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Abstract. Following our previous paper in the radial case, we consider type II blow-up solutions to
the energy-critical focusing wave equation. Let W be the unique radial positive stationary solution
of the equation. Up to the symmetries of the equation, under an appropriate smallness assumption,
any type II blow-up solution is asymptotically a regular solution plus a rescaled Lorentz transform
of W concentrating at the origin.

1. Introduction

Consider the focusing energy-critical wave equation on an interval I (0 ∈ I ),{
∂2
t u−1u− |u|

4/(N−2)u = 0, (t, x) ∈ I × RN ,

u�t=0 = u0 ∈ Ḣ
1, ∂tu�t=0 = u1 ∈ L

2,
(1.1)

where u is real-valued, N ∈ {3, 4, 5}, L2
= L2(RN ) and Ḣ 1

= Ḣ 1(RN ).
The Cauchy problem (1.1) is locally well-posed in Ḣ 1

× L2. This space is invariant
under the scaling of the equation: if u is a solution to (1.1), λ > 0 and

uλ =
1

λ(N−2)/2 u(t/λ, x/λ),

then uλ is also a solution and ‖uλ(0)‖Ḣ 1 = ‖u0‖Ḣ 1 , ‖∂tuλ(0)‖L2 = ‖u1‖L2 .
The energy

E(u(t), ∂tu(t)) =
1
2

∫
(∂tu(t, x))

2 dx +
1
2

∫
|∇u(t, x)|2 dx

−
N − 2

2N

∫
|u(t, x)|2N/(N−2) dx
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Site de Saint Martin, 2, avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France;
e-mail: frank.merle@u-cergy.fr
C. Kenig: Department of Mathematics, University of Chicago, 5734 University Avenue,
Chicago, IL 60637-1514, USA; e-mail: cek@math.uchicago.edu



1390 Thomas Duyckaerts et al.

and the momentum ∫
∂tu(t, x)∇u(t, x) dx

are independent of t and also invariant under the scaling.
Let T+ ∈ (0,+∞] be the maximal positive time of definition for the solution u. The

local well-posedness theory does not rule out type II blow-up, i.e. solutions such that
T+ <∞ and

sup
t∈[0,T+)

(‖∂tu(t)‖
2
L2 + ‖∇u(t)‖

2
L2) <∞.

Examples of radial type II blow-up solutions of (1.1) were constructed in space dimension
N = 3 by Krieger, Schlag and Tataru [KST09]. Let

W =
1(

1+ |x|2

N(N−2)

)(N−2)/2 ,

which is a stationary solution of (1.1). From [KM08], if u is radial or N = 3, 4 and

sup
t∈[0,T+)

(‖∇u(t)‖2
L2 + ‖∂tu(t)‖

2
L2) < ‖∇W‖

2
L2 ,

then T+ = +∞ and the solution scatters forward in time, and in particular does not blow
up (see Corollary 1.5 below).

The threshold ‖∇W‖2
L2 is sharp in space dimension 3. Indeed from [KST09], for all

η0 > 0 there exists a radial type II blow-up solution such that

sup
t∈[0,T+)

(‖∇u(t)‖2
L2 + ‖∂tu(t)‖

2
L2) ≤ ‖∇W‖

2
L2 + η0. (1.2)

In our previous article [DKM09], we considered type II blow-up solutions such that (1.2)
holds. Our main result was the following.

If N = 3, there exists η0 > 0 such that for any radial solution u of (1.1) such that
T+(u) = T+ < ∞ that satisfies (1.2), there exist (v0, v1) ∈ Ḣ

1
× L2, a sign ι0 ∈ {±1},

and a smooth positive function λ(t) on (0, T+) such that limt→T+ λ(t)/(T+ − t) = 0 and,
as t

<
→ T+,

(u(t), ∂tu(t))− (v0, v1)−

(
ι0

λ(t)1/2
W

(
x

λ(t)

)
, 0
)
−−−→
t→T+

0 in Ḣ 1
× L2.

In this work we extend the above result to the nonradial case. To state our main result
we need to recall the following family of solutions, obtained as Lorentz transformations
of W :

W`(t, x) = W

(
x1 − t`
√

1− `2
, x

)
=

(
1+

(x1 − t`)
2

N(N − 2)(1− `2)
+

|x|2

N(N − 2)

)−(N−2)/2

, (1.3)

where x = (x2, . . . , xN ) and −1 < ` < 1. Denote by Ee1 the unit vector (1, 0, . . . , 0)
∈ RN . Then:
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Theorem 1. Assume that N = 3 or N = 5 and let η0 > 0 be a small parameter. Let u
be a solution of (1.1) such that T+ = T+(u) <∞ and

lim sup
t∈[0,T+)

(
‖∇u(t)‖2

L2 +
N − 2

2
‖∂tu(t)‖

2
L2

)
≤ ‖∇W‖2

L2 + η0. (1.4)

Then, after a rotation and a translation of the space RN , there exist (v0, v1) ∈ Ḣ
1
× L2,

a sign ι0 ∈ {±1}, a small real parameter ` and smooth functions x(t) ∈ RN , λ(t) > 0,
defined for t ∈ (0, T+), such that

(u(t), ∂tu(t))− (v0, v1)

−

(
ι0

λ(t)N/2−1W`

(
0,
· − x(t)

λ(t)

)
,

ι0

λ(t)N/2
(∂tW`)

(
0,
· − x(t)

λ(t)

))
→ [t → T+]0

in Ḣ 1
× L2 and

lim
t→T+

λ(t)

T+ − t
= 0, lim

t→T+

x(t)

T+ − t
= `Ee1, |`| ≤ Cη

1/4
0 . (1.5)

Remark 1.1. Note that using Lorentz transform and a localization argument on the so-
lutions of [KST09], it is possible, for any ` ∈ (−1,+1), to construct a solution of (1.1)
satisfying the conclusion of Theorem 1.

Remark 1.2. The restriction to small dimensions in Theorem 1, due to regularity issues
on the local Cauchy problem for (1.1), can be removed (at least for odd dimensions) using
harmonic analysis methods (see [BCL+09]).

The restriction to odd dimensions is only coming from Proposition 2.7 on the be-
haviour of solutions to the linear wave equation. In dimension 4, our proof shows a weaker
result, namely that there exist (after space rotation) a small parameter ` and sequences
tn→ T+, λn→ 0+, xn ∈ R4 such(

λnu(tn, λn · +xn), λ
2
n∂tu(tn, λn · +xn)

)
−−−⇀
n→∞

±(W`(0), ∂tW`(0))

weakly in Ḣ 1
× L2.

Remark 1.3. The constant (N − 2)/2 in front of ‖∂tu‖2L2 in (1.4) is necessary in non-
radial situations (see also Corollary 1.5 below). For radial data it can be replaced by any
small positive constant (see Corollary 1.5 and Remark 4.16 below).

One important ingredient of the proof of Theorem 1 is the classification of nonradial
solutions that are compact up to modulation under an appropriate smallness assumption:

Theorem 2. Assume N ∈ {3, 4, 5}. Let u be a nonzero solution of (1.1) with maximal
interval of definition Imax such that there exist functions λ(t), x(t) defined for t ∈ Imax
such that

K =
{(
λ(t)N/2−1u(t, λ(t)x + x(t)), λ(t)N/2∂tu(t, λ(t)x + x(t))

)
: t ∈ Imax

}
(1.6)
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has compact closure in Ḣ 1
× L2. Assume furthermore

sup
t∈Imax

∫
|∇u(t)|2 < 2

∫
|∇W |2. (1.7)

Then Imax = R and there exist ` ∈ (−1,+1), a rotation R of RN , λ0 > 0, X0 ∈ RN and
a sign ι0 ∈ {±1} such that

u(t, x) =
ι0

λ
(N−2)/2
0

W`

(
t

λ0
,
R(x)−X0

λ0

)
. (1.8)

Remark 1.4. The parameter ` and the rotation R in (1.8) are given by the energy and the
conserved momentum of u. Namely, under the asumptions of Theorem 2, E(u0, u1) ≥

E(W, 0), |`| = |
∫
∇u0u1|/E(u0, u1), and

u(t, x) =
ι0

λ
(N−2)/2
0

W`

(
t

λ0
,
x −X0

λ0

)
after a space rotation around the origin chosen so that

`Ee1 = −

∫
∇u0u1

E(u0, u1)
. (1.9)

We next give a corollary to Theorem 2, which corrects [KM08, Corollary 7.4] (stated
without a proof in [KM08]) for nonradial solutions. For N = 5, in the nonradial case, the
solutions W` for small ` 6= 0 give a counterexample to [KM08, Corollary 7.4], as can be
seen using the first line of Claim 2.5 below.

Corollary 1.5. Assume N ∈ {3, 4, 5}. Let u be a solution of (1.1) which satisfies

lim sup
t→T+(u)

[
‖∇u(t)‖2

L2 +
N − 2

2
‖∂tu(t)‖

2
L2

]
< ‖∇W‖2

L2 . (1.10)

Then T+(u) = +∞ and u scatters forward in time. If u is radial, (1.10) can be replaced
by

lim sup
t→T+(u)

‖∇u(t)‖2
L2 < ‖∇W‖

2
L2 . (1.11)

A more general version of Corollary 1.5 is given in Corollary 4.14 below.

Remark 1.6. Note that because of the variational estimate (2.9) below, Corollary 1.5 is in
fact a generalization of [KM08, Theorem 1.1, i)]. Note also that for N = 3, the statement
is stronger than the one of [KM08, Corollary 7.4].

Let us also a give a correct version of the second statement in [KM08, Corollary 7.5].
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Corollary 1.7. Let u be a solution of (1.1) such that T+(u) <∞ and

lim sup
t→T+(u)

(‖∇u(t)‖2
L2 + ‖∂tu(t)‖

2
L2) <∞.

Then there exist sequences xn ∈ R3 and tn→ T+(u) such that for all R,

lim
n→∞

∫
|x−xn|≤R

(
|∇u(tn, x)|

2
+
N − 2

2
|∂tu(tn, x)|

2
)
dx ≥

∫
|∇W |2 dx.

Corollary 1.7 follows from the arguments in [DKM09, Section 3] (see also the beginning
of Section 3 below) and we will omit its proof.

For more comments about results of the type of Theorem 1, we refer to the intro-
duction of [DKM09]. Theorem 1 is an analogue for the energy-critical wave equation of
the result of [MR05] about the mass-critical nonlinear Schrödinger equation. We next list
other previous related works that are also discussed in the introduction of [DKM09]: for
works about nonlinear wave maps see e.g. [CTZ93, STZ97, Str02, Str03, RS, KST08,
ST09, KS09, RR]; for articles about classification of solutions for other equations we
refer for example to [MM00, MM01, MM02, MR04, CF86, MZ07, MZ08].

Let us give a short sketch of the proof of Theorem 1. This proof is based on a new
strategy which allows us to treat the nonradial case, and also simplifies the proof of the
radial case in [DKM09].

In a first step (see Subsection 3.1), looking at a minimal element among the non-
scattering profiles associated to sequences (u(t ′n), ∂tu(t

′
n)) (where t ′n → T+), we get a

sequence tn→ T+ such that for some parameters λn, xn(
λ
N/2−1
n u(tn, λn · +xn), λ

N/2
n ∂tu(tn, λn · +xn)

)
−−−⇀
t→T+

(U0, U1) (1.12)

weakly in Ḣ 1
× L2, where the solution U of (1.1) with initial condition (U0, U1) is

compact up to symmetries of (1.1), as in Theorem 2.
The second step of the proof of Theorem 1 is Theorem 2, which implies that U must

beW` up to symmetries. The proof of Theorem 2, postponed to Section 4, is a refinement
of the proof of its radial analogue (see [DKM09]), which was based on techniques de-
velopped in [DM08]. To treat the nonradial case we introduce new monotonic quantities
which are nonsymmetric in the space variables. We also prove in §4.2 a more general
version of Corollary 1.5 which is also needed in Section 3. Let us mention that Section 4
is independent of Section 3.

In a third step of the proof (see Subsections 3.3 and 3.4), we show that the weak
convergence (1.12) is indeed a strong convergence in {|x| ≤ T+ − tn}. It is here that
Proposition 2.7 on the behaviour of solutions to the linear wave equation is used. We then
conclude using the minimality of the profile associated to tn that this strong convergence
also holds for all times as t → T+.

In addition to the parts of the paper mentioned above, Section 2 is devoted to some
preliminaries about the Cauchy problem, profile decomposition, the solution W`, and
Proposition 2.7 on the localization of the solutions to the linear wave equation. The ap-
pendix concerns modulation theory around W`.



1394 Thomas Duyckaerts et al.

Notation

In all the paper, we assume N ∈ {3, 4, 5} unless otherwise mentioned. We write a . b

or a = O(b) when the two positive quantities a and b satisfy a ≤ Cb for some large
constant C > 0, and a ≈ b when a . b and b . a. We also use the notation a = o(b)
when a/b goes to 0.

2. Preliminaries

2.1. Cauchy problem

The Cauchy problem for equation (1.1) was developed in [Pec84, GSV92, LS95, SS94,
SS98, Sog95, Kap94]. If I is an interval, we denote

S(I) = L
2(N+1)
N−2 (I × RN ), W(I) = L

2(N+1)
N−1 (I × RN ).

Let SL(t) be the one-parameter group associated to the linear wave equation. By defini-
tion, if (v0, v1) ∈ Ḣ

1
× L2 and t ∈ R, then v(t) = SL(t)(v0, v1) is the solution of

∂2
t v −1v = 0, (2.1)
v�t=0 = v0, ∂tv�t=0 = v1. (2.2)

We have

SL(t)(v0, v1) = cos(t
√
−1)v0 +

1
√
−1

sin(t
√
−1)v1.

By Strichartz and Sobolev estimates,

‖v‖S(R) + ‖D
1/2
x v‖W(R) + ‖D

−1/2
x ∂tv‖W(R) ≤ CS(‖v0‖Ḣ 1 + ‖v1‖L2).

A solution of (1.1) on an interval I , where 0 ∈ I , is a function u ∈ C0(I, Ḣ 1) such that
∂tu ∈ C

0(I, L2),

J b I ⇒ ‖u‖S(J ) + ‖D
1/2
x u‖W(J) + ‖D

−1/2
x ∂tu‖W(J) <∞

satisfying the Duhamel formulation

u(t) = SL(t)(u0, u1)+

∫ t

0

sin
(
(t − s)

√
−1

)
√
−1

(|u(s)|4/(N−2)u(s)) ds.

We recall that for any initial condition (u0, u1) ∈ Ḣ
1
× L2, there is a unique solution u,

defined on a maximal interval of definition Imax(u) = (T−(u), T+(u)). Furthermore, u
satisfies the blow-up criterion

T+(u) <∞ ⇒ ‖u‖S(0,T+(u)) = +∞. (2.3)
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As a consequence, if ‖u‖S(0,T+) < ∞, then T+ = +∞. Furthermore in this case, the
solution scatters forward in time in Ḣ 1

×L2: there exists a solution v of the linear equation
(2.1) such that

lim
t→+∞

(‖u(t)− v(t)‖Ḣ 1 + ‖∂tu(t)− ∂tv(t)‖L2) = 0.

Of course an analogous statement holds backward in time also.
If ‖SL(·)(u0, u1)‖S(I) = δ < δ1 for some small δ1, then u is globally defined and

close to the linear solution with initial condition (u0, u1) in the following sense: if A =
‖D

1/2
x SL(·)(u0, u1)‖W(I), we have

‖u(·)− SL(·)(u0, u1)‖S(I)

+ sup
t∈I

(
‖u(t)− SL(t)(u0, u1)‖Ḣ 1 + ‖∂tu(t)− ∂t (SL(t)(u0, u1))‖L2

)
≤ CAδ4/(N−2)

(2.4)

(see for example [KM08, proof of Theorem 2.7]).
We next recall the profile decomposition of H. Bahouri and P. Gérard [BG99]. This

paper is written in space dimension N = 3 but the results stated below hold in all dimen-
sions N ≥ 3 (see [Bul09]). See also [BC85] and [Lio85] for the elliptic case and [MV98]
for the Schrödinger equation.

Consider a sequence {(v0,n, v1,n)} which is bounded in Ḣ 1
× L2. Let {U jL }j≥1 be a

sequence of solutions of the linear equation (2.1), with initial data (U j0 , U
j

1 ) ∈ Ḣ
1
× L2,

and (λj,n; xj,n; tj,n) ∈ (0,+∞) × RN × R, j ≥ 1, n ∈ N, be a family of parameters
satisfying the pseudo-orthogonality relation

j 6= k ⇒ lim
n→∞

(
λj,n

λk,n
+
λk,n

λj,n
+
|tj,n − tk,n|

λj,n
+
|xj,n − xk,n|

λj,n

)
= +∞. (2.5)

We say that {(v0,n, v1,n)} admits a profile decomposition {U jL }j , {λj,n; xj,n; tj,n}j,n when
v0,n(x) =

J∑
j=1

1

λ
(N−2)/2
j,n

U
j
L

(
−tj,n

λj,n
,
x − xj,n

λj,n

)
+ wJ0,n(x),

v1,n(x) =

J∑
j=1

1

λ
N/2
j,n

∂tU
j
L

(
−tj,n

λj,n
,
x − xj,n

λj,n

)
+ wJ1,n(x),

(2.6)

with

lim
n→∞

lim sup
J→∞

‖wJn ‖S(R) = 0,

where wJn is the solution of (2.1) with initial conditions (wJ0,n, w
J
1,n). Then:
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Proposition 2.1 ([BG99, Bul09]). If the sequence {(v0,n, v1,n)} is bounded in the energy
space Ḣ 1

×L2, there always exists a subsequence of {(v0,n, v1,n)} which admits a profile
decomposition. Furthermore,

j ≤ J ⇒
(
λ
(N−2)/2
j,n wJn (tj,n, xj,n + λj,ny), λ

N/2
j,n ∂tw

J
n (tj,n, xj,n + λj,ny)

)
−−−⇀
n→∞

0

weakly in Ḣ 1
y × L

2
y , and the following Pythagorean expansions hold for all J ≥ 1:

‖v0,n‖
2
Ḣ 1 =

J∑
j=1

∥∥∥∥U jL(−tj,nλj,n

)∥∥∥∥2

Ḣ 1
+ ‖wJ0,n‖

2
Ḣ 1 + on(1),

‖v1,n‖
2
L2 =

J∑
j=1

∥∥∥∥∂tU jL(−tj,nλj,n

)∥∥∥∥2

L2
+ ‖wJ1,n‖

2
L2 + on(1),

E(v0,n, v1,n) =

J∑
j=1

E

(
U
j
L

(
−
tj,n

λj,n

)
, ∂tU

j
L

(
−
tj,n

λj,n

))
+ E(wJ0,n, w

J
1,n)+ on(1).

Notation 2.2. Consider a profile decomposition with profiles U
j
L and parameters

{λj,n; xj,n; tj,n}, and assume after extraction of a subsequence that tj,n/λj,n has a limit
in R ∪ {−∞,+∞}. We will denote by {U j } the nonlinear profiles associated with
(U

j
L , {−tj,n/λj,n}n), which are the unique solutions of (1.1) such that for large n,

−tj,n/λj,n ∈ Imax(U
j ) and

lim
n→∞

(∥∥∥∥U j(−tj,nλj,n

)
− U

j
L

(
−tj,n

λj,n

)∥∥∥∥
Ḣ 1
+

∥∥∥∥∂tU j(−tj,nλj,n

)
− ∂tU

j
L

(
−tj,n

λj,n

)∥∥∥∥
L2

)
= 0.

The existence of U j follows from the local existence for (1.1) if this limit is finite, and
from the existence of wave operators for equation (1.1) if tj,n/λj,n tends to ±∞.

By the Strichartz inequalities on the linear problem and the small data Cauchy theory,
if limn→∞−tj,n/λj,n = +∞, then T+(U j ) = +∞ and

s0 > T−(U
j ) ⇒ ‖U j‖S(s0,+∞) <∞; (2.7)

an analogous statement holds in the case limn→∞ tj,n/λj,n = +∞.
We will need the following approximation result, which follows from a long time

perturbation theory result for (1.1) and is an adaptation to the focusing case of the result
of Bahouri–Gérard (see the Main Theorem p. 135 in [BG99]). We refer to [BG99] for the
proof in the defocusing case and to [DKM09, Proposition 2.8] for a sketch of proof.

Proposition 2.3. Let {(v0,n, v1,n)}n be a bounded sequence in Ḣ 1
×L2 which admits the

profile decomposition (2.6). Let θn ∈ (0,+∞). Assume

∀j ≥ 1, ∀n,
θn − tj,n

λj,n
< T+(U

j ) and lim sup
n→∞

‖U j‖
S(−

tj,n
λj,n

,
θn−tj,n
λj,n

)
<∞. (2.8)
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Let un be the solution of (1.1) with initial data (v0,n, v1,n). Then for large n, un is defined
on [0, θn),

lim sup
n→∞

‖un‖S(0,θn) <∞,

and

∀t ∈ [0, θn), un(t, x) =

J∑
j=1

1

λ
(N−2)/2
j,n

U j
(
t − tj,n

λj,n
,
x − xj,n

λj,n

)
+wJn (t, x)+ r

J
n (t, x),

where

lim
n→∞

lim sup
J→∞

[
‖rJn ‖S(0,θn) + sup

t∈(0,θn)
(‖∇rJn (t)‖L2 + ‖∂t r

J
n (t)‖L2)

]
= 0.

An analogous statement holds if θn < 0.

2.2. Elliptic properties of the stationary solution and the solitary wave

We first recall a variational claim from [KM08]:

Claim 2.4. Let v ∈ Ḣ 1. Then

‖∇v‖2
L2 ≤ ‖∇W‖

2
L2 and E(v, 0) ≤ E(W, 0)

⇒ ‖∇v‖2
L2 ≤

‖∇W‖2
L2

E(W, 0)
E(v, 0) = NE(v, 0). (2.9)

Furthermore, there is a constant c > 0 such that if for some small ε > 0, ε ≤ ‖∇v‖2
L2 ≤(

N
N−2

)(N−2)/2
‖∇W‖2

L2 − ε, then E(v, 0) ≥ cε.

Proof. The first part of the claim is shown in [KM08]. For the second part, write

E(v, 0) =
1
2

∫
|∇v|2 −

N − 2
2N

∫
|v|2N/(N−2)

≥
1
2

∫
|∇v|2 −

N − 2
2N

C
2N/(N−2)
N

(∫
|∇v|2

)N/(N−2)

,

where CN = (
∫
|∇W |2)−1/N is the best constant in the Sobolev inequality ‖v‖2N/(N−2)

≤ CN‖∇v‖L2 . Let y =
∫
|∇v|2. Then

E(v, 0) ≥
1
2
y −

N − 2
2N

C
2N/(N−2)
N yN/(N−2)

= f (y).

The equation f (y) = 0 has two solutions, y = 0 and y∗ =
(
N
N−2

)(N−2)/2 ∫
|∇W |2, and

the statement follows from the fact that f ′(0) 6= 0 and f ′(y∗) 6= 0. ut
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In the following, we will consider the solitary wave solutions of (1.1), which are obtained
from W by a Lorentz transform

W`(t, x) = W

(
x1 − t`
√

1− `2
, x

)
=

(
1+

(x1 − t`)
2

N(N − 2)(1− `2)
+

|x|2

N(N − 2)

)(N−2)/2

,

where ` ∈ (−1, 1). We have:

Claim 2.5.

∀t,

∫
|∇W`(t)|

2
=
N + (1−N)`2

N
√

1− `2

∫
|∇W |2,

∫
(∂tW`(t))

2
=

`2

N
√

1− `2

∫
|∇W |2,

∀t,

∫
|∇W`(t)|

2
+
N − 2

2

∫
(∂tW`(t))

2
≥

(
1+

`4

8

)∫
|∇W |2,

E(W`(0), ∂tW`(0)) =
1

√
1− `2

E(W, 0),∫
∇W`(0)∂tW`(0) = −

`
√

1− `2
E(W, 0)Ee1 = −`E(W`(0), ∂tW`(0))Ee1.

Sketch of proof. All statements follow from explicit computations. To get the second line,
notice that by the first line,∫

|∇W`(t)|
2
+
N − 2

2

∫
(∂tW`(t))

2
−

∫
|∇W |2

=
1

√
1− `2

[
1−

√
1− `2 −

1
2
`2
] ∫
|∇W |2,

and use the standard inequality
√

1− x ≤ 1− 1
2x −

1
8x

2 for 0 ≤ x < 1. ut

We next state a uniqueness result for an asymmetric elliptic equation:

Lemma 2.6. Let f ∈ Ḣ 1(RN ) \ {0} and ` ∈ R. Assume

(1− `2)∂2
x1
f +

N∑
j=2

∂2
xj
f + |f |4/(N−2)f = 0 (2.10)

and ∫
|∇f |2 < 2

∫
|∇W |2. (2.11)

Then `2 < 1 and there exist λ > 0, X ∈ RN and a sign ± such that

f (x) = ±
1

λN/2−1W`

(
0,
x −X

λ

)
.
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Proof. Case `2
= 1. In this case f solves the equation 1xf + |f |4/(N−2)f = 0,

where x = (x2, . . . , xN ) and (for almost every x1) we have f (x1, . . .) ∈ Ḣ
1(RN−1),

f (x1, . . .) ∈ L
2∗(RN−1), 2∗ = 2N/(N − 2). Fix such an x1 and let F(x2, . . . , xN ) =

f (x1, x2, . . . , xN ). We will show that F = 0, using the Pohozaev identity in dimension
N − 1.

Until the end of this step we write x = (x2, . . . , xN ) and n = N − 1 to simplify
notation. By elliptic regularity F ∈ C2(Rn). Furthermore,

div(x|∇F |2) = n|∇F |2 + 2
∑
i,j

xi
∂2F

∂xi∂xj

∂F

∂xj
,

and

2 div((x · ∇F)∇F) = 2(x · ∇F)1F + 2∇(x · ∇F) · ∇F

= −2(x · ∇F)|F |4/(N−2)F + 2
∑
i,j

xi
∂2F

∂xi∂xj

∂F

∂xj
+ 2|∇F |2.

Hence

div(x|∇F |2)− 2 div((x · ∇F)∇F) = (n− 2)|∇F |2 + 2x · ∇
(
|F |2

∗

2∗

)
.

Let ϕ ∈ C∞0 (R
n) be such that ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 2. Let

ϕR(x) = ϕ(x/R). Then

div(xϕR|∇F |2)− 2 div((x · ∇F)∇FϕR)

= (n− 2)ϕR|∇F |2 + 2ϕRx · ∇
(
|F |2

∗

2∗

)
+ x · ∇ϕR |∇F |

2
− 2(∇F · ∇ϕR)(x · ∇F).

Next,

2 div
(
xϕR
|F |2

∗

2∗

)
= 2x · ∇ϕR

|F |2
∗

2∗
+ 2nϕR

|F |2
∗

2∗
+ 2ϕR x · ∇

(
|F |2

∗

2∗

)
.

Thus,

2ϕR x · ∇
(
|F |2

∗

2∗

)
= 2 div

(
xϕR
|F |2

∗

2∗

)
− 2x · ∇ϕR

|F |2
∗

2∗
− 2nϕR

|F |2
∗

2∗
.

Note that |x| |∇ϕR| is bounded independently of R, and when we integrate in x, the
corresponding terms go to 0 as R → +∞ by our assumption on f . When we integrate
the divergence terms we get 0. Thus, we conclude

(n− 2)
∫
|∇F |2 =

2n
2∗

∫
|F |2

∗

.
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If n = 2 we deduce that F = 0. Otherwise, using Hardy’s inequality and a cut-off, and
multiplying the equation 1F + |F |4/(N−2)F = 0 by F , we see that

∫
|∇F |2 =

∫
|F |2

∗

,
so that (

2n
2∗
− (n− 2)

)∫
|F |2

∗

= 0,

which again gives F ≡ 0. We have shown that f (x1, ·) = 0 for almost every x1, which
shows that f = 0, contradicting our assumption on f .

Case `2 > 1. Assume for example ` > 1. Consider the function

u(t, x) = f (x1 + `t, x2, . . . , xN ),

which solves (1.1) for all time. Note that ∇u(0, x) = ∇f (x) and that ∂tu(0, x) =
`∂x1f (x), so this is a global in time solution to (1.1) in the energy space. Let ε > 0
be given. Find M so large that∫

|x|≥M

(
|∇u(0, x)|2 + (∂tu(0, x))2 +

|u(0, x)|2

|x|2

)
dx ≤ ε.

By Proposition 2.17 in [KM08], for all t we have∫
|x|≥ 3

2M+|t |
(|∇xu(t, x)|

2
+ |∂tu(t, x)|

2) dx ≤ Cε.

Let K be a compact set of (x2, . . . , xN ) and a < b. If t > 0 is large, then

x1 ∈ (a − `t, b − `t) and (x2, . . . , xN ) ∈ K ⇒ |x| ≥ `t − A,

where A is a fixed constant depending on K and (a, b). Pick t so large that `t ≥ 3
2M +

t + A, which is possible since ` > 1. Then∫
K

∫ b−`t

a−`t

|∇u(t, x)|2 dx ≤ Cε

while ∇xu(t, x) = ∇f (x1 + `t, x2, . . . , xN ), so the integral equals
∫
K

∫ b
a
|∇f (x)|2,

which shows, since ε > 0 is arbitrary, that f ≡ 0, contradicting again our assumptions.

Case `2 < 1. Let
g(x) = f (

√
1− `2 x1, x2, . . . , xN ).

Note that
∫
|∇g|2 ≤

∫
|∇f |2 < 2

∫
|∇W |2. Moreover, by (2.10)

1g + |g|4/(N−2)g = 0.

By elliptic estimates, one finds that g is C2. Define

g+ = max(g, 0), g− = −min(g, 0) = g − g+.
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Then by Kato’s inequality, in the sense of distributions,

1g+ + |g+|
4/(N−2)g+ ≥ 0.

As a consequence ∫
|∇g+|

2
≤

∫
|g+|

2N/(N−2). (2.12)

Similarly ∫
|∇g−|

2
≤

∫
|g−|

2N/(N−2). (2.13)

Using that ∫
|∇g+|

2
+

∫
|∇g−|

2
=

∫
|∇g|2 < 2

∫
|∇W |2,

we get
∫
|∇g±|

2 <
∫
|∇W |2 for at least one of the signs + or −. To fix ideas, assume

that it is −. The bound (2.13) and Sobolev inequality imply that g− = 0. Indeed,

∫
|∇g−|

2
≤

∫
|g−|

2N/(N−2)
≤

∫
W 2N/(N−2)

(
∫
|∇W |2)N/(N−2)

(∫
|∇g−|

2
)N/(N−2)

.

Using that by the equation 1W = −W 2N/(N−2),
∫
W 2N/(N−2)

=
∫
|∇W |2, we get

either g− = 0 or
∫
|∇W |2 ≤

∫
|∇g−|

2, and the second possibility is ruled out by our
assumption on g−.

This shows that g = g+ is a nonnegative solution of

1g + |g|4/(N−2)g = 0,

and by [GNN81], there exist λ > 0 and X ∈ RN such that

g(x) =
1

λ(N−2)/2W

(
x −X

λ

)
.

Coming back to f , we get

f (x) =
1

λ(N−2)/2W

(
x1 −X1

λ
√

1− `2
,
x2 −X2

λ
, . . . ,

xN −XN

λ

)
=

1
λ(N−2)/2W`

(
0,
x −X

λ

)
. ut
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2.3. Linear behaviour

Proposition 2.7. Assume that N ≥ 3 is odd. Let u0 ∈ Ḣ
1(RN ), u1 ∈ L

2(RN ) and uL be
the solution to

∂2
t u

L
−1uL

= 0, (2.14)
uL
�t=0 = u0, ∂tu

L
�t=0 = u1. (2.15)

Then

∀t ≥ 0,
∫
|x|≥t

(
|∇uL(t, x)|2 + (∂tu

L(t, x))2
)
dx ≥

1
2

∫
(|∇u0(x)|

2
+ u1(x)

2) dx,

or

∀t ≤ 0,
∫
|x|≥−t

(
|∇uL(t, x)|2 + (∂tu

L(t, x))2
)
dx ≥

1
2

∫
(|∇u0(x)|

2
+ u1(x)

2) dx.

Recall that 1
2

∫
|x|≥|t |

(|∇uL(t, x)|2 + (∂tu
L(t, x))2) dx is a nonincreasing function of t for

t ≥ 0 and a nondecreasing function of t for t ≤ 0 (see e.g. [SS98, p. 12]). Thus the
following limits exist:

Eout
±∞(u0, u1) = lim

t→±∞

1
2

∫
|x|≥|t |

(
|∇uL(t, x)|2 + (∂tu

L(t, x))2
)
dx.

Then Proposition 2.7 will be a consequence of the following proposition:

Proposition 2.8. Let uL be as in Proposition 2.7. Then

Eout
+∞(u0, u1)+ E

out
−∞(u0, u1) =

1
2

∫
|∇u0|

2 dx +
1
2

∫
u2

1 dx.

We next prove Proposition 2.8. First note that we can assume by density that

(u0, u1) ∈ C
∞

0 (R
N ), (2.16)

and then by scaling that
supp(u0, u1) ⊂ {|x| ≤ 1}. (2.17)

Let us reduce the problem further, assuming (2.16) and (2.17). Let z1 (respectively z2) be
the solution to (2.14) with initial condition (u0, 0) (respectively (0, u1)). Then

z1(−t) = z1(t), z2(−t) = −z2(t).

We deduce∫
|x|≥|t |

∇z1(t, x) · ∇z2(t, x) dx +

∫
|x|≥|t |

∇z1(−t, x) · ∇z2(−t, x) dx = 0

and similarly∫
|x|≥|t |

∂tz1(t, x)∂tz2(t, x) dx +

∫
|x|≥|t |

∂tz1(−t, x)∂tz2(−t, x) dx = 0.
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Developing the equality uL
= z1 + z2 we get, for t ≥ 0,

1
2

∫
|x|≥t

(
|∇uL(t, x)|2+ (∂tu

L(t, x))2
)
dx+

1
2

∫
|x|≥t

(
|∇uL(−t, x)|2+ (∂tu

L(−t, x))2
)
dx

=

∫
|x|≥t

(
|∇z1(t, x)|

2
+ (∂tz1(t, x))

2) dx + ∫
|x|≥t

(
|∇z2(t, x)|

2
+ (∂tz2(t, x))

2) dx,
and thus, letting t →+∞,

Eout
+∞(u0, u1)+ E

out
−∞(u0, u1) = 2Eout

+∞(u0, 0)+ 2Eout
+∞(0, u1).

The conclusion of Proposition 2.8 will then follow from

Lemma 2.9. Let (u0, u1) ∈ C
∞

0 (R
N ) with supp(u0, u1) ⊂ {|x| ≤ 1}. Then

Eout
+∞(u0, 0) = Eout

−∞(u0, 0) =
1
4

∫
|∇u0|

2,

Eout
+∞(0, u1) = E

out
−∞(0, u1) =

1
4

∫
u2

1.

We need a preliminary calculus lemma:

Lemma 2.10. Let f ∈ C∞0 (R
N ), t > 0 (t large),ω0 ∈ RN with |ω0| = 1 and s0 ∈ (0, 1).

Then∫
SN−1∩{|ω+ω0|≤2/t}

f ((t + s0)ω0 + tω)t
N−1 dω

=

∫
SN−1∩{|ω−ω0|≤2/t}

f (−(t − s0)ω0 + tω)t
N−1 dω +O(1/t), (2.18)

where O is uniform in ω0, s0.

Proof. We expand the left hand side of (2.18) by chosing coordinates so that the origin
is s0ω0 and ω0 = EeN = (0, . . . , 0, 1). Then the set (t + s0)ω0 + tω, where ω ∈ SN−1

∩

{|ω + ω0| ≤ 2/t}, is the set of (y1, . . . , yN ) (in the new coordinates) so that

yN = t −

√
t2 − y2

1 − · · · − y
2
N−1 and

√
y2

1 + · · · + y
2
N ≤ 2.

In particular, in this set |yN | ≤ C/t . Using these coordinates to express the surface inte-
gral and replacing by yN = 0 asymptotically, and doing the corresponding argument for
the integral on the right hand side, we obtain the desired result. ut

It remains to prove Lemma 2.9 to conclude the proof of Proposition 2.8.

Proof of Lemma 2.9. We prove the first statement, the proof of the second one is similar.
By a well-known formula (see [SS98, p. 43] for instance), the solution z to (2.14) with
data (u0, 0) is given by

z(t, x0) = AN
∂

∂t

(
1
t

∂

∂t

)(N−3)/2(
tN−2

∫
SN−1

u0(x0 + tω) dω

)
, (2.19)
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where AN is a constant depending on N . Recalling that u0 ∈ C
∞

0 ({|x| < 1}), we deduce
(by the Huygens principle) that supp z(t, x0) ⊂

{
t − 1 ≤ |x0| ≤ t + 1

}
. For (t, x0) in the

support of z, write x0 = (t + s0)ω0, |ω0| = 1 and −1 < s0 < 1. From the condition on
the support of u0, we find that the preceding surface integrals are over |ω + ω0| ≤ 2/t ,
and thus the area of integration is less than C/tN−1 for large t . From (2.19), we get the
bound |(∇z, ∂tz)| ≤ C/t (N−1)/2, for large t , and from the condition |ω + ω0| ≤ 2/t ,

∇x0z(t, x0) = AN t
(N−1)/2

∫
SN−1
∇((ω0 · ∇)

(N−1)/2u0)(x0 + tω) dω +O(t−(N+1)/2),

∂tz(t, x0) = AN t
(N−1)/2

∫
SN−1

(ω0 · ∇)
(N+1)/2u0(x0 + tω) dω +O(t−(N+1)/2),

where
(ω · ∇)mu0 =

∑
j∈{1,...,N}m

ωj1 . . . ωjm∂xj1
. . . ∂xjmu0.

(See also [Chr86, Kla86].) By Lemma 2.10, if 0 < s0 < 1,

∇xz(t, (t + s0)ω0) = (−1)(N−1)/2
∇xz(t, (t − s0)(−ω0))+O(t−(N+1)/2),

∂tz(t, (t + s0)ω0) = (−1)(N+1)/2∂tz(t, (t − s0)(−ω0))+O(t−(N+1)/2).

Integrating, we get, for some constant CN ,∫
t<|x0|<1+t

|∇xz(t, x0)|
2 dx0

= CN

∫
0≤s0≤1

∫
SN−1
|∇xz(t, (t + s0)ω0)|

2(t + s0)
N−1 ds0 dω0

= CN t
N−1

∫
0≤s0≤1

∫
SN−1
|∇xz(t, (t + s0)ω0)|

2 ds0 dω0 +O(1/t)

= CN t
N−1

∫
−1≤s0≤0

∫
SN−1
|∇xz(t, (t + s0)ω0)|

2 ds0 dω0 +O(1/t)

=

∫
t−1≤|x0|≤t

∫
SN−1
|∇xz(t, x0)|

2 dx0 +O(1/t).

Arguing similarly for ∂tz, we obtain∫
t−1<|x0|<t

|∇xz(t, x0)|
2 dx0 +

∫
t−1<|x0|<t

|∂tz(t, x0)|
2 dx0

=

∫
t<|x0|<1+t

|∇xz(t, x0)|
2 dx0 +

∫
t<|x0|<1+t

|∂tz(t, x0)|
2 dx0 +O(1/t).

Letting t →+∞ and using the conservation of the energy 1
2

∫
|∇u0|

2 of z, we get

1
2

∫
|∇u0|

2
− Eout

+∞ = E
out
+∞,

which concludes the proof of the first statement of the lemma. ut
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2.4. A few identities

We conclude this section by gathering some useful identities for solutions of (1.1), which
follow from straightforward integration by parts. We define the density of energy by

e(u)(t, x) =
1
2
|∇u(t, x)|2 +

1
2
(∂tu(t, x))

2
−
N − 2

2N
|u|2N/(N−2). (2.20)

Claim 2.11. Let u be a solution of (1.1), k ∈ {1, . . . , N}, ϕ ∈ C1(Rt × RNx ,R) and
8 ∈ C1(Rt × RNx ,RN ), both compactly supported in the space variable. Then

d

dt

∫
ϕ u ∂tu =

∫
((∂tu)

2
− |∇u|2 + |u|2N/(N−2))ϕ

−

∫
u∇u · ∇ϕ +

∫
u ∂tu ∂tϕ, (2.21)

d

dt

∫
ϕ ∂xku ∂tu =

1
2

∫ (
−(∂tu)

2
+ |∇u|2 −

N − 2
N
|u|2N/(N−2)

)
∂xkϕ

−

N∑
j=1

∫
∂xku ∂xj u ∂xjϕ +

∫
∂xku ∂tu ∂tϕ, (2.22)

d

dt

∫
8 · ∇u ∂tu =

1
2

∫ (
−(∂tu)

2
+ |∇u|2 −

N − 2
N
|u|2N/(N−2)

)
div8

−

N∑
j,k=1

∫
∂xku ∂xj u ∂xj8k +

N∑
k=1

∫
∂xku ∂tu ∂t8k, (2.23)

d

dt

∫
ϕe(u) = −

∫
∇ϕ · ∇u ∂tu+

∫
∂tϕ e(u), (2.24)

where 8 = (81, . . . , 8N ), div8 =
∑
k ∂xk8k and all the integrals are taken over RN

with respect to the measure dx.

Claim 2.12. Let u be a solution of (1.1) which has compact support in x. Then

d

dt

∫
u ∂tu =

∫
((∂tu)

2
− |∇u|2 + |u|2N/(N−2)), (2.25)

d

dt

∫
xk ∂xku ∂tu =

1
2

∫ (
−(∂tu)

2
+ |∇u|2 −

N − 2
N
|u|2N/(N−2)

)
−

∫
(∂xku)

2,

(2.26)

d

dt

∫
x · ∇u ∂tu = −

N

2

∫
(∂tu)

2
+
N − 2

2

(∫
|∇u|2 − |u|2N/(N−2)

)
, (2.27)

d

dt

∫
xe(u) = −

∫
∇u ∂tu, (2.28)

d2

dt2

∫
u2
=

4
N − 2

∫
|∇u|2 +

4(N − 1)
N − 2

∫
(∂tu)

2
−

4N
N − 2

E(u0, u1). (2.29)
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3. Universality of the blow-up profile

In this section we assume Theorem 2 and Corollary 4.14 and prove Theorem 1. We as-
sume N ∈ {3, 4, 5} in §3.1 and §3.2, and N ∈ {3, 5} in §3.3 and §3.4. Let u be a solution
of (1.1) that blows up in finite time and which satisfies (1.4). To simplify notation we will
assume

T+ = 1.

From [DKM09], there exists a nonempty finite set S ⊂ RN , called the set of singular
points, such that the solution (u, ∂tu) has a strong limit in H 1

loc(R
N
\ S)× L2

loc(R
N
\ S)

as t → 1. Furthermore, adapting the proof of [DKM09, Prop. 3.9], in view of Corollary
1.5 we get

∀m ∈ S, ∀ε > 0, lim sup
t→1

∫
|x−m|≤ε

(
|∇u(t)|2 +

N − 2
2
|∂tu(t)|

2
)
≥

∫
|∇W |2.

By (1.4), there can be only one singular point. We will assume that this singular point is 0.
Denote by (v0, v1) the weak limit as t → 1 of (u(t), ∂tu) in Ḣ 1

×L2. Note that this limit
is strong away from x = 0. Let v be the solution of (1.1) such that (v, ∂tv)�t=1 = (v0, v1).
Let

a(t, x) = u(t, x)− v(t, x).

By finite speed of propagation,

supp a ⊂
{
(t, x) ∈ (T−, 1)× RN : |x| ≤ 1− t

}
.

Recall also that the following limits exist:

E0 = lim
t→1

E(a(t), ∂ta(t)) = E(u0, u1)− E(v0, v1), (3.1)

d0 = lim
t→1

∫
RN
∇a(t)∂ta(t) =

∫
RN
∇u0u1 −

∫
RN
∇v0v1. (3.2)

3.1. Compactness of a minimal element

We define the set of large profiles A ⊂ Ḣ 1
× L2 as follows: (U0, U1) is in A if and only

if the following conditions are both satisfied:

(a) there exist sequences {tn}, {xn}, {λn}, with tn ∈ (0, 1), tn → 1, xn ∈ RN , λn ∈
(0,+∞), such that(

λ
N/2−1
n a(tn, λnx + xn), λ

N/2
n ∂ta(tn, λnx + xn)

)
−−−⇀
n→∞

(U0, U1)

weakly in Ḣ 1
× L2,

(b) the solution U of (1.1) with initial condition (U0, U1) does not scatter in either time
direction, that is,

‖U‖
L

2(N+1)
N−2 (0,T+)

= ‖U‖
L

2(N+1)
N−2 (T−,0)

= ∞.
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Let us prove:

Proposition 3.1. Let u be as in Theorem 1. There exists (V0, V1) ∈ A which is minimal
for the energy, that is,

∀(U0, U1) ∈ A, E(V0, V1) ≤ E(U0, U1).

Moreover, the solution V of (1.1) with initial condition (V0, V1) is compact up to modu-
lation.

Proof. Step 1. Let us show that A is not empty. Indeed, we will show that for any se-
quence {tn} ∈ (0, 1)N such that tn → 1, there exists a subsequence of {tn} and sequences
{λn}, {xn} such that(

λ
N/2−1
n a(tn, λnx + xn), λ

N/2
n ∂ta(tn, λnx + xn)

)
−−−⇀
n→∞

(U0, U1) ∈ A.

Extracting subsequences if necessary, we may assume that the sequence (a(tn), ∂ta(tn))
has a profile decomposition {U jL }j , {λj,n; xj,n; tj,n}j,n. Consider the nonlinear profiles U j

associated to this profile decomposition. We will show that exactly one of these nonlinear
profiles does not scatter in any of the time directions, and that all others scatter in both
time directions.

We can write the profile decomposition
u(tn, x) = v(tn, x)+

J∑
j=1

1

λ
(N−2)/2
j,n

U
j
L

(
−tj,n

λj,n
,
x − xj,n

λj,n

)
+ wJ0,n(x),

∂tu(tn, x) = ∂tv(tn, x)+

J∑
j=1

1

λ
N/2
j,n

∂tU
j
L

(
−tj,n

λj,n
,
x − xj,n

λj,n

)
+ wJ1,n(x),

and consider it as a profile decomposition for the sequence (u(tn), ∂tu(tn)), where
(v(tn), ∂tv(tn)) is (up to an error which is o(1) in Ḣ 1

×L2) interpreted as a profileU0
L with

initial data (v0, v1) and parameters λ0,n = 1, t0,n = 0, x0,n = 0. Note that as λj,n → 0
for all j ≥ 1, the sequence of parameters {λ0,n; x0,n; t0,n}n is pseudo-orthogonal to all
sequences {λj,n; xj,n; tj,n}n, j ≥ 1, in the sense given by (2.5).

By Proposition 2.3, if all nonlinear profiles scatter forward in time, then umust scatter
forward in time, a contradiction. Fix n and let

Tn = min
j≥1

(λj,nT+(U
j )+ tj,n),

where the minimum is taken over all j such that T+(U j ) is finite. Consider the quantity

Fn(t) = max
j≥1

∫ t

0

∫
RN

∣∣∣∣U j( t − tj,nλj,n
,
x − xj,n

λj,n

)∣∣∣∣ 2(N+1)
N−2 dx dt

λN+1
j,n

, t ∈ [0, Tn).
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The fact that at least one of the profiles does not scatter forward in time shows that
Fn(t)→+∞ as t → Tn. Thus there exists a time τn ∈ (0, Tn) such that

Fn(τn) = C‖∇W‖2
L2−η0

, (3.3)

where the constant C
‖∇W‖2

L2−η0
is given by Corollary 4.14. By (3.3) and Proposition 2.3,

tn + τn < 1 for large n. Reordering the profiles, assume that the max in the definition of
Fn(τn) is attained for j = 1. By the definition of C

‖∇W‖2
L2−η0

, there exists sn ∈ [0, τn]

such that∥∥∥∥∇U1
(
sn − t1,n

λ1,n

)∥∥∥∥2

L2
+
N − 2

2

∥∥∥∥∂tU1
(
sn − t1,n

λ1,n

)∥∥∥∥2

L2
≥ ‖∇W‖2

L2 − 2η0.

By Pythagorean expansion and the bound (1.4), all the nonlinear profiles U j , j ≥ 2,
satisfy, for large n,∥∥∥∥∇U j( sn − tj,nλj,n

)∥∥∥∥2

L2
+
N − 2

2

∥∥∥∥∂tU j( sn − tj,nλj,n

)∥∥∥∥2

L2
≤ 3η0.

Choosing η0 small, we deduce by the small data theory that for j ≥ 2, U j scatters in both
time directions and satisfies

∀t ∈ R, ‖∇U j (t)‖2
L2 + ‖∂tU

j (t)‖2
L2 ≤ CNη0

for some constant CN > 0 depending only on N . We next show that U1 does not scat-
ter either forward or backward in time. Indeed, if U1 scatters forward in time, then by
Proposition 2.3, u scatters forward in time, a contradiction. On the other hand, if U1

scatters backward in time, we can use Proposition 2.3 again and the orthogonality of the
parameters to show that∫ tn

0

∫
|u|

2(N+1)
N−2 dx dt =

J∑
j=1

∫
−tj,n/λj,n

−(tj,n+tn)/λj,n

∫
|U j |

2(N+1)
N−2 dx dt

+

∫ tn

0

∫
|wJn |

2(N+1)
N−2 dx dt + o(1)

as n→∞, and thus
∫ 1

0

∫
RN |u|

2(N+1)/N−2 is finite, a contradiction with the fact that the
maximal time of existence of u is 1. This concludes the proof that U1 does not scatter in
any time direction. As a consequence, −t1,n/λ1,n is bounded and we can assume (time
translating the profile U1 and passing to a subsequence if necessary) that

t1,n = 0.

Thus the nonlinear profile U1 is exactly the solution of (1.1) with initial conditions
(U1

0 , U
1
1 ) and it does not scatter in either time direction. By the definition of U1,(
λ
N/2−1
1,n a(tn, λ1,nx + x1,n), λ

N/2
1,n ∂ta(tn, λ1,nx + x1,n)

)
−−−⇀
n→∞

(U1
0 , U

1
1 )

weakly in Ḣ 1
× L2, which shows that (U1

0 , U
1
1 ) ∈ A, concluding Step 1.
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Step 2. In this step we show that there exists (V0, V1) ∈ A with minimal energy. We first
note that by Claim 2.4, the energy of any element of A is nonnegative, so that

Emin = inf{E(U0, U1) : (U0, U1) ∈ A}

is a nonnegative number.
Note that any element of A is the only nonscattering profile of a profile decomposition

as in Step 1. This shows by Proposition 2.3 and Pythagorean expansion that the bound
(1.4) extends to A. More precisely

(U0, U1) ∈ A ⇒ sup
t∈Imax(U)

(
‖∇U(t)‖2

L2+
N − 2

2
‖∂tU(t)‖

2
L2

)
≤

∫
|∇W |2+η0, (3.4)

where U is the solution of (1.1) with initial data (U0, U1).
Consider a sequence {(U0,n, U1,n)} of elements of A such that

lim
n→∞

E(U0,n, U1,n) = Emin.

After extracting subsequences, one can consider a profile decomposition

U0,n(x) =

J∑
j=1

1

λ
N/2−1
j,n

V
j

L

(
−tj,n

λj,n
,
x − xj,n

λj,n

)
+ zJ0n(x), (3.5)

U1,n(x) =

J∑
j=1

1

λ
N/2
j,n

(∂tV
j

L )

(
−tj,n

λj,n
,
x − xj,n

λj,n

)
+ zJ1n(x). (3.6)

For all j we denote by V j the nonlinear profile associated to V jL , {−tj,n/λj,n}n. By the
definition of A, the solution Un of (1.1) with initial data (U0,n, U1,n) does not scatter in
either time direction and satisfies the bound (3.4). A similar argument to Step 1 shows
that there exists only one profile, say V 1, which does not scatter in either time direction,
that we can assume t1,n = 0 for all n, and that all other profiles V j , j ≥ 2, scatter in both
time directions.

To simplify notation, denote

V = V 1, V0 = V
1

L (0), V1 = ∂tV
1

L (0).

In particular(
λ
N/2−1
1,n U0,n(λ1,nx + x1,n), λ

N/2
1,n U1,n(λ1,nx + x1,n)

)
−−−⇀
n→∞

(V0, V1). (3.7)

For all n, as (U0,n, U1,n) is in A, there exist sequences {µk,n}k , {yk,n}k , {τk,n}k such that

τk,n ∈ (0, 1), lim
k→∞

τk,n = 1

and(
µ
N/2−1
k,n a(τk,n, µk,nx + yk,n), µ

N/2
k,n ∂ta(τk,n, µk,nx + yk,n)

)
−−−⇀
k→∞

(U0,n, U1,n) (3.8)
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weakly in Ḣ 1
× L2. In view of (3.7) and (3.8), we can obtain, via a diagonal extraction

argument (see Step 1 in the proof of Proposition 7.1 in [DKM09]), sequences {µn}, {yn},
{τn} such that

τn ∈ (0, 1), lim
n→∞

τn = 1

and (
µ
N/2−1
n a(τn, µnx + yn), µ

N/2
n ∂ta(τn, µnx + yn)

)
−−−⇀
k→∞

(V0, V1).

Thus (V 1
0 , V

1
1 ) ∈ A. By the decomposition (3.5), (3.6) and the Pythagorean expansion

properties of the profiles,

E(Un0 , U
n
1 ) = E(V0, V1)+

J∑
j=2

E(V j (0), ∂tV j (0))

+ E(wJ0,n(0), w
J
1,n(0))+ o(1) as n→∞.

Using that by Claim 2.4 all the profiles have nonnegative energy, and that E(Un0 , U
n
1 )

tends to Emin as n goes to∞, we obtain Emin ≥ E(V0, V1), and thus (as (V0, V1) ∈ A)

E(V0, V1) = Emin.

Step 3. We next show that the solution V of (1.1) with initial data (V0, V1) is compact up
to modulation. It is sufficient to show that for all sequences {tn} in the domain of existence
of V , there exist a subsequence of {tn} and sequences {λn}, {xn} such that(

λ
N/2−1
n V (tn, λnx + xn), λ

N/2
n ∂tV (tn, λnx + xn)

)
converges strongly in Ḣ 1

× L2 as n→∞.
Extracting subsequences, we may assume that the sequence {(V (tn), ∂tV (tn))} has a

profile decomposition {U jL }j , {λj,n; xj,n; tj,n}j,n. As before, (3.4) and the fact that V does
not scatter imply that there is only one nonlinear profile (say U1) that does not scatter,
and that we can choose t1,n = 0. By a diagonal extraction argument and Proposition 2.3,
we have

(U1
0 , U

1
1 ) ∈ A.

By the Pythagorean expansion for the energy,

Emin = E(V (tn), ∂tV (tn)) = E(U
1
0 , U

1
1 )+

J∑
j=2

E(U
j

0 (−tj,n/λj,n), U
j

1 (−tj,n/λj,n))

+ E(wJ0,n, w
J
1,n)+ o(1) as n→∞.

Using that E(U1
0 , U

1
1 ) ≥ Emin and that all the energies in the expansion are nonnegative,

we conclude by Claim 2.4 that U j = 0 for all j ≥ 2 and

lim
n→∞

(‖wJ0,n‖Ḣ 1 + ‖w
J
1,n‖L2) = 0.

The proof is complete. ut
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Corollary 3.2. Let u be as in Theorem 1. Let tn→1 be such that there exists (V0, V1)∈A
with E(V0, V1) = Emin and λ′n > 0, x′n ∈ RN so that(

λ
′N/2−1
n a(tn, λ

′
nx + x

′
n), λ

′
n
N/2

∂ta(tn, λ
′
nx + x

′
n)
)
−−−⇀
n→∞

(V0, V1) ∈ A. (3.9)

Then rotating the space variable around the origin, and replacing u by −u if necessary,
there exist λn, xn such that(

λ
N/2−1
n a(tn, λnx + xn), λ

N/2
n ∂ta(tn, λnx + xn)

)
−−−⇀
n→∞

(W`(0, x), ∂tW`(0, x)) (3.10)

for some ` ∈ R with
`4
‖∇W‖2

L2 ≤ 16η0. (3.11)
Furthermore for large n,

‖λ
N/2−1
n a(tn, λn · +xn)−W`(0, ·)‖2Ḣ 1 +

N − 2
2
‖λ
N/2
n ∂ta(tn, λn · +xn)− ∂tW`(0, ·)‖2L2

≤ 2η0, (3.12)

and
|E0 − E(W, 0)| + |d0| ≤ Cη

1/4
0 , (3.13)

where E0 and d0 are the limits of the energy and the momentum of a (see (3.1), (3.2)).

Proof. By Proposition 3.1, the solution V with initial condition (V0, V1) is compact up to
modulation. By Theorem 2, after a rotation of RN (and possibly changing u to−u), there
exist x0 ∈ RN and µ0 > 0 such that

(V0, V1) =

(
1

µ
N/2−1
0

W`

(
0,
· − x0

µ0

)
,

1

µ
N/2
0

∂tW`

(
0,
· − x0

µ0

))
.

Taking λn = µ0λ
′
n and xn = x′n + λnx0 we get (3.10).

By (3.10),

‖∇a(tn)‖
2
L2 = ‖∇W`(0)− λ

N/2
n ∇a(tn, λnx + xn)‖

2
L2 + ‖∇W`(0)‖2L2 + on(1).

Together with the analogous statement on the time derivative of a and with assumption
(1.4), we find that for large n,

‖∇W`(0)‖2L2 +
N − 2

2
‖∂tW`(0)‖2L2 + ‖∇W`(0)− λ

N/2
n ∇a(tn, λnx + xn)‖

2
L2

+
N − 2

2
‖∂tW`(0)− λ

N/2
n ∂ta(tn, λnx + xn)‖

2
L2 ≤ ‖∇W‖

2
L2 + 2η0. (3.14)

By Claim 2.5,

‖∇W`(0)‖2L2 +
N − 2

2
‖∂tW`(0)‖2L2 −

∫
|∇W |2 ≥

`4

8

∫
|∇W |2,

and thus (3.14) implies 16η0 ≥ `4 ∫
|∇W |2, and (3.11), (3.12) follow. The es-

timate (3.13) follows from (3.11), (3.12), and the fact that for small ` we have
|E(W, 0)− E(W`(0), ∂tW`(0))| ≤ C`2. ut
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3.2. A few estimates

Until the end of the proof, we fix a sequence tn as in Corollary 3.2, and we denote

ε̃0n(x) = a(tn, x)−
1

λ
N/2−1
n

W`

(
0,
x − xn

λn

)
, (3.15)

ε̃1n(x) = ∂ta(tn, x)−
1

λ
N/2
n

∂tW`

(
0,
x − xn

λn

)
. (3.16)

By (3.12) we have

lim sup
n→∞

(
‖∇ ε̃0n‖

2
L2 +

N − 2
2
‖ε̃1n‖

2
L2

)
≤ 2η0. (3.17)

Lemma 3.3. The parameters xn and λn satisfy

lim
n→∞

λn

1− tn
= 0, (3.18)

lim sup
n→∞

|xn|

1− tn
≤ Cη

1/4
0 . (3.19)

Proof. Using that |x| ≤ 1 − t on the support of a, we get |xn| ≤ C(1 − tn) and |λn| ≤
C(1− tn) (see [BG99, pp. 154–155]).

To prove (3.18), we argue by contradiction. Assume (after extraction) that for large n,

λn

1− tn
≥ c0 > 0. (3.20)

Notice that

λ
N/2−1
n a(tn, λnx + xn) 6= 0 ⇒ |x| ≤

1− tn
λn
+
|xn|

λn
⇒ |x| ≤

1
c0
+
C

c0
.

As W`(0) is the weak limit of the preceding function, we conclude that |x| ≤ C0 on the
support of W`(0), a contradiction.

To prove (3.19), denote by e(u) the density of energy defined by (2.20). Using that
u and v are solutions of (1.1) and that supp a ⊂ {|x| ≤ 1 − t}, we obtain (see (2.24) in
Claim 2.11)

d

dt

∫
RN
x(e(u)− e(v)) dx = −

∫
(∇u∂tu−∇v∂tv) = −d0. (3.21)

Furthermore,∣∣∣∣∫
RN
x(e(u)− e(v)) dx

∣∣∣∣ = ∣∣∣∣∫
|x|≤(1−t)

x(e(u)− e(v)) dx

∣∣∣∣ ≤ C(1− t),
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and thus

lim
t→1

∫
RN
x(e(u)− e(v)) dx = 0.

Integrating (3.21) between tn and 1, we get∫
RN
x (e(u)− e(v))(tn) dx = d0(1− tn), (3.22)

and thus by (3.13), ∣∣∣∣∫
RN
x(e(u)− e(v))(tn) dx

∣∣∣∣ ≤ Cη1/4
0 (1− tn). (3.23)

Recall that λN/2−1
n a(tn, λn · +xn) converges weakly to W`(0) and that u(tn) converges

weakly to v(1) in Ḣ 1 as n→∞. Thus

‖∇W`(0)‖2L2 ≤ lim sup
n→∞

‖∇a(tn)‖
2
L2

= lim sup
n→∞

(‖∇u(tn)‖
2
L2 − 2〈∇u(tn),∇v(tn)〉L2 + ‖∇v(tn)‖

2
L2)

= −‖∇v(1)‖2
L2 + lim sup

n→∞
‖∇u(tn)‖

2
L2 .

Using this together with the analogous statements on the time derivatives, we see that
(1.4) implies that

‖∇W`(0)‖2L2 +
N − 2

2
‖∂tW`(0)‖2L2 + ‖∇v(1)‖2 +

N − 2
2
‖∂tv(1)‖2 ≤ ‖∇W‖2L2 + η0,

and thus for large n, using the continuity of v and that, by Claim 2.5, ‖∇W‖2
L2 ≤

‖∇W`(0)‖2L2 +
N−2

2 ‖∂tW`(0)‖2L2 ,

‖v(tn)‖
2
Ḣ 1 +

N − 2
2
‖∂tv(tn)‖

2
L2 ≤ 2η0. (3.24)

Thus (3.23) implies ∣∣∣∣∫
RN
x e(a)(tn) dx

∣∣∣∣ ≤ Cη1/4
0 (1− tn). (3.25)

By (3.15)–(3.17) there exists A > 0 such that for large n,∫
|x−xn|/λn≥A

(|∇a|2 + (∂ta)
2
+ |a|2N/(N−2)) ≤ Cη0 ≤ Cη

1/4
0 .

As a consequence, for large n (using that |x| ≤ 1− tn on the support of a),∣∣∣∣∫
|x−xn|≥Aλn

xe(a)(tn)

∣∣∣∣ ≤ Cη1/4
0 (1− tn). (3.26)
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On the other hand,∫
|x−xn|≤Aλn

xe(a)(tn) =

∫
|x−xn|≤Aλn

(x − xn)e(a)(tn)+ xn

∫
|x−xn|≤Aλn

e(a)(tn). (3.27)

By (3.18),

lim
n→∞

1
1− tn

∣∣∣∣∫
|x−xn|≤Aλn

(x − xn)e(a)(tn)

∣∣∣∣ = 0. (3.28)

Furthermore, using that η0 is small, we find by (3.17) that if A is chosen large,

lim inf
n→∞

∫
|x−xn|≤Aλn

e(a)(tn) ≥
1
2
E(W`(0), ∂tW`(0)). (3.29)

Combining (3.25)–(3.29) we get the desired estimate (3.19). ut

3.3. Strong convergence to the solitary wave for a sequence of times

Until the end of Section 3, we assume N ∈ {3, 5}.

Proposition 3.4. Let {tn} be any sequence as in Corollary 3.2. Then there exists ` ∈
(−1, 1) such that (rotating again the space variable around the origin and replacing u by
−u if necessary),

lim
n→∞

(
λ
N/2−1
n a(tn, λnx + xn), λ

N/2
n ∂ta(tn, λnx + xn)

)
= (W`(0), ∂tW`(0))

strongly in Ḣ 1
× L2.

Proof. Step 1. Rescaling and application of the linear lemma. We first rescale the solu-
tions. Let

gn(τ, y) = (1− tn)N/2−1u(tn + (1− tn)τ, (1− tn)y), (g0n, g1n) = (gn(0), ∂τgn(0)),

and

hn(τ, y) = (1− tn)N/2−1v(tn + (1− tn)τ, (1− tn)y), (h0n, h1n) = (hn(0), ∂τhn(0)).

Then for all n, gn is a solution to (1.1) with maximal time of existence 1, and hn is a
globally defined solution of (1.1). By (3.15)–(3.17),

g0n(y) = h0n(y)+
1

µ
N/2−1
n

W`

(
0,
y − yn

µn

)
+ ε0n(y), (3.30)

g1n(y) = h1n(y)+
1

µ
N/2
n

∂tW`

(
0,
y − yn

µn

)
+ ε1n(y), (3.31)

where

µn =
λn

1− tn
→ 0, yn =

xn

1− tn
, |yn| ≤ Cη

1/4
0 ,
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and

ε0n =
1

µ
N/2−1
n

ε̃0n

(
y − yn

µn

)
, ε1n =

1

µ
N/2
n

ε̃0n

(
y − yn

µn

)
.

We argue by contradiction. We must show that (ε̃0n, ε̃1n) tends to 0 in Ḣ 1
× L2, i.e. that

(ε0n, ε1n) tends to 0 in Ḣ 1
× L2. Assume (after extraction) that

lim
n→∞

(‖ε0n‖
2
Ḣ 1 + ‖ε1n‖

2
L2) = δ1 > 0.

Using that |x| ≤ 1− tn on the support of a, we obtain

lim
n→∞

∫
|y|≥1

[|∇ε0n(y)|
2
+ (ε1n(y))

2] = 0. (3.32)

We denote by εL
n (respectively εn) the solution to the linear wave equation (respectively

the nonlinear wave equation) with initial condition (ε0n, ε1n). Applying Proposition 2.7
to εL

n, we deduce (in view of (3.32)) that for large n, the following holds for all τ > 0, or
for all τ < 0: ∫

|τ |≤|y−yn|≤2+|τ |
[|∇εL

n(τ )|
2
+ (∂tε

L
n(τ ))

2] ≥
δ1

4
. (3.33)

Step 2. Concentration of some energy outside the light cone. In Step 3 we will show that
if (3.33) holds for all τ > 0, then for large n,∫

3/4≤|y−yn|≤3

[∣∣∣∣∇gn(3
4

)∣∣∣∣2 + (∂tgn(3
4

))2]
≥
δ1

16
, (3.34)

and if (3.33) holds for all τ < 0, then for a small r0 > 0 and for large n,∫
|τn|≤|y−yn|≤|τn|+10

[|∇gn(τn)|2 + (∂tgn(τn))2] ≥
δ1

16
, where τn = −

r0

1− tn
. (3.35)

In this step we show that (3.34) or (3.35) yield a contradiction. If (3.34) holds, then for
large n, ∫

3
4≤
|x−xn|
1−tn

≤3

[∣∣∣∣∇u(3
4
+
tn

4

)∣∣∣∣2 + (∂tu(3
4
+
tn

4

))2]
≥
δ1

16
.

Let t ′n = 3/4+ tn/4→ 1 as n→∞. Then the preceding inequality implies∫
2(1−t ′n)≤|x|≤13(1−t ′n)

[|∇u(t ′n)|
2
+ (∂tu(t

′
n))

2] ≥
δ1

16
. (3.36)

Indeed, by (3.19), and using that 1− t ′n = (1− tn)/4, we get, for large n,

3
4
≤
|x − xn|

1− tn
≤ 3 ⇒ 3 ≤

|x − xn|

1− t ′n
≤ 12 ⇒ 3− Cη1/4

0 ≤
|x|

1− t ′n
≤ 12+ Cη1/4

0 ,

and (3.36) follows if η0 is small.
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If |x| ≥ 1− t ′n, then v(t ′n, x) = u(t
′
n, x), and by (3.36) we obtain, for large n,∫

2(1−t ′n)≤|x|≤13(1−t ′n)
[|∇v(t ′n)|

2
+ (∂tv(t

′
n))

2] ≥
δ1

16
,

a contradiction with the fact that (v, ∂tv) ∈ C0(R, Ḣ 1
× L2) (and thus the preceding

integral tends to 0 as n goes to∞).
In the case where (3.35) holds, we obtain, for large n,∫

r0
1−tn
≤
|x−xn|
1−tn

≤
r0

1−tn
+10

[|∇u(tn − r0)|2 + (∂tu(tn − r0))2] dx ≥
δ1

16
,

which yields a contradiction in a similar manner.

Step 3. Nonlinear approximation. It remains to prove (3.34) and (3.35). We will focus on
the proof of (3.34). The proof of (3.35) is similar and we leave the details to the reader.

Let A be a large positive number to be specified later. Recall that εn is the solution of
(1.1) with initial condition (ε0n, ε1n). In view of (3.30), (3.31) we get

gn(Aµn, y) = hn(Aµn, y)+
1

µ
N/2−1
n

W`

(
A,
y − yn

µn

)
+ εn(Aµn, y)+ on(1) in Ḣ 1, (3.37)

∂tgn(Aµn, y) = ∂thn(Aµn, y)+
1

µ
N/2
n

∂tW`

(
A,
y − yn

µn

)
+ ∂tεn(Aµn, y)+ on(1) in L2. (3.38)

To show this, write a profile decomposition {U jL }j≥3, {λj,n, xj,n, tj,n}j,n for the sequence
(ε0n, ε1n) and notice that the equalities

g0n(y) = h0n(y)+
1

µ
N/2−1
n

W`

(
0,
y− yn

µn

)
+

J∑
j=3

1

λ
N/2−1
j,n

U
j
L

(
−tj,n

λj,n
,
x− xj,n

λj,n

)
+wJ0n,

g1n(y) = h1n(y)+
1

µ
N/2
n

∂tW`

(
0,
y− yn

µn

)
+

J∑
j=3

1

λ
N/2
j,n

∂tU
j
L

(
−tj,n

λj,n
,
x− xj,n

λj,n

)
+wJ1n

provide a profile decomposition for the sequence (g0n, g1n), where two additional profiles
U1

L and U2
L are given by the solutions of the linear wave equation with initial conditions

(v0, v1) and (W`(0), ∂tW`(0)) respectively, and t1n = t
2
n = 0, x1

n = 0, x2
n = yn, λ1,n =

1 − tn, λ2,n = µn. Applying Proposition 2.3 to both sequences (ε0n, ε1n) and (g0n, g1n)

we get (3.37), (3.38). Note that it is also possible to show directly (3.37), (3.38) from a
long-time perturbation result, without relying on profile decomposition.
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Let ψ ∈ C∞0 (R
N ) be a radial function such that ψ(x) = 1 for |x| ≤ 1/3 and

ψ(x) = 0 for |x| ≥ 2/3. Write (3.37), (3.38) as

gn(Aµn, y) =

(
1− ψ

(
y

30

))
hn(Aµn, y)+ ψ

(
y − yn

Aµn

)
1

µ
N/2−1
n

W`

(
A,
y − yn

µn

)
+ ε0n(y),

∂tgn(Aµn, y) =

(
1− ψ

(
y

30

))
∂thn(Aµn, y)+ ψ

(
y − yn

Aµn

)
1

µ
N/2
n

∂tW`

(
A,
y − yn

µn

)
+ ε1n(y),

where as n→∞, in Ḣ 1
× L2,

ε0n = ψ

(
y

30

)
hn(Aµn)+

(
1− ψ

(
y − yn

Aµn

))
1

µ
N/2−1
n

W`

(
A,
y − yn

µn

)
+ εn(Aµn)

+ o(1),

ε1n = ψ

(
y

30

)
∂thn(Aµn)+

(
1− ψ

(
y − yn

Aµn

))
1

µ
N/2
n

∂tW`

(
A,
y − yn

µn

)
+ ∂tεn(Aµn)

+ o(1).

Then as n→∞.

‖ε0n − ε
L
n(Aµn)‖Ḣ 1 . ‖εn(Aµn)− ε

L
n(Aµn)‖Ḣ 1 +

√∫
|x|≥A/3

|∇W`(A, x)|2

+

√∫
|x|≤20(1−tn)

|∇v(tn + (1− tn)Aµn, x)|2 + o(1), (3.39)

and similarly

‖ε1n − ∂tε
L
n(Aµn)‖L2 . ‖∂tεn(Aµn)− ∂tε

L
n(Aµn)‖L2 +

√∫
|x|≥A/3

|∂tW`(A, x)|2

+

√∫
|x|≤20(1−tn)

|∂tv(tn + (1− tn)Aµn, x)|2 + o(1). (3.40)

As ` ≤ Cη1/4
0 , we can assume that ` is small, and thus, by the explicit expression of W`,

if A is chosen large enough,√∫
|x|≥A/3

|∇W`(A, x)|2 +

√∫
|x|≥A/3

|∂tW`(A, x)|2 ≤

√
δ1

10000
. (3.41)

Furthermore by the small data theory (see (2.4)), if n is large,(
‖εn(Aµn)− ε

L
n(Aµn)‖

2
Ḣ 1 + ‖∂tεn(Aµn)− ∂tε

L
n(Aµn)‖

2
Ḣ 1

)1/2
≤

√
δ1

10000
. (3.42)
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For large n, combining (3.39)–(3.42), we get

(
‖ε0n − ε

L
n(Aµn)‖

2
Ḣ 1 + ‖ε1n − ∂tε

L
n(Aµn)‖

2
L2

)1/2
≤

√
δ1

1000
. (3.43)

Furthermore, by the definition of ε0n and ε1n,

y

10
≤ 1 and

∣∣∣∣y − ynµnA

∣∣∣∣ ≥ 2
3
⇒ gn(Aµn) = ε0n and ∂tgn(Aµn) = ε1n.

Using again that η0 is small, and that |yn| ≤ Cη
1/4
0 , we get

2
3
Aµn ≤ |y − yn| ≤ 9 ⇒ gn(Aµn) = ε0n and ∂tgn(Aµn) = ε1n. (3.44)

Let εn (respectively εL
n) be the solution to (1.1) (respectively to the linear wave equation)

with initial data (ε0n, ε1n). By (3.43) and the conservation of the energy for the linear
equation,

(
‖εL
n(σ )− ε

L
n(σ + Aµn)‖

2
Ḣ 1 + ‖∂tε

L
n(σ )− ∂tε

L
n(σ + Aµn)‖

2
L2

)1/2
≤

√
δ1

1000
. (3.45)

By the small data theory (see (2.4)), using that δ1 ≤ η0, and that η0 is small, we get

(
‖εn(σ )− ε

L
n(σ )‖

2
Ḣ 1 + ‖∂tεn(σ )− ∂tε

L
n(σ )‖

2
L2

)1/2
≤

√
δ1

1000
. (3.46)

Combining (3.45) and (3.46) with (3.33) we obtain, taking σ = 3/4−Aµn (and τ = 3/4
in (3.33)), ∫

3/4≤|y−yn|≤3

∣∣∣∣∇εn(3
4
− Aµn

)∣∣∣∣2 + ∣∣∣∣∂tεn(3
4
− Aµn

)∣∣∣∣2 ≥ δ1

10

for large n. By (3.44) and the finite speed of propagation, we get

gn

(
3
4

)
= εn

(
3
4
− Aµn

)
for

3
4
−

1
3
Aµn ≤ |y − yn| ≤ 8,

hence (3.34). ut

Corollary 3.5.

E0 = E(W`, ∂tW`) = Emin, (3.47)
d0 = −E0`Ee1, (3.48)

where Ee1 = (1, 0, . . . , 0) ∈ RN .
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Proof. By definition, E0 = limt→1 E(a(t), ∂ta(t)). The fact that E0 = Emin follows
from the choice of tn and the strong convergence of the sequence (a(tn), ∂ta(tn)). To
complete the proof of (3.47), observe that

E0 = lim
n→∞

E(a(tn), ∂ta(tn)) = E(W`, ∂tW`).

The equality (3.48) follows from

d0 = lim
n→∞

∫
∇a(tn)∂ta(tn) =

∫
∇W`(0)∂tW`(0) = −`E(W`, ∂tW`)Ee1.

(See Claim 2.5.) ut

3.4. Strong convergence for all times and end of the proof

Lemma 3.6. Let {t ′n} ∈ (0, 1)N be any sequence such that t ′n→ 1 as n→∞. Then there
exist λ′n, x′n and a sign ± such that

lim
n→∞

λ
′N/2
n a(t ′n, λ

′
nx + x

′
n) = ±W`(0) in Ḣ 1,

lim
n→∞

λ
′N/2−1
n ∂ta(t

′
n, λ
′
nx + x

′
n) = ±∂tW`(0) in L2,

where ` = −d0/E0.

Proof. Consider a profile decomposition {U jL }j , {λj,n; xj,n; tj,n}j,n associated to the se-
quence (a(t ′n), ∂ta(t

′
n)). Let {U j }j be the corresponding nonlinear profiles. Reordering

the profiles, we can assume as usual that all solutions U j , j ≥ 2, scatter forward and
backward in time, that t1,n = 0, and that U1 does not scatter in either time direction. By
the definition of A, we deduce that U1

∈ A. By the Pythagorean expansion of the energy
and the Ḣ 1

× L2 norm we find that for all J , as n→∞,

E(a(t ′n), ∂ta(t
′
n)) = E(U

1
0 , U

1
1 )

+

J∑
j=2

E(U
j

0 , U
j

1 )+E(w
J
0,n, w

J
1,n)+ o(1), (3.49)

‖a(t ′n)‖
2
Ḣ 1 +

N − 2
2
‖∂ta(t

′
n)‖

2
L2 =

J∑
j=1

(∥∥∥∥U j(−tj,nλj,n

)∥∥∥∥2

Ḣ 1
+
N − 2

2

∥∥∥∥∂tU j(−tj,nλj,n

)∥∥∥∥2

L2

)
+‖wJ0,n‖

2
Ḣ 1 +

N − 2
2
‖wJ1,n‖

2
L2 + o(1). (3.50)

By (1.4), (3.50) and Claim 2.4, we deduce that all the energies in (3.49) are positive. By
Corollary 3.5,

lim
n→∞

E(a(t ′n), ∂ta(t
′
n)) = Emin ≤ E(U

1, ∂tU
1).
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As a consequence, E(U1, ∂tU
1) = Emin and for all J ≥ 2,

lim
n→∞

J∑
j=2

E(U
j

0 , U
j

1 )+ E(w
J
0,n, w

J
1,n) = 0.

By Claim 2.4 again, this shows there are no other nonzero profiles than U1 and that
(wJ0,n, w

J
1,n), which does not depend on J ≥ 2, goes to 0 in Ḣ 1

× L2 as n→∞.
Using that E(U1

0 , U
1
1 ) = Emin, we can apply Proposition 3.4 to the sequence t ′n,

which shows that there exists a rotation R of RN (centred at the origin), x0 ∈ RN , λ0 > 0,
`′ ∈ (−1, 1) and a sign ± such that

U1(t, x) = ±
1

λ
N/2−1
0

W`′

(
t

λ0
,R
(
x − x0

λ0

))
.

By Corollary 3.5, `′ = −E0/d0 and

`Ee1 = `
′R(Ee1),

which shows that R is a rotation with axis (0, Ee1), and that ` = `′. As a consequence
(using that W` if invariant under this type of rotation),

1

λ
N/2−1
0

W`

(
t

λ0
,
x − x0

λ0

)
=

1

λ
N/2−1
0

W`′

(
t

λ0
,R
(
x − x0

λ0

))
,

concluding the proof of Lemma 3.6. ut

Corollary 3.7. There exist parameters λ(t) and x(t), defined for t ∈ [0, 1), such that

lim
t→1

(
λ(t)N/2−1a(t, λ(t)y + x(t)), λ(t)N/2∂ta(t, λ(t)y + x(t))

)
= (W`(0), ∂tW`(0)). (3.51)

Furthermore,

lim
t→0

λ(t)

1− t
= 0, sup

t∈[0,1)

|x(t)|

1− t
≤ Cη

1/4
0 . (3.52)

Proof. By Proposition 3.4, there exists a sequence tn→ 1 such that

lim
n→∞

inf
λ0>0
x0

(‖λ
N/2−1
0 a(tn, λ0y+x0)−W`(0)‖Ḣ 1+‖λ

N/2
0 ∂ta(tn, λ0y+x0)−∂tW`(0)‖L2)

= 0. (3.53)

We show (3.51) by contradiction. Assume that there exist c0 > 0 and a sequence τn→ 1
such that for all n,

inf
λ0>0
x0

(‖λ
N/2−1
0 a(τn, λ0y + x0)−W`(0)‖Ḣ 1 + ‖λ

N/2
0 ∂ta(τn, λ0y + x0)− ∂tW`(0)‖L2)

= c0. (3.54)



Blow-up for energy-critical wave 1421

In view of (3.53), using the continuity of the Ḣ 1
× L2- valued map t 7→ (a(t), ∂ta(t)),

we can change the sequence τn in (3.54) so that 0 < c0 ≤ ‖W`(0)‖Ḣ 1+‖∂tW`(0)‖L2 . By
Lemma 3.6 we get a contradiction, which shows (3.51). The estimate in (3.52) follows by
Lemma 3.3. ut

To complete the proof of Theorem 1, it remains to show the second equality of (1.5),
which is done in the next lemma:

Lemma 3.8. The translation parameter x(t) of Corollary 3.7 satisfies

lim
t→1

x(t)

1− t
= −`Ee1. (3.55)

Proof. It is sufficient to fix a sequence {tn} such that tn → 1, and show that (3.55) holds
along a subsequence of {tn}.

From (3.22) in the proof of Lemma 3.3, we have

1
1− tn

∫
RN
x(e(u)− e(v))(tn) dx = d0 = −E0`Ee1 = −E(W`(0), ∂tW`(0))Ee1.

Using that (v, ∂tv) is continuous from R to Ḣ 1
×L2 and that a is supported in {|x|≤1−t},

we get
1

1− tn

(∫
RN
xe(a)(tn)−

∫
RN
x(e(u)− e(v))(tn) dx

)
−−−→
n→∞

0.

Expanding ∫
RN
xe(a)(tn) =

∫
RN
(x − x(tn))e(a)(tn)+ x(tn)

∫
RN
e(a)(tn),

and using (3.51), one can show (3.55). The proof is similar to the end of proof of Lemma
3.3 and we skip it. ut

4. Classification of compact solutions

In all this section we assume N ∈ {3, 4, 5}.

Definition 4.1. Let u be a solution of (1.1). We will say that u is compact up to modu-
lation when there exist functions λ(t), x(t) on Imax(u) such that K defined by (1.6) has
compact closure in Ḣ 1

× L2.

Note that if λ(t) and x(t) exist as in Definition 4.1, we can always replace them by smooth
functions of t (see [KM06]).

In this section, we show Theorem 2, i.e. that the only solutions that are compact up to
modulation and satisfy the bound (1.7) are (up to the transformations of the equation) the
solutionsW`. After a preliminary subsection about modulation parameters aroundW`, we
show in §4.2 that all compact solutions are globally defined. In §4.3 we show that there
exist two sequences of times (one going to +∞, the other to −∞) for which the solution
converges to W` up to a time dependent modulation. In §4.4 we conclude the proof. In
§4.5, we prove a general version of Corollary 1.5.
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4.1. Modulation around the solitary wave

We first introduce some modulation parameters around W`, adapting the modulation
around W in [DM08] to the more general case of W`. The proofs, which are very similar
to the ones of [DM08, Appendix A], are sketched in Appendix A. Consider a solution u
of (1.1) such that for some ` ∈ (−1,+1),

E(u0, u1) = E(W`(0), ∂tW`(0)) and
∫
∇u0 u1 =

∫
∇W`(0) ∂tW`(0). (4.1)

Let d` be defined by

d`(t) =

∫
|∇u(t)|2 dx+

∫
(∂tu(t))

2 dx−

∫
|∇W`(0)|2 dx−

∫
(∂tW`(0))2 dx. (4.2)

As in the case ` = 0, we have the following trapping property:

Claim 4.2. Let u be a solution such that (4.1) holds.

• If d`(0) = 0, then there exist λ0 > 0, x0 ∈ RN and a sign ± such that

u(t, x) =
±1

λ
(N−2)/2
0

W`

(
t

λ0
,
x − x0

λ0

)
.

• If d`(0) > 0, then d`(t) > 0 for all t in the domain of existence of u.
• If d`(0) < 0, then d`(t) < 0 for all t in the domain of existence of u.

We refer to Appendix A for the proof of Claim 4.2. The next proposition, which is again
proved in Appendix A, states that, for small d`(t) it is possible to modulate u so that it
satisfies suitable orthogonality conditions.

Lemma 4.3. Assume (4.1). There exists a small δ0 = δ0(`) > 0 such that if |d`(t)| < δ0
on a time interval I , then there exist C1 functions λ(t) > 0, x(t) ∈ RN , α(t) ∈ R, defined
for t ∈ I , and a sign ± such that

λ(t)(N−2)/2u(t, λ(t)x + x(t)) = ±(1+ α(t))W`(0, x)+ f (t, x),

where f̃ (t, x) = f (t,
√

1− `2 x1, x2, . . . , xN ) satisfies

f̃ ∈

{
W, ∂x1W, . . . , ∂xNW,

N − 2
2

W + x · ∇W

}⊥
in Ḣ 1(RN ).

Furthermore, the following estimates hold for t ∈ I :

|α(t)| ≈ ‖∇(α(t)W`(0)+ f (t))‖L2 ≈ ‖∇f (t)‖L2 + ‖∂tu(t)+ `∂x1u(t)‖L2

≈ |d`(t)|, (4.3)
|λ′(t)| + |x′(t)− `Ee1| + λ|α

′(t)| ≤ C|d`(t)|. (4.4)

Here the implicit constants in (4.3) and the constant C in (4.4) might depend on `, but are
independent of u and t .
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4.2. Global existence

In this subsection, we show that all solutions of (1.1) which are compact up to modulation
and satisfy the bound (1.7) are globally defined. We start by showing that solutions that
are compact up to modulation have positive energy.

Lemma 4.4. Let u be a nonzero solution of (1.1) which is compact up to modulation.
Then E(u0, u1) > 0.

Proof. Assume E(u0, u1) ≤ 0. By Claim 2.4, ‖∇u0‖
2
L2 > ‖∇W‖2

L2 . By [KM08],
u blows up in finite time in both time directions. We denote by T± = T±(u) the finite
times of existence.

The fact that u is compact up to modulation implies that it is bounded in Ḣ 1
× L2.

Furthermore, by Lemmas 4.7 and 4.8 in [KM08], λ(t) → 0 as t → T± and there exist
two blow-up points x+, x− ∈ RN such that

supp(u, ∂tu) ⊂ {|x − x+| ≤ |T+ − t |} ∩ {|x − x−| ≤ |T− − t |}.

Let
y(t) =

∫
RN
u(t, x)2 dx.

Then by (2.29) in Claim 2.12 and the fact that E(u0, u1) ≤ 0,

y′′(t) ≥ 0. (4.5)

Furthermore by Hardy’s inequality and the properties of the support of u,

lim
t→T+

y(t) = lim
t→T−

y(t) = 0. (4.6)

By (4.5) and (4.6), y(t) = 0 for all t , which shows that u = 0, contrary to assumption. ut

The main result of this subsection is the following:

Proposition 4.5. Let u be a solution of (1.1) that satisfies (1.7) and such that E(u0, u1)

> 0. Assume that there exist λ(t) > 0, x(t) ∈ RN defined for t ≥ 0 such that

K+ =
{(
λ(t)N/2−1u(t, λ(t)x + x(t)), λ(t)N/2∂tu(t, λ(t)x + x(t))

)
: t ∈ [0, T+(u))

}
has compact closure in Ḣ 1

× L2. Then T+(u) = +∞.

We argue by contradiction, assuming that T+(u) is finite. Without loss of generality, one
may assume T+(u) = 1. As in Remark 1.4, we will assume that

∫
∇u0u1 is parallel to

Ee1 = (1, 0, . . . , 0) and define ` by (1.9).
As seen in the proof of Lemma 4.4, there exists a unique blow-up point (that we will

assume to be x = 0). Moreover, λ(t)→ 0 as t → 1 and

supp u(t) ⊂ {|x| ≤ 1− t}.

Furthermore by [BG99, pp. 144–145],

λ(t)+ |x(t)| ≤ C(1− t).

We will need the following result, which is proved in [KM08, Section 6]:
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Theorem A. Let u satisfy the assumptions of Proposition 4.5. Then there exists a se-
quence {tn} ∈ [0, 1)N such that

lim
n→∞

tn = 1, lim
n→∞

λ(tn)

1− tn
= 0. (4.7)

We divide the proof of Proposition 4.5 into a few lemmas.

Lemma 4.6 (Control of the space translation). Let u be a solution which is compact up
to modulation and such that T+ = 1. Let {tn} ∈ [0, 1)N be any sequence that satisfies
(4.7). Then

lim
n→∞

x(tn)

1− tn
= −`Ee1.

Proof. Let 9(t) =
∫
xe(u), where e(u) is defined by (2.20). By (1.9) and conservation

of momentum, and identity (2.28) in Claim 2.12,

9 ′(t) = −

∫
∇u(t)∂tu(t) = `E(u0, u1)Ee1. (4.8)

Write

9(t) = x(t)E(u0, u1)+

∫
|x|≤1−t

(x − x(t))e(u). (4.9)

Fix ε > 0. Using the compactness of K+, one may find Aε > 0 such that

∀t ∈ [0, 1),
∫
|x−x(t)|≥Aελ(t)

r(u) ≤ ε, (4.10)

where

r(u)(t, x) = |∇u(t, x)|2 + (∂tu(t, x))
2
+ |u|2N/(N−2)

+
1
|x|2
|u|2. (4.11)

Then∣∣∣∣∫ (x − x(t))e(u)∣∣∣∣ = ∣∣∣∣∫
|x−x(t)|≤Aελ(t)

(x − x(t))e(u)+

∫
|x−x(t)|≥Aελ(t)

(x − x(t))e(u)

∣∣∣∣,
and thus, in view of the bound |x(t)| ≤ C(1 − t), and the fact that |x| ≤ 1 − t on the
support of u, ∣∣∣∣∫

|x|≤1−t
(x − x(t))e(u)

∣∣∣∣ ≤ CAελ(t)+ C ε(1− t).
By (4.7), and using that ε > 0 is arbitrary, we get, in view of (4.9),

lim
n→∞

∣∣∣∣ 1
1− tn

(9(tn)− x(tn)E(u0, u1))

∣∣∣∣ = 0.
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Using that, by (4.8),

9(tn) = −Ee1

∫ 1

tn

`E(u0, u1)dt = −`E(u0, u1)(1− tn)Ee1,

we get the conclusion of the lemma. ut

We next show:

Lemma 4.7. Let u and {tn} be as in Lemma 4.6. Then

lim
n→∞

1
1− tn

∫ 1

tn

∫
|∂tu(t)+ `∂x1u(t)|

2 dx dt = 0.

Proof. Let

Z(t) = (`2
− 1)

∫
(x + `(1− t)Ee1) · ∇u∂tu dx +

N − 2
2

(`2
− 1)

∫
u∂tu dx

− `2
∫
(x1 + `(1− t))∂x1u∂tu dx.

Then by Claim 2.12 and using that
∫
∇u0u1 = −`E(u0, u1)Ee1, we get

Z′(t) =

∫
(∂tu+ `∂x1u)

2 dx.

Integrating the preceding equality between tn and 1, we see that it is sufficient to show

lim
n→∞

Z(tn)

1− tn
= 0. (4.12)

We first show

lim
n→∞

1
1− tn

∣∣∣∣∫ u(tn)∂tu(tn) dx

∣∣∣∣ = 0. (4.13)

Fix ε > 0, and let Aε satisfy (4.10). Then∫
u(tn)∂tu(tn) dx =

∫
|x−x(tn)|≥Aελ(tn)

|x − x(tn)|
1

|x − x(tn)|
u(tn)∂tu(tn) dx

+

∫
|x−x(tn)|≤Aελ(tn)

|x − x(tn)|
1

|x − x(tn)|
u(tn)∂tu(tn) dx,

and we get, as in the proof of Lemma 4.6 (and using Hardy’s inequality),∣∣∣∣∫ u(tn)∂tu(tn) dx

∣∣∣∣ ≤ C ε(1− tn)+ CAελ(tn).
Using (4.7), and the fact that ε is arbitrary in the preceding equality, we get (4.13). We
next show

lim
n→∞

1
1− tn

∣∣∣∣∫ (x + `(1− tn)Ee1) · ∇u(tn)∂tu(tn) dx

∣∣∣∣ = 0. (4.14)
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Fix again ε > 0, andAε as in (4.10), and divide the integral between the regions |x−x(tn)|
≤ Aελ(tn) and |x− x(tn)| ≥ Aελ(tn). By (4.10) and again the fact that |x| ≤ 1− t on the
support of u,∣∣∣∣∫

|x−x(tn)|≥Aελ(tn)

(x + `(1− tn)Ee1) · ∇u(tn)∂tu(tn) dx

∣∣∣∣ ≤ C(1− tn)ε.
Furthermore, if |x − x(tn)| ≤ Aελ(tn), then

|x+ `(1− tn)Ee1| ≤ |x− x(tn)|+ |x(tn)+ `(1− tn)Ee1| ≤ Aελ(tn)+|x(tn)+ `(1− tn)Ee1|,

which shows by Lemma 4.6 that

1
1− tn

lim
n→∞

∣∣∣∣∫
|x−x(tn)|≤Aελ(tn)

(x + `(1− tn)Ee1) · ∇u(tn)∂tu(tn) dx

∣∣∣∣ = 0.

Combining these estimates and using that ε > 0 is arbitrary, we get (4.14). To conclude
the proof of (4.12), and thus of the lemma, it remains to show

lim
n→∞

1
1− tn

∣∣∣∣∫ (x1 + `(1− tn))∂x1u(tn)∂tu(tn) dx

∣∣∣∣ = 0. (4.15)

The proof of (4.15) is the same as that of (4.14) and therefore we omit it. ut

To show Proposition 4.5 it remains to prove the following proposition:

Proposition 4.8. There is no function u as in Proposition 4.5 such that T+ = 1 and for
some sequence tn→ 1,

lim
n→∞

1
1− tn

∫ 1

tn

∫
|∂tu(t)+ `∂x1u(t)|

2 dt dx = 0,

where ` is defined by (1.9).

Let us first show:

Lemma 4.9. Let u be as in Proposition 4.8. Then ` ∈ (−1,+1),

E(u0, u1) = E(W`(0), ∂tW`(0) =
1

√
1− `2

E(W, 0),∫
∇u0 u1 =

∫
∇W`(0)∂tW`(0) = −

`
√

1− `2
E(W, 0)Ee1.

Proof. In view of Lemma 4.7, one may show, using the argument of the proof of Corollary
5.3 in [DKM09], that there exists a sequence {t ′n} such that in Ḣ 1

× L2,

lim
n→∞

(
λ(N−2)/2(t ′n)u(t

′
n, λ(t

′
n)x + x(t

′
n)), λ

N/2(t ′n)∂tu(t
′
n, λ(t

′
n)x + x(t

′
n))
)
= (U0, U1),
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and the solution U of (1.1) with initial condition (U0, U1) satisfies, for some T ∈
(0, T+(U)), ∫ T

0

∫
RN
|∂tU + `∂x1U |

2
= 0.

As a consequence,
∂tU + `∂x1U = 0 in (0, T )× RN . (4.16)

Differentiating with respect to t , we get

1U + |U |4/(N−2)U − `2∂2
x1
U = 0 in (0, T )× RN .

Using that U(0) satisfies (2.10), that by (1.7), ‖∇U(0)‖2
L2 < 2‖∇W‖2

L2 , and that U 6= 0
(the energy of U is positive), we infer by Lemma 2.6 that `2 < 1 and that there exist
λ0 > 0 and x0 ∈ RN such that

U0(x) = ±
1

λ
N/2−1
0

W`

(
0,
x − x0

λ0

)
.

By (4.16), we get

U1(x) = ±
1

λ
N/2
0

∂tW`

(
0,
x − x0

λ0

)
,

which shows that

U(t, x) = ±
1

λ
N/2−1
0

W`

(
t,
x − x0

λ0

)
.

The conclusion of the lemma follows by conservation of energy and momentum. ut

We are now ready to prove Proposition 4.8. Let us mention that this part of the proof
fills a small gap in the paper [DM08]. Indeed Proposition 2.7 of that paper is a direct
consequence of [KM08] only in the case of self-similar blow-up. To show that T+(u) =
+∞ under the general assumption of Proposition 2.7 of [DM08], one must use Steps 1,
3 and 4 of the proof below (Step 2 is only needed in the case of nonzero momentum).

Recall from §4.1 the definition of d`(t) and δ0. By §4.1, if |d`(t)| < δ0, there exist
λ(t) > 0, x(t) ∈ RN and α(t) such that

λ(t)(N−2)/2u(t, λ(t)x + x(t)) = (1+ α(t))W`(0, x)+ f (t, x),
‖f ‖Ḣ 1 + |α| + ‖∂tu+ `∂x1u‖L2 ≤ C|d`(t)|.

It is easy to see that we can replace the λ(t) and x(t) defining K+ by the above λ(t) and
x(t) for all t such that |δ`(t)| < δ0, without losing the compactness of K+ in Ḣ 1

× L2,
which we will do in the remainder of this proof. For these x(t) and λ(t) we still have

∀t ∈ [0, 1), |x(t)| + |λ(t)| ≤ C(1− t). (4.17)

Let

8(t) = (N − 2)
∫
(x + (1− t)`e1) · ∇u∂tu+

(N − 2)(N − 1)
2

∫
u∂tu. (4.18)
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By the conservation of momentum, (2.25) and (2.27) in Claim 2.12, and the fact that∫
∇u∂tu = −`E(u0, u1)Ee1, we get

8′(t) = d`(t). (4.19)

Step 1. Bound on λ(t). Let us show

|λ(t)| ≤ C(1− t)|d`(t)|2/(N−2). (4.20)

If |d`(t)| ≥ δ0, the bound follows from (4.17). Let us assume that |d`(t)| ≤ δ0. Then by
§4.1 and the choice of λ(t) and x(t), we have

u(t, x) =
1

λ(t)(N−2)/2W`

(
0,
x − x(t)

λ(t)

)
+

1
λ(t)(N−2)/2 ε

(
t,
x − x(t)

λ(t)

)
,

where ‖ε(t)‖Ḣ 1 ≤ C|d`(t)|. Using (4.17) and that on the support of u, |x| ≤ 1 − t ,
we conclude that u(t, x) = 0 if |x − x(t)| ≥ C1(1 − t) for some large constant C1. In
particular∫

|x−x(t)|≥C1(1−t)

1
λ(t)N

∣∣∣∣∇W`

(
0,
x − x(t)

λ(t)

)∣∣∣∣2 dx
=

∫
|x−x(t)|≥C1(1−t)

1
λ(t)N

∣∣∣∣∇ε(t, x − x(t)λ(t)

)∣∣∣∣2 dx ≤ C(d`(t))2.
As a consequence

C|d`(t)|
2
≥

∫
|y|≥C1(1−t)/λ(t)

|∇W`(0, y)|2dy ≥ c
(
λ(t)

1− t

)N−2

, (4.21)

hence (4.20). The last inequality in (4.21) follows from the expression (1.3) ofW`. Indeed
|∇W`(0, y)| ≈ |y|−(N−1) for large y and thus

∫
|y|≥A

|∇W`(0, y)|2 dy ≈ A2−N for large
A > 0.

Step 2. Let
y`(t) = x(t)+ (1− t)`Ee1.

In this step we show
|y`(t)| ≤ C(1− t)|d`(t)|1+2/N .

We define S(t) by

S(t) =

∫
RN
(x + (1− t)`Ee1)e(u) dx,

where e(u) is the density of energy defined in (2.20). Then using that u is a solution of
(1.1) such that, by Lemma 4.9,

E(u0, u1) =
1

√
1− `2

E(W, 0),
∫
∇u0 u1 = −

`
√

1− `2
E(W, 0)Ee1,
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by (2.28) in Claim 2.12 we get S′(t) = 0. Furthermore, as |x| ≤ 1− t on the support of u,
we get S(t)→ 0 as t → 1, which shows that S(t) is identically 0. As a consequence

y`(t)E(u0, u1) = −

∫
(x − x(t))e(u). (4.22)

It remains to show ∣∣∣∣∫ (x − x(t))e(u)∣∣∣∣ ≤ C(1− t)|d`(t)|1+2/N . (4.23)

If |d`(t)| ≥ δ0, where δ0 is given by Lemma 4.3, the bound follows from the fact that u is
supported in the light cone {|x| ≤ 1− t} and from the bound on x(t) in (4.17).

Assume |d`(t)| < δ0. Then by Lemma 4.3, one has

u(t, x) =
1

λ(t)(N−2)/2W`

(
0,
x − x(t)

λ(t)

)
+

1
λ(t)(N−2)/2 ε

(
t,
x − x(t)

λ(t)

)
, (4.24)

∂tu(t, x) =
1

λ(t)N/2
∂tW`

(
0,
x − x(t)

λ(t)

)
+

1
λ(t)N/2

ε1

(
t,
x − x(t)

λ(t)

)
, (4.25)

where
‖ε(t)‖Ḣ 1 + ‖ε1‖L2 ≤ C|d`(t)|

(the bound on ε1 follows from the bound ‖∂tu+`∂x1u‖L2 . d`(t)). Then, developing the
density of energy e(u),∣∣∣∣∫ (x − x(t))e(u)∣∣∣∣ = ∣∣∣∣∫

|x−x(t)|≤C1(1−t)
(x − x(t))e(u)

∣∣∣∣
.

∣∣∣∣∫
|x−x(t)|≤C1(1−t)

(x − x(t))e(W`,λ(t),x(t)(0, x))
∣∣∣∣+ R(t)+ (1− t)|d`(t)|2, (4.26)

where we have denoted

W`,λ(t),x(t)(s, x) =
1

λ(t)(N−2)/2W`

(
s,
x − x(t)

λ(t)

)
,

and

R(t) =

∫
|x−x(t)|≤C1(1−t)

|x − x(t)|

λ(t)N

∣∣∣∣∇t,xW`

(
0,
x − x(t)

λ(t)

)∣∣∣∣
×

∣∣∣∣√|∇xε|2 + |ε1|2
(
t,
x − x(t)

λ(t)

)∣∣∣∣ dx
+

∫
|x−x(t)|≤C1(1−t)

|x − x(t)|

λ(t)N

∣∣∣∣W`

(
0,
x − x(t)

λ(t)

)∣∣∣∣N+2
N−2

∣∣∣∣ε(t, x − x(t)λ(t)

)∣∣∣∣ dx. (4.27)
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We have used the notation |∇t,xv|2 = |∇v|2 + |∂tv|2. The first term in the second line of
(4.26) is 0 by the parity of |W`(0)| and |∂tW`(0)|. Let us show

R(t) ≤ C|d`(t)|
1+2/N (1− t), (4.28)

which would conclude this step. We show the bound (4.28) on the first term R1 in (4.27);
the proof of the bound on the second term is similar. First remark that by the change of
variable y = |x − x(t)|/λ(t),

R1(t) = λ(t)

∫
|y|≤C1

1−t
λ(t)

|y|
∣∣∇t,xW`(0, y)

∣∣√|∇xε(t, y)|2 + |ε1(t, y)|2 dy.

Let A = A(t) ≥ 1 be a parameter and divide the preceding integral between the regions
|y| ≥ A and |y| ≤ A. By Cauchy–Schwarz and using the explicit decay of W`(0, y) as
|y| → ∞, we get

λ(t)

∫
A≤|y|≤C1

1−t
λ(t)

|y| |∇t,xW`(0, y)|
√
|∇xε(t, y)|2 + |ε1(t, y)|2 dy

≤ C(1− t)|d`(t)|

√∫
|y|≥A

|∇t,xW`(0, y)|2 ≤ C(1− t)|d`(t)|A1−N/2.

By Cauchy–Schwarz,

λ(t)

∫
|y|≤min{C1

1−t
λ(t)

,A}

|y|
∣∣∇t,xW`(0, y)

∣∣√|∇xε(t, y)|2 + |ε1(t, y)|2 dy ≤ λ(t)A|d`(t)|.

Taking A = C(1− t/λ(t))2/N and combining the two bounds with (4.20), we obtain
(4.28), which concludes Step 2.

Step 3. Bound on 8(t). Let us show

|8(t)| ≤ C(1− t)|d`(t)|1+2/N . (4.29)

As usual, the bound for |d`(t)| ≥ δ0 follows from the condition on the support of u and
from the bound |x(t)| ≤ C(1− t). Let us assume that |d`(t)| < δ0. Write

8(t) = (N − 2)y`(t)
∫
|x−x(t)|≤C1(1−t)

∇u∂tu

+ (N − 2)
∫
|x−x(t)|≤C1(1−t)

(x− x(t)) · ∇u∂tu+
(N − 2)(N − 1)

2

∫
|x−x(t)|≤C1(1−t)

u∂tu.

(4.30)
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The first term of (4.30) is bounded by Step 2. To handle the other terms, decompose u as
in (4.24), (4.25). Then∣∣∣∣∫
|x−x(t)|≤C1(1−t)

(x − x(t))∇u∂tu

∣∣∣∣ ≤ CR(t)+ C(1− t)|d`(t)|2
+

∣∣∣∣∫
|x−x(t)|≤C1(1−t)

(x − x(t))∇W`

(
0,
x − x(t)

λ(t)

)
∂tW`

(
0,
x − x(t)

λ(t)

)∣∣∣∣,
where R(t) is defined by (4.27). Noting that the last integral is 0 by the parity of W`, and
bounding R(t) by (4.28), we get∣∣∣∣∫

|x−x(t)|≤C1(1−t)
(x − x(t))∇u∂tu

∣∣∣∣ ≤ C(1− t)|d`(t)|1+2/N .

Writing ∫
|x−x(t)|≤C1(1−t)

u∂tu =

∫
|x−x(t)|≤C1(1−t)

|x − x(t)|
1

|x − x(t)|
u∂tu,

and using the same argument, we get the bound∣∣∣∣∫
|x−x(t)|≤C1(1−t)

u∂tu

∣∣∣∣ ≤ C(1− t)|d`(t)|1+2/N ,

which completes Step 3.

Step 4. End of proof. By (4.29), and then (4.19),

|8(t)| ≤ C(1− t)|d`(t)|1+2/N
≤ C(1− t)|8′(t)|1+2/N . (4.31)

Thus
1

(1− t)
1

1+2/N
≤

C|8′|

|8|
1

1+2/N
.

Integrating and using that 1
1+2/N < 1, we obtain

(1− t)1−
1

1+2/N ≤ C|8(t)|
1− 1

1+2/N ,

and thus
C
|8(t)|

1− t
≥ 1. (4.32)

By the proof of Lemma 4.9, there exists a sequence of times t ′n→ 1 such that d`(t ′n)→ 0.
Applying the first inequality of (4.31) to this sequence, we get

lim
n→∞

1
1− t ′n

|8(t ′n)| = 0,

which contradicts (4.32). The proof of Proposition 4.8 is complete. ut
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4.3. Convergence for a sequence of times

Lemma 4.10. Let u be a solution which is compact up to modulation, globally defined
and satisfies the bound (1.7). Assume after a space rotation around the origin that there
exists ` ∈ R such that

−

∫
∇u0u1

E(u0, u1)
= `Ee1.

Then |`| < 1, and there exist tn→+∞, λ0 > 0, x0 ∈ RN and a sign ± such that

lim
n→∞

(
λ(tn)

(N−2)/2u(tn, λ(tn)x + x(tn)), λ(tn)
N/2∂tu(tn, λ(tn)x + x(tn))

)
= ±

(
1

λ
(N−2)/2
0

W`

(
0,
x − x0

λ0

)
,

1

λ
N/2
0

∂tW`

(
0,
x − x0

λ0

))

in Ḣ 1
× L2.

Note that from Lemma 4.4, the energy of u is > 0, which justifies the definition of `.

Proof. As usual, we may assume that x(t) and λ(t) are continuous functions of t .

Step 1. We show that

lim
t→+∞

λ(t)

t
= 0. (4.33)

The proof is standard (see [KM08]). We argue by contradiction. By finite speed of prop-
agation, λ(t)/t is bounded for t ≥ 1. If (4.33) does not hold, then there exists a sequence
tn→+∞ and a τ0 ∈ (0,+∞) such that

lim
n→∞

λ(tn)

tn
=

1
τ0
. (4.34)

Let

wn(s, y) = λ(tn)
(N−2)/2u(tn + λ(tn)s, λ(tn)y + x(tn)).

Then after extraction there exists (w0, w1) ∈ Ḣ
1
× L2 such that

lim
n→∞

(wn(0), ∂twn(0)) = (w0, w1) in Ḣ 1
× L2.

Let w be the solution with initial data (w0, w1). Let us show that w is globally defined.
For this we check that w is compact up to modulation. For s ∈ (T−(w), T+(w)), let

u0n(y) = λ(tn + λ(tn)s)
(N−2)/2u[tn + λ(tn)s, λ(tn + λ(tn)s)y + x(tn + λ(tn)s)],

u1n(y) = λ(tn + λ(tn)s)
N/2∂tu[tn + λ(tn)s, λ(tn + λ(tn)s)y + x(tn + λ(tn)s)].
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Then by the definition of K , (u0n, u1n) ∈ K . Thus after extraction, (u0n, u1n) has a limit
as n→∞ which is in K (and thus, by energy conservation, not identically 0). Next note
that

u0n(y) =

[
λ(tn + λ(tn)s)

λ(tn)

](N−2)/2

wn

[
s,
λ(tn + λ(tn)s)

λ(tn)
y +

x(tn + λ(tn)s)− x(tn)

λ(tn)

]
,

u1n(y) =

[
λ(tn + λ(tn)s)

λ(tn)

]N/2
∂swn

[
s,
λ(tn + λ(tn)s)

λ(tn)
y +

x(tn + λ(tn)s)− x(tn)

λ(tn)

]
.

Using that by continuity of the flow

lim
n→∞

(wn(s), ∂twn(s)) = (w(s), ∂tw(s)) 6= 0 in Ḣ 1
× L2,

we deduce that there exists C(s) > 0 such that for all n,

1
C(s)

≤
λ(tn + λ(tn)s)

λ(tn)
≤ C(s),

∣∣∣∣x
(
tn + λ(tn)s

)
− x(tn)

λ(tn)

∣∣∣∣ ≤ C(s).
After extraction of a subsequence, these two quantities converge to λ̃(s), x̃(s). As a con-
sequence,(

λ̃(s)(N−2)/2w(s, λ̃(s)y + x̃(s)), λ̃(s)N/2∂sw(s, λ̃(s)y + x̃(s))
)
∈ K.

In particular, w is compact up to modulation and satisfies the bound (1.7). By Proposition
4.5, w is globally defined.

Let sn = −tn/λ(tn). Then

(wn(sn, y), ∂twn(sn, y))

=
(
λ(tn)

N/2−1u(0, λ(tn)y + x(tn)), λ(tn)N/2∂tu(0, λ(tn)y + x(tn))
)
,

and by (4.34),

lim
n→∞

(wn(sn, y), ∂twn(sn, y)) = (w(−τ0, y), ∂tw(−τ0, y)) in Ḣ 1
× L2.

This shows that λ(tn) is bounded, contradicting (4.34). Step 1 is complete.

Step 2. By finite speed of propagation, there exists a constant M > 0 such that

∀t ≥ 0, |x(t)| ≤ M + |t |. (4.35)

In this step we show

lim
t→+∞

|x(t)− t`Ee1|

t
= 0. (4.36)

Fix ε > 0. Let r(u) be as in (4.11). Let δε > 0 be such that

∀t,

∫
|x−x(t)|≥λ(t)/δε

r(u) ≤ ε. (4.37)
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In view of Step 1, (4.35) and the continuity of x(t) and λ(t), there exists t0 � 1 such that
for τ ≥ t0,

sup
t∈[0,τ ]

λ(t) ≤ εδετ, sup
t∈[0,τ ]

|x(t)| ≤ 3τ/2. (4.38)

Let τ ≥ t0 and, for t ∈ [0, τ ],

9τ (t) =

∫
xϕ(x/τ)e(u)(t, x) dx,

where ϕ(x) = 1 for |x| ≤ 3, ϕ(x) = 0 for |x| ≥ 4. Then by (2.24) in Claim 2.11,

9 ′τ (t) = −

∫
∇u∂tu+O

(∫
|x|≥3τ

r(u)

)
= `E(u0, u1)Ee1+O

(∫
|x|≥3τ

r(u)

)
, (4.39)

where r(u) is defined by (4.11). If t ∈ [0, τ ], then by (4.38) (and using that ε ≤ 3/2),

|x| ≥ 3τ ⇒
|x − x(t)|

λ(t)
≥

3τ − |x(t)|
λ(t)

≥
3τ − 3

2τ

ε δε τ
≥

1
δε
,

and thus by (4.37),

t ∈ [0, τ ] ⇒
∣∣∣∣∫
|x|≥3τ

r(u)(t, x) dx

∣∣∣∣ ≤ ε.
Integrating (4.39), we get

|9τ (τ )−9τ (0)− τ`E(u0, u1)Ee1| ≤ Cτε. (4.40)

Furthermore,

9τ (τ )− x(τ)E(u0, u1) =

∫ (
xϕ

(
x

τ

)
− x(τ)

)
e(u)

=

∫
|x−x(τ)|≤λ(τ)/δε

(
xϕ

(
x

τ

)
− x(τ)

)
e(u)− x(τ)

∫
|x−x(τ)|≥λ(τ)/δε

e(u)

+

∫
|x−x(τ)|≥λ(τ)/δε

xϕ

(
x

τ

)
e(u). (4.41)

Notice that |xϕ(x/τ)| ≤ 4τ . By (4.37), we bound the third integral on the right hand side
of (4.41) as follows: ∣∣∣∣∫

|x−x(τ)|≥λ(τ)/δε

xϕ

(
x

τ

)
e(u)

∣∣∣∣ ≤ Cετ.
By (4.37) and (4.38), the second integral can be estimated by Cετ . To bound the first
integral on the right hand side of (4.41), write

|x − x(τ)| ≤ λ(τ)/δε ⇒ |x| ≤ |x(τ)| + λ(τ)/δε ≤ 5τ/2,
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and thus on the support of the first integral, ϕ(x/τ) = 1. As a consequence, by (4.38),∣∣∣∣∫
|x−x(τ)|≤λ(τ)/δε

(
xϕ

(
x

τ

)
− x(τ)

)
e(u)

∣∣∣∣ ≤ Cλ(τ)δε ≤ Cετ.
Combining the estimates, we get, in view of (4.40),

1
τ
|x(τ)− τ`Ee1|E(u0, u1) ≤ Cε +

1
τ
|9τ (0)|,

and (4.36) follows, using that by dominated convergence,

lim
τ→+∞

1
τ
|9τ (0)| = 0.

Step 3. In this step we show

lim
T→∞

1
T

∫ T

0

∫
(∂tu+ `∂x1u)

2 dx dt = 0. (4.42)

Let R > 0 be a parameter and define

ZR(t) = (`
2
− 1)

∫
(x − t`e1) · ∇u∂tuϕ

(
x − t`Ee1

R

)
+
N − 2

2
(`2
− 1)

∫
u∂tuϕ

(
x − t`Ee1

R

)
− `2

∫
(x1 − t`) · ∂x1u∂tuϕ

(
x − t`Ee1

R

)
,

(4.43)

where ϕ ∈ C∞0 , ϕ(x) = 1 for |x| ≤ 3, ϕ(x) = 0 for |x| ≥ 4. From (2.21)–(2.23) in Claim
2.11, and using that

∫
∇u∂tu = −`E(u0, u1)Ee1, we get∣∣∣∣Z′R(t)− ∫ (∂tu+ `∂x1u)

2
∣∣∣∣ ≤ C ∫

|x−t`Ee1|≥3R
r(u). (4.44)

Let ε > 0. As in the preceding step, choose δε such that (4.37) holds. In view of Steps 1
and 2, and the continuity of λ and x, there exists t0 = t0(ε)� 1 such that for T ≥ t0,

sup
t∈[0,T ]

λ(t) ≤ εδεT , sup
t∈[0,T ]

|x(t)− t`Ee1| ≤ εT . (4.45)

Take
T ≥ t0(ε), R = εT .

Then
|x − t`Ee1|

R
≤
|x − x(t)|

εT
+
|t`Ee1 − x(t)|

εT
≤ 1+

δε|x − x(t)|

λ(t)
.

In particular |x − t`Ee1|/R ≥ 3 ⇒ |x − x(t)|/λ(t) ≥ 2/δε, and thus∫
|x−t`Ee1|≥3R

r(u) ≤ ε. (4.46)
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Integrating (4.44) between t = 0 and t = T , we get, for T ≥ t0, R = εT ,

1
T

∫ T

0

∫
(∂tu+ `∂x1u)

2 dx dt ≤
1
T
(|ZR(T )| + |ZR(0)|)+ Cε.

Using that |ZR(t)| ≤ CR for all t , we get the bound |ZR(0)| + |ZR(T )| ≤ CT ε, hence

lim sup
T→+∞

1
T

∫ T

0

∫
(∂tu+ `∂x1u)

2 dx dt ≤ Cε,

which gives (4.42).

Step 4. End of proof. As in [DKM09, Proof of Corollary 5.3], we deduce from Step 3
that there exists a sequence {tn} such that tn→+∞ and

lim
n→∞

λ(tn)
(N−2)/2u(tn, λ(tn)x + x(tn)) = U0 in Ḣ 1,

lim
n→∞

λ(tn)
N/2∂tu(tn, λ(tn)x + x(tn)) = U1 in L2,

where the solution U with initial condition (U0, U1) satisfies, for some small τ0 ∈

(0, T+(U)),
∂tU + `∂x1U = 0 for t ∈ [0, τ0].

As in the proof of Lemma 4.9, we deduce from Lemma 2.6 that `2 < 1 and (U0, U1) =

±(W`(0), ∂tW`(0) up to space rotation, space translation and scaling. ut

4.4. End of proof

Let u be as in Theorem 2. By a standard argument, we can assume that the parameters
λ(t) and x(t) defining K as in (1.6) are, for |d`(t)| < δ0 (with δ0 given by Lemma 4.3),
the modulation parameters given by Lemma 4.3, and that x(t) and λ(t) are continuous
functions of t .

By Lemma 4.10 applied to u and t 7→ u(−t), there exist sequences tn → +∞ and
t ′n→−∞ such that

lim
n→∞

(|d`(tn)| + |d`(t
′
n)|) = 0, (4.47)

where d` is defined by (4.2). We start by rescaling the solution between t ′n and tn. Let

λn = max
t∈[t ′n,tn]

λ(t).

Let Tn = (tn − t ′n)/λn, and for τ ∈ [0, Tn], y ∈ RN , define un(τ, y) by

u(t, x) =
1

λ
(N−2)/2
n

un

(
t − t ′n

λn
,
x − x(t ′n)

λn

)
, t ∈ [t ′n, tn].
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Then

∀τ ∈ [0, Tn],(
(µn(τ ))

(N−2)/2un(τ, µn(τ )y + yn(τ )), (µn(τ ))
N/2∂τun(τ, µn(τ )y + yn(τ ))

)
∈ K

(4.48)

where by definition, for τ ∈ [0, Tn],

µn(τ ) =
λ(λnτ + t

′
n)

λn
, yn(τ ) =

x(λnτ + t
′
n)− x(t

′
n)

λn
.

Indeed, (4.48) follows from

λ(t)(N−2)/2u(t, λ(t)x + x(t)) =

(
λ(t)

λn

)(N−2)/2

un

(
t − t ′n

λn
,
λ(t)x + x(t)− x(t ′n)

λn

)
,

and the analogous equality for the time derivative of u. Note that by the choice of un,

yn(0) = 0 and ∀τ ∈ [0, Tn], 0 < µn(τ ) ≤ 1.

Define

Yn(τ ) = yn(τ )− `τ Ee1,

dn(τ ) = d`(λnτ + t
′
n) =

∫
|∇un(τ )|

2
+

∫
(∂tun(τ ))

2
−

∫
|∇W`(0)|2 −

∫
|∂tW`(0)|2.

We claim:

Lemma 4.11 (Parameter control). There exists a constant C > 0 such that for all n and
0 ≤ σ < τ ≤ Tn:

(a) If |τ − σ | ≤ 2µn(τ ), then

1
C
≤

∣∣∣∣µn(τ )µn(σ )

∣∣∣∣ ≤ C, |Yn(τ )− Yn(σ )| ≤ Cµn(τ ).

(b) If |τ − σ | ≥ µn(τ ), then

|µn(σ )− µn(τ )| + |Yn(σ )− Yn(τ )| ≤ C

∫ τ

σ

|dn(s)| ds.

Lemma 4.12 (Virial-type estimate). For all n,∫ Tn

0
|dn(s)| ds ≤ C

(
1+ max

τ∈[0,Tn]
|Yn(τ )|

)
(|dn(0)| + |dn(Tn)|)+ C|Yn(Tn)|.

Lemma 4.13 (Large time control of the space translation). Let ε > 0. Then there exists
a constant Cε > 0 such that for all n,

|Yn(Tn)| ≤ ε

∫ Tn

0
|dn(τ )| dτ + Cε

(
1+ max

τ∈[0,Tn]
|Yn(τ )|

)
(|dn(Tn)| + |dn(0)|).
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Proof of Theorem 2. Let us prove Theorem 2 assuming Lemmas 4.11–4.13. We will use
that by the choice of the sequences {tn} and {t ′n},

lim
n→∞

(|dn(0)| + |dn(Tn)|) = 0. (4.49)

Combining Lemma 4.12 and 4.13 (with a small ε), we get∫ Tn

0
|dn(s)| ds ≤ C

(
1+ max

τ∈[0,Tn]
|Yn(τ )|

)
(|dn(0)| + |dn(Tn)|). (4.50)

Step 1. Uniform bound on the modulation parameters. We first show that there exists a
constant C > 0 such that for all n,

max
τ∈[0,Tn]

|Yn(τ )| ≤ C, min
τ∈[0,Tn]

µn(τ ) ≥ 1/C.

By continuity of Yn, there exists θn ∈ [0, Tn] such that |Yn(θn)| = maxτ∈[0,Tn] |Yn(τ )|. If
θn ≤ µn(0), then by Lemma 4.11(a),

|Yn(θn)| = |Yn(θn)− Yn(0)| ≤ Cµn(0) ≤ C.

If θn ≥ µn(0) then combining (4.50) with Lemma 4.11(b), we get

|Yn(θn)| = |Yn(θn)− Yn(0)| ≤ C
∫ θn

0
|dn(s)| ds ≤ C(1+ |Yn(θn)|)(|dn(0)| + |dn(Tn)|),

and the boundedness of |Yn(θn)| follows from (4.49).
Similarly, let θ ′n, θ

′′
n ∈ [0, Tn] be such that

µn(θ
′
n) = min

τ∈[0,Tn]
µn(τ ), µn(θ

′′
n ) = max

τ∈[0,Tn]
µn(τ ) = 1.

Then if |θ ′n− θ
′′
n | ≤ µ(θ

′′
n ) = 1, by Lemma 4.11(a) we immediately get µ(θ ′n) ≥ 1/C. On

the other hand, if |θ ′n − θ
′′
n | ≥ 1, we obtain, combining (4.50) with Lemma 4.11(b) and

the uniform boundedness of Yn,

|µn(θ
′
n)− 1| ≤ C(|dn(0)| + |dn(Tn)|),

and that µn(θ ′n) is bounded from below by a positive constant follows again from (4.49).

Step 2. End of proof. From Step 1 and (4.50),∫ Tn

0
|dn(s)| ds ≤ C(|dn(0)| + |dn(Tn)|).

To conclude the proof, we will show that

lim
n→∞

max
τ∈[0,Tn]

|dn(τ )| = 0. (4.51)

This would imply that
d`(0) = dn(−t ′n/λn) −−−→n→∞

0,

and thus d`(0) = 0, and Theorem 2 would follow from the first item of Claim 4.2.
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To show (4.51), we argue by contradiction. By the continuity of the flow of (1.1)
in Ḣ 1

× L2, dn(τ ) is a continuous function of τ . If (4.51) does not hold, there exist
ε0 ∈ [0, δ0/2] and, for large n, τn ∈ [0, Tn] such that

τ ∈ [0, τn) ⇒ |dn(τ )| < ε0, and |dn(τn)| = ε0. (4.52)

Recall the modulation parameter α defined in Lemma 4.3. Let

αn(τ ) = α(λnτ + t
′
n)

be the corresponding parameter for the solution un. Using the modulation estimate of
Lemma 4.3 and Step 1, we get

∀τ ∈ [0, τn], |α′n(τ )| ≤ C
|dn(τ )|

µn(τ )
≤ C|dn(τ )|.

Integrating between 0 and τn, we get

|αn(0)− αn(τn)| ≤ C
∫ τn

0
|dn(τ )| dτ ≤ C

∫ Tn

0
|dn(τ )| dτ ≤ C(|dn(0)| + |dn(Tn)|).

By (4.49),
lim
n→∞
|αn(0)− αn(τn)| = 0,

contradicting (4.52) since by Lemma 4.3, |αn(τ )| ≈ |dn(τ )|, and dn(0)→ 0 as n→∞.
The proof of (4.51) is complete, concluding the proof of Theorem 2. ut

It remains to prove Lemmas 4.11–4.13.

Proof of Lemma 4.13. Fix ε > 0, and let

Rn = Cε

(
1+ max

τ∈[0,Tn]
|Yn(τ )|

)
,

for some Cε > 0 to be chosen. Let

9n(τ ) = 9[Rn, un(τ ), ∂τun(τ ), τ ] =
∫
RN
(y − τ`Ee1)e(un)(τ ) ϕ

(
y − τ`Ee1

Rn

)
, (4.53)

where the smooth function ϕ satisfies ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 2.

Step 1. Let v be any solution of (1.1) such that

E(v0, v1) = E(W`(0), ∂tW`(0) and
∫
∇v0 v1 =

∫
∇W`(0) ∂tW`(0).

To simplify notation, denote ∂0 = ∂t , and ∂j = ∂xj if j = 1, . . . , N . Then, fixing R > 0,
we have

d

dt
9[R, u(t), ∂tv(t), t] = A[R, v(t), ∂tv(t), t], (4.54)
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where A[R, v(t), ∂tv(t), t] is of the form

A[R, v(t), ∂tv(t), t] =
∑

0≤i,j≤N

∫
∂iv∂jv ψij

(
x − t`Ee1

R

)
dx

+

∑
0≤i≤N

∫
1
|x|
v∂jv ψj

(
x − t`Ee1

R

)
dx, (4.55)

and the smooth functions ψij and ψj are supported in |x| ≥ 1. The equality (4.54) follows
from explicit computation and (2.24) in Claim 2.11.

Step 2. We fix R > 0, 3 > 0 and X ∈ RN . Then

9

[
R,

1
3(N−2)/2W`

(
τ

3
,
y −X

3

)
,

1
3N/2

∂tW`

(
τ

3
,
y −X

3

)
, τ

]
is independent of τ . Indeed,

1
3(N−2)/2W`

(
τ

3
,
y −X

3

)
=

1
3(N−2)/2W`

(
0,
y −X − τ`Ee1

3

)
,

and the statement follows from the definition of 9. For example, the gradient term in the
definition of 9 gives

1
23N

∫
RN
(y − τ`Ee1)

∣∣∣∣∇W`

(
0,
y −X − τ`Ee1

3

)∣∣∣∣2ϕ(y − τ`Ee1

R

)
=

1
23N

∫
RN
z

∣∣∣∣∇W`

(
0,
z−X

3

)∣∣∣∣2ϕ( zR
)
,

which is independent of τ .
Combining this with Step 1, we get

∀R > 0, ∀3 > 0, ∀X ∈ RN , ∀τ,

A

[
R,

1
3(N−2)/2W`

(
τ

3
,
y −X

3

)
,

1
3N/2

∂τW`

(
τ

3
,
y −X

3

)
, τ

]
= 0.

As a consequence, replacing X byX − τ`Ee1 in the preceding equality, we get, by the
definition of W`,

∀R > 0, ∀3 > 0, ∀X ∈ RN , ∀τ,

A

[
R,

1
3(N−2)/2W`

(
0,
y −X

3

)
,

1
3N/2

∂τW`

(
0,
y −X

3

)
, τ

]
= 0. (4.56)

Step 3. Bounds on 9n(0) and 9n(Tn). In this step we show that if Cε is chosen large,
then for large n,

|9n(0)| ≤ CRn|dn(0)|, (4.57)
|9n(Tn)− Yn(Tn)E(u0, u1)| ≤ CRn|dn(Tn)| + ε|Yn(Tn)|. (4.58)



Blow-up for energy-critical wave 1441

Fix τ ∈ {0, Tn}. Then if n is large, |dn(τ )| < δ0. By Lemma 4.3, one can write (for some
sign ±),

±un(τ, y) =
1

µn(τ )(N−2)/2W`

(
0,
y − Yn(τ )− τ`Ee1

µn(τ )

)
+

1
µn(τ )(N−2)/2 εn

(
τ,
y − Yn(τ )− τ`Ee1

µn(τ )

)
, (4.59)

±∂tun(τ, y) =
1

µn(τ )N/2
∂tW`

(
0,
y − Yn(τ )− τ`Ee1

µn(τ )

)
+

1
µn(τ )N/2

ε1,n

(
t,
y − Yn(τ )− τ`Ee1

µn(τ )

)
, (4.60)

where
‖εn(τ )‖Ḣ 1 + ‖ε1,n(τ )‖L2 ≤ C|dn(τ )|. (4.61)

Expanding the expression (4.53) of 9n(τ ), by (4.61), the facts that |y − τ`Ee1| ≤ Rn on
the domain of integration and that by the definition of Rn, |Yn(τ )| ≤ Rn, we get∣∣∣∣9n(τ )−9[Rn, 1

µ
(N−2)/2
n

W`

(
0,
y − Yn(τ )− τ`Ee1

µn

)
,

1

µ
N/2
n

∂tW`

(
0,
y − Yn(τ )− τ`Ee1

µn

)
, τ

]∣∣∣∣
≤ C(Rn|dn(τ )| + Rn|dn(τ )|

2). (4.62)

Recall that Yn(0) = 0. By the definition of 9n and the parity of W` we obtain

9

[
Rn,

1
µn(0)(N−2)/2W`

(
0,

y

µn(0)

)
,

1
µn(0)N/2

∂tW`

(
0,

y

µn(0)

)
, 0
]
= 0.

Hence (4.57) follows. To show (4.58), we must estimate

9

[
Rn,

1
µn(Tn)(N−2)/2W`

(
0,
y − Yn(Tn)− Tn`Ee1

µn(Tn)

)
,

1
µn(Tn)N/2

∂tW`

(
0,
y − Yn(Tn)− Tn`Ee1

µn(Tn)

)
, Tn

]
=

∫
(z+ Yn(Tn))e

(
1

µ
(N−2)/2
n

W`

(
0,

z

µn

))
ϕ

(
z+ Yn(Tn)

Rn

)
dz

= Yn(Tn)E(u0, u1)+ Yn(Tn)

∫
e

(
1

µ
(N−2)/2
n

W`

(
0,

z

µn

))(
ϕ

(
z+ Yn(Tn)

Rn

)
− 1

)
dz

+

∫
z e

(
1

µ
(N−2)/2
n

W`

(
0,

z

µn

))(
ϕ

(
z+ Yn(Tn)

Rn

)
− ϕ

(
z

Rn

))
dz,

= Yn(Tn)E(u0, u1)+ (I )+ (II ), (4.63)
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where in the last line we have used that by the parity of W`,∫
ze

(
1

µ
(N−2)/2
n

W`

(
0,

z

µn

))
ϕ

(
z

Rn

)
dz = 0.

By the definition of Rn (taking Cε ≥ 2), |z + Yn(Tn)| ≥ Rn ⇒ |z| ≥ Rn/2 ≥ Cε/2.
Choosing Cε large so that for a large constant C > 0,∫

|x|≥Cε

r(W`)(0, x) dx ≤ ε/C (4.64)

(where r is defined in (4.11)), we find (using that µn(Tn) ≤ 1) that the term (I ) in (4.63)
satisfies

|(I )| ≤ ε|Yn(Tn)|.

By the mean value theorem, there exists c ∈ [0, 1] such that

(II ) =

∫
z e

(
1

µ
(N−2)/2
n

W`

(
0,

z

µn

))
Yn(Tn)

Rn
· ∇ϕ

(
z+ cYn(Tn)

Rn

)
dz,

and we get, again by (4.64),
|(II )| ≤ ε|Yn(Tn)|,

which concludes the proof of (4.58).

Step 4. Bound on the derivative of 9n. We show that for an appropriate choice of Cε,

∀τ ∈ [0, Tn], |9 ′n(τ )| ≤ ε|dn(τ )|. (4.65)

First assume |dn(τ )| ≥ δ0. Then by the compactness of K and the fact that µn ≤ 1, we
get, if Cε is large, ∫

|y−τ`e1|≥Rn

r(un) ≤ ε/C.

Indeed,

|y − τ`Ee1| ≥ Rn ⇒ |y − yn(τ )| ≥ Rn/2 ≥ Cε/2 ⇒ |y − yn(τ )|/µn(τ ) ≥ Cε/2.

The bound (4.65) follows, in this case, by the expression of the derivative of 9 obtained
in Step 1.

We next assume |dn(τ )| < δ0. Write un as in (4.59), (4.60). Expanding the expression
(4.55) of A(Rn, u, ∂tu, τ), we must bound, in view of (4.56), the following terms:∫

|y−τ`Ee1|≥Rn

1
µNn

√
|∇εn|2 + |ε1,n|2

(
τ,
y − Yn(τ )− τ`Ee1

µn

)
×

∣∣∣∣∇τ,xW`

(
0,
y − Yn(τ )− τ`Ee1

µn

)∣∣∣∣ dy, (4.66)∫
|y−τ`Ee1|≥Rn

1
µNn

(|∇εn|
2
+ ε2

1,n)

(
τ,
y − Yn(τ )− τ`Ee1

µn

)
dy. (4.67)
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One can choose Cε large so that (for a large constant C > 0)∫
|y|≥Cε/2

(|∇εn(τ )|
2
+ |ε1,n(τ )|

2
+ |∇τ,yW`(0)|2) dy ≤ ε2/C. (4.68)

Indeed the set of all (εn(τ ), ε1,n(τ )) where n ∈ N and τ ∈ [0, Tn] stays in a compact
subset of Ḣ 1

× L2, as can be deduced from (4.48), (4.59) and (4.60).
Using again that |y − τ`Ee1| ≥ Rn ⇒ |y − yn(τ )|/µn ≥ Cε/2, we bound the terms

(4.66) and (4.67) by ε|dn(τ )| by the Cauchy–Schwarz inequality, the bound (4.61) on
(εn, ε1,n) and (4.68). Hence (4.65) follows.

Step 5. End of proof. By Step 4,

|9n(Tn)−9n(0)| ≤ ε
∫ Tn

0
|dn(τ )| dτ.

Combining this with Step 3, we get

|Yn(Tn)|E(u0, u1) ≤ CRn(|dn(0)| + |dn(Tn)|)+ ε|Yn(Tn)| + ε
∫ Tn

0
|dn(τ )| dτ.

As ε is small and E(u0, u1) = E(W`(0), ∂tW`(0)) > 0 we get, by the definition of Rn,

|Yn(Tn)|
E(u0, u1)

2
≤ Cε

(
1+ max

τ∈[0,Tn]
|Yn(τ )|

)
(|dn(0)| + |dn(Tn)|)+ ε

∫ Tn

0
|dn(τ )| dτ,

which concludes the proof of Lemma 4.13. ut

Proof of Lemma 4.12. The proof is very close to the one of Lemma 4.13, and is also a
variant of the proof of Lemma 3.8 of [DM08], so we only sketch it. We divide it in the
same five steps as the proof of Lemma 4.13. Let

Rn = C0

(
1+ max

τ∈[0,Tn]
|Yn(τ )|

)
,

where the large constant C0 > 0 is to be specified later. Define

8n(τ ) = 8[Rn, un(τ ), ∂τun(τ ), τ ]

= (N − 2)
∫
(y − τ`Ee1)∇un∂τun ϕ

(
y − τ`Ee1

Rn

)
dy

+
(N − 2)(N − 1)

2

∫
un∂τun ϕ

(
y − τ`Ee1

Rn

)
dy.

Step 1. By explicit computation (see (2.21) and (2.23) in Claim 2.11), for any solution
v of (1.1) such that E(v0, v1) = E(W`(0), ∂tW`(0)) and

∫
∇v0 v1 =

∫
∇W`(0) ∂tW`(0)

and for any R,

d

dt
8[R, v(t), ∂tv(t), t]

=

∫
|∇v|2 +

∫
(∂tv)

2
−

∫
|∇W`(0)|2 −

∫
|∂tW`(0)|2 + B[R, v(t), ∂tv(t), t],

where B is of the same type (4.55) as the A of the proof of Lemma 4.13.
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Step 2. As in Step 2 of the proof of Lemma 4.13, we notice that for any R > 0, 3 > 0,
X ∈ RN ,

d

dτ

(
8

[
R,

1
3(N−2)/2W`

(
τ

3
,
y −X

3

)
,

1
3N/2

∂tW`

(
τ

3
,
y −X

3

)
, τ

])
= 0

and deduce that

B

[
R,

1
3(N−2)/2W`

(
0,
y −X

3

)
,

1
3N/2

∂tW`

(
0,
y −X

3

)
, τ

]
= 0.

Step 3. Bound on 8n(0) and 8n(Tn). We show

|8n(0)| ≤ CRn|dn(0)|, |8n(Tn)| ≤ CRn|dn(Tn)| + C|Yn(Tn)|. (4.69)

Let τ ∈ {0, Tn}. For large n, |dn(τ )| < δ0. By (4.59)–(4.61),∣∣∣∣ ∫ (y−τ`Ee1)∇un∂τunϕ

(
y−τ`Ee1

Rn

)
−

∫
y−τ`Ee1

µNn
∇W`

(
0,
y−τ`Ee1−Yn(τ )

µn

)
∂τW`

(
0,
y−τ`Ee1−Yn(τ )

µn

)
ϕ

(
y−τ`Ee1

Rn

)
dy

∣∣∣∣
≤ CRn|dn(τ )|. (4.70)

By the change of variable z = y − τ`Ee1 − Yn(τ ), we write the term in the second line of
(4.70) as∫

z

µNn
∇W`

(
0,

z

µn

)
∂τW`

(
0,

z

µn

)
ϕ

(
z+ Yn(τ )

Rn

)
dz

+

∫
Yn(τ )

µNn
∇W`

(
0,

z

µn

)
∂τW`

(
0,

z

µn

)
ϕ

(
z+ Yn(τ )

Rn

)
dz = (I )+ (II ).

Clearly |(II )| ≤ |Yn(τ )| (in particular (II ) = 0 if τ = 0). Furthermore, using the parity
of W`, the mean value theorem, and the bound |Yn(τ )| ≤ Rn, we obtain

|(I )| =

∣∣∣∣∫ z

µNn
∇W`

(
0,

z

µn

)
∂τW`

(
0,

z

µn

)(
ϕ

(
z+ Yn(τ )

Rn

)
− ϕ

(
z

Rn

))
dz

∣∣∣∣
≤

∣∣∣∣Yn(τ )Rn

∣∣∣∣ ∫
|z|≤4Rn

|z|

µNn

∣∣∣∣∇t,xW`

(
0,

z

µn

)∣∣∣∣2 dz ≤ C|Yn(τ )|,
which yields the estimates (4.69) (recalling again that Yn(0) = 0).

Step 4. Bound on 8′n(τ ). Let us show that if C0 in the definition of Rn is large, then

∀τ ∈ [0, Tn], |8′n(τ )− dn(τ )| ≤ |dn(τ )|/4.

It is sufficient to show

∀τ ∈ [0, Tn], |B[Rn, un(τ ), ∂τun(τ ), τ ]| ≤ |dn(τ )|/4. (4.71)
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Let τ ∈ [0, Tn]. First assume that |dn(τ )| ≥ δ0. Then by definition of B,

|B[Rn, un(τ ), ∂τun(τ ), τ ]|

≤

∫
|y−τ`Ee1|≥Rn

|∇t,xun(τ, y)|
2
≤

∫
|y−τ`Ee1−Yn(τ )|≥

C0
2 µn(τ )

|∇t,xun(τ, y)|
2,

where we used the inequalities µn(τ ) ≤ 1, |Yn(τ )| ≤ Rn/2 and C0 ≤ Rn. From (4.48)
and the compactness of K , we see that, for C0 large,

|B[Rn, un(τ ), ∂τun(τ ), τ ]| ≤ δ0/4 ≤ |dn(τ )|/4.

We next treat the case |dn(τ )| < δ0. By (4.59)–(4.61) and Step 2, we know that
|B[Rn, un, ∂τun, τ ]| is bounded (up to a multiplicative constant) by (4.66) and (4.67),
and the same argument as in Step 4 of the proof of Lemma 4.13 gives (4.71) if the con-
stant C0 in the definition of Rn is large enough.

Step 5. End of proof. By Steps 3 and 4,∫ Tn

0
|dn(τ )| dτ ≤ CRn(|dn(0)| + |dn(Tn)|)+ C|Yn(Tn)|,

which concludes the proof of Lemma 4.12 in view of the definition of Rn. ut

Sketch of proof of Lemma 4.11. The proof is very close to the proof of Lemma 3.10 in
[DM08].

We first notice that item (a) follows from (4.48) and the compactness ofK (see Step 1
of the proof of [DM08, Lemma 3.10]).

We next show that there exists δ1 > 0 such that

∀n, ∀τ ∈ [0, Tn], ∀θ, σ ∈ [τ − 2µn(τ ), τ + 2µn(τ )] ∩ [0, Tn],
|dn(θ)| ≥ δ0 ⇒ |dn(σ )| ≥ δ1.

If not, there exists a sequence nk of indices (which might be stationary) and, for each k,
τk ∈ [0, Tnk ], θk, σk ∈ [τk − 2µnk (τk), τk + 2µnk (τk)] ∩ [0, Tnk ] such that

|dnk (θk)| ≥ δ0, |dnk (σk)| ≤ 1/k. (4.72)

After extraction of a subsequence, we can find (U0, U1) ∈ K such that in Ḣ 1
× L2,

lim
k→∞

(
µnk (σk)

(N−2)/2unk (σk, µnk (σk)y + ynk (σk)),

µnk (σk)
N/2∂τunk (σk, µnk (σk)y + ynk (σk))

)
= (U0, U1).

By (4.72) and Claim 4.2, (U0, U1) = (±W`(0),±∂tW`(0)) up to scaling, space transla-
tion and rotation. Furthermore

θk = σk +
θk − σk

µnk (σk)
µnk (σk).
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As θk−σk
µnk (σk)

is bounded by (a) we get, by continuity of the flow,

lim
k→∞
|dnk (θk)| = 0,

a contradiction with (4.72).
We next prove (b) if µn(τ ) ≤ |τ − σ | ≤ 2µn(τ ). We distinguish two cases. If for

all θ in [τ, σ ], |dn(θ)| < δ0, then (b) follows from the modulation estimate (4.4). On the
other hand, if there exists θ ′ ∈ [τ, σ ] such that |dn(θ ′)| ≥ δ0, then for all θ ∈ [τ, σ ],
|dn(θ)| ≥ δ1. By (a),

|Yn(τ )− Yn(σ )| ≤ Cµn(τ ) ≤ C ≤
C

δ1

∫ σ

τ

dn(s) ds,

and

|µn(τ )− µn(σ )| =

∣∣∣∣1− µn(σ )µn(τ )

∣∣∣∣µn(τ ) ≤ C ≤ C

δ1

∫ σ

τ

dn(s) ds.

The proof of the general case for (b) then follows by subdividing the interval. ut

4.5. Bound of Strichartz norms below the threshold

As a consequence of Theorem 2, we get the following:

Corollary 4.14. Let M be such that 0 < M <
∫
|∇W |2. Then there exists a constant

CM > 0 such that for any solution u of (1.1) defined on an interval I ,

sup
t∈I

(
‖∇u(t)‖2

L2 +
N − 2

2
‖∂tu(t)‖

2
L2

)
≤ M ⇒ ‖u‖S(I) ≤ CM .

Furthermore, for all ε > 0, there exists a constant CM,ε > 0 such that for any radial
solution u of (1.1) defined on an interval I ,

sup
t∈I

(‖∇u(t)‖2
L2 + ε‖∂tu(t)‖

2
L2) ≤ M ⇒ ‖u‖S(I) ≤ CM,ε.

Remark 4.15. In the lemma, I does not have to be the maximal interval of existence
Imax of u. The case I = Imax under stronger hypothesis (see Remark 1.6) is the object of
[KM08, Corollary 7.3]. Corollary 4.14 is a generalization of this result.

Remark 4.16. Corollary 1.5 immediately follows from Corollary 4.14 and the blow-up
criterion (2.3). Note that in the radial case, (1.11) implies by conservation of energy that
‖∂tu(t)‖L2 remains bounded as t → T+, and thus (using again (1.11)), that there exists
ε > 0 such that

lim sup
t→T+(u)

(‖∇u(t)‖2
L2 + ε‖∂tu(t)‖

2
L2) < ‖∇W‖

2
L2 ,

which shows that the second part of Corollary 4.14 applies.
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Sketch of proof of Corollary 4.14. Step 1. Contradiction argument. We follow the
scheme of the proof of [KM08]. For M > 0, denote by (PM) the property of the corol-
lary. By the small data well-posedness theory, (PM) holds for small positive M . Let
MC = sup{M > 0 : (PM) holds}. Because of the solution W , MC ≤

∫
|∇W |2. We

must show that MC =
∫
|∇W |2.

We argue by contradiction, assuming

MC <

∫
|∇W |2.

Let {un} be a sequence of solutions to (1.1), and {In} a sequence of intervals such that un
is defined on In and

sup
t∈In

(
‖∇un(t)‖

2
L2 +

N − 2
2
‖∂tun(t)‖

2
L2

)
≤ MC +

1
n
, lim

n→∞
‖un‖S(In) = +∞.

Taking a smaller In if necessary, rescaling and translating in time we can assume that In
is a finite length interval (an, bn) with [an, bn] ⊂ Imax(un), an < 0 < bn and

sup
t∈[an,bn]

(
‖∇un(t)‖

2
L2 +

N − 2
2
‖∂tun(t)‖

2
L2

)
≤ MC +

1
n
, (4.73)

lim
n→∞
‖un‖S(an,0) = lim

n→∞
‖un‖S(0,bn) = +∞. (4.74)

Step 2. Existence of a critical element. In this step we show that for any sequence {un}
satisfying (4.73) and (4.74), there exists a subsequence of {un}, parameters λn > 0 and
xn ∈ RN , and (v0, v1) ∈ Ḣ

1
× L2 such that, in Ḣ 1

× L2,

lim
n→∞

(
λ
(N−2)/2
n un(0, λnx + xn), λ

N/2
n ∂tun(0, λnx + xn)

)
= (v0, v1).

Consider a profile decomposition {U jL }j≥1, {λj,n; xj,n; tj,n}j,n for the sequence
(un(0), ∂tun(0)). Let {U j }j≥1 be the corresponding nonlinear profiles.

At least one of the profiles is nonzero: otherwise ‖un‖S(0,bn) would not tend to infinity.
We must show that there is only one nonzero profile. If not, we may assume, reordering
the profiles, that for a small ε0,∥∥∥∥∇U jL(−tj,nλj,n

)∥∥∥∥2

L2
+

∥∥∥∥∂tU jL(−tj,nλj,n

)∥∥∥∥2

L2
≥ 10ε0, j = 1, 2.

By the small data theory, we find that for j = 1, 2 and t in the domain of definition of U j ,

‖∇U j (t)‖2
L2 +

N − 2
2
‖∂tU

j (t)‖2
L2 ≥ 2ε0. (4.75)

Let C0 be a large constant to be specified later, depending only on ε0 and CMC−ε0 . For n
large, choose Tn ∈ (0, bn) such that

‖un‖S(0,Tn) = C0. (4.76)
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Using (4.76), one can show with Proposition 2.3 that for all j such that T+(U j ) < ∞,
for all large n, Tn < T+(U

j )λj,n+ tj,n. Taking into account that there are a finite number
of such j , we conclude that for all large n,

Tn < inf
j≥1
(T+(U

j )λj,n + tj,n) (4.77)

(with the convention that the right hand side is infinite if T+(U j ) = +∞). Define

Sn = sup
j

∫ Tn

0

∫
RN

∣∣∣∣U j(Tn − tj,nλj,n
,
x − xj,n

λj,n

)∣∣∣∣ 2(N+1)
N−2 dx dt

λN+1
j,n

.

By (4.76) and Proposition 2.3, the sequence {Sn} is bounded. We will show

lim sup
n→∞

Sn ≤ CMC−ε0 , (4.78)

where the constant CMC−ε0 is given by the property (PMC−ε0). Indeed using (4.76),
Proposition 2.3 and the orthogonality of the parameters {λj,n; xj,n; tj,n}, we deduce that
any sequence {σn} of times such that 0 < σn < Tn satisfies the following Pythagorean
expansion:

lim
n→∞

(
‖∇un(σn)‖

2
L2 +

N − 2
2
‖∂tun(σn)‖

2
L2 −

J∑
j=1

∥∥∥∥∇U j(σn − tj,nλj,n

)∥∥∥∥2

L2

−
N − 2

2

J∑
j=1

∥∥∥∥∂tU j(σn − tj,nλj,n

)∥∥∥∥2

L2
− ‖∇wJn (σn)‖

2
L2 −

N − 2
2
‖∂tw

J
n (σn)‖

2
L2

)
= 0.

Combining this with (4.73) and (4.75), we get the bound

∀j, sup
t∈[0,Tn]

(∥∥∥∥∇U j( t − tj,nλj,n

)∥∥∥∥2

L2
+
N − 2

2

∥∥∥∥∂tU j( t − tj,nλj,n

)∥∥∥∥2

L2

)
≤ MC − ε0

for large n. Thus (4.78) follows from (PMC−ε0).
By the argument in the proof of Lemma 4.9 in [KM06], using again the orthogonality

of the parameters, we can show that (4.73) and (4.78) imply that there exists a constantC1,
depending only on ε0, MC and CMC−ε0 , such that

lim sup
n→∞

‖un‖S(0,Tn) ≤ C1.

Choosing the constant C0 in (4.76) strictly greater than C1 yields a contradiction, which
shows that there is only one nonzero profile, say U1, in the profile decomposition of
(un(0), ∂tun(0)). Similarly, we can show that the dispersive part (w1

0n, w
1
1n) tends to 0 in

Ḣ 1
× L2. It remains to show that −t1,n/λ1,n is bounded, which follows from the con-

ditions ‖un‖S(0,bn) → +∞ (which implies that −t1,n/λ1,n is bounded from above) and
‖un‖S(an,0)→+∞ (which implies that it is bounded from below).
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Step 3. Compactness of the critical element and end of proof. Let v be the solution to
(1.1) with initial condition (v0, v1), and (T−(v), T+(v)) its maximal interval of existence.
Then v inherits the following properties from un:

sup
T−(v)<t<T+(v)

(
‖∇v(t)‖2

L2 +
N − 2

2
‖∂tv(t)‖

2
L2

)
≤ MC, (4.79)

‖v‖S(T−(v),0) = ‖v‖S(0,T+(v)) = +∞. (4.80)

Indeed, if t ∈ (T−(v), T+(v)), then (4.74) shows that λnt ∈ (an, bn) for large n. Since by
perturbation theory,(
λ
N/2−1
n un(λnt, λnx+xn), λ

N/2
n ∂tun(λnt, λnx+xn)

)
−−−→
n→∞

(v(t), ∂tv(t)) in Ḣ 1
×L2,

we see that (4.79) follows from (4.73).
If (4.80) does not hold, say ‖v‖S(0,T+(v)) < ∞, then T+(v) = +∞, and for large n,

T+(un) = +∞ and ‖un‖S(0,+∞) ≤ 2‖v‖S(0,+∞) < +∞, contradicting (4.74).
Let us show that v is compact up to modulation. By a standard lifting argument, it is

sufficient to show that for any sequence {tn}, tn ∈ Imax(v), there exist sequences {λn} and
{xn} and a subsequence of{(

1

λ
(N−2)/2
n

v

(
tn,
· − xn

λn

)
,

1

λ
N/2
n

∂tv

(
tn,
· − xn

λn

))}

that converges in Ḣ 1
× L2. By (4.79) and (4.80), the sequence {un} of solutions with

initial data (v(tn), ∂tv(tn)) satisfies (4.73) and (4.74) for a suitable choice of an and bn.
By Step 2, we get the desired result.

By Claim 2.5 and Theorem 2, the only solution compact up to modulation satisfying
(4.79) with MC <

∫
|∇W |2 is 0, which concludes the proof.

In the radial case, the proof above works as well, on replacing all constants (N − 2)/2
by ε, and Theorem 2 by [DKM09, Theorem 2] which states that the only radial solutions
of (1.1) that are compact up to modulation are (up to scaling and sign change) 0 and W .

ut

Appendix A. Modulation theory

In this appendix we show Claim 4.2 and Lemma 4.3. Consider a solution u of (1.1) which
satisfies (4.1).

If x = (x1, . . . , xN ) ∈ RN , denote x = (x2, . . . , xN ) ∈ RN−1. Let

ũ(t) = u(t,
√

1− `2 x1, x),

ũ1(t) = (∂tu)(t,
√

1− `2 x1, x)+ (`∂x1u)(t,
√

1− `2 x1, x).
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By Claim 2.5, we get, in view of (4.1),

E(ũ0(t), ũ1(t)) = E(W, 0), d`(t) =
√

1− `2
(∫
|∇ũ(t)|2+

∫
(ũ1(t))

2
−

∫
|∇W |2

)
,

(A.1)
where d` is defined by (4.2). Thus if d`(0) = 0, we get∫

|ũ(0)|2N/(N−2)
=

∫
|W |2N/(N−2),

∫
|∇ũ(0)|2 =

∫
|∇W |2 −

∫
|ũ1|

2,

and the fact that W is a minimizer for the Sobolev inequality shows, as usual, that there
exist x0, λ0 and a sign ± such that

ũ(0) = ±
1

λ
(N−2)/2
0

W

(
x − x0

λ0

)
, ũ1(0) = 0.

Coming back to the solution u, we get

u0 = ±
1

λ
(N−2)/2
0

W`

(
0,
x − x0

λ0

)
, u1 = ±

1

λ
N/2
0

∂tW`

(
0,
x − x0

λ0

)
.

Thus

u(t, x) = ±
1

λ
(N−2)/2
0

W`

(
t

λ0
,
x − x0

λ0

)
,

which shows the first item of Claim 4.2. The other two items follow by continuity of d`(t)
with respect to t and the intermediate value theorem.

Let us show Lemma 4.3. Assume that for a small δ0, |d`(t)| < δ0. Then by (A.1),∫
|∇ũ(t)|2 is close to

∫
|∇W |2,

∫
|ũ(t)|2N/(N−2) is close to

∫
|W |2N/(N−2), and

∫
|ũ1(t)|

2

is small. In particular, by the characterization of W ([Aub76, Tal76]), ũ is close to W or
−W after a space translation and a scaling. To fix ideas, we assume that ũ is close to
W after space translation and scaling. As stated in [DM08, Claim 3.5], by a standard
argument using the implicit function theorem (see [DM09, Claim 3.5] for a proof in a
very similar case), one can show that there exist λ(t), x̃(t) such that

λ(t)(N−2)/2ũ(t, λ(t)x + x̃(t)) ∈

{
∂x1W, . . . , ∂xNW, x · ∇W +

N − 2
2

W

}⊥
,

where the orthogonality is understood in Ḣ 1(RN ). Letting

α(t) =
1∫
|∇W |2

(∫
λ(t)N/2∇ũ

(
t, λ(t)x + x̃(t)

)
· ∇W(x) dx

)
− 1,

we obtain

λ(t)(N−2)/2ũ(t, λ(t)x + x̃(t)) = (1+ α(t))W(x)+ f̃ (t, x).



Blow-up for energy-critical wave 1451

Furthermore,

f̃ (t) ⊥ span
{
W, ∂x1W, . . . , ∂xNW, x · ∇W +

N − 2
2

W

}
. (A.2)

By the proof of (3.19) in [DM08, Lemma 3.7], we get the estimates

|α(t)| ≈ ‖∇(αW + f̃ )‖L2 ≈ ‖∇f̃ (t)‖L2 + ‖ũ1(t)‖L2 ≈ |d`(t)|. (A.3)

In [DM08, (3.19)], (ũ(t), ũ1(t)) is replaced by a couple (u(t), ∂tu(t)), where u is a solu-
tion to (1.1) such that

E(u0, u1) = E(W, 0) and
∣∣∣∣∫ |∇u(t)|2 dx + ∫ (∂tu(t))2 dx − ∫ |∇W |2 dx∣∣∣∣ < δ0.

However, the fact that u is a solution is not used in the proof of estimates (A.3), where the
time variable is only a parameter. Indeed (A.3) follows from the fact thatE(ũ(t), ũ1(t)) =

E(W, 0), d`(t) is small and f̃ (t) satisfies the orthogonality conditions (A.2). It remains
to show the estimates (4.4) on the derivatives of the parameters. The proof is very similar
to the one of (3.20) in [DM08, Lemma 3.7].1 We sketch it for the sake of completeness.

Write ũ(t, x) = 1
λ(t)(N−2)/2U

(
t,
x−x̃(t)
λ(t)

)
, where

U(t, x) = (1+ α(t))W + f̃ . (A.4)

By (A.3),
‖ũ1(t)‖L2 ≤ C|d`(t)|. (A.5)

Furthermore,

ũ1(t) = ∂t ũ(t)+
`

√
1− `2

∂x1 ũ(t)

= −
N − 2

2
λ′

λN/2
U

(
t,
x − x̃(t)

λ

)
+

1
λ(N−2)/2 ∂tU

(
t,
x − x̃(t)

λ

)
−

λ′

λ(N+2)/2 (x − x̃(t)) · ∇U

(
t,
x − x̃(t)

λ

)
−

1
λN/2

x̃′(t) · ∇U

(
t,
x − x̃(t)

λ

)
+

`
√

1− `2 λN/2
∂x1U

(
t,
x − x̃(t)

λ

)
.

By (A.4),

λN/2ũ1(t, λx+ x̃(t)) = −λ
′

(
N − 2

2
U + x · ∇U

)
+λ∂tU − x̃

′(t) · ∇U +
`

√
1− `2

∂x1U

= −λ′
(
N − 2

2
W + x · ∇W

)
+ λα′W − x̃′(t) · ∇W +

`
√

1− `2
∂x1W + λ∂t f̃ + g,

(A.6)

1 In the cited paper, the function µ(t) is the analogue of our parameter 1/λ(t).
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where by definition

g =

[
−λ′

(
N − 2

2
+ x · ∇

)
− x̃′(t) · ∇ +

`
√

1− `2
∂x1

]
(αW + f̃ ).

Notice that ∥∥∥∥ 1
1+ |x|

g

∥∥∥∥
L2
≤ C

(
|λ′| +

∣∣∣∣x̃′ − `
√

1− `2
Ee1

∣∣∣∣)(|α| + ‖f̃ ‖Ḣ 1)

≤ C

(
|λ′(t)| +

∣∣∣∣x̃′ − `
√

1− `2
Ee1

∣∣∣∣)d`(t).
Taking the scalar product of (A.6) in L2 with1∂x1W, . . . ,1∂xnW ,1

((
N−2

2 + x · ∇
)
W
)
,

1W and using that ∂t f̃ is orthogonal in L2(RN ) to all these functions, we obtain, in view
of (A.5),

|λ′(t)| +

∣∣∣∣x̃′(t)− `
√

1− `2
Ee1

∣∣∣∣+ λ(t)|α′(t)|
≤ Cd`(t)+ C

(
|λ′(t)| +

∣∣∣∣x̃′(t)− `
√

1− `2
Ee1

∣∣∣∣)d`(t).
Assuming that d`(t) is small enough, which may be obtained by taking a smaller δ0, we
obtain

|λ′(t)| +

∣∣∣∣x̃′(t)− `
√

1− `2
Ee1

∣∣∣∣+ λ|α′(t)| ≤ Cd`(t),
which yields estimates (4.4) taking x̃(t) =

( 1√
1−`2

x1(t), x2(t), . . . , xn(t)
)
. The proof of

Lemma 4.3 is complete.
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[MR05] Merle, F., Raphaël, P.: Profiles and quantization of the blow up mass for critical nonlin-
ear Schrödinger equation. Comm. Math. Phys. 253, 675–704 (2005) Zbl 1062.35137
MR 2116733

[MV98] Merle, F., Vega, L.: Compactness at blow-up time for L2 solutions of the criti-
cal nonlinear Schrödinger equation in 2D. Int. Math. Res. Notices 1998, 399–425
Zbl 0913.35126 MR 1628235

[MZ07] Merle, F., Zaag, H.: Existence and universality of the blow-up profile for the semi-
linear wave equation in one space dimension. J. Funct. Anal. 253, 43–121 (2007)
Zbl 1133.35070

[MZ08] Merle, F., Zaag, H.: Existence and characterization of characteristic points for a semi-
linear wave equation in one space dimension. arXiv:0811.4068 (2008)

[Pec84] Pecher, H.: Nonlinear small data scattering for the wave and Klein–Gordon equation.
Math. Z. 185, 261–270 (1984) Zbl 0538.35063 MR 0731347
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