.2, where we write
(�, g) instead of (�̃, g̃) and where 1g is given by (3.1).

Remark 3.1. In what follows we fix ε > 0 small enough and we do not mention anymore
the dependence on ε of the solution to the wave equation (2.4) we are going to construct.

Before starting the proof of Theorem 2.2 we briefly recall some definitions we shall use
in the rest of the paper (for details see [9] or [27], for example).

Set X = � × Rt , let �g = ∂2
t − 1g denote the wave operator on X and let p ∈

C∞(T ∗X \ o) be the principal symbol of �g , which is homogeneous of degree 2 in
T ∗X \ o,

p(x, y, t, ξ, η, τ ) = ξ2
+ (1+ xb(y))η2

− τ 2. (3.2)

The characteristic set P := Char(p) ⊂ T ∗X \ o of �g is defined to be p−1({0}).
Let us consider the Dirichlet problem for �g:

�gu = 0, u|∂X = 0. (3.3)

The statement of the propagation of singularities of solutions to (3.3) has two main in-
gredients: locating singularities of a distribution, as captured by the wave front set, and
describing the curves along which they propagate, namely the bicharacteristics. Both of
these are closely related to an appropriate notion of “phase space”, in which both the wave
front set and the bicharateristics are located. On manifolds without boundary, this phase
space is the standard cotangent bundle T ∗X. In the presence of boundaries it is the b-
cotangent bundle, bT ∗X. There is a natural noninjective “inclusion” π : T ∗X → bT ∗X.
We define the elliptic, glancing and hyperbolic sets in T ∗∂X as follows:

E = {q ∈ π(T ∗X) \ o | π−1(q) ∩ Char(p) = ∅},

G = {q ∈ π(T ∗X) \ o | Card(π−1(q) ∩ Char(p)) = 1},

H = {q ∈ π(T ∗X) \ o | Card(π−1(q) ∩ Char(p)) ≥ 2},

with Card denoting the cardinality of a set; each of these is a conic subset of π(T ∗X) \ o.
Note that in T ∗X̊, π is the identity map, so every point q ∈ T ∗X̊ is either elliptic or
glancing, depending on whether q /∈ Char(p) or q ∈ Char(p).
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The canonical local coordinates on T ∗X will be denoted (x, y, t, ξ, η, τ ), so 1-forms
are α = ξdx + ηdy + τ dt . Let (ρ, ϑ) = (x, y, t, ξ, η, τ ) on T ∗X near π−1(q), q ∈
T ∗∂X, with corresponding coordinates (y, t, η, τ ) on a neighborhood U of q in T ∗∂X.
Consequently,

E ∩ U = {(y, t, η, τ ) | τ 2 < η2
},

G ∩ U = {(y, t, η, τ ) | τ 2
= η2
},

H ∩ U = {(y, t, η, τ ) | τ 2 > η2
}.

Let ρ = ρ(s) = (x, y, t)(s), ϑ = ϑ(s) = (ξ, η, τ )(s) be a bicharacteristic of p(ρ, ϑ),
i.e. such that (ρ, ϑ) satisfies

dρ

ds
=
∂p

∂ϑ
,

dϑ

ds
= −

∂p

∂ρ
, p(ρ(0), ϑ(0)) = 0.

We say that (ρ(s), ϑ(s))|s=0 on the boundary ∂X is a gliding point if

x(ρ(0)) = 0,
d

ds
x(ρ(0)) = 0,

d2

ds2 x(ρ(0)) < 0.

This is equivalent to saying that (ρ, ϑ) ∈ T ∗X \ o is a gliding point if

p(ρ, ϑ) = 0, {p, x}|(ρ,ϑ) = 0, {{p, x}, p}|(ρ,ϑ) > 0. (3.4)

Our assumption on the domain � in Theorem 2.2 near the point (x = 0, y = 0) is equiv-
alent to saying that there exists a bicharacteristic intersecting tangentially the boundary
at (0, 0) and having second order contact with the boundary at this point. From (3.4) this
last condition translates into the following: there exists (ξ0, η0, τ0) such that

τ 2
0 = (1+ xb(y))η

2
|(0,0,ξ0,η0)

, {p, x}|(0,0,ξ0,η0)
=
∂p

∂ξ |(0,0,ξ0,η0)

= 2ξ0 = 0,

{{p, x}, p}|(0,0,ξ0,η0)
=

{
∂p

∂ξ
, p

}
|(0,0,ξ0,η0)

= 2b(0)η2
0 > 0.

Since b(0) = 1 we must have ξ0 = 0 and η0 6= 0. Suppose without loss of generality that
η0 = 1. Let (ρ0, ϑ0) = (x = 0, y = 0, t = 0, ξ0 = 0, η0 = 1, τ0 = −1) and denote the
gliding point (in T ∗∂X) by

π(ρ0, ϑ0) = (y = 0, t = 0, η0, τ0 = −η0) = (0, 0, 1,−1) ∈ G. (3.5)

We define the semi-classical wave front set WFh(u) of a distribution u on R3 to be the
complement of the set of points (ρ = (x, y, t), ζ = (ξ, η, τ )) ∈ R3

× (R3
\ 0) for which

there exists a symbol a(ρ, ζ ) ∈ S(R6) such that a(ρ, ζ ) 6= 0 and for all integers m ≥ 0,

‖a(ρ, hDρ)u‖L2 ≤ cmh
m.
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3.1. Choice of an approximate solution

We look for an approximate solution to the equation (2.4) of the form

uh(x, y, t) =

∫
e
i
h
(θ+ζ ξ+ξ3/3)gh dξ dη dτ, (3.6)

where the phase functions θ(x, y, t, η, τ ), ζ(x, y, η, τ ) are real valued and homogeneous
in (η, τ ) of degree 1 and 2/3, respectively, and where gh is a symbol to be determined in
the next sections. In order for uh to solve (2.4), the functions θ , ζ must solve an eikonal
equation that we derive in what follows. We denote by 〈·, ·〉 the symmetric bilinear form
obtained by polarization of the second order homogeneous principal symbol p of the
wave operator �g ,

〈da, db〉 = ∂xa∂xb + (1+ xb(y))∂ya∂yb − ∂ta∂tb.

Applying the wave operator h2�g to uh, the main contribution becomes

(∂xθ + ξ∂xζ )
2
+ (1+ xb(y))(∂yθ + ξ∂yζ )2 − (∂tθ + ξ∂tζ )2

= 〈dθ, dθ〉 − 2ξ〈dθ, dζ 〉 + ξ2
〈dζ, dζ 〉. (3.7)

In order to eliminate this term after integrations by parts in ξ we require the right hand
side of (3.7) to be a nontrivial multiple of ∂ξ8, where we set

8 = θ + ζ ξ + ξ3/3.

This is equivalent to determining θ , ζ solutions to{
〈dθ, dθ〉 − ζ 〈dζ, dζ 〉 = 0,

〈dθ, dζ 〉 = 0.
(3.8)

The system (3.8) is a nonlinear system of partial differential equations, which is elliptic
where ζ > 0 (shadow region), hyperbolic where ζ < 0 (illuminated region) and parabolic
where ζ = 0 (caustic curve or surface). It is crucial that there is a solution of the form

φ± = θ ∓
2
3
(−ζ )3/2

with θ , ζ smooth. Solutions with such singularities arise from solving the initial value
problem for (3.8) off an initial surface which does not have the usual transversality con-
dition, corresponding to the fact that there are bicharacteristics tangent to the boundary.

3.1.1. Geometric reduction. LetX = �×R as before. Let p and q be functions on T ∗X
with independent differentials at a point (ρ, ϑ) ∈ T ∗X \ o. We denote by P and Q the
hypersurfaces defined by p and q, respectively.
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Definition 3.2. We say that the hypersurfaces P , Q in the symplectic manifold T ∗X are
glancing surfaces at (ρ, ϑ) if

1. {p, q}((ρ, ϑ)) = 0,
2. {p, {p, q}}((ρ, ϑ)) 6= 0 and {q, {q, p}}((ρ, ϑ)) 6= 0.

In our case we take q to be the defining function of the boundary ∂�, therefore q = x,
and p the symbol of the wave operator �g defined in (3.2). Precisely,

Q = {q(x, y, t, ξ, η, τ ) = x = 0}, P = {p = ξ2
+ (1+ xb(y))η2

− τ 2
= 0}, (3.9)

which are glancing at (ρ0, ϑ0) defined in (3.5). The nondegeneracy conditions in Defi-
nition 3.2 hold at a point (ρ, ϑ) with {p, q} = 0 if and only if ∂� is strictly convex at
(ρ, ϑ).

Remark 3.3. A model case of a pair of glancing surfaces is given by

QF = {qF (x, y, ξ, η, τ ) = x = 0}, PF = {pF = ξ
2
+ (1+ x)η2

− τ 2
= 0}, (3.10)

which have a second order intersection at the point

(ρ̄0, ϑ̄0) := (0, y0 = 0, t0 = 0, 0, η0 = 1, τ0 = −1) ∈ T ∗XF \ o.

This model case was studied in [10]. There is a deep geometrical reason underlying the
similarity of the general gliding ray parametrix for (3.9) and the one for the model exam-
ple (3.10), which will facilitate solution to the eikonal equation.

Theorem 3.4. Let P andQ be two hypersurfaces in T ∗X\o satisfying the glancing con-
ditions in Definition 3.2 at (ρ0, ϑ0) ∈ P ∩Q ⊂ T

∗X \ o. Then there exist real functions
θ and ζ which are C∞ in a conic neighborhood U of (ρ0, 1,−1) ∈ X×R2, are homoge-
neous of degree one and two-thirds, respectively, and have the following properties:

(i) ζ0 := ζ |x=0 = −(τ
2
− η2)η−4/3 and ∂xζ |∂X > 0 on U ∩ ∂X × R2,

(ii) dy,t (∂ηθ, ∂τ θ) are linearly independent on U ,
(iii) the system (3.8) holds in ζ ≤ 0; moreover, the phases θ and ζ also satisfy (3.8) to

infinite order at x = 0.

Moreover, ζ is a defining function for the fold set denoted 6. By translation invariance in
time, ζ is independent of t while the phase function θ is linear in the time variable.

Remark 3.5. Theorem 3.4 has been proved independently by Melrose in [18] and by
Eskin in [6, Thm. 1] for the canonical glancing surfaces

Qcan = {x = 0}, Pcan = {ξ
2
+ xη2

− τη = 0},

near the glancing point (x = 0, y, t, ξ = 0, η = 1, τ = 0). It is not difficult to see that the
phase functions θ and ζ can be chosen to satisfy the conditions stated above and therefore
we leave the details of the proof of Theorem 3.4 to the reader.
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Remark 3.6. Notice that ifP andQ are the hypersurfaces in the symplectic space T ∗X\o
defined in (3.9) and glancing at (ρ0, ϑ0) ∈ T

∗X \ o, then there exists a canonical trans-
formation

χ : 0 ⊂ T ∗XF \ o→ T ∗X \ o,

defined in a conic neighborhood 0 of (ρ̄0, ϑ̄0) and taking (ρ̄0, ϑ̄0) to (ρ0, ϑ0) and the
model pair PF and QF to P and Q. The fact that χ , which is symplectic, maps QF

onto Q means that it defines a local canonical transformation from the quotient space
ofQF , modulo its Hamilton fibration, to the corresponding quotient space ofQ, which is
naturally identified as the cotangent space of the hypersurface

Q/RHq ' T ∗∂X.

Now, as we just said, on Q (and similarly on QF ) the symplectic form gives a Hamilton
foliation. Let it determine an equivalence relation ∼. Then Q ∩ P/∼ has the structure
of a symplectic manifold with boundary and it is naturally isomorphic to the closure of
the “hyperbolic” set in T ∗∂X, the region over which real rays pass, and similarly for
QF ∩ PF /∼. Therefore, the restriction of χ to T ∗∂XF , denoted χ∂ , is also a canonical
transformation from a neighborhood γ ⊂ T ∗∂XF \ o of π(ρ̄0, ϑ̄0) to a neighborhood of
π(ρ0, ϑ0) ∈ T

∗∂X \ o,

χ∂ : γ → T ∗∂X \ o, γ ⊂ T ∗∂XF \ o,

γ = {(y, t, η, τ ) ∈ T ∗∂XF | ∃ξ, (0, y, t, ξ, η, τ ) ∈ 0}

defined in the hyperbolic region by

χ−1
∂ : (y, t, dyθ0, dtθ0) 7→ (dηθ0, dτ θ0, η, τ ), χ−1

∂ (π(ρ0, ϑ0)) = π(ρ̄0, ϑ̄0),

where θ0 := θ |∂X is the restriction to ∂X of the phase θ introduced in Theorem 3.4.
The map χ∂ has the property that near π(ρ̄0, ϑ̄0) it conjugates the billiard ball map

δ± ⊂ (T ∗∂X \ o) × (T ∗∂X \ o) to the normal form δ±F introduced in (3.14) below.
An interpolating Hamiltonian for the billiard ball maps δ± is ζ0 and δ±(y, t, η, τ ) =
exp

(
±

4
3H(−ζ0)3/2

)
.

Remark 3.7. In Friedlander’s model domain where �F := {(x, y) ∈ R+ × R} and
1F := ∂2

x + (1+x)∂
2
y , which we have dealt with in [10], the equation (3.8) has a solution

of the form

φ±F = θF ∓
2
3
(−ζF )

3/2,

where

θF (x, y, t, η, τ ) = yη + tτ, ζF (x, y, η, τ ) =

(
x −

τ 2
− η2

η2

)
η2/3,

as can be seen by direct computation. This solution serves very much as a guide to the
general construction as we shall see in the next sections.
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3.2. A model operator

Since the heart of the matter is well illustrated by Friedlander’s example, we start by
recalling the main steps of the construction in [10] where we proved Theorem 1.4 in the
case of a two-dimensional, strictly convex domain�F = {(x, y) ∈ R+×R}with Laplace
operator given by

1F = ∂
2
x + (1+ x)∂

2
y . (3.11)

Let XF = �F ×R and let pF ∈ C∞(T ∗XF \ o) denote the homogeneous symbol of the
model wave operator �F , pF (x, y, t, ξ, η, τ ) = ξ2

+ (1+ x)η2
− τ 2. Consider the wave

equation {
∂2
t v − ∂

2
xv − (1+ x)∂

2
yv = 0,

v|∂�F×[0,T ] = 0.
(3.12)

In [10] we have constructed a parametrix for (3.12) of the form

UF,h(x, y, t) =

N∑
n=0

unF,h(x, y, t),

where unF,h are approximate solutions to (3.12) of the form

unF,h(x, y, t) =

∫
e
i
h
η(y−t (1+a)1/2+ξ(x−a)+ ξ

3
3 +

4
3na

3/2)gnF (t, ξ, η, h) dξ dη, (3.13)

where gnF are smooth functions compactly supported for η near 1 and where the relation
between the amplitudes in the sum is dictated by the billiard ball maps. In this case, due
to the presence of the translations in (y, t), the billiard ball maps have specific formulas

δ±F (y, t, η, τ ) =

(
y±4

(
τ 2

η2−1
)1/2

±
8
3

(
τ 2

η2−1
)3/2

, t∓4
(
τ 2

η2−1
)1/2

τ

η
, η, τ

)
. (3.14)

The associated Lagrangian sets are defined by

3F,n :=
{
ξ2
+(x−a) = 0, y− t (1+a)1/2+ξ(x−a)+

ξ3

3
+

4
3
na3/2

= 0
}
⊂ T ∗XF \o.

Remark 3.8. Notice that, on the boundary, 3F,n is the graph of the canonical transfor-
mation (δ±F )

n given by the formula

(δ±F )
n(y, t, η, τ ) =

(
y±4n

(
τ 2

η2 −1
)1/2

±
8
3
n

(
τ 2

η2 −1
)3/2

, t∓4n
(
τ 2

η2 −1
)1/2

τ

η
, η, τ

)
.

(3.15)
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We introduce the fold set 6F = {ξ = 0} as the set of singular points of the canonical
projection 3F,n → XF and we define the caustic set to be the image of 6F through this
canonical projection, hence the set {x − (τ 2

− η2)/η2
= 0} = {ζF (x, y, η, τ ) = 0}. Near

the caustic set {ζF = 0} each solution unF,h “lives” essentially on a cusp defined by

y − t (1+ a)1/2 +
4
3
na3/2

= ±(a − x)3/2.

The key observation is that, if the parameter a is small enough, depending on the fre-
quency, each such cusp type solution provides a loss in the Strichartz estimates.

3.2.1. Construction of an approximate solution in the model case. In this section we
recall the construction from [10] of the symbols gnF of the cusp type parametrices unF,h
in (3.13) for the model wave operator �F . We take a of the form a ' hα for some α to
be chosen later as large as possible in the interval (0, 2/3); notice that the case a ' h2/3

corresponds to the whispering gallery modes dealt with in [10], while the case a ' 1
describes a wave transverse to the boundary.

Definition 3.9. Let λ ≥ 1. For a given compact K ⊂ R we define the space SK(λ) to
consist of all functions %(z, λ) ∈ C∞(R) which satisfy

1. supz∈R, λ≥1 |∂
α
z %(z, λ)| ≤ Cα , where Cα are constants independent of λ,

2. if ψ(z) ∈ C∞0 is a smooth function equal to 1 in a neighborhood of K and 0 ≤ ψ ≤ 1
then (1− ψ)% ∈ OS(R)(λ−∞).

Here S(R) denotes the Schwartz space of rapidly decreasing functions.

We define a new parameter λ = a3/2/h � 1 and for some small 0 < c0 ≤ 3/8, we
set K0 = [−c0, c0]. We take %(·, λ) ∈ SK0(λ) and set

g0
F (t, ξ, η, h) = %

(
t + 2(1+ a)1/2ξ
2(1+ a)1/2a1/2 , λ

)
9(η),

where 9 ∈ C∞0 (R \ {0}) is supported in a small neighborhood of 1 and 0 ≤ 9(η) ≤ 1.
The boundary condition will help us determine the symbols gnF for every 0 ≤ n ≤ N .

Proposition 3.10 ([10, Proposition 3.3, see also Lemma 3.2]). On the boundary u0
F,h

can be (modulo OL2(λ−∞)) as a sum of two trace operators,

u0
F,h(0, y, t) =

∑
±

Tr±(u0
F,h)(y, t),

where

Tr±(u0
F,h)(y, t) := h1/3

∫
e
i
h
(yη−t (1+a)1/2η∓ 2

3 a
3/2η)9(η)(ηλ)−1/6

× I±(%(·, λ))η

(
t

2(1+ a)1/2a1/2 , λ

)
dη, (3.16)
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with I±(%(·, λ))η(z, λ) given by

I±(%(·, λ))η(z, λ) =
ηλ

2π

∫
eiηλ(w(z−z

′)∓ 2
3 ((1−w)

3/2
−1))κ(w)a±(w, ηλ)%(z

′, λ) dw.

(3.17)
Here κ is a smooth function supported for w in a small neighborhood of 0 such that
0 ≤ κ ≤ 1 and κ(w) = 1 for w close to 0. In the integral (3.17), a± are given by the
asymptotic expansions of the Airy function Ai(−(λη)2/3(1− w)),

a±(w, η, λ) ' e
±iπ/2−iπ/4(1− w)−1/4

∑
j≥0

a±,j (−1)−j/2(1− w)−3j/2(ηλ)−j .

Precisely, we used the decomposition Ai(z) = A+(z) + A−(z), where A±(z) =

Ai(e∓2πi/3z). In particular, using the properties of the Airy functions A± it follows that
the symbols k(w)a±(w, ηλ) are elliptic at w = 0 (see [10, Appendix]).

Proposition 3.11 ([10, Lemma 3.4]). Let p ∈ Z and Kp = [−c0 + p, c0 + p]. Then
for η belonging to the support of 9 we have

I±,η : SKp (λ)→ SKp∓1(λ).

Proposition 3.12. Let η belong to the support of 9 and let J±,η be the operators defined
for some λ̃ ≥ 1 and %̆ ∈ SK∓1(λ̃) by the formula

J±(%̆(·, λ̃))η(z
′, λ) :=

ηλ

2π

∫
eiηλ((z

′
−z)w± 2

3 ((1−w)
3/2
−1))b±(w, ηλ)%̆(z, λ̃) dz dw,

where b±(w, ηλ) =
k(w)

a±(w,ηλ)
are asymptotic expansions in (ηλ)−1. Then

%̆(·, λ̃) = I±
(
J±(%̆(·, λ̃))η(·, λ)

)
η
(·, λ)+OS(R)(λ

−∞)+OS(R)(λ̃
−∞),

%(·, λ̃) = J±
(
I±(%(·, λ̃))η(·, λ)

)
η
(·, λ)+OS(R)(λ

−∞)+OS(R)(λ̃
−∞).

The construction of the operators J±,η is detailed in [10, Section 3.3.1].

Proposition 3.13 ([10, Proposition 3.6]). Let N . λhε for some small ε > 0 and let
1 ≤ n ≤ N . Let Tk denote the translation operator which to a given function %(z)
associates %(z+ k). Then for η ∈ supp(9) we have

(T1 ◦ J+(·)η ◦ I−(·)η ◦ T1)
◦n : SK0(λ)→ SK0(λ/n) uniformly in n.

Notice that since λ/n≥h−ε � 1, then OS(R)(λ−∞)=OS(R)((λ/n)−∞)=OS(R)(h∞).
Moreover, the operator defined above can be written as a convolution

(T1 ◦ J+(·)η ◦ I−(·)η ◦ T1)
◦n(%) = (Fηλ)

∗n
∗ %, ∗

where

(Fηλ)
∗n(z) =

ηλ

2π

∫
eiηλ(wz+n(2w+

4
3 ((1−w)

3/2
−1))(κ(w)a+(w, ηλ)b−(w, ηλ))n dw.
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Definition 3.14. Let %(·, λ) ∈ SK0(λ) and η ∈ supp(9). For 1 ≤ n ≤ N , N . λhε set

%n(z, η, λ) := (−1)n(T1 ◦ J+(·)η ◦ I−(·)η ◦ T1)
n(%(·, λ))(z), %0(z, η, λ) = %(z, λ).

Remark 3.15. From Proposition 3.13 it follows that %n(z, η, λ) ∈ SK0(λ/n).

Definition 3.16. For 0 ≤ n ≤ N with N . λhε define

gnF (t, ξ, η, h) := %n
(
t + 2(1+ a)1/2ξ
2(1+ a)1/2a1/2 − 2n, η, λ

)
9(η).

Proposition 3.17. For all 0 ≤ n ≤ N − 1 we have

Tr−(unF,h)(y, t)+ Tr+(un+1
F,h )(y, t) = OL2(λ

−∞).

Proposition 3.18. If 0 ≤ n ≤ N , unF,h(·, y, t) is essentially supported for y and t in the
interval

In(c0) := 2a1/2(1+ a)1/2 × [2n− (1+ c0), 2n+ (1+ c0)], (3.18)

i.e. for y or t outside any neighborhood of In(c0) the contribution of unF,h is OL2(h∞).

3.3. Construction of an approximate solution in the general case

In this section we construct an approximate solution to (2.4) satisfying the conditions of
Theorem 2.2. It will be essentially based on the model construction and Theorem 3.4.

Inspired from [10], we construct superposition solutions unh to (2.4) of the form

unh(x, y, t) =

∫
e
i
h
8n(x,y,t,ξ,η,τ )gnh dξ dη dτ, (3.19)

for some symbols gnh to be suitably chosen and where the phase functions are given by

8n(x, y, t, ξ, η, τ ) := θ(x, y, t, η, τ )+ η1/3ξζ(x, y, η, τ )+ η
ξ3

3
+

4
3
n(−ζ0)

3/2(η, τ ).

(3.20)
We determine the symbols gnh in (3.19) so that unh is an approximate solution to (2.4)
in a sense to be made precise. We start by defining their restriction to the boundary by
requiring the Dirichlet condition to be fulfilled. We consider an operator J defined by

J (f )(y, t) :=
1

(2πh)2

∫
e
i
h
θ0(y,t,η,τ )dh(y, η, τ )f̂ (η/h, τ/h) dη dτ, (3.21)

where dh(y, η, τ ) = d(y, η/h, τ/h) for some elliptic symbol d(y, η, τ ) of order 0 and
type (1, 0), compactly supported in a conic neighborhood of the glancing point π(ρ0, ϑ0).
Here θ0 denotes the restriction to the boundary of the phase θ introduced in Theorem 3.4.

The operator J defines an elliptic FIO in a neighborhood of (π(ρ̄0, ϑ̄0), π(ρ0, ϑ0)),
with canonical relation χ∂ given by the symplectomorphism generated by θ0 which satis-
fies χ∂(π(ρ̄0, ϑ̄0)) = π(ρ0, ϑ0) (see the remarks following Theorem 3.4).

In what follows we compute J ◦ Tr±(unF,h), where 0 ≤ n ≤ N for some N to be
determined later. We keep the notation of Section 3.2.
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Proposition 3.19. On the boundary, J ◦ Tr±(unF,h) reads

J ◦Tr±(unF,h)(y, t) = h
1/3
∫
e
i
h
(θ0(y,t,η,−η(1+a)1/2)+ 2

3 (2n∓1)(−ζ0)
3/2(η,−η(1+a)1/2))(λη)−1/6

× I±(g
n
h(·, y, η))η

(
∂τ θ0(y, t, η,−η(1+ a)1/2)

2(1+ a)1/2a1/2 − 2n, λ
)
dη,

where
gnh(z, y, η) ' 9(η)

(∑
k≥0

hk/2a−k/2µk(y, η, h)∂
k
z %

n(z, η, λ)
)
. (3.22)

Here µk(y, η, h) are symbols of order 0 and type (1, 0) independent of n. Moreover, if
η ∈ supp(9) and 1 ≤ n ≤ N . λhε for some small ε > 0 then gnh(·, y, η) ∈ SK0(λ/n).

Proof. An explicit computation (using arguments from [10, Lemma 3.2]) gives

unF,h(0, ȳ, t̄ ) = h
1/3
∑
±

∫
e
i
h
(ȳη̄−t̄ (1+a)1/2η̄∓ 2

3 a
3/2η̄+ 4

3na
3/2η̄)9(η̄)(η̄λ)−1/6

× I±(%
n(·, η̄, λ))η̄

(
t̄

2(1+ a)1/2a1/2 − 2n, λ
)
dη̄, (3.23)

where I±(%n(·, η̄, λ))η̄(z, λ) are defined in (3.17). The contributions corresponding to the
± signs in the right hand side of (3.23) are denoted Tr±(unF,h)(ȳ, t̄).

We can now proceed to compute J ◦ Tr±(unF,h)(ȳ, t̄):

J ◦Tr±(unF,h)(y, t) =
h1/3

(2πh)2

∫
e
i
h
(θ0(y,t,η,τ )−ȳ(η−η̄)−t̄ (τ+η̄(1+a)1/2)∓ 2

3 a
3/2η̄+ 4

3na
3/2η̄)9(η̄)

× I±(%
n(·, η̄, λ))η̄

(
t̄

2(1+ a)1/2a1/2 − 2n, λ
)
(η̄λ)−1/6 dh(y, η, τ ) dη̄ dȳ dt̄ dη dτ.

Since the symbol is independent of ȳ, integration in ȳ gives η = η̄. Now we are in
a situation where the stationary phase theorem can be applied in the variables (t̄ , τ ).
Consequently, J ◦ Tr±(unF,h) admits the asymptotic expansion

J ◦ Tr±(unF,h)(y, t) ' h
1/3
∫
e
i
h
(θ0(y,t,η,−η(1+a)1/2)+ 2

3 (2n∓1)(−ζ0)
3/2(η,−η(1+a)1/2))9(η)

×

[∑
k≥0

hk/2a−k/2µk(y, η, h)∂
kI±(%

n(·, η, λ))η

(
∂τ θ0(y, t, η,−η(1+ a)1/2)

2(1+ a)1/2a1/2 − 2n, λ
)]

× (ηλ)−1/6 dη, (3.24)

where we set

µk(y, η, h) = i
k2−khk/2(1+ a)−k/2∂k

(
e
i
h
r(y,t,η,τ )dh(y, η, τ )

)∣∣{ τ = −η(1+ a)1/2,
t̄ = ∂τ θ0(y, t, η,−η(1+ a)1/2

.
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The main contribution of µ2ν is equal to (∂2
τ r)

νdhe
i
h
r(ω,τ) and that of µ2ν−1 is

h(∂2
τ r)

ν∂τdhe
i
h
r(ω,τ), all the other terms in the sum defining µk being positive powers

of h. Since dh is a symbol of order 0 and type (1, 0), we deduce that µk is also a symbol
of order 0 and type (1, 0).

Notice, moreover, that I±(%
n)η is a convolution product and consequently

∂k(I±(%
n)η) = I±(∂

k%n)η. Since from Proposition 3.13 and Definition 3.14 the sym-
bols %n(·, η, λ) belong to SK0(λ/n), where K0 = [−c0, c0], it follows that the sum

9(η)
(∑
k≥0

hk/2a−k/2µk(y, η, h)∂
k%n(z, η, λ)

)
(denoted gnh(z, y, η) in the statement of Proposition 3.19) also belongs to SK0(λ/n). ut

Lemma 3.20. Let 8n be defined by (3.20). Then the integral curves of the vector field
〈2d8n, d·〉 − η−1/3

〈dζ, dζ 〉∂ξ are given by

η−2/3ζ + ξ2, ∂τ θ + η
1/3ξ∂τ ζ.

Now we can define unh everywhere as follows:

Definition 3.21. Let gnh be the symbol defined in (3.22) and for 0 ≤ n ≤ N . λhε let

unh(x, y, t) :=
∫
e
i
h
8n(x,y,t,ξ,η,−η(1+a)1/2)

× gnh

(
∂τ θ + η

1/3ξ∂τ ζ

2(1+ a)1/2a1/2 (x, y, t, η,−η(1+ a)
1/2)− 2n, y, η

)
dξ dη. (3.25)

It remains to show that the restriction to ∂� of unh defined in (3.25) coincides with
the sum of the two terms in (3.24). We leave the proof of Proposition 3.22 below to the
reader.

Proposition 3.22. On the boundary ∂� we have, indeed,

unh(0, y, t) =
∑
±

J (Tr±(unF,h))(y, t, h).

Moreover,
J (Tr−(unF,h))(y, t)+ J (Tr+(un+1

F,h ))(y, t) = OL2(h
∞).

Applying the wave operator �g to unh (defined by (3.25)) and using (3.8) yields

�gu
n
h(x, y, t) =

∫
e
i
h
8n(x,y,t,ξ,η,−η(1+a)1/2)

×

(
i

h

(
〈2d8n, dgnh〉 − η

−1/3
〈dζ, dζ 〉∂ξg

n
h + (�g8

n)gnh

)
+�gnh

)
dξ dη.

Using Lemma 3.20 and performing some elementary computations, we obtain:

Proposition 3.23. The following estimates hold uniformly for 0 ≤ n ≤ N . λhε:

‖�gu
n
h(·, t)‖L2(�) = O(h

−1)‖unh(·, t)‖L2(�).
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3.4. Main properties of the parametrix

In this section we state the main properties of the parametrix

Uh(x, y, t) :=
N∑
n=0

unh(x, y, t), (3.26)

where unh(x, y, t) are introduced in (3.25) and where N . λhε for some ε > 0. Here
ε is fixed at the beginning of Section 3 (see Remark 3.1). We first prove that each unh is
essentially supported for t in an interval of size' a1/2 and that (unh)n have almost disjoint
supports in time and in the tangential variable y.

In the first part of this section we choose N so that for all 0 ≤ n ≤ N , each cusp type
solution unh preserves the same properties as u0

h. We prove that this requires

4Na1/2 . Y. (3.27)

Taking into account that we need to impose N . λhε (since otherwise the construction
in Section 3.2 may degenerate) and since we require the parameter a to be as small as
possible, we must have

N ' λhε, where λ = a3/2/h.

The last conditions yield a ' 1
2Y

1/2h(1−ε)/2. We state a useful property of the para-
metrix unh:

Proposition 3.24. Let unh be given by (3.25). Then the wave front set WFh(unh) of unh is
contained in the Lagrangian set 38n defined by

3n :=
{
(x, y, t, ξ, η,−η(1+ a)1/2)

∣∣∣∣ ζ(x, y, η,−η(1+ a)1/2)+ η2/3ξ2
= 0,

(∂ηθ − (1+ a)1/2∂τ θ + ξζ )(x, y, t, 1,−(1+ a)1/2)+
ξ3

3
+

4
3
na3/2

= 0
}
.

In other words, outside any neighborhood of 3n the contribution of unh is OL2(h∞).

Proposition 3.24 follows from integrations by parts either in the variable ξ , using the
operator L1 := h

i
1

ξ2+η−2/3ζ
∂ξ , or in η, using L2 := h

i

∂η8
n

|∂η8n|2
∂η. We need however to

estimate the η-derivatives of gnh , and in order to do so we use the convolution type form
of %n which follows from Proposition 3.13.

3.4.1. Number of iterations and time interval. In what follows we choose the number N
of iterated cusp type solutions unh.
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Proposition 3.25. Let 1 ≤ N ≤ C0Ya
−1/2 for some fixed C0 > 0. If C0 is chosen

sufficiently small, then the operator J introduced in (3.21) is elliptic near the set( ⋃
0≤n≤N

In(c0)
)
×

( ⋃
0≤n≤N

In(c0)
)
× (1,−(1+ a)1/2)

and χ∂ is a diffeomorphism from a neighborhood of this set onto its image. We recall that
In(c0) was introduced in (3.18) and 0 < c0 ≤ 3/8 was fixed in Section 3.2.1.

Proof. We first deal with the last statement. We use the properties of χ∂ defined in Section
3.1.1 together with the assumption on b(y) in Theorem 2.2. We can explicitly compute
the gradient ∇y,t (χ−1

∂ ) to be (
∂2
y,ηθ0(y, t, η, τ ) 0

∂2
y,τ θ0(y, t, η, τ ) 1

)
. (3.28)

Using the construction of the phases θ0 and ζ0 we obtain

∂2
y,ηθ0(y, t, η, τ ) = b

2/3(y)+O(ζ0(η, τ )) (3.29)

and also

∂2
y,τ θ0(y, t, η, τ ) =

(
1−

(
τ

η

)4/3

b2/3(y)

)
+O(ζ0(η, τ )). (3.30)

Notice also that the right hand side in both (3.29) and (3.30) is independent of t (which
follows from the linearity in time of θ ). Since |b1/3(y)−1| ≤ 1/10 for y ∈ [0, Y ], if η/τ is
close to 1 it follows that χ∂ is a diffeomorphism from a small, fixed, conic neighborhood
of π(%̄0, ϑ̄0) into a small neighborhood of π(%0, ϑ0).

Remark 3.26. In particular, the Jacobian of the restriction of χ−1
∂ to the values (η, τ ) =

(1,−(1+ a)1/2) equals Jac(χ−1
∂ ) = ∂2

y,ηθ0(y, t, 1,−(1+ a)1/2) and is independent of t .

Now we proceed with the first part of Proposition 3.25. Recall that χ∂ conjugates the
billiard ball map δ± to the normal form, χ∂ ◦ δ±F = δ± ◦ χ∂ . Since we consider only
positive time it is enough to work with δ+, δ+F . For n ≥ 1 and for π(%̄, ϑ̄) in a small,
conic neighborhood of π(%̄0, ϑ̄0) we have, writing π(%, ϑ) = χ∂(π(%̄, ϑ̄)),

(δ+)n(π(%, ϑ)) = (δ+)n(χ∂(π(%̄, ϑ̄))) = χ∂
(
(δ+F )

n(π(%̄, ϑ̄))
)
, (3.31)

where (δ+F )
n is given by (3.15). We have assumed (without loss of generality) that

π(%0, ϑ0) = (0, 0, 1,−1). Modulo a translation we can also assume that π(%̄0, ϑ̄0) =

(0, 0, 1,−1). We now take %̄ = %̄0 and ϑ̄ = (1,−(1 + a)1/2) in (3.31). Therefore, for a
small, depending on h, π(%̄, ϑ̄) belongs to a conic neighborhood of π(%̄0, ϑ̄0). Rewriting
(3.31) at this point and using (3.15) yields

(δ+)n(π(%, ϑ)) = χ∂

(
4na1/2(1+ a)−

4
3
na3/2, 4na1/2(1+ a)1/2, 1,−(1+ a)1/2

)
=: χ∂(ȳn, t̄n, 1,−(1+ a)1/2),
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where we set ȳn = 4na1/2(1+ a)− 4
3na

3/2 and t̄n = 4na1/2(1+ a)1/2. If na1/2 belongs
to a small but fixed neighborhood of 0 of size Y , we can write the right hand side in the
last equation as

χ∂(ȳn, t̄n, 1,−(1+ a)1/2) = ∇y,tχ∂(ȳ, t̄ , 1,−(1+ a)1/2)
(
ȳn

t̄n

)
, (3.32)

for some (ȳ, t̄) ∈ [0, ȳn]× [0, t̄n]. The matrix ∇y,tχ∂(ȳ, t̄ , 1,−(1+a)1/2) is independent
of t̄ (since it is given by the inverse of ∇y,t (χ−1

∂ ) computed in (3.28)) and at ȳ = 0 it is
close to the identity, therefore if ȳn belongs to a small, fixed neighborhood of 0 of size y0,
the matrix ∇y,tχ∂(ȳ, t̄ , 1,−(1+ a)1/2) remains close to the identity.

We can now estimate the number of iterations N that we will use in our construction.
Since ȳn = 4na1/2

+ O(na3/2), choose N ≥ 1 such that Na1/2 is so small that for
0 ≤ ȳ ≤ ȳN the gradient matrix ∇y,t (χ∂)(ȳ, ·, 1,−(1 + a)1/2) is close to the identity.
This is possible due to the independence from t̄N , t̄ of the gradient matrix and its uniform
boundedness. Since from the initial assumption we have |b2/3(y) − 1| < 1/10 for y ∈
[0, Y ], we can take

4N ' C0Ya
−1/2 (3.33)

for some sufficiently small constant 0 < C0 ≤ 1. ut

Remark 3.27. The operator J is elliptic in a small, fixed neighborhood of 0. If we take
Y smaller if necessary, the symbol d of J will be elliptic for y ∈ [0, Y ], therefore the
symbol of J ◦ Tr±(unF,h) will remain elliptic for any 0 ≤ n ≤ N with N given by (3.33)
if C0 is small enough. This will be useful when computing the Lr norms of the cusps unh,
whose symbols will depend on d and therefore will be elliptic uniformly in 0 ≤ n ≤ N .

In the following we set

a :=
√
C0

2
Y 1/2h(1−ε)/2. (3.34)

In the remaining part of this section we estimate the time interval [0, T ] on which the
norm of Uh will be evaluated. Using Proposition 3.28 below and N as in (3.33) we see
that for 0 ≤ n ≤ N , the cusp unh(·, t) is essentially supported for (x, y, t) such that

∂τ θ(x, y, t, 1,−(1+ a)1/2) ∈ In(c0),

where
In(c0) = 2a1/2(1+ a)1/2 × [2n− (1+ c0), 2n+ (1+ c0)].

We shall choose T to belong to the essential support of uNh . From Proposition 3.28 below
it follows that on the essential support of uNh the following should hold:

(∂ηθ − (1+ a)1/2∂τ θ)(x, y, t, 1,−(1+ a)1/2)

= −
4
3
Na3/2

±
2
3
(−ζ )3/2(x, y, 1,−(1+ a)1/2).

We introduce the defining function for the caustic set, denoted C(y, η, τ ), as follows:

−ζ(x, y, η, τ ) = 0 if and only if x = C(y, η, τ ).
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By the linearity of the phase θ(x, y, t, η, τ ) in time, it follows that the map

y 7→ ∂ηθ(C(y, 1,−(1+ a)1/2), y, ·, 1,−(1+ a)1/2) (3.35)

is independent of time. Moreover, (3.35) is a diffeomorphism in a neighborhood of y = 0
since its derivative does not vanish.

Let t̄N := 4Na1/2(1+ a)1/2 be the center of the interval IN (c0). From the discussion
above (and if C0 in (3.33) is small) it follows that there exists a unique yN ∈ [0, Y ] with

∂ηθ(C(yN , 1,−(1+ a)1/2), yN , ·, 1,−(1+ a)1/2) = (1+ a)1/2 t̄N −
4
3
Na3/2

= ȳN .

(3.36)
We can now define T as the unique time value which satisfies

∂τ θ(C(yN , 1,−(1+ a)1/2), yN , T , 1,−(1+ a)1/2) = t̄N . (3.37)

3.4.2. Localization properties of unh. We now describe the essential supports of unh and
show that they are contained in almost disjoint intervals obtained by taking the image of
In(c0) defined in Proposition 3.18 under the symplectomorphism χ∂ .

Proposition 3.28. We have

ess-supp(unh) ⊂
{
(x, y, t)

∣∣∣∣ ∂τ θ(x, y, t, 1,−(1+ a)1/2) ∈ In(c0) and(
∂ηθ − (1+ a)1/2∂τ θ +

4
3
na3/2

∓
2
3
(−ζ )3/2

)
(x, y, t, 1,−(1+ a)1/2) = 0

}
.

By ess-supp(unh) we denote the closure of the set outside of which unh is OL2(h∞).

Proof. The proposition follows using Proposition 3.19, which gives information about
the essential support of the symbol gnh(·, y, η) ∈ S[−c0,c0](λ/n). Let c ∈ (0, 1) be such
that ∣∣∣∣∂τ θ(x, y, t, η,−η(1+ a)1/2)2(1+ a)1/2a1/2 − 2n

∣∣∣∣ ≥ 1+ c. (3.38)

It is enough to show that on the essential support of unh we must have c ≤ c0, which
follows from Proposition 3.24. ut

Lemma 3.29. Let

Jn :=
{
t
∣∣ ∃(x, y, t) ∈ ess-supp(unh), ∂τ θ(x, y, t, 1,−(1+ a)1/2) ∈ In(c0/3− 1)

}
(3.39)

and let |Jn| denote its size. Then

|Jn| ≥ c0a
1/2.

Moreover, if c0 is sufficiently small and if (x, y, t) is such that t ∈ Jn, then

1
2
a ≤ x ≤

3
2
a. (3.40)
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The proof of Lemma 3.29 uses arguments similar to those in the proof of Proposition 3.28
and is left to the reader. In the same way we can show the following:

Lemma 3.30. Let k ≥ 0 and t ∈ Jk . Then

Uh(x, y, t) = u
k
h(x, y, t)+OL2(h

∞).

Remark 3.31. Lemma 3.30 shows that unh have almost disjoint essential supports in the
variables (y, t). Therefore, Proposition 3.23 applies to show that Uh defined in (3.26) is
also an approximate solution to (2.4) in the sense that for t ∈ [0, T ] we have

‖�gUh(·, t)‖L2(�) ≤ O(h
−1)‖Uh(·, t)‖L2(�).

In the rest of this section we prove that Uh satisfies the Dirichlet boundary condition.

Proposition 3.32. The approximate solution Uh to (2.4) defined in (3.26) satisfies

Uh|∂�×[0,T ] = O(h
∞).

Proof. From Proposition 3.22 we deduce

Uh(0, y, t) = J (Tr+(u0
F,h))(y, t)+ J (Tr−(uNF,h))(y, t). (3.41)

The first term in the right hand side of (3.41) is essentially supported for t in a small
interval that does not meet [0, T ], hence its contribution is clearly trivial for t ∈ [0, T ].
We now deal with the second term in (3.41): it will be enough to show that

T /∈ ess-supp(J (Tr−(uNF,h))). (3.42)

We argue by contradiction and assume that (3.42) fails to hold. Then on the support of
gNh we must have, for some yT ∈ [0, Y ],∣∣∣∣ (∂τ θ0 + ξ∂τ ζ0)(yT , T , 1,−(1+ a)1/2)

2(1+ a)1/2a1/2 − 2n
∣∣∣∣ ≤ c0. (3.43)

From Proposition 3.24 it follows that ξ = −(−ζ0)
1/2(1,−(1 + a)1/2) = −a in (3.43) .

Replacing this in (3.43) and using ∂τ ζ0 = 2(1+ a)1/2 +O(a) we find that

∂τ θ0(yT , T , 1,−(1+ a)1/2) ∈ 2a1/2(1+ a)1/2[2N + 1− c0, 2N + 1+ c0]. (3.44)

From Proposition 3.28 we must also have

∂ηθ0(yT , T , 1,−(1+ a)1/2) = (1+ a)1/2∂τ θ0(yT , T , 1,−(1+ a)1/2)

−
4
3
Na3/2

−
2
3
(−ζ0)

3/2(1,−(1+ a)1/2). (3.45)

From the choice of T in (3.37) we will get a contradiction. Precisely, using (3.37) and
(3.36) yields

∂τ θ0(yN , T , 1,−(1+ a)1/2) = t̄N +O(a), (3.46)

∂ηθ0(yN , T , 1,−(1+ a)1/2) = ȳN +O(a), (3.47)
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where we recall that T̄N = 4Na1/2(1+ a)1/2 and ȳN = (1+ a)1/2 t̄N − 4
3Na

3/2. Notice
also that for N defined by (3.33) the contribution of Na3/2 is O(a).

Using (3.44)–(3.47) now gives

|∂ηθ0(yT , T , 1,−(1+ a)1/2)− ∂ηθ0(yN , T , 1,−(1+ a)1/2)|

= (1+ a)1/2|∂τ θ0(yT , T , 1,−(1+ a)1/2)− ∂τ θ0(yN , T , 1,−(1+ a)1/2)| +O(a)

∈ [2a1/2(1+ a)1/2(1− c0), 2a1/2(1+ a)1/2(1+ c0)] (3.48)

(where the inclusion in the last line follows from (3.44) and (3.46)). Evaluating the terms
in the first and second lines of (3.48) yields

3(1− c0) ≤ 1+ c0, (3.49)

hence c0 ≥ 1/2, which is a contradiction since in Section 3.2.1 we have chosen
0 < c0 ≤ 3/8. Therefore (3.42) does hold and in the same way we can see that
ess-supp(J (Tr−(uNF,h)) does not meet the interval [0, T ]. ut

3.4.3. Strichartz estimates for the approximate solution Uh

Proposition 3.33. Let r > 4 and ε > 0 be the one fixed in Section 3. Define

β(r) =
3
2

(
1
2
−

1
r

)
+

1
6

(
1
4
−

1
r

)
and let β ≤ β(r) − ε. Then the approximate solution Uh of the wave equation (2.4)
satisfies

hβ‖Uh‖Lq ([0,T ],Lr (�)) ≥ h
−7ε/8
‖Uh|t=0‖L2(�) � ‖Uh|t=0‖L2(�).

Remark 3.34. Notice that the condition β < β(r) shows that Uh cannot satisfy the
Strichartz inequalities of the free case, a loss of at least 1

6

( 1
4 −

1
r

)
derivatives being un-

avoidable.

Proof. The key point here is that the unh have almost disjoint supports in time and in
the tangential variable, hence we can bound from below the Lq([0, T ]) norm by a sum
of integrals over small intervals of time Jk on which there will be only one cusp ukh to
consider, the contribution from all the others being trivial. The intervals Jk will be the
ones defined in (3.39) for which Lemma 3.29 applies. We have

‖Uh‖
q

Lq ([0,T ],Lr (�)) =

∫ T

0
‖Uh(·, t)‖

q

Lr (�) dt =

∫ T

0

∥∥∥ N∑
n=0

unh(·, t)

∥∥∥q
Lr (�)

dt

≥

∑
k≤N

∫
Jk

∥∥∥ N∑
n=0

unh(·, t)

∥∥∥q
Lr (�)

dt +O(h∞)

'

∑
k≤N

|Jk| ‖u
0
h(·, 0)‖qLr (�) +O(h

∞)

'
c0

4
Y‖u0

h(·, 0)‖qLr (�) +O(h
∞). (3.50)
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Indeed, we have shown in Lemma 3.30 that for t belonging to small intervals of
time Jk , only ukh has to be considered in the sum since the contribution from each unh
with n 6= k is OL2(h∞). In the last line of (3.50) we used Lemma 3.29 to estimate |Jk|
from below, uniformly in k, by c0a

1/2, where c0 ∈ (0, 3/8] is fixed, and the fact that
N ' Y

4 a
−1/2.

For t ∈ Jk , it follows from (3.40) that x ≥ a/2, therefore on the essential support
of ukh(·, t) the normal variable does not approach the boundary. Therefore the restrictions
of ukh to Jk have disjoint supports.

Using similar arguments to [10, Prop. 6.7] we obtain the following result concerning
the Lr norms of the phase integrals associated to a cusp type Lagrangian:

Proposition 3.35. Let N be defined by (3.33). For t ∈ Jn defined in (3.39) the Lr(�)
norms of a cusp unh(·, t) of the form (3.25) satisfy, uniformly for n ∈ {0, . . . , N},

(i) for 2 ≤ r < 4,

‖unh(·, t)‖Lr (�) ' h
1
r
+

1
2 a

1
r
−

1
4 ,

‖unh(·, 0)‖L2(�) ' ha
1/4
;

(ii) for r > 4,
‖unh(·, t)‖Lr (�) ' h

1
3+

5
3r .

Using Proposition 3.35 and (3.34) we deduce that there are constants C = C(Y ) indepen-
dent of h such that for r = 2,

‖Uh|t=0‖L2(�) ' h‖∂tUh|t=0‖L2(�) ' ‖u
0
h(·, 0)‖L2(�)Y

1/8h1+(1−ε)/8.

For r > 4 we get, using (3.50),

‖Uh‖Lq ([0,T ],Lr (�)) ≥ C(Y )h
1
3+

5
3r , where C(Y ) =

(
c0

4
Y

)1/q

.

We deduce that for β ≤ β(r)− ε,

hβ‖Uh‖Lq ([0,T ],Lr (�)) ≥ C(Y )h
β(r)−εh

1
3+

5
3r � ‖Uh|t=0‖L2(�) + h‖∂tUh|t=0‖L2 ,

where we recall that Y was fixed, depending on b and, hence, on � only. ut

3.4.4. End of proof of Theorem 2.2. We can now finish the proof of Theorem 2.2. Let
ε > 0 be as in Section 3 and let N be given by (3.27). Consider the L2 normalized
approximate solution to (2.4),

vnh,ε(x, y, t) :=
1

‖Uh(·, 0)‖L2(�)

unh(x, y, t),

and set

Ṽh,ε(x, y, t) :=
N∑
n=0

vnh(x, y, t) =
1

‖Uh(·, 0)‖L2(�)

Uh(x, y, t).
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We claim that Ṽh,ε and vnh satisfy the conditions of Theorem 2.2. Indeed, it follows from
Proposition 3.35 that for 4 < r <∞, vnh,ε satisfy ‖v

n
h,ε(·, t)‖Lr (�) ≥ Ch

−
3
2 (

1
2−

1
r
)− 1

6 (
1
4−

1
r
)+2ε for t ∈ Jn,

sup
ε>0
‖vnh,ε(·, t)‖L2(�) ≤ 1,

where in order to bound the L2 norms uniformly we use the fact that for t ∈ Jn,

‖unh(·, t)‖L2(�) ' ‖u
0
h(·, t)‖L2(�) ' ‖u

0
h(·, 0)‖L2(�) = ‖Uh(·, 0)‖L2(�).

From Proposition 3.28, the cusps vnh,ε have almost disjoint essential supports in the
time and tangential variables and for the normal variable in an interval of size a '
1
2Y

1/2h(1−ε)/2. Moreover, the approximate solution Ṽh,ε is localized at spatial frequency
1/h and satisfies

‖Ṽh,ε‖L2(�) . 1, ‖∂y Ṽh,ε‖L2(�) .
1
h
, ‖∂2

y Ṽh,ε‖L2(�) .
1
h2 ,

with constants independent of ε, which follows from the spectral localization together
with the uniform bounds of the derivatives of gnh with respect to y. From Proposition 3.23
and the almost orthogonality property of the supports in y we also obtain

�gṼh,ε = OL2(�)(1/h).

Proposition 3.32 ensures that the Dirichlet condition holds on �× [0, T ].
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