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Abstract. In the famous paper [FZ2] Fomin and Zelevinsky obtained a Cartan–Killing type classi-
fication of all cluster algebras of finite type, i.e. cluster algebras having only finitely many distinct
cluster variables. A wider class of cluster algebras is formed by cluster algebras of finite mutation
type, which have finitely many exchange matrices but are allowed to have infinitely many cluster
variables. In this paper we classify all cluster algebras of finite mutation type with skew-symmetric
exchange matrices. Besides cluster algebras of rank 2 and cluster algebras associated with trian-
gulations of surfaces there are exactly 11 exceptional skew-symmetric cluster algebras of finite
mutation type. More precisely, nine of them are associated with root systems E6, E7, E8, Ẽ6, Ẽ7,

Ẽ8, E
(1,1)
6

, E
(1,1)
7 , E

(1,1)
8

; the remaining two were found by Derksen and Owen in [DO]. We also
describe a criterion which determines if a skew-symmetric cluster algebra is of finite mutation type,
and discuss the growth rate of cluster algebras.
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1. Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in a series of papers [FZ1],

[FZ2], [BFZ], [FZ3].
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We think of a cluster algebra as a subalgebra of Q(x1, . . . , xn) determined by gener-

ators (“cluster coordinates”). These generators are collected into n-element groups called

clusters connected by local transition rules which are determined by an n × n skew-

symmetrizable exchange matrix associated with each cluster. For precise definitions see

Section 2.

In [FZ2], Fomin and Zelevinsky discovered a deep connection between cluster alge-

bras of finite type (containing finitely many clusters) and the Cartan–Killing classification

of simple Lie algebras. More precisely, they proved that there is a bijection between Car-

tan matrices of finite type and cluster algebras of finite type. The corresponding Cartan

matrices can be obtained from exchange matrices by some symmetrization procedure.

Exchange matrices undergo mutations which are explicitly described locally. The col-

lection of all exchange matrices of a cluster algebra is a mutation class of exchange matri-

ces. In particular, the mutation class of a cluster algebra of finite type is finite. In this pa-

per, we are interested in a larger class of cluster algebras, namely, cluster algebras whose

exchange matrices form a finite mutation class. We will assume that exchange matrices

are skew-symmetric.

Besides cluster algebras of finite type, there exist other series of algebras belonging to

the class under consideration. One series of examples is provided by cluster algebras cor-

responding to Cartan matrices of affine Kac–Moody algebras with simply-laced Dynkin

diagrams. It was shown in [BR] that these examples exhaust all cases of acyclic skew-

symmetric cluster algebras of finite mutation type. Furthermore, Seven [S2] has shown

that acyclic skew-symmetrizable cluster algebras of finite mutation type correspond to

affine Kac–Moody algebras.

One more large class of infinite type cluster algebras of finite mutation type was stud-

ied in [FST], where, in particular, it was shown that the signed adjacency matrices of arcs

of a triangulation of a bordered two-dimensional surface have finite mutation class.

In the same paper, Fomin, Shapiro and Thurston discussed the conjecture [FST, Prob-

lem 12.10] that besides the adjacency matrices of triangulations of bordered two-dimen-

sional surfaces and matrices mutation-equivalent to one of the following nine types: E6,

E7, E8, Ẽ6, Ẽ7, Ẽ8, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 (see [FST, Section 12]), there exist finitely many

skew-symmetric matrices of size at least 3 × 3 with finite mutation class. Notice that the

first three types in the list correspond to cluster algebras of finite type.

In [DO] Derksen and Owen found two more skew-symmetric matrices (denoted by X6

and X7) with finite mutation class that are not included in the previous conjecture. The

authors also ask if their list of 11 mutation classes contains all the finite mutation classes

of skew-symmetric matrices of size at least 3 × 3 not corresponding to triangulations.

The main goal of this paper is to prove the conjecture by Fomin, Shapiro and Thurston

by showing the completeness of the Derksen–Owen list, i.e. to prove the following:

Main Theorem (Theorem 6.1). Any skew-symmetric n × n matrix, n ≥ 3, with finite

mutation class is either the adjacency matrix of a triangulation of a bordered two-dimen-

sional surface or a matrix mutation-equivalent to a matrix of one of the following eleven

types: E6, E7, E8, Ẽ6, Ẽ7, Ẽ8, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 , X6, X7.
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Remark 1.1. The same approach that we use for skew-symmetric matrices is applicable

(after small changes) for the more general case of skew-symmetrizable matrices. A com-

plete list of skew-symmetrizable matrices with finite mutation class will be published

elsewhere.

We also show a way to classify all minimal skew-symmetric n × n matrices with

infinite mutation class. In particular, we prove that n ≤ 10. This gives rise to the following

criterion for a large skew-symmetric matrix to have finite mutation class:

Theorem 7.4. A skew-symmetric n×n matrix B, n ≥ 10, has finite mutation class if and

only if the mutation class of every principal 10 × 10 submatrix of B is finite.

As an application of the classification of skew-symmetric matrices of finite mutation type

we characterize skew-symmetric cluster algebras of polynomial growth, i.e. cluster alge-

bras for which the number of distinct clusters obtained from the initial one by n mutations

grows polynomially in n.

The paper is organized as follows. In Section 2, we provide necessary background in

cluster algebras, and reformulate the classification problem of skew-symmetric matrices

in terms of quivers by assigning to every exchange matrix an oriented weighted graph.

In Section 3, we sketch the proof of the Main Theorem. We list all the key steps, and

discuss the main combinatorial and computational ideas we use. Sections 4–6 contain the

detailed proofs.

Section 4 is devoted to the technique of block-decomposable quivers. We recall the

basic facts from [FST] and prove several properties we will heavily use. Section 5 contains

the proof of the key theorem classifying minimal non-decomposable quivers. Section 6

completes the proof of the Main Theorem.

In Section 7 we provide a criterion for a skew-symmetric matrix to have finite muta-

tion class. Section 8 is devoted to growth rates of cluster algebras.

Finally, in Section 9 we use the results of the previous sections to complete the de-

scription of mutation classes of quivers of order 3.

2. Cluster algebras, mutations, and quivers

We briefly recall the definition of a coefficient-free cluster algebra.

An integer n × n matrix B is called skew-symmetrizable if there exists an integer

diagonal n × n matrix D = diag(d1, . . . , dn) such that DB is a skew-symmetric matrix,

i.e., dibi,j = −bj,idj .

A seed is a pair (f, B), where f = {f1, . . . , fn} isa collection of algebraically in-

dependent rational functions of n variables x1, . . . , xn, and B is a skew-symmetrizable

matrix. The part f of (f, B) is called the cluster, the elements fi are called the cluster

variables, and B is called the exchange matrix.
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Definition 2.1. For any k, 1 ≤ k ≤ n, we define the mutation of the seed (f, B) in

direction k as a new seed (f ′, B ′) in the following way:

B ′
ij =

{
−Bij if i = k or j = k,

Bij +
|Bik|Bkj + Bik|Bkj |

2
otherwise,

(2.1)

f ′
i =





fi if i 6= k,∏
Bij >0 f

Bij

j +
∏

Bij <0 f
−Bij

j

fi

otherwise.
(2.2)

We write (f ′, B ′) = µk ((f, B)). Notice that µk(µk((f, B))) = (f, B). We say that

two seeds are mutation-equivalent if one is obtained from the other by a sequence of

mutations. Similarly we define when two clusters or two exchange matrices are mutation-

equivalent.

Notice that the exchange matrix (2.1) of the mutated seed depends only on the ex-

change matrix of the original seed. The collection of all matrices mutation-equivalent to

a given matrix B is called the mutation class of B.

For any skew-symmetrizable matrix B we define the initial seed (x,B) as

({x1, . . . , xn},B), B is the initial exchange matrix, x = {x1, . . . , xn} is the initial cluster.

The cluster algebra A(B) associated with the skew-symmetrizable n × n matrix B is

the subalgebra of Q(x1, . . . , xn) generated by all cluster variables of the seeds mutation-

equivalent to the initial seed (x, B).

The cluster algebra A(B) is called of finite type if it contains only finitely many cluster

variables. In other words, all clusters mutation-equivalent to the initial cluster contain in

total only finitely many distinct cluster variables.

In [FZ2], Fomin and Zelevinsky proved a remarkable theorem that cluster algebras of

finite type can be completely classified. More excitingly, this classification is parallel to

the famous Cartan–Killing classification of simple Lie algebras.

Let B be an integer n × n matrix. Its Cartan companion C(B) is the integer n × n

matrix defined as follows:

C(B)ij =

{
2 if i = j,

−|Bij | otherwise.

Theorem 2.2 ([FZ2]). There is a canonical bijection between the Cartan matrices of

finite type and cluster algebras of finite type. Under this bijection, a Cartan matrix A

of finite type corresponds to the cluster algebra A(B), where B is an arbitrary skew-

symmetrizable matrix with C(B) = A.

The results by Fomin and Zelevinsky were further developed in [S1] and [BGZ], where

effective criteria for cluster algebras to be of finite type were given.

A cluster algebra of finite type has only finitely many distinct seeds. Therefore, any

cluster algebra that has only finitely many cluster variables involves only finitely many

distinct exchange matrices. On the contrary, a cluster algebra with finitely many exchange

matrices is not necessarily of finite type.
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Definition 2.3. A cluster algebra with only finitely many exchange matrices is called of

finite mutation type.

Example 2.4. One example of an infinite cluster algebra of finite mutation type is the

Markov cluster algebra whose exchange matrix is




0 2 −2

−2 0 2

2 −2 0




It was described in detail in [FZ1]. It is not of finite type, nor even finitely generated. No-

tice, however, that mutation in any direction leads simply to a sign change of the exchange

matrix. Therefore, the Markov cluster algebra is clearly of finite mutation type.

Remark 2.5. Since the orbit of an exchange matrix depends on the exchange matrix only,

we may speak about skew-symmetrizable matrices of finite mutation type.

Therefore, the Main Theorem describes all skew-symmetric integer matrices whose

mutation class is finite.

For our purposes it is convenient to encode an n×n skew-symmetric integer matrix B

by a finite oriented multigraph without loops and 2-cycles called a quiver. More precisely,

a quiver S is a finite 1-dimensional simplicial complex with oriented weighted edges,

where weights are positive integers.

The vertices of S are labeled by [1, . . . , n]. If Bi,j > 0, we join vertices i and j

by an edge directed from i to j and assign to this edge weight Bi,j . Vice versa, any

quiver with integer positive weights corresponds to a skew-symmetric integer matrix.

While drawing quivers, usually we draw edges of weight Bi,j as edges of multiplicity

Bi,j , but sometimes, when it is more convenient, we put the weight on a simple edge.

Mutations of exchange matrices induce mutations of quivers. If S is the quiver corre-

sponding to a matrix B, and B ′ is the mutation of B in direction k, then we call the quiver

S′ associated to B ′ the mutation of S at vertex k. It is easy to see that mutation at vertex k

changes weights of quivers in the way described in the following picture (see e.g. [K2]):

a ab b

c d

k k

c + d = ab

Fig. 2.1. Mutations of quivers.

Clearly, for a given quiver the notion of mutation class is well-defined. We call a

quiver mutation-finite if its mutation class is finite. Thus, we are able to reformulate the

problem of classification of exchange matrices of finite type in terms of quivers: find all

mutation-finite quivers.
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The following criterion for a quiver to be mutation-finite is well-known (see e.g. [DO,

Corollary 8]):

Theorem 2.6. A quiver S of order at least 3 is mutation-finite if and only if any quiver in

the mutation class of S contains no edges of weight greater than 2.

One can use linear algebra tools to describe quiver mutations. Let e1, . . . , en be a basis

of a vector space V over a field k equipped with a skew-symmetric form �. Denote by B

the matrix of the form � with respect to the basis ei , i.e. Bij = �(ei, ej ).

For each i ∈ [1, n] we define a new basis e′
1, . . . , e

′
n in the following way:

e′
i = −ei,

e′
j = ej if �(ei, ej ) ≥ 0,

e′
j = ej − �(ei, ej )ei if �(ei, ej ) < 0.

Note that the matrix B ′ of the form � in the basis e′
k is the mutation of B in direction i.

From now on, we use the language of quivers only. Let us fix some notation we will

use throughout the paper.

Let S be a quiver. A subquiver S1 ⊂ S is a subcomplex of S. The order |S| is the

number of vertices of S. If S1 and S2 are subquivers of S, we denote by 〈S1, S2〉 the

subquiver of S spanned by all the vertices of S1 and S2.

Let S1 and S2 be subquivers of S having no common vertices. We say that S1 and S2

are orthogonal (S1 ⊥ S2) if no edge joins vertices of S1 and S2.

We denote by ValS(v) the unsigned valence of v in S (a double edge adds 2 to the

valence). A leaf of S is a vertex joined to exactly one vertex in S.

3. Ideas of the proof

In this section we present all key steps of the proof.

We need to prove that all mutation-finite quivers except some finite number of mu-

tation classes have some special properties, namely they are block-decomposable (see

Definition 4.1). In Section 5 we define a minimal non-decomposable quiver as a non-

decomposable quiver minimal with respect to inclusion (see Definition 5.1). By defini-

tion, any non-decomposable quiver contains a minimal non-decomposable quiver as a

subquiver. First, we prove the following theorem:

Theorem 5.2. Any minimal non-decomposable quiver contains at most seven vertices.

The proof of Theorem 5.2 contains the bulk of all the technical details in the paper. We

assume that there exists a minimal non-decomposable quiver of order at least 8, and inves-

tigate the structure of block decompositions of proper subquivers of S. By an exhaustive

case-by-case consideration we prove that S is also block-decomposable. The main tools

are Propositions 4.6 and 4.8 which under some assumptions produce a block decomposi-

tion of S from block decompositions of proper subquivers of S.
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The next step is to prove the following key theorem:

Theorem 5.11. Any minimal non-decomposable mutation-finite quiver is mutation-equi-

valent to one of the two quivers X6 and E6 shown below.

E6 X6

The proof is based on the fact that the number of mutation-finite quivers of order at

most 7 is finite, and all such quivers can be easily classified. For that, we use an inductive

procedure: we take one representative from each finite mutation class of quivers of order

n and attach a vertex by edges of multiplicity at most 2 in all possible ways (here we

use Theorem 2.6). For each quiver obtained we check if its mutation class is finite (by

using Keller’s applet for quiver mutations [K1]). In this way we get all the finite mutation

classes of quivers of order n + 1. After collecting all finite mutation classes of order at

most 7, we analyze whether they are block-decomposable. It turns out that all the classes

except ones containing X6 and E6 are block-decomposable. The two quivers X6 and E6

are non-decomposable by [DO, Propositions 4 and 6].

Therefore, we prove that each mutation-finite non-decomposable quiver contains a

subquiver mutation-equivalent to X6 or E6 (Corollary 5.13). This allows us to use the

same inductive procedure to get all the finite classes of non-decomposable quivers. We

attach a vertex to X6 and E6 by edges of multiplicity at most 2 in all possible ways. In this

way we get all the finite mutation classes of non-decomposable quivers of order 7. More

precisely, there are three of them, namely those containing X7, E7 and Ẽ6. Any mutation-

finite non-decomposable quiver of order 8 should contain a subquiver mutation-equivalent

to one of these three quivers due to the following lemma:

Lemma 6.4. Let S1 be a proper subquiver of S, and let S0 be a quiver mutation-equiv-

alent to S1. Then there exists a quiver S′ which is mutation-equivalent to S and con-

tains S0.

Using the same procedure, we list one-by-one all the mutation-finite non-decompos-

able quivers of order 8, 9 and 10. The results are the entries from the list by Derksen–

Owen (see Fig. 6.1). Applying the inductive procedure to a unique mutation-finite non-

decomposable quiver E
(1,1)
8 of order 10, we obtain no mutation-finite quivers. Now we

use the following statement:

Corollary 6.3. Suppose that for some d ≥ 7 there are no non-decomposable mutation-

finite quivers of order d. Then the order of any non-decomposable mutation-finite quiver

does not exceed d − 1.

Corollary 6.3 implies that there is no non-decomposable mutation-finite quiver of order

at least 11, which completes the proof of the Main Theorem.
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4. Block decompositions of quivers

Let us start with the definition of block-decomposable quivers (we rephrase Defini-

tion 13.1 from [FST]).

Definition 4.1. A block is a quiver isomorphic to one of the quivers with black/white

colored vertices shown in Fig. 4.1, or to a single vertex. Vertices marked white are called

outlets. A connected quiver S is called block-decomposable if it can be obtained from a

collection of blocks by identifying outlets of different blocks along some partial matching

(matching of outlets of the same block is not allowed), where two edges with the same

endpoints and opposite directions cancel out, and two edges with the same endpoints

and same directions form an edge of weight 2. A non-connected quiver S is called block-

decomposable if it either satisfies the definition above, or is a disjoint union of several mu-

tually orthogonal quivers satisfying the definition above. If S is not block-decomposable

then we call it non-decomposable. Depending on a block, we call it a block of type I, II,

III, IV, V, or a block of the n-th type.

BI BII BIIIa BIIIb BIV BV

Fig. 4.1. Blocks. Outlets are colored white, dead ends are black.

We denote by BI, BII etc. the isomorphism classes of blocks of types I, II, etc. respec-

tively. For a block B we write B ∈ BI if B is of type I.

Remark 4.2. It is shown in [FST] that block-decomposable quivers have a nice geo-

metrical interpretation: they are in one-to-one correspondence with the adjacency matri-

ces of arcs of ideal (tagged) triangulations of bordered two-dimensional surfaces with

marked points (see [FST, Section 13] for detailed explanations). Mutations of block-

decomposable quivers correspond to flips of triangulations.

Fig. 4.2. Fat sides denote arcs of triangulations. Arrows form the corresponding quiver.

In particular, this description implies that the mutation class of any block-decompos-

able quiver is finite (indeed, the absolute value of an entry of the adjacency matrix cannot

exceed 2). Another immediate corollary is that any subquiver of a block-decomposable

quiver is block-decomposable too.
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Remark 4.3. As the following example shows, a block decomposition of a quiver (if

any) may not be unique.

Example 4.4. There are two ways to decompose an oriented triangle into blocks; see

Fig. 4.3.

B

B1 B2

B3

Fig. 4.3. Two different decompositions of an oriented triangle into blocks.

We say that a vertex of a block is a dead end if it is not an outlet.

Remark 4.5. Notice that if S is decomposed into blocks, and u ∈ S is a dead end of

some block B, then any edge of B incident to u cannot cancel with any other edge of

another block and therefore must appear in S with weight 1.

We call a vertex u ∈ S an outlet of S if S is block-decomposable and there exists a

block decomposition of S such that u is contained in exactly one block B, and u is an

outlet of B.

We use the following notation. For two vertices ui, uj of a quiver S we denote by

(ui, uj ) a directed arc connecting ui and uj which may or may not belong to S. It may be

directed either way. By (ui, uj , uk) we denote an oriented triangle with vertices ui, uj , uk

which is oriented either way and whose edges also may or may not belong to S. We use

the standard notation 〈ui, uj 〉 for an edge of S.

While drawing quivers, we keep the following notation:

• a non-oriented edge is used when orientation does not play any role in the proof;

• an edge u v
is an edge of a block containing u and v, where u and v are not

joined in the quiver. The figure assumes a fixed block decomposition;

• an edge
x a

means that x is joined to a by some edge.

Proposition 4.6. Let S be a connected quiver with n vertices, and let b be a vertex of S

with the following properties:

(0) S \ b is not connected;

(1) for any u ∈ S the quiver S \ u is block-decomposable;

(2) at least one connected component of S \ b has at least 3 vertices;

(3) each connected component of S \ b has at most n − 3 vertices.

Then S is block-decomposable.

Proof. We divide S \b into two parts S1 and S2 in the following way: S1 is any connected

component of S \ b with at least three vertices (it exists by assumption (2)), and S2 =

S \ 〈b, S1〉. Notice that assumption (3) implies that |S2| ≥ 2.

Now choose vertices a1 ∈ S1 and a2 ∈ S2 satisfying the following conditions: S \ ai

is connected, and S \ ai does not contain leaves connected to b and belonging to S1. We
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always can take as a2 a vertex of S2 at maximal distance from b. To choose a1 ∈ S1, we

look at the vertices at maximal distance from b in 〈S1, b〉. If the maximal distance from b

in S1 ∪ b is greater than 2, then we may take as a1 any vertex of S1 at maximal distance

from b: in this case 〈S1, b〉 \ a1 does not contain leaves connected to b. If S1 contains a

leaf of S, then we can take as a1 this leaf. This does not produce leaves of 〈S1, b〉 \ a1

since S1 is connected and |S1| ≥ 3. Finally, if the maximal distance from b in S1 ∪ b is 2,

and no vertex at distance 2 is a leaf, we take as a1 any neighbor of b with minimal number

of neighbors in S1. Again, this does not produce leaves of 〈S1, b〉 \ a1.

We will now prove that each 〈Si, b〉 is block-decomposable with outlet b. Since

b is the only common vertex of 〈S1, b〉 and 〈S2, b〉, this will imply that S is block-

decomposable.

Consider the quiver S \ a2. It is block-decomposable by assumption (1). Choose any

such decomposition. Let us prove that for any block B either B ∩ S1 = ∅ or B ∩ (S2 \ a2)

= ∅. In particular, this will imply that S1 is block-decomposable, and b is an outlet (since

|S2| ≥ 2 and S \ a2 is connected). Suppose that for some B both B ∩ S1 and B ∩ (S2 \ a2)

are non-empty. We consider below all possible types of block B. Table 4.1 illustrates the

plan of the proof.

Table 4.1. Proof of Proposition 4.6.

1 2 3 4

B =B =B = B =or

b

Case 1: B ∈ BIV or B ∈ BV. At least one edge of B having a dead end runs from S1 to

S2 \ a2. By Remark 4.5 this edge appears in S, contradicting S1 ⊥ S2.

Case 2: B ∈ BIII. The unique outlet of B cannot coincide with b due to the way of

choosing a1 and a2. Therefore, some edge of B joins vertices of S1 and S2 \ a2, which is

impossible since both edges of B have dead ends.

Case 3: B ∈ BII. Suppose first that b is not a vertex of B. Then one vertex of B (say w)

belongs to one part of S \ a2 (i.e. either S2 \ a2 or S1), and the remaining two (w1 and w2)

to the other. Since S does not contain the edges (w,w1) or (w,w2), they must cancel

out with edges from other blocks of the block decomposition. Since all these additional

blocks contain w, the only way is to attach a block B1 of the second type along all the
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three outlets of B. This results in three vertices w, w1 and w2 not joined to any other

vertices of S \ a2. In particular, 〈S1, b〉 is not connected (since |S1| ≥ 2), which implies

that S is not connected either.

Now suppose that b is a vertex of B. Then we may assume that the other vertices w1

and w2 of B belong to S1 and S2 \ a2 respectively. S does not contain an edge (w1, w2).

The only way to avoid it in S is to glue an edge (w1, w2) (which is a block B1 of the first

type) to B (since blocks of all other types are already prohibited by Cases 1, 2 and the

above reasoning for this one). Then w1 is a leaf of 〈S1, b〉 attached to b, in contradiction

with the way of choosing of a2.

Case 4: B ∈ BI. Let B = (w1, w2), w1 ∈ S1 and w2 ∈ S2 \a2. The only way to avoid this

edge in S is to glue another edge (w1, w2) (which is a block B1 of the same type) to B

(all other blocks are already prohibited by previous cases). Then 〈S1, b〉 is not connected,

which implies that S is not connected.

Having settled all the four cases, we deduce that S1 is block-decomposable with out-

let b. Considering S \ a1 instead of S \ a2, in a similar way we conclude that S2 is also

block-decomposable with outlet b. Gluing these decompositions together along b we ob-

tain a block decomposition of S. ⊓⊔

Remark 4.7. In all the situations where we will apply Proposition 4.6, the connectedness

of S and assumption (1) will be stated in advance. Usually it is sufficient only to point out

the vertex b (in this case we say that S is block-decomposable by Proposition 4.6 applied

to b) and all the assumptions are evidently satisfied. Only in the proofs of Lemma 5.7 and

Theorem 5.2 does assumption (3) require additional explanations.

Proposition 4.8. Let S be a connected quiver S = 〈S1, b1, b2, S2〉, where S1 ⊥ S2, and

S has at least eight vertices. Suppose that

(0) b1 and b2 are not joined in S;

(1) for any u ∈ S the quiver S \ u is block-decomposable;

(2) there exist a1 ∈ S1, a2 ∈ S2 such that

(2a) S \ ai is connected;

(2b) either 〈Si, b1, b2〉\ai or 〈Sj , b1, b2〉 ( for i, j = 1, 2, j 6= i) contains no leaves

connected to b1; similarly, either 〈Si, b1, b2〉 \ ai or 〈Sj , b1, b2〉 (for j 6= i)

contains no leaves connected to b2;

(2c) if ai is joined to bj (for i, j = 1, 2), then there is another vertex wi ∈ Si

connected to bj .

Then S is block-decomposable.

Proof. The plan is similar to the proof of Proposition 4.6. The idea is to prove that each

Si together with those of b1, b2 which are connected to Si is block-decomposable with

outlets b1 and b2 (or just one of them if the second is not joined to Si). Then we com-

bine together these block decompositions to obtain a decomposition of S. First we show

that for any block decomposition of S \ a2 any block B is contained entirely either in

〈S1, b1, b2〉 or in 〈S2, b1, b2〉\a2. For this, we consider any block decomposition of S\a2,
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Table 4.2. Proof of Proposition 4.8.

1 2 3 4

B =B = B = B =or

a2

b1b1

b1

b1b1b1

b1
b1

b1

b2

b2

b2

b2b2

b2

b2

b2

w1

w1w1

w1

w1

w1

w1

w2w2

w2

w2

w2

w2

w2

t1t1

t1

t1

t2

S1 = {w1}

B1 is the only block containing b2 ∃ block B2 6= B1 : b2 ∈ B2

3.1 3.2

B2 ⊂ 〈b2, S1〉 B2 ⊂ 〈b2, S2 \ a2〉

3.1.1 3.1.2

t1 is a leaf t1 is not a leaf

B

B1

B2

B2B2

Table 4.3
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assuming that for a block B both B ∩ S1 and B ∩ (S2 \ a2) are non-empty. We consider

all possible types of B (see Table 4.2) and obtain a contradiction for each type.

Notice that the assumption (2c) implies that |Si | ≥ 2. We will refer to this fact as

assumption (3).

Case 1: B ∈ BV or B ∈ BIII. The proof is the same as in Proposition 4.6.

Case 2: B ∈ BIV. Evidently, both b1, b2 ∈ B. We may assume that both b1 and b2 are

either dead ends of B, or outlets of B (otherwise, by Remark 4.5, S contains a simple

edge (b1, b2), contradicting assumption (0)). First suppose that b1 and b2 are dead ends

of B. Then we may assume that the remaining vertices w1, w2 of B lie in S1 and S2 \ a2

respectively. The edge (w1, w2) of B must be canceled out by an edge of another block

B1, otherwise (w1, w2) appears in S, contradicting S1 ⊥ S2. The block B1 cannot be of

type IV (otherwise none of its vertices is b1, so the block directly connects S1 and S2).

Therefore it is either of type II or I. If B1 is of type II (i.e. a triangle with vertices w1, w2

and w, w 6= bi), then the edges (w1, w) and (w,w2) are not canceled out by other blocks

and appear in S. Therefore either (w1, w) or (w,w2) connects S1 to S2, which contradicts

S1 ⊥ S2. If we glue an edge (w1, w2) as a block of the first type, then w1 is not joined

to any other vertex of S1. Since b1 and b2 are dead ends of B, they are not joined to any

other vertex of S1 either. Thus, due to assumption (3) the subquiver 〈S1, b1, b2〉 is not

connected, so S is not connected either.

Now suppose that b1 and b2 are outlets of B. Denote by w1 ∈ S1 and w2 ∈ S2 \ a2

the other vertices of B. To avoid the edge (b1, b2) in S, some block should be glued along

this edge. If we glue a block of the first or fourth type, then we obtain a quiver with

respectively four and six vertices without outlets. Since S has at least eight vertices, the

complement of this quiver in S\a2 is non-empty and S\a2 is not connected, contradicting

the choice of a2. If we glue a block of the second type (a triangle b1b2w), then we obtain

a quiver with five vertices, and the only outlet is w. Therefore, none of the remaining

vertices of S \a2 is joined to vertices of B. In particular, w ∈ S1 (otherwise S1 consists of

w1 only), so S2 consists of w2 and a2. Hence, S is block-decomposable by Proposition 4.6

applied to w.

Case 3: B ∈ BII. We may assume that the vertices of B are b1, w1 ∈ S1 and w2 ∈ S2 \a2.

Since the edge (w1, w2) is not in S it must be canceled by a block B1. It is either of

type I or II (since all other types are already excluded above). B1 is not of the first type,

otherwise w1 and w2 are leaves in S1 and S2, resp., connected to b1, contradicting (2b).

Therefore, B1 is of type II, and the remaining vertex of B1 is either b1 or b2. If it is b1

then S is not connected. We conclude that b2 ∈ B1.

Any other block B ′
1 with vertex b1 is contained in either 〈S1, b1〉 or 〈b1, S2 \ a2〉.

(Otherwise, if B ′
1 containing b1 has non-empty intersection with both S1 and S2 \a2, then

B ′
1 is again of type II. As above there exists B ′

2 containing b2 completing B ′
1 in such a

way that 〈B,B1, B
′
1, B

′
2〉 is a six-vertex subquiver without outlets. Since |S| ≥ 8, this

implies that S \ a2 is not connected.) Similarly, any block with vertex b2 (other than B1)

is contained either in 〈b1, b2, S1〉 or in 〈b1, b2, S2 \a2〉. Further, no vertex of S \a2 except

b1, b2 is joined to w1 and w2.
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Therefore, S \ a2 consists of 〈b1, b2, w1, w2〉, blocks connected to b1 and b2, and

vertices not joined to 〈b1, b2, w1, w2〉. Combining that with assumption (3), we see that

there is at least one vertex t1 ∈ S1 distinct from w1 which is joined to at least one of b1

and b2 by a simple edge. We may assume that t1 is connected to b1. Since b1 is contained

in two blocks of S \ a2, no vertex of S2 except possibly a2 is joined to b1.

Suppose that no block exceptB1 containsb2. Then the subquiverS\〈b1, b2, w1, w2, a2〉

is contained in S1 and is joined to b1 only. Applying Proposition 4.6 to b1 we conclude

that S is block-decomposable.

Let us consider the case when some block B2 is connected to b2. As we have already

shown, B2 is entirely contained either in 〈S1, b1, b2〉 or in 〈b1, b2, S2 \ a2〉.

Case 3.1: B2 is contained in 〈S1, b2〉. In this case S2 consists of w2 and a2 only, so

|S2| = 2. Recall that w1 is joined to b1 and b2 only, and define a new decomposition

S = 〈S′
1, b1, b2, S

′
2〉, where S′

1 = S1 \ w1 and S′
2 = 〈S2, w1〉. We will show that this de-

composition satisfies all the assumptions of Proposition 4.8. Since |S2| = 2 and |S| ≥ 8,

this decomposition satisfies |S′
1|, |S

′
2| ≥ 3. Therefore we may avoid Case 3.1.

Clearly, assumptions (0) and (1) hold. We need to choose vertices a′
1 and a′

2 satisfying

conditions (2a)–(2c). We keep a′
2 = a2. Recall that t1 ∈ S′

1 is connected to b1, and some

vertex of B2 (say t2) is connected to b2. So, if a2 is not a leaf of S connected to exactly

one of b1 and b2 we may choose as a′
1 any vertex of S′

1 different from both t1 and t2 and

satisfying condition (2a); see Fig. 4.4.

w2 w2w1 w1

b1 b1

b2 b2

t1 t1

t2 t2

a2 a2

S1 S2 S′
1

S′
2

Fig. 4.4. Proof of Proposition 4.8, Case 3.1.

Suppose that a2 is a leaf of S connected to exactly one of b1 and b2, say to b1. Notice

that there exists at most one leaf of S in S′
1 connected to b1, otherwise assumption (2b)

does not hold for the initial decomposition of S. We may assume that if there is a leaf of S

in S′
1 connected to b1, then it is t1. Consider the following two cases.

Case 3.1.1: t1 is a leaf of S. If there exists another vertex of S′
1 connected to b1, then

a′
1 = t1 satisfies all the assumptions. So, t1 is the only vertex of S′

1 connected to b1.

Further, as we have seen above, S \ 〈t1, a2〉 is block-decomposable with outlet b1, and

the vertices t1 and a2 are joined to b1 only. Therefore, depending on the orientation of

the edges 〈b1, t1〉 and 〈b1, a2〉, we may glue either a block of the third type composed

of b1, t1 and a2, or a composition of a second type block with an extra edge (t1, a2) in

appropriate direction, which implies that S is block-decomposable.
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Case 3.1.2: t1 is not a leaf of S. Denote by r1 any vertex of S′
1 connected to t1, and

consider the quiver S′ = 〈r1, t1, b1, w1, w2, a2〉. As a proper subquiver of S, S′ should be

block-decomposable. However, using the Java applet [K1] by Keller one can easily check

that the mutation class of S′ is infinite, so S′ is non-decomposable.

Table 4.3. Proof of Proposition 4.8, Case 3.2.

3.2.1 3.2.2 3.2.3 3.2.4

B3

B3

B4

B4

w2

w2

w2

w2

w2
w2w2

u2 b1

b2

B3 is the only block
containing w2

3.2.2.1

3.2.2.2 3.2.4.1

3.2.4.2

3.2.4.3

B4 = B4 =

B4 =

Case 3.2: B2 is contained in 〈b2, S2 \ a2〉. If t1 is not a leaf of S then applying Proposi-

tion 4.6 to b1 we see that S is block-decomposable. Thus, we may assume that t1 is a leaf

of S. In this case S1 consists of w1 and t1 only, so |S1| = 2. If a2 is joined to neither b1 nor

w2, then S is block-decomposable by Proposition 4.6 applied to b2. For the same reason,

a2 is joined to some vertex t2 ∈ S \ 〈t1, b1, w1, w2, b2〉. If a2 is not joined to w2, then

switching S1 and S2 leads us back to Case 3.1. Thus, we may assume that a2 is connected

to w2 by a simple edge.

Now take any block decomposition of S \ t1 and consider all possible types of blocks

containing w2 (see Table 4.3). Recall that ValS\t1(w2) = 3.

Case 3.2.1: w2 lies in a block B3 of type V. In this case w2 is a dead end of B3 (due to

its valence), one of b1 and b2 is a dead end of B3, and the other is an outlet (since the

orientations of 〈w2, b1〉 and 〈w2, b2〉 differ, see Fig. 4.5). Then the edge (b1, b2) in B3 is

b1b1

b2b2

w1w1 w2w2 or

Fig. 4.5. Proof of Proposition 4.8, Case 3.2.1. The orientations of the edges 〈w2, b1〉 and 〈w2, b2〉
are different.
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not canceled out by any other edge. Therefore, b1 and b2 are joined in S, contradicting

assumption (0).

Case 3.2.2: w2 is contained in a block B3 of type IV. In this case w2 is an outlet of B3

(since ValS\t1(w2) = 3). Consider two cases.

Case 3.2.2.1: w2 is contained in the block B3 only. Then one of b1 and b2 is a dead

end of B3, and the other is an outlet (since the orientations of 〈w2, b1〉 and 〈w2, b2〉 are

different). Therefore, b1 is joined to b2, which contradicts assumption (0).

Case 3.2.2.2: w2 is contained simultaneously in two blocks B3 and B4, B4 6= B3. Since

ValS\t1(w2) = 3, B4 is of the second type. Again, the orientations of 〈w2, b1〉 and 〈w2, b2〉

are different, so a2 is a dead end of B3. This implies that the valence of a2 is 2, so only t2
can be an outlet of B3. The second dead end of B3 should be joined to both t2 and w2.

Since b1 is not joined to t2, b2 is a dead end of B3. But this contradicts the existence of

an edge joining b2 and w1.

Case 3.2.3: w2 is contained in a block B3 of type III. Since ValS\t1(w2) = 3, w2 is the

outlet of B3. For the same reason at least one of b1 and b2 is a dead end of B3, hence a

leaf of S \ t1. But neither b1 nor b2 is a leaf and such a B3 does not exist.

Case 3.2.4: w2 is contained in a block B3 of type II. Recall that ValS\t1(w2) = 3, so in

this case w2 is also contained in a block B4 of the first type. There are exactly three ways

to place w2, b1, b2, a2 in two blocks.

Case 3.2.4.1: B4 = (w2, a2). Then B3 has an edge (b1, b2) which must cancel out in

S \ t1. Since b1 is joined to w1, the only way to cancel out (b1, b2) in S \ t1 is to attach

along this edge a second type block B5 = (b1, b2, w1). Then b2 ∈ B3 ∩ B5, so it must be

disjoint from B2. Hence B2 = ∅.

Case 3.2.4.2: B4 = (w2, b2). Then B3 = (w2, b1, a2). Since w1 is not joined to a2 and

ValS\t1(b1) ≤ 3, b1 and w1 form a block B5 of the first type. Since ValS\t1(w1) = 2,

w1 and b2 also form a block B6 of the first type. Again, this implies that b2 ∈ B3 ∩ B6,

so B2 = ∅.

Case 3.2.4.3: B4 = (w2, b1). Then B3 = (w2, b2, a2). The proof is similar to the previous

case. Since w1 is not joined to a2, and ValS\t1(b1) ≤ 3, b1 and w1 form a block B5 of the

first type. Since ValS\t1(w1) = 2, w1 and b2 also form a block B6 of the first type. This

implies that b2 ∈ B3 ∩ B6, so again B2 = ∅.

Case 4: B ∈ BI. The proof is the same as in Proposition 4.6.

We call the connected component of 〈Si, b1, b2〉 containing Si the closure of Si and

denote it by S̃i . We proved above that any block in the decomposition of S \ a2 is entirely

contained in exactly one of S̃1 and S̃2. Consider the union of all the blocks with vertices

from S̃1 only. They form a block decomposition of either S̃1 or S̃1 ∪ (b1, b2), i.e. S̃1

with edge (b1, b2). Due to assumption (2c), in both cases b1 and b2 are outlets. Similarly,

considering a block decomposition of S\a1, we obtain a block decomposition of either S̃2,

or S̃2 ∪ (b1, b2) where both b1 and b2 are outlets.
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Suppose that in the way described above we got block decompositions of S̃1 and S̃2.

Then we can glue these decompositions to obtain a block decomposition of S. Now we

will prove that in all other cases S is also block-decomposable.

Now suppose that for one of S̃1 and S̃2 (say S̃1) we got a block decomposition of

S̃1 with an edge (b1, b2). Consider the corresponding decomposition of S \ a2. Clearly,

there is a block B1 in the decomposition of S̃1 with an edge (b1, b2) containing both b1

and b2 as outlets. Since b1 and b2 are not joined in S, there exists a block B2 with vertices

from S̃2 containing the edge (b1, b2), and again both b1, b2 are outlets. Notice that B1

and B2 are blocks of the second or fourth type (a block of the third or fifth type has one

outlet only; if Bi is a block of the first type then no vertex of Si \ a2 can be connected

to bj , so |Si | ≤ 1).

First, we prove that if S is not block-decomposable then |S1| = 2. Indeed, no vertex

of S1 except the vertices of B1 can be connected to b1 or b2. If B1 is of the fourth type,

then both its vertices belonging to S1 are dead ends, so |S1| = 2. If B1 is of the second

type with third vertex v1, then S is block-decomposable by Proposition 4.6 applied to v1

unless |S1| = 2.

Finally, we look at the type of B2. Again, no vertex of S2 \ a2 except vertices of B2

can be connected to b1 or b2. If B2 is of the fourth type, we see that |S2| ≤ 3, so |S| < 8,

which contradicts the assumptions of the proposition. Therefore, we may assume that B2

is of the second type with third vertex v2. In particular, v2 is the only vertex of S2 \ a2

joined to b1 and b2. We will prove that S is block-decomposable.

If a2 is joined to neither b1 nor b2, then S is block-decomposable by Proposition 4.6

applied to v2. So, we may assume that a2 is joined to one of b1 and b2, say b1. If a2 is

joined to no vertex of S2 \ v2, then again S is block-decomposable by Proposition 4.6

applied to v2. Hence, there is t2 ∈ S2 \ v2 connected to a2. Further, since |S1| = 2 and

|S| ≥ 8, there exists a vertex u2 ∈ S2 \ 〈v2, a2〉 joined to v2 (see Fig. 4.6), otherwise S is

block-decomposable by Proposition 4.6 applied to a2.

v2 v2

t2 t2 = u2

b1 b1

b2 b2a1 a1

a2 a2

u1 u1

u2

or

Fig. 4.6. Proof of Proposition 4.8.

Take a1 ∈ S1, and consider a block decomposition of S \ a1. Denote by u1 the re-

maining vertex of S1, and consider all blocks containing b1. Since ValS(b1) ≤ 4 and no

block contains vertices from S1 and S2 simultaneously, b1 does not belong to a block of

the fifth type. Since a2 and v2 are not leaves, b1 does not belong to a block of the third

type. Moreover, b1 does not belong to a block of the fourth type: in this case a2 and v2

are dead ends, contradicting the existence of u2.

A block (u1, b1, b2) cannot exist, otherwise b1 enters three blocks simultaneously.

Therefore, (b1, u1) is a block of the first type while b1, a2, v2 form a block of the second

type (since S \ a1 is connected). Notice that v2 is the only vertex of S2 \ a2 joined to b1
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v2

v2

b1
b1

b2
b2

a2
a2

u1
u1

u2
u2

or

Fig. 4.7. Proof of Proposition 4.8; v2 belongs to two blocks and cannot be joined to u2.

and b2, which implies that either (b2, v2) is a block of the first type, or (b2, v2, a2) is a

block of the second type (see Fig. 4.7). In both cases v2 is contained in two blocks, so it

cannot be connected to u2. This contradiction completes the proof of the Proposition. ⊓⊔

Corollary 4.9. Suppose that S = 〈S1, b1, b2, S2〉 satisfies all the assumptions of Propo-

sition 4.8 except (2). Suppose also that |S1| ≥ 2, |S2| ≥ 3, and there exists c1 ∈ S1 such

that the following holds:

(a) S1 \ c1 is connected;

(b) S1 contains no leaves of S connected to b1 or b2, and S1 \ c1 contains no leaves of

S \ c1 connected to b1 or b2;

(c) S1 \ c1 is connected to both b1 and b2.

Then S is block-decomposable.

Proof. We will show how to choose a1 and a2 to satisfy assumption (2) of Proposi-

tion 4.8.

As a1 we can always take c1. Clearly, assumptions (a)–(c) imply the corresponding

assumptions (2a)–(2c) of Proposition 4.8 for a1.

To choose a2, we look how S2 is connected to b1 and b2. If either S2 is not connected

to one of them (say b2) or there is a vertex v2 ∈ S2 joined to both b1 and b2, then we

take as a2 any vertex of S2 at maximal distance from b1; otherwise, we fix two vertices

v1, v2 ∈ S2 joined to b1 and b2 respectively, and take as a2 any vertex of S2 \ 〈v1, v2〉 at

maximal distance from b1. ⊓⊔

5. Minimal non-decomposable quivers

Our aim is to prove that any non-decomposable quiver contains a subquiver of relatively

small order which is also non-decomposable.

Definition 5.1. A minimal non-decomposable quiver is a quiver S such that

• S is non-decomposable;

• for any u ∈ S the quiver S \ u is block-decomposable.

Notice that a minimal non-decomposable quiver is connected. Indeed, if S is non-

connected and non-decomposable, then at least one connected component of S is also

non-decomposable.

Theorem 5.2. Any minimal non-decomposable quiver contains at most seven vertices.
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The plan of the proof is the following. We assume that there exists a quiver S of order

at least 8 satisfying the assumptions of Theorem 5.2, and show for each type of block

that if a block-decomposable subquiver S \ u contains a block of this type then S is also

block-decomposable.

Throughout this section we assume that S satisfies the assumptions of Theorem 5.2.

Here we emphasize that we do not assume the mutation class of S to be finite.

The link LS(v) of the vertex v in S is the subquiver of S spanned by all neighbors

of v. If S is block-decomposable, we introduce for a given block decomposition a quiver

2S(v) obtained by gluing all blocks either containing v or having at least two points in

common with LS(v). Notice that 2S(v) may not be a subquiver of S. Clearly, LS(v) is a

subquiver of 2S(v) for any block decomposition of S.

Lemma 5.3. For any x ∈ S any block decomposition of S \ x does not contain blocks of

type V.

To prove the lemma we use the following proposition.

Proposition 5.4. Suppose that S \ x contains a subquiver S1 consisting of a block B of

type V (with dead ends v1, . . . , v4 and outlet v) and a vertex t joined to v (and probably

to some of vi). Then for any u ∈ S \S1 and any block decomposition of S \u the subquiver

〈v, v1, . . . , v4〉 is contained in one block of type V. In particular, t is connected to no vi ,

i = 1, . . . , 4.

Proof. Take any u ∈ S \ S1 and consider any block decomposition of S2 = S \ u. Since

the valence of v in S2 is at least 5, v is in exactly two blocks B1 and B2, at least one

of which is of type V or IV. Suppose that none of them is of type V, and let B1 be of

type IV. Then for any choice of B2 the number of vertices of S2 which are neighbors of

v and have valence at least three in S2 does not exceed 3. However, there are at least four

such vertices v1, . . . , v4, so the contradiction implies that we may assume B1 to be of

type V with outlet v.

Since the block B of S \ x is of type V, the subquiver 〈v1, v2, v3, v4〉 ⊂ S is a cycle.

At the same time, the link LS2
(v) is a disjoint union of a cycle of order 4 (composed of

dead ends of B1) and another quiver with at most four vertices (composed of vertices of

B2 \ v). If we assume that v1, v2, v3, v4 are not contained in one block B1 (or B2) in S2,

then v1, v2, v3, v4 do not form a cycle, and we come to a contradiction. To complete the

proof it is enough to notice that only a block of type V contains a chordless cycle of

length 4. ⊓⊔

Proof of Lemma 5.3. Suppose that a block decomposition of S \ x contains a block B of

type V with dead ends v1, . . . , v4 and outlet v. Consider two cases: either ValS(v) ≥ 5 or

ValS(v) = 4.

Case 1: ValS(v) ≥ 5. Then there exists u ∈ S \ B that is joined to v. Denote S1 =

〈v, v1, v2, v3, v4, u〉, and consider any block decomposition of S2 = S \ w2 for any w2 /∈

S1. By Proposition 5.4, 〈v, v1, v2, v3, v4〉 is a block B1 of type V with outlet v. Therefore,

no vertex of 〈u, S2\S1〉 is joined to v1, v2, v3, v4. Since |S| ≥ 8, we have S\〈w2, S1〉 6= ∅.
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Consider a block decomposition of S3 = S \ w3 for some w3 ∈ S \ 〈S1, w2〉. No vertex

of S3 \ S1 is joined to v1, v2, v3 or v4. In particular, none of w2, w3, u is joined to

v1, v2, v3 or v4. Moreover, since w2 and w3 are arbitrary vertices of S \ S1, this implies

that no vertex of 〈u, S \ S1〉 is joined to v1, v2, v3 or v4. Thus, S is block-decomposable

by Proposition 4.6 applied to v.

Case 2: ValS(v) = 4. Fix a block decomposition of S\x containing B. Since ValS(v) = 4

and v1, . . . , v4 are dead ends, no vertex of S \ {x ∪ B} is joined to vertices of B. Again,

S is block-decomposable by Proposition 4.6 applied to x. ⊓⊔

Lemma 5.5. For any x ∈ S no block decomposition of S \ x contains blocks of type IV.

Proof. Consider any block decomposition of S\x. Any vertex is contained in at most two

blocks. By Lemma 5.3, no block decomposition of S \ x contains blocks of type V. This

implies that ValS\x(v) ≤ 6 for any v ∈ S \ x. Thus, ValS(v) ≤ 8 (recall that any proper

subquiver of S, and therefore S itself, does not contain edges of multiplicity greater than 2

due to Theorem 2.6).

Now let B be a block of type IV in some block decomposition of S \ x, denote by v1

and v2 the outlets of B, and assume that ValS\x(v2) ≤ ValS\x(v1) ≤ 6. If ValS\x(v2) =

ValS\x(v1), we assume that ValS(v2) ≤ ValS(v1). We analyze the situation case by case

with respect to the valence ValS\x(v1) decreasing. Each case splits in two: either v1 is

joined to x or not (see Table 5.1).

Notice that x may be joined to v1 by a simple edge only. Indeed, suppose that x

is joined to v1 by a double edge. Denote by w1 and w2 the dead ends of B. Since the

subquiver 〈x, v1, w1〉 is decomposable and its mutation class is finite, x is joined to w1

and the triangle formed by x, v1 and w1 is oriented (this follows from the fact that the

mutation class of a chain of a double edge and a simple edge is infinite independently of

the orientations of the edges, and the mutation class of a non-oriented triangle containing

a double edge is also infinite). For the same reason, v2 is joined to both x and v1, and the

triangle fromed by x, v1 and v2 is oriented. Thus, the directions of the edges 〈v1, w1〉 and

〈v1, v2〉 induce opposite orientations of 〈x,w1〉 (see Fig. 5.1). The resulting contradiction

shows that ValS(v1) ≤ ValS\x(v1) + 1.

v1v1 v2v2

w1w1

w2 w2

xx

or

Fig. 5.1. Proof of Lemma 5.5. One of the triangles xv1v2 and xv1w1 is non-oriented.

Case 1: ValS\x(v1) = 6.

Case 1.1: x 6⊥ v, hence ValS(v1) = 7. Then v1 is contained in a block B1 of type IV, and

v1 is joined to x. Denote the dead ends of B1 by w3 and w4, and the remaining outlet by v3.
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Table 5.1. Proof of Lemma 5.5.

1
ValS\x(v1) = 6

2
ValS\x(v1) = 5

3
ValS\x(v1) = 4

4
ValS\x(v1) = 3

5
ValS\x(v1) = 2

1.1

x 6⊥ v1 x 6⊥ v1 x 6⊥ v1x 6⊥ v1x ⊥ v1 x ⊥ v1x ⊥ v1 x ⊥ v1

1.2 2.1 2.2 3.1 3.2 4.1 4.2

1.1.1

1.1.2

1.2.1

1.2.2

2.2.1

2.2.2

3.2.1

3.2.2

4.2.1

4.2.2

2.2.2.1 2.2.2.2

B2

v1 v1v1

v1
v1

v1v1

v1

v1v1
v1

v1v2 v2
v2

v2v2v2v2v2

v2v3 v3

u1u1

u2u2
x

x

or

v3 = v2v3 = v2

v3 6= v2 v3 6= v2

u2 = v2

u2 6= v2

no block contains u1, u2, v2

simultaneously

B2 contains u1, u2, v2

Case 1.1.1: v3 = v2. Since ValS(v1) = 7, v1 and v2 are joined by a double edge. Consider

S1 = S \ w1 with some block decomposition. Clearly, ValS1
(v1) = 6, and a subquiver

〈v1, v2, x,w2, w3, w4〉 ⊂ S1 is obtained by gluing two blocks of the fourth type along

(v1, v2). In particular, x is a dead end of one of these blocks, so x is joined to v2 and is

not joined to w2, w3, w4. Similarly, considering S2 = S \ w2, we see that x is not joined

to w1 either.

Now consider the subquiver S′ = 〈v1, x,w1, w2, w3, w4〉. The only edges in S′ are

those joining v1 to other vertices. Using Keller’s applet [K1] we can check that the muta-

tion class of S′ is infinite. Recall that S′ is a subquiver of a block-decomposable quiver,

and hence is block-decomposable itself. Therefore, its mutation class must be finite, and

this contradiction eliminates the case under consideration.

Case 1.1.2: v3 does not coincide with v2. Consider S1 = S \ v3. Since ValS1
(v1) = 6,

subquiver 〈v1, v2, x,w1, w2, w3, w4〉 ⊂ S1 is obtained by gluing two blocks of the fourth

type at v1. Since w3 and w4 are not joined, x is an outlet of the block 〈v1, x,w3, w4〉.

In particular, x is joined to w3 and w4 and is not joined to w1 or w2. Now, considering
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S2 = S \ v2, we find in a similar way that x is joined to w1 and w2 and is not joined to

w3 or w4, so we come to a contradiction.

Case 1.2: x ⊥ v1, hence ValS(v1) = 6. As in the previous case, v1 is contained in a

block B1 of type IV. Denote the dead ends of B1 by w3 and w4, and the remaining outlet

by v3.

Case 1.2.1: v3 = v2. Since ValS(v1) = 6, v1 and v2 are joined by a double edge. The

only outlets of B and B1 are v1 and v2, and they are already contained in two blocks each.

Therefore, the quiver spanned by B and B1 has no outlets, so any other vertex of S except

x is not joined to S′ = 〈v1, v2, w1, w2, w3, w4〉. Now take any vertex u distinct from x

which is not contained in B or B1, and consider any block decomposition of S1 = S \ u.

Since ValS1
(v1) = ValS1

(v2) = 6, the subquiver S′ ⊂ S1 is again obtained by gluing

two blocks of the fourth type along the edge (v1, v2). By the reasons described above,

no vertex of S except u is joined to vertices of S′. This implies that neither x nor u is

connected to S′, so no vertex of S \ S′ is connected to S′, and S is not connected.

Case 1.2.2: v3 6= v2. Recall that none of the vertices w1, w2, w3, w4 is joined to vertices

of S \ {x ∪ (B1 ∩ B2)}. Let us prove that they are not joined to x either.

There are two options for the link LS\x(v1): either v2 is joined to v3 or not. Notice

that if u and v are the dead ends of a block of type IV with outlet v1 in some block

decomposition of any quiver S′, then u and v are leaves of the link LS′(v), and the distance

between them equals two.

Consider the quiver S1 = S\w1 with some block decomposition. Since ValS1
(v1) = 5,

a subquiver 〈v1, v2, v3, w2, w3, w4〉 ⊂ S1 is obtained by gluing a block of the fourth type

and a block of the second or third type at v1. Looking at the link LS1
(v1), we see that there

is only one pair of leaves at distance two, namely w3 and w4. Therefore, v1, v3, w3, w4

are contained in one block of the fourth type. In particular, x is not joined to w3 and w4.

Similarly, considering S2 = S \ w3, we find that x is not joined to w1 and w2.

Let us take another look at the block decomposition of S1. Since w2 is joined to v2, the

vertices v1, v2, w2 are contained in a block of the second type, i.e. a triangle. Since none

of w1 and w2 is joined to any vertex of S other than v1 and v2, we can replace the triangle

v1v2w2 by the block (v1, v2, w1, w2) of type IV to obtain a block decomposition of S.

Case 2: ValS\x(v1) = 5.

Case 2.1: x 6⊥ v1, ValS(v1) = 6. Since |S| ≥ 8, there exists y ∈ S which is not joined

to v1. Since ValS\y(v1) = 6, in any block decomposition of S \y the vertex v1 is an outlet

of a block of type IV, so we may refer to Case 1.2.

Case 2.2: x ⊥ v1, ValS(v1) = 5. Then v1 is contained in the block B and in a block B1

of type II or III. The vertices w1 and w2 are dead ends of B, so they are joined in S \ x to

v1 and v2 only.

Denote by u1 and u2 the remaining vertices of B1, and consider the quiver 2S\x(v1).

Since the union of B and B1 has at most three outlets, 2S\x(v1) consists of the blocks

B, B1 and probably some block B2 containing at least two of the vertices v2, u1 and u2.

Consider the following three cases.
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Case 2.2.1: v2 = u2. In this case v1 and v2 are joined by a double edge, B1 is a block of

the second type (which implies that u1 is joined to v2, so ValS(v2) ≥ 5), and the union

of B and B1 has a unique outlet u1. Thus, 〈LS(v1), v1〉\u1 may be joined to x only. Since

ValS(v2) ≤ ValS(v1) = 5, x is not joined to v1 or v2. If x is not joined to w1 or w2 either,

then we can apply Proposition 4.6 to u1. Therefore, we may assume that x is joined to at

least one of w1 and w2, say w1.

Now take any y /∈ 〈B, u1, x〉 and consider S1 = S\y with some block decomposition.

Recall that y cannot be joined to any vertex of B. Since ValS1
(v1) = 5, v1 is contained

in some fourth type block of this decomposition together with v2 and two of w1, w2, u1.

But w1 is joined to x, so it cannot be a dead end of the block. Hence, v1, v2, w2, u1 form

a block of type IV with outlets v1, v2 and dead ends w2, u1. In particular, neither w2 nor

u1 is connected to x. If y is not joined to u1, then we can apply Proposition 4.6 to w1.

Therefore, we may assume that y is joined to u1.

By assumption, |S| ≥ 8. Thus, we can take a vertex z which does not coincide with

any of the preceding ones, and consider S2 = S \ z (see Fig. 5.2). As explained above,

any block decomposition of the subquiver 〈B, u1〉 is a union of two blocks with one outlet

only. However, w1 is joined to x, and u1 is joined to y, so we come to a contradiction.

v1 v2

w1

w2

x

u1

y
z

Fig. 5.2. Proof of Lemma 5.5, Case 2.2.1.

Case 2.2.2: Neither u1 nor u2 coincides with v2. This case also splits into the following

two.

Case 2.2.2.1: 2S\x(v1) consists of three blocks B, B1, B2, where B2 is a triangle with

vertices v2, u1 and u2. In this case the quiver 2S\x(v1) has no outlets, so no vertex of

S \ 2S\x(v1) except x is joined to 2S\x(v1).

Take any vertex y ∈ S \2S\x(v1) distinct from x, and consider the quiver S1 = S \ y.

The quiver 2S\y(v1) is spanned by 2S\x(v1) and probably x. Since ValS1
(v1) = 5, three

of the vertices w1, w2, v2, u1, u2 should form a block B ′ of type IV together with v1.

Since none of w1, w2 is joined to any of u1, u2, that block contains v2. The vertex v1

is also contained in some block B ′′ of type II or III which contains the remaining two

vertices of 2S\x(v1). Similarly, the same two vertices lie in some block B ′′′ of type II

or III containing v2. In particular, all vertices of LS(v1) are either dead ends of B ′, or

are already contained in two blocks, so x /∈ 2S\y(v1), and moreover x is not joined to

2S\y(v1), implying that S is not connected.

Case 2.2.2.2: No block contains v2, u1 and u2 simultaneously. In this case LS(v1)

contains exactly two leaves at distance two from each other, namely w1 and w2 (see
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Table 5.2. Proof of Lemma 5.5, Case 2.2.2.2.

v1v1v1v1v1

v2 v2v2v2

v2v2 v2v2v2

v2

v2v2v2v2v2

w1 w1w1w1w1

w1w1w1w1w1

w2 w2

w2w2
w2 w2

w2w2 w2

w2

w2
w2w2

u2

u2

u2u2 u2

u2u2 u2

u2

u2

u2u2u2 u2u2

u1

u1

u1u1u1

u1u1u1

u1

u1

u1u1u1u1u1

2S\x(v1)

LS\x(v1)

LS\w1
(v1)

Table 5.2). This means that for any y /∈ LS(v1) distinct from v1 and x and any block

decomposition of S1 = S \ y the vertices v1, v2, w1, w2 form a block of the fourth type,

which implies that x is not joined to w1 or w2.

Now consider S2 = S \ w1 with a block decomposition. Clearly, ValS2
(v1) = 4.

Looking at possible quivers 2S\x(v1) (see Table 5.2), one can notice that LS2
(v1) does

not contain a pair of leaves at distance two, so v1 is contained in two blocks of the second

or third type. Since w2 is joined to v1 and v2 only, it is easy to see that w2, v1, v2 form a

block of type II. Now recall that neither w1 nor w2 is joined to any vertex of S except v1

and v2, so we can replace the triangle v1, v2, w2 by the block v1, v2, w1, w2 of type IV to

obtain a block decomposition of S.

Notice that we do not show in Table 5.2 the quivers 2S\x(v1) in which u1 and u2 are

contained in two blocks simultaneously. The case of a triangle with vertices u1, u2 and v2

is treated in Case 2.2.2.1, and it is easy to see that no others produce new leaves.

Case 3: ValS\x(v1) = 4.

Case 3.1: x 6⊥ v1, ValS(v1) = 5. The proof is the same as in Case 2.1. Namely, since

|S| ≥ 8, there exists y ∈ S which is not joined to v1. Since ValS\y(v1) = 5, in any block

decomposition of S \ y the vertex v1 is an outlet of a block of type IV, so we may refer to

Case 2.2.

Case 3.2: x ⊥ v1, ValS(v1) = 4. In this case v1 is contained in the block B and in a

block B1 of type I or IV. Consider these two cases separately.

Case 3.2.1: B1 is of type IV. This case is similar to Case 1.2.1, the only difference is in

the orientation of B1: instead of getting a double edge, the edge (v1, v2) cancels out. The

vertex v2 is also contained in B1; denote by w3 and w4 the dead ends of B1. The only

vertex joined to B and B1 is x. We want to show that x is not joined to LS(v1), which will

imply that S is not connected.

Take any vertex y /∈ 〈LS(v1), v1, x〉 and consider S1 = S \ y with some block de-

composition. If v1 is contained in a block of the fourth type, then the second block con-

taining v1 is also of the fourth type (otherwise the remaining block is an edge, and the
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link LS1
(v1) = LS(v1) contains at most three edges, contradicting the fact that LS(v1)

contains four edges), and we see that x is not joined to LS(v1). Therefore, v1 is contained

in two blocks of type II or III. More precisely, since the valence of all neighbors of v1 is

at least two, v1 is contained in two blocks B ′ and B ′
1 of type II.

The block B ′ contains one of w1, w2 and one of w3, w4 (due to orientation, see

Fig. 5.3(a)); assume that it contains w1 and w3. To avoid the edge (w1, w3) which does

not appear in S, another block B ′
1 should contain w1 and w3. Since w1 and w3 are joined

to v2, B ′
1 is either of the second or of the fourth type. In the latter case v2 is a dead end

of B ′
1, but v2 is joined to w2 and w4 also. Hence, B ′

1 is a triangle containing v2, w1, w3

(see Fig. 5.3(b)). Similarly, w2, w4 and v2 are contained in a block B ′′
1 of the second type.

In particular, all the vertices of LS(v1) are already contained in two blocks, so x is not

joined to LS(v1).

v1v1
v1 v2v2

v2

w1w1
w1

w2w2
w2

w3w3
w3

w4w4
w4

or

(a) (b)

Fig. 5.3. Proof of Lemma 5.5, Case 3.2.1.

Case 3.2.2: B1 is of type I. Denote by u the second vertex of B1. If u coincides with

v2, then 〈LS(v1), v1〉 has no outlets, so we can apply Proposition 4.6 to x. Now we may

assume that u 6= v2.

If u is joined to v2, then the edge 〈u, v2〉 must form a block of the first type, otherwise

ValS(v2) > ValS(v1). Therefore, no vertex except x is connected to 〈LS(v1), v1〉. Since

|S| ≥ 8, in this case we can apply Proposition 4.6 to x. Thus, we may assume that u is

not joined to v2.

Take any vertex y /∈ 〈LS(v1), v1, x〉 and consider S1 = S \y with some block decom-

position. It is easy to see that v1 should be contained in a block of type IV. Furthermore,

looking at LS(v1) one can notice that there is exactly one pair of leaves at distance two,

namely w1 and w2, which implies that v1, v2, w1, w2 belong to one block, and w1 and

w2 are dead ends. Therefore, x is not joined to w1 or w2, so only v1 and v2 are attached

to w1 and w2.

Now we proceed as in Case 2.2.2.2. We consider the quiver S1 = S \ w1 with some

block decomposition and show that w2, v1, v2 form a block of type II. Since neither w1

nor w2 is joined to any vertex of S except v1 and v2, we can replace the triangle v1, v2, w2

by the block v1, v2, w1, w2 of type IV to obtain a block decomposition of S.

Case 4: ValS\x(v1) = 3.

Case 4.1: x 6⊥ v1, ValS(v1) = 4. Since ValS\x(v2) ≤ ValS\x(v1), we have ValS\x(v2) = 3.

This means that vertices of B may be joined to x only. Thus, we may apply Proposition 4.6

to x.
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Case 4.2: x ⊥ v1, ValS(v1) = 3. In this case v1 is contained either in the block B only,

or in the block B and in a second type block B1. Consider the two cases.

Case 4.2.1: v1 is contained in one block. This implies that v1 and v2 are joined in S, so

no vertex except x is connected to B. We apply Proposition 4.6 to x.

Case 4.2.2: v1 is contained in two blocks. In this case the second block B1 is of type II, it

contains v1, v2 and some vertex u. This case is similar to Case 2.2.1, the difference is in

the orientation of B1.

The union of B and B1 has a unique outlet u. Thus, 〈LS(v1), v1〉\u may be joined to x

only. Further, x is not joined to v1 or v2 (since ValS(v2) ≤ ValS(v1)). If x is not joined

to w1 or w2 either, then we can apply Proposition 4.6 to u. Therefore, we may assume

that x is joined to one of w1 and w2, say w1. Moreover, we may assume that some vertex

y /∈ 〈B, u, x〉 is joined to u, otherwise we can apply Proposition 4.6 to x.

Now take any z /∈ 〈B, u, x, y〉 and consider S1 = S \ z with some block decomposi-

tion. The vertex v1 is contained either in blocks of the fourth and second type, or in blocks

of the second and first type. In the first case, due to orientations of edges (see Fig. 5.4)

a block of type IV should contain all vertices of B, which is impossible since the dead

end w1 is joined to x. Hence, v1 is contained in a triangle B ′ and an edge B ′
1. Again,

because of orientations of edges, w1 and w2 cannot belong to B ′ simultaneously, so B ′

contains u and wi . To avoid the edge (wi, u) these two vertices should be contained in

some block B ′
2. Since u is joined to v2 and y, B ′

2 contains v2 and y also. Therefore, B ′
2 is

a block of the fourth type with outlets u,wi and dead ends v2, y. But this implies that y

connects to wi , which is impossible.

v1

v1

v1v2

v2

v2

w1 w1

w2 w2

wi

x
x

yy y
u

u

u

or

(a) (b)

Fig. 5.4. Proof of Lemma 5.5, Case 4.2.2.

Case 5: ValS\x(v1) = 2. In this case v1 is contained in a block B and a block B1 of type I,

where B1 is an edge joining v1 and v2 with suitable orientation. The union of B and B1

has no outlets, so we apply Proposition 4.6 to x.

Clearly, the valence of v1 in S \ x is at least two, so all cases have been studied and

the lemma is proved. ⊓⊔

Corollary 5.6. The valence of any vertex v of a minimal non-decomposable quiver S

does not exceed 4.

Proof. The proof is evident. Indeed, take any x which is not joined to v, and consider any

block decomposition of S \ x. Then v is contained in at most two blocks, and the valence

of any vertex of these blocks does not exceed 2. ⊓⊔

Lemma 5.7. Let v ∈ S be a vertex of valence 4. Then for any non-neighbor x of v and

any block decomposition of S \ x the vertex v is not contained in a block of the third type.
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Proof. Denote by v1 and w1 the dead ends of a block B of type III with outlet v, and

denote by v2 and w2 the vertices of a block B1 with outlet v. Clearly, v1 and w1 are not

joined to v2 or w2. Denote S′ = 〈v1, v2, v, w1, w2〉. If no vertex of S \ 〈S′, x〉 is joined to

v2 or w2, then we apply Proposition 4.6 to x. Thus, we may assume that some vertex u2

connects to one of v2 and w2, say v2 (see Fig. 5.5(a)). In particular, this implies that B1 is

a block of type II.

Suppose that x is not joined to v1 or w1. Since ValS(v) = 4, the quiver S \ v has

at most four connected components. Two of them are v1 and w1. The remaining two (or

one) contain at least five vertices (as |S| ≥ 8), so at least one connected component has at

least three vertices. Hence, we can apply Proposition 4.6 to v.

Therefore, we assume that x connects to at least one of v1 and w1, say w1. We want

to prove that S is block-decomposable by applying Proposition 4.8 to

S = 〈S1 = 〈v1, w1〉, b1 = v, b2 = x, S2 = S \ 〈S1, v, x〉〉

(see Fig. 5.5(b)). For this take a1 = v1, and try to choose a2. The choice of a2 will depend

on 2S\x(v).

If v2 and w2 are joined in S, then we choose from the vertices of S2 not connected

to x (if any) one which is at maximal distance from v in S. Clearly, such a vertex can be

taken as a2. If each vertex of S2 is joined to x, we take as a2 any vertex of S2 \ 〈v2, w2〉.

v
v

v

v1 v2v2 v2

w1w1 w1 w2w2 w2

u2
u2 u2

xx

a1 = v1a1 = v1

(c)(a) (b)

Fig. 5.5. Proof of Lemma 5.7.

Now suppose that v2 and w2 are not joined in S (in particular, 2S\x(v) also contains

some block B2 formed by v2, w2 and probably some other vertex of S2). B2 cannot be of

the first type since v2 connects to u2. Thus, w2 is joined to u2 (see Fig. 5.5(c)). Moreover,

no vertex of S \ x connects to any of v2 and w2 since both already belong to two blocks

of the block decomposition of S \ x under consideration. So, S \ v2 is connected and we

may take a2 = v2. ⊓⊔

Lemma 5.8. Let v ∈ S be a vertex of valence 4. Then for any non-neighbor x of v and

any block decomposition of S \ x the diagram 2S\x(v) consists of exactly two blocks of

type II having the only vertex v in common.

Proof. Lemmas 5.7, 5.5, and 5.3 rule out blocks of types III, IV, and V from any decom-

position of S \ x. The only possibility left is that v1 is contained in two blocks B1 and

B2 of the second type. Clearly, they have at most four outlets, so 2S\x(v) may contain
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Table 5.3. Proof of Lemma 5.8.

)

1 2

1.1

|B1 ∩ B2| = 2
1.2

|B1 ∩ B2| = 3

2S\x (v) = B1 ∪ B2

2.1

2S\x (v) = B1 ∪ B2 ∪ B3

2.2
2S\x (v) = B1 ∪ B2 ∪ B3 ∪ B4

2.1.1 2.1.2 2.2.1 2.2.2 2.2.3

2.2.1.1 2.2.1.22.1.2.1 2.1.2.22.1.1.1 2.1.1.2 2.1.1.3

B3
B3

B3

B3

B3 B3
B3

B3

B3

B3

B3 B4

B4

B4
B4B4

B4

vv

w3

w3

w4

w4

B3 =B3 =B3 =
B3 =B3 =

B4 =B4 =B4 =

2.2.1.1.1 2.2.1.1.2 2.2.1.2.1 2.2.1.2.2

(w3 = w4) (w3 = w4) (w3 6= w4)(w3 6= w4)

at most two additional blocks. Denote by v1, u1 and v2, u2 the remaining vertices of B1

and B2 respectively, and consider the following cases (see Table 5.3).

Case 1: B1 and B2 have at least two vertices in common.

Case 1.1: B1 and B2 have exactly two vertices in common. We may assume that v1 = v2.

Then ValS(v) = ValS(v1) = 4 is the maximal possible valence in S, so x is not connected

to v and v2. Consider all options for 2S\x(v) (see Fig. 5.6).

If u1 and u2 are not joined (i.e. 2S\x(v) consists of B1 and B2 only, see Fig. 5.6, left),

then S is block-decomposable by Corollary 4.9 applied to

S = 〈S1 = 〈v, v2〉, b1 = u1, b2 = u2, S2 = S \ 〈S1, u1, u2〉〉 with c1 = v.
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v vv

v1 = v2

w

u1 u1u1u2 u2u2

Fig. 5.6. Proof of Lemma 5.8, Case 1.1.

If 〈u1, u2〉 forms a block of the first type (see Fig. 5.6, middle), then u1 and u2 can

be connected only to x ∈ S. Hence, all the vertices of 2S\x(v) are dead ends, so S is

block-decomposable by Proposition 4.6 applied to x.

If u1 and u2 are contained in a block of the second type with additional vertex w (see

Fig. 5.6, right), then u1 and u2 have valence 4, so they are not joined to x. Therefore, S is

block-decomposable by Proposition 4.6 applied to w.

Case 1.2: B1 and B2 have three vertices in common. In this case the union of B1 and B2

has no outlets, so S is block-decomposable by Proposition 4.6 applied to x.

Case 2: B1 and B2 intersect in v only. The quiver 2S\x(v) consists of two, three, or

four blocks. We are going to prove that there are no other blocks in 2S\x(v) except B1

and B2; this will imply our lemma. For that we consider the remaining two cases and find

a contradiction.

Case 2.1: 2S\x(v) consists of three blocks B1, B2 and B3. We go through different types

of B3 and the way it connects to B1 and B2.

Case 2.1.1: B3 ∈ BII.

Case 2.1.1.1: B3 has three points in common with the union of B1 and B2. Let v1, u1, v2

be the vertices of B3. Either v1 and u1 are joined by a double edge or they are not joined

at all. If they are joined by a double edge, then the valence of u1 equals 4, so we are

under the assumptions of Case 1, which implies that S is block-decomposable. Hence,

we may assume that v1 and u1 are not joined in S. Thus, 2S\x(v) is the quiver shown

in Fig. 5.7. The only outlet is u2. We may assume that some y /∈ 〈2S\x(v), x〉 is joined

to u2, otherwise S is block-decomposable by Proposition 4.6 applied to x.

v

y

B3 v1 v2

u1
u2

Fig. 5.7. Proof of Lemma 5.8, Case 2.1.1.1.

Consider any z /∈ 〈2S\x(v), x, y〉 and some block decomposition of S \ z. By Lem-

mas 5.7, 5.5, and 5.3, v is contained in two blocks of the second type. One of these blocks

contains v, v2 and one of u1, u2, v1. The other one contains v and the remaining two ver-

tices from u1, u2, v1. Similarly, v2 is also contained in a block of the second type with

vertices v2 and two of u1, u2, v1. This implies that only two of u1, u2, v1 are dead ends

of 〈v, v1, v2, u1, u2〉, and only one of them is an outlet.
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Note that no vertex other than u1, u2, v1, v is joined to v2, as otherwise ValS(v2) > 4.

If u2 is an outlet, then x may be joined to u2 only in 2S\x(v), so S is block-decomposable

by Proposition 4.6 applied to u2.

If u1 or v1 is an outlet, then u2 is a dead end, but y is connected to u2, so we get a

contradiction.

Case 2.1.1.2: B3 has exactly one point in common with each of B1 and B2. We may

assume that the vertices of B3 are v1, v2 and w. Since ValS(v1) = ValS(v2) = 4, no

vertex of S \ 〈2S\x(v), w〉 is joined to v1 or v2.

Consider the quiver S1 = S \ v1 with a block decomposition. Since ValS1
(v) = 3 and

v2 is joined to u2 in S, v is contained in one block of the second type and in one of the

first type. But u1 is joined neither to v2 nor to u2, so v, v2, u2 are vertices of one block,

and v, u1 form another one. Looking at v2 we see that v2 and w form a block of the first

type, too. Replace the block v2w by B3, and the block vu1 by B1, and obtain a block

decomposition of S.

Case 2.1.1.3: B3 does not intersect one of B1 and B2. In this case we may assume that

the vertices of B3 are v1, u1 and w. Similarly to Case 2.1.1.1, we conclude that either

this situation is already considered in Case 1, or v1 and u1 are not joined in S. Take any

y /∈ 〈2S\x(v), x〉 and consider S1 = S \ y. Since v1 and u1 are not joined to v2 or u2,

the vertices v, v2 and u2 form one block (otherwise in order to cancel two edges joining

〈v1, u1〉 to 〈v2, u2〉 we have to glue in two blocks such that neither of them contains

simultaneously u2 and v2; then both u2 and v2 are dead ends with no edge between them,

contradicting the fact that u2 and v2 are joined in S). Therefore, v, v1 and u1 form a block,

so v1, u1 and w also form a block. In particular, v1 and u1 are dead ends of 〈u1, w, v1, v〉,

and x is not connected to v1 or u1. Recall also that no vertex except x, v, w could be

connected to v1 or u1 since v1 and u1 are dead ends of 2S\x(v). Hence, both u1 and v1

are joined to v and w only.

Consider S2 = S \ v1 with some block decomposition. Similarly to Case 2.1.1.2, it is

easy to see that v, v2, u2 form one block of type II, and u1, v form another block of type I.

Since u1 is not joined to any vertex except v and w, 〈u1, w〉 is a block. Notice that the

blocks 〈u1, w, v1〉 and 〈u1, v1, v〉 are oriented so that the side
−−→
v1u1 of one triangle cancels

out with the side
−−→
u1v1 of the other. This implies that one of the edges 〈u1, w〉 and 〈u1, v〉

is directed towards u1 while the other is directed from u1. Replacing (u1, w) by B3, and

(u1, v) by B1, we obtain a block decomposition of S.

Case 2.1.2: B3 ∈ BI. There are two possibilities to join B3 to B1 and B2.

Case 2.1.2.1: B3 has exactly one point in common with each of B1 and B2. We

may assume that the vertices of B3 are v1 and v2 (see Fig. 5.8(a)). If x is joined

to neither v1 nor v2, then S is block-decomposable by Corollary 4.9 applied to S =

〈S1 = 〈v, v1, v2〉, b1 = u1, b2 = u2, S2 = S \ 〈S1, u1, u2〉〉 with c1 = v1. So, we may as-

sume that x is joined to at least one of v1 and v2, say v1.

Take any y /∈ 〈2S\x(v), x〉 and consider S1 = S \ y. The valence of v1 is four, which

means that v1 is contained in two blocks of the second type. Since v1 is joined to v, one

of these blocks (call it B ′) contains both v1 and v. The third vertex of B ′ is either v2 or u1
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(since ValS(v) = ValS(v1) = 4 is maximal possible and only u1 and v2 are joined to both

v1 and v).

If B ′ contains v2, then the vertices u1, v1, x form one block. The second block con-

taining v is composed of v, u1, u2. In particular, u1 is joined to u2, which contradicts the

assumption (see Fig. 5.8(b)). Therefore, B ′ is composed of u1, v1 and v. The second block

containing v is composed of v, v2, u2, and the second block containing v1 is composed of

v1, v2, x (see Fig. 5.8(c)). We obtain a quiver as considered above in Case 2.1.1.2.

(a) (b) (c)

v1

v1

v1v2 v2
v2

x
x

u1 u1
u1

u2 u2
u2

Fig. 5.8. Proof of Lemma 5.8, Case 2.1.2.1.

Case 2.1.2.2: B3 does not intersect one of B1 and B2. The proof repeats the proof of

Lemma 5.7.

Case 2.2: 2S\x(v) consists of four blocks B1, B2, B3, and B4. We go through all the

different types of B3 and B4 and all the ways to assemble 2S\x(v) from them.

Case 2.2.1: Both B3 ∈ BII and B4 ∈ BII. There are two possibilities to join B3 and B4 to

B1 and B2.

Case 2.2.1.1: Each of B3 and B4 has exactly one vertex in common with each of B1

and B2. Denote by w3 and w4 the remaining vertices of B3 and B4 respectively, and

consider two possibilities.

Case 2.2.1.1.1: w3 = w4. In this case the valences of all the six vertices of 2S\x(v) are 4,

showing that 〈2S\x(v)〉 ⊥ (S \ 〈2S\x(v)〉) and S is not connected.

Case 2.2.1.1.2: w3 6= w4. We may assume that B3 contains w3, u1 and u2. Consider

S1 = S \u1 with some block decomposition. Since the valences of v, v1, u1, v2, u2 are 4,

no vertex from S\2S\x(v) connects to any of these five vertices. We want to prove that the

edges 〈w3, u2〉 and 〈v1, v〉 are blocks of the first type of S1 (see Fig. 5.9). Then replacing

(w3, u2) and (v1, v) by B3 and B1 respectively we get a block decomposition of S.

(a) (b)

v1v1 v2v2

w4w4

w3w3

u1 u2u2

Fig. 5.9. Proof of Lemma 5.8, Case 2.2.1.1.2.

Since ValS1
(u2) = 3, u2 is contained in one block of the second type and one of the

first type. The edge 〈v2, u2〉 belongs to the block of type II because ValS1
(v2) = 4. For
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the same reason, w3 and v2 are not contained in one block. Therefore, v2, v, u2 form one

block, and w3, u2 form another one. Looking at v2 we see that the second block containing

v2 is spanned by v2, v1 and w4. Recall that v and v1 are not joined to any vertex of S1

except w3, v2 and u2. Thus, v and v1 form a block, which completes the case.

Case 2.2.1.2: One of B3 and B4 (say B3) does not intersect B2 and the other (namely, B4)

does not intersect B1. Denote by w3 and w4 the remaining vertices of B3 and B4 respec-

tively. Taking into account Case 1, we may assume that u2 is not joined to v2 in S, and u1

does not connect to v1. We consider two possibilities.

Case 2.2.1.2.1: w3 = w4. Notice that each vertex of 2S\x(v) is already contained in two

blocks, so no vertex of S \ 〈2S\x(v)〉 except x is connected to 〈2S\x(v)〉. To show that

x is not joined to 〈2S\x(v)〉 either, take any y /∈ 〈2S\x(v), x〉 (such a y does exist since

|S| ≥ 8) and consider S \ y with some block decomposition. The valences of v and w3

are 4, so they belong to two blocks of the second type each. Further, suppose that some

pair of u1, u2, v1, v2 form a block with w3. To avoid an edge between this pair of vertices,

they should also form a block with v. Therefore, each vertex of 2S\x(v) is contained in

two blocks, so no vertex of S \ 〈2S\x(v)〉 except y connects to 〈2S\x(v)〉. In particular,

x ⊥ 〈2S\x(v)〉.

Thus, S \ 〈2S\x(v)〉 ⊥ 〈2S\x(v)〉, and S is not connected.

Case 2.2.1.2.2: w3 6= w4. Clearly, no vertex of (S \ x) \ 2S\x(v) is joined to v or any

of its neighbors (see Fig. 5.10(a)). Suppose that x is joined to a neighbor of v, say u1.

Consider S1 = S \ w4 with some block decomposition. Since u1 does not connect to

any neighbor of v and ValS1
(u1) = 3, the edge 〈u1, v〉 is not contained in a block of the

second type. However, ValS1
(v) = 4 so 〈u1, v〉 should be contained in some such block.

The contradiction shows that x ⊥ u1. Similarly, x is not joined to any other neighbor of

v (or to v itself, of course).

(a) (b)

v v

x

v1 v1v2 v2

w3w3 w4w4

u1 u2 u2

Fig. 5.10. Proof of Lemma 5.8, Case 2.2.1.2.2.

Now consider S2 = S \ u1 (see Fig. 5.10(b)). Since v1 ⊥ v2, v1 ⊥ u2 and v is the

only common neighbor of v1 and v2 (or v1 and u2), a block containing the edge 〈v, v1〉

contains neither v2 nor u2. Therefore, v1 and v form a block of the first type. As proved

above, ValS(v1) = 2 so v1 and w3 also form a block of the first type. Now replacing the

edge (v1, v) by B1, and (v1, w3) by B3, we obtain a block decomposition of S.

Case 2.2.2: B3 ∈ BII and B4 ∈ BI. Denote by w3 the remaining vertex of B3. If B4 does

not intersect one of B1 or B2 (say B1), then it must coincide with the edge 〈u2, v2〉 of B2,

and we get a situation described in Lemma 5.7 (notice that we did not use orientations

of edges while proving Lemma 5.7). Hence, we may assume that B4 intersects both B1
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and B2. This implies that so does B3. Let u1 and u2 be the vertices of B4. Then 2S\x(v) is

a quiver shown in Fig. 5.11. Consider 2S\x(v2). Notice that ValS\x(v2) = 4 and 2S\x(v2)

was treated in Case 2.1.1.2.

v1 v2

w3

u1 u2

Fig. 5.11. Proof of Lemma 5.8, Case 2.2.2.

Case 2.2.3: B3, B4 ∈ BI. In this case all the vertices of 2S\x(v) are dead ends, so S is

block-decomposable by Proposition 4.6 applied to x.

Since all possibilities are exhausted, the lemma is proved. ⊓⊔

Lemma 5.9. Let v ∈ S be a vertex of valence 3. Then for any non-neighbor x of v and

any block decomposition of S \x the diagram 2S\x(v) consists of exactly two blocks, one

of type II and the other of type I having only the vertex v in common.

Proof. Since the valence of v equals 3, v is contained in a block B1 of the second or

third type with two other vertices v1 and u1, and in a block B2 of the first type with a

second vertex v2. We consider both types of B1 and all possible quivers 2S\x(v) below

(see Table 5.4).

Case 1: B1 ∈ BIII. In this case v1 and u1 are dead ends of the union of B1 and B2, so

{v1, u} ⊥ (S \ {x, v}), and 2S\x(v) consists of B1 and B2 only. If x is not joined to v1

or u1, then S is block-decomposable by Proposition 4.6 applied to v2. Therefore, we may

assume that x is joined to at least one of v1 and u1, say u1. If v2 ⊥ S \ 〈2S\x(v), x〉, then

again S is block-decomposable by Proposition 4.6 applied to x. Thus, we can assume that

v2 is joined to some vertex distinct from v and x (see Fig. 5.12). Now we can apply Corol-

lary 4.9 to S = 〈S1 = 〈u1, v1, v〉, b1 = v2, b2 = x, S2 = S \ 〈S1, x, v2〉〉 with c1 = v1 to

show that S is block-decomposable.

v

v1

v2

u1

x

Fig. 5.12. Proof of Lemma 5.9, Case 1.

Case 2: B1 ∈ BII. Consider the following cases.

Case 2.1: B1 and B2 have two points in common. We may assume that v1 = v2. Since

ValS(v) = 3 and v ⊥ x, v2 and v are joined by a double edge. By Lemma 5.8, no vertex

of valence 4 may be incident to a double edge. Thus, S \ 〈u1, v, v2〉 ⊥ 〈v, v2〉 and S \ u1
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Table 5.4. Proof of Lemma 5.9.

1

B1 =B1 =

2

2.1

|B1 ∩ B2| = 2

2.2

|B1 ∩ B2| = 1

(No B3) 2.2.1 2.2.2

B3 =B3 =

2.2.1.1

2.2.1.2

2.2.2.1

2.2.2.2

2.2.2.3

B1 B1

B1B1

B1

B1B1

B2

B2

B2B2

B2

B2B2

B3
B3

B3B3

B3

v

vv

v

v1 v1

v1v1

v1

v2 v2

v2

v2v2

w

u1 u1

u1u1

u1

is not connected. Since the valence of u1 in S does not exceed 4, at least one connected

component of S\u1 has more than two vertices (as in the proof of Lemma 5.7). Therefore,

S is block-decomposable by Proposition 4.6 applied to u1.

Case 2.2: v is the only common vertex of B1 and B2. 2S\x(v) may consist of two or

three blocks. To prove the statement we need to exclude the option of three blocks. This

is done in the remaining part of the proof. Assume that 2S\x(v) contains an additional

block B3. Clearly, B3 is either of the first or of the second type.

Case 2.2.1: B3 ∈ BI. There are two ways to join B3 to B1 and B2.

Case 2.2.1.1: B3 does not intersect B2. In this case v1 and u1 are either joined by a double

edge or are not joined in S at all. If they are not joined, then both v1 and u1 are dead ends

of 2S\x(v) and S is block-decomposable (as in Case 1). If they are joined by a double

edge, then all three vertices v1, u1 and v have valence 3 in S, so 〈v1, u1, v〉 ⊥ x, and S is

block-decomposable by Proposition 4.6 applied to v2.
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Case 2.2.1.2: B3 has one point in common with each of B1 and B2. We can assume that

B3 consists of v1 and v2. Since LS(v1) contains a connected component of order at least 3,

Lemma 5.8 yields ValS(v1) < 4, so ValS(v1) = 3. Hence, S \ 〈2S\x(v)〉 ⊥ 〈v, v1〉. We

apply Corollary 4.9 to S = 〈S1 = 〈v, v1〉, u1, v2, S2 = S \ 〈S1, u1, v2〉〉 with c1 = v to

show that S is block-decomposable.

Case 2.2.2: B3 ∈ BII. There are three ways to join B3 to B1 and B2.

Case 2.2.2.1: B3 contains all the three vertices v1, u1, v2. Then all the vertices of 2S\x(v)

are dead ends, so S is block-decomposable by Proposition 4.6 applied to x.

Case 2.2.2.2: B3 has one point in common with each of B1 and B2. We can assume that

B3 contains v1. Then ValS(v1) = 4, and LS(v1) is connected, contradicting Lemma 5.8.

Case 2.2.2.3: B3 does not intersect B2. Denote by w the third vertex of B3. Let us prove

first that v2 is not joined to w in S. If they are contained in a block of the first type in

S \x, then all the vertices of 〈v, v1, u1, w, v2〉 are dead ends, so S is block-decomposable

by Proposition 4.6 applied to x. If w and v2 are contained in a block of the second type,

then ValS(w) = 4, but LS(w) consists of three connected components, contradicting

Lemma 5.8. Therefore, v2 ⊥ w. Observing that v1 and u1 are dead ends of 2S\x(v), we

see that they are joined only to v,w, and probably x.

Take any y /∈ 〈2S\x(v), x〉 and consider S1 = S \ y with a block decomposition. We

will prove that x is joined to neither v1 nor u1. This implies that S is block-decomposable

by Corollary 4.9 applied to S =
〈
S′

1 = 〈v1, u1〉, v, w, S′
2 = S \ 〈S′

1, v, w〉
〉

with c1 = v1.

Suppose that x 6⊥ v1. Since ValS(v) = 3 and v ⊥ 〈x,w〉, v is not contained in one

block with any of x and w. Thus, v1, x and w form a block of the second type and v, v1

is a block of the first type. This implies that v, v2, u1 is a block of the second type.

Since v2 ⊥ u1 in S, in order to avoid the edge (v2, u1) there is another block contain-

ing v2 and u1. Since u1 6⊥ w, this block should also contain w. But then v2 6⊥ w, which

is already proved to be false.

By exhausting all cases we have completed the proof of the lemma. ⊓⊔

Corollary 5.10. A minimal non-decomposable quiver S does not contain double edges.

Proof. Let v and u be joined by a double edge. Take any non-neighbor x of v and consider

S \ x with some block decomposition. By Lemmas 5.8 and 5.9, the valences of u and v

do not exceed 2. Thus, they are joined to each other only and disconnected from the rest

of S. ⊓⊔

Proof of Theorem 5.2. Consider a quiver S satisfying the assumptions of the theorem and

having at least eight vertices. By Lemmas 5.3 and 5.5, the valence of any vertex of S does

not exceed 4. By Lemmas 5.8 and 5.9, the link of any vertex of valence 4 consists of two

disjoint edges, and the link of any vertex of valence 3 consists of one edge and one vertex.

By Corollary 5.10, S does not contain double edges.

Now take all cycles of order 3 in S and color all their edges and vertices red (we

assume all the remaining edges and vertices to be black). By Lemmas 5.8 and 5.9, each

red edge belongs to a unique cycle of order 3. Each red vertex is contained either in
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four red edges, or in two red edges and at most one black edge. Notice also that due to

Lemmas 5.8 and 5.9 each cycle of order 3 is cyclically oriented.

Denote by S1 the quiver obtained by deleting all red edges from S. Let us show that

S1 is a forest. Indeed, S1 does not contain vertices of valence 3 or more. Further, if S1

contains a cycle C, then each vertex of this cycle is contained in two black edges, so the

cycle does not contain any red vertex. This implies that no vertex of S \ C is joined to C

in S, so either S is not connected or S = C. In the latter case S is block-decomposable.

Take a block decomposition of S1: any edge is a block. It is well defined since there

are no vertices of valence 3 or more. Clearly, any red vertex is an outlet. Now consider

each cycle of order 3 as a block of the second type, and glue it to S1. We obtain a block

decomposition of S, which contradicts the assumptions of the theorem. ⊓⊔

Now we are able to prove the main results of the section.

Theorem 5.11. The only mutation-finite quivers satisfying the assumptions of Theorem 5.2

are ones mutation-equivalent to one of the two quivers X6 and E6 shown in Figure 5.13.

E6 X6

Fig. 5.13. Minimal non-decomposable mutation-finite quivers.

Remark 5.12. We recall that the property of a quiver S to be block-decomposable is pre-

served by mutations. Indeed, according to [FST], S is block-decomposable if and only if

it corresponds to an ideal triangulation of a punctured bordered surface, and any mutation

corresponds to a flip of the triangulation. Thus, any quiver mutation-equivalent to S arises

from some triangulation, too. In particular, this implies that the set of non-decomposable

quivers is invariant under mutations as well. At the same time, the property to be minimal

non-decomposable may not be preserved by mutations a priori. However, while proving

Theorem 5.11, we see that minimal non-decomposable quivers are invariant anyway.

Proof of Theorem 5.11. The two quivers in Figure 5.13 are mutation-finite and non-de-

composable (see [DO, Propositions 4 and 6]). To prove the theorem, it is sufficient to

show that all other mutation-finite quivers on at most seven vertices either are block-

decomposable, or contain subquivers which are mutation-equivalent to one of X6 and E6.

In particular, this will imply that all the quivers mutation-equivalent to X6 or E6 are also

minimal non-decomposable.

Let S be a minimal non-decomposable mutation-finite quiver. By Theorem 5.2,

|S| ≤ 7. Since the mutation class of S is finite, multiplicities of edges of S do not ex-

ceed 2 (see Theorem 2.6). The number of quivers on at most seven vertices with bounded

multiplicities of edges is finite. This means that we can use a computer to list all quivers,

choose mutation-finite ones, and check which of them are block-decomposable. How-

ever, the number of quivers under consideration is large. To reduce the time required for

computations, we organize the check as follows.
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First, we list all mutation classes of connected mutation-finite quivers of order 3,

there are three of them (see [DO, Theorem 7]), and choose one representative in each

class. They are all block-decomposable. Clearly, any connected mutation-finite quiver of

order 4 contains a proper subquiver mutation-equivalent to one of these three quivers of

order three.

Next, we add a vertex and join it to each of the three quivers by edges of multiplicities

at most 2 in all possible ways (we use the C++ program of [FST1]). For each quiver

obtained we check if its mutation class is finite, and choose one representative from each

finite mutation class (here we use the Java applet for quiver mutations from [K1]). The

resulting list contains five quivers of order 4, they all are block-decomposable.

Continuing in the same way we get seven finite mutation classes of order 5, again

all block-decomposable. Then we get 13 classes of order 6, exactly two of which con-

sist of non-decomposable quivers, namely quivers mutation-equivalent to X6 and quivers

mutation-equivalent to E6. Since all mutation-finite quivers with at most five vertices

are block-decomposable, all quivers mutation-equivalent to X6 or E6 are minimal non-

decomposable. Attaching a vertex to representatives of all classes of order 6, we get 15

finite mutation classes of quivers of order 7, three of which consist of non-decomposable

quivers, namely the classes containing E7, Ẽ6, or X7. These three mutation classes consist

of 416, 132, and 2 quivers respectively. Each quiver from the first two classes contains a

subquiver mutation-equivalent to E6, each quiver from the third class contains a subquiver

mutation-equivalent to X6. Therefore, none of them is minimal non-decomposable. ⊓⊔

The following immediate corollary of Theorem 5.11 is the main tool in the classification

of mutation-finite quivers.

Corollary 5.13. Every non-decomposable mutation-finite quiver contains a subquiver

mutation-equivalent to E6 or to X6.

6. Classification of non-decomposable quivers

In this section we use Corollary 5.13 to classify all non-decomposable mutation-finite

quivers.

Theorem 6.1. A connected non-decomposable mutation-finite quiver of order greater

than 2 is mutation-equivalent to one of the eleven quivers E6, E7, E8, Ẽ6, Ẽ7, Ẽ8, X6,

X7, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 shown in Figure 6.1.

All these quivers have finite mutation class [DO] and are non-decomposable since each

contains a subquiver mutation-equivalent to E6 or X6. We only need to prove that this list

is complete.

We prove several elementary preparatory statements first.

Lemma 6.2. Let S be a non-decomposable quiver of order d ≥ 7 with finite mutation

class. Then S contains a non-decomposable mutation-finite subquiver S1 of order d − 1.
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E6

E7

E8

Ẽ6

Ẽ7

Ẽ8

E
(1,1)
6

E
(1,1)
7

E
(1,1)
8

X6

X7

Fig. 6.1. Non-decomposable mutation-finite quivers of order at least 3.

Proof. According to Corollary 5.13, S contains a subquiver S0 mutation-equivalent to E6

or X6. Let S1 be any connected subquiver of S of order d − 1 containing S0. Clearly, S1

is non-decomposable, and its mutation class is finite. ⊓⊔

Corollary 6.3. Suppose that for some d ≥ 7 there are no non-decomposable mutation-

finite quivers of order d. Then the order of any non-decomposable mutation-finite quiver

does not exceed d − 1.

The proof of the following lemma is evident.

Lemma 6.4. Let S1 be a proper subquiver of S, and let S0 be a quiver mutation-equiv-

alent to S1. Then there exists a quiver S′ which is mutation-equivalent to S and con-

tains S0.

Proof of Theorem 6.1. According to Theorem 5.11, there are exactly two finite mutation

classes of non-decomposable quivers of order 6, namely the classes of E6 and X6. Due

to Corollary 5.13, all other non-decomposable mutation-finite quivers have at least seven

vertices. By Lemma 6.4, in each finite mutation class of non-decomposable quivers there

is a representative containing a subquiver E6 or X6.

Therefore, to find all finite mutation classes of non-decomposable quivers of order 7

we need to join a vertex to E6 and X6 in all possible ways (i.e. by edges of multiplicity
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at most two, with all orientations), and to choose amongst the resulting 7-vertex quivers

all mutation-finite classes. This has been done by using the Java applet of [K1] and an

elementary C++ program [FST1] (in fact, the same algorithm was used in the proof of

Theorem 5.11). In this way we get three finite mutation classes of quivers of order 7 with

representatives X7, E7, and Ẽ6.

Now, Lemmas 6.4 and 6.2 allow us to continue the procedure. To list all finite mutation

classes of non-decomposable quivers of order 8 we join a vertex to X7, E7, and Ẽ6 in all

possible ways, and choose again all mutation-finite classes. The result is three mutation

classes with representatives E8, Ẽ7, and E
(1,1)
6 .

In the same way we analyze the quivers of order 9 and obtain two mutation classes with

representatives Ẽ8 and E
(1,1)
7 . To find all finite mutation classes of non-decomposable

quivers of order 10, we apply the same procedure to Ẽ8 and E
(1,1)
7 . The result is a

unique mutation class containing E
(1,1)
8 .

Finally, the same procedure applied to E
(1,1)
8 gives no mutation-finite quivers at all.

This implies that there are no non-decomposable mutation-finite quiver of order 11. Now

Corollary 6.3 yields immediately the statement of the theorem. ⊓⊔

7. Minimal mutation-infinite quivers

The main goal of this section is to provide a criterion for a quiver to be mutation-finite

(Theorem 7.5). For a given quiver S, this criterion allows one to check if S is mutation-

finite in time polynomial in |S|.

Definition 7.1. A minimal mutation-infinite quiver is a quiver S such that

• S has infinite mutation class;

• any proper subquiver of S is mutation-finite.

Example 7.2. Any mutation-infinite quiver of order 3 is minimal. This is caused by the

fact that any quiver of order at most 2 is mutation-finite.

Clearly, any minimal mutation-infinite quiver is connected. Notice that the property of

being minimal mutation-infinite is not mutation invariant. Indeed, any mutation-infinite

class contains quivers with arbitrarily large multiplicities of edges. If |S| > 3, then taking

a connected subquiver of S of order 3 containing an edge of multiplicity greater than 2

we get a proper subquiver of S which is mutation-infinite (see Theorem 2.6). Note also

that no minimal mutation-infinite quiver of order at least 4 contains edges of multiplicity

greater than two.

We will deduce the criterion from the following lemma.

Lemma 7.3. Any minimal mutation-infinite quiver contains at most ten vertices.

The bound provided in the lemma is sharp: there exist numerous minimal mutation-

infinite quivers of order 10. We show some of them below. One source of such examples
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Fig. 7.1. Minimal mutation-infinite quivers of order 10 coming from Dynkin diagrams.

are simply-laced Dynkin diagrams of root systems of hyperbolic Kac–Moody algebras

with any orientations of edges. There are two such diagrams of order 10 (e.g. see [K]);

examples of corresponding quivers are shown in Fig. 7.1.

Remark 7.4. There is no general algorithm to determine if two infinite-mutational quiv-

ers are mutation-equivalent. However, for acyclic quivers (i.e., containing no oriented

cycles) the following result is known (see [CK, Corollary 4]): if two acyclic quivers are

mutation-equivalent, then there exists a sequence of mutations from one of them to the

other via acyclic quivers only. In particular, this implies that the two quivers in Fig. 7.1

are not mutation-equivalent. Indeed, they both are trees, and it is easy to see that the only

way to change the topological type of a tree by mutation is to create an oriented cycle.

Another series of examples can be obtained from the quiver shown in Fig. 7.2.

Fig. 7.2. Minimal mutation-infinite quiver of order 10.

Note that it is not clear whether the quiver of Fig. 7.2 is or is not mutation-equivalent

to one of the quivers of Fig. 7.1.

Proof of Lemma 7.3. Let S be a minimal mutation-infinite quiver.

First, we prove a weaker statement, that |S| ≤ 11. In fact, this follows immediately

from Theorems 5.2 and 6.1. Indeed, either all the proper subquivers of S are block-

decomposable, or S contains a proper mutation-finite non-decomposable subquiver of

order |S| − 1 (we can assume that this quiver is connected: if it is not connected but

non-decomposable, it contains a non-decomposable connected component S0, and any

connected subquiver of S of order |S|−1 containing S0 is non-decomposable). In the for-

mer case |S| ≤ 7 according to Theorem 5.2 (again, we emphasize that we did not require

S to be mutation-finite in the assumptions of Theorem 5.2). In the latter case |S|−1 ≤ 10

due to Theorem 6.1, which proves |S| ≤ 11.

Now suppose that |S| = 11. Then S contains a proper mutation-finite non-decompos-

able subquiver S′ of order 10. According to Theorem 6.1, S′ is mutation-equivalent

to E
(1,1)
10 . The mutation class of E

(1,1)
10 consists of 5739 quivers, which can be easily

computed using Keller’s Java applet [K1]. In other words, S contains one of 5739 quivers

of order 10 as a proper subquiver.

Hence, we can list all minimal mutation-infinite quivers of order 11 in the following

way. To each of the 5739 quivers above we add one vertex in all possible ways (we can do

that since the multiplicity of edges is bounded by two; the sources of the program can be

found in [FST1]). For every quiver obtained we check whether all its proper subquivers
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of order 10 (and therefore all the others) are mutation-finite. However, the resulting set

of the procedure above is empty: every quiver obtained has at least one mutation-infinite

subquiver of order 10, so it is not minimal. ⊓⊔

As a corollary of Lemma 7.3, we get a criterion for a quiver to be mutation-finite.

Theorem 7.5. A quiver S of order at least 10 is mutation-finite if and only if all subquiv-

ers of S of order 10 are mutation-finite.

Proof. According to Definition 7.1, every mutation-infinite quiver contains some minimal

mutation-infinite quiver as a subquiver. Thus, a quiver is mutation-finite if and only if it

does not contain minimal mutation-infinite subquivers. By Lemma 7.3, this holds if and

only if all subquivers of order at most 10 are mutation-finite. Since a subquiver of a

mutation-finite quiver is also mutation-finite, the latter condition, in its turn, holds if and

only if all subquivers of order 10 are mutation-finite, which completes the proof. ⊓⊔

8. Growth of skew-symmetric cluster algebras

We recall the definition of growth of cluster algebras [FST, Section 11].

Definition 8.1. A cluster algebra has polynomial growth if the number of distinct seeds

which can be obtained from a fixed initial seed by at most n mutations is bounded from

above by a polynomial function of n. A cluster algebra has exponential growth if the

number of such seeds is bounded from below by an exponentially growing function of n.

In [FST, Proposition 11.1] a complete classification of block-decomposable quivers

corresponding to algebras of polynomial growth is given. It turns out that the growth is

polynomial if and only if the surface corresponding to the quiver is a sphere with at most

three punctures and boundary components in total.

We prove the following theorem.

Theorem 8.2. Any mutation-infinite skew-symmetric cluster algebra has exponential

growth.

Combining these two results, we see that to classify all cluster algebras of polynomial

growth we need only to determine the growth of the 11 exceptional mutation-finite alge-

bras listed in Theorem 6.1. Three of them, namely E6, E7 and E8, are of finite type, so

they have a finite number of seeds. Other three (Ẽ6, Ẽ7 and Ẽ8) are of affine type, so they

have linear growth (according to H. Thomas). Therefore, there remain five algebras for

which the growth is unknown.

In other words, to complete the classification of cluster algebras by the growth rate

it remains to ascertain the rates of growth in the five cases of X6, X7, E
(1,1)
6 , E

(1,1)
7 ,

and E
(1,1)
8 .

A sequence of cluster transformations preserving a given exchange matrix defines a

group-like element. The set of all group-like elements is the generalized modular group.
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Using ideas similar to the proof of the famous Tits alternative, it can be proved that

in all five cases the growth rate of the generalized modular group is exponential. More

precisely, studying the attracting points of some induced action it can be proved that the

generalized modular group contains the free group of rank two as a subgroup.

Details on the growth rates in exceptional cases will be published elsewhere.

Corollary 8.3. A skew-symmetric cluster algebra of rank at least 3 has polynomial

growth if and only if

• it is associated with a triangulation of either a sphere with three punctures, a disk with

two punctures, an annulus with one puncture, or a pair of pants; or

• it is one of the following exceptional affine cases: Ẽ6, Ẽ7, Ẽ8.

Remark 8.4. Note that by construction any cluster algebra of rank 2 is either of finite

type or has linear (i.e., polynomial) growth.

The rest of this section is devoted to the proof of Theorem 8.2.

Remark 8.5. It is sufficient to prove Theorem 8.2 for cluster algebras corresponding to

mutation-infinite quivers of order 3. Indeed, any mutation-infinite quiver S has a mutation-

equivalent quiver S′ with an edge of weight at least 3. According to Theorem 2.6, any con-

nected subquiver S0 ⊂ S of order 3 containing that edge is mutation-infinite. Therefore,

it is enough to show that the algebra corresponding to S0 grows exponentially.

In fact, we prove a stronger result. Denote by S(n) the set of quivers which can be

obtained from a quiver S by at most n mutations. According to Remark 8.5, the following

lemma implies Theorem 8.2.

Lemma 8.6. Let S be a mutation-infinite quiver of order 3. Then the order |S(n)| grows

exponentially with respect to n.

The proof of Lemma 8.6 splits into two steps. We start by proving the following lemma.

By saying that a quiver is oriented we mean that all the cycles are oriented.

Lemma 8.7. For any mutation-infinite quiver S of order 3 there exists a sequence of at

most four mutations taking S to S′ such that

(1) S′ is oriented;

(2) all the weights of the edges of S′ are greater than 1;

(3) an edge of maximal weight is unique.

Proof. First, we make S oriented without empty edges. For this, we need at most two

mutations. Indeed, if S is non-oriented without empty edges, then the mutation at a unique

vertex which is neither a sink nor a source leads to an oriented quiver. If S has an empty

edge, then by at most one mutation we put a sink and a source at the ends, and then,

mutating at the middle vertex, we get the required quiver.

Thus, we can now assume that S is oriented without empty edges, and we have two

mutations left to satisfy conditions (2) and (3). Denote the weights of S by (a, b, c)
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Fig. 8.1. Oriented mutation-finite quivers of order 3 without empty edges.

with a ≥ b ≥ c. Since S is mutation-infinite, it does not coincide with any of the three

mutation-finite quivers of order 3 shown in Fig. 8.1. In particular, a ≥ b ≥ 2. We may

assume that either a = b or c = 1. If c = 1, then making a mutation preserving a and b,

we obtain an oriented quiver with weights (a, b, c′ = ab − c). Clearly, c′ = ab − c ≥ 3,

so condition (2) holds.

Now we have a quiver satisfying the first two conditions, and one mutation left to

satisfy condition (3). Again, let the weights of S be (a, a, c) with a ≥ c. If c = 2, then

we make a mutation changing c to get a quiver with weights (a, a, c′ = a2 − c). Since

S is mutation-infinite, a > 2 = c, therefore c′ = a2 − 2 > a, so the third condition is

satisfied. If c > 2, then mutating at any of the other two vertices, we get a quiver with

weights (a, b = ac − a, c). Clearly, b = ac − a > a since c > 2. ⊓⊔

The last step in proving Lemma 8.6 is Lemma 8.8 below. We say that a sequence of

mutations is reduced if it does not contain two consecutive mutations at the same vertex.

Note also that we distinguish quivers with the same weights but different orientations.

Lemma 8.8. Let S be a mutation-infinite quiver of order 3 satisfying conditions (1)–(3)

of Lemma 8.7, and denote by (a, b, c) the weights of the edges of S, a > b ≥ c. Let S1 and

S2 be quivers obtained from S by different reduced sequences of mutations, such that the

first mutation in each sequence preserves the weight a of S. Then S1 and S2 are distinct.

Clearly, Lemma 8.8 together with Lemma 8.7 imply Lemma 8.6. Before proving

Lemma 8.8, we provide the following auxiliary statement.

Lemma 8.9. Let S satisfy the assumptions of Lemma 8.8. Suppose that S′ is obtained

from S by a mutation preserving the weight a. Then

• the maximal weight of S′ is greater than a;

• S′ satisfies conditions (1)–(3) of Lemma 8.7.

Proof. To prove the first statement, compute the weights of S′. If we preserve the weights

a and b, then the weights of S′ are (a, b, c′ = ab−c), so c′ > a since b ≥ 2 and c < a. If

we preserve the weights a and c, then the weights of S′ are (a, b′ = ac − b, c), so b′ > a

since c ≥ 2 and b < a.

Now the second statement is evident. ⊓⊔

The following immediate corollary of Lemma 8.9 is a particular case of Lemma 8.8.

Corollary 8.10. Let S satisfy the assumptions of Lemma 8.8, and let µn, . . . , µ1 be a

reduced sequence of mutations, where µ1 preserves the maximal weight of S. Denote

by Si the quiver µi . . . µ1S. Then all the quivers S, S1, . . . , Sn are distinct.
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Proof of Lemma 8.8. Suppose S1 and S2 coincide. We may assume that any two quivers

S′
1 and S′

2 in the sequences of quivers from S to S1 and S2 respectively are distinct. Con-

sider the next-to-last quivers S′
1 and S′

2 in the sequences of quivers from S to S1 and S2. By

Lemma 8.9, both S1 and S2 have the following property: the edge of the maximal weight

is opposite to the vertex in which the last mutation was made. Therefore, S′
1 and S′

2 coin-

cide also. This contradiction proves the lemma. ⊓⊔

9. Quivers of order 3

The structure of mutation classes of quivers of order 3 was described in [ABBS]

and [BBH]. These papers provide a complete classification of mutation classes containing

quivers without oriented cycles given in different terms.

Define the total weight of a quiver as the sum of the weights of all edges. It is proved

in [ABBS] (see also [BBH, Lemma 2.1]) that if a mutation class does not contain quivers

without oriented cycles, then it contains a unique (up to duality) quiver of minimal total

weight, and any other mutation-equivalent quiver can be reduced to that one in a unique

way.

We complete the description of mutation classes containing quivers without oriented

cycles by a similar statement. We use the terminology of [BBH]: a quiver S of order 3 is

called cyclic if it is an oriented cycle, and acyclic otherwise; S is called cluster-cyclic if

any quiver mutation-equivalent to S is cyclic, and cluster-acyclic otherwise.

Theorem 9.1. Let S be a connected cluster-acyclic quiver of order 3. Then

• the mutation class of S contains a unique (up to changing orientations of edges) quiver

S0 without oriented cycle;

• the total weight of S0 is minimal in the mutation class;

• any sequence of mutations decreasing total weight at each step applied to S ends in S0.

We use the following notation. By (a, b, c)− we denote a non-oriented cycle with weights

(a, b, c). We need not fix orientations of edges since any two such quivers are mutation-

equivalent under mutations at sources or sinks only. Similarly, (a, b, c)+ is an oriented

cycle with weights (a, b, c).

Proof of Theorem 9.1. Consider a connected acyclic quiver S0 = (a,b,c)− with a ≥

b ≥ c. Denote by S the set of quivers satisfying conditions (1)–(3) of Lemma 8.7.

Suppose first that none of the weights is equal to 1. If c = 0, then the only quiver we

can get by one mutation different from S0 is (a, b, ab)+, which is contained in S . If c ≥ 2,

then we can obtain three possibly different quivers (a, b, ab + c)+, (a, ac + b, c)+ and

(bc + a, b, c)+ all belonging to S . According to Lemma 8.9, all the other quivers from

the mutation class of S0 also belong to S , which proves the first statement. Moreover,

Lemmas 8.8 and 8.9 imply that for any quiver from the mutation class of S0 belonging

to S there is a unique reduced sequence of mutations decreasing the total weight at each

step, and the minimal element is in S if and only if the entire mutation class is contained
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in S (this is also proved in [BBH, Lemma 2.1]). Since S0 is the only quiver not contained

in S, all the statements are proved.

Now suppose that at least one of the weights of S0 is 1. We may assume that S0 is

mutation-infinite (there are exactly two acyclic mutation-finite quivers of order 3, namely

Ã2 and A3, and the theorem is evident for them). Our aim is to show that almost all

quivers mutation-equivalent to S0 belong to S; then looking at the remaining quivers

all the statements become evident. Indeed, S0 is of one of the following three types:

(a, 1, 0)−, (a, 1, 1)−, or (a, b, 1)−, where a ≥ b ≥ 2. We list the quivers which can be

obtained from those three by mutations.

The only way to change (a, 1, 0)− is to obtain (a, a, 1)+, from which we may get

(a, a, a2 − 1)+ only, which is in S .

The quiver (a, 1, 1)− can be mutated into (a + 1, 1, 1)+ and (a + 1, a, 1)+. The first

one can then be mutated into the second one only, and the latter into the first one or into

(a, a + 1, a2 + a − 1)+ ∈ S .

The quiver (a, b, 1)− can be mutated either into (a, b, ab + 1)+ ∈ S , or into

(a + b, b, 1)+ or (a + b, a, 1)+. These two can be mutated either into each other or

into quivers belonging to S .

Therefore, in the mutation class of S0 there are at most three quivers not belonging

to S , and S0 has minimal total weight amongst them. Applying the same arguments as in

the first case, we complete the proof. ⊓⊔
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