
DOI 10.4171/JEMS/334

J. Eur. Math. Soc. 14, 1331–1355 c© European Mathematical Society 2012

Nathan Keller

A tight quantitative version of
Arrow’s impossibility theorem

Received March 21, 2010

Abstract. The well-known Impossibility Theorem of Arrow asserts that any generalized social
welfare function (GSWF) with at least three alternatives, which satisfies Independence of Irrelevant
Alternatives (IIA) and Unanimity and is not a dictatorship, is necessarily non-transitive. In 2002,
Kalai asked whether one can obtain the following quantitative version of the theorem: For any
ε > 0, there exists δ = δ(ε) such that if a GSWF on three alternatives satisfies the IIA condition
and its probability of non-transitive outcome is at most δ, then the GSWF is at most ε away from
being a dictatorship or from breaching the Unanimity condition. In 2009, Mossel proved such a
quantitative version, with δ(ε) = exp(−C/ε21), and generalized it to GSWFs with k alternatives,
for all k ≥ 3.

In this paper we show that the quantitative version holds with δ(ε) = Cε3, and that this result
is tight up to logarithmic factors. Furthermore, our result (like Mossel’s) generalizes to GSWFs
with k alternatives. Our proof is based on the works of Kalai and Mossel, but uses also an addi-
tional ingredient: a combination of the Bonami–Beckner hypercontractive inequality with a reverse
hypercontractive inequality due to Borell, applied to find simultaneously upper bounds and lower
bounds on the “noise correlation” between Boolean functions on the discrete cube.

1. Introduction

Consider an election procedure in which a society of nmembers selects a ranking amongst
k alternatives. In the voting process, each member of the society gives a ranking of the
alternatives (the ranking is a full linear ordering; that is, indifference between alternatives
is not allowed). The set of rankings given by the individual members is called a profile.
Given the profile, the ranking of the society is determined according to some function,
called a generalized social welfare function (GSWF).

The GSWF is a function F : (Sk)n→ {0, 1}(
k
2), where Sk is the set of linear orderings

on k elements. In other words, given the profile consisting of linear orderings supplied by
the voters, the function determines the preference of the society amongst each of the

(
k
2

)
pairs of alternatives. If the output of F can be represented as a full linear ordering of the
k alternatives, then F is called a social welfare function (SWF).

Throughout this paper we consider GSWFs satisfying the Independence of Irrelevant
Alternatives (IIA) condition: For any pair of alternatives A and B, the preference of the
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entire society between A and B depends only on the preference of each individual voter
between A and B. This natural condition on GSWFs can be traced back to Condorcet [6].

Condorcet’s paradox demonstrates that if the number of alternatives is at least three
and the GSWF is based on the majority rule amongst every pair of alternatives, then there
exist profiles for which the voting procedure cannot yield a full order relation. That is,
there exist alternativesA,B, and C such that the majority of the society prefersA over B,
the majority prefersB overC, and the majority prefersC overA. Such a situation is called
non-transitive outcome of the election.

In his well-known Impossibility Theorem [1], Arrow showed that this paradox occurs
for any “reasonable” GSWF satisfying the IIA condition:

Theorem 1.1 (Arrow). Consider a generalized social welfare function F with at least
three alternatives. If the following conditions are satisfied:

• The IIA condition,
• Unanimity: if all the members of the society prefer some alternative A over another

alternative B, then A is preferred over B in the outcome of F ,
• F is not a dictatorship (that is, the preference of the society is not determined by a

single member),

then the probability of a non-transitive outcome is positive (i.e., there necessarily exists a
profile for which the outcome is non-transitive).

Since the existence of profiles leading to a non-transitive outcome has significant implica-
tions on voting procedures, an extensive research has been conducted in order to evaluate
the probability of non-transitive outcome for various GSWFs. Most of the results in this
area are summarized in [9]. In addition to its significance in social choice theory, this
area of research leads to interesting questions in probabilistic and extremal combinatorics
(see [20]).

In 2002, Kalai [14] suggested an analytic approach to this study. He showed that
for GSWFs on three alternatives satisfying the IIA condition, the probability of a non-
transitive outcome with respect to a uniform distribution of the individual preferences
can be computed by a formula related to the Fourier–Walsh expansion of the GSWF.
Using this formula he presented a new proof of Arrow’s Impossibility Theorem under the
additional assumption of neutrality (i.e., invariance of the GSWF under permutation of the
alternatives), and established upper bounds on the probability of non-transitive outcome
for specific classes of GSWFs.

While providing an analytic proof to Arrow’s theorem does not seem such an impor-
tant goal (as there are several simple proofs of it, see [10]), Kalai aimed at establishing
a quantitative version of the theorem. Such a version would show that for any ε > 0,
there exists δ = δ(ε) such that if a GSWF on three alternatives satisfies the IIA condition
and its probability of non-transitive outcome is at most δ, then the GSWF is at most ε
away from being a dictatorship or from breaching the Unanimity condition. Kalai indeed
proved such a statement for neutral GSWFs on three alternatives, with δ(ε) = Cε for a
universal constant C.
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Kalai [15] asked whether his techniques can be extended to general GSWFs, and
suggested using the Bonami–Beckner hypercontractive inequality [4, 3] in order to get
such an extension. However, Keller [17] showed by an example that a direct extension
cannot hold: if there exists δ(ε) as above, then it cannot depend linearly on ε. Keller
asked whether for general GSWFs on three alternatives, a quantitative version holds with
δ(ε) = Cε2.

Mossel [18] succeeded in proving a quantitative version of Arrow’s theorem for gen-
eral GSWFs on three alternatives. Furthermore, he generalized his result to GSWFs on
more than three alternatives, and to more general probability distributions on the indi-
vidual preferences. Unlike Kalai’s techniques, Mossel’s proof is quite complex. While
Kalai’s proof uses only simple analytic tools but no combinatorial tools, Mossel’s proof
extends and exploits a combinatorial proof of Arrow’s theorem given by Barbera [2]. Fur-
thermore, it uses heavier analytic tools, including a reverse hypercontractive inequality
of Borell [5] and a non-linear invariance principle introduced by Mossel et al. [20]. The
only drawback in Mossel’s result is the dependence of δ on ε: δ(ε) = exp(−C/ε21) for
a universal constant C, which seems far from being optimal. Mossel conjectured that the
correct dependence of δ on ε should be polynomial.1

In this paper we present a tight quantitative version of Arrow’s theorem for general
GSWFs. We show that the dependence of δ on ε is indeed polynomial, and compute the
exact dependence, up to logarithmic factors.

Before we present our results, we should specify the notion of “the distance of a
GSWF on k alternatives satisfying the IIA condition from a dictatorship or from breaching
the Unanimity condition”. We consider two different definitions of this notion. In both,
the underlying probability measure is the uniform measure on (Sk)n (the set of all possible
profiles).

The first definition measures the distance of the GSWF under examination from the
family of GSWFs on k alternatives which satisfy the IIA condition and whose output
is always transitive. This family was partially characterized by Wilson [22], and fully
characterized by Mossel [18]. It essentially consists of combinations of dictatorships with
constant functions (see Section 2.3 for the exact characterization).

Definition 1.2. Denote by Fk(n) the family of GSWFs on k alternatives which satisfy
the IIA condition and whose output is always transitive. For a GSWF F on k alternatives
that satisfies the IIA condition, let

D1(F ) = min
G∈Fk(n)

Pr[F 6= G].

We note that this is the definition that was used in [18]. Our main result for this
definition is the following:

1 We note that Mossel also obtained another variant of his theorem, in which the dependence
of δ on ε is δ(ε) = Cε3n−3, where n is the number of voters, and C is a “decent” constant. As
follows from our results presented below, this variant is essentially tight for very small values of
ε (dependent on n). Moreover, for certain choices of parameters (specifically, “relatively small” n
and ε very small as a function of n), this result gives a stronger bound than our result, due to the
better value of the constant.
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Theorem 1.3. There exists an absolute constant C such that for any k and for any GSWF
F on k alternatives that satisfies the IIA condition, if the probability of non-transitive
outcome in F is at most

δ(ε) = C(ε/k2)3,

then D1(F ) ≤ ε.

For the second definition, we note that a GSWF F on k alternatives that satisfies the IIA
condition actually consists of

(
k
2

)
independent Boolean functions Fij that represent the

choice functions amongst the pairs of alternatives (i, j) (for 1 ≤ i < j ≤ k). The second
definition is given in terms of these functions.

Definition 1.4. Denote by G2(n) the set of constant functions and dictatorships on two
alternatives. For a GSWF F on k alternatives that satisfies the IIA condition, let

D2(F ) = min
1≤i<j≤k

min
G∈G2(n)

Pr[Fij 6= G],

where {Fij }1≤i<j≤k are as defined above.

Our main result for this definition is the following:

Theorem 1.5. There exists an absolute constant C such that for any k and for any GSWF
F on k alternatives that satisfies the IIA condition, if the probability of non-transitive
outcome in F is at most

δ(ε) = Cε
9(
√

log2(1/ε)+1/3)2

8 log2(1/ε) , (1)

then D2(F ) ≤ ε.

Note that for small values of ε, the exponent of ε in (1) tends to 9/8.
We show that the dependence of δ on ε in Theorems 1.3 and 1.5 is tight, up to loga-

rithmic factors in ε. The examples showing the tightness are GSWFs on three alternatives,
in which all the three choice functions F12, F23, F13 are monotone threshold functions. In
the example of Theorem 1.3, the expectations of the choice functions are 0, 1 − ε, 1 − ε
(in particular, one of the functions is constant!), and in the example of Theorem 1.5, the
expectations are ε, 1/2, 1− ε.

As in the works of Kalai and Mossel, the techniques we use are mainly analytic. Our
proof essentially consists of three steps:

1. We consider a GSWF F on three alternatives, and use a modification of Kalai’s for-
mula to express the probability of non-transitive outcome as a linear combination of
“noise correlations” between the Boolean functions F12, F23, F13 (see Section 2.2 for
the definition of noise correlation).

2. We show that if at least one of the functions F12, F23, F13 is close enough to a con-
stant function, then the Bonami–Beckner hypercontractive inequality [4, 3] and a re-
verse hypercontractive inequality due to Borell [5] can be applied to obtain simultane-
ously upper bounds and lower bounds on the noise correlations. Combination of these
bounds yields a lower bound on the probability of non-transitive outcome in terms of
D1(F ) or D2(F ).
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3. To complete the proof, we use the techniques of Mossel to cover all the remaining
cases (i.e., functions with D1(F ) or D2(F ) greater than a fixed constant, etc.)

We note that since in the case where D1(F ) or D2(F ) is greater than a fixed constant
we use Mossel’s result as a black box, the value of the constant we obtain in the depen-
dence of δ(ε) on ε is extremely low, and seems to be very far from optimality. Extension
of our techniques to cover all the cases would make the proof free of non-linear invari-
ance arguments, and lead to a decent value of the constant. This is one of the main open
problems left in our paper.

This paper is organized as follows: In Section 2 we present the tools used in the later
sections. In Section 3 we prove our main lemma. We deduce Theorems 1.3 and 1.5 from
the main lemma in Section 4. In Section 5 we discuss the tightness of our results. We
conclude the paper with questions for further research in Section 6.

2. Preliminaries

In this section we present the tools used in the next sections. First we describe the Fourier–
Walsh expansion of functions on the discrete cube. We continue with the noise operator
and the hypercontractive inequalities of Bonami–Beckner and of Borell. Finally, we cite
the statements from Mossel’s proof of the quantitative Arrow theorem [18] that are used
as a black box in our proof.

2.1. Fourier–Walsh expansion of functions on the discrete cube

Throughout the paper we consider the discrete cube � = {0, 1}n, endowed with the
uniform measure µ. Elements of � are represented either by binary vectors of length n,
or by subsets of {1, . . . , n}. Denote the set of all real-valued functions on � by X. The
inner product of functions f, g ∈ X is defined as usual by

〈f, g〉 = Eµ[fg] =
1
2n

∑
x∈{0,1}n

f (x)g(x).

The Rademacher functions {ri}ni=1, defined as ri(x1, . . . , xn) = 2xi − 1, constitute an
orthonormal system in X. Moreover, this system can be completed to an orthonormal
basis in X by defining

rS =
∏
i∈S

ri

for all S ⊂ {1, . . . , n}. Every function f ∈ X can be represented by its Fourier expansion
with respect to the system {rS}S⊂{1,...,n}:

f =
∑

S⊂{1,...,n}

〈f, rS〉rS .

This representation is called the Fourier–Walsh expansion of f . The coefficients in this
expansion are denoted by

f̂ (S) = 〈f, rS〉.
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The Fourier–Walsh expansion allows one to adapt tools from classical harmonic analy-
sis to the discrete setting, and to use them in the study of Boolean functions. Since the
introduction of such analytic methods in the landmark 1988 paper of Kahn, Kalai, and
Linial [13], they have been intensively studied, and led to applications in numerous fields,
including combinatorics, theoretical computer science, social choice theory, mathemati-
cal physics, etc. (see, e.g., the survey [16]).

The most basic analytic tool we use is the Parseval identity, asserting that for all
f, g ∈ X,

〈f, g〉 =
∑

S⊂{1,...,n}

f̂ (S)ĝ(S),

and in particular,
∑
S⊂{1,...,n} f̂ (S)

2
= ‖f ‖22 for any f ∈ X.

The next simple tool we use is the close relation between the Fourier–Walsh expan-
sions of a function and of its dual function.

Definition 2.1. Let f : {0, 1}n → {0, 1}. The dual function of f , which we denote by
f̄ : {0, 1}n→ {0, 1}, is defined by

f̄ (x1, . . . , xn) = 1− f (1− x1, . . . , 1− xn).

Claim 2.2. Consider the Fourier–Walsh expansions of a Boolean function f and of its
dual function f̄ . For any S ⊂ {1, . . . , n} with |S| ≥ 1,̂̄f (S) = (−1)|S|−1f̂ (S). (2)

The simple proof of the claim is omitted. We also use a variant of the dual function:
f ′(x) = 1− f̄ (x), defined as

f ′(x1, . . . , xn) = f (1− x1, . . . , 1− xn).

Similarly to Claim 2.2, it is easy to see that for any |S| ≥ 1,

f̂ ′(S) = (−1)|S|f̂ (S). (3)

In Kalai’s proof of the quantitative Arrow theorem for neutral GSWFs [14], only the most
basic analytic tools (like the Parseval identity) were used. Following the proof of Mos-
sel [18], we use also more advanced analytic tools, related to the noise operator presented
below.

2.2. The noise operator and hypercontractive inequalities

The noise operator, defined in [3, 4], is a convolution operator that represents the appli-
cation of the function on a slightly perturbed input.

Definition 2.3. For x ∈ {0, 1}n, the ε-noise perturbation of x, denoted by Nε(x), is a
distribution obtained from x by independently keeping each coordinate of x unchanged
with probability 1− ε, and replacing it by a random value with probability ε.
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Definition 2.4. Let f : {0, 1}n → {0, 1}. For 0 ≤ ε ≤ 1, the noise operator Tε applied
to f is defined by

Tεf (x) = Ey∼N1−ε(x)[f (y)].

It is easy to see that the noise operator has a convenient representation in terms of the
Fourier–Walsh expansion:

Claim 2.5. Consider a function f on the discrete cube with a Fourier–Walsh expansion
f =

∑
S f̂ (S)rS . The Fourier–Walsh expansion of Tεf is given by

Tεf =
∑
S

ε|S|f̂ (S)rS . (4)

Since Tεf represents the application of f on a noisy variant of the input, it makes sense
to define the ε-noise correlation of two functions f and g as 〈Tεf, g〉. Using the Parseval
identity, we get an equivalent definition in terms of the Fourier–Walsh expansion (note
that the definition is symmetric between f and g):

Definition 2.6. Given two functions f, g : {0, 1}n → {0, 1}, the ε-noise correlation of
f, g is

〈Tεf, g〉 =
∑

S⊂{1,...,n}

ε|S|f̂ (S)ĝ(S). (5)

In the proof of Lemma 3.2 below, we express the probability of non-transitive outcome
in a GSWF F on three alternatives in terms of the noise correlations between the Boolean
choice functions F12, F23, F13. Then we obtain upper and lower bounds on the noise
correlations using the hypercontractive inequalities presented below.

The first hypercontractive inequality we use is the Bonami–Beckner inequality, dis-
covered independently by Bonami [4] in 1970 and by Beckner [3] in 1975.

Theorem 2.7 (Bonami, Beckner). Let f : {0, 1}n→ R, and let q1 ≥ q2 ≥ 1. Then

‖Tεf ‖q1 ≤ ‖f ‖q2 for all 0 ≤ ε ≤
(
q2 − 1
q1 − 1

)1/2

.

In particular,
‖Tεf ‖2 ≤ ‖f ‖1+ε2 for all 0 ≤ ε ≤ 1.

This inequality was first applied in a combinatorial context in [13], and since then it has
been used in numerous papers in the field. We combine the Bonami–Beckner inequality
with the Cauchy–Schwarz inequality to obtain an upper bound on the ε-noise correlation
of Boolean functions. The upper bound is presented here for ε = 1/3 since this is the
case we use in the proof of Lemma 3.2, but it can be immediately generalized to any
0 ≤ ε ≤ 1.

Proposition 2.8. Let f, g : {0, 1}n → {0, 1}, and denote E[f ] = p1 and E[g] = p2.
Then ∑

S

(
1
3

)|S|
f̂ (S)ĝ(S) ≤ min(p0.9

1 p0.5
2 , p0.75

1 p0.75
2 ). (6)



1338 Nathan Keller

Proof. By Claim 2.5, the Parseval identity, the Cauchy–Schwarz inequality and the Bo-
nami–Beckner hypercontractive inequality, we get∑

S

(
1
3

)|S|
f̂ (S)ĝ(S) = 〈T1/3f, g〉 ≤ ‖T1/3f ‖2‖g‖2 ≤ ‖f ‖1+1/9‖g‖2 = p

0.9
1 p0.5

2 .

Similarly,∑
S

(
1
3

)|S|
f̂ (S)ĝ(S) = 〈T

(1/
√

3)f, T(1/
√

3)g〉 ≤ ‖T(1/
√

3)f ‖2‖T(1/
√

3)g‖2

≤ ‖f ‖1+1/3‖g‖1+1/3 = p
0.75
1 p0.75

2 . ut

The second hypercontractive inequality we use is a reverse hypercontractive inequality,
due to Borell [5]. This inequality asserts that under some conditions, a variant of the
Bonami–Beckner inequality holds in the inverse direction.

Theorem 2.9 (Borell). Let f : {0, 1}n→ R+, and let q1 ≤ q2 ≤ 1. Then

‖Tεf ‖q1 ≥ ‖f ‖q2 for all 0 ≤ ε ≤
(
q2 − 1
q1 − 1

)1/2

.

Although Borell’s result dates back to 1982, it was not used in the research of Boolean
functions until recent years. In the last few years, Borell’s inequality was used in several
papers [7, 19, 18]; it seems to be a useful tool that has yet to be fully developed.

We use Borell’s inequality to obtain a lower bound on the ε-noise correlation of
Boolean functions through the following corollary, presented in [19, Corollary 3.5]:

Theorem 2.10. Let f, g : {0, 1}n → {0, 1}. If E[f ] = p1, and E[g] = p2 = pα1 for
some α ≥ 0, then for all 0 < ε < 1,

∑
S

ε|S|f̂ (S)ĝ(S) ≥ p1 · p
(
√
α+ε)2/(1−ε2)

1 = p1 · p

(
√
α+ε)2

(1−ε2)α
2 . (7)

In the proof of Lemma 3.2, we apply Theorem 2.10 with α ≥ 1, and write the lower
bound in the form p1 · p

β

2 . We use a simple observation regarding properties of β =
(
√
α + ε)2/((1− ε2)α):

Observation 2.11. • As a function of α = logp1
(p2), β is decreasing.

• For all α ≥ 1, we have β ≤ 1+ε
1−ε . When α→∞, we have β → 1

1−ε2 .

Finally, we use the following notation:

Notation 2.12. We denote by RHC(p1, p2) the lower bound obtained in Theorem 2.10
for E[f ] = p1, E[g] = p2, and ε = 1/3. In particular, RHC(p, p) = p3, and

RHC(1/2, p) =
1
2
· p

9(
√
α+1/3)2
8α , (8)

where α = log2(1/p). For a small value of p, the exponent tends to 9/8.
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2.3. Mossel’s quantitative Arrow theorem

In the proofs of Theorems 1.3 and 1.5 we use (as a “black box”) three major compo-
nents of Mossel’s proof of his quantitative version of Arrow’s theorem [18]. The first is a
quantitative Arrow theorem for GSWFs on three alternatives:

Theorem 2.13 ([18, Theorem 8.1]). There exists an absolute constant C such that for
any GSWF F on three alternatives that satisfies the IIA condition, if the probability of
non-transitive outcome in F is at most

δ(ε) = exp(−C/ε21),

then D1(F ) ≤ ε.

We use this theorem only in the case where ε is greater than some fixed constant. Thus,
the “bad” dependence of δ on ε affects our final result only by a constant factor.

The second component is a generic reduction lemma that allows extending results
from GSWFs on three alternatives to GSWFs on k alternatives, for all k ≥ 3. The reduc-
tion can be formulated as follows:

Theorem 2.14 ([18, Theorem 9.1 and Remark 9.2]). Suppose that there exists δ0(ε) such
that for any GSWF F on three alternatives that satisfies the IIA condition, if the proba-
bility of non-transitive outcome in F is at most δ0(ε), then D1(F ) ≤ ε. Then we have the
following quantitative Arrow theorem for GSWFs on k alternatives: For any GSWF F on
k alternatives that satisfies the IIA condition, if the probability of non-transitive outcome
in F is at most

δ(ε) = δ0(ε/k
2),

then D1(F ) ≤ ε.

The third component is a complete characterization of the set Fk(n) of GSWFs on k
alternatives that satisfy the IIA condition and whose output is always transitive. Though
we use in our proof only the characterization of F3(n), the result is presented here for a
general k for the sake of completeness.

Theorem 2.15 ([18, Theorem 1.2]). The class Fk(n) consists exactly of all GSWFs F
satisfying the following: There exists a partition of the set of alternatives into disjoint sets
A1, . . . , Ar such that:

• For any profile, F ranks all the alternatives in Ai above all the alternatives in Aj , for
all i < j .
• For all s such that |As | ≥ 3, the restriction of F to the alternatives in As is a dic-

tatorship (i.e., is either the preference order of some voter j , or the reverse of such
order).
• For all s such that |As | = 2, the restriction of F to the alternatives inAs is an arbitrary

non-constant function of the individual preferences between the two alternatives in As .



1340 Nathan Keller

3. Proof of the main lemma

In this section we prove our main lemma, asserting that if F is a GSWF on three alter-
natives that satisfies the IIA condition, and at least one of the Boolean choice functions
F12, F23, F31 is close enough to a constant function, then the probability of non-transitive
outcome can be bounded from below in terms of D1(F ) and D2(F ). Throughout this
section we use the following notation:

Notation 3.1. The Boolean choice functions F12, F23, F31 are denoted by f, g, h, re-
spectively. This means that the preferences of the voters between alternatives 1 and 2 are
denoted by a vector (x1, . . . , xn) ∈ {0, 1}n, where xk = 1 if the kth voter prefers alterna-
tive 1 over alternative 2, and xk = 0 otherwise. Then f (x1, . . . , xn) = 1 if in the output
of F , alternative 1 is preferred over alternative 2, and f (x1, . . . , xn) = 0 otherwise. The
functions g and h are defined similarly with respect to the pairs of alternatives (2, 3) and
(3, 1). The expectations of the choice functions are denoted by

E[f ] = p1, E[g] = p2, E[h] = p3.

For each i, we denote pi = min(pi, 1− pi), and let

D′2(F ) = min
1≤i≤3

pi .

Note that D′2(F ) measures the distance of the Boolean choice functions of F from the
family of constant functions. Finally, the probability of non-transitive outcome is denoted
by P(F).

Now we can formulate our main lemma:

Lemma 3.2. Let F be a GSWF on three alternatives satisfying the IIA condition. If
D′2(F ) ≤ 2−500000, then

P(F) ≥
1

10
·max

(
RHC(D1(F )/2,D1(F )/2),RHC(D′2(F ), 1/2)

)
,

where D1(F ) is as defined in the introduction and RHC(·, ·) is as in Notation 2.12.

Proof. Our starting point is Kalai’s formula [14] for the probability of non-transitive out-
come in a GSWF on three alternatives satisfying the IIA condition:

P(F) = p1p2p3 + (1− p1)(1− p2)(1− p3)+
∑
S 6=∅

(
−

1
3

)|S|
f̂ (S)ĝ(S)

+

∑
S 6=∅

(
−

1
3

)|S|
ĝ(S)ĥ(S)+

∑
S 6=∅

(
−

1
3

)|S|
ĥ(S)f̂ (S). (9)

The proof is divided into several cases, and in each case we use a different modification
of formula (9). In the following, we assume without loss of generality that p1 ≤ p2 ≤ p3.
Moreover, we assume that p1 ≤ 1/2, since otherwise we can replace f, g, h by the dual
functions without changing the value of the right hand side of (9).
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3.1. Case 1: p1, p2 ≤ 1/2

First, we note that if p3 ≤ 1/2, then the assertion follows easily from Kalai’s formula (9).
Indeed, since by assumption p1 < 2−500000, it follows that (1− p1)(1− p2)(1− p3) ≥
1
4 (1 − 2−500000). On the other hand, by the Parseval identity and the Cauchy–Schwarz
inequality, we have∣∣∣∣∑

S 6=∅

(
−

1
3

)|S|
f̂ (S)ĝ(S)| ≤

1
3
(〈f, g〉 − p1p2) ≤

1
3
·

1
2
· 2−250000,

and similarly,∣∣∣∣∑
S 6=∅

(
−

1
3

)|S|
ĝ(S)ĥ(S)

∣∣∣∣ ≤ 1
3
·

1
2
·

1
2

and
∣∣∣∣∑
S 6=∅

(
−

1
3

)|S|
ĥ(S)f̂ (S)

∣∣∣∣ ≤ 1
3
·

1
2
· 2−250000.

Thus, by (9),

P(F) ≥
1
4
(1− 2−500000)−

1
12
− 2 ·

1
3
·

1
2
· 2−250000 > 1/10.

Therefore, we can assume that p3 ≥ 1/2. Note that in this case, we have

D1(F ) ≤ 2(1− p3). (10)

Indeed, define a GSWF G on three alternatives by the choice functions

f ′ = G12 = 0 (constant), g′ = G23 = g, h′ = G31 = 1 (constant).

It is clear that G ∈ F3(n), since G always ranks alternative 1 at the bottom and thus its
output is always transitive, and

Pr[F 6= G] ≤ Pr[f 6= f ′]+ Pr[g 6= g′]+ Pr[h 6= h′] ≤ p1 + (1− p3) ≤ 2(1− p3).

Therefore, D1(F ) ≤ D(F,G) ≤ 2(1− p3). Also, by the definition,

D′2(F ) = p1. (11)

We modify formula (9) using the following identities:∑
S 6=∅

(
−

1
3

)|S|
f̂ (S)ĝ(S) =

∑
S 6=∅

(
1
3

)|S|
f̂ ′(S)ĝ(S) = 〈T1/3f

′, g〉 − p1p2, (12)

∑
S 6=∅

(
−

1
3

)|S|
ĝ(S)ĥ(S) =

∑
S 6=∅

(
−

1
3

)|S|̂̄g(S)̂h̄(S) =∑
S 6=∅

(
1
3

)|S|̂̄g(S)1̂− h(S)
= 〈T1/3ḡ, 1− h〉 − (1− p2)(1− p3). (13)∑

S 6=∅

(
−

1
3

)|S|
ĥ(S)f̂ (S) = 〈T1/3f

′, h〉 − p1p3 = 〈T1/3f
′, 1〉 − 〈T1/3f

′, 1− h〉 − p1p3

= p1 − p1p3 − 〈T1/3f
′, 1− h〉. (14)
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All three identities follow immediately from basic properties of the dual function (e.g.,
(2) and (3)) and the Parseval identity. Substituting (12)–(14) into (9), we get

P(F) = p1p2p3 + (1− p1)(1− p2)(1− p3)+ 〈T1/3f
′, g〉 − p1p2

+ 〈T1/3ḡ, 1− h〉 − (1− p2)(1− p3)+ p1 − p1p3 − 〈T1/3f
′, 1− h〉

= 〈T1/3f
′, g〉 + 〈T1/3ḡ, 1− h〉 − 〈T1/3f

′, 1− h〉. (15)

Equation (15) expresses P(F) as a linear combination of noise correlations between the
functions f, g, h, which are obviously non-negative. Thus, if we obtain a lower bound
on the noise correlations that appear in (15) with a ‘+’ sign, and an upper bound on the
correlation that appears with a ‘−’ sign, we will get a lower bound on P(f ). We shall
obtain these bounds using the Bonami–Beckner hypercontractive inequality and Borell’s
reverse hypercontractive inequality. We subdivide our proof into two subcases.

3.1.1. Case 1a: 1−p3 < 1/32. We bound 〈T1/3f
′, 1−h〉 from above using the Bonami–

Beckner hypercontractive inequality. By Proposition 2.8, we get

〈T1/3f
′, 1− h〉 ≤ p0.75

1 (1− p3)
0.75
≤ (1− p3)

1.5. (16)

We bound 〈T1/3ḡ, 1 − h〉 from below using Borell’s reverse hypercontractive inequality.
By Theorem 2.10, we have

〈T1/3ḡ, 1− h〉 ≥ RHC(1− p2, 1− p3).

In order to estimate RHC(1−p2, 1−p3), we write it in the form (1−p2) · (1−p3)
β(α),

where α = log1−p2
(1 − p3). By Observation 2.11, β(α) is a decreasing function of α.

Since by assumption, 1−p2 > 31/32 and 1−p3 < 1/32, we have α ≥ log31/32(1/32) =
109.16. Substituting the value α = 109.16 into the definition of β(α) and using the
monotonicity of β(α), we get β ≤ 1.198, and thus

〈T1/3ḡ, 1− h〉 ≥ (1− p2)(1− p3)
1.198
≥

31
32
(1− p3)

1.198. (17)

Combining inequalities (16) and (17), we get

〈T1/3f
′, 1− h〉 ≤ (1− p3)

1.5
=

(
32
31
(1− p3)

0.302
)(

31
32
(1− p3)

1.198
)

≤

(
32
31

(
1
32

)0.302)
〈T1/3ḡ, 1− h〉 ≤ 0.37〈T1/3ḡ, 1− h〉.

Finally, substituting into (15) we get

P(F) = 〈T1/3f
′, g〉 + 〈T1/3ḡ, 1− h〉 − 〈T1/3f

′, 1− h〉

≥ 〈T1/3ḡ, 1− h〉 − 〈T1/3f
′, 1− h〉 ≥ 0.63〈T1/3ḡ, 1− h〉

≥ 0.63 RHC(1− p2, 1− p3) ≥ 0.63 max
(
RHC(1− p3, 1− p3),RHC(1/2, p1)

)
,

where the last inequality holds since 1 − p2 ≥ 1/2 ≥ 1 − p3 ≥ p1 and since RHC(·, ·)
is clearly non-decreasing in its arguments. The assertion of the lemma now follows from
(10) and (11).
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3.1.2. Case 1b: 1− p3 ≥ 1/32. As in the previous case, we bound 〈T1/3f
′, 1− h〉 from

above using the Bonami–Beckner hypercontractive inequality. By Proposition 2.8, we get

〈T1/3f
′, 1− h〉 ≤ p0.9

1 (1− p3)
0.5
≤ (1− p3)

4.1, (18)

where the last inequality follows since by assumption p1 ≤ 2−500000, and in particular
p1 ≤ (1 − p3)

4. In order to bound 〈T1/3ḡ, 1 − h〉 from below we use the reverse hyper-
contractive inequality. By Theorem 2.10, we have

〈T1/3ḡ, 1− h〉 ≥ RHC(1− p2, 1− p3).

As in the previous case, we write RHC(1−p2, 1−p3) in the form (1−p2) · (1−p3)
β(α).

Since by Observation 2.11, for any α ≥ 1, we have β(α) ≤ 1+ε
1−ε = 2, we get

〈T1/3ḡ, 1− h〉 ≥ (1− p2)(1− p3)
2
≥ 0.5(1− p3)

2. (19)

Combination of (18) and (19) yields

〈T1/3f
′, 1− h〉 ≤ (1− p3)

4.1
= (2(1− p3)

2.1)(0.5(1− p3)
2)

≤ 2(1− p3)
2.1
〈T1/3ḡ, 1− h〉 ≤ 0.5〈T1/3ḡ, 1− h〉,

where the last inequality follows since 1− p3 ≤ 1/2. Finally,

P(F) = 〈T1/3f
′, g〉 + 〈T1/3ḡ, 1− h〉 − 〈T1/3f

′, 1− h〉
≥ 〈T1/3ḡ, 1− h〉 − 〈T1/3f

′, 1− h〉 ≥ 0.5〈T1/3ḡ, 1− h〉
≥ 0.5 RHC(1− p2, 1− p3)

≥ 0.5 max
(
RHC(1− p3, 1− p3),RHC(1/2, p1)

)
,

as asserted. This completes the proof of Case 1.

3.2. Case 2: p1 ≤ 1/2 and p2 ≥ 1/2

In this case, we have
D1(F ) ≤ 2(1− p2), (20)

since defining a GSWF G′ on three alternatives by the choice functions

f ′′ = G′12 = 0 (constant), g′′ = G′23 = 1 (constant), h′′ = G′31 = h,

we get G′ ∈ F3(n), and D(F,G′) ≤ 2(1− p2). Also, it is clear that as in Case 1,

D2(F ) ≤ D(f, const) = p1. (21)

This time we use a slightly different modification of Kalai’s formula. Specifically, we
interchange the roles of g and h in (12)–(14) to get the following modification of (15):

P(F) = 〈T1/3f
′, h〉 + 〈T1/3(1− g), h̄〉 − 〈T1/3f

′, 1− g〉. (22)

We subdivide the argument into several subcases.
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3.2.1. Case 2a: 1− p2 ≤ p
0.45412
1 . By Proposition 2.8, we get

〈T1/3f
′, 1− g〉 ≤ p0.9

1 (1− p2)
0.5
≤ p0.9

1 p0.22706
1 = p1.12706

1 . (23)

On the other hand, by Theorem 2.10, we have

〈T1/3f
′, h〉 + 〈T1/3(1− g), h̄〉 ≥ RHC(p3, p1)+ RHC(1− p3, 1− p2).

Since p1 ≤ 1− p2 and either p3 or 1− p3 is not less than 1/2, we get

〈T1/3f
′, h〉 + 〈T1/3(1− g), h̄〉 ≥ RHC(1/2, p1) ≥ 0.5p1.12606

1 , (24)

where the last inequality follows from Observation 2.11 since p1 ≤ 2−500000. Combining
(23) and (24) we get

〈T1/3f
′, 1−g〉 ≤ p1.12706

1 = (2p0.001
1 )(0.5p1.12606

1 ) ≤ 0.5(〈T1/3f
′, h〉+〈T1/3(1−g), h̄〉).

Finally,

P(F) = 〈T1/3f
′, h〉 + 〈T1/3(1− g), h̄〉 − 〈T1/3f

′, 1− g〉

≥ 0.5(〈T1/3f
′, h〉 + 〈T1/3(1− g), h̄〉)

≥ 0.5
(
RHC(p3, p1)+ RHC(1− p3, 1− p2)

)
≥ 0.5 max

(
RHC(1− p2, 1− p2),RHC(1/2, p1)

)
,

where the last inequality holds since 1−p3 ≥ 1−p2. The assertion of the lemma follows
now from (20) and (21).

3.2.2. Case 2b: 1 − p2 > p0.45412
1 and p̄3 ≥ p

0.2002
1 . The upper bound in this case is

the same as in Case 2a:

〈T1/3f
′, 1− g〉 ≤ p0.9

1 (1− p2)
0.5. (25)

For the lower bound, we use the reverse hypercontractive inequality for the term
〈T1/3(1− g), h̄〉 to get

〈T1/3(1−g), h̄〉 ≥ RHC(1−p3, 1−p2) ≥ (1−p3)(1−p2)
2
≥ p0.2002

1 (1−p2)
2, (26)

where the second inequality follows from Observation 2.11, and the third from the as-
sumption p̄3 ≥ p

0.2002
1 . Combination of (25) and (26) yields

〈T1/3f
′, 1− g〉 ≤ p0.9

1 p0.5
2 = (p

0.6998
1 p−1.5

2 )(p0.2002
1 (1− p2)

2)

≤ p0.01862
1 〈T1/3(1− g), h̄〉 ≤ 0.5〈T1/3(1− g), h̄〉,

where the second last inequality follows from the assumption 1− p2 ≥ p
0.45412
1 , and the

last from p1 ≤ 2−500000. Finally, if p3 ≥ 1/2 then 〈T1/3f
′, h〉 ≥ RHC(1/2, p1), and

otherwise 〈T1/3(1− g), h̄〉 ≥ RHC(1/2, p1). In both cases,

P(F) = 〈T1/3f
′, h〉 + (〈T1/3(1− g), h̄〉 − 〈T1/3f

′, 1− g〉)

≥ 〈T1/3f
′, h〉 + 0.5〈T1/3(1− g), h̄〉

≥ 0.5 max
(
RHC(1− p2, 1− p2),RHC(1/2, p1)

)
,

and the assertion follows.
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3.2.3. Case 2c: p3 ≤ p0.2002
1 . In this case we use another modification of Kalai’s for-

mula (9), resulting from the following modification of equation (22):

P(F) = 〈T1/3f
′, h〉 + 〈T1/3(1− g), h̄〉 − 〈T1/3f

′, 1− g〉

= 〈T1/3f
′, h〉 + (〈T1/3(1− g), 1〉 − 〈T1/3(1− g), 1− h̄〉)− 〈T1/3f

′, 1− g〉

= (1− p2)+ 〈T1/3f
′, h〉 − 〈T1/3(1− g), 1− h̄〉 − 〈T1/3f

′, 1− g〉. (27)

By Proposition 2.8,

〈T1/3(1− g), 1− h̄〉 ≤ (1− p2)
0.9p0.5

3 ≤ (1− p2)
0.9p0.1001

1 ≤ (1− p2)
1.0001.

Similarly,
〈T1/3f

′, 1− g〉 ≤ p0.9
1 (1− p2)

0.5
≤ (1− p2)

1.4.

Hence,

〈T1/3(1− g), 1− h̄〉 + 〈T1/3f
′, 1− g〉 ≤ (1− p2)

1.0001
+ (1− p2)

1.4

≤ 2(1− p2)
1.0001

≤ 0.5(1− p2),

where the last inequality follows since

(1− p2)
0.0001

≤ p0.0001
3 ≤ p0.2002·0.0001

1 < 1/2.

Finally, by (27),

P(F) ≥ (1− p2)− 〈T1/3(1− g), 1− h̄〉 − 〈T1/3f
′, 1− g〉

≥ 0.5(1− p2) ≥ 0.5 max
(
RHC(1− p2, 1− p2),RHC(1/2, p1)

)
,

as asserted.

3.2.4. Case 2d: 1− p3 ≤ p
0.2002
1 . We use yet another modification of equation (22):

P(F) = 〈T1/3f
′, h〉 + 〈T1/3(1− g), h̄〉 − 〈T1/3f

′, 1− g〉

= (〈T1/3f
′, 1〉 − 〈T1/3f

′, 1− h〉)+ 〈T1/3(1− g), h̄〉 − 〈T1/3f
′, 1− g〉

= p1 − 〈T1/3f
′, 1− h〉 + 〈T1/3(1− g), h̄〉 − 〈T1/3f

′, 1− g〉.

Similarly to Case 2c, we have

〈T1/3f
′, 1− h〉 ≤ p0.9

1 (1− p3)
0.5
≤ p1.0001

1 ,

and 〈T1/3f
′, 1− g〉 ≤ p1.4

1 , and thus

〈T1/3f
′, 1− h〉 + 〈T1/3f

′, 1− g〉 ≤ p1.0001
1 + p1.4

1 ≤ 0.5p1.

Therefore,

P(F) = p1 − 〈T1/3f
′, 1− h〉 + 〈T1/3(1− g), h̄〉 − 〈T1/3f

′, 1− g〉

≥ 0.5p1 + 〈T1/3(1− g), h̄〉 ≥ 0.5 max
(
RHC(1− p2, 1− p2),RHC(1/2, p1)

)
.

This completes the proof of Lemma 3.2. ut
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4. Proofs of Theorems 1.3 and 1.5

In this section we present the proofs of Theorems 1.3 and 1.5. The proofs are based
on Lemma 3.2, but also rely heavily on several components of Mossel’s proof of his
quantitative version of Arrow’s theorem cited in Section 2.3. The general structure of
both proofs is as follows:

1. We consider first GSWFs on three alternatives, and examine several cases:
(a) If D1(F ) (resp., D2(F )) is greater than a fixed constant, we deduce the assertion

from Theorem 2.13.
(b) If F is close to a GSWF that always ranks one of the candidates at the top/bottom

(resp., if at least one of the Boolean choice functions of F is close to a constant
function), we deduce the assertion from Lemma 3.2.

(c) If F (resp., one of the Boolean choice functions of F ) is close to a dictatorship of
the ith voter, we split F into six GSWFs {F σ }σ∈S3 according to the preferences of
the ith voter. We further subdivide this case into two subcases:
• If for all σ ∈ S3, D1(F

σ ) (resp., D′2(F
σ )) is small, we get a contradiction

(resp., show directly that P(F) cannot be small).
• If there exists σ0 ∈ S3 such that D1(F

σ0) (resp., D′2(F
σ0)) is not small, we

deduce the assertion by applying Lemma 3.2 to the GSWF F σ0 .
2. We extend the result to GSWFs on k alternatives, for all k ≥ 3. In the proof of The-

orem 1.3 this requires the reduction technique of Theorem 2.14, and in the proof of
Theorem 1.5, the generalization is immediate.

Since the proofs differ in many of the details, we present them separately. Throughout
this section, we use the notation defined at the beginning of Section 3.

4.1. Proof of Theorem 1.3

Theorem 4.1. There exists an absolute constant C such that for any GSWF F on three
alternatives that satisfies the IIA condition, if the probability of non-transitive outcome
in F is at most

δ(ε) = min
(
C,

1
50000

· ε3
)
,

then D1(F ) ≤ ε.

Proof. It is clearly sufficient to prove that for any ε > 0, if D1(F ) = ε, then P(F) ≥
min(C, 1

50000 · ε
3), for a universal constant C. We shall prove this for

C = exp
(
−

C′

(2−500003)21

)
, (28)

where C′ is the constant in Mossel’s Theorem 2.13.
Let F be a GSWF on three alternatives satisfying the IIA condition, and denote the

choice functions of F by f, g, h, as in the proof of Lemma 3.2. If D1(F ) ≥ 2−500003,
then by Theorem 2.13, P(F) ≥ C. Thus, we may assume that D1(F ) < 2−500003.
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Let G ∈ F3(n) satisfy Pr[F 6= G] = D1(F ) (such an element exists by the definition
of the distanceD1(F )). Denote the Boolean choice functions ofG by f ′, g′, h′. By Theo-
rem 2.15,G either always ranks one alternative at the top/bottom or is a dictatorship. IfG
always ranks one alternative at the top/bottom, then at least two of the functions f ′, g′, h′

are constant. Assume that f ′ and g′ are constant. Since

D1(F ) = Pr[F 6= G] ≥ max(Pr[f 6= f ′],Pr[g 6= g′],Pr[h 6= h′]),

it follows that either E[f ] ≤ D1(F ) or E[f ] ≥ 1 − D1(F ), and similarly for g. This
implies thatD′2(F ) ≤ D1(F ) < 2−500003, and thus we can apply Lemma 3.2 to F and get

P(F) ≥
1

10
· RHC(D1(F )/2,D1(F )/2) ≥

1
10
· (D1(F )/2)3 >

1
50000

·D1(F )
3,

as asserted. Thus, we may assume that G is a dictatorship.
The following part of the proof is similar to the proof of Theorem 7.1 in [18]. We can

assume that the output of G is determined by the first voter. We split the choice functions
according to the first voter. Let

f 0(x2, . . . , xn) = f (0, x2, . . . , xn), f 1(x2, . . . , xn) = f (1, x2, . . . , xn),

and similarly for g and h. Furthermore, for any profile (σ1, . . . , σn) ∈ S
n
3 , denote

F σ1(σ2, . . . , σn) = F(σ1, σ2, . . . , σn),

and similarly for G. The Boolean choice functions of F σ are f a1 , ga2 , ha3 , where
(a1, a2, a3) ∈ {0, 1}3 represents the preference σ of the first voter (note that only six
of the eight possible combinations of (a1, a2, a3) represent elements of S3). Denote by
f̄ a1 , ḡa2 , h̄a3 the choice functions of Gσ . Since G is a dictatorship of the first voter, the
functions f̄ a1 , ḡa2 , h̄a3 are constant. Clearly, we have

D1(F ) = Pr[F 6= G] =
1
6

∑
σ∈S3

Pr[F σ 6= Gσ ], (29)

and thus, for all σ ∈ S3,
Pr[F σ 6= Gσ ] ≤ 6D1(F ).

Since

Pr[F σ 6= Gσ ] ≥ max(Pr[f a1 6= f̄ a1 ],Pr[ga2 6= ḡa2 ],Pr[ha3 6= h̄a3 ]),

and since Gσ is constant, this implies that

E[f a1 ] ≤ 6D1(F ) or E[f a1 ] ≥ 1− 6D1(F ), (30)

and similarly for ga2 and ha3 .
The rest of the proof is divided into two cases:

• Case A: For all σ ∈ S3 we have D1(F
σ ) ≤ D1(F )/4.

• Case B: There exists σ0 ∈ S3 such that D1(F
σ0) > D1(F )/4.
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We first show that Case A leads to a contradiction by constructing a GSWF G′ ∈ F3(n)

such that Pr[F 6= G′] < D1(F ). Then we show that in Case B, the assertion of the
theorem follows by applying Lemma 3.2 to the function F σ0 .

Case A: Consider a GSWFG′ whose choice functions f ′′, g′′, h′′ are defined as follows:
For a1 ∈ {0, 1},

f ′′(a1, x2, . . . , xn) =

1 (constant), E[f a1 ] ≥ 1−D1(F )/4,
0 (constant), E[f a1 ] ≤ D1(F )/4,
f a1 , otherwise,

and similarly for g′′ and h′′. We claim that the output of G′ is always transitive, and thus
G′ ∈ F3(n). Indeed, by assumption, for any σ ∈ S3, there exists Ḡσ ∈ F3(n − 1) such
that Pr[F σ 6= Ḡσ ] ≤ D1(F )/4. The GSWF Ḡσ cannot be a dictatorship since by (30),
the choice functions f a1 , ga2 , ha3 of F σ satisfy

E[f a1 ] ≤ 6D1(F ) or E[f a1 ] ≥ 1− 6D1(F ),

and thus, for any dictatorship H ,

Pr[F σ 6= H ] ≥ 1/2− 6D1(F ) > 1/2− 2500000.

Therefore, Ḡσ always ranks one alternative at the top/bottom. Denote the choice functions
of Ḡσ by f̃ , g̃, h̃, and assume without loss of generality that Ḡσ always ranks alternative 1
at the top, and thus f̃ = 1 and h̃ = 0. Since

D1(F )/4 ≥ Pr[F σ 6= Ḡσ ] ≥ max(Pr[f a1 6= f̃ ],Pr[ga2 6= g̃],Pr[ha3 6= h̃]),

it follows that

E[f a1 ] ≥ 1−D1(F )/4 and E[ha3 ] ≤ D1(F )/4.

Hence, by the definition of G′, its choice functions satisfy f ′′ = 1 and h′′ = 0, which
means that G′ always ranks alternative 1 at the top, and is thus always transitive.

Therefore, G′ ∈ F3(n), and on the other hand, we have

Pr[F 6= G′] ≤ Pr[f 6= f ′′]+ Pr[g 6= g′′]+ Pr[h 6= h′′] ≤ 3 ·D1(F )/4 < D1(F ),

contradicting the definition of D1(F ).

Case B: Let σ0 ∈ S3 be such that D1(F
σ0) > D1(F )/4. By (30), the choice functions

f a1 , ga2 , ha3 of F σ0 satisfy

E[f a1 ] ≤ 6D1(F ) or E[f a1 ] ≥ 1− 6D1(F ),

and thus (in the notation of Lemma 3.2) D′2(F
σ0) ≤ 6D1(F ) < 2−500000. Hence, we can

apply Lemma 3.2 to the GSWF Gσ0 , and get

P(F σ0) ≥
1

10
· RHC(D1(F

σ0)/2,D1(F
σ0)/2) ≥

1
10
(D1(F )/8)3 =

1
5120

·D1(F )
3.



A tight quantitative version of Arrow’s impossibility theorem 1349

Finally,

P(F) =
1
6

∑
σ∈S3

P(F σ ) ≥
1
6
· P(F σ0) >

1
50000

D1(F )
3.

This completes the proof of the theorem. ut

Theorem 1.3 follows immediately from Theorem 4.1 using Theorem 2.14 (the generic
reduction lemma of Mossel).

4.2. Proof of Theorem 1.5

Theorem 4.2. There exists an absolute constant C such that for any GSWF F on three
alternatives that satisfies the IIA condition, if the probability of non-transitive outcome
in F is at most

δ(ε) = min
(
C,

1
10000

· ε
9(
√

log2(1/ε)+1/3)2

8 log2(1/ε)

)
,

then D2(F ) ≤ ε.

Proof. By (8), it is sufficient to prove that for any ε > 0, if D2(F ) = ε, then

P(F) ≥ min
(
C,

1
5000

· RHC(1/2, ε)
)
,

for a universal constant C. We shall prove this for

C = exp
(
−

C′

(2−500003)21

)
,

whereC′ is the constant in Mossel’s Theorem 2.13. Let F be a GSWF on three alternatives
satisfying the IIA conditions, and denote the choice functions of F by f, g, h, as in the
proof of Lemma 3.2.

First we consider the case D2(F ) ≥ 2−500003. We show that in general, D1(F ) ≥

D2(F ), and thus in this case we have D1(F ) ≥ D2(F ) ≥ 2−500003, which by Theo-
rem 2.13 implies that P(F) ≥ C. Let G ∈ F3(n) satisfy Pr[F 6= G] = D1(F ), and
denote the Boolean choice functions of G by f ′, g′, h′. Clearly,

D1(F ) = Pr[F 6= G] ≥ max(Pr[f 6= f ′],Pr[g 6= g′],Pr[h 6= h′]). (31)

By Theorem 2.15, G either always ranks one alternative at the top/bottom or is a dicta-
torship. In the first case, at least two of the functions f ′, g′, h′ are constant, and thus (31)
implies that at least two of the functions f, g, h are at most D1(F ) away from a constant
function. In the latter case, the functions f ′, g′, h′ are dictatorships, and thus (31) implies
that f, g, and h are at most D1(F ) away from a dictatorship. Hence, in both cases,

D2(F ) = min
1≤i<j≤3

min
G∈G2(n)

Pr[Fij 6= G] ≤ D1(F ),

as asserted.
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Now we consider the case D2(F ) < 2−500003. Assume without loss of generality
that the minimal distance minG∈G2(n) Pr[Fij 6= G] is obtained by the choice function f ,
and let f̃ ∈ G2(n) satisfy Pr[f 6= f̃ ] = D2(F ). If f̃ is a constant function, then in the
notation of Lemma 3.2, this implies that D′2(F ) = D2(F ) < 2−500003, and thus we can
apply Lemma 3.2 to F and get

P(F) ≥
1

10
· RHC(1/2,D′2(F )) >

1
5000

· RHC(1/2,D2(F )),

as asserted. Thus, we may assume that f̃ is a dictatorship.
Assume that f̃ is a dictatorship of the first voter. Define the functions F σ , f 0, f 1, g0,

g1, h0, h1 as in the proof of Theorem 4.1, and let

f̃ 0(x2, . . . , xn) = f̃ (0, x2, . . . , xn) and f̃ 1(x2, . . . , xn) = f̃ (1, x2, . . . , xn).

Clearly, we have

D2(F ) = Pr[f 6= f̃ ] =
1
2
(Pr[f 0

6= f̃ 0]+ Pr[f 1
6= f̃ 1]),

and thus, for a1 ∈ {0, 1},
Pr[f a1 6= f̃ a1 ] ≤ 2D2(F ).

Since f̃ 0 and f̃ 1 are constant functions, this implies that

E[f a1 ] ≤ 2D2(F ) or E[f a1 ] ≥ 1− 2D2(F ). (32)

The rest of the proof is divided into two cases:

• Case A: For all σ ∈ S3 we have D′2(F
σ ) ≤ D2(F )/4.

• Case B: There exists σ0 ∈ S3 such that D′2(F
σ0) > D2(F )/4.

Case A: In this case, for any σ ∈ S3, at least one of the choice functions of F σ is
at most D2(F )/4 away from a constant function. Note that if f 0 is at most D2(F )/4
away from a constant function, then f 1 must be at least 7D2(f )/4 away from a constant
function, since otherwise f is less than D2(F ) away either from a constant function or
from a dictatorship, contradicting the definition of D2(F ). The same holds also for the
pairs (g0, g1) and (h0, h1). Thus, the only two possibilities are that either the functions
f 1, g1, h1 or f 0, g0, h0 are simultaneously at most D2(F )/4 away from a constant func-
tion. (For example, if f 1, g1, h0 are at mostD2(F )/4 away from a constant function, then
f 0, g0, h1 are at least 7D2(F )/4 away from a constant function, and thus, for the prefer-
ence σ = (0, 0, 1), we haveD′2(F

σ ) ≥ 7D2(F )/4, a contradiction. The other possibilities
are discarded in a similar way.) Assume that f 1, g1, h1 are at most D2(F )/4 away from
a constant function. Furthermore, since amongst the expectations E[f 1],E[g1],E[h1], at
least two are close to 1 or at least two are close to zero, we can assume that

Pr[f 1
6= 1] ≤ D2(F )/4 and Pr[g1

6= 1] ≤ D2(F )/4.
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Consider the GSWF F σ0 for the preference σ0 = (1, 1, 0). Since h0 is at least 7D2(F )/4
away from the constant zero function, it follows that

P(F σ ) ≥ Pr
profile∈(S3)n−1

[(f 1, g1, h0)(profile) = (1, 1, 1)]

≥ 7D2(F )/4−D2(F )/4−D2(F )/4 = 5D2(F )/4,

and thus

P(F) =
1
6

∑
σ∈S3

P(F σ ) ≥
1
6
· P(F σ0) ≥

5
24
·D2(F ) >

1
5000

· RHC(1/2,D2(F )),

as asserted.

Case B: Let σ0 ∈ S3 be such that D′2(F
σ0) > D2(F )/4. By (32), the choice function

f a1 of F σ0 satisfies

E[f a1 ] ≤ 2D2(F ) or E[f a1 ] ≥ 1− 2D2(F ),

and thusD′2(F
σ0) ≤ 2D2(F ) < 2−500000. Hence, we can apply Lemma 3.2 to the GSWF

Gσ0 , and get

P(F σ0) ≥
1

10
· RHC(1/2,D′2(F

σ0)) ≥
1

10
· RHC(1/2,D2(F )/4)

≥
1

640
· RHC(1/2,D2(F )).

Finally,

P(F) =
1
6

∑
σ∈S3

P(F σ ) ≥
1
6
· P(F σ0) >

1
5000

· RHC(1/2,D2(F )).

This completes the proof of the theorem. ut

The generalization to k alternatives for all k ≥ 3 follows immediately by applying Theo-
rem 4.2 to any subset of three alternatives.

5. Tightness of results

In this section we show that for GSWFs on three alternatives, the assertions of The-
orems 1.3 and 1.5 are tight up to logarithmic factors. In all our examples below, the
Boolean choice functions f, g, h of the GSWF F are monotone threshold functions, that
is, functions of the form

(f (x) = 1) ⇔
( n∑
i=1

xi ≥ l
)

(33)
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for different values of l. We note that in [20, Theorem 2.9], Mossel et al. showed that
amongst neutral GSWFs on three alternatives, a GSWF based on the majority rule is the
“most rational” in the asymptotic sense (i.e., has the least probability of non-transitive out-
come as the number of voters tends to infinity). To some extent, our examples generalize
this result to general GSWFs on three alternatives. The examples show that GSWFs based
on monotone threshold Boolean choice functions are “close to most rational” amongst
GSWFs whose choice functions have the same expectations, in the sense that their prob-
ability of non-transitive outcome is logarithmic close to the lower bound. In fact, we
conjecture that such GSWFs are indeed the most rational amongst GSWFs whose choice
functions have the same expectations. However, such an exact result is not known even
for neutral GSWFs.

We use the following proposition of Mossel et al. [19], showing that Borell’s reverse
Bonami–Beckner inequality is essentially tight for diametrically opposed Hamming balls.
Since we use the proposition only for noise of rate ε = 1/3, we state it in this particular
case.

Theorem 5.1 ([19, Proposition 3.9]). Fix s, t > 0, and let fn, gn : {0, 1}n → {0, 1} be
defined by

(fn(x) = 1) ⇔
( n∑
i=1

xi ≤
n

2
−
s

2
√
n

)
and (gn(x) = 1) ⇔

( n∑
i=1

xi ≥
n

2
+
t

2
√
n

)
.

Then

lim
n→∞

∑
S⊂{1,...,n}

(
1
3

)|S|
f̂n(S)ĝn(S) ≤

√
8/9

2πs(s/3+ t)
exp

(
−

1
2
s2
+ 2st/3+ t2

8/9

)
. (34)

In order to show the tightness of Theorem 1.3, we fix a constant ε > 0 and define the
choice functions according to (33), choosing the values of l such that

E[f ] = 0, E[g] = 1− ε, E[h] = 1− ε.

It is clear that D1(F ) = ε. By (22),

P(F) = 〈T1/3(1− g), h̄〉.

By our construction, the pair of functions (1 − g, h̄) is of the form considered in Theo-
rem 5.1 with s = t ≈

√
2 log(1/ε), and thus by the theorem, for n sufficiently large,

P(F) = 〈T1/3(1− g), h̄〉 ≤
√

8/9
2πs(s/3+ t)

exp
(
−

1
2
s2
+ 2st/3+ t2

8/9

)
≈ Cε3 log(1/ε).

The lower bound asserted by Theorem 1.3 is P(F) ≥ C′ε3, and thus the example shows
the tightness of the assertion up to logarithmic factors.

The tightness of Theorem 1.5 is shown similarly, with choice functions chosen so that

E[f ] = ε, E[g] = 1− ε, E[h] = 1/2.
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It is clear that D2(F ) = ε, and by (22),

P(F) ≤ 〈T1/3f
′, h〉 + 〈T1/3(1− g), h̄〉.

The pairs (f ′, h) and (1 − g, h̄) are each of the form considered in Theorem 5.1, and
application of the theorem to both yields tightness up to a logarithmic factor, as in the
previous case.

Finally, we note that while the examples above deal with GSWFs whose choice func-
tions have constant expectation, it also makes sense to consider choice functions whose
expectation tends to zero as n (the number of voters) tends to infinity. In particular, one
may ask what is the least possible probability of non-transitive outcome, as a function
of n, for GSWFs with D1(F ) > 0 or D2(F ) > 0. It appears that the question is of in-
terest mainly for D2(F ), as for D1(F ) one can easily check that the minimal possible
probability of 6−n is obtained by a GSWF whose choice functions are chosen according
to (33) with

E[f ] = 0, E[g] = 1− 2−n, E[h] = 1− 2−n.

For D2(F ), it was shown in [17] that for a GSWF whose choice functions are chosen
according to (33) with

E[f ] = 2−n, E[g] = 1− 2−n, E[h] = 1/2,

we have P(F) ≤ 0.471n. Furthermore, it was conjectured that this is the most rational
GSWF on three alternatives that satisfies the assumptions of Arrow’s theorem (and in
particular, the minimal possible probability 6−n is not attained). Our results show that
this function is at least close to most rational, as by Theorem 1.5, for any GSWF F such
that D2(F ) > 0, we have

P(F) ≥ C · RHC(1/2, 2−n) ≈ C · 0.458n.

6. Questions for further research

We conclude this paper with several open problems related to our results.

• Our main lemma (Lemma 3.2) gives an essentially tight lower bound on the probabil-
ity of non-transitive outcome for GSWFs in which at least one of the Boolean choice
functions is close to a constant function. In the case where the distance from constant
functions is greater than a fixed constant, our technique fails, and we use Mossel’s the-
orem [18] instead. As a result, the constant multiplicative factor in the assertions of
Theorems 1.3 and 1.5 is extremely small, and clearly non-optimal. It will be interest-
ing to find a direct proof also for GSWFs whose Boolean choice functions are far from
constant functions, thus removing the reliance of the proof on the non-linear invari-
ance principle (used in Mossel’s argument) that seems unnatural in our context, and
improving the constant factor.
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• While the results of Kalai [14] and Mossel [18] hold also for more general distribu-
tions of the individual preferences called “even product distributions” or “symmetric
distributions” (see [17, 18]), our proof does not extend directly to such distributions.
The reason is that for highly biased distributions of the preferences, the lower bound
obtained by Borell’s reverse Bonami–Beckner inequality is weaker, and cannot beat
the upper bound obtained by the Bonami–Beckner inequality. Thus, obtaining a tight
quantitative version of Arrow’s theorem for general even product distributions of the
preferences is an interesting open problem.
• We believe that GSWFs whose Boolean choice functions are monotone threshold func-

tions are the most rational amongst GSWFs whose choice functions have the same ex-
pectations, not only in the asymptotic sense, but also for any particular (large enough) n.
However, this conjecture seems quite challenging, as it includes the Majority is Stablest
conjecture (whose proof by Mossel et al. [20] holds only in the limit as n→∞).
• Another direction of research is using our techniques to obtain quantitative versions

of other theorems in social choice theory. In [8], Friedgut et al. presented a quanti-
tative version of the Gibbard–Satterthwaite theorem [11, 21] for neutral GSWFs on
three alternatives. Recently, Isaksson et al. [12] generalized the result of [8] to neu-
tral GSWFs on k alternatives, for all k ≥ 4. One of the main ingredients in the proof
of [8] is Kalai’s quantitative Arrow theorem for neutral GSWFs. It seems interesting to
find out whether our quantitative version of Arrow’s theorem can lead to a quantitative
Gibbard–Satterthwaite theorem for general GSWFs (without the neutrality assump-
tion).
• Finally, our results (as well as the previous results of Kalai [14] and Mossel [18]) apply

only to GSWFs that satisfy the IIA condition, since such GSWFs can be represented
by their Boolean choice functions, which allows using the tools of discrete harmonic
analysis. It will be very interesting to find a quantitative version of Arrow’s theorem
that will not assume the IIA condition, but rather will relate the probability of non-
transitive outcome to the distance of the GSWF from satisfying IIA.
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