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Abstract. We show that the subgroup of the knot concordance group generated by links of iso-
lated complex singularities intersects the subgroup of algebraically slice knots in an infinite rank
subgroup.
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1. Introduction

A long-standing question [38] asks whether the set of algebraic knots, those that are links
of isolated singularities of complex curves, is linearly independent in the knot concor-
dance group. Following Rudolph’s initial work [38], Litherland [24] used signature func-
tions to prove that the subset consisting of the positive torus knots is independent. How-
ever, it was then shown in [26] by means of an example that invariants of the algebraic
concordance group, such as the signature functions, are insufficient to prove the inde-
pendence of algebraic knots. Somewhat later, Miyazaki [32] showed that the particular
example in [26] was not ribbon, and Rudolph [40] then used this result to conclude that
ribbon knots do not behave well with respect to a certain operation called plumbing. Here
we develop tools based on Casson–Gordon theory [1] to prove the independence of a
large family of algebraic knots, a family which includes the particular example first found
in [26].

To be more specific, let C denote the group of (topologically locally flat) concordance
classes of knots in S3, and let G denote the algebraic concordance group. In [21], Levine
constructed a surjection C → G whose counterpart in higher dimensions is an isomor-
phism. The main result of this article is the following.

Theorem 1. Let A denote the subgroup of the knot concordance group C generated by
algebraic knots: connected links of isolated singularities in C2. Then the intersection of A
with the kernel of C → G contains an infinitely generated free abelian subgroup.
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We use the following notation: given a knot K and a pair of relatively prime integers p
and q, Kp,q denotes the oriented (p, q)-cable of K . Thus Kp,q represents p times the
generator of the first homology of the tubular neighborhood of K . In the special case that
K is the unknot U , so thatKp,q is a torus knot, we use the standard notation of Tp,q rather
than Up,q . The notation can be iterated; for instance, Kp,q;r,s denotes the (r, s)-cable of
the (p, q)-cable of K .

An algebraic knot is, by definition, the connected link of an isolated singularity of a
polynomial map f : C2

→ C. A knot is isotopic to an algebraic knot if and only if it is an
iterated torus knot Tp1,q1;··· ;pn,qn with indices satisfying pi, qi > 0 and qi+1 > piqipi+1
(see, for instance, [3]).

Our results concern (2, k)-cables of knots. In particular, we resolve an old question of
whether a particular linear combination of (2, k)-cables is slice; this combination is the
simplest algebraically slice knot in the span of the algebraic knots, [26]:

Theorem 2. The linear combination of algebraic knots

T2,3;2,13 # T2,15 #−T2,3;2,15 #−T2,13

is algebraically slice but has infinite order in C.

Theorems 1 and 2 are consequences of the following result, which establishes the linear
independence of an infinite collection of algebraic knots.

Theorem 3. For appropriately chosen integers qi , the set of algebraic knots

{T2,qi , T2,3;2,qi }
∞

i=1

forms a basis of a free abelian subgroup of the concordance group C. This subgroup in-
tersects the kernel of C → G in a free abelian subgroup, with basis given by the following
set of algebraically slice knots:

{T2,3;2,qn # T2,q1 #−T2,3;2,q1 #−T2,qn}
∞

n=2.

Our arguments apply more generally, for example to cables of knots other than the tre-
foil T2,3. We refer the reader to the body of the paper for details.

The methods we use are those introduced by Casson–Gordon in [1]. A novel feature
of our approach is the essential interplay between signature and discriminant invariants
on the Witt group of Hermitian forms over C(t). Casson–Gordon signature invariants,
which are Z-valued and hence more effective in identifying elements of infinite order, are
often intractable to compute. Discriminant invariants are computable algorithmically [19],
but because they take values in a group that is Z/2Z-torsion, they are less effective in
determining linear independence. By combining the two types of invariants we are able
to apply the power of signatures while bypassing the need to explicitly compute their
values; we can also avoid most of the typically messy work of analyzing metabolizers
which plagues many discriminant arguments used to show that certain knots have infinite
order in C.

We finish this introduction by giving some background to place our results in context.
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Given an oriented knot K , let −K denote the mirror image of K with its orientation
reversed. Two oriented knots, K1 and K2, are called concordant if the connected sum
K1 # −K2 bounds a locally flat embedded disk in S3. The set of concordance classes of
knots forms an abelian group C with operation induced by connected sum. Knots which
represent the zero element in C are called slice.

From this point forward we do not distinguish in our notation between a knot and its
concordance class. In particular, we write K1−K2 for the connected sum K1 #−K2. We
will also write −Kp,q for −(Kp,q), both of which equal (−K)p,−q .

Fox and Milnor observed [5] that if two knots are concordant, then the product of
their Alexander polynomials is a norm in Z[t±]: that is,1K1(t)1K2(t) = f (t)f (t

−1) for
some polynomial f (t) ∈ Z[t±]. (Recall that the Alexander polynomial is defined up to
multiplication by ±tk .)

An early result of Seifert [41] (see [22, Theorem 6.15] for a recent reference) states
that the Alexander polynomial of a satellite knot is determined by the Alexander polyno-
mials of the knots involved in the construction, together with an integer called the winding
number. In the case of cables, the formula is given by

1Kp,q (t) = 1Tp,q (t)1K(t
p), where 1Tp,q (t) =

(tpq − 1)(t − 1)
(tp − 1)(tq − 1)

.

For a connected sum, the Alexander polynomial is simply the product of the Alexander
polynomials of the constituent knots. A bit of calculation using these facts shows that
distinct algebraic knots are not concordant. The Levine–Tristram signatures of a knot [21,
22, 30, 42], which define integer-valued homomorphisms on C, can be used to further
show that algebraic knots have infinite order in C.

These observations might lead one to conjecture that the set of algebraic knots forms
a basis for an infinitely generated free abelian subgroup A ⊂ C. A first line of attack to
this question, as taken in [25] and [26], is to consider the algebraic concordance group G
and to determine the image of the composite A ⊂ C → G. For the purposes of this article
the precise definition of G is not needed and it will suffice to say that G is the group
generated by Seifert forms of knots, modulo Seifert forms of slice knots. The relevant
facts surrounding G are:

(1) There is a surjection C → G [21].
(2) The algebraic concordance class of a knotK is determined by its Blanchfield (torsion)

form [43]

BlK : H1(S
3
−K;Z[t±])×H1(S

3
−K;Z[t±])→ Q(t)/Z[t±].

With respect to the interplay of cabling and algebraic concordance, the for-
mula [16, 27]

BlKp,q (t) = BlK(t
p)⊕ BlTp,q (t),

based on a Mayer–Vietoris argument, gives a quick method to determine if certain linear
combinations of cable knots are algebraically slice, that is, lie in the kernel of C → G.

As observed in [26] (see Lemma 2.1 below), this formula implies that the knot in
Theorem 2, T2,3;2,13 + T2,15 − T2,3;2,15 − T2,13, is algebraically slice. It represents the
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simplest example of a knot in the kernel of the composite A ⊂ C → G. Showing this knot
is not slice has remained open until now, although Miyazaki proved it is not ribbon [32].

The reader will have noticed that the term “algebraic” has two different meanings
in this paper; on the one hand it describes a class of knots defined as links of isolated
singularities, and on the other it describes a certain quotient of the knot concordance
group. Algebraic knots are iterated cables, and we will typically work with general cables,
so this should cause no confusion.

1.1. Comparison with smooth techniques

Progress in identifying the structure of algebraic knots in the setting of smooth concor-
dance has been achieved largely through analytic means or the deep combinatorial ap-
proach stemming from Khovanov homology theory. This is most notable in the solutions
to the Milnor conjecture and the proof that the smooth 4-ball genus of a torus knot is real-
ized by an algebraic curve [20, 33, 37]. Highlighting the necessity of smooth techniques
in studying algebraic knots, Rudolph [39] observed that the Milnor conjecture is false in
the topological locally flat category.

Thus, it comes as a surprise that Casson–Gordon methods apply so effectively in the
present setting, having the further advantage that we can establish the independence of
these knots in the topological concordance group. Nonetheless, it would be interesting
to know the extent to which the array of existing smooth concordance invariants can be
used to address the question of independence of algebraic knots. We should point out,
however, that the Ozsváth–Szabó [33] and Rasmussen [37] concordance invariants, τ
and s, coming from knot Floer homology and Khovanov homology, respectively, contain
no information for the knots at hand. We make this precise in Proposition 8.2, which
shows that both invariants vanish for the family above and its obvious generalization to
positively iterated torus knots.

Despite the failure of s and τ , it seems likely that grading information from the Floer
homology of branched covers (in the form of the Frøyshov invariant [6], Ozsváth–Szabó
correction terms [34], or Chern–Simons invariant of SU(2) representations [4, 7]) could
be useful in our pursuit. However, extensive computations of such invariants in the first
two cases are difficult, and computing Chern–Simons invariants of covers in the spirit of
Fintushel–Stern [4, Theorem 5.1] and Furuta [7, Theorem 2.1] have failed to determine if
any members of the family of knots in the present article are slice.

2. Two-fold branched covers and characters

As mentioned in the introduction, we write Kp,q for the (p, q)-cable of K and −Kp,q
for −(Kp,q), which, by a simple orientation argument, equals (−K)p,−q . Cabling the
concordance shows that the concordance class of Kp,q depends only on the concordance
class of K , in the sense that if K and K ′ are concordant, then Kp,q and K ′p,q are concor-
dant. These observations, along with our earlier description of the Blanchfield pairing of
a cable knot, yields the following general statement, implicit in [26].
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Lemma 2.1. For any knot K,

Kp,q1 + Tp,q2 −Kp,q2 − Tp,q1

is an algebraically slice knot and is a slice knot when K is slice. ut

We now turn our focus to 2-stranded cables, knots of the form K2,q . A useful depiction
of K2,q is the following. Figure 1 shows a 2-component link Lq with one component
a (2, q)-torus knot and the other component an unknot labeled U . If K is a knot in S3

and q is an odd integer, then K2,q is obtained by removing a neighborhood of U and
replacing it by the complement of a tubular neighborhood of K in such a way that the
meridian-longitude pairs of U and K are interchanged.

U

Kq

U

Fig. 1. Lq .

For a knot K , denote by M3(K) the 2-fold branched cover of S3 branched over K .
Let K̃ denote the lift of K to M3(K) and let M3

0 (K) denote the result of 0-surgery on
M3(K) along K̃ , that is, the surgery whose framing comes from a lift of the longitude
of K . Note that M3

0 (K) is the 2-fold cyclic cover of 0-surgery on K in S3.
The 2-fold branched cover M3(T2,q) is the lens space L3(q, 1). Since U links the

(2, q)-torus knot twice in Lq , the preimage of U in this 2-fold branched cover consists
of two curves, Ũ1 and Ũ2. One way to understand this is to take a 3-ball in S3 which
meets the (2, q)-torus knot in two unknotted arcs and contains U in its interior. Then the
preimage of this 3-ball inM3(T2,q) is a solid torus, as is the preimage of its complement in
S3. The curves Ũ1 and Ũ2 are circles parallel to the core of this solid torus but oppositely
oriented. In particular, Ũ1 and Ũ2 are isotopic as unoriented curves inM3(T2,q). Figure 2
depicts the situation.

To obtain M3(K2,q), we replace the solid torus neighborhood of Ũ1 and Ũ2 with
copies of the complement of K in S3, interchanging the meridian-longitude pairs. The
preimage K̃ ⊂ M3(T2,q) is not drawn in Figure 2.

We will need notation for certain curves in M3(K2,q). Denote by µU and λU the
meridian and longitude of the unknotted component U ⊂ Lq , with its orientation as in
Figure 1. From the perspective of K2,q as a satellite knot, these are the longitude and
meridian, respectively, for the companion, K . Denote by µ̃i and λ̃i the meridian and
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K

U2 U1̃U1Ũ2

q

Fig. 2. M3(T2,q ). The branched double cover of the (2, q)-torus knot is the lens space L3(q, 1),
obtained by performing q-surgery on an unknot. The unknotted component of Lq lifts to Ũ1 ∪ Ũ2.

longitude in the boundary of the tubular neighborhood of Ũi ⊂ M3(T2,q), i = 1, 2, in the
surgery diagram given in Figure 2.

The notation is somewhat ambiguous since there is no preferred choice of lift ofU , but
in any case we will choose the same ordering when comparing M3(K2,q) and M3(T2,q).
Note that µ̃1 and µ̃2 vanish in H1(M

3(K2,q)) = Z/qZ, λ̃1 generates H1(M
3(K2,q)), and

λ̃2 = −λ̃1 in H1(M
3(K2,q)).

Denote by µ̃ the preimage of the meridian to K2,q and by λ̃ a component of the
preimage of the longitude ofK2,q inM3(K2,q). In particular, µ̃ and λ̃ are nullhomologous
in M3(K2,q), since a Seifert surface for K2,q ⊂ S

3 lifts to M3(K2,q).
The linking form of M3(K2,q) is given by the 1× 1 matrix (1/q); in fact

lk(λ̃1, λ̃1) = 1/q = lk(λ̃2, λ̃2).

Let p be an odd prime and let Cp denote the cyclic group of order p. This group can
be identified with the group of p-roots of unity: Cp = {ζ ap } ⊂ C, where ζp = e2πi/p. If
p and q are relatively prime then every character χ : H1(M

3(K2,q))→ Cp is trivial. On
the other hand, if p divides q, then the set of all characters χ : H1(M

3(K2,q)) → Cp is
a cyclic group isomorphic to Cp. We can fix an isomorphism Hom(H1(M

3(K2,q)), Cp)
∼= Cp as follows: Let

χ1 : H1(M
3(K2,q))→ Cp

denote the character which takes λ̃1 to ζp. Then any other character is obtained by post-
composing χ1 with the homomorphism Cp → Cp of the form ζ ip 7→ ζ iap for some in-
teger a. We denote this composite as χa : H1(M

3(K2,q)) → Cp. Notice that a is well
defined modulo p, and, although the definition of a depends on a choice of ordering of
the two lifts Ũ1, Ũ2, the unordered pair {a,−a} is independent of this choice.

Then

χa(λ̃1) = ζ
a
p , χa(λ̃2) = ζ

−a
p , χa(µ̃1) = 1, χa(µ̃2) = 1, χa(µ̃) = 1, χa(λ̃) = 1.

The unbranched 2-fold cover M3(K2,q) − K̃2,q → S3
− K2,q induces a homomor-

phism H1(M
3(K2,q) − K̃2,q) → H1(S

3
− K2,q) = Z with image 2Z. Dividing by two



Non-slice linear combinations of algebraic knots 1187

defines a surjection ε : H1(M
3(K2,q)− K̃2,q)→ Z. Writing Z = 〈t〉multiplicatively, we

have
ε(µi) = 1, ε(λ̃i) = t, ε(µ̃) = t, ε(λ̃) = 1.

To see that ε(λ̃1) = t = ε(λ̃2), notice that λ̃i is sent to λU in S3
−K2,q , which linksK2,q

twice; dividing by two yields one.
Recall thatM3

0 (K2,q) denotes the closed 3-manifold obtained by performing 0-surgery
on K̃2,q ⊂ M

3(K2,q), that is, the surgery corresponding to the framing induced by a lift of
a longitude ofK2,q toM3(K2,q). Since χa(λ̃) = ζ 0

p = 1 and ε(λ̃) = t0 = 1, both χa and ε
uniquely extend to homomorphisms on H1(M

3
0 (K2,q)). We can view their product as a

homomorphism to the multiplicative group of non-zero elements of the field of rational
functions, C(t):

χa × ε : H1(M
3
0 (K2,q))→ C(t)×.

Each homology class is sent to an element of the form ζ bp t
c.

We summarize these facts in the following lemma.

Lemma 2.2. Let K be a knot in S3, K2,q its (2, q)-cable, and T2,q the (2, q)-torus
knot. Let M3(K2,q) denote the 2-fold branched cover of S3 branched over K2,q , and let
M3

0 (K2,q) denote the manifold obtained from 0-surgery onM3(K2,q) along the preimage
of the branch set. Choose an odd prime p and let ζp = e2πi/p. Then:

(1) M3(K2,q) is obtained from M3(T2,q) = L
3(q, 1) by removing neighborhoods of the

two preimages Ũ1, Ũ2 of U and gluing in two copies of S3
− nbhd(K), so that the

meridian-longitude pairs of Ũi and K are interchanged.
(2) H1(M

3(K2,q)) = Z/qZ, generated by λ̃1, and lk(λ̃1, λ̃1) = 1/q.
(3) To any character χ : H1(M

3(K2,q)) → Cp one can associate the integer a modulo
p by the condition χ(λ̃1) = ζ

a
p . This character is denoted χa . In particular, this sets

up a 1-1 correspondence between Cp-valued characters on H1(M
3(K2,q)) and on

H1(M
3(T2,q)).

(4) The character χa uniquely determines a character (also denoted χa) on
H1(M

3
0 (K2,q)).

(5) There is a surjection ε : H1(M
3
0 (K2,q))→ Z = 〈t〉 satisfying ε(µi) = 1, ε(λ̃i) = t ,

ε(µ̃) = t , and ε(λ̃) = 1. ut

3. Casson–Gordon invariants

Let J : C(t)→ C(t) denote the involution J (f (t)) = f̄ (t−1); specifically,

J
(∑

ai t
i∑

bj tj

)
=

∑
ai t
−i∑

bj t−j
,

where ai denotes complex conjugation. We let W(C(t),J ) denote the corresponding
Witt group of non-singular J -Hermitian forms. This Witt group is discussed in more
detail in Appendix A. In brief, two forms I1 and I2 are equivalent if the sum I1 ⊕−I2 is
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metabolic, that is, contains a half-dimensional subspace on which the form vanishes. The
set of equivalence classes of forms constitutes the Witt group, with operation induced by
direct sums.

For each choice ofK and χ : H1(M
3(K2,q))→ Cp with p an odd prime, the Casson–

Gordon invariant of (K2,q , χ),

τ(K2,q , χ) ∈ W(C(t),J )⊗ Z(2),

is defined as follows [1]. (Here Z(2) is Z localized at 2, the set of rational numbers with
odd denominator.) Elementary bordism theory shows that p · (M3

0 (K2,q), χ × ε) bounds,
say p · (M3

0 (K2,q), χ × ε) = ∂(Y
4, ρ). Then Y 4 has a non-singular C(t)-valued intersec-

tion form I (Y 4, ρ) ∈ W(C(t),J ) defined using the cup product on middle degree coho-
mology, with local coefficients determined by the homomorphism ρ : π1(Y

4)→ C(t)×.
On the other hand, Y 4 also has its ordinary intersection form I (Y 4) ∈ Image{W(Q) →
W(C(t),J )}. The Casson–Gordon invariant is defined to be

τ(K2,q , χ) =
1
p
(I (Y 4, ρ)− I (Y 4)).

Since p is odd, 1/p ∈ Z(2).
The correspondence between characters on M3(T2,q) and M3(K2,q) described in

the previous section permits us to unambiguously define the difference τ(K2,q , χ) −

τ(T2,q , χ). A formula for this difference was established (in much greater generality)
by Litherland in his influential article [24]. (See also Gilmer [8] for related work and ap-
plications of this approach.) Using this result, one can compute the difference of Casson–
Gordon invariants for different choices of K . The answer is given in terms of an abelian
invariant, αK , which we define next.

Let S3
0(K) denote the 3-manifold obtained by 0-surgery on the knot K ⊂ S3. The

orientation of S3 and K determine an isomorphism δ : H1(S
3
0(K))→ Z = 〈x〉. There is

a 4-manifold X4 and δ̄ : π1(X
4)→ 〈x〉 such that ∂(X4, δ̄) = (S3

0(K), δ). Then X4 has a
Q[x±]-equivariant intersection form I (X4, δ̄) and an ordinary integer-valued intersection
form I (X). The concordance invariant, αK , is defined to be the difference of these forms
in the Witt group of Q(x):

αK = I (X
4, δ̄)− I (X4) ∈ W(Q(x),J ).

The class αK ∈ W(Q(x),J ) is determined by the algebraic concordance class of K ,
that is, the image of K under the map C → G. Given a unit complex number ω, the
Levine–Tristram ω-signature ofK is defined to be the signature of the complex Hermitian
matrix obtained by substituting x = ω into a matrix representative of αK .

More generally, if ω is a unit complex number, the map x 7→ ωt induces a map
W(Q(x),J )→ W(C(t),J ). We define αK(ωt) to be the image of αK under this map.

Litherland’s theorem [24, Corollary 2], proven by a delicate Mayer–Vietoris argu-
ment, implies the following.



Non-slice linear combinations of algebraic knots 1189

Proposition 3.1. Given K , q, χ , and p as above,

τ(K2,q , χa)− τ(T2,q , χa) = αK(ζ
a
p t)+ αK(ζ

−a
p t)

in W(C(t))⊗ Z(2). ut

Notice that αK(ζ ap t)+ αK(ζ
−a
p t) is unchanged by replacing a by −a. Moreover, for any

knot K and character χ (writing χ additively in this formula for simplicity),

τ(K, χ) = τ(K,−χ). (3.1)

This is because the 2-fold covering transformation is an orientation-preserving diffeo-
morphism which preserves the orientation of the branch set but induces −1 on the first
homology of the branched cover. Precomposing χ with this diffeomorphism yields −χ .
Hence τ(K2,q , χa) = τ(K2,q , χ−a).

In particular, to a character χ : H1(M
3(K2,q)) → Cp we can unambiguously assign

a ∈ {0, 1, 2, . . . , (p − 1)/2} by evaluating χ on one of λ̃1 or λ̃2 and replacing ζ ap by
ζ
p−a
p = ζ−ap if necessary. The number a determines χ up to sign, but it completely deter-

mines τ(K2,q , χa) and αK(ζ ap t)+αK(ζ
−a
p t). This also resolves the ambiguity introduced

earlier in choosing an order of the lifts of U , since if χ(λ̃1) = a, then χ(λ̃2) = −a.
Notice that χ is trivial if and only if a = 0.

We conclude this section with a lemma describing the influence of orientation on the
value of τ and α.

Lemma 3.2. αK = −α−K and τ(K, χ) = −τ(−K,χ).

Proof. If we consider a representative of K to be an embedded S1 in S3, then −K is rep-
resented by the same S1 in S3, but with the orientation of S3 (and of S1) reversed. Hence,
there is a natural orientation-reversing homeomorphism from M3(K) to M3(−K). This
permits us to formally make sense of the statement of the lemma; characters on the covers
of K and −K can be identified via this homeomorphism.

Given this, the only difference between the computation of the Witt class invariants
of K and −K is that the relevant 4-manifolds have their orientations reversed. This has
the effect of changing the signs of the intersection forms. ut

4. Linear combinations and slicing

Casson–Gordon invariants are used to obstruct sliceness of knots. The main result of [1]
implies that if a knot K is slice, then there exists a metabolizer V ⊂ H1(M

3(K)) for
the linking form on H1(M

3(K)) (as earlier, M3(K) denotes the 2-fold branched cover
of S3 over K), so that τ(K, χ) = 0 for every character χ : H1(M

3(K)) → C× that
factors through Z/pZ and vanishes on V . (Recall that a metabolizer is a subgroup V ⊂
H1(M

3(K)) on which the linking form vanishes and whose order is the square root of the
order of H1(M

3(K)).)
If p is a prime dividing the order of H1(M

3(K)), then given any metabolizer V , one
can find a non-trivial Cp-valued character which vanishes on V , since H1(M

3(K))/V
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necessarily has non-trivial p-torsion. Therefore, given any knotK and a prime p dividing
the order of H1(M

3(K)), if τ(K, χ) 6= 0 for all non-trivial Cp characters χ , K is not
slice.

Suppose now that sequences K i of knots and qi of relatively prime odd integers, i =
1, 2, . . . , are given. Although our techniques apply more generally, for our applications
we can assume that the q2i−1 are prime, as we henceforth do.

As explained above, the linear combination of cables

Ji = K
i
2,q2i−1

+ T2,q2i −K
i
2,q2i
− T2,q2i−1 (4.1)

is algebraically slice.

Lemma 4.1. If θ denotes the trivial character onM3(Ji), the 2-fold branched cover of S3

branched over Ji , then τ(Ji, θ) = 0.

Proof. Let θ denote the trivial character on the first homology of the 2-fold branched
cover of any knot. Applying Proposition 3.1 and using the fact that the Casson–Gordon
invariants are additive with respect to connected sums of knots (see, for instance, [24,
Corollary 1] or [8]) one computes

τ(Ji, θ) = τ(T2,k2i−1 , θ)+ τ(T2,k2i , θ)+ τ(−T2,k2i , θ)+ τ(−T2,k2i−1 , θ)

+ 2αK i (t)+ 2α−K i (t).

But αK i (t) = −α−K i (t) and, since θ is trivial, τ(T2,k, θ) = −τ(−T2,k, θ). The lemma
follows. ut

Consider an algebraically slice linear combination

J =

N∑
i=1

niJi . (4.2)

The 2-fold branched cover M3(J ) of S3 branched over J is the connected sum of the
(oriented) branched covers of the constituent knots in J . Hence

M3(J ) =
N

#
i=1

ni
(
M3(K i

2,q2i−1
) #M3(T2,q2i ) #M3(−K i

2,q2i
) #M3(−T2,q2i−1)

)
.

Assume that n1 > 0. Let χ : H1(M
3(J )) → Cq1 be a character. Let ζq1 = e

2πi/q1 . The
assumption that qi is relatively prime to q1 for i > 1 implies that χ vanishes on each sum-
mand in the connected sum, except possibly for some of the M3(K1

2,q1
) and M3(−T2,q1)

summands. On these summands, χ determines integers a1, . . . , an1 and b1, . . . , bn1 in
{0, 1, . . . , (q1 − 1)/2} by restricting χ to the M3(K1

2,q1
) and M3(−T2,q1) summands, re-

spectively, and evaluating on the corresponding lifts λ̃1 or λ̃2 in each summand, as in the
previous section. Using Lemma 4.1, one concludes

τ(J, χ) = n1(τ (−K
1
2,q2

, θ)+ τ(T2,q2 , θ))

+

n1∑
i=1

(τ (K1
2,q1

, χai )+ τ(−T2,q1 , χbi )) (4.3)
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where χai denotes the restriction of χ to H1(M
3(K1

2,q1
)) and χbi denotes the restriction

of χ to H1(M
3(−T2,q1)).

Proposition 3.1 gives the two equations

τ(−K1
2,q2

, θ)+ τ(T2,q2 , θ) = 2α−K1(t),

τ (K1
2,q1

, χai ) = τ(T2,q1 , χai )+ αK1(ζ
ai
q1
t)+ αK1(ζ

−ai
q1

t).

Substituting these equations in (4.3) shows that

τ(J, χ) = 2n1α−K1(t)

+

n1∑
i=1

(
αK1(ζ

ai
q1
t)+ αK1(ζ

−ai
q1

t)+ τ(T2,k1 , χai )− τ(T2,k1 , χbi )
)
. (4.4)

Summarizing, we have:

Proposition 4.2. Let Ji and J be the knots described in (4.1) and (4.2). Assume that
n1 > 0 and that p is an odd prime not dividing qi for i > 1, and χ : H1(M

3(J ))→ Cp a
character, determining integers ai, bi ∈ {0, 1, . . . , (p − 1)/2} as described above. Then

τ(J, χ) = −2n1αK1(t)+

n1∑
i=1

(
αK1(ζ

ai
p t)+αK1(ζ

−ai
p t)+τ(T2,q1 , χai )−τ(T2,q1 , χbi )

)
. ut

As explained above, given any metabolizer, one can find a non-trivial character that van-
ishes on it. Therefore, taking p = q1 in Proposition 4.2 and applying the main result of
Casson and Gordon [1], one obtains the following.

Corollary 4.3. If a knot J as above is slice and n1 > 0, then for some set of elements
ai, bi ∈ {0, 1, . . . , (q1 − 1)/2}, not all 0, the sum

−2n1αK1(t)+

n1∑
i=1

(
αK1(ζ

ai
q1
t)+ αK1(ζ

−ai
q1

t)+ τ(T2,q1 , χai )− τ(T2,q1 , χbi )
)

represents 0 ∈ W(C(t))⊗ Z(2).
To apply this as an obstruction to knots being slice, we must understand invariants of
W(C(t))⊗ Z(2) better. This is accomplished in the next section.

5. Signatures and discriminants

There are two fundamental types of invariants that can detect the non-triviality of elements
τ ∈ W(C(t),J ) ⊗ Z(2): signatures and discriminants. Discriminants can be computed
algorithmically (see [19]), but they take values in a 2-torsion group, and thus their use in
detecting elements of infinite order is quite tricky. Signatures take values in a torsion free
group, Z(2), but are difficult to compute. We now describe a method which will allow us
to bypass these difficulties by taking advantage of the interplay between signatures and
discriminants. An added advantage of this approach is that it helps us avoid the usually
challenging problem of identifying and analyzing all possible metabolizers for the linking
forms of the relevant 3-manifolds. Useful references for Casson–Gordon discriminant
invariants include [9] and [19].
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5.1. Basic facts about W(C(t),J )⊗ Z(2)

In Appendix A we present some of the details concerning the Witt group W(C(t),J )⊗
Z(2). Here are the key points that we need.

• If I ∈ W(C(t),J ) is represented by a Hermitian matrix A with polynomial entries,
the jump function

j (I )(ω) : S1
→ Z

represents half the jump in the signature function sign(A(ω)) defined for ω ∈ S1. The
function j (I ) has finite support. It extends to a well-defined Z(2)-valued function on
W(C(t),J )⊗ Z(2).
• The discriminant of a class I = [A] ∈ W(C(t),J ), where the matrix A is of rank n, is

given by

disc(I ) = (−1)n(n−1)/2 det(A).

This defines a function (but not a homomorphism)

disc : W(C(t),J )→ (C(t)J )×/N,

where (C(t)J )× denotes the non-zero symmetric (f = J (f )) rational functions and
N denotes the norms, that is, the multiplicative subgroup of C(t)× defined as

N = {fJ (f ) | f ∈ C(t), f 6= 0}.

• By taking the further quotient by the subgroup ±1 there is a well-defined homomor-
phism

disc± : W(C(t),J )→ (C(t)J )×/±N.

• A class d ∈ (C(t)J )×/N has a canonical representative in (C(t)J )× of the form

d = at−n
2n∏
i=1

(t − ωi),

where the ωi are distinct unit complex numbers and a2
= 1/

∏
ωi . If d = disc(I ),

then the numbers ωi are called the roots of disc(I ).
• There is a natural extension of disc± toW(C(t),J )⊗Z(2), defined by disc±(I ⊗p/q)
= (disc± I )p. This is again a homomorphism.
• A class (p/q)I ∈ W(C(t),J ) ⊗ Z(2) has j (I )(ω) odd if and only if ω is a root of

disc±((p/q)I ). (An element in Z(2) is called odd if it is not in 2Z(2) and is called even
otherwise.)
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5.2. Twisted polynomials and the discriminant

Let χ : π1(M
3(K)) → Cp. Then, as described in [19], we may associate to K and χ a

twisted Alexander polynomial 1K,χ (t) ∈ C[t±]. Theorem 6.5 of [19] states:

Theorem 5.1. disc±(τ (K, χ)) = (1− t)e1K,χ (t), where e = 0 if χ is trivial and e = 1
if χ is non-trivial. ut

Note that in this theorem the twisted polynomial is well-defined up to multiplication by
atk for k ∈ Z and a ∈ C×, while the discriminant is well-defined up to ±N . We refer the
reader to [19, Sections 2.2 and 6] for further details, and to [14] for an alternative descrip-
tion of this twisted Alexander polynomial as a twisted polynomial of a 2-dimensional
metabelian representation of π1(S

3
−K).

Theorem 5.1 and the discussion that precedes it generalizes to the Casson–Gordon
setting the well-known facts that the discriminant of αK(x) equals the ordinary Alexander
polynomial of K modulo norms, and that the jump function of the Levine–Tristram ω-
signatures is supported on the roots of the Alexander polynomial (see the first paragraphs
of Section 7 below).

5.3. The discriminant and jump function of the torus knot T2,p

As an important example, Theorem 5.1 allows us to readily compute the discriminant of
the Casson–Gordon invariant of T2,p when p is a prime and χ is any Cp-valued char-
acter. Combining this with Corollary A.8, we obtain information about the jumps of the
signature function of τ(T2,p, χa).

Lemma 5.2. Let T2,p denote the (2, p)-torus knot for some odd prime p, and M3(T2,p)

its 2-fold branched cover. Let f (t) = 1 + t + t2 + · · · + tp−1. There exists d ∈
{1, . . . , (p − 1)/2} such that for any a,

disc±(τ (T2,p, χa)) =
t (3−p)/2f (t)

(t − ζ adp )(t − ζ−adp )
.

Hence if a 6≡ 0 (modp) and θ denotes the trivial character,

j
(
τ(T2,p, χa)− τ(T2,p, θ)

)
(ω) is

{even if ω 6= ζ±ad ,
odd if ω = ζ±ad .

Proof. The (2, p)-torus knot has presentation π = 〈α, β | α2βp〉. Define n = (p − 1)/2.
The meridian (that is, the generator of H1(S

3
− T2,p) = Z) is given by µ = α + nβ, and

in H1(S
3
− T2,p), α = pµ and β = −2µ.

We use the methods and notation of [14]. In that article it is explained how a choice
of character χ : H1(M(T2,p)) → Cp determines and is determined by a dihedral repre-
sentation of π . Let Z/2 = 〈x | x2

= 1〉 act on Cp = {ζ ip} via x · ζp = ζ−1
p ; then given

d ∈ {0, 1, . . . , p − 1},
α 7→ x, β 7→ ζ dp
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determines a Z/2nCp representation since x2
= 1 = (ζ dp )

p. This representation restricts
to a trivial representation on the 2-fold cover if and only if d = 0, since β = −2µ in
H1(S

3
− T2,p).

From this dihedral representation a recipe is given in [14] to produce a GL2(C[t±1])
representation of π whose associated twisted Alexander polynomial is 1K,χ (t). The
recipe produces the representation ρ : π → GL2(C[t±1]):

ρ(α) =

(
0 1
t 0

)p
= tn

(
0 1
t 0

)
, ρ(β) =

(
0 1
t 0

)−2 (
ζ 0
0 ζ−1

)d
= t−1

(
ζ d 0
0 ζ−d

)
.

Theorem 7.1 of [14] shows that 1K,χ (t) is the order of the C[t±1]-torsion of the
corresponding twisted first homology module H1(S

3
− K; (C[t±1])2ρ); here (C[t±1])2ρ

is (C[t±1])2 = C2
⊗ Z[t±] viewed as a Z[π1(M

3
0 (T2,p))]-module via the representa-

tion ρ ⊗ ε, where ε is the canonical action of Z on Z[t±]. Let 10 denote the order of
H0(S

3
−K; (C[t±1])2ρ).

Note thatH0(S
3
−K; (C[t±1])2ρ) is the cokernel of the matrix obtained by substituting

the extension of ρ to Zπ → gl2(C[t±1]) into the matrix

∂1 =

(
α − 1
β − 1

)
(this matrix represents the differential on 1-chains in the universal cover). A simple calcu-
lation shows that H0(S

3
−K; (C[t±1])2ρ) is trivial if d 6= 0, and C[t±1]/〈t − 1〉 if d = 0.

Thus 10 = (t − 1)e−1 where e = 0 if d = 0 and e = 1 if d 6= 0.
To compute 1K,χ (t) we first compute the Fox matrix

∂2 =
(
1+ α α2(1+ β + · · · + βp−1)

)
representing the differential on 2-chains in the universal cover. Then Theorem 4.1 of [19]
shows that

1K,χ (t) =
det(ρ(1+ α))
det(ρ(β − 1))

10 =
det(ρ(α2(1+ β + · · · + βp−1)))

det(ρ(α − 1))
10.

Now

det(ρ(1+ α)) = det
(

1 tn

tn+1 1

)
= 1− tp

and

det(ρ(β − 1)) = det
(
t−1ζ dp − 1 0

0 t−1ζ−dp − 1

)
= t−2(t − ζ dp )(t − ζ

−d
p ).

Using Theorem 5.1 we find that for some a and k,

disc±(τ (T2,p, χ)) = at
k(1− t)e1K,χ (t) = atk(1− t)2e−1t2

1− tp

(t − ζ dp )(t − ζ
−d
p )

.
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Since −t−1(1− t)2 = (1− t)J (1− t), and f (t)(t − 1) = tp − 1, this can be rewritten
(perhaps changing a and k) as

disc±(τ (T2,p, χ)) = at
k f (t)

(t − ζ dp )(t − ζ
−d
p )

.

Symmetry of the discriminant then implies that k = (3− p)/2 and a = ±1.
The lemma follows from the fact that all non-trivial characters are multiples of χ1.

Hence if d is chosen so that the character χ1 takes β, viewed as a loop in the 2-fold cover,
to ζ dp , χa corresponds to the character that takes β to ζ adp . ut

Given an odd prime p, define a homomorphism

9p : W(C(t),J )⊗ Z(2)→ (Z(2))(p−1)/2 (5.1)

by evaluating the jump function at the non-trivial p-roots of 1 in the upper half-circle:

9p(I ) =
(
j (I )(ζp), j (I )(ζ

2
p ), . . . , j (I )(ζ

(p−1)/2
p )

)
.

Note that for I ∈ W(C(t))⊗ Z(2), 9p(I ) ∈ (2Z(2))(p−1)/2 if and only if disc±(I ) has no
roots among ζp, ζ 2

p , . . . , ζ
(p−1)/2
p .

Corollary 5.3. If p is an odd prime, the Witt classes

τ(T2,p, χa)− τ(T2,p, θ) ∈ W(C(t),J )⊗ Z(2), a = 1, . . . , (p − 1)/2,

are linearly independent and their span is mapped injectively to (Z(2))(p−1)/2 by 9p.

Proof. Consider the homomorphism

8 : (Z(2))(p−1)/2
→ W(C(t),J )⊗ Z(2)

which takes the ath coordinate vector to the difference τ(T2,p, χa) − τ(T2,p, θ) in
W(C(t),J )⊗ Z(2).

Lemma 5.2 implies that the matrix for p · 9p ◦ 8 differs from a permutation of the
identity by an even matrix, and hence has odd (and, in particular, non-zero) determinant.
It follows that 8 is injective. ut

6. The main examples

In Section 4 we considered the knots

Ji = K
i
2,q2i−1

+ T2,q2i −K
i
2,q2i
− T2,q2i−1 .

Our goal is to prove that for appropriate choices of K i and qi , the set {Ji}∞i=1 is linearly
independent.

The conditions on the knots K i which we will need to arrive at a contradiction (to
the assumption that J is slice) are that the K i be p-deficient and p-independent. These
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are conditions on the algebraic concordance class ofK i . Roughly stated,K is p-deficient
if its (Levine–Tristram) signature function has no jumps at pth roots of unity, and is p-
independent if the abelian Witt invariant αK(t) and its translates αK(ζ ap t) are linearly
independent in W(C(t)).

Definition 6.1. Given a knot K and an odd prime p, we say that K is p-deficient if
j (αK(t))(ζ

a
p ) = 0 for all a ∈ {0, 1, . . . , p − 1}.

Definition 6.2. Given a knotK and an odd prime p, we say thatK is p-independent if the
Witt classes αK(ζ ap t), a ∈ {0, 1, . . . , p− 1}, inW(C(t))⊗Z(2) are linearly independent.

Lemma 6.3. If a knotK is p-deficient and p-independent, then for any choice of integers
n > 0 and a1, . . . , an ∈ {0, 1, . . . , p − 1} with not all ai zero,

−2nαK(t)+
n∑
i=1

(αK(ζ
ai
p t)+ αK(ζ

−ai
p t))

is a non-zero element of the kernel of 9p : W(C(t))⊗ Z(2)→ (Z(2))(p−1)/2.

Proof. Note that j (αK(ζ
ai
p ))(ζ

a
p ) = j (αK)(ζ

ai+a
p ), which vanishes since K is p-defi-

cient. Hence 9p(−2nαK(t)+
∑n
i=1(αK(ζ

ai
p t)+ αK(ζ

−ai
p t))) = 0.

Since K is p-independent and −2nαK(t) +
∑n
i=1(αK(ζ

ai
p t) + αK(ζ

−ai
p t)) is a non-

trivial (not all ai are zero) linear combination of the αK(ζ a t), it is non-zero. ut

Non-trivial examples of p-deficient and p-independent knots will be presented in Sec-
tion 7. In particular, we will show that the trefoil, T2,3, is p-deficient and p-independent
for all primes p > 3.

Theorem 6.4. Let J =
∑N
i=1 niJi with the Ji as above. If, for some j with nj 6= 0 and

some prime qj , the knot Kj is qj -deficient and qj -independent, then J is not slice.

Proof. Suppose that J is slice. Assume, by changing sign and reindexing if necessary,
that j = 1 and that n1 > 0.

In this case, we found in Corollary 4.3 that for some set of elements ai, bi ∈
{0, 1, . . . , (q1 − 1)/2}, not all 0, then

−2n1αK1(t)+

n1∑
i=1

(
αK1(ζ

ai
q1
t)+ αK1(ζ

−ai
q1

t)+ τ(T2,q2i−1 , χai )− τ(T2,q2i−1 , χbi )
)
= 0

in W(C(t))⊗ Z(2).
Applying the function 9q1 to this equation we find, using Lemma 6.3, that

9q1(τ (J, χ)) = 9q1

( n1∑
i=1

(τ (T2,q1 , χai )− τ(T2,q1 , χbi ))
)
= 0.

This can be rewritten as

9q1

( n1∑
i=1

[(τ (T2,q1 , χai )− τ(T2,q1 , θ))− (τ (T2,q1 , χbi )− τ(T2,q1 , θ))]
)
= 0.
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By Corollary 5.3, this implies that

n1∑
i=1

[(τ (T2,q1 , χai )− τ(T2,q1 , θ))− (τ (T2,q1 , χbi )− τ(T2,q1 , θ))] = 0,

and thus
∑n1
i=1(τ (T2,q1 , χai )− τ(T2,q1 , χbi )) = 0. We also conclude that the (unordered)

sets {a1, . . . , an1} and {b1, . . . , bn1} coincide. In particular, at least one of the ai is non-
zero. Thus

0 = −2n1αK1(t)+

n1∑
i=1

(αK1(ζ
ai t)+ αA1(ζ

−ai t)).

But this is impossible by Lemma 6.3. Hence J cannot be slice. ut

With this, our main result follows.

Theorem 6.5. Let qi be a sequence of positive integers with q2i−1 prime for all i and
q2i relatively prime to q2j−1 for all i, j . Let K i be a sequence of knots so that K i is
q2i−1-deficient and q2i−1-independent for all i. Let

Ji = K
i
2,q2i−1

# T2,q2i #−K i
2,q2i

#−T2,q2i−1 .

Then the Ji are linearly independent, algebraically slice knots. ut

As mentioned above, the next section shows that T2,3 is both p-deficient and p-indepen-
dent for all primes p > 3. Given this, the following corollaries are immediate, and yield
Theorems 1–3 of the introduction.

Corollary 6.6. The algebraically slice knot

T2,3;2,13 + T2,15 − T2,3;2,15 − T2,13

has infinite order in C.

Proof. The assertion follows immediately from Theorem 6.5. ut

Corollary 6.7. Let q1 = 13, q2 = 17, . . . be the increasing list of primes greater than 11.
Then the set of algebraic knots

{T2,qi , T2,3;2,qi }
∞

i=1

is a basis for a free abelian subgroup of the concordance group C. This subgroup inter-
sects the kernel of C → G in a free abelian subgroup, with basis the set of algebraically
slice knots

{T2,qi − T2,3;2,qi − T2,13 + T2,3;2,13}
∞

i=2.
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Proof. Consider a linear combination

J =

N∑
i=1

(niT2,qi +miT2,3;2,qi ).

Suppose that J is slice. We will show that each ni and mi is zero.
Fix `. When evaluated at ω = e2πi/(2q`), the jump function for the Levine–Tristram

signature of a knot in {T2,qi , T2,3;2,qi }
∞

i=1 is non-zero only for the knots T2,q` and T2,3;2,q` ,
since the qi are different primes. Indeed, for T2,q` and T2,3;2,q` , the jump is equal to −1
(see, for example, [25]). This implies that m` = −n`.

Furthermore, the jump function for the Levine–Tristram signature of T2,3;2,qi , eval-
uated at ω = e2πi/12, is equal to −1 for all i. For this value of ω, however, the jump
function for T2,qi is zero. It follows that the sum of the ni is zero.

Thus

J =

N∑
i=1

ni(T2,qi − T2,3;2,qi ) with
N∑
i=1

ni = 0. (6.1)

Any knot of the form (6.1) is algebraically slice: indeed, its Blanchfield form is

BlJ (t) =

N∑
i=1

ni
(
BlT2,qi

(t)− BlT2,3(t
2)− BlT2,qi

(t)
)
= −

N∑
i=1

ni(BlT2,3(t
2)) = 0.

Since
∑
ni = 0, we have

J =

N∑
i=1

ni(T2,qi − T2,3;2,qi )−

N∑
i=1

ni(T2,11 − T2,3;2,11),

as an equation in C. Theorem 6.5, together with the fact that T2,3 is p-deficient and p-
independent forp > 3, implies that each ni is zero. This proves that the set {T2,qi , T2,3;2,qi }

is linearly independent.
Since the jumps in the Levine–Tristram signature functions are determined by the

algebraic concordance class of a knot, (6.1) shows that the intersection of the span of
{T2,qi , T2,3;2,qi } with the kernel of C → G is a free abelian group, with basis the set of
algebraically slice knots {T2,qi − T2,3;2,qi − T2,13 + T2,3;2,13}

∞

i=2. ut

Corollary 6.8. Let A ⊂ C denote the subgroup of the knot concordance group generated
by algebraic knots. The intersection of A with the kernel of the map C → G to the
algebraic concordance group contains an infinitely generated free abelian group. ut

7. Torus knot examples: p-deficiency and p-independence

Let K be a knot in S3, F a Seifert surface for K , and V the Seifert form for F . There
are several well-known constructions of a 4-manifold X4 with boundary S3

0(K) over
which δ : H1(S

3
0(K)) → Z extends such that the equivariant intersection form of X4
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is I (X4, δ̄) = (1−x)V + (1−x−1)V T and the ordinary intersection form onX4 is given
by I (X) = Id. Such constructions can be found in [1, 15, 18].

It follows that αK(x) ∈ W(Q(t)) is represented by the matrix(
(1− x)V + (1− x−1)V T 0

0 −1

)
.

Since (x−1
−1)

(
xV −V T

)
= (1−x)V +(1−x−1)V T , and the Alexander polynomial

satisfies
1K(x) = det(xV − V T ),

it follows that the jumps in the Levine–Tristram signature function of αK(x) are supported
on a subset of the roots of the Alexander polynomial. Notice that this is a more precise
statement than saying that the odd jumps occur at roots of the discriminant, since the
Alexander polynomial is well-defined in Z[x±1]. Furthermore, if ω is a root of unity and
x−ω divides1K(x) but (x−ω)2 does not divide1K(x), then jω(αK) = ±1, improving
the conclusion of Corollary A.6.

Theorem 7.1. For any relatively prime integers m, n, and q, and any prime divisor p
of q, the torus knot Tm,n is p-deficient and p-independent.

Proof. The Alexander polynomial of Tm,n is

1Tm,n(x) =
(xmn − 1)(x − 1)
(xm − 1)(xn − 1)

.

Thus, the only roots of 1Tm,n(x) are the mn-roots of unity which are not simultaneously
m- or n-roots of unity. It follows that the jumps in the Levine–Tristram signature function
of αTm,n occur, and equal ±1, at the unit complex numbers e2πi c

mn = ζ cmn, where c is not
divisible by either m or n, and 1 ≤ c ≤ mn− 1. (There are (m− 1)(n− 1) such c.)

p-deficiency: From the definition, we see that if Tm,n is not p-deficient, then for some
a ∈ {0, 1, . . . , p − 1} and c as in the previous paragraph, ζ ap = ζ

c
mn. This is impossible,

since p and mn are relatively prime and 1 ≤ c ≤ mn− 1.

p-independence: To demonstrate the independence of the αTm,n(ζ
a
p t), we show that for

distinct a1 and a2, 0 ≤ a1, a2 ≤ p − 1, the jumps for the Levine–Tristram signature
function occur at distinct points. The jumps for αTm,n(ζ

ai
p t) occur at ω = ζ−aip ζ

ci
mn, where

ci is not divisible by either m or n and 1 ≤ ci ≤ mn− 1.
If the jumps occurred at the same point, then ζ−a1

p ζ
c1
mn = ζ

−a2
p ζ

c2
mn, and so

c1

mn
−
a1

p
=
c2

mn
−
a2

p
mod Z.

This can be rewritten as
(c1 − c2)p − (a1 − a2)mn

mnp
∈ Z.

This immediately implies that a1−a2 is divisible by p, which in turn implies that a1 = a2,
giving the desired contradiction. ut
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8. The 4-ball genus

We next observe that if q1, q2 are a pair of integers and K is any knot, the algebraically
slice knots

J = K2,q1 −K2,q2 − T2,q1 + T2,q2

have 4-ball genus equal to 0 or 1. In the case that K is slice, we noted in Lemma 2.1 that
J is slice. If K is q1-deficient and independent, then Corollary 6.6 shows J is not slice.
The following argument shows that in this second case J has 4-ball genus at most 1.

Figure 3 illustrates J with three arcs, γ1, γ2, and γ3, depicted. In this figure the labels
±qi refer to half-twists, and the parallel strands passing through ±K are to be tied in the
knot ±K .

A −A

a3

a2

a1

k2
−k1

−k2
k1

K −K

q1 −q2

−q1q2

γ1

γ2
γ3

Fig. 3. J = K2,q1 −K2,q2 − T2,q1 + T2,q2 .

A band move along γ1 produces a satellite (link) of the slice knotK#(−K). Taking the
corresponding satellite of the null-concordance and then performing band moves along
the arcs labeled γ2 and γ3 gives a genus 1 cobordism from J (K, k1, k2) to a 2-component
unlink. Thus J (K, k1, k2) has 4-ball genus at most one.

Corollary 8.1. The knot T2,3;2,13 + T2,15 − T2,3;2,15 − T2,13 has 4-ball genus equal to 1.
ut

As mentioned in the introduction, the Ozsváth–Szabó and Rasmussen concordance in-
variants, τ and s, are unable to determine whether any of the algebraically slice linear
combinations involving positive iterated torus knots is slice. We make this precise in the
following proposition.
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Proposition 8.2. Fix p, q1, q2 > 0. Suppose J = Kp,q1 − Kp,q2 − Tp,q1 + Tp,q2 , with
K = Kr1,s1;··· ;rn,sn a positively iterated torus knot, that is, ri, si > 0 for all i. Then
τ(J ) = s(J ) = 0, where τ and s are the Ozsváth–Szabó and Rasmussen concordance
invariants, respectively.

Proof. It is well-known that the Seifert genus of Kp,q is given by

g(Kp,q) = pg(K)+ g(Tp,q),

and that 2g(Tp,q) = (p − 1)(q − 1). See, for instance, [3, Chapter 1, §3].
We claim 2τ(K) = s(K) = 2g(K) for any positively iterated torus knot. Given this,

the proposition follows from the genus formula above, together with the fact that both
invariants change sign under reflection, τ(K) = −τ(−K) and s(K) = −s(−K).

For torus knots, the fact that 2τ(K) = s(K) = 2g(K) was proved by Ozsváth and
Szabó [35] and Rasmussen [37], respectively. For positively iterated torus knots, the result
follows from [13, Corollary 1.4], which shows that a positively iterated torus knot bounds
a Seifert surface which is isotopic to a piece of a complex curve in the 4-ball (for algebraic
knots this is well-known, through the work of Milnor [31]). Knots which bound such
complex curves satisfy the stated equalities, by [28] (see also [12]). ut

Appendix A. Properties of the Witt group W(C(t))

A.1. Hermitian forms over C(t) and the Witt group W(C(t),J )

The ring C[t±] has the involution denoted J , defined by J (
∑
ai t

i) =
∑
ai t
−i , where

ai denotes standard complex conjugation. There is a natural extension of J to C(t) and
then to GLn(C(t)), applying J to the entries of a matrix and transposing.

A Hermitian inner product space consists of a pair (V , β) where V is a finite-
dimensional vector space over C(t) and β is a Hermitian inner product: β(av, bw) =
aJ (b)β(v,w) and β(v,w) = J (β(w, v)). In terms of a basis, the Hermitian inner prod-
uct β is given by a matrix B satisfying J (B) = B. Given a second basis, the new coordi-
nates are related to the old by a change of basis matrix P , and the new matrix represen-
tation of β is PBJ (P ). The inner product is called non-singular if det(B) 6= 0 for some
(and thus any) matrix representation B of β.

An inner product space is called Witt trivial if there is a half-dimensional subspace of
W ⊂ V such that β(w1, w2) = 0 for all w1, w2 ∈ W . Two non-singular Hermitian inner
product spaces (V1, β1) and (V2, β2) are called Witt equivalent if (V1, β1) ⊕ (V2,−β2)

is Witt trivial. The set of equivalence classes forms an abelian group, with addition in-
duced by direct sum. This group is the Witt group, which we denote W(C(t)). Note that
isometric forms are Witt equivalent.

A.2. Signature invariants defined on W(C(t),J )

LetA(t) be a non-singular Hermitian matrix overC(t) representing a class inW(C(t),J ).
For any unit complex number ω, the complex matrix A(ω) is Hermitian. The matrix may
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be singular for isolated values of ω, but in any case it has a signature, sω(A) ∈ Z. This
does not yield a well-defined homomorphism W(C(t),J )→ Z, because of the possible
singularities; the problem is corrected by averaging the one-sided limits, defining

σeiα ([A]) =
1
2

(
lim
x→α+

seix (A)+ lim
x→α−

seix (A)
)
.

This results in a homomorphism

σ : W(C(t),J )→ Funct(S1,Z), σ (I )(ω) = σω(I ),

which extends in the obvious way to

σ : W(C(t))⊗ R→ Funct(S1, R)

for any subring R ⊂ Q. In our applications we will take R = Z(2), the set of rational
numbers with odd denominator.

It is most convenient to re-express this invariant in terms of the signature jump func-
tion

j : W(C(t))→ Funct(S1,Z), j (I )(eiθ ) =
1
2

(
lim
x→θ+

σ(I)(eix)− lim
x→θ−

σ(I)(eix)
)
.

We have divided by two to avoid confusion below. This jump function has finite support
and is integer valued, as follows from a diagonalization argument and an examination of
1-dimensional forms. Details appear later in this appendix.

Since j (kI ) = kj (I ) for any integer k, the signature jump function extends to a
homomorphism

j : W(C(t))⊗ R→ Funct(S1, R)

for any subring R of Q.

A.3. Discriminants

Roughly stated, the discriminant of a class in W(C(t),J ) is given by the determinant
of a matrix representative of the class. Since the determinant of a Witt trivial matrix is
of the form ±f (t)J (f (t)), one needs to view it in a quotient of C(t) by such norms.
Taking care in the treatment of signs leads to the formal definition. For A, a matrix of
dimension k representing a class [A] ∈ W(C(t),J ), define

disc([A]) = (−1)k(k−1)/2 det(A) ∈ (C(t)J )×/N(C(t)),

where (C(t)J )× is the multiplicative subgroup of C(t)× consisting of symmetric non-
zero rational functions,

(C(t)J )× = {f (t) 6= 0 ∈ C(t) | J (f (t)) = f (t), f (t) 6= 0},

and N(C(t)) is the subgroup of norms,

N(C(t)) = {f (t)J (f (t)) | f ∈ C(t)}.
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Since 1/f (t) is equivalent to J (f (t)) modulo norms and C is algebraically closed,
any class in (C(t)J )×/N(C(t)) can be expressed as a factored Laurent polynomial

F(t) = atk
∏
(t − ωi), (A.1)

as we now show.
Since J (F (t)) = F(t), it follows that if t − ω is a factor, then t − (ω̄)−1 is also

a factor. If ω is not a unit complex number, then these two factors are distinct. As both
factors appear and

(t − ω)(t − (ω̄)−1) = (−ω̄−1t)(t − ω)J (t − ω),

they can be removed from the product, modulo norms, at the cost of changing a and the
exponent of t in (A.1).

If ω is a unit complex number, then

(t − ω)J (t − ω) = −t−1ω̄(t − ω)2.

Thus we can also remove factors of the form (t −ω)2 in (A.1) at the cost of changing
a and the exponent of t . Any positive real number is a norm, so we may assume a is a
unit complex number. A final application of symmetry restricts the form further, yielding
the following:

Theorem A.1. Every element in (C(t)J )×/N(C(t)) has a canonical representative of
the form

at−n
2n∏
i=1

(t − ωi)

where the ωi are distinct unit complex numbers and a2
= 1/

∏
ωi . ut

Corollary A.2. Let I ∈ W(C(t),J ). For each unit complex number ω, the exponent of
t − ω in disc(I ) gives a well-defined homomorphism δω : W(C(t),J ) → Z/2Z. This
extends to a Z/2Z-valued homomorphism on W(C(t),J )⊗ Z(2). ut

A.4. Relation between the discriminant and jump function

Via diagonalization, any class in W(C(t),J ) can be represented by a diagonal matrix
with diagonal entries in (C(t)J )×. Scaling basis elements changes a diagonal entry by
an arbitrary norm, and so the preceding discussion applies equally to the diagonal entries.
Thus:

Theorem A.3. Every non-singular Hermitian inner product on C(t) has a diagonal ma-
trix representation with each diagonal entry of the form d = at−n

∏2n
i=1(t −ωi) for some

set of distinct ωi ∈ S1, where a2
= 1/

∏
ωi . ut

A simple trigonometric calculation yields:
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Lemma A.4. If d = at−n
∏2n
j=1(t − ωj ), ωj = e

iθj and t = eiθ , then

d = (−4)n
2n∏
j=1

sin((θ − θj )/2). ut

This allows one to compute the jump function near ωi , since sin((θ − θi)/2) is negative
for θ < θi and positive for θ > θi . Together with Corollary A.2 this implies:

Lemma A.5. Let I ∈ W(C(t),J ) be a 1-dimensional form with canonical representa-
tive (at−n

∏2n
i=1(t − ωi)) as above. Then

(1) σω(I ) = 0 or ±1 depending on whether ω = ωi for some i or not.
(2) jω(I ) = ±1 or 0 depending on whether ω = ωi for some i or not.
(3) δω(I ) = 1 or 0 ∈ Z/2Z, depending on whether ω = ωi for some i or not. ut

Since each of these functions is additive and all forms can be diagonalized, we have the
following corollary.

Corollary A.6. Let I ∈ W(C(t),J ) be a class with discriminant d = atk
∏
(t − ωi),

with all ωi distinct unit complex numbers. Then the jump jω(I ) is 0 or 1 modulo 2 de-
pending on whether or not t − ω is a factor in the discriminant. ut

A.5. Tensoring with Z(2)
If R is any subring of Q, then the signature and jump function clearly extend to the Witt
group W(C(t),J )⊗ R. This is not true for the discriminant. However, we have:

Theorem A.7. After taking the further quotient with ±1, the discriminant extends to a
homomorphism disc± : W(C(t),J )⊗ Z(2)→ (C(t)J )×/±N(C(t)).
Proof. Any class in W(C(t),J ) ⊗ Z(2) can be expressed as I ⊗ (p/q) with q odd,
p ≥ 0, and gcd(p, q) = 1. We define the discriminant of such a form to be disc±(pI) =
(disc±(I ))p. Notice however that since disc± takes values in a group that consists of 2-
torsion, the assumption that gcd(p, q) = 1 is not needed; introducing odd factors in the
numerator does not affect the value of (disc±(I ))p. To check this is well defined on the
tensor product, one needs to show its value is the same on kI ⊗ (p/q) and I ⊗ (kp/q)
for any integer k. For k even, both are 1 modulo ±N . For k odd, both equal disc(I )
modulo ±N . ut

Corollary A.8. Let (p/q)I ∈ W(C(t),J ) ⊗ Z(2). Then the jump j (I )(ω) is even or
odd (that is, equals 0 or 1 ∈ Z(2)/2Z(2)) depending on whether or not ω is a root of the
discriminant in its canonical form. ut

Appendix B. Ribbon-slice

B.1. Connections to the geometry of the ribbon-slice problem

While the problem of concordance relations between algebraic knots grew out of, and has
obvious interest within, the classical theory of plane curve singularities, it could poten-
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tially be more important to the old question of whether slice knots are ribbon. Indeed,
these connections were the original motivation for the work at hand, as we now briefly
explain.

First, recall that a knot is ribbon if it bounds a ribbon disk in the four-dimensional
unit ball. A ribbon disk is a smoothly, properly, embedded disk on which the radial func-
tion for the 4-ball restricts to a Morse function with no index 2 critical points, that is, a
disk for which the radial function has no local maxima. The ribbon-slice problem asks
whether all slice knots bound a ribbon disk (see for instance [17]). Apart from the fact
that it is longstanding, this question is important because the property of being ribbon has
an entirely three-dimensional interpretation. (The interpretation is in terms of immersed
disks in the 3-sphere with certain types of double points, of so-called ribbon type.) An
affirmative answer would indicate that the elusive four-dimensional nature of the smooth
concordance group could be understood by three-dimensional techniques.

An interesting but elementary observation which first appeared in [10] is that a geo-
metrically minimal disk, that is, a disk whose mean curvature vector vanishes identically,
is a ribbon disk. This follows from the well-known fact that the coordinate functions
on R4 restrict to harmonic functions on a minimal disk. From this it follows easily that
the radial function restricts to a subharmonic function, and hence it has no local maxima.

In light of this, one is naturally led to wonder whether slice knots bound minimal
disks in the 4-ball. This is the realm of the classical Plateau problem which asks, more
and less generally, when a given curve in Rn arises as the boundary of an area-minimizing
map u : D2

→ Rn. In this form, the answer is “always,” as proved by Douglas and Radó
independently in the early 1930’s [2, 36]. The astute reader should be confused, since this
seems to imply that not only is every slice knot ribbon, but every knot is ribbon.

The point of confusion lies in the precise nature of the Douglas–Radó solution. They
showed that any rectifiable curve in Rn (in particular, every knot in S3

⊂ R4) arises as
the boundary of a map u : D2

→ Rn which is absolutely area-minimizing, and hence
geometrically minimal, but may have two types of singularities. The first type are self-
intersections; that is, the map is at best an immersion. The second type of singularity,
called branch points, are the images of points p ∈ D2 at which the derivative vanishes:
dup = 0. It is this latter type of singularity which ties the ribbon-slice problem to the
concordance problem of algebraic knots.

The key point is that the structure of branch points of minimal surfaces in R4 can
be understood in terms very similar to those in the classical theory of plane curve sin-
gularities. Indeed, Micallef and White [29] showed that the link of a branch point of an
area-minimizing map u : D2

→ R4 is equivalent, up to a possibly orientation-reversing
diffeomorphism of S3

= ∂D4, to an algebraic link. Thus the boundary of a small neigh-
borhood of the preimage of a branch point, Nε(p) ⊂ D2, is mapped into the 3-sphere
∂Nδ(u(p)) as the link type of an algebraic link or its mirror image. (Here Nδ(u(p)) is a
neighborhood in R4 of the branch point.)

In the case of a topologically embedded minimal disk we can group any branch points
together to obtain a ribbon concordance (that is, a ribbon cylinder) between the boundary
of the disk and a connected sum of knots, K1# · · · #Kn, where each Ki is either an alge-
braic knot or the mirror image of an algebraic knot. If we could show that the only such
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sums which are slice are of the formK#−K , then we could replace the neighborhood of
the collection of branch points in the minimal disk with the obvious ribbon disk bounded
by such connected sums. This replacement results in a ribbon disk for the original knot.

Thus the ribbon-slice problem could be settled in the affirmative with two (difficult)
steps.

(1) Show that any slice knot type can be realized as the boundary of a topologically
embedded minimal disk, but possibly with branch points.

(2) Classify concordance relations between algebraic links and show that the only such
relations are of the formK#−K . Note that if any other relations exist, they cannot be
realized by ribbon disks, by Miyazaki [32]. In this case the answer to the ribbon-slice
question would be in the negative.

The first step seems more difficult due to the nature of known results for Plateau-
type problems, which indicate that self-intersections of minimal maps are more likely to
occur generically than branch points. Hence it may be too much to hope that one can find
the required minimal embeddings through the current techniques. It should be pointed
out, however, that Hass [10] showed that any ribbon knot has an isotopy representative
bounding an embedded minimal disk without branch points. Thus if the answer to the
ribbon-slice question is affirmative, then the strategy works without the second step. It is
our hope, however, that importing the concordance result could provide useful flexibility
in the geometric approach to the problem.

Acknowledgments. Conversations with Tom Mrowka about the ribbon-slice conjecture led natu-
rally to the investigations of this paper. The relationship between this ribbon-slice problem and the
concordance independence of algebraic knots is discussed in the second appendix.
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