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Abstract. Let 6 be a flat surface of genus g with cone type singularities. Given a bipartite graph
0 isoradially embedded in 6, we define discrete analogs of the 22g Dirac operators on 6. These
discrete objects are then shown to converge to the continuous ones, in some appropriate sense.
Finally, we obtain necessary and sufficient conditions on the pair 0 ⊂ 6 for these discrete Dirac
operators to be Kasteleyn matrices of the graph 0. As a consequence, if these conditions are met,
the partition function of the dimer model on 0 can be explicitly written as an alternating sum of the
determinants of these 22g discrete Dirac operators.
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1. Introduction

A dimer covering, or perfect matching, on a graph 0 is a collection of edges with the
property that each vertex is adjacent to exactly one of these edges. Assigning weights to
the edges of 0 allows one to define a probability measure on the set of dimer coverings,
and the corresponding model is called the dimer model on 0.

Dimer models are among the most studied in statistical mechanics. One of their re-
markable properties is that the partition function of a dimer model on a graph 0 can
be written as a linear combination of 22g Pfaffians (determinants in the case of bipar-
tite graphs), where g is the genus of an orientable surface 6 in which 0 embeds. These
22g matrices, called Kasteleyn matrices, are skew-symmetric matrices determined by 22g

orientations of the edges of 0 ⊂ 6, called Kasteleyn orientations. P. W. Kasteleyn him-
self proved this Pfaffian formula in the planar case [12, 13] together with the case of a
square lattice embedded in the torus, and stated the general fact [14]. A complete combi-
natorial proof of this statement was first obtained much later by Gallucio–Loebl [10] and
independently by Tesler [18], who extended it to non-orientable surfaces.

In [5], we studied an explicit correspondance (first suggested by Kuperberg [16]) re-
lating spin structures on 6 and Kasteleyn orientations on 0 ⊂ 6. We also used the iden-
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tification of spin structures with quadratic forms to give a geometric proof of the Pfaffian
formula, together with a geometric interpretation of its coefficients.

The partition function of free fermions on a closed Riemann surface 6 of genus g
is also a linear combination of 22g determinants of Dirac operators, each term corre-
sponding to a spin structure on 6 [1]. Assuming that dimer models are discrete analogs
of free fermions, one expects—in addition to the known relation between Kasteleyn
orientations and spin structures—a relation between the Kasteleyn matrix for a given
Kasteleyn orientation and the Dirac operator associated to the corresponding spin struc-
ture.

This is well understood in the planar case with the work of Kenyon [15]. For any
bipartite planar graph 0 satisfying some geometric condition known as isoradiality (see
below), he defined a discrete version of the Dirac operator which turns out to be closely
related to a Kasteleyn matrix of 0. In particular, its determinant is equal to the par-
tition function of the dimer model on 0 with critical weights. In the genus one case,
the following observation was made by Ferdinand [9] as early as 1967: For the M × N
square lattice on the torus with horizontal weight x and vertical weight y, the determi-
nants of the four Kasteleyn matrices behave asymptotically, in the M,N → ∞ limit
with fixed ratio M/N , as a common bulk term times the four Jacobi theta functions
θk(0|τ), where τ = iMx

Ny
. This reproduces exactly the dependance of the determinant of

the Dirac operators on the different spin structures observed by Alvarez-Gaumé, Moore
and Vafa [1].

The higher genus case remains somewhat mysterious. The only results available are
numerical evidences, for one specific example of a square lattice embedded in a genus
two surface, that the determinants of the 16 Kasteleyn matrices have a dependance that
can be expressed in terms of genus two theta functions [6].

In short, it is fair to say that relatively little is understood of the expected relation
between Kasteleyn matrices and Dirac operators on surfaces of genus g ≥ 2. With this
paper, we aim at filling this gap. Here is a summary of our results.

We start in Section 2 by defining a discrete analog of the ∂̄ operator on functions on a
Riemann surface 6. Because there is no “canonical” such discretization, some geometric
conditions may be naturally imposed on the pair 0 ⊂ 6. Following Duffin [7], Mer-
cat [17], Kenyon [15] and many others, and for reasons that will become apparent along
the way, we work with bipartite isoradial graphs. More precisely, we encode the complex
structure on 6 by a flat metric with cone type singularities supported at S ⊂ 6, and con-
sider locally finite graphs 0 ⊂ 6 with bipartite structure V (0) = B tW satisfying the
following conditions:

(i) Each edge of 0 is a straight line (with respect to the flat metric on 6), and for some
positive δ, each face f of 0 ⊂ 6 contains an element xf at distance δ from every
vertex of f .

(ii) A singularity of 6 is either a black vertex of 0, or a vertex xf of the dual graph 0∗.

For such a pair 0 ⊂ 6, we introduce a discrete ∂̄ operator defined on CB , and call
f ∈ CB discrete holomorphic if ∂̄f = 0. (See Definition 2.1.) This operator has some
natural properties (Proposition 2.2) and extends previous constructions of Mercat [17],
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Kenyon [15] and Dynnikov–Novikov [8]. Note that these authors impose strong condi-
tions on 0 in order for ∂̄ to be defined: 0 needs to be the double of a graph in [17] (and
therefore does not admit any perfect matching in higher genus cases, see Remark 2.3), it
needs to be planar in [15], while only the triangular (or dually, the hexagonal) lattice is
considered in [8]. On the other hand, our discrete ∂̄ operator imposes essentially no com-
binatorial restriction on 0: any locally finite bipartite graph such that each white vertex
has degree at least three can be isoradially embedded in an orientable flat surface 6 with
conical singularities S ⊂ V (0∗) ∪ B (Proposition 2.4). This section is concluded with
a convergence theorem: if a sequence of discrete holomorphic functions converges to a
function f : 6 → C in the appropriate sense, then f is holomorphic. (See Theorem 2.5
for the precise statement.)

In Section 3, we twist the discrete ∂̄ operator on 0 ⊂ 6 by discrete spin structures λ
to obtain 22g discrete Dirac operators

Dλ : CB → CW ,

provided each cone angle of 6 is a multiple of 2π (Definition 3.9). The convergence
theorem then takes the following form: let λn be a sequence of discrete spin structures on
6 discretizing a fixed spin structure L. If a sequence ψn of discrete holomorphic spinors
(that is, Dλnψn = 0) converges to a section ψ of the line bundle L → 6, then ψ is a
holomorphic spinor. (See Theorem 3.12.)

Section 4 contains the core of this paper. First, we extend the Kasteleyn formalism
from {±1}-valued flat cochains on 0 ⊂ 6 (that is Kasteleyn orientations) to G-valued
ones for any subgroupG of C∗. We believe that the resulting existence statement (Propo-
sition 4.2) and generalized Pfaffian formula (Theorem 4.3 and Corollary 4.4) are of inde-
pendent interest. We use them to prove our main result:

Theorem. Let 6 be a compact oriented flat surface of genus g with conical singularities
supported at S and cone angles multiples of 2π . Fix a graph 0 with bipartite structure
V (0) = B t W , isoradially embedded in 6 so that S ⊂ B ∪ V (0∗). For an edge e of
0, let ν(e) denote the length of the dual edge. Finally, let Dλ : CB → CW denote the
discrete Dirac operator associated to the discrete spin structure λ.

There exist 22g non-equivalent discrete spin structures such that the correspond-
ing discrete Dirac operators {Dλ}λ give 22g non-equivalent Kasteleyn matrices of the
weighted graph (0, ν), if and only if the following conditions hold:

(i) each conical singularity in V (0∗) has angle an odd multiple of 2π ;
(ii) for some (or equivalently, for any) choice of oriented simple closed curves {Cj } in 0

representing a basis of H1(6;Z),∑
b∈B∩Cj

αb(Cj )−
∑

w∈W∩Cj

αw(Cj )

is a multiple of 2π for all j , where αv(C) denotes the angle made by the oriented
curve C at the vertex v as illustrated below.
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As a consequence, given any graph 0 ⊂ 6 satisfying the conditions above, the partition
function for the dimer model on (0, ν) is given by

Z(0, ν) =
1
2g

∣∣∣ ∑
λ∈S(6)

(−1)Arf(λ) det(Dλ)
∣∣∣,

where Arf(λ) ∈ Z2 denotes the Arf invariant of the spin structure λ (Theorems 4.9 and
4.11). Our final result, Theorem 4.14, states that the Dirac operators on any closed Rie-
mann surface can be approximated by Kasteleyn matrices. More precisely, for any closed
Riemann surface of positive genus, there exist a flat surface 6 with cone type singulari-
ties inducing this complex structure, and an isoradially embedded bipartite graph 0 ⊂ 6,
with arbitrarily small radius, satisfying all the hypothesis and conditions of the theorem
displayed above.

2. The discrete ∂̄ operator on Riemann surfaces

The aim of this section is to introduce a discrete analog of the ∂̄ operator on functions on
a Riemann surface, extending works of Duffin [7], Mercat [17] and Kenyon [15]. As this
definition requires a substantial amount of notation and terminology, we shall proceed
leisurely, starting by recalling in Subsection 2.1 the main properties of flat surfaces with
conical singularities. We then give in Subsection 2.2 discrete analogs of all the geomet-
ric objects involved in the definition of ∂̄ (see Table 1). This will lead up in Subsection
2.3 to the (by then, quite natural) definition of the discrete operator. The section is con-
cluded with a convergence theorem (Theorem 2.5 in Subsection 2.4), justifying further
our definition.

2.1. Flat surfaces

Our discrete ∂̄ operator will be defined for graphs embedded in so-called flat surfaces with
conical singularities. Since these objects are ubiquitous in the present paper, we devote
this first subsection to their main properties, referring to [19] for further details.

Given a positive real number θ , the space

Cθ = {(r, t) | r ≥ 0, t ∈ R/θZ}/(0, t) ∼ (0, t ′)

endowed with the metric ds2
= dr2

+ r2dt2 is called the standard cone of angle θ . Note
that the cone without its tip is locally isometric to the Euclidean plane. Let 6 be a surface
with a discrete subset S. A flat metric on 6 with conical singularities of angles {θx}x∈S
supported at S is an atlas {φx : Ux → U ′x ⊂ Cθx }x∈S , where Ux is an open neighborhood
of x ∈ S, φx maps x to the tip of the cone Cθx , and the transition maps are Euclidean
isometries.
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This seemingly technical definition should not hide the fact that these objects are
extremely natural: any such flat surface can be obtained by gluing polygons embedded
in R2 along pairs of sides of equal length. For example, a rectangle with opposite sides
identified will define a flat torus with no singularity. On the other hand, a regular 4g-gon
with opposite sides identified gives a flat surface of genus g with a single singularity of
angle 2π(2g − 1). In general, the topology of the surface is related to the cone angles
by the following Gauss–Bonnet formula: if 6 is a closed flat surface with cone angles
{θx}x∈S , then ∑

x∈S

(2π − θx) = 2πχ(6).

For the purpose of this paper, the most important property of flat metrics is that they
encode complex structures on oriented surfaces. Indeed, the conformal structure on 6 \S
given by a flat metric extends to the whole oriented surface, defining a complex structure
on 6. Furthermore, let 6 be a closed oriented surface, S ⊂ 6 a discrete subset, and
{θx}x∈S a set of positive numbers satisfying the Gauss–Bonnet formula. Then, for each
complex structure on6, there exists a flat metric on6 with conical singularities of angles
{θx}x∈S supported at S inducing this complex structure.

For example, any complex structure on the torus can be realized by a flat surface
with no singularity: simply consider the parallelogram in the complex plane spanned by
the pair of periods of the torus, and identify the opposite sides. Similarly, deforming the
regular octagon in such a way that the sides are organized into pairs of equal length allows
to realize any complex structure on the genus two surface.

2.2. Some discrete geometry

Let us begin by briefly recalling the definition of the ∂ and ∂̄ operators on a Riemann
surface 6. (This will also fix some notation). The complex structure J on 6 induces a
decomposition of the complexified tangent bundle T6C into T6+⊕T6−, and therefore
a decomposition of complex-valued vector fields C∞(T 6C) = C∞(T 6+)⊕C∞(T 6−).
The elements of C∞(T 6+) (resp. C∞(T 6−)) are the vector fields for which the action
of J is given by multiplication by i (resp. −i). Similarly, the complex cotangent bundle
splits, resulting in a decomposition of the complex-valued 1-forms on 6:

�1(6,C) = C∞(T ∗6C) = C∞(T ∗6+)⊕ C∞(T ∗6−) = �1,0(6)⊕�0,1(6).

Note that the forms of type (1, 0) (resp. (0, 1)) are the 1-forms ϕ such that for any
vector field V , ϕ(J (V )) is equal to iϕ(V ) (resp. −iϕ(V )). Finally, the exterior deriva-
tive d : C∞(6) → �1(6) induces a C-linear map dC : C∞(6,C) → �1(6,C) =
�1,0(6) ⊕ �0,1(6), whose composition with the natural projections defines the Dol-
beault operators ∂ : C∞(6,C)→ �1,0(6) and ∂̄ : C∞(6,C)→ �0,1(6). Recall that a
function f ∈ C∞(6,C) is holomorphic if and only if ∂̄f is zero.

We are now ready to start our discretization procedure. First and foremost, a Riemann
surface6 is a surface. To encode the topology of6, fix a locally finite graph 0 ⊂ 6 with
vertex set V (0) and edge setE(0), such that6\0 consists of disjoint open discs. In other
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words, 0 is the 1-skeleton of a cellular decomposition of 6. For notational simplicity, we
shall assume throughout this section that 0 has neither multiple edges, nor valency one
vertices. (Note however that all our results hold in the general case as well.)

As explained in the previous subsection, a standard and beautiful way to encode a
complex structure on an oriented surface6 is to endow the surface with a flat metric with
conical singularities. Note that any point in 6 \ S has a well-defined tangent space. In
particular, the space X(6) of vector fields on 6 can be naively discretized by X(D), the
space of vector fields along some discrete subset D ⊂ 6 \ S.

Next, we wish to encode in the graph 0 the decomposition of X(6)C = C∞(T 6C)
induced by the almost complex structure. A convenient way to do so is to consider a
decomposition V (0) = B t W of the vertices of 0 into, say, black and white vertices,
together with a perfect matching M on 0 pairing each black vertex b ∈ B with a white
one w ∈ W and vice versa. Any perfect matching will do the job, provided 0 is bipartite,
that is, no edge of 0 links two vertices of the same color. Hence, when the surface 6 is
endowed with an almost complex structure, it is natural to consider a bipartite graph 0 ⊂
6 together with a perfect matching M on it. The discrete analog of the decomposition
C∞(T 6C) = C∞(T 6+) ⊕ C∞(T 6−) is then given by X(DM)

C
= X(B) ⊕ X(W),

whereDM ⊂ 6 denotes the discrete set consisting of the middle point of each edge inM .
The complex structure on X(B) (resp. X(W)) is such that multiplication by i corresponds
to the 90 degrees rotation of the tangent vectors in the positive (resp. negative) direction,
which we will represent in our figures as counterclockwise (resp. clockwise).

In the same way, �1,0(6) will be encoded by the space �1(B) :=
∏
b∈B X(b)∗ and

�0,1(6) by�1(W) :=
∏
w∈W X(w)∗, where X(v)∗ denotes the dual to the 1-dimensional

Table 1. Discretization dictionary, part 1

The geometric object The discrete analog

a surface 6 a graph 0 ⊂ 6 inducing a cellular decomposition
of 6

a conformal structure on 6 a flat metric on 6 with conical singularities S ⊂ 6

the space X(6) of vector fields on 6 the space X(D) of vector fields along some discrete
subset D ⊂ 6

the decomposition C∞(T 6C) =
C∞(T 6+)⊕ C∞(T 6−) induced by

an almost complex structure on 6

a bipartite structure V (0) = B tW together with a
perfect matching M on the graph 0, inducing a

decomposition X(DM )
C
= X(B)⊕ X(W)

the space �1,0(6) of (1, 0)-forms
on 6

�1(B) =
∏
b∈B X(b)∗

the space �0,1(6) of (0, 1)-forms
on 6

�1(W) =
∏
w∈W X(w)∗

the space C∞(6,C) of complex
functions on 6

CB ' CW , identified via M

∫∫
P ∂̄F dx dy = −

i
2
∫
∂P F dz the definition of the discrete ∂̄ operator

∂̄ : CB → �1(W)
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complex vector space X(v) of tangent vectors at the vertex v ∈ V (0). Finally, the space
C∞(6,C) can be discretized both by CB and by CW , which are identified via the perfect
matching M .

Table 1 summarizes our notation and the dictionary between the geometric and dis-
crete objects considered in this subsection. (The last entry will be explained shortly.)

2.3. The discrete ∂̄ operator

Let 0 be a bipartite graph embedded in a flat surface 6 with conical singularities sup-
ported at S. According to the discussion above, the operator ∂̄ : C∞(6,C) → �0,1(6)

should discretize to a C-linear map

∂̄ : CB → �1(W) =
∏
w∈W

X(w)∗.

These spaces make sense as soon as no white vertex is a singularity, so let us only assume
S ⊂ 6 \W for now.

Following the terminology of Kenyon [15], we shall say that 0 is isoradially embed-
ded in 6 if each edge of 0 is a straight line, and if for some δ > 0, each face f of 0 ⊂ 6
contains an element xf such that d(xf , v) = δ for all vertices v of ∂f . We shall further-
more assume that a singularity of 6 is either a black vertex b of 0, or a vertex xf of the
dual graph 0∗, that is, S ⊂ V (0∗) ∪ B.

Given an isoradially embedded graph 0 ⊂ 6, the associated rhombic lattice is the
graphR0 with vertex set V (0)∪V (0∗) and edges joining each vertex of 0 with the center
of the adjacent faces, as illustrated in Figure 1. Since 0 induces a cellular decomposition
of 6, so does the rhombic lattice R0 ⊂ 6. Furthermore, as the singularities of 6 lie
among the vertices of the rhombic lattice, one easily checks that the faces of this lattice
are actual planar rhombi. Therefore, the metric space 6 should be understood as planar
(paper) rhombi pasted together along their boundary edges.

For a fixed white vertex w ∈ W , let St(w) ⊂ 6 denote the star of w in the rhombic
lattice, that is, the union of all the closed rhombi adjacent to w (see Figure 2). As w does

Fig. 1. A isoradial graph 0 (black vertices, solid edges), its dual graph 0∗ (lighter vertices and
edges), and the associated rhombic lattice (all vertices, dashed edges).



1216 David Cimasoni

b1

b2

b3

b4

bm

x1

x2
x3

x4 xm

w

Fig. 2. The star St(w) of the white vertex w.

not belong to the singular set either, the whole star can be isometrically embedded in
the Euclidean plane, as “demonstrated” by cutting and pasting paper rhombi. Hence, one
should really think of 6 as planar stars as in Figure 2 pasted along their edges. (Note that
since multiple edges and valency one vertices are not allowed, we avoid the case where
boundary edges of a star are glued together. But again, the difficulty of the general case
would only be notational.)

As mentioned in the introduction, isoradial graphs first appeared in the work of Duf-
fin [7] (in the form of planar rhombic lattices) as a large class of graphs for which the
Cauchy–Riemann operator admits a nice discretization. It should therefore not come as a
surprise that such a condition is necessary for our definition.

Definition 2.1. Let 0 be a bipartite graph isoradially embedded in a flat surface 6 with
conical singularities S ⊂ V (0∗) ∪ B. Given an edge (w, b) of 0, let ν(w, b) denote the
length of the dual edge. The discrete ∂̄ operator is the linear map ∂̄ : CB → �1(W) =∏
w∈W X(w)∗ defined by

(∂̄f )(w)(Vw) =: (∂̄wf )(Vw) =
|Vw|

2 Area(St(w))

∑
b∼w

ν(w, b)eiϑV (w,b)f (b)

for f ∈ CB , w ∈ W and Vw ∈ X(w). The sum is over all vertices b adjacent to w, and
ϑV (w, b) denotes the angle at w ∈ W from the tangent vector Vw to the oriented edge
(w, b), as illustrated in Figure 3.

w

b

ϑV (w, b)

Vw

Fig. 3. Definition of the angle ϑV (w, b).

A function f ∈ CB is discrete holomorphic if ∂̄f = 0.
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This definition should be understood as a discretization of the formula∫∫
P

∂̄F (x + iy) dx dy = −
i

2

∫
∂P

F(z) dz.

Indeed, given f ∈ CB , let f̂ : 6→ C be defined (almost everywhere) by f̂ (p) = f (b) if
p belongs to the interior of the star St(b). Fix a white vertex w, and consider an isometric
embedding φ of the corresponding star St(w) into C. Setting Vw = (Twφ)

−1(1), F =
f̂ ◦ φ−1, and using the notation of Figure 2, we get

(∂̄wf )(Vw) ≈ (∂̄F )(φ(w)) ≈
1

Area(St(w))

∫∫
φ(St(w))

∂̄F (x + iy) dx dy

=
−i

2 Area(St(w))

∫
φ(∂St(w))

F(z) dz

=
1

2 Area(St(w))

m∑
j=1

i(φ(xj−1)− φ(xj ))f (bj )

=
1

2 Area(St(w))

∑
b∼w

ν(w, b)eiϑV (w,b)f (b).

This definition extends previous work of Duffin [7], Mercat [17], Kenyon [15], Dyn-
nikov–Novikov [8] and Chelkak–Smirnov [3], as described below.

Special case 1. If the flat surface6 has trivial holonomy, there is a well-defined constant
vector field in X(W). Evaluating the discrete ∂̄ operator at this vector field yields a map
K : CB → CW . In the special case where 6 has no singularity (which is only possible
if 6 is the plane, a cylinder or a torus), this map coincides with the discrete ∂̄ operator
on planar bipartite isoradial graphs defined by Kenyon [15] (up to the normalization con-
stant). For the planar hexagonal lattice, this operator is conjugate to the discrete ∂̄ operator
considered by Dynnikov–Novikov in [8].

Special case 2. Let G be a (not necessarily bipartite) graph embedded in a flat surface 6
with singularities S ⊂ V (G) ∪ V (G∗) =: 3. The double of G is the bipartite graph
0 = G∪G∗ ⊂ 6 with black vertices B = 3 and white verticesW = E(G)∩E(G∗) =: ♦,
or the other way around. If G is isoradially embedded in 6, then so is G∗ (with the same
radius δ) and 0 (with radius δ/2).

In the special case of planar double graphs, an element f ∈ CB is either a function
on the vertices of the associated rhombic lattice (when B = 3), or a function on the set
of rhombi (when B = ♦). As 6 = C, our discrete ∂̄ operator can be evaluated at the
constant vector field 1 ∈ TpC = C, yielding two maps C3→ C♦ and C♦

→ C3. These
correspond exactly to the two discrete ∂̄ operators defined by Chelkak and Smirnov in [3].
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wx x′

y

y′Special case 3. Finally, let us consider the more general case of
double graphs isoradially embedded in flat surfaces with conical
singularities, with bipartite structure B = 3. Let w ∈ W = ♦
be a fixed rhombus, and let x, y, x′, y′ denote its vertices enu-
merated counterclockwise, as illustrated above. Then the equality
∂̄wf = 0 coincides with the very intuitive “discrete Cauchy–Riemann equation” studied
by Duffin [7] (in the planar case) and Mercat [17]:

f (y′)− f (y)

d(y, y′)
= i

f (x′)− f (x)

d(x, x′)
.

Let us mention several natural properties of the discrete ∂̄ operator.

Proposition 2.2. The discrete ∂̄ operator has the following properties:

(i) If f ∈ CB is constant, then ∂̄f = 0.
(ii) Given a fixed white vertex w, let f ∈ CB∩St(w) be the restriction of a coordinate

chart on a neighborhood of St(w). Then ∂̄wf = 0 .
(iii) Let f ∈ CB∩St(w) be as in (ii) above. Then its complex conjugate f̄ satisfies

(∂̄wf̄ )(Vw) = |Vw|.

Proof. Let f ∈ CB be a constant function. Fix a white vertex w ∈ W and a unit tangent
vector Vw ∈ X(w). Let φ : St(w) → C be an isometric embedding mapping w to the
origin and Vw to the direction of the unit vector 1 ∈ C = T0C. With the notation of
Figure 2, observe that for all j ,

ν(w, bj )e
iϑV (w,bj ) = i(φ(xj )− φ(xj−1)),

as both these complex numbers have the same modulus and argument. It follows that

(∂̄wf )(Vw) =
f (b1)i

2 Area(St(w))

m∑
j=1

(
φ(xj−1)− φ(xj )

)
= 0,

proving the first claim. To check the second one, let φ : U → C be a coordinate chart
with St(w) ⊂ U , and let Vw ∈ X(w) be the unit tangent vector corresponding to the edge
(w, xm) (recall Figure 2). By the first item above, it may be assumed that φ(w) = 0.
Clearly, one can also assume that Twφ(Vw) = 1 ∈ T0C. For j = 1, . . . , m, let αj denote
the angle at w of the rhombus corresponding to the edge (w, bj ). Note that

sin(αj ) = 2 sin(αj/2) cos(αj/2) =
ν(w, bj )d(w, bj )

2δ2 .

Since f (bj ) = φ(bj ) = d(w, bj )eiϑV (w,bj ), we get

2 Area(St(w))(∂̄wf )(Vw) =
m∑
j=1

ν(w, bj )e
iϑV (w,bj )f (bj )
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=

m∑
j=1

ν(w, bj )d(w, bj )e
i2ϑV (w,bj ) = −iδ2

m∑
j=1

(eiαj − e−iαj )ei(
∑j−1
k=1 2αk+αj )

= −iδ2
m∑
j=1

(
e2i

∑j

k=1 αk − e2i
∑j−1
k=1 αk

)
= 0,

using the fact that
∑m
k=1 αk = 2π . Finally,

(∂̄wf̄ )(Vw) =
|Vw|

2 Area(St(w))

m∑
j=1

ν(w, bj )d(w, bj ) = |Vw|,

showing the third claim. ut

Remark 2.3. As pointed out in the special cases above, most authors have considered
discrete ∂̄ operators defined on double graphs only. It is however crucial for us to consider
more general graphs, for the following reason. In Section 4, we shall turn to the problem
of counting perfect matchings on a (finite) bipartite graph 0 embedded in a (compact)
surface 6. For such a matching to exist, one necessary condition is that the number of
black vertices equals the number of white ones. But in the case of a double graph 0 =
D(G) ⊂ 6, this condition gives

0 = |B| − |W | = |V (G)| + |F(G)| − |E(G)| = χ(6).

Hence, no double graph as above admits a perfect matching unless 6 is a torus.

On the other hand, our setting imposes almost no restriction on the combinatorial type
of the graphs considered:

Proposition 2.4. Let 0 be a locally finite bipartite graph such that each white vertex has
degree at least three. Then 0 can be isoradially embedded in an orientable flat surface 6
with conical singularities S ⊂ V (0∗) ∪ B.

Proof. For each w ∈ W , fix a cyclic ordering of the m adjacent edges (so that multiple
edges are consecutive) and form the symmetric star St(w) by pasting together m rhombi
of side length δ and of angle 2π/m according to this ordering. Note that the surface St(w)
is endowed with an orientation given by the cyclic ordering. In case of multiple edges or
black vertices of degree 1, identify the corresponding boundary edges of St(w) accord-
ingly. (This respects the orientation of the star.) For each b ∈ B, fix a cyclic ordering of
the adjacent edges, and glue the stars St(w) along their boundary edges according to these
orderings, in the unique way compatible with the orientations of the stars. The result is
an oriented flat surface 6 with conical singularities supported at S. By construction, 0 is
isoradially embedded in 6 and S is contained in V (0∗) ∪ B. ut

As an example, consider the complete bipartite graphK3,3. With a natural
choice of the cyclic orderings around the vertices, the construction above
yields the honeycomb lattice embedded in the flat torus illustrated oppo-
site. (The pairs of opposite sides of the big hexagon are identified.)
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To conclude this subsection, note that if S ⊂ 6 \ B, one can define the discrete ∂
operator as the C-linear map ∂ : CW → �1(B) =

∏
b∈B X(b)∗ given by

(∂bg)(Ub) =
|Ub|

2 Area(St(b))

∑
w∼b

ν(w, b)e−iϑU (w,b)g(w)

for g ∈ CW , b ∈ B and Ub ∈ X(b). Here again, the sum is over all vertices w adjacent
to b, and ϑU (w, b) denotes the angle at b ∈ B from the tangent vector Ub to the oriented
edge (w, b). This construction generalizes the one given in [15], which corresponds to
the case with no singularity. However, the discrete ∂̄ operator being sufficient for our
purposes, we shall not study ∂ in the present paper.

2.4. A convergence theorem

The aim of this subsection is to prove the following result.

Theorem 2.5. Let6 be a flat surface with conical singularities supported at S. Consider
a sequence 0n of bipartite graphs isoradially embedded in 6 with S ⊂ V (0∗n) ∪ Bn.
Assume that the radii δn of 0n converge to 0, and that there is some η > 0 such that
all rhombi angles of all these 0n’s belong to [η, π − η]. Let fn ∈ CBn be a sequence
of discrete holomorphic functions converging to a function f : 6 → C in the following
sense: for any sequence xn ∈ Bn converging in 6, the sequence fn(xn) converges to
f (limn xn) in C. Then the function f is holomorphic in 6.

Our proof will follow the same lines as the one of Mercat [17, pp. 192–195], a notable
exception being the discrete Morera Theorem below (Lemma 2.8). Let us start with a
straightforward generalization of [17, Lemma 2].

Lemma 2.6. Let X be a metric space. Consider a sequence of functions fn : X → C
converging to f : X → C in the following sense: for any convergent sequence xn in X,
the sequence fn(xn) converges to f (limn xn) in C. Then the function f is continuous, and
is the uniform limit of fn on any compact.
Proof. To show that f is continuous at an arbitrary point x ∈ X, pick a sequence xj
converging to x in X. For any j = 1, 2, . . . , the hypothesis applied to the constant se-
quence xj yields the existence of an index nj such that |fnj (xj )−f (xj )| < 1/j . Let yn be
the sequence given by yn = xj if n = nj , and yn = x else. As yn converges to x, fn(yn)
converges to f (x) and so does the subsequence fnj (xj ). It follows that

|f (xj )− f (x)| ≤ |f (xj )− fnj (xj )| + |fnj (xj )− f (x)|

is arbitarily small, proving the first claim.
To show the second one, let us assume for contradiction that fn does not converge

uniformly on some fixed compact C ⊂ X. This would imply the existence of a convergent
sequence xn in C with |fn(xn) − f (xn)| greater than some ε > 0 for all n. On the other
hand, the hypothesis together with the continuity of f at x = limn xn implies

|fn(xn)− f (xn)| ≤ |fn(xn)− f (x)| + |f (x)− f (xn)| < ε

for n large enough, a contradiction. ut
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Lemma 2.7. Let 0 be a graph isoradially embedded in the Euclidean plane, such that
all rhombi angles belong to the interval [η, π − η] for some η > 0. Then, for any vertex
v of 0, and for any two elements x, x′ in the boundary ∂St(v) of the star of v,

d∂St(v)(x, x
′)

|x − x′|
≤

2π
η sin(η/2)

.

Proof. To simplify the notation, let S stand for the star St(v) throughout this proof. If
x and x′ belong to the same rhombus of S, then the quotient above is easily seen to be
maximal when x and x′ are at the same distance to the vertex opposite to v. In such a
case, this quotient is equal to 1/sin(α/2), where α denotes the angle of this rhombus at v.
Since η ≤ α ≤ π − η, it follows that

d∂S(x, x
′)

|x − x′|
≤

1
sin(α/2)

≤
1

sin(η/2)
≤

2π
η sin(η/2)

.

Let us now assume that x and x′ belong to adjacent edges, but distinct rhombi of S. If
the corresponding angles at w are equal to α and α′, then the argument above gives the
inequality

d∂S(x, x
′)

|x − x′|
≤

1
sin((α + α′)/2)

≤
1

sin(η)
≤

2π
η sin(η/2)

.

If x and x′ lie on adjacent rhombi, but non-adjacent edges of the star, then |x − x′| is
bounded below by δ sin(η), where δ denotes the length of the rhombus edges. On the
other hand, d∂S(x, x′) ≤ 4δ as x and x′ belong to adjacent rhombi. Therefore, in this case

d∂S(x, x
′)

|x − x′|
≤

4
sin(η)

≤
2π

η sin(η/2)
.

Finally, consider the case where x and x′ do not belong to adjacent rhombi. Fix a rhombus
between them, and let α denote its angle at v. This time, |x − x′| is bounded below by
2δ sin(α/2) ≥ 2δ sin(η/2), while the distance in ∂S is bounded above by half of the
length of ∂S, that is

d∂S(x, x
′) ≤

`(∂S)

2
= #{rhombi in S} · δ ≤

2πδ
η
.

This implies
d∂S(x, x

′)

|x − x′|
≤

π

η sin(η/2)
≤

2π
η sin(η/2)

,

and concludes the proof. ut

The last lemma requires some preliminaries. As above, let 0 be a bipartite graph isora-
dially embedded in a flat surface 6. Given a function f̂ : 6 → C and a white vertex w
of 0, set ∫

∂St(w)
f̂ :=

∫ b

a

f̂ (γ (t))(φ ◦ γ )′(t) dt,
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where γ : [a, b] → St(w) is a parametrization of ∂St(w) and φ : St(w) ↪→ C is an
isometric embedding. Obviously, the value of this integral depends on the choice of the
chart φ. However, the choice of another chart would multiply the result by a modulus 1
complex number. In particular, the vanishing of this integral does not depend on that
choice, and the following statement makes sense.

Lemma 2.8 (discrete Morera Theorem). Let 0 be a bipartite graph isoradially embed-
ded in a flat surface 6 with conical singularities S ⊂ V (0∗) ∪ B. Given f ∈ CB ,
let f̂ : 6 → C be the function defined by f̂ (p) = 1

m

∑m
j=1 f (bj ) if p belongs to⋂m

j=1 St(bj ). Then f is discrete holomorphic if and only if
∫
∂St(w) f̂ = 0 for all w ∈ W .

Proof. Let w be a white vertex, and let φ : St(w)→ C be an isometric embedding of the
corresponding star. Fixing a unit vector Vw ∈ X(w), one can assume that Twφ maps Vw
to 1 ∈ C. With the notation of Figure 2, we get the equality∫

∂St(w)
f̂ =

m∑
j=1

(φ(xj )− φ(xj−1))f (bj ) = 2i Area(St(w))(∂̄wf )(Vw),

and the lemma follows. ut

Proof of Theorem 2.5. As in Lemma 2.8, extend fn ∈ CBn to a function f̂n : 6 → C
by setting f̂n(p) = 1

m

∑m
j=1 fn(bj ) if p belongs to

⋂m
j=1 St(bj ). By assumption, there

is a function f : 6 → C such that, for any sequence xn ∈ Bn converging in 6, the
sequence fn(xn) converges to f (limn xn) in C. We claim that this statement remains true
for the extensions f̂n : 6→ C. Indeed, let us fix a sequence xn in 6 converging to x. For
all n, there exist black vertices b(1)n , . . . , b

(m)
n such that xn belongs to the star St(b(j)n ) for

j = 1, . . . , m. Let bn (resp. b′n) be one of these vertices where Re fn is maximal (resp.
minimal) on this set. By definition,

Re fn(b′n) ≤ Re f̂n(xn) ≤ Re fn(bn).

Since bn, b′n and xn all belong to the adjacent (or identical) stars St(bn) and St(b′n) whose
diameter is at most 4δn, and since δn converges to zero, both sequences bn and b′n converge
to x = limn xn. By the assumption, fn(bn) and fn(b′n) both converge to f (x). By the
inequalities displayed above, Re f̂n(xn) converges to Re f (x). The same argument shows
that Im f̂n(xn) converges to Im f (x), proving the claim.

Lemma 2.6 asserts that f : 6→ C is continuous and the uniform limit of f̂n : 6→ C
on any compact. Since the singular set S ⊂ 6 is discrete and f is continuous, it is now
sufficient to check that f is holomorphic on 6 \ S. Hence, we can restrict ourselves to
(simply connected) domains of a Euclidean atlas for the flat surface S ⊂ 6. In other
words, we can assume that we are working in a simply connected planar domain U ⊂ C.
Finally, by Morera’s theorem, it is enough to show that

∫
γ
f (z) dz vanishes for any piece-

wise smooth loop γ in U .
So, let γ be such a loop, let ` denote its length, and let n be a fixed index. Each time

γ meets some star St(wn), entering it at a point x and leaving it at x′, replace γ ∩ St(wn)
by the path in ∂St(wn) realizing the minimal distance in ∂St(wn) between x and x′. This
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yields a new loop γn contained in St0n , the union of all rhombus edges adjacent to black
vertices of 0n. By Lemma 2.7, its length satisfies

`(γn) =
∑
wn∈Wn

`(γn ∩ St(wn)) ≤ M(η)
∑
wn∈Wn

|x − x′| ≤ M(η)`,

where M(η) stands for the uniform bound 2π/(η sin(η/2)). As the diameter of a star
St(wn) is at most 4δn, the union of all these stars meeting γ is contained in the tubular
neighborhood of γ of diameter 8δn, which also contains the compact set Cn enclosed by
γ and γn. Therefore, Area(Cn) ≤ 8δn`.

We shall now prove that the sequence
∫
γn
f (z) dz converges to

∫
γ
f (z) dz. Let us first

assume that f is of class C1. In that case, ∂̄f is bounded above by some constant M
on the compact set C given by the tubular neighborhood of γ of diameter 8 maxn δn. As
C contains all the Cn’s, this yields a uniform bound for ∂̄f on all Cn’s. By the Stokes
formula and the inequality above,∣∣∣∣∫

γ

f (z) dz−

∫
γn

f (z) dz

∣∣∣∣ = ∣∣∣∣∫
∂Cn

f (z) dz

∣∣∣∣ = ∣∣∣∣∫∫
Cn

∂̄f (z) dz ∧ dz̄

∣∣∣∣
≤

∫∫
Cn

|∂̄f (z)| dz ∧ dz̄ ≤ 8δn`M,

proving the claim in this special case. In the general case of a continuous function f , let
gk be a sequence of C1 functions on U converging uniformly to f on every compact. By
the inequalities displayed above, we obtain∣∣∣∣∫

γ

f −

∫
γn

f

∣∣∣∣ ≤ ∣∣∣∣∫
γ

f −

∫
γ

gk

∣∣∣∣+ ∣∣∣∣∫
γ

gk −

∫
γn

gk

∣∣∣∣+ ∣∣∣∣∫
γn

gk −

∫
γn

f

∣∣∣∣
≤ ` sup

C

|f − gk| + 8δn`M +M(η)` sup
C

|f − gk|

is arbitrarily small, proving the claim.
Recall that f̂n converges uniformly to f on the compact C. Therefore, for any fixed

index k, ∣∣∣∣∫
γk

f̂n(z) dz−

∫
γk

f (z) dz

∣∣∣∣ ≤ M(η)` sup
C

|f̂n − f |

is arbitarily small, so
∫
γk
f̂n converges to

∫
γk
f .

We are finally ready to show that
∫
γ
f (z) dz is equal to zero. As St0n induces a cel-

lular decomposition of the simply connected domain U , the cycle γn ⊂ St0n is a cellular
boundary, that is, γn = ∂(

∑
wn

St(wn)) for some vertices wn. Since fn is discrete holo-
morphic, Lemma 2.8 implies∫

γn

f̂n(z) dz =
∑
wn

∫
∂St(wn)

f̂n(z) dz = 0.

By the three claims above,∫
γ

f (z) dz = lim
k

∫
γk

f (z) dz = lim
k

lim
n

∫
γk

f̂n(z) dz = lim
n

∫
γn

f̂n(z) dz = 0. ut
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3. Discrete Dirac operators on Riemann surfaces

In the previous section, we defined a discrete analog of the ∂̄ operator on functions on a
Riemann surface6. The aim of the present section is to modify this construction, yielding
an analog of the Dirac operatorD on spinors on6. Here again, we shall start by giving in
Subsection 3.1 discretizations of all the geometric objects involved in the definition of D
(Table 2). The actual definition of the discrete Dirac operator is to be found in Subsec-
tion 3.2, while Subsection 3.3 deals with the application of our convergence theorem to
spinors (Theorem 3.12).

3.1. More discrete geometry

Let us first recall the definition of the Dirac operator on a closed Riemann surface 6, re-
ferring to [2] for details. Let (ϕα : Uα → C)α be an atlas for6, and let fαβ : ϕβ(Uα∩Uβ)
→ ϕα(Uα∩Uβ) denote the corresponding transition functions. Then καβ : Uα∩Uβ → C∗
given by καβ(p) = f ′αβ(ϕβ(p))

−1 is a holomorphic function, that is, καβ is an element
of the Čech cochain group C1(U,O∗), where U = (Uα) and O∗ denotes the sheaf of
non-vanishing holomorphic functions on 6. By the chain rule, it is actually a cocy-
cle, so it defines an element in H 1(U,O∗). The corresponding holomorphic line bundle
K ∈ H 1(6,O∗) is called the canonical bundle over 6. With the notation of Section 2,
K is nothing other than the holomorphic cotangent bundle T ∗6+, while K̄ coincides
with T ∗6−. Hence, the ∂̄ operator can be seen as a map ∂̄ : C∞(1)→ C∞(K̄), where 1
denotes the trivial line bundle.

The set S(6) of spin structures on 6 can be defined as the set of isomorphism classes
of holomorphic line bundles that are square roots of K , that is,

S(6) = {L ∈ H 1(6,O∗) | L2
= K}.

This is easily seen to be an affine space over H 1(6;Z2). Note that a spin structure L is
given by a cocycle (λαβ) ∈ Z1(U,O∗) such that λ2

αβ = καβ . Then a spinor ψ ∈ C∞(L)
can be described by a family of smooth functions ψα ∈ C∞(Uα) such that ψα(p) =
λαβ(p)ψβ(p) for p ∈ Uα∩Uβ . Since λαβ is holomorphic, the assignment (ψα) 7→ (∂̄ψα)

defines a map
∂̄L : C∞(L)→ C∞(L⊗ K̄),

called the twisted ∂̄ operator. An element ψ ∈ C∞(L) is a holomorphic spinor if it is in
the kernel of ∂̄L.

Finally, the choice of a hermitian metric on 6 allows one to define an anti-linear
isomorphism h : C∞(L⊗ K̄)→ C∞(L̄). The Dirac operator is the self-adjoint operator
on C∞(L)⊕ C∞(L̄) whose restriction to C∞(L) is given by

DL = h ◦ ∂̄L : C∞(L)→ C∞(L̄).

By abuse of language, we shall also call DL the Dirac operator.
Let us now give discrete analogs of the objects described above. As explained in the

previous section, an analog of a Riemann surface is a bipartite graph 0 embedded in a flat



Discrete Dirac operators and Kasteleyn matrices 1225

surface 6 with cone type singularities supported at S, inducing a cell decomposition X
of 6. Furthermore, in order to define ∂̄ : CB → �1(W), we assumed that 0 is isoradially
embedded in 6, with S contained in B ∪ V (0∗).

By definition, 60 := 6 \ S is endowed with an atlas whose transition functions
are Euclidean isometries. Therefore, the associated Čech cocycle consists of S1-valued
constant functions. This defines an element K0 of H 1(60; S

1). Using the long exact
sequence for the pair (6,60), one easily checks that K0 is the restriction of a class
[κ] ∈ H 1(6; S1) = H 1(X; S1) if and only if exp(iθx) = 1 for all x ∈ S. We shall
therefore assume that all cone angles θx are positive multiples of 2π , and call such a co-
cycle κ ∈ Z1(X; S1) a discrete canonical bundle over 6. Note that the cohomology class
of κ is uniquely determined by the flat metric on 6 and the cellular decomposition X.
Furthermore, such a cocycle κ is very easy to compute, as demonstrated by the following
remarks.

Remark 3.1. If the flat surface 6 has trivial holonomy, one can simply choose κ = 1 as
discrete canonical bundle.

Remark 3.2. It is always possible to represent 6 as planar polygons P with bound-
ary identifications. Furthermore, these polygons can be chosen so that 0 intersects ∂P
transversally, except at possible singularities in S ∩ B. Define κ by

κ(e) =

{
1 if e is contained in the interior of P ,
exp(−iϑ) if e meets ∂P transversally,

where ϑ denotes the angle between the sides of ∂P ⊂ C met by the edge e. If S is con-
tained in V (0∗), this defines completely a natural choice of discrete canonical bundle κ .
If S ∩B is not empty, the partially defined κ above can be extended to a cocycle yielding
a discrete canonical bundle.

Example 3.3. Let P be the regular 4g-gon with boundary identification according to the
word

∏g

j=1 ajbja
−1
j b−1

j . This defines a flat metric on the genus g orientable surface 6g
with one singularity of angle 2π(2g−1). Given a graph0 ⊂ 6g meeting ∂P transversally,
the associated canonical bundle is given by κ(e) = exp(−iπ g−1

g
) for edges of 0 meeting

∂P , and κ(e) = 1 for interior edges.

Finally, note that the assumption that all cone angles are multiples of 2π simply
means that6 has trivial local holonomy. In that case, the holonomy defines an element of
Hom(π1(6), S

1) = H 1(6; S1) = H 1(X; S1), and a representative of this cohomology
class is exactly the inverse of a discrete canonical bundle. Note also that this assumption
rules out the 2-sphere from our setting.

Mimicking the continuous case, let us define a discrete spin structure on 6 as any
cellular 1-cocycle λ ∈ Z1(X; S1) such that λ2

= κ . (See [5] for another notion of
discrete spin structure, valid for any cellular decomposition of an orientable surface.)
Two discrete spin structures will be called equivalent if they are cohomologous. The set
S(X) of equivalence classes of discrete spin structures on 6 is then given by

S(X) = {[λ] ∈ H 1(X; S1) | [λ]2
= [κ]}.
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One easily checks that this set admits a freely transitive action of the abelian group
H 1(6; {±1}). In other words, and using additive notation, S(X) is an affine H 1(6;Z2)-
space. Therefore, there exist (non-canonical) H 1(6;Z2)-equivariant bijections S(X)→
S(6). Furthermore:

Proposition 3.4. If all cone angles of 6 are odd multiples of 2π , then there exists a
canonical H 1(6;Z2)-equivariant bijection S(X)→ S(6).

Proof. Let κ ∈ Z1(X; S1) be a fixed discrete canonical bundle over 6. For each λ ∈
Z1(X; S1) such that λ2

= κ , we shall now construct a vector field Vλ on6 with zeroes of
even index. Such a vector field is well-known to define a spin structure, or equivalently—
by Johnson’s theorem [11] – a quadratic form qλ on H1(6;Z2). The proof will be com-
pleted with the verification that two equivalent λ’s induce identical quadratic forms, and
that the assignment [λ] 7→ qλ is H 1(6;Z2)-equivariant.

Let λ ∈ Z1(X; S1) be given by λ(e) = exp(iβλ(e)) with 0 ≤ βλ(e) < 2π , where e is
an edge of X oriented from the white end to the black end, and set βλ(−e) = −βλ(e).

First, replace the cellular decomposition X of 6
by X′, where each singularity b ∈ B ∩ S is re-
moved as illustrated opposite. Obviously, λ induces λ′ ∈
Z1(X′; S1) by setting λ′(e) = 1 for each newly created
edge e. Now, fix an arbitrary tangent vector Vλ(w) at
some white vertex w, and extend it to the 1-skeleton 0′

of X′ as follows: running along an edge e oriented from the white end to the black end,
rotate the tangent vector by an angle of 2βλ(e) in the negative direction. (On the newly
created edges, just extend the vector field without any rotation.) As λ′ is a cocycle, λ2

= κ

and each cone angle is a multiple of 2π , this gives a well-defined vector field along 0′.
Extend it to the whole surface 6 by the cone construction. The resulting vector field Vλ
has one zero at the center of each face ofX, and at each b ∈ B∩S. One easily checks that
such a zero is of even index if and only if the corresponding cone angle is an odd multiple
of 2π , which we assumed.

Following [11], the quadratic form qλ : H1(6;Z2) → Z2 corresponding to Vλ is
determined as follows: for any regular oriented simple closed curveC ⊂ 6\S, qλ([C])+1
is equal to the winding number of the tangential vector field along C with respect to the
vector field Vλ. For an oriented simple closed curve C ⊂ 0, we obtain the following
equality modulo 2:

qλ([C]) = 1+
1

2π

(∑
e⊂C

2βλ(e)+
∑
v∈C

(π − αv(C))
)

= 1+
|C|

2
+

1
2π

(∑
e⊂C

2βλ(e)−
∑
v∈C

αv(C)
)
,

v

αv(C)
Cwhere the first sum is over all oriented edges in the oriented curve

C, and αv(C) is the angle illustrated opposite. Obviously, equiva-
lent λ’s induce the same quadratic form qλ. Finally, given two dis-
crete spin structures λ1, λ2, the cohomology class of the 1-cocycle
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λ1/λ2 ∈ Z
1(X; {±1}) is determined by its value on oriented simple closed curves in 0.

For such a curve C, we have

(λ1/λ2)(C) = exp
(
i
∑
e⊂C

(βλ1(e)− βλ2(e))
)
= exp(iπ(qλ1 − qλ2)([C])).

Therefore, the assignment [λ] 7→ qλ is H 1(6;Z2)-equivariant, which concludes the
proof. ut

Remark 3.5. If the flat surface6 has trivial holonomy, then [κ] is trivial, so the set S(X)
is equal to the 2g-dimensional vector space H 1(6;Z2).

Remark 3.6. Let 0 ⊂ 6 be described via planar polygons as explained in Remark 3.2,
and let us assume that the singular set S is contained in V (0∗). In that case, a discrete
spin structure is given by

λ(e) =

{
1 if e is contained in the interior of P ,
exp(−iϑ/2) if e meets ∂P ,

where exp(−iϑ/2) denotes one of the square roots of the angle between the sides of
∂P ⊂ C met by the edge e.

Example 3.7. For 6 as in Example 3.3 above, equivalence classes of spin structures
correspond to the 22g choices of 2g square roots of exp(−iπ g−1

g
), one for each pair of

boundary edges of P . In particular, for the flat torus, S(X) corresponds to the four possible
choices of two square roots of the unity.

Let us now turn to spinors. Given a spin structure L ∈ S(6), the universal covering
π : 6̃→ 6 induces the following pullback diagram:

E
5 //

π∗p
��

L

p

��
6̃

π // 6

By the lifting property of the covering map 5 : E → L, any spinor ψ ∈ C∞(L) induces
a section ψ̃ ∈ C∞(E) such that 5 ◦ ψ̃ = ψ ◦ π , unique up to the action of π1(6). Since
6̃ is contractible (recall that the 2-sphere is ruled out by the assumption on the cone
angles), the line bundle E → 6̃ is trivial. Hence, ψ̃ is really a complex-valued function
on 6̃ satisfying some π1(6)-periodicity property depending on L. This alternative point
of view on spinors leads to the following definition.

Let λ ∈ Z1(X; S1) be a discrete spin structure on 6, and let π : X̃ → X denote the
cellular map given by the universal covering of 6. Note that the bipartite structure on 0
lifts to a bipartite structure V (0̃) = B̃ ∪ W̃ on 0̃ = π−1(0). The space C(λ) of discrete
spinors is the set of all ψ ∈ CB̃ such that, for any b, b′ ∈ B̃ with π(b) = π(b′),

ψ(b′) = λ(π(γb,b′))ψ(b),
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Table 2. Discretization dictionary, part 2

The geometric object The discrete analog

the canonical bundle
K ∈ H 1(6,O∗)

the cohomology class [κ] ∈ H 1(X; S1), provided all cone
angles {θx}x∈S are multiples of 2π

the affine H 1(6;Z2)-space
S(6) of spin structures

the affine H 1(6;Z2)-space S(X) of equivalence classes of
square roots of κ ∈ Z1(X; S1)

the spinors C∞(L) associated
to L ∈ S(6)

the space C(λ) ⊂ CB̃ of discrete spinors associated to
λ ∈ S(X)

C∞(L̄) C(λ̄) ⊂ CW̃

a hermitian metric on 6 a (normalized) vector field V ∈ X(W)

the twisted ∂̄ operator
∂̄L : C∞(L)→ C∞(L⊗ K̄)

∂̄λ : C(λ)→ �1(W̃ ) given by the restriction of ∂̄ to
C(λ) ⊂ CB̃

the Dirac operator
DL : C∞(L)→ C∞(L̄)

Dλ : CB ' C(λ)→ C(λ̄) ' CW given by ∂̄λ evaluated
along the vector field V

where γb,b′ denotes a path in 0̃ from b to b′. As λ is a cocycle and 6̃ is simply connected,
this condition does not depend on the choice of the path. Furthermore, equivalent discrete
spin structures λ ∼ λ′ will yield the same spaceC(λ) = C(λ′). Note that the choice of any

fundamental domain P ⊂ 6̃ for the action of π1(6) yields an identification C(λ)
ϕP
' CB .

However, this identification is not canonical, unless λ is trivial.
Similarly, let us define the space C(λ̄) as the set of all ψ ∈ CW̃ such that ψ(w′) =

λ(π(γw,w′))ψ(w) whenever π(w) = π(w′). Here again, a fundamental domain P ⊂ 6̃

yields a non-canonical identification C(λ̄)
ϕ̄P
' CW .

Finally, and for reasons that will become clear in the next subsection, the role of the
hermitian metric on 6 will be played by a nowhere vanishing vector field V ∈ X(W)
along the white vertices of 0. Furthermore, we shall normalize this vector field so that
|Vw| = 2 Area(St(w)) for all w ∈ W .

Table 2 summarizes the second part of our dictionary.

3.2. The discrete Dirac operators

As above, let 0 be a bipartite graph isoradially embedded in a flat surface 6 with cone
type singularities S ⊂ B ∪ V (0∗), and let us assume that all cone angles are multiples
of 2π . Note that all these structures lift to the universal cover π : 6̃ → 6. Indeed, this
map defines a bipartite graph 0̃ isoradially embedded in the flat surface 6̃ with cone type
singularities S̃ ⊂ B̃ ∪ V (0̃∗). Let us define the discrete twisted ∂̄ operator associated to
λ ∈ S(X) as the C-linear map

∂̄λ : C(λ)→ �1(W̃ ) =
∏
w∈W̃

X(w)∗
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defined by the restriction of the discrete ∂̄ operator ∂̄ : CB̃ → �1(W̃ ) to C(λ) ⊂ CB̃ .
We need a map �1(W̃ )→ CW̃ discretizing the anti-linear isomorphism C∞(L⊗ K̄)

→ C∞(L̄) induced by a hermitian metric. A discrete hermitian metric, that is, a nor-
malized vector field V ∈ X(W) induces a very natural such map, namely the evalua-
tion at Ṽ ∈ X(W̃ ), the lift of V to W̃ . Putting all the pieces together yields the map
D′λ : C(λ)→ CW̃ given by

(D′λψ)(w̃) =
∑
b̃∼w̃

ν(w̃, b̃)eiϑṼ (w̃,b̃)ψ(b̃),

with the notation of Subsection 2.3. One easily checks that the image of D′λ is contained
in C(λ̄), and that equivalent discrete spin structures λ ∼ λ′ induce identical maps D′λ =
D′
λ′

: C(λ)→ C(λ̄). Finally, the following lemma provides a less cumbersome definition
of this operator.

Lemma 3.8. Pick a simply connected fundamental domain P ⊂ 6̃ for the action of
π1(6), and let Dλ : CB → CW be the composition ϕ̄P ◦ D′λ ◦ ϕ

−1
P . Then, for a well-

chosen representative of [λ] ∈ S(X),

(Dλψ)(w) =
∑
b∼w

λ(w, b)ν(w, b)eiϑV (w,b)ψ(b)

for ψ ∈ CB and w ∈ W .

Proof. Fix ψ ∈ CB , w ∈ W , and let w̃ denote the element of π−1(w) in P . Then

(Dλψ)(w) = D
′
λ(ϕ
−1
P (ψ))(w̃) =

∑
b̃∼w̃

ν(w̃, b̃)eiϑṼ (w̃,b̃)ϕ−1
P (ψ)(b̃)

=

∑
b̃∼w̃

ν(w̃, b̃)eiϑṼ (w̃,b̃)λ(π(γ
b̃′,b̃
))ψ(π(b̃)),

where b̃′ denotes the element of P such that π(b̃′) = π(b̃). As P is simply connected,
there exists a representative λ such that λ(e) = 1 for any edge e contained in the interior
of π(P ). Setting π(b̃) = b, we get

(Dλψ)(w) =
∑
b∼w

ν(w, b)eiϑV (w,b)λ(w, b)ψ(b),

which was to be shown. ut

This discussion motivates the following definition.

Definition 3.9. Let 0 be a bipartite graph isoradially embedded in a flat surface 6 with
conical singularities S ⊂ V (0∗)∪B, and all cone angles multiples of 2π . Given any dis-
crete spin structure λ, the associated discrete Dirac operator is the map Dλ : CB → CW
defined by

(Dλψ)(w) =
∑
b∼w

λ(w, b)ν(w, b)eiϑV (w,b)ψ(b)
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for ψ ∈ CB and w ∈ W . The sum is over all vertices b adjacent to w, ν(w, b) denote
the length of the edge dual to (w, b), and ϑV (w, b) is the angle at w ∈ W illustrated in
Figure 3.

A discrete spinor ψ ∈ CB is discrete holomorphic (with respect to λ) if Dλψ = 0.

Note that Dλ is essentially independent of the choice of the discrete hermitian met-
ric V : another choice would yield the matrix QDλ, where Q is a diagonal matrix with
diagonal coefficients in S1. Furthermore, if λ and λ′ are equivalent discrete spin struc-
tures, then there exist two such matrices Q,Q′ such that Dλ′ = QDλQ′.

Remark 3.10. The mapDλ : CB → CW defined above is really the discrete analog of the
restriction of the Dirac operator to C∞(L). The full Dirac operator on C∞(L)⊕ C∞(L̄)
being self-adjoint, it would discretize to the operator on CV (0) = CB ⊕CW given by the
matrix

( 0 D∗λ
Dλ 0

)
.

Remark 3.11. We have assumed throughout the paper that no white vertex of 0 is a
conical singularity of 6. This was crucial in Section 2 in order to define the discrete
∂̄ operator. However, in the present section, we could have dropped this condition and
defined Dλ using any choice of a direction at each w ∈ W (for example, given by a
perfect matching). All the results of the paper, apart from the ones of Section 2, still hold
in this slightly more general setting.

3.3. The convergence theorem for spinors

Let us conclude this section with the application of the convergence theorem (Theo-
rem 2.5) to spinors.

Let 0n be a sequence of graphs embedded in a flat surface 6, and let λn ∈ S(Xn)

be discrete spin structures inducing the same spin structure L ∈ S(6). (Recall that by
Proposition 3.4, there is a canonical equivariant bijection S(X) → S(6) provided all
cone angles are odd multiples of 2π .) We shall say that a sequence ψn ∈ C(λn) ⊂ CB̃n
of discrete spinors converges to a section ψ of the line bundle L → 6 if, for some lift
ψ̃ : 6̃ → C of ψ , the following holds: for any sequence x̃n ∈ B̃n converging to x̃ ∈ 6̃,
ψn(x̃n) converges to ψ̃(x̃).

Theorem 3.12. Let 6 be a flat surface with conical singularities supported at S whose
angles are odd multiples of 2π . Consider a sequence 0n of bipartite graphs isoradially
embedded in6 with S ⊂ V (0∗n)∪Bn, inducing cellular decompositionsXn of6. Assume
that the radii δn of 0n converge to 0, and that there is some η > 0 such that all rhombi
angles of all these 0n’s belong to [η, π − η]. Finally, pick a sequence of discrete spin
structures λn ∈ Z1(Xn; S

1) inducing the same class in H 1(6; S1), and let L ∈ S(6)

denote the corresponding spin structure on 6.
Let ψn ∈ C(λn) be a sequence of discrete spinors converging to a section ψ of the

line bundle L→ 6. If for each n, ψn is discrete holomorphic with respect to λn, then ψ
is a holomorphic spinor.
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Proof. By assumption, ψn ∈ CB̃n are discrete holomorphic functions on 6̃ converging
to ψ̃ : 6̃ → C in the sense of Theorem 2.5. By this result, ψ̃ is a holomorphic function.
Therefore, ψ ∈ C∞(L) is a holomorphic spinor. ut

4. Relation to Kasteleyn matrices and the dimer model

Recall that a dimer covering or perfect matching on a finite connected graph 0 is a family
M of edges of 0, called dimers, such that each vertex of 0 is adjacent to exactly one
dimer. Any edge weight system ν : E(0)→ [0,∞) induces a probability measure µ on
the set M(0) of dimer coverings of 0. It is given by

µ(M) =
ν(M)

Z(0, ν)
,

where ν(M) =
∏
e∈M ν(e) and

Z(0, ν) =
∑

M∈M(0)

ν(M)

is the associated partition function. The study of this measure is called the dimer model
on 0.

The aim of this section is to relate the discrete Dirac operators introduced above to
some matrices, called Kasteleyn matrices, which provide a standard tool for the dimer
model on a graph.

4.1. Kasteleyn flatness

Let 0 be a finite bipartite graph. Fix a field F containing R as a subfield, and let G be
a multiplicative subgroup of F∗ containing {±1}. (The examples to keep in mind are
G = {±1} ⊂ R∗ and G = S1

⊂ C∗.) Since each edge of 0 is endowed with a natural
orientation (say, from the white vertex to the black one), a map ω : E(0) → G can be
viewed as a cellular 1-cochain ω ∈ C1(0;G), where

ω
( )

= ω(e) and ω
( )

= ω(e)−1.

Let us order the set B of black vertices of 0, as well as the white vertices W , and fix
a cochain ω ∈ C1(0;G). Let Kω

= Kω(0, ν) denote the associated weighted bipartite
adjacency matrix: This is the (|W | × |B|)-matrix with coefficients in F defined by

(Kω)w,b =
∑
e

ν(e)ω(e),

the sum being on all edges e of 0 joining w ∈ W and b ∈ B.
The goal is now to find cochains ω so that det(Kω(0, ν)) can be used to compute

Z(0, ν). Embed 0 in an oriented closed surface 6 so that 6 \ 0 consists of open 2-discs
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(this is always possible), and let X denote the induced cellular decomposition of 6. The
Kasteleyn curvature of ω ∈ C1(0;G) at a face f of X is the element of G defined by

cω(f ) := (−1)|∂f |/2+1ω(∂f ),

where ∂f denotes the oriented boundary of the oriented face f , and |∂f | the number of
edges in ∂f . This defines a curvature 2-cochain cω ∈ C2(X;G). A 1-cochain ω is said to
be Kasteleyn flat (or simply flat) if cω is equal to 1. Finally, we shall say that two cochains
ω,ω′ ∈ C1(0;G) are gauge equivalent (or simply equivalent) if they are cohomologous,
that is, can be related by iterations of the following transformation: pick a vertex of 0 and
multiply all adjacent edge weights by some g ∈ G. Note that equivalent cochains ω,ω′

have the same curvature, and that the determinants of the associated matricesKω andKω′

differ by multiplication by an element of G.

Example 4.1. IfG is the multiplicative group {±1}, then elements of C1(0;G) are noth-
ing other than orientations of the edges of 0: an edge e is oriented from the white vertex
to the black one if and only if ω(e) = +1. Furthermore, ω is flat if and only if the cor-
responding orientation satisfies the following condition: for each face f , the number of
boundary edges oriented from black to white has the parity of |∂f | /2+ 1. This is usually
called a Kasteleyn orientation, and the associated matrix Kω is called a Kasteleyn ma-
trix. By abuse of language, we shall say that two Kasteleyn matrices are equivalent if the
corresponding Kasteleyn orientations are.

Proposition 4.2. There exists a flat G-valued 1-cochain on a bipartite graph 0 ⊂ 6 if
and only if 0 has an even number of vertices. In this case, the set of equivalence classes
of such 1-cochains is an H 1(6;G)-torsor, that is, it admits a freely transitive action of
the abelian group H 1(6;G).

Proof. Let V (resp. E, F ) denote the number of vertices (resp. edges, faces) of X. Given
any ω ∈ C1(0;G), we have∏

f⊂X

cω(f ) = (−1)
∑
f⊂X(|∂f |/2+1)

= (−1)E+F = (−1)V ,

since the Euler characteristic χ(6) = V − E + F is even. Therefore, if ω is flat, then
V is even. Conversely, if V is even, then

∏
f⊂X cω(f ) = 1. This implies that cω is a

coboundary, that is, there exists a φ ∈ C1(X;G) such that cω = δφ−1. Consider now
the 1-cochain φω defined by (φω)(e) = φ(e)ω(e). Given any face f of X, we have the
following equality in G:

(δφ)(f ) = φ(∂f ) = cφω(f )cω(f )
−1.

Since cω = δφ−1, it follows that cφω = 1, that is, φω is flat.
Let us now prove the second statement, assuming that there exists a flat cochain.

Define the action of an element [φ] ∈ H 1(6;G) = H 1(X;G) on [ω] by [φ]·[ω] = [φω].
Since φ is a cocycle, the equation displayed above shows that φω is flat if and only
if ω is. Note also that φω is gauge equivalent to ω if and only if φ is a coboundary.
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Therefore, this action of H 1(6;G) on the set of equivalence classes is well-defined, and
free. Finally, given two flat systems ω and ω′, let φ denote the 1-cochain defined by
φ(e) = ω′(e)ω(e)−1. Obviously, ω′ = φω, and φ is a cocycle by the identity displayed
above. Therefore, the action is freely transitive. ut

4.2. Computing the dimer partition function

The point of introducing flat cochains is that they can be used to compute the partition
function Z(0, ν) of the dimer model, as follows. Note that Z(0, ν) is zero unless 0 has
the same number of white and black vertices, which we shall assume throughout this
section.

Let B = {αj } be a set of simple closed curves on 6, transverse to 0, whose classes
form a basis of H1(6;Z). For each αj ∈ B, let Cj denote the oriented 1-cycle in 0
having αj to its immediate left, and meeting every vertex of 0 adjacent to αj on this side.
Let τ denote the flat cochain (unique up to equivalence, by Proposition 4.2) such that
τ(Cj ) = (−1)|Cj |/2+1 for all j . Let ω ∈ C1(0;G) be any flat cochain, and let ϕ be the
unique element in H 1(6;G) such that ϕ · [τ ] = [ω]. Finally, for any ε = (ε1, . . . , ε2g)

∈ Z2g
2 , let ωε denote the flat cochain obtained from ω as follows: multiply ω(e) by −1

each time the edge e meets αj with εj = 1.

Theorem 4.3. For any α ∈ H1(6;Z), let ZB
α (0, ν) denote the partial partition function

defined by
ZB
α (0, ν) =

∑
M∈M(0)

αi ·M=αi ·α ∀i

ν(M).

Then the following equality holds in F up to multiplication by an element of G:∑
α∈H1(6;Z)

ϕ(α)ZB
α (0, ν) =

1
2g

∑
ε∈Z2g

2

(−1)
∑
i<j εiεjαi ·αj det(Kωε ).

Taking the flat cochain ω = τ immediately yields:

Corollary 4.4. The partition function of the dimer model on 0 is given by

Z(0, ν) =̇
1
2g

∑
ε∈Z2g

2

(−1)
∑
i<j εiεjαi ·αj det(Kτε ),

where =̇ stands for equality in F up to multiplication by an element of G. ut

Example 4.5. Assume that the bipartite graph 0 is planar. In that case, one can take 6
to be the 2-sphere, so all flat G-valued cochains are equivalent by Proposition 4.2. Corol-
lary 4.4 gives the equality

Z(0, ν) =̇ det(Kω)

for any flat ω ∈ C1(0;G). The case G = {±1} is the celebrated Kasteleyn Theorem [12,
13, 14]. The mild generalization stated in this example is not truly original, as it easily
follows from the discussion in Section II of [16].
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The general formula stated in Theorem 4.3 can seem somewhat cumbersome. There-
fore, let us illustrate its usefulness before giving the proof.

Example 4.6. Let F be the quotient field of the group ring Z[H1(6;Z)], and letG denote
the subgroup of F∗ given byG = ±H1(6;Z). If one chooses a family of curves B = {αi}
as above and denotes by ai ∈ H1(6;Z) the class of αi , then F = Q(a1, . . . , a2g). Let
τ ∈ C1(0; {±1}) be as described above, and consider the cochain ω ∈ C1(0;G) given
by ω(e) = τ(e)

∏
i a
αi ·e
i . In other words, an edge is multiplied by ai (resp. a−1

i ) each
time it crosses αi in the positive (resp. negative) direction. Then Theorem 4.3 yields the
following equality in Q(a1, . . . , a2g), up to multiplication by ±am1

1 · · · a
m2g
2g :∑

n∈Z2g

ZB
n (0, ν)a

n1
1 · · · a

n2g
2g =̇

1
2g

∑
ε∈Z2g

2

(−1)
∑
i<j εiεjαi ·αj det(Kωε ),

where ZB
n (0, ν) is the partial partition function given by the contribution of all M ∈

M(0) such that αi ·M = ni for all i.

Proof of Theorem 4.3. Consider a ±1-valued cochain τ , and interpret it as an orienta-
tion of the edges of 0 as explained in Example 4.1. One easily checks that the equation
τ(Cj ) = (−1)|Cj |/2+1 is equivalent to the following fact: the number of edges in Cj
where τ disagrees with a given orientation on Cj is odd. By [4, Theorem 3.9], we have
the following equality in F:

Z(0,w) =
±1
2g

∑
ε∈Z2g

2

(−1)
∑
i<j εiεjαi ·αj det(Kτε (0,w))

for any F-valued edge weight system w. Given any cochains σ, φ ∈ C1(0;G), the equal-
ity

Kσ (0, φν) = Kφσ (0, ν)

is obvious. Furthermore, if φ is a cocycle, we shall check shortly that

Z(0, φν) =
∑

M∈M(0)

φ(M)ν(M) =̇
∑

α∈H1(6;Z)
[φ](α)ZB

α (0, ν),

where [φ] ∈ H 1(6;G) = Hom(H1(6;Z),G) is the cohomology class of φ, and
ZB
α (0, ν) is the partial partition function defined in the statement of the theorem. Ap-

plying the three equalities displayed above to the weight system w = φν, with φ such
that φτ = ω, yields the theorem.

It remains to check the last equation displayed above. Let {α∗j } be the basis in
H1(6;Z) dual to B = {αi} with respect to the intersection pairing, that is, such that
αi · α

∗

j = δij . The difference of any two dimer coverings M,M0 viewed as elements of
C1(0;Z) is clearly a cycle. Since the expression of an arbitrary α ∈ H1(6;Z) in the
basis {α∗i } is given by α =

∑
i(αi · α)α

∗

i , we get

φ(M)

φ(M0)
= φ(M −M0) = [φ]

(∑
i

(αi · (M −M0))α
∗

i

)
=

[φ](
∑
i(αi ·M)α

∗

i )

[φ](
∑
i(αi ·M0)α

∗

i )
.
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This implies the equality∑
M∈M(0)

φ(M)ν(M) =̇
∑

M∈M(0)

[φ]
(∑

i

(αi ·M)α
∗

i

)
ν(M) =

∑
α∈H1(6;Z)

[φ](α)ZB
α (0, ν),

which concludes the proof. ut

4.3. Discrete Dirac operators and Kasteleyn matrices

Now, let us go back to our discrete Dirac operators. As in Section 2, let 0 be a bipar-
tite graph isoradially embedded in a flat surface 6 with cone type singularities S ⊂
B ∪ V (0∗).

Lemma 4.7. Given a nowhere vanishing vector field V along W , let ωV ∈ C1(0; S1)

be the cochain defined by ωV (e) = exp(iϑV (w, b)) as illustrated in Figure 3. Then the
equivalence class of ωV does not depend on V . Furthermore, its Kasteleyn curvature is
given by

cωV (f ) = − exp(iθf /2),
where θf denotes the angle of the conical singularity in the face f .

Proof. The first statement is obvious, so let us fix a nowhere vanishing vector field
V ∈ X(W) and consider the associated cochain ωV . Given a face f of 0 ⊂ 6, let
w1, b1, . . . , wm, bm denote the vertices in ∂f cyclically ordered. Then the Kasteleyn cur-
vature of ωV at the face f is given by

cωV (f ) = (−1)|∂f |/2+1ωV (∂f )

= (−1)m+1ωV (w1, b1)ωV (b1, w2)ωV (w2, b2) · · ·ωV (bm, w1)

= −(−1)m
ωV (w1, b1)ωV (w2, b2) · · ·ωV (wm, bm)

ωV (w1, bm)ωV (w2, b1) · · ·ωV (wm, bm−1)

= − exp
(
i

m∑
j=1

(π − αwj (∂f ))
)
,

where αwj (∂f ) = ϑV (wj , bj−1) − ϑV (wj , bj ) and b0 = bm. This angle αw(∂f ) is sim-
ply the angle made by the oriented curve ∂f at the vertex w, as illustrated in Figure 4.

v

αv(C)
C

Fig. 4. The angle made by the oriented curve C at the vertex v.

An easy application of the Gauss–Bonnet formula shows that the angle θf of the conical
singularity xf in f is equal to

∑
v∈∂f (π − αv(∂f )). Hence, it remains to check that∑

b∈B∩∂f

αb(∂f )−
∑

w∈W∩∂f

αw(∂f ) = 0.
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This is where the isoradiality comes into play. By definition, there is a local isometry from
the pointed face f \ {xf } to the pointed plane C∗ such that all vertices in ∂f are mapped
to a circle in C∗. Now, observe that the alternating sum of angles displayed above does
not change if one moves a vertex along the circle keeping all other vertices fixed. Since
the equality above holds when all angles are equal (to π − θf /2m), this concludes the
proof. ut

Let us now state the main result of this section.

Theorem 4.8. Let 6 be a compact oriented flat surface of genus g with conical singu-
larities supported at S and cone angles multiples of 2π . Fix a graph 0 with bipartite
structure V (0) = B t W , isoradially embedded in 6 so that S ⊂ B ∪ V (0∗). For an
edge e of 0, let ν(e) denote the length of the dual edge. Finally, let Dλ : CB → CW
denote the discrete Dirac operator associated to the discrete spin structure λ.

There exist 22g non-equivalent discrete spin structures such that the correspond-
ing discrete Dirac operators {Dλ}λ give 22g non-equivalent Kasteleyn matrices of the
weighted graph (0, ν), if and only if the following conditions hold:

(i) each conical singularity in V (0∗) has angle an odd multiple of 2π ;
(ii) for some (or equivalently, for any) choice of oriented simple closed curves {Cj } in 0

representing a basis of H1(6;Z),∑
b∈B∩Cj

αb(Cj )−
∑

w∈W∩Cj

αw(Cj )

is a multiple of 2π for all j , where αv(C) denotes the angle made by the oriented
curve C at the vertex v as illustrated in Figure 4.

Proof. Fix a discrete spin structure λ ∈ Z1(X; S1), a normalized vector field V ∈ X(W),
and let Dλ : CB → CW be the corresponding discrete Dirac operator. By definition, the
coefficient of Dλ corresponding to vertices w ∈ W and b ∈ B is equal to

Dλ(w, b) =

{
ν(e)ωV (e)λ(e) if w and b are joined by an edge e,
0 if w and b are not adjacent,

with ωV as in Lemma 4.7. In other words, Dλ is the adjacency matrix of the weighted
bipartite graph (0, ν), twisted by the cochain ωλ := ωV λ ∈ C1(0; S1). The goal is now
to check that ωλ is gauge equivalent to a Kasteleyn orientation (that is, to a ±1-valued
flat cochain) if and only if conditions (i) and (ii) hold. This clearly implies the theorem,
as non-equivalent discrete spin structures yield non-equivalent Kasteleyn orientations.

By Lemma 4.7, ωV is flat if and only if condition (i) is satisfied. Since λ is a cocycle,
δλ = 1 and the same statement holds for ωλ. By Proposition 4.2, the set of equivalence
classes of such S1-valued flat cochains is an H 1(6; S1)-torsor. Therefore, ωλ is equiva-
lent to a Kasteleyn orientation if and only if, for any Kasteleyn orientation ω0, the cocycle
φ := ω−1

0 ωλ represents a class in H 1(6; {±1}) = Hom(H1(6;Z), {±1}). This holds if
and only if φ(C) ∈ {±1} for any 1-cycle C in 0, or equivalently, for any 1-cycle in 0
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part of a collection representing a basis of H1(6;Z). Since ω2
0 = 1, this translates into

the equalities

1 = φ(C)2 = ωλ(C)2 = ωV (C)2λ(C)2 = ωV (C)2κ(C).

As mentioned in Section 3.1, κ(C) is the inverse of the holonomy along the 1-cycle C.
Therefore,

κ(C) = hol(C)−1
= exp

(
−i

∑
v∈V (0)∩C

(π − αv(C))
)
= exp

(
i

∑
v∈V (0)∩C

αv(C)
)
,

since C is of even length. Furthermore, the definition of ωV implies that ωV (C) =
exp(−i

∑
w∈W∩C αw(C)), as in the proof of Lemma 4.7. This yields the equation

1 = exp
(
i
∑

b∈B∩C

αb(C)− i
∑

w∈W∩C

αw(C)
)
,

obviously equivalent to condition (ii). ut

Consider 0 ⊂ 6 as above, and satisfying both conditions of Theorem 4.8. Let B =
{αj } be a set of simple closed curves on 6, transverse to 0, whose classes form a basis
of H1(6;Z). For each αj ∈ B, let Cj denote the oriented 1-cycle in 0 having αj to
its immediate left, and meeting every vertex of 0 adjacent to αj on this side. By the
conditions of Theorem 4.8, any discrete spin structure λ satisfies the equations

λ(Cj ) = exp
(
i

∑
w∈W∩Cj

αw(Cj )
)
(−1)|Cj |/2+1 (?)

up to a sign. Let us pick the discrete spin structure λ0 such that the equality above holds
for all j . For any ε = (ε1, . . . , ε2g) ∈ Z2g

2 , let λε denote the discrete spin structure
obtained from λ0 as follows:

λε(e) = (−1)
∑
j εj (e·αj )λ0(e).

Theorem 4.9. If 0 ⊂ 6 satisfies the conditions of Theorem 4.8, then the partition func-
tion for the dimer model on (0, ν) is given by

Z(0, ν) =
1
2g

∣∣∣ ∑
ε∈Z2g

2

(−1)
∑
i<j εiεjαi ·αj det(Dλε )

∣∣∣.
Proof. By condition (i), the S1-valued cochain λ0ωV is Kasteleyn flat. By condition (ii),
it is gauge equivalent to a {±1}-valued cocycle τ . Finally, equation (?) is equivalent to
τ(Cj ) = (−1)|Cj |/2+1. The theorem now follows from Corollary 4.4 for G = S1

⊂

F∗ = C∗. ut
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Remark 4.10. More generally, let us assume that 0 ⊂ 6 only satisfies the first condition
of Theorem 4.8, and let λ be any discrete spin structure. Then Theorem 4.3 gives the
equality ∑

α∈H1(6;Z)
ϕ(α)ZB

α (0, ν) =
1
2g

∣∣∣ ∑
ε∈Z2g

2

(−1)
∑
i<j εiεjαi ·αj det(Dλε )

∣∣∣,
where ϕ ∈ H 1(6;Z) is such that ϕ · [τ ] = [λωV ].

Spin structures on a closed orientable surface 6 can be identified with quadratic
forms, that is, with Z2-valued maps onH1(6;Z2) such that q(x+y) = q(x)+q(y)+x ·y
for all x, y in H1(6;Z2). More precisely, Johnson [11] gave an explicit H 1(6;Z2)-
equivariant bijection S(6)

ϕ
→ Q(6) between the corresponding affineH 1(6;Z2)-spaces.

The Arf invariant of a spin structure is then defined as the Arf invariant of the corres-
ponding quadratic form q, that is, the mod 2 integer Arf(q) ∈ Z2 such that

(−1)Arf(q)
=

1
√
|H1(6;Z2)|

∑
x∈H1(6;Z2)

(−1)q(x).

If all cone angles of 6 are odd multiples of 2π , then there exists a canonical equivariant
bijection S(X)→ S(6) (recall Proposition 3.4). In that case, it makes sense to talk about
the Arf invariant Arf(λ) of a discrete spin structure λ ∈ S(X).

As above, let {αj } be a set of simple closed curves on 6, transverse to 0, defining a
basis of H1(6;Z), and let Cj denote the oriented cycle in 0 having αj to its immediate
left. By condition (ii), the number

q0(αj ) =
1

2π

( ∑
w∈W∩Cj

αw(Cj )−
∑

b∈B∩Cj

αb(Cj )
)

is an integer. Furthermore, one easily checks that its parity changes each time αj moves
across one vertex. Therefore, the αj ’s can be chosen so that all q0(αj )’s are even.

This leads to the following version of the Pfaffian formula, assuming the notation
preceding Theorem 4.9.

Theorem 4.11. Let 0 ⊂ 6 be as in the statement of Theorem 4.8, with all cone angles of
6 odd multiples of 2π . Then the partition function for the dimer model on (0, ν) is given
by

Z(0, ν) =
1
2g

∣∣∣ ∑
ε∈Z2g

2

(−1)Arf(λε) det(Dλε )
∣∣∣.

Proof. We saw in the proof of Proposition 3.4 that the quadratic form qλ : H1(6;Z2)

→ Z2 corresponding to a class [λ] ∈ S(X) via the equivariant bijection S(X) → S(6)
ϕ
→ Q(6) is determined by the following condition: for any oriented simple closed curve
C ⊂ 0,

qλ([C]) = 1+
|C|

2
+

1
2π

(∑
e⊂C

2βλ(e)−
∑
v∈C

αv(C)
)
,
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where 0 ≤ βλ(e) < 2π is such that λ(e) = exp(iβλ(e)). In particular, if 0 ⊂ 6 satisfies
condition (ii) of Theorem 4.8, then the discrete spin structure λ0 defined by equation (?)
corresponds to the quadratic form q0 determined by the equalities

q0(αj ) = q0([Cj ]) =
1

2π

( ∑
w∈W∩Cj

αw(Cj )−
∑

b∈B∩Cj

αb(Cj )
)
.

By construction, λε is obtained from λ0 by action of the Poincaré dual to1ε =
∑
j εjαj ∈

H1(6;Z2). Therefore, by [5, Lemma 1],

Arf(λε)+ Arf(λ0) = q0(1ε) =
∑
j

εjq0(αj )+
∑
i<j

εiεjαi · αj .

As we have chosen the αj ’s so that all q0(αj )’s are even, the formula now follows from
Theorem 4.9. ut

Remark 4.12. As mentioned in Remark 3.11, it is not necessary in the present section to
assume that the sets S and W are disjoint. All the results of this section still hold in the
slightly more general setting where S is contained in V (0) ∪ V (0∗).

4.4. Examples

We conclude this article with a discussion of several special cases, and the following
result: the Dirac operators on any closed Riemann surface of positive genus can be ap-
proximated by Kasteleyn matrices.

The planar case. Let 0 be a planar isoradial bipartite graph whose associated rhombic
lattice tiles a simply connected domain 6 of the plane. In this case, the unique spin struc-
ture on 6 being trivial, the associated discrete Dirac operator D : CB → CW is simply
given by

(Dψ)(w) =
∑
b∼w

ν(w, b)eiϑV (w,b)ψ(b),

where the angle ϑV (w, b) can be measured with respect to a constant vector field V . With
the notation of Figure 2, this yields the equality

(Dψ)(w) = i

m∑
j=1

(xj−1 − xj )f (bj ),

which is exactly the discrete Dirac operator introduced by Kenyon [15] in this special
case. The conditions of Theorem 4.8 being trivially satisfied,D is (conjugate to) a Kaste-
leyn matrix for the dimer model on (0, ν), and the associated partition function is given
by

Z(0, ν) = |det(D)|.

Thus, in the planar case, we recover Theorem 10.1 of [15].
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The genus one case. Let 0̃ be a planar isoradial bipartite graph, invariant under the action
of the lattice3 = Z1⊕Zτ ⊂ C for some τ ∈ H. Fix a quadrilateral fundamental domain
P ⊂ C for this action with 0 intersecting ∂P transversally, and let 0 ⊂ 6 = C/3 be the
corresponding toric graph. One of the spin structures on 6 being trivial, the associated
discrete Dirac operator D : CB → CW is again given by

(Dψ)(w) =
∑
b∼w

ν(w, b)eiϑV (w,b)ψ(b),

where V can be chosen to be a constant vector field. The three other discrete Dirac oper-
ators are obtained from D by multiplying the corresponding coefficient by −1 whenever
an edge crosses the horizontal boundary components of P (this gives D1,0), the vertical
ones (D0,1), or any boundary component (D1,1). These four matrices are Kasteleyn ma-
trices if and only if 0 satisfies condition (ii) in Theorem 4.8, in which case Z(0, ν) can
be written as an alternating sum of the determinants of these matrices.

Example 4.13. Consider the graph illustrated below. We have inserted next to each edge
the corresponding coefficient of the matrix D. (The graph is normalized so that the sides
of P have length 3, V is chosen to be the vertical upward direction, and ω stands for
exp(2πi/3).)

1 1 1

1 1 1

1 1 1

ω ω ωω̄ ω̄ ω̄

ω ω ωω̄ ω̄ ω̄

ω ω ωω̄ ω̄ ω̄

In this example, condition (ii) in Theorem 4.8 is satisfied. Furthermore, one easily
checks that the trivial discrete spin structure satisfies equation (?), where α1 and α2 are
chosen to be the sides of P . Therefore, Theorem 4.9 gives the equality

#M(0) = Z(0, 1) = 1
2 |det(D)+ det(D1,0)+ det(D0,1)− det(D1,1)|

=
1
2 |0+ 28+ 28− (−28)| = 42.

An example of genus 2. Consider the flat surface 6 of genus 2 given by an octagon,
where all pairs of opposite sides are identified. Embed a square lattice 0 in6 as illustrated
below.

The flat surface 6 has a single singularity, which lies in V (0∗), and has angle 6π .
Therefore, this example satisfies the first condition of Theorem 4.8. One easily checks
that it also satisfies the second condition, so the 16 discrete Dirac operators are Kasteleyn
matrices. Since 6 has trivial holonomy, one discrete spin structure can be chosen to be
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trivial. Furthermore, one can fix a constant direction V on 6 (say, to the right). The
corresponding discrete Dirac operator D : CB → CW is simply given by

(Dψ)(w) = (ψ(b1)− ψ(b3))+ i(ψ(b2)− ψ(b4)),

where b1 is the black vertex to the right of w, b2 above, b3 to the left, and b4 below. Using
the procedure described before Theorem 4.9, it is now a trivial matter to write the number
of dimer coverings of 0 as some alternating sum of determinants of these 16 discrete
Dirac operators.

The example above only discretizes the Dirac operators on one specific Riemann sur-
face of genus 2. Can one find examples for any closed Riemann surface? Obviously not
for the Riemann sphere, as all cone angles are assumed to be positive multiples of 2π .
However, this turns out to be the only exception, as demonstrated by the following theo-
rem.

Theorem 4.14. For any closed Riemann surface of positive genus, there exist a flat sur-
face 6 with cone type singularities inducing this complex structure, and an isoradially
embedded bipartite graph 0 ⊂ 6, with arbitrarily small radius, satisfying all the hy-
potheses and conditions of Theorem 4.8.

Proof. The building block of our construction will be the rhombus consisting of two
equilateral triangles glued along one of their sides. Given positive integers n and m, let
R(m, n) denote m rows of n such rhombi stacked in the following way. (This picture
represents R(2, 8).)

Let 0 be the associated bipartite isoradial planar graph, where the bottom left corner of
R(m, n) is a black vertex of 0. If n is even, the identification of the two vertical sides of
R(m, n) will preserve the bipartite structure of 0. If m is even, one can also identify the
horizontal sides, possibly with a shift. This allows one to realize any torus C/Z+Zτ with
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τ in some dense subset of H. To obtain all tori, continuously deform one or two rows of
rhombi as illustrated below.

The deformation of two rows changes the imaginary part of τ , while the deforma-
tion of a single row changes both the imaginary and the real parts. Therefore, a suitable
combination of these transformations allows one to construct all tori. These examples are
flat tori with no singularity, so they trivially satisfy the first condition in Theorem 4.8.
Furthermore, one easily checks that condition (ii) is also satisfied, provided n and m are
divisible by 6. (Note that the deformations above do not affect these conditions.)

Let us now consider a fixed positive even integer n. Given three positive integers
m1, m2, m3, glue the corresponding rectangles R(m1, n), R(m2, n) and R(m3, n) along
their bottom side to an equilateral triangle, itself tiled by rhombi, as illustrated below.

Identifying the opposite remaining sides of each rectangle yields a flat pair of pants with
a single singularity of angle 4π . By varying the mj ’s and using the deformation along
two rows described above, one can realize any complex structure on the pair of pants.
Finally, gluing 2g−2 such pairs of pants along their boundaries (with a possible shift and
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a possible deformation yielding a twist), one can realize any Riemann surface of genus
g ≥ 2.

To each rhombus, associate the portion of a bipartite graph 0 given by .

(This is just to avoid cumbersome considerations about gluing bipartite structures.) The
singularities of angle 4π are located at black vertices of 0, so condition (i) is satisfied.
One easily checks that condition (ii) is always satisfied for cycles coming from boundary
components of the pairs of pants. Finally, by chosing wisely the parity of the mi’s, one
can ensure that condition (ii) also holds for the cycles passing through several pairs of
pants. ut
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