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Abstract. We establish the spectral gap property for dense subgroups of SU(d) (d ≥ 2), generated
by finitely many elements with algebraic entries; this result was announced in [BG3]. The method
of proof differs, in several crucial aspects, from that used in [BG] in the case of SU(2).

0. Introduction and outline

For k ≥ 2 let g1, . . . , gk be a finite set of elements in G = SU(d) (d ≥ 2). We associate
with them an averaging (or Hecke) operator zg1,...,gk , taking L2(SU(d)) into L2(SU(d)):

zg1,...,gkf (x) =
k∑

j=1

(f (gjx)+ f (g−1
j x)).

We denote by supp(z) the set {g1, . . . , gk, g
−1
1 , . . . , g−1

k } and by 0z the group generated
by supp(z). It is clear that zg1,...,gk is self-adjoint and that the constant function is an eigen-
function of z with eigenvalue λ0(z) = 2k. Let λ1(zg1,...,gk ) denote the supremum of the
eigenvalues of z on the orthogonal complement of the constant functions in L2(SU(d)).
We say that z has a spectral gap if

λ1(zg1,...,gk ) < 2k.

It is common to, alternatively, refer to the situation described above by saying that the
spectral gap property holds for 0z.

In this paper we generalize the result on the spectral gap for finitely generated sub-
groups of SU(2), established in [BG], to dense subgroups of SU(d) (d ≥ 2), generated
by finitely many elements with algebraic entries.

Theorem 1. Assume that {g1, . . . , gk} ⊂ SU(d) ∩Matd×d(Q), and that the group gen-
erated by g1, . . . , gk is Zariski dense1 in SLd(C). Then the associated Hecke operator
zg1,...,gk has a spectral gap.
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1 Note that the Zariski-density assumption is equivalent to the topological density of the group
generated by {g1, . . . , gk} in SU(d).
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Various applications of such a spectral gap result (to, among other things, the Banach–
Ruziewicz problem, the theory of quasi-crystals, and the question, arising in the theory of
quantum computation, of whether a “computationally universal” set is necessarily “effi-
ciently universal”) are discussed in [BG].

It should be pointed out, however, that the method of proof in the present paper differs,
in several crucial aspects, from the one given in [BG] in the case of SU(2).

In [BG], the proof of the spectral gap proceeded by, first, establishing a “product
theorem” for general subsets of SU(2). Both the statement and the proof of the latter
result is not unrelated to the product theorem in SL2(p), established by Helfgott [H]
(and generalized to groups of higher rank by Breuillard, Green and Tao [BGT] and by
Pyber and Szabó [PS]2); a key ingredient in the proof of the pertinent product theorem
in the aforementioned papers is the exact size of intersections of “multiplicatively stable”
subsets of the group with maximal tori.

In contrast, the approach we follow in the present paper is akin to the one in [BG1,
BG2], and is based, crucially, on multi-scale arguments (available for groups defined over
C or Z/pnZ), and Lie algebra point of view.3 The salient features of this approach can
be encapsulated as follows: (a) first, using “tools from arithmetic combinatorics”, we
construct in the “approximate group” (see [Tao], [BG], [BG1, BG2] for background) an
“approximately one-dimensional structure” in a suitable neighborhood of the identity;
(b) subsequently, this structure serves as the main building block to recover the full Lie
algebra; (c) certain “escape” (from hyperplanes) issues, coming into play in (b), are ad-
dressed, using, in an essential way, the theory of random matrix products.

In connection with (c), it should be pointed out, that, whereas in [BG2] the “classical”
theory of random matrix products (see, for example, [BL]) for Zariski dense subgroups
of SLd (as developed by, among others, Furstenberg [F], Goldsheid–Guivarc’h [GG],
Goldsheid–Margulis [GM], Guivarc’h–Raugi [GR], and Guivarc’h [G]) was directly ap-
plicable, in the present SU(d) setting nontrivial difficulties arise, due to the absence of
proximal (in the obvious sense) elements, necessitating the use of non-Archimedean lo-
cal fields and exterior powers of the Lie algebra (cf. [A]).

It is our expectation that the method of proof of the spectral gap result developed in
the present paper in the context of SU(d) should also be applicable to other continuous
semisimple Lie groups; we intend to pursue this in a forthcoming paper.

The main ingredient from arithmetic combinatorics, alluded to in (a) above, is an
extension of the “discretized ring theorem” (see [B1, B2] ) from R to C (see Proposition 2
at the end of the Introduction), and, crucially, to Cartesian products Cd . This extension
is obtained in §1–§8: parts of the argument are closely related to [B2]. We remark, that,
in this part of the argument, several steps are presented in a somewhat greater generality
than what is, strictly speaking, necessary for the purposes of this paper.

2 Mention should be made, too, of the groundbreaking work of Hrushovski [Hr], and of the work
of Breuillard and Green [BrGr] on the classification of approximate subgroups of the unitary group,
yielding an elegant and far-reaching generalization of Jordan’s theorem [J].

3 It might be worth remarking, that, in the stressed crucial reliance on multi-scale and Lie algebra
structures, this approach is reminiscent of the Solovay–Kitaev algorithm in quantum computation
[DN].
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Returning to the proof of the spectral gap result in SU(d), let us conclude this intro-
duction by giving a rough summary of the various steps in the argument.

As mentioned above, the overall approach is akin to the one used in [BG1, BG2]. Let

ν = 1
2k

k∑
i=1

(δgi + δg−1
i
) (0.1)

be the probability measure supported on the generators g1, . . . , gk . Denoting by Pδ an
approximate identity on G = SU(d), and taking δ → 0, our first objective is to prove
that, for τ > 0 (some fixed small constant), we can ensure that

‖ν(`) ∗ Pδ‖∞ < δ−τ (0.2)

for ` < C(τ) log(1/δ). Here ν(`) is the `-fold convolution power of ν. This is achieved by
iterating an “L2-flattening lemma” (see Lemma 10.7 in §10) which is the main technical
step in this part of the argument. First, an application (originating in [BG0], and by now
standard) of the noncommutative Balog–Szemerédi–Gowers lemma (proved in [Tao]) re-
duces the matter to the study of “approximate groups”H ⊂ G. Note that these objects are
defined combinatorially, and, a priori, have no algebraic structure. Our goal is to show,
roughly speaking, that if H is a δ-approximate group such that ν(`)(H) is “large” (where
` ∼ log(1/δ)), then H has to be “almost all” of G, “up to δ-approximation”. This will,
then, provide the desired contradiction.

The first step in our program is to produce in H a large set of elements that are
“approximately diagonal” (in a suitable basis). The key idea underlying the proof in this
step originates in the work of Helfgott [H]. Let us point out, however, that, in contrast
to [H], and to the subsequent papers pertaining to the product theorems in SLd(p) and
other finite simple groups ([BGT], [GH], [PS]), the precise size of our diagonal set is not
important. The construction of this almost diagonal set appears in §9. The fact that the
generators g1, . . . , gk have algebraic entries plays a role here, but not the assumption on
the Zariski density of 〈g1, . . . , gk〉.

The relevant statement is Proposition 9 in §9. It should be stressed, that, compared
with [BG1, BG2] (and, also, with [BGT], [PS]), a significant difference is that we do not
rely on regular elements to produce the almost diagonal set, and Proposition 9 provides
such a construction in a greater generality.

The “almost diagonal” set of matrices is processed further using the discretized ring
theorem in Cd , resulting in our main building block: a structured, “essentially one-dimen-
sional” set in the Lie algebra. A further amplification requires addressing certain “escape”
issues that depend on the assumption of Zariski density. Thus, in §11, we establish the
crucial “L2-flattening lemma” for convolution powers, conditional on the “escape from
hyperplane” assumption (∗), which is addressed in §12 for d = 3 and §14 in the general
case.

Similarly to the approach originating in [BG1, BG2], proving the escape property
relies on the theory of random matrix products. Recall that the two main assumptions
in this theory are proximality and strong irreducibility. In contrast to the case of Zariski
dense subgroups of SLd(R), elements in SU(d) are obviously not expanding in the usual
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sense, and the application of the theory of random matrix products requires considering
non-Archimedean places (here, again, we use the fact that the elements g1, . . . , gk are
algebraic) and, also, representations on wedge products of the adjoint representation (see
§12, 13, 14). A treatment of random matrix product theory in the context of general local
fields may be found in the recent paper of Aoun [A].

Once (0.2) is established, the final step in the proof of the spectral gap requires ap-
plication of basic results pertaining to the representation theory of SU(d). One way to
proceed (as was done in [BG]) is to use the idea, originating in the work of Sarnak and
Xue [SX], of exploiting “high multiplicity” of nontrivial eigenvalues (which follows from
“high dimensionality” of nontrivial irreducible representations); in the continuous setting
of a compact group this idea was implemented in [GJS] by summing over the suitably cho-
sen range of representations, and then applying Poisson summation. In §10, we follow a
different route, which, is, in a sense, more “geometric” (cf. [BY]). First, a new argument
for d = 2 is given. Next, using SU(2)-subgroups in SU(d), the general case is treated
(this type of argument was used earlier in the work of Burger and Sarnak [BS]). One of
the ingredients in this part of the argument is a convolution principle, stated in Lemma
10.35, which appears to be a rather basic result, of independent interest, pertaining to the
harmonic analysis on the unitary group.

The paper is divided into two parts. In the second part (§9–§14), Theorem 1 is proved,
following the steps summarized above. The first part (§1–§8) is “purely combinatorial”,
culminating in Propositions 2, 6 and 7, that are needed for the SU(d) analysis. The first
part is closely related to the proof of the discretized ring theorem in R, presented in
[B2]; the generalization to the higher dimensional setting necessitates reproducing several
technical portions from that paper.

The counterpart in C of the main theorem from [B2] can be stated as follows.

Proposition 2. Given 0 < σ < 2 and κ, κ ′ > 0, ρ > 0, there are ε0, ε
′
0, ε1 > 0 such

that the following holds.
Let A ⊂ C ∩ B(0, 1) satisfy

(8.1) N(A, δ) = δ−σ (δ small enough),
(8.2) N(A ∩ B(z, t), δ) < tκN(A, δ) if δ < t < δε0 and z ∈ C.

Let µ be a probability measure on C ∩ B(0, 1) such that

(8.3) µ
(
B(z, t)

)
< tκ

′
if δ < t < δε

′
0 and z ∈ C.

Let z1, z2 ∈ C satisfy

(8.4) δε
′
0 < |z1| ∼ |z2| < 1 and |Im(z1/z2)| > ρ.

Then one of the following holds:

(8.5) N(A+ A, δ) > δ−σ−ε1 ,
(8.6) N(A+ bA, δ) > δ−σ−ε1 for some b ∈ suppµ,
(8.7) N(A+ z1A, δ)+N(A+ z2A, δ) > δ−σ−ε1 .
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Part 1: Generalizing the discretized ring theorem

The aim in what follows is to establish higher dimensional analogues of the discretized
sum/product theory from [B2], in particular, for subsets of C and Cd .

1. Basic notation and assumptions

Let δ = 2−m (m large) and A ⊂ [0, 1]d be a collection of δ-separated points in Rd
(alternatively we could take for A a union of δ-intervals). Assume

|A| = δ−σ (1.1)

for some fixed 0 < σ < d (| | denotes ‘cardinality’ in (1.1) but may also be used for
Lebesgue measure if appropriate).

By a size ρ interval, we mean a d-dimensional box
∏d
i=1[ai, ai + ρ].

For B ⊂ Rd and r > 0, we denote by N(B, r) the corresponding metrical entropy
number.

We assume A satisfies the following nonconcentration property:

|A ∩ I | < ρκ |A| if δ < ρ < δε0 and I is a size ρ interval (1.2)

for some κ > 0 and ε0 = ε0(σ ) > 0 small enough.
Let µ be a distribution on L(Rd ,Rd) (the space of linear maps on Rd ) satisfying

certain assumptions to be specified (see Theorem 1 in §7). Our aim is to show that for
some ε1 > 0 (depending on the parameters), we have

N(A+A, δ) > δ−σ−ε1 or N(A+bA, δ) > δ−σ−ε1 for some b ∈ suppµ. (1.3)

Let T be a large constant (depending on the parameters and to be specified) and

m = Tm1. (1.4)

We also consider a dyadic partition into intervals

In,k =
d∏
i=1

[ki2−n, (ki + 1)2−n[ where 0 ≤ ki < 2n and n ≥ 0.

We call In,k a 2−n-interval.

2. Initial regularization of the set

We extract from A a large subset with a ‘tree structure’. This construction is independent
of assumptions (1.2), (1.3).
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We introduce a subset A1 ⊂ A, a subset S ⊂ {1, . . . , m1} and for s ∈ S a dyadic
integer 2 ≤ Rs < 2d(ns−sT ), where sT < ns < (s + 1)T − 4, with the following
properties.

(2.1) If s 6∈ S and I is a 2−sT -interval, then there is at most one 2−(s+1)T -interval J ⊂ I
such that J ∩ A1 6= ∅. Take Rs = 1 and ns = sT in this case.

(2.2) If s ∈ S and I is a 2−sT -interval with I ∩ A1 6= ∅, then the number of 2−ns -
intervals J ⊂ I such that J ∩ A1 6= ∅ is Rs and each such J -interval contains a
single 2−(s+1)T -interval J ′ intersecting A1. Hence also

Rs ∼ N(A ∩ I, 2−(s+1)T ). (2.3)

Moreover, there is a pair of 2−ns -intervals J1, J2 ⊂ I such that J1 ∩ A1 6= ∅,
J2 ∩ A1 6= ∅ and

2 · 2−ns < dist(J1, J2) < 10 · 2−ns . (2.4)

(2.5) |A1| =
∏
s∈S Rs > (cT −2)m1 |A| > δ−σ+(log T )/T .

The construction is straightforward. We start at the bottom of the tree, considering for
each 2−(m1−1)T -interval I such that I ∩ A 6= ∅ the number of 2−m1T -intervals J ⊂ I

with J ∩ A 6= ∅. If their number is less than 103d , fix one such 2−m1T -interval J = JI .
If their number is larger than 103d , introduce the largest integer (depending on I )

(m1 − 1)T < n < m1T − 4

for which there is a pair of 2−n-intervals J1, J2 ⊂ I with J1 ∩ A 6= ∅, J2 ∩ A 6= ∅ and

2 · 2−n < dist(J1, J2) < 10 · 2−n.
It is easily seen that from our definition of n,

N(A ∩ I, 2−n) ∼ N(A ∩ I, 2−m1T ).

Define R to be the dyadic integer such that the number of 2−n-intervals J ⊂ I with
J ∩ A 6= ∅ is between R and 2R. Thus

N(A ∩ I, 2−m1T ) ∼ R < 2d(n−(m1−1)T ).

Obviously the integers n and R (depending on I ) take at most T values. We may therefore
clearly introduce a subset A(m1−1) ⊂ A with

|A(m1−1)| > CT −2|A| (2.6)

satisfying one of the following alternatives:

(2.7) If I is an 2−(m1−1)T -interval, then there is at most one 2−m1T -interval J ⊂ I with
J ∩ A1 6= ∅. In this case, m1 − 1 6∈ S.

(2.8) If I is a 2−sT -interval with I ∩ A1 6= ∅, then (2.2) holds for some n = nm1−1 and
R = Rm1−1. In this case, m1 − 1 ∈ S.
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Next, repeat the construction for the set A(m1−1) considering 2−(m1−2)T -intervals I
with I ∩ A(m1−1) 6= ∅ and 2−(m1−1)T -subintervals J ⊂ I . We obtain A(m1−2) as the
intersection of A(m1−1) and a collection of 2−(m1−1)T -intervals; moreover

|A(m1−2)| > cT −2|A(m1−1)| (2.9)

and A(m1−2) satisfies either (2.1) or (2.2) with s = m1 − 2, for some (m1 − 2)T <

nm1−2 < (m1 − 1)T − 4 and Rm1−2 < 2d(nm1−2−(m1−2)T ).
By construction

A(m1−2) ∩ I = A(m1−1) ∩ I
if I is a 2−(m1−1)T -interval intersecting A(m1−2). Hence properties (2.1), (2.2) at level
m1 − 1 remain preserved.

The continuation of the process is clear. We obtain

A ⊃ A(m1−1) ⊃ A(m1−2) ⊃ · · · ⊃ A(s) ⊃ A(s−1) ⊃ · · · ⊃ A(1)

where
|A(s−1)| > CT −2|A(s)|, (2.10)

and
A(s−1) ∩ I = A(s) ∩ I

if I is a 2−sT -interval intersecting A(s−1). Hence A(s−1) keeps the properties of A(s) at
scales 2−n for n ≥ sT .

Let A1 = A(1). Iteration of (2.10) gives (2.5).
Denote S = {s1 < · · · < st }. For each c ∈ {0, 1}t , we will introduce an element

xc ∈ A1 ⊂ A.
Since s1 ∈ S, it follows from (2.2) that there is a pair of 2−ns1 -intervals I0, I1 inter-

secting A1 such that
2 · 2−ns1 < dist(I0, I1) < 10 · 2−ns1 . (2.11)

Denote by I ′0 ⊂ I0 and I ′1 ⊂ I1 the 2−s2T -intervals intersecting A1. Again by (2.2), there
are pairs I0,0, I0,1 ⊂ I ′0 and I1,0, I1,1 ⊂ I ′1 of 2−ns2 -intervals satisfying

2 · 2−ns2 < dist(I0,0, I0,1) < 10 · 2−ns2 , (2.12)

2 · 2−ns2 < dist(I1,0, I1,1) < 10 · 2−ns2 . (2.12′)

Continuing the construction, we eventually obtain 2−stT -intervals Ic = Ic1,...,ct for
(c1, . . . , ct ) ∈ {0, 1}t such that Ic ∩ A1 6= ∅ and with the property that if c1 =
c′1, . . . , cτ = c′τ , cτ+1 6= c′τ+1, then

2 · 2−nsτ+1 < dist(Ic, Ic′) < 10 · 2−nsτ+1 . (2.13)

Take
xc ∈ Ic ∩ A1 for c ∈ {0, 1}t . (2.14)
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Fix some β > 0 (to be specified) and define

S1 = {1 ≤ s ≤ m1; (s + 1)T − ns > βT } (2.15)

(the porous levels). Obviously S1 ⊃ {1, . . . , m1} \ S.
Let s1 < · · · < st1 be an enumeration of the elements of S1.
Let ε2 > 0 (to be specified) and assume first that

t1 > ε2m1, (2.16)

which we refer to as the porous case. The amplification in this situation can be performed
exactly as in the d = 1 case. The argument is repeated in the next sections.

If t1 ≤ ε2m1, then |S| > (1− ε2)m1 at most levels sτ ∈ S, and (2.13) implies

2 · 2−T < 2sτT dist(Ic, Ic′) < 10 · 2−(1−β)T (2.17)

if c1 = c′1, . . . , cτ−1 = c′τ−1 and cτ 6= c′τ .
This is the nonporous case and requires a different argument.

3. The porous case (bunching together of levels)

Let S = {S1 < · · · < St1} and assume (2.16).
We construct fromA1 a new system of setsBk1,...,kj (j ≤ t1)with a ‘porosity property’

at each level.
Denote by Bk1 , 1 ≤ k1 ≤ K1 =

∏
s≤s1 Rs , the collection of nonempty intersections

A1 ∩ I , where I is a 2−ns1 -interval. By (2.1), (2.2), for each Bk1 there is at most one
2−(s1+1)T -interval J such that ∅ 6= A1 ∩ J = Bk1 . Hence (reducing |A1| by a factor cd )
we may assume

(3.1) diamBk1 ≤ 2−(s1+1)T ,
(3.2) dist(Bk1 , Bk′1) > 2−(s1+1−β)T if k1 6= k′1.

Fixing k1, let Bk1k2 , 1 ≤ k2 ≤
∏
s1<s≤s2 Rs = K2, be the collection of nonempty inter-

sections Bk1 ∩ I where I is a 2−ns2 -interval. Again, each Bk1,k2 is contained in a single
2−(s2+1)T -interval and

(3.3) Bk1 =
⋃
k2≤K2

Bk1 ,
(3.4) diamBk1k2 < 2−(s2+1)T ,

and we may ensure

(3.5) dist(Bk1,k2 , Bk′1,k
′
2
) > 2−(s2+1−β)T for (k1, k2) 6= (k′1, k′2).

Continuing, we obtain a system Bk1,...,kj (1 ≤ ki ≤ Ki , j ≤ t1) with the following
properties:

(3.6) |⋃1≤k1≤K1
Bk1 | ≥ C−t1 |A1| > C−m1 |A1|,

(3.7) Bk1,...,kj =
⋃

1≤k≤Kj+1
Bk1,...,kj ,k ,
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(3.8) diamBk1,...,kj ≤ 2−Tβλj ,
(3.9) dist(Bk1,...,kj , Bk′1,...,k

′
j
) > λj if k̄ 6= k̄′,

where we denoted
λj = 2−(sj+1−β)T . (3.10)

Next we introduce a new system C`1,...,`s (1 ≤ `s ≤ Ls and 1 ≤ s ≤ t2). Define

M = [2T
2/3

] (3.11)

and let
103 < D ∈ Z+, (3.12)

to be specified.
We consider the system Bk1,...,kj constructed above. Starting from t1, let r1 ∈ Z+ be

minimum such that
Kt1 · · ·Kt1−r1 > Mr1+1. (3.13)

We distinguish two cases.
If r1 ≤ 103, identify levels t1 − r1, . . . , t1 to a single one, with branching

Lt2 = Kt1 · · ·Kt1−r1 > Mr1+1. (3.14)

The sets C`1,...,`t2
are Bk1,...,kt1

, hence

(3.15) diamC`1,...,`t2
< σt2µt2 ,

(3.16) dist(C`1,...,`t2
, C`′1,...,`

′
t2
) > µt2 if ` 6= `′,

where µt2 = λt1 and
σ−1
t2
= 2βT > MD(r1+1) (3.17)

assuming, if (3.11) holds,
T > 1010(D/β)3. (3.18)

If r1 > 103, identify levels t1 − r1, . . . , t1 − r1/100+ 1 to a single one, with branching

Lt2 = Kt1−r1 · · ·Kt1−r1/100+1 >
Mr1+1

Kr1−r1/100 . . . Kt1
> Mr1+1−(r1/100+1) > M

99
100 r1

(3.19)
(from definition of r1). In order to ensure proper separation, reduce the sets Bk1,...,kt1−r1/100

to their subset
Bk1,...,kt1−r1/100,1,...,1︸︷︷︸

r1/100

= C`1,...,`t2
.

By (3.8), (3.9), the mutual distance between those sets is at least λt1−r1/100 ≡ µt2 ,
while their diameter is at most λt1 = σt2µt2 with

σ−1
t2
= 2

β
100 r1T > MD(r1+1) (3.20)

(by (3.18)).



1464 J. Bourgain, A. Gamburd

We have reduced the size of A1 by at most a factor Kt1−r1/100 · · ·Kt1 < Mr1/100+1 <

Mr1/90.
Next, repeat (if possible) the procedure, starting from level t1 − r1 to obtain a level

t1 − r1 − r2, etc.
If at some level t ′ = t1 − r1 − r2 − · · · we cannot continue the process, it means that

K1 · · ·Kt ′ ≤ M t ′+1 < 2T
2/3t1 ≤ 2m1T

2/3
< (1/δ)T

−1/3
. (3.21)

Hence
|A ∩ I | ≥ |Bk1,...,kt ′ |

(3.6)
> δT

−1/3
C−m1 |A1| (2.5)> δ2T −1/3 |A| (3.22)

where I is some 2−st ′T -interval.
Recall the nonconcentration assumption (1.2). It follows from (3.22) that either 2−st ′T

> δε0 = 2−ε0m1T or δ2T −1/3
< 2−st ′T κ . Hence

t ′ ≤ st ′ < max(ε0m1, κ
−1T −1/3m1) <

ε2

2
m1 (3.23)

assuming

ε0 < ε2/2 and T −1/3 <
1
2
κε2. (3.24)

Since by (2.16), t1 > ε2, this will ensure that t ′ < 1
2 t1 and hence

r1 + r2 + · · · = t1 − t ′ > 1
2
t1 >

1
2
ε2m1. (3.25)

Consequently, we replaced Bk1,...,kj (1 ≤ j ≤ t1) by a subtree C`1,...,`s (1 ≤ s ≤ t2) with
the following properties:
(3.26) C`1,...,`s−1 =

⋃
`≤Ls C`1,...,`s ,` ⊂ A,

(3.27) dist(C`1,...,`s , C`′1,...,`′s ) ≥ µs if (`1, . . . , `s) 6= (`′1, . . . , `′s),
(3.28) diamC`1,...,`s < σsµs , where 2−βT > σs > δ1/2,
(3.29)

∏
s(Ls ∧ σ−1/D

s ) > M
99

100 (r1+r2+··· ) = Mγm1 , where

γ = 99
100m1

(r1 + r2 + · · · ) > 1
3
ε2, (3.30)

(3.31)
∣∣Cφ =⋃`1≤L1

C`1

∣∣ > M−
1
90 (r1+r2+··· )c−m1 |A1| > M−

γ
80m1 |A|.

The sets C` are subsets of the discrete set A.
In what follows, it will be convenient to replace our discrete sets by unions of size-δ

intervals, defining
A′ = {x ∈ R; dist(x,A) < δ/2} (3.32)

and similarly, for ` = (`1, . . . , `s),

C′
`
= {x ∈ R; dist(x, C`) < δ/2}. (3.33)

Hence

|A′| = δ|A| = δ1−σ , (3.34)
|C′
`
| = δ|C`| (3.35)

(using | | to denote both measure and cardinality).



A spectral gap theorem in SU(d) 1465

4. Porous case (amplification)

Assume a probability measure µ on L(Rd ,Rd) and κ ′ > 0 satisfy the following condi-
tions:

(4.1) ‖b‖ ≤ 1 if b ∈ suppµ,
(4.2) given a unit vector v ∈ Rd and a vector w ∈ Rd , we have µ[b; |bv − w| < ρ]

< cρκ
′

for all δ < ρ < 1.

We denote by E = Eb the µ-expectation. Our aim is to estimate from below the
equality

|C′φ + C′φ | + E[|C′φ + bC′φ |].
Let us first show that we may replace the b-distribution so as to ensure moreover the
property

(4.3) b is invertible and ‖b−1‖ < 3 for b ∈ suppµ.

This is seen as follows. Consider the map

b 7→ 1
3 (2 · 1+ b) = b′

and the image distribution µ′ of µ. Clearly (4.2) still holds and (4.3) is now satisfied. Also

|C′φ + b′C′φ | ≤ |C′φ + C′φ + C′φ + C′φ + C′φ + bC′φ | .
( |Cφ + Cφ |
|Cφ |

)6

|C′φ + bC′φ |

and hence

E′[|C′φ + b′C′φ |] .
( |Cφ + Cφ |
|Cφ |

)6

E[|C′φ + bC′φ |]. (∗)

Thus it will suffice to establish a lower bound on E[|C′φ+bC′φ |] under assumptions (2.1)–
(2.3).

Recalling (3.29), denote

Ms = Ls ∧ σ−1/D
s (1 ≤ s ≤ t2) (4.4)

satisfying
t2∏
s=1

Ms > Mγm1 . (4.5)

We choose the parameter D to satisfy

D > 10/κ ′. (4.6)

Starting from s = 1, we have C′φ =
⋃
`1≤L1

C′`1
, where the C′`1

are contained in
intervals of size σ1µ1 and separation > µ1.

Thus
C′φ + bC′φ =

⋃
`1≤L1
`′1≤L1

(C′`1
+ bC′

`′1
).
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Partition [0, 1]d into intervals Iα of size η > µ1 where η is chosen such that

M1 = max
α
|{`1 ≤ L1; C′`1

∩ Iα 6= ∅}| = |{`1 ≤ L1; C′`1
∩ I0 6= ∅}|. (4.7)

For each α denote

Eα = {`1 ≤ L1; C′`1
∩ Iα 6= ∅} and Dα =

⋃
`1∈Eα

C′`1
⊂ Iα + B(0, σ1µ1).

Then
C′φ + bC′φ ⊂

⋃
α

(Dα + bD0)

and from the preceding

|C′φ + bC′φ | > c
∑
α

|Dα + bD0|. (4.8)

Fixing α, we have
Dα + bD0 =

⋃
`1∈Eα
`′1∈E0

(C′`1
+ bC′

`′1
) (4.9)

and certainly

|Dα + bD0| > c max
`′1∈E0

∑
`1∈Eα

|C′`1
+ bC′

`′1
| > c

M1

∑
`1∈Eα, `′1∈E0

|C′`1
+ bC′

`′1
|. (4.10)

On the other hand, fixing ξ` ∈ C`, we have |ξ` − ξ`′ | > µ1 for ` 6= `′ and

C′` + bC′`′ ⊂ ξ` + bξ`′ + B(0, 2σ1µ1). (4.11)

Therefore the sets in (4.9) will be mutually disjoint if

min
k,`∈Er
k′,`′∈E0

|(ξk + bξk′)− (ξ` + bξ`′)| > 4σ1µ1. (4.12)

Here condition (4.2) comes into play.
Note that if k′ = `′, then |ξk − ξ`| > µ1 � σ1µ1, so that we may assume k′ 6= `′.
Fix k, ` ∈ Er and k′ 6= `′ ∈ E0 and denote v = (ξk′ − ξ`′)/|ξk′ − ξ`′ |. It follows from

(4.3) that the µ-measure of the b’s for which∣∣∣∣bv + ξk − ξ`
|ξk′ − ξ`′ |

∣∣∣∣ < 4σ1

is at most Cσ κ1 . Hence (4.12) holds for b outside a set of µ-measure at most

C|E0|2|Er |2σ κ1 ≤ CM4
1σ

κ
1 < σ

κ/2
1 (4.13)



A spectral gap theorem in SU(d) 1467

by (4.4), (4.5). For such b, we get

|Dα + bD0| =
∑
`1∈Eα
`′1∈E0

|C′`1
+ bC′

`′1
|. (4.14)

From (4.10), (4.14), it follows that

|Dα + bD0| >
∑
`1∈Eα
`′1∈E0

ϕ`1,`
′
1
(b)|C′`1

+ bC′
`′1
| (4.15)

where ϕ`1,`
′
1

takes values in {1, c/M1} and by (4.13),

µ[ϕ`1,`
′
1
6= 1] < σ

κ/2
1 . (4.16)

Summing over α (4.8), (4.15) imply

|C′φ + bC′φ | > c
∑

`1≤L1, `
′
1∈E0

ϕ`1,`
′
1
(b)|C′`1

+ bC′
`′1
| (4.17)

with ϕ`1,`
′
1

as above.
Next, restrict (`1, `

′
1) to the set {1 ≤ `1 ≤ L1} × ({1 ≤ `′1 ≤ L1} \ E0) and repeat the

construction. Note that if (`1, `
′
1) is restricted to a product set F × F ′, we partition into

intervals Iα of size η > µ1 such that

M1 = max
α
|{`1 ∈ F; C′`1

∩ Iα 6= ∅}| ∨max
α
|{`′1 ∈ F ′; C′

`′1
∩ Iα 6= ∅}|

and obtained as either a set E0 = {`1 ∈ F; C′`1
∩ I0 6= ∅} or a set E0 = {`′1 ∈ F ′;

C′
`′1
∩ I0 6= ∅}. Because of assumption (4.3), both cases may be treated similarly.

Exhausting the set {1 ≤ `1 ≤ L1} × {1 ≤ `′1 ≤ L1} in ∼ L1/M1 steps, we get

|C′φ + bC′φ | > c
M1

L1

∑
`1,`
′
1≤L1

ϕ`1,`
′
1
(b)|C′`1

+ bC′
`′1
| (4.18)

with ϕ`1,`
′
1

satisfying (4.13). Equivalently

|C′φ + bC′φ | >
∑

`1,`
′
1≤L1

ψ`1,`
′
1
(b)|C′`1

+ bC′
`′1
| (4.19)

with ψ`1,`
′
1

taking values in {cM1/L1, c/L1} and

µ[ψ`1,`
′
1
6= cM1/L1] < σ

κ ′/2
1 . (4.20)

Therefore

E[logψ`1,`
′
1
] > (1− σ κ ′/21 )

(
log c

M1

L1

)
+ σ κ ′/21

(
log

c

L1

)
> log

√
M1

L1
. (4.21)
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We assume here σ κ
′/2

1 < 1/2, which will be fulfilled if

T >
10
βκ ′

(4.22)

(since σs < 2−βT ).
Repeat with the sets

C′`1
+ bC′

`′1
=

⋃
`2,`
′
2.L2

(C′`1,`2
+ bC′

`′1,`
′
2
)

to obtain
|C′`1
+ bC′

`′1
| >

∑
`2,`
′
2

ψ`1,`2;`′1,`′2(b)|C
′
`1,`2
+ bC′

`′1,`
′
2
| (4.23)

where again

Ex[logψ`1,`2;`′1,`′2 ] > log
(

1
L2
M

1/2
2

)
. (4.24)

Iteration clearly provides the minorization

|C′φ + bC′φ | >
∑

`1,...,`t2
`′1,...,`

′
t2

ψ`1,`
′
1
(b) · · ·ψ`1,...,`t2 ;`′1,...,`′t2 (b)|C

′
`1,...,`t2

+ bC′
`′1,...,`

′
t2
|

≥
∑
`,`
′
ψ`1,`

′
1
· · ·ψ

`;`′ |C′`1,...,`t2 | (4.25)

where by (4.21), (4.24), etc.

Ex[ψ`1,`
′
1
ψ`1,`2;`′1,`′2 · · · ] ≥ e

E[logψ`1,`′1
]+E[logψ`1,`2;`′1,`′2

]+···
>

t2∏
s=1

M
1/2
s

Ls
. (4.26)

Therefore

E[|C′φ + bC′φ |] >
( t2∏
s=1

M
1/2
s

) ∑
`1,...,`t2

|C′`1,...,`t2
| > M

γ
2m1 |C′φ |. (4.27)

Recalling (∗), it follows that if µ satisfies (4.1) and (4.2),

|C′φ + C′φ | + E[|C′φ + bC′φ |] > M
γ
14m1 |C′φ |. (4.28)

Therefore, by (3.31), (3.30),

N(A+ A, δ)+ E[N(A+ bA, δ)] > M
γ
14m1 |Cφ | > M

γ
20m1 |A|

> δ−
1

60 ε2T
−1/3 |A|. (4.29)
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5. Nonporous case (1)

Assume |S1| ≤ ε2m1 and denote

S ′ = {1, . . . , m} \ S1 ⊂ S (5.1)

satisfying
t ′ = |S ′| > (1− ε2)m1 (5.2)

and (2.17) if τ ∈ Z′ = {1 ≤ τ ≤ t; sτ ∈ S ′} (t = |S|).
For notational simplicity, we identify S ′ with {1, . . . , m1}. Recalling the system

{xc}c∈{0,1}t of points from A introduced in (2.14) and (2.17), our starting point is a system
{xc}c∈{0,1}m1 ⊂ A such that if c1 = c′1, . . . , cs = c′s , cs+1 6= c′s+1, then

2 · 2−(s+1)T < |xc − xc′ | < 10 · 2−(s+1−β)T . (5.3)

Denote J = [ 1
10d 2(1−β)T

]
and k = k(T ) ∈ Z+.

We construct in the k-fold sumset kA of A, for s = 1, . . . , m, points

(yj1,...,js )1≤j1≤J,...,1≤js≤J (5.4)

with the following properties:

(5.5) |yj1,...,js ,js+1 − yj1,...,js | < 1
10d 2−sT ,

(5.6) 2−(s+1)T < |yj1,...,js ,1 − yj1,...,js | < 1
10dJ 2−sT ,

(5.7) for fixed j1, . . . , js , we have (setting y∅ = 0 for s = 0)

|(yj1,...,js+1 − yj1,...,js )− js+1(yj1,...,js ,1 − yj1,...,js )| < 4−T 2−sT .

Thus (5.7) means that the points (yj1,...,js ,js+1)1≤js+1≤J lie approximately on some
line segment emanating from yj1,...,js and of length between 2−sT−βT and 2−sT :

............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
..........

•
•

•

• yj1,...,js ,js+1

yj1,...,js ,1

yj1,...,js

The construction is done as follows. The points yj1,...,js will be of the form

yj1,...,js = xc(1) + · · · + xc(k) (5.8)

for certain c(1), . . . , c(k) ∈ {0, 1}m1 such that c(1)
s′ = · · · = c(k)s′ = 0 for s′ > s.
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Define d(1), . . . , d(k) ∈ {0, 1}m1 by
d
(`)

s′ = c(`)s′ if s′ ≤ s,
d
(`)
s+1 = 1,

d
(`)

s′ = 0 if s′ > s + 1.

From (5.3), for each ` = 1, . . . , k,

2−(s+1)T < |xc(`) − xd(`) | <
1

10dJ
2−sT . (5.9)

Taking k = k(T ) sufficiently large (log k(T ) ∼ T ), we may clearly specify a subset
L = {`1 < · · · < `J } ⊂ {1, . . . , k} such that for all ` ∈ L,

|xc(`) − xd(`) − η2−(s+1)T v| < 2−sT−3T (5.10)

for some unit vector v ∈ Rd and some 1 < η < 2βT .
Define

yj1,...,js ,j =
∑

` 6∈{`1,..., j̀ }
xc(`) +

∑
`∈{`1,..., j̀ }

xd(`) . (5.11)

Hence (5.5), (5.6) follow from (5.8), (5.11) and (5.9).
By (5.10),

yj1,...,js ,j − yj1,...,js = (xd(`1) − xc(`1))+ · · · + (xd( j̀ ) − xc( j̀ ))
= jη2−(s+1)T v +O(j2−sT−3T ),

implying (5.7).

6. Nonporous case (2)

We make the following further assumption on the distribution µ of b ∈ L(Rd ,Rd).

(6.1) There is a function θ(ρ) → 0 for ρ → 0 such that if v,w are unit vectors in Rd
then

µ[b; 〈bv,w〉| < ρ] < θ(ρ).

Strictly speaking, all we require is that for some ρ > 0,

max
|v|=1=|w|

µ[b; |〈bv,w〉| < ρ] < θ (6.2)

with θ sufficiently small.
Fix a constant

ε3 > 0 (6.3)

(to be specified).
Property (6.2) will be used in the following
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Lemma 6.4. Let v1, . . . , vd ∈ Rd be unit vectors and ρ−12−T < η1, . . . , ηd < 1/J .
Define

Pi = {jηivi; 1 ≤ j ≤ J } for i = 1, . . . , d.

Then
E
[

min
x 6=y∈b1P1+···+bdPd

|x − y| < 2−T
]
< ε3 (6.5)

where E refers to the d-fold product measure µ⊗ · · · ⊗ µ = µ(d).
Proof. Write

b1P + · · · + bdP =
{ d∑
i=1

jiηibivi; 1 ≤ ji ≤ J
}
.

We need to ensure that for |j1| + · · · + |jd | = 0,

|j1η1b1v1 + · · · + jdηdbdvd | > 2−T . (6.6)

It suffices to impose the conditions
|b1v1| > ρ,

dist(b2v2, [b1v1]) > ρ,
...

dist(bdvd , [b1v1, . . . , bd−1vd−1]) > ρ.

(6.7)

By (6.2), clearly
µ(d)[(b1, . . . , bd); (6.7) fails] < dθ < ε3

for appropriate θ . This proves the lemma. ut
Let {yj1,...,js } be the systems obtained in §5 satisfying (5.5)–(5.7). We denote Y =
{yj1,...,jm1

} and Yj1,...,js = {yj1,...,js ,js+1,...,jm1
}. By (5.5),

Yj1,...,js ⊂ B
(
yj1,...,js ,

1
5d
, 2−sT

)
. (6.8)

Denoting by E the expectation with respect to µ(d), we establish a lower bound on

E[N(b1Y + · · · + bdY, δ)]
following an argument similar to that used in §4.

From (5.7), (6.5), the expectation for the points b1yj (1)1
+ · · · + bdyj (d)1

to be at least

2−T apart is > 1− ε3 (we use here that |yj − jy1| < 4−T ). Hence, by (6.8),

N(b1Y + · · · + bdY, δ) < ϕ(b1, . . . , bd)
∑

1≤j (i)1 ≤J
N(b1Yj (1)1

+ · · · + bdYj (d)1
, δ) (6.9)
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where ϕ(b) ∈ {1, J−d} and E[ϕ = 1] > 1− ε3. Thus

E[logϕ] > ε3 log J−d = − log J dε3 . (6.10)

Similarly

N(b1Yj (1)1
+ · · · + bdYj (d)1

, δ)

> ϕ
j
(1)
1 ,...,j

(d)
1
(b)

∑
1≤j (i)2 ≤J

N(b1Yj (1)1 ,j
(1)
2
+ · · · + bdYj (d)1 ,j

(d)
2
, δ) (6.11)

with
E[logϕ

j
(1)
1 ,...,j

(d)
1

] > − log J dε3 . (6.12)

Iterating, we obtain

N(b1Y1 + · · · + bdYd , δ) >
∑

J (1),...,J (d)

ϕ(b)ϕ
j
(1)
1 ,...,j

(d)
1
(b)ϕ

j
(1)
1 ,j

(1)
2 ,...,j

(d)
1 ,j

(d)
2
(b) · · ·

(6.13)

where J (i) = (j (i)1 , . . . , j
(i)
m1 ), and the expectation of the summands in (6.13) is at least

e
E[logϕ]+E[logϕ

j
(1)
1 ,...,j

(d)
1

]+···
> J−ε3dm1 . (6.14)

Hence

E[N(b1Y + · · · + bdY, δ)] > J dm1−ε3dm1 > [c2(1−β)T ](1−ε3)dm1 . (6.15)

Recalling that in §5 we identified S ′ with {1, . . . , m1} and (5.2), (6.5) gives

E[N(b1Ã+ · · · + bdÃ, δ)] > [c2(1−β)T ](1−ε2)(1−ε3)dm1

> δ−(1−β)(1−ε2)(1−ε3)(1−c/T )d (6.16)

where Ã is the sumset kA ⊃ Y .
Again from the sumset inequalities

N(b1Ã+ · · · + bdÃ, δ) ≥
[ d∏
i=1

N(A+ biA, δ)
]k · 1
|A|kd−1 (6.17)

it follows by (6.16) that for some b ∈ suppµ,

N(A+ bA, δ) > |A|1− 1
kd δ−

1
k
(1−β)(1−ε2)(1−ε3)(1−c/T )

> δ
σ
kd
− 1
k
(1−β)(1−ε2)(1−ε3)(1−c/T )|A|. (6.18)

Recalling the hypothesis in Lemma 6.4, we assume

2−βT < ρ. (6.19)
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7. Summary

Recall the parameters

σ (1.1), κ, ε0 (1.2), T (1.4), ε1 (1.3), ε2 (2.16),
κ ′ (4.2), k §5, θ, ρ (6.2), ε3 (6.3),

and the conditions (3.18), (3.24), (4.6), (4.22), (6.19).
In view of (6.18), take

β = ε2 = ε3 = 10−2(1− σ/d) (7.1)

(recall that 0 < σ < d) and assume in (1.2) that

ε0 <
1

200
(1− σ/d). (7.2)

In (6.2), ρ depends on ε3, hence on 1−σ/d. From (3.18), (3.24), (4.6), (6.19), we impose
on T the condition

T > 1013(κ ′β)−3 + 10(κε2)
−3 + 1

β
log

1
ρ

(7.3)

taking

T ∼ 1020
(

1− σ
d

)−3(
κ−3 + (κ ′)−3 + log

1
ρ

)
. (7.4)

Recall also that k = k(T ), log k ∼ T .
From (4.29), (6.18), it follows that

N(A+ A, δ)+N(A+ bA, δ) > min(δ−
1
60 ε2T

−1/3
, δ

σ
kd
− 1
k
(1−β)(1−ε2)(1−ε3)(1−c/T )) · |A|

> δ−τ(σ,κ,κ
′,ρ)|A| (7.5)

for some b ∈ suppµ.
We proved the following

Proposition 1. Let A ⊂ [0, 1]d and N(A, δ) = δ−σ for some fixed 0 < σ < d. Assume
for some κ > 0,

(7.6) N(A ∩ I, δ) < δκ1N(A, δ) if δ < δ1 < δε0 and I ⊂ Rd a size δ1-interval (where
ε0 = 1

200 (1− σ/d)).
Let further µ be a probability measure on L(Rd ,Rd) satisfying

(7.7) ‖b‖ ≤ 1 for b ∈ suppµ,
(7.8) there is κ ′ > 0 such that

max
v,w∈Rd
|v|=1

µ[|bv − w| < δ1] > cδκ
′

1 for δ < δ1 < 1,
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(7.9) there is ρ > 0 such that

max
|v|=1=|w|

µ[|〈bv,w〉| < ρ] <
1

100d
(1− σ/d).

Then there is some b ∈ suppµ such that

N(A+ A, δ)+N(A+ bA, δ) > δ−σ−τ , (7.10)

where τ = τ(σ, κ, κ ′, ρ) > 0.

Assume u1, . . . , ur ∈ L(Rd ,Rd) are such that ‖ui‖ ≤ 1 and for any unit vectors
v,w ∈ Rd ,

max
1≤s≤r

|〈usv,w〉| > ρ (7.11)

(note that r may be restricted to some r(d, ρ)).
Let J = J (d, σ ) ∈ Z+ be sufficiently large and let µ1 be the normalized image

measure on L(Rd ,Rd) under the map

(j1, . . . , jr) 7→ b = j1u1 + · · · + jrur (1 ≤ js ≤ J ).
If v,w ∈ Rd , |v| = 1 = |w| and t is a scalar, we have, assuming |〈u1v,w〉| > ρ,

µ1[|t + bv · w| < ρ/2]

= J−r
∑

j2,...,jr

|{j1 ≤ J ; |t + j1(u1v · w)+ · · · + jr(urv · w)| < ρ/2}| < 1/J .

Let µ0 on L(Rd ,Rd) satisfy (7.7), (7.8). Then the image measure µ of µ0⊗µ1 under the
map (b, b′) 7→ b + b′ will clearly satisfy both (7.8), (7.9).

Thus one has

Proposition 1′. Let A ⊂ [0, 1]d and N(A, δ) = δ−σ for some 0 < σ < d. Assume A
has the nonconcentration property (7.6). Let µ be a probability measure on L(Rd ,Rd)
satisfying (7.7), (7.8). Let further u1, . . . , ur ∈ L(Rd ,Rd) with ‖us‖ ≤ 1 and ρ > 0 be
such that

min
|u|=1=|v|

max
s
|〈usv,w〉| > ρ. (7.12)

Then either
N(A+ A, δ) > δ−σ−τ ,

or
N(A+ bA, δ) > δ−σ−τ for some b ∈ suppµ,

or
N(A+ usA, δ) > δ−σ−τ for some s = 1, . . . , r,

where τ = τ(σ, κ, κ ′, ρ) > 0.



A spectral gap theorem in SU(d) 1475

8. Discretized ring theorem in C

Using Proposition 1′, we prove the following

Proposition 2. Given 0 < σ < 2 and κ, κ ′ > 0, ρ > 0, there are ε0, ε
′
0, ε1 > 0 such

that the following holds. Let A ⊂ C ∩ B(0, 1) satisfy

(8.1) N(A, δ) = δ−σ (δ small enough),
(8.2) N(A ∩ B(z, t), δ) < tκN(A, δ) if δ < t < δε0 and z ∈ C.

Let µ be a probability measure on C ∩ B(0, 1) such that

(8.3) µ
(
B(z, t)

)
< tκ

′
if δ < t < δε

′
0 and z ∈ C.

Let z1, z2 ∈ C satisfy

(8.4) δε
′
0 < |z1| ∼ |z2| < 1 and |Im(z1/z2)| > ρ.

Then one of the following holds:

(8.5) N(A+ A, δ) > δ−σ−ε1 ,
(8.6) N(A+ bA, δ) > δ−σ−ε1 for some b ∈ suppµ,
(8.7) N(A+ z1A, δ)+N(A+ z2A, δ) > δ−σ−ε1 .

This may be seen as the extension to C of the main result from [B2].

Proof. We identify C with R2 viewing complex multiplication by z = x + iy as(
x −y
y x

)
∈ L(R2,R2).

Condition (8.3) has to be upgraded to (7.8) (i.e. removing the restriction t < δε
′
0 ). We

proceed as follows. Define

t0 = inf{t > δ; max
z
µ(B(z, t)) ≥ t 1

2 κ
′}

obtained for z = b say. It follows from (8.3) that t0 ≥ δε′0 . Denote

µ1 = µ|B(b,t0)
µ(B(b, t0))

.

From the definition of t0, it follows that if δ/t0 < t ≤ 1 and z ∈ C then

µ1(B(z, tt0)) <
(tt0)

1
2 κ
′

µ(B(b, t0))
= t 1

2 κ
′
. (8.8)

In particular, there are b′, b′′ ∈ B(b, t0) ∩ suppµ such that |b′ − b′′| > ct0.
Let µ2 be the image measure of µ1 under the map z 7→ z−b′

b′′−b′ . Clearly suppµ2 ⊂
B(0, C), and from (8.8),

sup
z
µ2(B(z, t)) < 2t

1
2 κ
′

for δ1−ε′0 < t < 1,
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hence
suppz µ2(B(z, t)) < 2t

1
4 κ
′

for δ < t < 1. (8.9)

Regarding (7.12), we take u1 = 1, u2 = z1/z2. From (8.4),

max
(
|Im z|,

∣∣∣∣Im z1

z2
z

∣∣∣∣) & ρ if |z| = 1,

which gives (7.2).
By Proposition 1′, either (8.5) or one of (8.10), (8.11) below holds:

(8.10) There is some b ∈ suppµ such that

N

(
A+ b − b′

b′′ − b′A, δ
)
> δ−σ−τ .

Then

N((b′′ − b′)A+ (b − b′)A, δ) > |b′ − b′′|dδ−σ−τ > cδ−σ−τ+dε
′
0 > δ−σ−τ/2

for ε′0 small enough. From the sumset inequalities

N(A+ bA, δ) > δ−σ−τ/8 for some b ∈ suppµ.

(8.11) N(A+ z2
z1
A, δ) > δ−σ−τ , implying

N(z1A+ z2A, δ) > δdε
′
0−σ−τ > δ−σ−τ/2

and
N(A+ z1A, δ)+N(A+ z2A, δ) > δ−σ−τ/4.

This proves Proposition 2. ut
Iteration of Proposition 2 gives

Corollary 3. Given σ, κ, κ ′, ρ, ε1 > 0, there are ε0, ε
′
0 > 0 and some r ∈ Z+ such that

the following holds. Let δ > 0 be small enough. Let A,B ⊂ C ∩ B(0, 1) satisfy

(8.12) N(A, δ) = δ−σ ,
(8.13) N(A ∩ B(z, t), δ) < tκN(A, δ) for δ < t < δε0 and z ∈ C,
(8.14) there is a probability measure µ on B such that

µ(B(z, t)) < tκ
′

if δ < t < δε
′
0 and z ∈ C,

(8.15) there are b0, b1, b2 ∈ B such that

|b0 − b1| ∼ |b0 − b2| ∼ δε′0 and
∣∣∣∣Im b0 − b1

b0 − b2

∣∣∣∣ > ρ.

Then there are elements z1, . . . , zr obtained as products of at most r elements from B

such that
N(z1A+ · · · + zrA, δ) > δ−2+ε1 . (8.16)
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Recall the following result from [B2, Theorem 6 and its proof].

Proposition 4. Let µ be a probability measure on [0, 1] satisfying, for some constants
κ > 0, C,

µ(I) < Cρκ if I is a ρ-interval, δ < ρ < 1 (8.17)

(δ is assumed to be small enough). Then for some s = s(κ, C) ∈ Z+, the set sA(s)−sA(s),
where A = suppµ and sA(s) is the s-fold sumset of the s-fold product set A(s) of A, is
δ-dense in [0, 1].

Note that in the conclusion of Proposition 4, we may clearly replace δ by any given power
of δ (as a consequence of the statement).

Proposition 5. Given κ, ε1 > 0, there are ε0 > 0 and s ∈ Z+ such that the following
holds for δ > 0 small enough. Let A ⊂ C ∩ B(0, 1) satisfy

N(A ∩ B(z, t), δ) < tκN(A, δ) (8.18)

for all z ∈ C and δ < t < δε0 . Then there is a line segment T ⊂ C of size at least δε1

such that each point in T is δ-close to an element from sA(s) − sA(s).
Again in the conclusion, δ may be replaced by any fixed power of δ.

Proof. We may clearly assume 1 ∈ A, replacing A by 1
z
A with z ∈ A the element of

largest norm. Denote by Ã sets of elements obtained from A by (boundedly many) sums
of products.

Using Proposition 4, it is easily seen that it suffices to obtain a segment T ⊂ C of size
at least δε2 such that

N(Ã ∩ Tδ, δ) > δ−1+ε2 (8.19)

where Tδ denotes the δ-neighborhood of T and ε2 = ε2(ε1).
Following the proof of Proposition 2, we start by specifying some point z0 ∈ A and

δε0 < t0 < 1 such that for all δ < t < t0 and z ∈ C,

N(A ∩ B(z, t), δ) < (t/t0)
κ/2N(A ∩ B(z0, t0), δ). (8.20)

By translation, we may assume z0 = 0. Performing another rescaling, we obtain a
δ-separated set A ⊂ B(0, 1) such that

(8.21) 0 ∈ A, 1 ∈ A,
(8.22) |A ∩ B(z, t)| < tκ/2|A| if δ < t < c and z ∈ C.

Define next
|η| = max

z∈A
|Im z| (8.23)

and let
z1 = t1 + iη ∈ A. (8.24)

If |η| > c, we may apply Corollary 3 with A = B since (8.15) holds with ε′0 = 0,
ρ = 0(1) (take b0 = 0, b1 = 1, b2 = z1). From (8.16), N(Ã, δ) > δ−2+ε2 , implying
(8.19) for some segment T ⊂ C.
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Assume η = o(1). Let ν be the image measure (on [0, 1]) of 1
|A|1A under the map

z 7→ Re z. It follows from (8.22), (8.23) that

(8.25) ν(I ) < ρκ/3 if I ⊂ R is a ρ-interval, η < ρ < c.

We apply Proposition 4 to ν (with δ replaced by η), concluding that s̃upp ν and hence
R̃eA can be made η-dense in [0, 1].

Hence, by (8.23), this implies that

[0, 1] ⊂ Ã+ B(0,Kη) (8.26)

for some constant K .
In order to fulfill condition (8.15), we proceed as follows. Take z2, z3 ∈ Ã such that

|Im z2|, |Im z3| < Kη, (8.27)
|Re z2 − 10Kt1| < Kη, (8.28)

10Kη < |Re z2 − Re z3| < 11Kη (8.29)(
which is possible by (8.26)).

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
......

.......
...
.......
...
.......
...
.......
...
.......
...
.......
...
.......
...
.......
...
.......
...
.......
... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .........

•

η •

0

•

10Kz1

•

•

•

z3z2

z1

If we let b0 = 2Kz1, b1 = z2, b2 = z3, then (8.15) clearly holds with ρ = O(1) and

η ≡ δε′0 (8.30)

for some ε′0 > 0.
We distinguish two cases. If ε′0 in (8.30) is small enough, we may again apply Corol-

lary 3 and conclude as in the case η = o(1). Otherwise, we proceed as follows. Denote

z4 = 10Kz1 − z2, (8.31)

A1 = {z ∈ Ã; 0 < Re z < 1, |Im z| < Kη}, (8.32)
A2 = z4A1. (8.33)

By (8.26),

[0, 1] ⊂ A1 + B(0,Kη), (8.34)

A2 ⊂ z4[0, 1]+ B(0, 20K2η2), (8.35)

z4[0, 1] ⊂ A2 + B(0, 20K2η2). (8.36)
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One easily verifies that

R = {z = x + iy; 0 ≤ x ≤ 1, 0 ≤ y ≤ η}
⊂ A1 + A2 + {z = x + iy; 0 ≤ x ≤ cη, 0 ≤ y ≤ cη2} ⊂ Ã+ CηR. (8.37)

In particular, there is some z5 ∈ Ã such that Re z5 ∼ η and Im z5 ∼ η2. From (8.37), also

R ⊂ Ã+ z5R (8.38)

and hence, multiplying both sides of (8.38) by z5,

z5R ⊂ Ã+ z2
5R,

R ⊂ Ã+ z2
5R. (8.39)

After a few iterations, we conclude that

[0, 1] ⊂ Ã+ B(0, δ) (8.40)

and in particular (8.19) holds. This completes the proof of Proposition 5. ut
Proposition 6. Given σ > 0, there are C(σ) > 0 and s < s(σ ) ∈ Z+ such that for
δ > 0 small enough the following holds. Let A ⊂ C ∩ B(0, 1) and

N(A, δ) > δ−σ . (8.41)

Then there is a line segment T ⊂ C of size δγ with 0 < γ < C(σ) such that each point
in T is δγ+1/2-close to an element of sA(s) − sA(s).
Proof. Assume A consists of δ-separated points. Take t0 > δ minimum such that for
some z0 ∈ A,

|A ∩ B(z0, t0)| ≥ tσ/20 |A|. (8.42)

Since obviously |A ∩ B(z0, t0)| . (t0/δ)
2, it follows that

t0 & δ
2−σ

2−σ/2 . (8.43)

From the definition of t0,

|A ∩ B(z, t)| ≤ (2t)σ/2|A| if δ < t ≤ t0 and z ∈ C. (8.44)

Also, there is z1 ∈ A such that |z0 − z1| = t0. Define

A1 = (z1 − z0)
−1((A− z0) ∩ B(0, t0)). (8.45)

From (8.42), (8.44), if δ/t0 < t < 1 and z ∈ C,

|A1 ∩ B(z, t)| ≤ |A ∩ B(z0 + (z1 − z0)z, tt0)| ≤ (2t t0)σ/2|A| ≤ (2t)σ/2|A1|. (8.46)

By (8.43),
|A1 ∩ B(z, t)| < tκ |A1| for δ < t < 1 (8.47)
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and
κ = σ

4− σ (8.48)

(note that A1 consists of δ-separated points).
Apply Proposition 5 to A1 with κ = σ/(4− σ), ε1 = 1/2 (ε0 = 0) to obtain a

segment T1 of size δ1/2 such that

T1 ⊂ sA(s)1 − sA(s)1 + B(0, δ) (8.49)

with s = s(σ ) ∈ Z+. From (8.45) the rescaling of T1 by a factor t0 gives a segment T of
size δ1/2t s0 = δγ for which, by (8.49),

T ⊂ sA(s) − sA(s) + B(0, t s0δ). (8.50)

This proves Proposition 6. ut
Remark. From the statement of Proposition 6, it also follows that for any given integer
r ∈ Z+, assuming (8.41), there is a segment T ⊂ C of size δγ such that each point of T
is δγ+r -close to an element from sA(s) − sA(s), where γ = γ (σ, r) and s = s(σ, r).

There is the following Cartesian version of Proposition 6 for Cd equipped with its
product ring structure. This is the result we need for our SU(d)-analysis (see Corol-
lary 10).

Proposition 7. Let A ⊂ Cd ∩ B(0, 1) satisfy

N(A, δ) > δ−σ (8.51)

for some 0 < σ ≤ d . Then there is a unit vector ξ ∈ Cd such that

[0, δγ ]ξ ⊂ sA(s) − sA(s) + B(0, δγ+1) (8.52)

for some 0 ≤ γ < C(d, σ ) and s ∈ Z+, s < s(d, σ ).

Proof. We proceed by induction on the dimension d . From Proposition 6 and the Remark,
the statement holds for d = 1.

Next, assume it holds up to dimension d. Let A ⊂ Cd+1 ∩ B(0, 1) and

N(A, δ) > δ−σ (8.53)

for some σ > 0.
We will denote again by Ã sets of the form sA(s) − sA(s) for varying s. If I ⊂

{1, . . . , d + 1}, πI stands for the coordinate restriction.
Rearranging the coordinates, we may assume that B = π{1,...,d}(A) satisfies

N(B, δ) > δ−
d
d+1σ > δ−σ/2. (8.54)

From the induction hypothesis, there is a unit vector ξ ∈ Cd = [e1, . . . , ed ] such that

[0, δγ ]ξ ⊂ sB(s) − sB(s) + B(0, δγ+1) (8.55)
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for some 0 ≤ γ ≤ γ (σ ), s ∈ Z+, s < s(d, σ ). Hence we may introduce a function

ϕ : [0, δγ ]→ Ã (8.56)

satisfying
|π[1,...,d]ϕ(x)− xξ | < δ1+γ for 0 ≤ x ≤ δγ . (8.57)

We will distinguish several cases.

Case 1: N(πd+1(ϕ([0, δγ ])), δ2(1+γ )) < δ−1/2. Then there are elements x1, x2 ∈ [0, δγ ]
with |x1 − x2| & δγ+1/2 such that |πd+1(ϕ(x1)− ϕ(x2))| < δ2(1+γ ). Hence, from (8.57),
for 0 ≤ x < δγ ,

ϕ(x)[ϕ(x1)− ϕ(x2)] = (xπ{1,...,d}(ϕ(x1)− ϕ(x2)) · ξ, 0)

+O(δ1+γ |ϕ(x1)− ϕ(x2)| + δ2(1+γ ))
= x · δγ1ξ ′ +O(δ1+γ+γ1) (8.58)

where δγ1 = |π[1,...,d](ϕ(x1)− ϕ(x2))| ∼ |x1 − x2| & δγ+1/2 and ξ ′ = δ−γ1(ξ, 0), a unit
vector in Cd+1. Therefore

[0, δγ+γ1 ]ξ ′ ⊂ Ã+ B(0, δγ+γ1+1). (8.59)

Case 2: N(πd+1(ϕ([0, δγ ])), δ2(1+γ )) ≥ δ−1/2. In particular, S = πd+1(Ã) satisfies

N(S, δ2(1+γ )) > δ−1/2

and an application of the d = 1 result gives a segment J ⊂ Ced+1 of size δγ1 such that

J ⊂ S̃ + B(0, δγ1+1). (8.60)

Case 2.1: Assume ϕ is approximately linear in the sense that for all x, y with x + y ∈
[0, δγ ],

|ϕ(x + y)− ϕ(x)− ϕ(y)| < δγ+1/2. (8.61)

Take m = [δ−1/4] and tj = j
m
δγ (1 ≤ j ≤ m). Clearly (8.61) implies that

ϕ(tj ) = ϕ(t1)+ ϕ(tj−1)+O(δγ+1/2) = jϕ(t1)+O(δγ+1/4). (8.62)

Therefore
{jϕ(t1); 1 ≤ j ≤ m} ⊂ Ã+ B(0, δγ+1/4). (8.63)

Note that δγ+1/4 ≈ |t1| ≤ |ϕ(t1)| . δ1/4. Let ξ ′ = ϕ(t1)/|ϕ(t1)| ∈ Cd+1.
It follows from (8.63) that

[0, λ]ξ ′ ⊂ Ã+ B(0, δ1/4λ) (8.64)

with λ = |ϕ(t1)|δ−1/4.

Case 2.2: Assume there are x, y ∈ [0, δγ ] with x + y ∈ [0, δγ ] such that

|ϕ(x + y)− ϕ(x)− ϕ(y)| > δγ+1/2. (8.65)
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Denoting ζ = ϕ(x + y)− ϕ(x)− ϕ(y) ∈ Ã, it follows from (8.57) that

|π[1,...,d]ζ | . δ1+γ , (8.66)

hence
|ζd+1| > δγ+1/2. (8.67)

Taking r ∈ Z+ (an integer to be specified), write

Ã ⊃ ζ r Ã ⊃ (0, ζ rd+1S̃)+O(δr(1+γ ))
⊃

(8.60)
(0, ζ rd+1J )+O(δr(1+γ ) + |ζd+1|rδγ1+1)

= (0, ζ rd+1J )+O(|ζd+1|rδγ1+1) (8.68)

using (8.66), (8.67) and taking r large enough. Again (8.68) provides a segment [0, δγ2 ]ξ ′
with δγ2 = |ζd+1|rδγ1 , contained in Ã+ B(0, δγ2+1).

In summary, we certainly obtain a unit vector ξ ′ ∈ Cd+1 such that for some 0 ≤ γ ′ ≤
C(d, σ ),

[0, δγ
′
]ξ ′ ⊂ Ã+ B(0, δγ ′+1/4) (8.69)(

as there is only a δ1/4 gain in (8.64)
)
. Since the same statement holds with δ replaced

by δ4 (note that then σ in (8.41) needs to be replaced by σ/4), we have proved (8.52)
in Cd+1. ut
Corollary 8. Denote by Cd ' 1 ⊂ Matd×d(C) the diagonal matrices. Assume A ⊂
Matd×d(C) satisfies

(8.70) A ⊂ B(0, 1),
(8.71) N(A, δ) > δ−σ ,
(8.72) dist(x,1) < δ for x ∈ A.

Then there is ξ ∈ 1 with ‖ξ‖ = 1 such that

(8.73) [0, δα]ξ ⊂ s′A(s) − s′A(s) + B(0, δα+β)
where 0 ≤ α < c(d, σ ), β > c(d, σ ) > 0 and s, s′ ∈ Z+ with s, s′ < s(d, σ ).

Proof. From (8.71), also N(A, δ1−σ/2d) > δ−σ/2. Let k ∈ Z+ to be specified and

δ1 = δ 1
k
(1−σ/2d).

Clearly
N(A, δ1−σ/2d) ≤

∏
0≤`<k

max
y
N(A ∩ B(y, δ`1), δ`+1

1 ).

It follows that there is a subset A1 ⊂ A and δk−1
1 ≤ δ2 ≤ 1 such that

(8.74) diamA1 ≤ δ2,
(8.75) N(A1, δ1δ2) > δ−σ/2k > δ

−σ/2
1 .
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By (8.72), for each x ∈ A, there is x′ ∈ 1 with |x − x′| < δ; the set B1 = {x′; x ∈ A1}
still satisfies (8.74), (8.75). Take ζ ∈ B1 and denote

B = 1
δ2
(B1 − ζ ). (8.76)

Hence

(8.77) B ⊂ 1 ∩ B(0, 1),
(8.78) N(B, δ1) > δ

−σ/2
1 ,

(8.79) if x ∈ B, then dist(x, A1−A1
δ2

) ≤ 2 δ
δ2
.

Apply Proposition 7 to B ⊂ Cd . This gives a unit vector ξ ∈ 1 such that

[0, δγ1 ]ξ ⊂ sB(s) − sB(s) + B(0, δ1+γ
1 ) (8.80)

for some γ < γ (d, σ ) and s ∈ Z+ with s < s(d, σ ).
From (8.74), (8.79),

dist(x, (A1 − A1)
(s)/δs2) < 2sδ/δ2 for x ∈ B(s)

and hence
sB(s) − sB(s) ⊂ δ−s2 (s′A(s) − s′A(s))+ B(0, csδ/δ2). (8.81)

From (8.80), (8.81),

[0, δγ1 δ
s
2]ξ ⊂ s′A(s) − s′A(s) + B(0, δ1+γ

1 δs2 + csδδs−1
2 ). (8.82)

Note that by definition of δ1,
δ

δ2
< δσ/2d < δ

1+γ
1

provided
k > 2d(1+ γ (d, σ ))σ−1. (8.83)

Hence (8.73) holds with δα = δγ1 δs2 and β = 1
k
(1− σ/2d).

Remark. We also note that the element ξ ∈ 1 ' Cd belongs to the algebra generated
by {x′ − y′; x, y ∈ A} ⊂ Cd .

Part II: Analysis on the unitary group

We now return to Theorem 1 and carry out the program sketched in the Introduction.

9. Construction of near-diagonal elements

The main results from this section are formulated in Proposition 9 and Corollary 10.
Let q ≥ 2 and g1, . . . , gq be fixed algebraic elements in U(d) which freely generate

the free group Fq . Let 0 = 〈g1, . . . , gq〉.
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Denote by W` the set of elements of 0 that may be obtained as a word of length ≤ `
in {g1, g

−1
1 , . . . , gq , g

−1
q }. Thus W` ⊂ W`+1. The following properties hold:

(9.1) |W`| ∼ (2q − 1)`,
(9.2) there is a constant C1 > 0 such that ‖x − 1‖ > C−`1 for x ∈ W` \ {1}. (This is a

noncommutative diophantine property, introduced in [GJS] and used in connection
with the spectral gap theorem in [BG]).

More generally, if P(x1, . . . , xr) is a polynomial with integer coefficients and vari-
ables xi ∈ Matd×d(C), then

(9.3) if x1, . . . , xr ∈ W`, either P(x1, . . . , xr) = 0 or |P(x1, . . . , xr)| > C−` where C
depends on 0 and the degree of P .

For δ > 0, define
W`,δ = {x ∈ W`; ‖x − 1‖ < δ}.

One may cover U(d) by at most (c/δ)2d
2

balls Bα of size δ/2 and take α such that |Bα ∩
W`/2| & δ2d2 |W`/2|. Then (Bα ∩W`/2)

−1(Bα ∩W`/2) ⊂ W`,δ and by (9.1),

(9.4) |W`,δ| & δ2d2
(2q − 1)`/2.

The key idea underlying the proof of the following result originates in the work of
Helfgott [H].

Lemma 9.5. Assume A ⊂ U(d), b1, . . . , br ∈ W` and δ > 0 with ` < log(1/δ), such
that

(9.6) N(A, δ) > δ−σ ,
(9.7) spanA ⊂ span(b1, . . . , br),

where “span” refers to the linear span in Matd×d(C). Then there are i ∈ {1, . . . , r},
a ∈ A, A1 ⊂ (A ∪ A−1 ∪ {b1, b

−1
1 , . . . , br , b

−1
r })(s) (the s-fold product set) and δ1 > 0

such that

(9.8) δC < δ1 < δ (where C = C(0)),
(9.9) s ∈ Z+, s < s(0, σ ),

(9.10) the elements of A1 are δ1-separated and |A1| > δ−σ/2r ,
(9.11) ‖xab−1

i − ab−1
i x‖ < δ1 for x ∈ A1.

Proof. We may assume that b1, . . . , br are linearly independent in Matd×d(C). Consider
the map

ϕ : span(b1, . . . , br)→ Cr : x 7→ (Tr xb∗1, . . . ,Tr xb∗r ).

Clearly, by (9.3),

‖ϕ−1‖ ∼ ‖[(Tr bib∗j )1≤i,j≤r ]
−1‖ . |det[(bib∗j )1≤i,j≤r ]|−1 . C−`2 . (9.12)
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Let A′ ⊂ A be a δ-separated set with |A′| > δ−σ , By (9.12),

|ϕ(x)− ϕ(y)| > C−`2 δ for x 6= y in A′,

and hence, for some i = 1, . . . , r ,

N(TrA′b−1
i , C−`2 δ) > δ−σ/r . (9.13)

Take A′′ ⊂ A′ such that

(9.14) |A′′| > δ−σ/r ,
(9.15) |Tr ab−1

i − Tr a′b−1
i | > C−`2 δ for a 6= a in A′′.

Denote by
As = (A ∪ A−1 ∪ {b1, b

−1
1 , . . . , br , b

−1
r })(s)

the s-fold product set and let
δ1 = C−`2 δ. (9.16)

Since ` < log(1/δ), trivially N(As, δ1) . (1/δ1)
2d2

< (1/δ)2d
2(1+logC2). Hence, there

is some s ∈ Z+ with
log s < 4rd2σ−1(1+ logC2) (9.17)

such that
N(A2(s+1), δ1) < δ−σ/2rN(As, δ1). (9.18)

For a ∈ A′′, consider the restricted conjugacy classes

Ca = {xab−1
i x−1; x ∈ As} ⊂ A2s+2.

By (9.15), dist(Ca, Ca′) > δ1 for a 6= a′ in A′′ and hence there is a ∈ A′′ such that

N(Ca, δ1) < N(A2s+2, δ1)δ
σ/r < N(As, δ1)δ

σ/2r (9.19)(
invoking (9.14), (9.18)

)
.

Consider the map As → Ca : x 7→ zab−1
i x−1. It follows from (9.19) that there is

some x0 ∈ As and a subset A ⊂ As with the following properties:

(9.20) the elements of A are δ1-separated and |A| > δ−σ/2r ,
(9.21) ‖xab−1

i x − x0ab
−1
i x0‖ < δ1 for x ∈ A.

Hence the set A1 = x−1
0 A satisfies (9.11). This proves the lemma. ut

Our aim is to prove the following

Claim (∗). Given δ > 0, there are 0 < δ1 < δ and a subset A ⊂ W` such that

(9.22) ` ∼ log(1/δ) ∼ log(1/δ1),
(9.23) the elements of A are δ1-separated and |A| > δ−c1 ,
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(9.24) in an appropriate orthonormal basis

dist(x,1) < δ1,

where, as before, Cd ' 1 ⊂ Matd×d(C).

More generally, the same statement (with essentially the same proof) holds if W` is re-
placed by a large subset H ⊂ W`, namely log |H | ∼ ` (see the discussion preceding
Proposition 9).

Compared with [BG2], it should be noted that the construction of the almost diagonal
set A does not use regular elements and this makes the argument a bit more complicated.
On the other hand, Proposition 9 below gives a more general result of some independent
interest.

Assume (∗) fails for some (sufficiently small) δ. By induction on 1 ≤ d1 ≤ d, we
then establish the following statement.

(∗∗) If log(1/δ1) ∼ log(1/δ), there is an element x ∈ W`,δ1 with ` < C log(1/δ) such
that x has at least d1 distinct eigenvalues.

Next, we show that (∗∗) for d1 = d implies (∗), hence obtaining a contradiction.

Proof of (∗∗)⇒(∗). Take x ∈ W`,δ , log(1/δ) < ` < C log(1/δ) with d distinct eigen-
values λ1, . . . , λd . Since by (9.3),∏

i 6=j
|λi − λj |2 ∼ |Res(Px, P ′x)| > C−`

where Px denotes the characteristic polynomial of x, it follows that

|λi − λj | > C−`3 for 1 ≤ i 6= j ≤ d. (9.25)

Take L > `,L ∼ ` and L/` sufficiently large (according to the argument that follows).
Assume

span(WL,2δ) = span(WL/2,δ1) (9.26)

where
δ1 = (2C3)

−` < δ. (9.27)

Take b′1, . . . , b
′
r ∈ WL/2,δ1 such that (9.26) = span(b′1, . . . , b

′
r). Note that bi = b′ix ∈

WL/2+`,δ1+δ ⊂ WL,2δ and b1, . . . , br are linearly independent. Hence, by (9.26),

span(b1, . . . , br) = span(WL,2δ). (9.28)

Apply Lemma 9.5 with A = WL/2,δ1 and δ = C−L1 (cf. (9.2)). By (9.4),

|WL/2,δ1 | & δ2d2

1 (2q − 1)L/4 > 3L/8

if L > 8d2(logC3)`. Hence we may take σ > 1/(10 logC1).
From the lemma, we obtain i = 1, . . . , r , a ∈ WL/2,δ1 and A1 ⊂ WsL,2sδ ⊂ WsL

such that for some C−L1 > δ2 > C−cL1 :

(9.29) the elements of A1 are δ2-separated and |A1| > 3L/16r ,
(9.30) ‖yab−1

i − ab−1
i y‖ < δ2 for y ∈ A1.
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Note that ξ = ab−1
i = ax−1(b′i)

−1 = x−1 + O(δ1) so that the eigenvalues of ξ
satisfy essentially the same separation property (9.25). Choosing an orthonormal basis
that makes ξ diagonal, it follows from (9.30) and (9.25) that the off-diagonal elements
of y ∈ A1 are bounded by δ2C

`
3 = δ3. Take a subset A ⊂ A1 of δ3-separated elements,

|A| > C−2d2`
3 |A1| > 3L/20r > δ−c3 (assuming L > 100rd2(logC3)`). Hence A satisfies

(∗) (with ` = sL and δ1 = δ3).
Next, assume that (9.26) fails, thus

dim span(WL,2δ) > dim span(WL/2,δ1).

Replace L by L/2 and δ by δ1/2 and repeat the argument.
After at most d2 steps (and assuming L/` large enough), we reach the same conclu-

sion. This proves the implication (∗∗)⇒(∗). ut
Proof of (∗∗) (assuming (∗) fails). For d1 = 1, the statement is trivial. For d1 = 2, we
may argue as follows. If T is a commutative subgroup of GLd(C), then

|W` ∩ T | . ` (9.31)

(using the fact that commutative subgroups of Fq , the free group on q elements, are
cyclic).

Hence, if ` > c log(1/δ1), it follows from (9.4), (9.31) that

W`,δ1 6⊂ {z1; z ∈ C, |z| = 1}
and hence W`,δ1 contains an element with at least two distinct eigenvalues.

We now turn to the inductive step. Assume (∗∗) holds for 2 ≤ d1 < d. We follow
the proof of (∗∗)⇒(∗). Take x ∈ W`,δ, ` < c log(1/δ), with d1 distinct eigenvalues
λ1, . . . , λd1 , hence satisfying

(9.32) |λi − λj | > C−`3 for 1 ≤ i 6= j ≤ d1.

Repeating the reasoning following (9.26) (with the same notation), we obtain some ξ ∈
WL+`,2δ1+δ, ‖ξ − x−1‖ = O(δ1) and A1 ⊂ WsL,2sδ such that

(9.33) the elements of A1 are δ2-separated and |A1| > δ−c2 ,
(9.34) ‖yξ − ξy‖ < δ2 for y ∈ A1,

where log(1/δ2) ∼ L and C` < L < C′`.
Take a subset A2 ⊂ A1A

−1
1 ⊂ W2sL satisfying

(9.35) A2 ⊂ B(1, C−2`
3 ),

(9.36) the elements of A2 are δ3 = C2`
3 δ2-separated and

|A2| > C−8d2`
3 |A1| > |A1|1/2 > δ−c3 .

Obviously from (9.34) we have

(9.37) ‖yξ − ξy‖ < 2δ2 for y ∈ A2.

If ξ has at least d1 + 1 distinct eigenvalues, we are done.
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Hence, assume ξ has only d1 distinct eigenvalues λ′1, . . . , λ
′
d1

. Since ‖ξ − x−1‖ .

δ1 = (2C3)
−`, it follows from (9.32) that {λ′1, . . . , λ′d1

} is an O(δ1)-perturbation of
{λ−1

1 , . . . , λ−1
d1
} and in particular

|λ′i − λ′j | >
1
2
C−`3 for 1 ≤ i 6= j ≤ d1. (9.38)

Diagonalize ξ in a basis e′1, . . . , e
′
n and write {1, . . . , n} =⋃d1

s=1 Is where

ξe′i = λ′se′i for i ∈ Is . (9.39)

We denote by RI the restriction to I ⊂ {1, . . . , n}.
It follows from (9.38), (9.37) that

‖y − y′‖ . C`3δ2 (9.40)

where

y′ =
d1⊕
s=1

RIsyRIs =
d1⊕
s=1

y′s . (9.41)

For s = 1, . . . , d1, let y′s = UsPs, Ps = ((y′s)∗y′s)1/2, be the polar decomposition of y′s .
Since by (9.40),

‖(y′s)∗y′s − 1Is‖ . C`3δ2, (9.42)

it follows that

‖y′s − Us‖ . C`3δ2. (9.43)

We distinguish two cases.

(i) Assume that for all y ∈ A2 and s = 1, . . . , d1,

dist(y′s, {z1Is ; z ∈ C}) < δ3. (9.44)

From (9.40), y is an O(δ3)-perturbation of a diagonal matrix. Hence A2 satisfies (∗)
(with ` = 2sL, δ1 = δ3), a contradiction.

(ii) Let y ∈ A2 and s = 1, . . . , d1 (say s = 1) such that

dist(y′1, {z1I1; z ∈ C}) ≥ δ3. (9.45)

Hence, by (9.43),

dist(U1, {z1I1; z ∈ C}) > 1
2
δ3 (9.46)

and U1 has at least two eigenvalues that are 1
2δ3-separated.
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Take for s = 1, . . . , d1 a basis {e′′i ; i ∈ Is} of [e′i; i ∈ Is] diagonalizing Us . If

Use
′′
i = µie′′i for i ∈ Is (9.47)

we have

|1− µi | ≤ ‖1Is − Us‖ <
(9.43)
‖1Is − y′s‖ +O(C`3δ2) < ‖1− y‖ + ‖y − y′‖ +O(C`3δ2)

<
(9.35)
(9.40)

C−2`
3 +O(C`3δ2) < 2C−2`

3 (9.48)

and
(ξ · (⊕sUs))(e′′i ) = µiλ′se′′i for i ∈ Is . (9.49)

By assumption, we may take µ1, µ2, {1, 2} ⊂ I1, such that

|µ1 − µ2| > 1
2
δ3. (9.50)

From (9.38), (9.48), we have for i1 ∈ Is1 , i2 ∈ Is2 , s1 6= s2,

|µi1λ′s1 − µi2λ′s2 | >
1
2
C−`3 − 4C−2`

3 >
1
3
C−`3 . (9.51)

In view of (9.50), (9.51), ξ(⊕sUs) has at least d1 + 1 eigenvalues that are 1
2δ3 apart.

Consider the element ξy ∈ W(2s+1)L+`,3δ1+δ ⊂ W2(s+1)L,2δ . Since by (9.40), (9.43)
we have ‖ξy − ξ(⊕sUs)‖ . C`3δ2 and δ3 = C2`

3 δ2, also ξy has at least d1 + 1 distinct
eigenvalues. Hence (∗∗) holds for d1 + 1. ut
This completes the proof of (∗).

We also need the following extension. Assume H ⊂ W`, 1 ∈ H = H−1 such that

log |H | ∼ `. (9.52)

The s-fold product set H (s) obviously satisfies H (s) ⊂ Ws`.
On the other hand, from Razborov’s product theorem in the free group (see [R])

|H ·H ·H | � |H |2−ε (ε > 0). (9.53)

Hence, for α < log 2/log 3,
|H (s)| > |H |sα . (9.54)

(Note that any statement of the form log |H (s)|/log |H | → ∞ as s →∞ suffices for our
purpose.)

Replacing the sets W`′ , `′ < `, by product sets H (s), a straightforward adaptation of
previous analysis permits us to obtain again a set A ⊂ H (s), for some s, satisfying (9.23)
and (9.24). This gives
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Proposition 9. Let g1, . . . , gq be algebraic elements in U(d) (q ≥ 2) generating a free
group. Take H ⊂ W`(g1, . . . , gq), ` sufficiently large, such that

log |H | ∼ `. (9.55)

There is A ⊂ H (s) (s < C) and δ > 0 such that

(9.56) log(1/δ) ∼ `,
(9.57) the elements of A are δ-separated and |A| > δ−c,
(9.58) in an appropriate orthonormal basis,

dist(x,1) < δ for x ∈ A. (9.59)

Corollary 10. Let g1, . . . , gq ∈ SU(d) (q ≥ 2) be algebraic and free. Let H ⊂
W`(g1, . . . , gq), ` large enough, be such that

(9.60) log |H | ∼ `.
Then there are δ0 > δ > 0 with

(9.61) log(1/δ0) ∼ log(1/δ) ∼ `
and ξ = (ξij )1≤i,j≤d with

(9.62) ξji = ξij , ξii = 0 and ‖ξ‖ = 1

such that the following holds. Let η ∈ L(Cd), ‖η‖ < δ and t ∈ [0, δ0]. Then∥∥∥1+ t
∑
i,j

ξijηij (ei ⊗ ej )− x
∥∥∥ < δ

1+γ
0 ‖η‖ (9.63)

for some x ∈ (H ∪ {1+ η, (1+ η)−1})(s), s < C and where γ > 0 is a fixed constant.

Proof. First apply Proposition 9 to H . We obtain A ⊂ H (s1), s1 < C and δ1 > 0,
` ∼ log(1/δ1) such that the elements of A are δ1-separated,

log |A| ∼ ` (9.64)

and (after a base change)

dist(x,1) < δ1 for x ∈ A. (9.65)

Denote by V the vector spaceMd×d(C) for x ∈ SU(d) and consider the adjoint represen-
tation ρx , ρx(z) = x−1zx, acting unitarily on V .

We will apply Corollary 8 to the set

A = {ρx; x ∈ A} ⊂ U(V ). (9.66)

To each x ∈ A, associate
x′ =

∑
xii ei ⊗ ei ∈ 1,

for which, by (9.65),
‖x − x′‖ . δ1. (9.67)
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Since det x = 1, it follows that∣∣∣1−∏ |xii |∣∣∣ ≤ ∣∣∣1−∏ xii

∣∣∣ . δ1 (9.68)

and ∣∣1− |xii |∣∣ . δ1 (1 ≤ i ≤ d). (9.69)

Also
‖ρx − ρx′‖ . δ1 (9.70)

where ρx′ ∈ 1V = {diagonal elements of Mat(V )}.
For x, y ∈ A, we have

‖ρx′ − ρy′‖ ∼ max
i 6=j

∣∣∣∣ xiixjj − yii

yjj

∣∣∣∣ & max
i

∣∣∣∣ xd−1
ii∏
j 6=i xjj

− yd−1
ii∏
j 6=i yjj

∣∣∣∣
& max

i
|xdii − ydii | −O(δ1) (by (9.68)).

Hence, if ‖ρx′ − ρy′‖ < δ1, there are ki ∈ {0, 1, . . . , d − 1} (1 ≤ i ≤ d) such that∥∥∥∥y −∑
i

e

(
ki

d

)
xii(ei ⊗ ei)

∥∥∥∥ . δ1.

Since the elements ofA are δ-separated, we may find a subsetA1⊂A such that |A1|∼|A|
and

‖ρx′ − ρy′‖ > Cδ1 for x, y ∈ A1,

hence, by (9.70),
‖ρx − ρy‖ > δ1 for x, y ∈ A1.

It follows that
N(A, δ1) & |A| > δ−c1 .

Thus A satisfies (8.70)–(8.72) with δ replaced by δ1.
By Corollary 8, we obtain ξ = (ξij ) ∈ 1V with ‖ξ‖ = 1 such that (8.73) holds.
Thus for t ∈ [0, δα1 ], there is M ∈ s′A(s) − s′A(s) such that∥∥∥t∑ ξijzij (ei ⊗ ej )−M(z)

∥∥∥ < δ
α+β
1 (9.71)

for all z ∈ V with ‖z‖ ≤ 1.
Moreover (by the Remark following Corollary 8), ξ belongs to the algebra generated

by {ρx′ − ρy′; x, y ∈ A}. Since ρx′ ∈ 1V has diagonal elements xii/xjj , it follows that
ξii = 0.

Also
〈ρx(ei ⊗ ej ), ei ⊗ ej 〉 = 〈ρx(ej ⊗ ei), ej ⊗ ei〉

for x ∈ U(d), hence

〈M(ei ⊗ ej ), ei ⊗ ej 〉 = 〈M(ej ⊗ ei), ej ⊗ ej 〉.
Therefore we may take ξ with ξji = ξij in (9.71).
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Note that A(s) = ρA(s) and ρA(s)η = {x−1ηx; x ∈ A(s)}.
If ‖η‖ < δ, it follows that

Mη + 1 =
s′∏
α=1

(1+ x−1
α ηxα)

2s′∏
α=s′+1

(1− x−1
α ηxα)+O(δ‖η‖)

=
s′∏
α=1

x−1
α (1+ η)xα

2s′∏
α=s′+1

x−1
α (1+ η)−1xα +O(δ‖η‖)

for some xα ∈ A(s). Hence

Mη + 1 ∈ (H ∪ {1+ η, (1+ η)−1})2s′(2ss1+1) + B(0, Cδ‖η‖)
and there is x in a product set of H ∪ {1+ η, (1+ η)−1} such that

‖Mη + 1− x‖ . δ‖η‖. (9.72)

Taking z = η/‖η‖ in (9.71), it follows that∥∥∥1+ t
∑

ξijηij (ei ⊗ ej )− x
∥∥∥ . δ

α+β
1 ‖η‖ + δ‖η‖. (9.73)

Take δ < δ
α+β
1 . We obtain (9.63) with δ0 = δα1 , γ = β/α. This proves Corollary 10. ut

10. Expansion in SU(d) (1)

Let g1, . . . , gk ∈ G = SU(d) be algebraic elements and assume 0 = 〈g1, . . . , gk〉 is
Zariski dense in G. Denote

ν = 1
2k

k∑
i=1

(δgi + δg−1
i
), (10.1)

which is a symmetric probability measure on G.
Our aim is to establish a spectral gap, i.e.

‖f ∗ ν‖2 ≤ (1− ε)‖f ‖2 for f ∈ L2
0(G). (10.2)

Invoking a result of Breuillard and Gelander [BrGe], we may assume that k = 2 and
{g1, g2} generate the free group F2.

Note that G is d1 = d2 − 1-dimensional over R.
For δ > 0 denote

Pδ = 1B(1,δ)
|B(1, δ)| , (10.3)

an approximate identity.
As we show below, (10.2) is a consequence of the following main proposition.
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Proposition 11. For any given τ > 0, there is a positive integer ` < C(τ) log(1/δ) such
that

‖ν(`) ∗ Pδ‖∞ < δ−τ (10.4)

where ν(`) = ν ∗ · · · ∗ ν︸ ︷︷ ︸
`

denotes the `-fold convolution.

Note that (10.4) may be replaced by the a priori weaker statement

‖ν(`) ∗ Pδ‖2 < δ−τ . (10.5)

Indeed, since Pδ < C(Pδ ∗ Pδ), one has, for x ∈ G,

(ν(2`) ∗ Pδ)(x) ≤ C〈ν(`) ∗ Pδ, τx−1(ν
(`) ∗ Pδ)〉 ≤ ‖ν(`) ∗ Pδ‖22

where (τx−1f )(y) = f (yx−1).
Note that since {g1, g2} are algebraic and free, one gets trivially

‖ν(`) ∗ Pδ‖2 < δ−
1
2 d1+θ (10.6)

for some θ > 0. Proposition 11 will therefore follow from a bounded number of applica-
tions of

Lemma 10.7 (L2-flattening lemma). Given γ > 0, there is κ > 0 such that for each
δ > 0 small enough and ` ∼ log(1/δ), if

‖ν(`) ∗ Pδ‖2 > δ−γ (10.8)

then
‖ν(2`) ∗ Pδ‖2 < δκ‖ν(`) ∗ Pδ‖2. (10.9)

We use | | to denote either the Haar measure on G or the cardinality of a discrete set.
Denote µ = ν(`) ∗ Pδ and assume (10.9) fails, i.e.

‖µ ∗ µ‖2 > δ0+‖µ‖2. (10.10)

From a noncommutative version of the BSG theorem due to Tao [Tao, Thm. 5.4], we
obtain a subsetH ofG,H a union of δ-balls, and a discrete setX ⊂ G with the following
properties:

(10.11) H = H−1,
(10.12) H.H ⊂ H.X ∩X.H ,
(10.13) |X| < δ0−,
(10.14) µ(aH) > δ0+ for some a ∈ G,
(10.15) |H | < δγ .

Properties (10.11)–(10.13) mean that H is an ‘approximate group’. Note that (10.12),
(10.13), (10.15) imply

(10.16) |H (s)| <(s) δ0−|H | < δγ− for any given s ∈ Z+
where H (s) stands for the s-fold product set.
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For notational simplicity, letH ′ denote product setsH (s) for unspecified (but bounded)
s ∈ Z+.

The proof of Lemma 7, and hence of Proposition 11, will be completed by showing
that there is no approximate group H satisfying (10.14), (10.15).

This is the same approach as in [BG] for SU(2). But, as discussed in the introduction,
the argument used here differs from that of [BG], and is analogous to [BG2] on expansion
in SLd(pn).

We first show how to derive (10.2) from Proposition 11.
In [BG] treating G = SU(2), we relied on extension in [GJS] of the Sarnak–Xue

technique, based on suitable averaging of characters of the irreducible representations on
spaces of homogeneous polynomials. The argument presented below gives an alternative
approach that is perhaps more geometric and ‘general’ in the sense of being applicable to
other groups.

We will reduce the problem to a convolution property on the group G (Lemma 10.35
below). The relevant inequality will then be established first for G = SU(2) and next in
general for G = SU(d), using SU(2)-embeddings.

Let G = SU(d) and denote (ρgf )(x) = f (xg) acting on L2(G). Letting ν be the
discrete, symmetric probability measure (10.1), we have to establish (10.2). Assume to
the contrary that

‖f ∗ ν‖2 > 1− ε (10.18)

where f ∈ L2
0(G), ‖f ‖2 = 1.

We introduce a Littlewood–Paley decomposition on G (which is a standard construc-
tion in harmonic analysis: see, for example, Chapter 4 in [S]).

For f ∈ L2(G), 0 < δ < 1, let

(f ∗ Pδ)(x) = −
∫
B(1,δ)

f (xg) dg (10.19)

with Pδ introduced in (10.13) and −∫ denoting the average, and denote

11f = (f ∗ P2−1)−
∫
G

f,

1kf = (f ∗ P2−k )− (f ∗ P2−k+1) for k ≥ 2. (10.20)

Thus we have the decomposition

f =
∑
k≥1

1kf (10.21, )

satisfying the square function property

1
C

(∑
‖1kf ‖22

)1/2 ≤ ‖f ‖2 ≤ C
(∑
‖1kf ‖22

)1/2
. (10.22)

Since ρg(f ∗Pδ) = (ρgf ) ∗Pδ , it follows that1kf ∗ ν = 1k(f ∗ ν). Hence, by (10.22),
for all ` ∈ Z+,

‖f ∗ ν(`)‖2 ∼
(∑
k≥1

‖(1kf ) ∗ ν(`)‖22
)1/2

. (10.23)
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Note that from the Zariski-density assumption for 0, no elements of L2
0(G) \ {0} are

0-invariant. Hence

(10.24) f → 0 (weakly) if f ∈ L2
0(G) with ‖f ‖2 = 1 satisfies (10.18) with ε→ 0.

Therefore we may assume
f =

∑
k≥k0

1kf (10.25)

where k0 = k0(ε)→∞ as ε→ 0.
Let `0 ∈ {2m} be fixed and sufficiently large (to be specified). From (10.18), (10.22),

(10.23) and (10.25), taking ε small enough we have

‖f ∗ ν(`0)‖2 > (1− ε)`0 > 1/2

and ∑
k>k0

‖1kf ∗ ν(`0)‖22 > c
∑
k≥k0

‖1kf ‖22 (10.26)

with c independent of `0. Therefore there is some k > k0 such that

F = 1kf

‖1kf ‖2 (10.27)

satisfies
‖F ∗ ν(`0)‖2 > c. (10.28)

Take ` ∼ k (to be specified). From (10.28),

‖F ∗ ν(`0`)‖2 > c`. (10.29)

Let δ = 4−k . Then, by (10.27), F ≈ F ∗ Pδ and (10.29) implies

‖F ∗ µ‖2 > c` (10.30)

where µ = ν(`0`) ∗ Pδ .
Fix τ > 0. If we take

`0` > C(τ) log
1
δ
,

hence

` >
C(τ)k

`0
, (10.31)

Proposition 11 gives
‖µ‖∞ < δ−τ . (10.32)

Rewrite (10.30) as ∫
G

∣∣∣∣∫
G

F(xg)µ(g) dg

∣∣∣∣2 dx > c2`,
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and hence by (10.32),

δ−2τ
∫
G

∣∣∣∣∫
G

F(xg)F (x) dx

∣∣∣∣ dg
≥
∫
G

∫
G

∣∣∣∣∫
G

F(xh−1g)F (x) dx

∣∣∣∣µ(g)µ(h) dg dh > c2`. (10.33)

Denoting F1(x) = F(x−1), it follows from (10.33) that

‖F1 ∗ F‖1 > c2`δ2τ > δC(τ)/`0+2τ . (10.34)

In order to obtain a contradiction, it will therefore suffice to apply

Lemma 10.35. Given c > 0, there is c′ > 0 such that if δ1 > 0 is small enough and
F1, F2 ∈ L2(G) satisfy ‖F1‖2 ≤ 1, ‖F2‖2 ≤ 1 and

‖F2 ∗ Pδ1‖2 < δc1, (10.36)

then
‖F1 ∗ F2‖1 < δc

′
1 . (10.37)

Indeed, by (10.27), F satisfies (10.36) with δ1 = 2−k/2 say and (10.37) contradicts
(10.34) by taking first τ small enough and then `0 large enough.

Returning to Lemma 10.35 for G = SU(d), note that it obviously fails for d = 1.
We will first establish the lemma for G = SU(2) and then derive the statement for

G = SU(d), d > 2.

Proof of Lemma 10.35 for G = SU(2). Denoting by T the convolution operator by F2
acting on L2(G), we have to prove that

‖T ‖ < δc
′

1 . (10.38)

It suffices to verify (10.38) for the action of T in the irreducible unitary representations of
SU(2), that is, on the spaces Wn = [zkwn−k; 0 ≤ k ≤ n] of homogeneous polynomials
on the unit sphere of C2. From the theory of induced representations (Frobenius’ theorem)
applied to the diagonal subgroup D = {

Rθ =
(
e2πiθ 0

0 e−2πiθ

); 0 ≤ θ < 1
}
, we see that

the IUR ofG are contained in one of the following two representations ρ0, ρ1 (depending
on n being even or odd).

(i) ρ0 is acting by right translation on the subspace V0 of L2(G) of functions that are left
invariant under the action of D. Thus f ∈ V0 if f (x) = f (Rθx) and f factors over
D \G ' S2. Equivalently, ρ0 may be seen as the representation of SO(3) on L2(S2)

by rotation.
(ii) ρ1 is acting by right translation on the subspace V1 of L2(G) of functions satisfying

f (Rθx) = eiθf (x). (10.39)
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To establish (10.38), we need to show that

‖T |V0‖ < δc
′

1 and ‖T |V1‖ < δc
′

1 . (10.40)

We consider the action on V1 (the case of V0 is analogous).
Let f ∈ V1, ‖f ‖2 = 1. We have to prove that ‖f ∗ F2‖2 < δc

′
1 . In view of (10.36),

we can assume that
‖f ∗ Pδ2‖2 < δ2 (10.41)

with δ2 = δc′1 . Write

‖Tf ‖22 =
∫
G×G

[∫
G

f (xy−1
1 )f (xy−1

2 ) dx

]
F(y1)F (y2) dy1 dy2 ≤

∥∥∥∥∫
G

f (x)f (x·) dx
∥∥∥∥

2
.

Squaring again and using that f ∈ V1, it follows that

‖Tf ‖42 ≤
∫
G×G×G

f (x)f (xy) f (x1)f (x1y) dx dx1 dy

=
∫
G×G×G

∫ 1

0
f (x)f (Rθxy) f (x1) f (Rθx1y) dx dx1 dy dθ

=
∫
G×G×G

f (x)f (y) f (x1)

[∫ 1

0
f (Rθx1x

−1R−θy) dθ
]
dx dx1 dy

and

‖Tf ‖82 ≤
∫
G

∥∥∥∥ ∫ 1

0
f (RθxR−θ ·) dθ

∥∥∥∥2

2
dx =

∫
D\G
‖Sxf ‖22 dx (10.42)

where we denoted

Szf (x) =
∫ 1

0
f (RθzR−θx) dθ. (10.43)

For z = (
r seiψ

−se−iψ r

)
, s 6= 0, the operator Sz acting on L2(G) is smoothing, since

〈RθzR−θ ; 0 ≤ θ ≤ 1〉 = G. In fact, geometrically if we identify G with the unit sphere
in C2 through the map g = (

v −w̄
w v̄

) 7→ (
v
w

)
, Sz is obtained by a circular average with

circle of radius s centered at
(
rv
rw

)
in the plane spanned by

(−w
v

)
and

(
iw
iv

)
.

In view of (10.41), we obtain (10.42) < δc2 and hence ‖Tf ‖2 < δ
cc′/8
1 . This proves

(10.40).
Next we treat the general case, using the result for d = 2.

Proof of Lemma 10.35 for G = SU(d), d > 2. Take a subgroup H of G, H ' SU(2),
considering for instance the embedding SU(2)→ SU(d) : h 7→∑2

i,j=1 hij ei⊗ej . Write

‖F1 ∗ F2‖1 =
∫
G

∣∣∣∣∫
G

F1(g)F2(g
−1x) dg

∣∣∣∣ dx
=
∫
G

∫
G

[∫
H

∣∣∣∣∫
H

F1(hg)F2(g
−1h−1yx) dh

∣∣∣∣ dy] dx dg. (10.44)
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Fixing x, g ∈ G, introduce the following functions ϕ1, ϕ2 on H :

ϕ1(y) = F1(yg), ϕ2(y) = F2(g
−1yx), (10.45)

for which the expression [ ] in (10.44) becomes∫
H

∣∣∣∣ ∫
H

ϕ1(h)ϕ2(h
−1y) dh

∣∣∣∣ dy = ‖ϕ1 ∗ ϕ2‖L1(H).

In order to reach the conclusion by applying Lemma 10.35 on H , it will suffice to bound
‖ϕ1 ∗ Pδ2‖L2(H) < δ

c1
1 , for some δ2 > δ1, log(1/δ2) ∼ log(1/δ1), in the mean over

x, g ∈ G (cf. (10.44)). Thus what is needed is an estimate of the form∫
G

∫
G

∫
H

∣∣∣∣ −∫
BH (1,δ2)

F2(g
−1y1yx) dy1

∣∣∣∣2 dy dx dg < δc1,

hence ∫
G

∫
G

∣∣∣∣ −∫
BH (1,δ2)

F2(g1yg2) dy

∣∣∣∣2 dg1 dg2 < δc1. (10.46)

Here BH (1, δ1) = {y ∈ H ; ‖1− y‖ < δ1}.
Rewrite (10.46) as∫

G

∫
G

−
∫
BH (1,2δ2)

F2(g2)F2(g1yg
−1
1 g2) dy dg1 dg2. (10.47)

Fix y ∈ BH (1, 2δ2), ‖1− y‖ > δ2
2 (the contribution of ‖1− y‖ ≤ δ2

2 to (10.47) is at most
O(δ3

2)). We obtain ∫∫
F2(g)F2(xg) η(dx) dg (10.48)

where η is the image measure 8[λG] under the map

8 = 8y : G→ G : g 7→ gyg−1. (10.49)

Next, writing η∗ for the image of η under x 7→ x−1, we have

|(10.48)|2 ≤
∫ ∣∣∣∣ ∫ F2(xg) η(dx)

∣∣∣∣2 dg ≤ ∫ ∣∣∣∣ ∫ F2(xg) (η ∗ η∗)(dx)
∣∣∣∣2 dg,

and similarly, for r ∈ Z+,

|(10.48)|2r ≤
∫ ∣∣∣∣ ∫ F2(xg) (η ∗ η∗)(r)(dx)

∣∣∣∣2 dg (10.50)

where η(r) = η ∗ · · · ∗ η (r-fold convolution).
Returning to 8, diagonalize y = ( eiθ 0

0 e−iθ
)
, δ2

2 < |θ | < 2δ2. Hence

8(y) = 1+ iθgvg−1 +O(θ2) (10.51)
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where v = e1 ⊗ e1 − e2 ⊗ e2 ∈ su(d) and

8(g1)
−18(g2)8(g3)

−1 · · ·8(g2r) = 1+iθ(−g1vg
−1
1 +g2vg

−1
2 · · ·+g2rvg

−1
2r )+O(θ2).

For r = r(d) large enough, the map

(g1, g2, . . . , g2r) 7→ −g1vg
−1
1 + g2vg

−1
2 − · · · + g2rvg

−1
2r

gives a smooth density on su(d). Hence (η∗η∗)(r) is a smooth density on B(1, C|θ |) ⊂ G(
with derivative estimates in terms of 1/|θ | < 1/δ2

2
)
.

Recall that F2 satisfies ‖F2 ∗ Pδ1‖2 < δc1. Taking for δ2 an appropriate power of δ1,
from the preceding we get

(10.50) = ‖(η ∗ η∗)(r) ∗ F2‖2
< ‖((η ∗ η∗)(r) ∗ Pδ1) ∗ F2‖2 +O(δ1δ

−2
2 )

< ‖(η ∗ η∗)(r)‖1‖Pδ1 ∗ F2‖2 +O(δ1δ
−2
2 ) < δc1 +O(δ1δ

−2
2 ) < δc

′
1 .

This proves (10.46) and Lemma 10.35. ut

11. Expansion in SU(d) (2)

It remains to show that there is no approximate group H satisfying (10.11)–(10.15).
Since H is a union of δ-balls, (10.14) is equivalent to

ν(`)(aH) > δ0+. (11.1)

Recall that ` ∼ log(1/δ). Writing, for k < `,

ν(`)(aH) =
∑
x

ν(`−k)(x)ν(k)(xaH),

it follows from (11.1) that for some x ∈ G,

ν(k)(xaH) > δ0+

and hence
ν(2k)(H.H) > δ0+. (11.2)

In particular, recalling Kesten’s bound [K] for random walks on F2,

|H.H ∩Wk| >
√

2
k

if 2k > (1/δ)0+. (11.3)

Denote by V ⊂ Matd×d(C) the real vector space of anti-Hermitian matrices of zero trace(
i.e. the Lie algebra ofG = SU(d)

)
, which is irreducible under the adjoint representation

of G and hence of its Zariski dense subgroup 0.
We make the following assumption on ν.
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Assumption (∗). There is ω > 0 such that for a proper subspace L of V and k large
enough, one has the estimate

ν(k)[g ∈ G; g−1Lg = L] < e−ωk. (11.4)

Let a ∈ V \ {0} and 2k > (1/δ)0+. Consider the increasing subspaces Ls of V defined by

L1 = span[a],

Ls+1 = span[g−1Lsg; g ∈ H.H ∩Wk].

Taking s such that Ls+1 = Ls = L, we find that g−1Lg = L for g ∈ H.H ∩ Wk and
(11.2), (11.4) imply that L = V . Since (H.H ∩ Wk)

(s) ⊂ H 2s ∩ Wsk , we proved that
under (∗), if a ∈ V \ {0} and L is a proper subspace of V , then, for 2k > (1/δ)0+, there
is g ∈ H ′ ∩Wk such that g−1ag 6∈ L.

Equivalently, if a, b ∈ V \ {0}, there is g ∈ H ′ ∩Wk such that

Tr g−1agb∗ 6= 0. (11.5)

Recalling that g1, g2 are algebraic, (11.5) implies the following quantitative statement
as a consequence of the effective Nullstellensatz (see Theorem 5.1 in [BY] and the com-
ment on its generalization to polynomials with coefficients in the ring of integers in a
fixed number field K , [K : Q] <∞).
Lemma 11.6. Assume (∗). If 2k > (1/δ)0+ and a, b ∈ V \ {0}, there is g ∈ H ′ ∩ Wk

such that
|Tr g−1agb∗| ≥ C−k‖a‖ ‖b‖ (11.7)

where C is some constant depending on the generators g1, g2 of 0.

Next, apply Corollary 10 to H.H ∩Wk and 2k > (1/δ)0+. We obtain

iξ ∈ V, ξjj = 0 (1 ≤ j ≤ d), ‖ξ‖ = 1 (11.8)

such that for δ0 > δ1 > 0, log(1/δ0) ∼ log(1/δ1) ∼ k,

dist
(

1+ t
∑

ξijηij (ei ⊗ ej ),H ′
)
< δ1+δ

1 ‖η‖ (11.9)

whenever 1+ η ∈ H ′, ‖η‖ < δ1 and t ∈ [0, δ0].
Note that η + η∗ = O(‖η‖2) and Tr η = O(‖η‖2) and hence there is an element

a ∈ V such that ‖η − a‖ . δ1‖η‖. Thus from (11.9),

dist
(

1+ t
∑

ξijaij (ei ⊗ ej ),H ′
)
< δ

1+γ
0 ‖η‖ for t ∈ [0, δ0]. (11.10)

We may further replace in (11.10) a by any conjugate g−1ag for g ∈ H ′. Take k0 ∼
log(1/δ0) and small enough to ensure that

C−k0 > δ
γ /2
0 (11.11)

where C is the constant from Lemma 11.6.
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Applying Lemma 11.6 with a as above and b = iξ̄ ∈ V (where ξ̄ij = ξji) gives some
g ∈ H ′ ∩Wk0 such that

max
i,j
|(g−1ag)ij ξij | &

∣∣∣∑
i,j

(g−1ag)ij ξij

∣∣∣ > C−k0‖η‖. (11.12)

Let ζ ∈ V with ‖ζ‖ = 1 be defined by normalization of ((g−1ag)ij ξij )1≤i,j≤d . Clearly,
from (11.10) and the preceding,

dist(1+ tζ,H ′) < δ
1+γ
0 ‖η‖ for t ∈ [0, δ0C

−k0‖η‖] (11.11)⊃ [0, δ1+γ /2
0 ‖η‖]. (11.13)

Again from Lemma 11.6, there are g1, . . . , gd1 ∈ H ′ ∩Wk0 (d1 = d2 − 1) such that

|det(g−1
s ζgs; 1 ≤ s ≤ d1)| > C

−k0
1 . (11.14)

Since in (11.13) we may replace ζ by conjugates g−1ζg with g ∈ H ′, it easily follows
from (11.14) that

dist(1+ tV ,H ′) < δ
1+γ
0 ‖η‖

for
t ∈ [0, δ0C

−k
1 ‖η‖] ⊃ [0, δ1+γ /2

0 ‖η‖]. (11.15)

Hence, we proved (redefining δ0 and γ )

Lemma 11.16. Let 1+ η ∈ H ′, ‖η‖ < δ1. Then

dist(1+ tV ,H ′) < δ
1+γ
0 ‖η‖ for t ∈ [0, δ0‖η‖]. (11.17)

Fix a small constant ε and let k = [ε log(1/δ)]. Thus δ0 = δε0 , δ1 = δε1 with ε0 ∼ ε1 ∼ ε
in Lemma 11.16.

The final step consists in using Lemma 11.16 to derive a contradiction on (10.16), i.e.

|H ′| < δγ−. (11.18)

Fix an element g1 = 1+η1 ∈ H.H ∩Wk1 ∩B(1, δ1), g1 6= 1, which by (11.3) is possible
for k1 < (1/d1) log(1/δ1). It follows that

δC1 < ‖η1‖ = t1 < δ1. (11.19)

From (11.17),
dist(1+ tV ,H ′) < δ

1+γ
0 t1 for t ∈ [0, δ0t1]. (11.20)

Hence, for any t2 ∈ [δ1+γ /2
0 t1, δ0t1], H ′ contains some element 1 + η with ‖η‖ ≈ t2.

Applying again Lemma 11.16 shows that

dist(1+ tV ,H ′) < δ
1+γ
0 t2 for t ∈ [0, δ0t2], (11.21)

and therefore H ′ contains elements 1+ η with ‖η‖ ≈ t3 for any t3 ∈ [δ1+γ /2
0 t2, δ0t2] and

hence any t3 ∈ [δ2(1+γ /2)
0 t1, δ

2
0 t1].
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After r steps, we see that H ′ contains elements 1 + η with ‖η‖ ≈ t for any t ∈
[δr(1+γ /2)0 t1, δ

r
0t1]. Taking r = [2/γ ] + 1, it follows that H ′ contains elements 1 + η

where ‖η‖ ≈ t , for any t ∈ [δ, δr0t1].
Another application of Lemma 11.16 implies that

dist(1+ tV ,H ′) < δ
γ

0 t for t ∈ [0, δ2] (11.22)

where
δ2 = δr+1

0 t1. (11.23)

We claim that
G ∩ B(1, δ2) ⊂ H ′. (11.24)

Then
|H ′| > δ

d1
2 > δ(ε0(r(γ )+1)+Cε1)d1 ,

contradicting (11.18) for ε small enough.

Proof of (11.24). Take g0 ∈ G ∩ B(1, δ2). Then g0 = 1 + η0 and there is a0 ∈ V such
that ‖a0 − η0‖ . δ2

2 . By (11.22), dist(1+ a0, H
′) < δ

γ

0 δ2 and we take h1 ∈ H ′ such that

‖g0h
−1
1 − 1‖ = ‖g0 − h1‖ . δ2

2 + δγ0 δ2 . δ
γ

0 δ2. (11.25)

Next, write g1 = g0h
−1
1 = 1+ η1 and take a1 ∈ V with ‖a1 − η1‖ . ‖a1‖2. By (11.22),

dist(1+ a1, H
′) < δ

γ

0 ‖a1‖ and we obtain h2 ∈ H ′ such that

‖g0h
−1
1 h−1

2 − 1‖ = ‖g1 − h2‖ . ‖a1‖2 + δγ0 ‖a1‖ . δ
2γ
0 δ2. (11.26)

Since H ′ is a union of δ-balls, a few iterations give the desired conclusion.
This completes the proof of the spectral gap, conditional on Assumption (∗).

12. Proof of Assumption (∗) for d = 3

Assume H ⊂ 0 and L a nontrivial subspace of V = su(d) satisfying

(12.1) ν(k)(H) > e−εk ,
(12.2) g−1Lg = L for g ∈ H ,

where in (12.1) we assume ε is a sufficiently small constant (depending on 0 and ν)
and k is large. Our purpose is to get a contradiction for d = 3. This will illustrate the
method in the simplest case. The argument in the general case is given in §14. Essential
use is made of the theory of random matrix products as developed by Furstenberg and
Guivarch. A treatment of this theory in the setting of general local fields appears in [A].

Recall that 0 ⊂ SU(k), where k is the algebraic closure of Q. We will consider V
and L as vector spaces over k, hence V = {g ∈ Matd×d(k); Tr g = 0}.
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(i) Exploiting the theory of random matrix products requires proximal elements. Fol-
lowing the approach of Tits [Tits] (see also [G]), proximal elements in a suitable setting
may be produced by passing to an appropriate local field.

Fix g0 ∈ 0 with eigenvalues (λj )1≤j≤d such that not all quotients λj/λj ′ are roots of
unity. If λj/λj ′ is not root of unity, there is a local field k ⊂ Kv such that v(λj/λj ′) 6= 1.
Hence

|{v(λj ); 1 ≤ j ≤ d}| ≥ 2.

For d = 3, either

v(λ1) > v(λ2) > v(λ3) (12.3)

or

v(λ1) = v(λ2) > v(λ3) (12.4)

(if v(λ1) > v(λ2) = v(λ3), replace g0 by g−1
0 ).

Denote by ρ the adjoint representation on V .
If (12.3) holds, the representation ρ|0 on V ⊗ Kv has ρg0 as proximal element and

since it is totally irreducible (by the Zariski-density assumption), random matrix product
theory implies that (12.1), (12.2) are not compatible for ε > 0 small enough.

Thus we may assume that the situation (12.3) cannot be realized for any g ∈ 0.

(ii) Consider the representation of 0 on
∧2
(V ⊗Kv), which we also denote ρ.

If e1, e2, e3 diagonalizes g0, g0ei = λiei (1 ≤ i ≤ 3), the eigenvector

ξ = (e3 ⊗ e1) ∧ (e3 ⊗ e2) (12.5)

of ρg0 has dominant eigenvalue λ2
1/λ

2
3, by (12.4).

Denote

S = spank[ρg(ξ); g ∈ 0], (12.6)

a subspace of
∧2

V . The restriction of ρ to S is totally irreducible. Otherwise, there
would be a proper subspace S1 of S which is invariant under a finite index subgroup 01
or 0. Hence S1 ⊗ C would be invariant for ρg , g ∈ 0̄1 = Zariski closure of 01. Since
0̄ = SLd(C) and 0̄1 is a finite index subgroup of 0̄, it follows that 0̄1 = SLd(C). In
particular S1 is 0-invariant, hence S1 = S. Also

S ⊗ C = spanC[ρg(ξ); g ∈ SLd(C)]. (12.7)

Since ρ restricted to S⊗Kv has a proximal element, it follows again from random matrix
product theory and (12.1) that

S = span[ρg(η); g ∈ H ] for any η ∈ S \ {0}. (12.8)

We used here that the probabilistic estimates depend on ν but not on the vector η.
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(iii) The space
∧2

V decomposes as∧2
V =∧2

L⊕∧2
L⊥ ⊕ (L ∧ L⊥) = S1 ⊕S2 ⊕W (12.9)

and by (12.2), each of the components is invariant under ρg for g ∈ H . Take an element
g1 ∈ H such that not all quotients of its eigenvalues are roots of unity (this is certainly
possible, since log |H ∩Wk| ∼ k). Arguing as in (i) and since case (12.3) was ruled out,
we are in the situation (12.4) (in some local field Kw). Consider the representation on∧2
(V ⊗ Kw) as in (ii). Note that if X is a subspace of

∧2
V invariant under ρg1 , then

its eigenvector (e′3 ⊗ e′1) ∧ (e′3 ⊗ e′2) with top exponent will either be orthogonal to X or
belong to X⊗Kw, hence to X.

Therefore, considering the decomposition (12.9), it follows that (e′3⊗ e′1)∧ (e′3⊗ e′2)= η belongs to one of the spaces S1,S2 or W. Also, by (12.7), S contains any element
of the form (x ⊗ y) ∧ (x ⊗ z) with x, y, z ∈ k3 and 〈x, y〉 = 0 = 〈x, z〉. In particular
η ∈ S and it follows from (12.8) that S is contained in one of the spaces S1,S2 or W.

There are now three cases to consider.

Case I: S ⊂ ∧2
L. Since (x ⊗ y) ∧ (x ⊗ z) ∈ ∧2

L for all x, y, z ∈ k3 with 〈x, y〉 =
0 = 〈x, z〉, it follows that x ⊗ y ∈ L whenever x, y ∈ k3 and 〈x, y〉 = 0. Therefore
L = V , a contradiction.

Case II: S ⊂∧2
L⊥. The same argument as in Case I applies.

Case III: S ⊂ L ∧ L⊥. Note that if a, b ∈ V and a ∧ b ∈ L ∧ L⊥, then L and L⊥ each
contain a nontrivial linear combination of a and b.

Assume dimL ≤ dimL⊥, hence dimL ≤ 4. Considering the sectors (x⊗y)∧(x⊗z)
∈ L ∧ L⊥, it follows from the preceding that for each x ∈ k3, there is some x′ 6= 0 with
〈x, x′〉 = 0 such that

x ⊗ x′ ∈ L. (12.10)

Our next aim is to show that (12.10) forces dimL ≥ 5, hence again a contradiction.
Consider the real algebraic variety

� = {(x, y) ∈ C3 × C3; 〈x, y〉 = 0 and x ⊗ y ∈ L⊗ C} (12.11)

(an intersection of quadrics).
By (12.10), we may introduce a real-analytic function ϕ : O → C3 \ {0}, O ⊂ C3

some open set, such that for all x ∈ O,

(12.12) 〈x, ϕ(x)〉 = 0,
(12.13) x ⊗ ϕ(x) ∈ L⊗ C.

We distinguish two further cases.

(a) ϕ has 2-dim range (over C). If Imϕ ⊂ [e1, e2], then necessarily, for x = x1e1 +
x2e2 + x3e3, ϕ(x) is parallel to −x̄2e1 + x̄1e2 by (12.12), implying

(x1e1 + x2e2 + x3e3)⊗ (−x̄2e1 + x̄1e2) ∈ L⊗ C (12.14)

for all x ∈ O and hence for all x ∈ C3.
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Since the functions x2
1 , x

2
2 , x1x2, x1x3, x2x3 are linearly independent,

e1 ⊗ e2, e2 ⊗ e1, e1 ⊗ e1 − e2 ⊗ e2, e3 ⊗ e2, e3 ⊗ e1 ∈ L
and dimL ≥ 5.

(b) ϕ has 3-dim range. We may clearly find elements x1, x2, x3, x4, x5 ∈ O such
that for each triplet {i, j, k} ⊂ {1, 2, 3, 4, 5} of distinct integers, each of the systems
{xi, xj , xk} and {ϕ(xi), ϕ(xj ), ϕ(xk)} consists of linearly independent vectors.

We claim that {xi ⊗ ϕ(xi); i = 1, . . . , 5} are linearly independent, which can be seen
as follows. Fix an index i = 1. From our assumptions, there is T ∈ L(C3,C3) such that
T x2 = T x3 = 0 and 〈T x1, ϕ(x1)〉 6= 0, 〈T x1, ϕ(x4)〉 = 0 = 〈T x1, ϕ(x5)〉. Hence

〈T x2, ϕ(x2)〉 = 0 = 〈T x3, ϕ(x3)〉
and writing

x4 = a4x1 + b4x2 + c4x3, x5 = a5x1 + b5x2 + c5x3,

we get
〈T x4, ϕ(x4)〉 = a4〈T x1, ϕ(x4)〉 = 0 = 〈T x5, ϕ(x5)〉.

This completes the proof of the main theorem for SU(3).

13. Lemmas on linear independence

Lemma 13.1. Let 1 ≤ k ≤ d and ϕ1, . . . , ϕk be continuous complex, linearly indepen-
dent functions on Cd . Then

dim[xiϕj (x); 1 ≤ i ≤ d and 1 ≤ j ≤ k] ≥ k
(
d − k − 1

2

)
, (13.2)

where xiϕj (x) are viewed as functions on Cd .

Proof. The proof is by induction on d. Denote by e1, . . . , ed the unit vector basis of Cd .
Take k1 ≤ k. Since ϕ1, . . . , ϕk1 are linearly independent functions, there are ξ1, . . . , ξk1

∈ Cd such
det [ϕj (ξj ′)]1≤j,j ′≤k1 6= 0. (13.3)

By a linear transformation, we may assume that ξ1, . . . , ξk1 ∈ [e1, . . . , ek1 ] and hence
ϕj |[e1,...,ek1 ] (1 ≤ j ≤ k1) are linearly independent.

We distinguish two cases.

Case 1: k = d . Taking k1 = d − 1, we can assume that ϕj |[e1,...,ed−1](1 ≤ j ≤ d − 1) are
linearly independent. Denote x′ = x′1e1 + · · · + x′d−1ed−1.

From the induction hypothesis, there is a subset � ⊂ {(i, j); 1 ≤ i, j ≤ d − 1} such
that |�| ≥ d(d − 1)/2 and (x′iϕj (x

′))(i,j)∈� are linearly independent functions of x′. We
claim that

(xiϕj (x))(i,j)∈� ∪ (xdϕj (x))1≤j≤d
are linearly independent, which will imply that dim[xiϕj (x)] ≥ d(d − 1)/2+ d.
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Suppose the claim fails. Then there is a nontrivial linear combination

∑
(i,j)∈�

aijxiϕj (x)+
d∑
j=1

adjxdϕj (x) = 0.

Setting xd = 0, we get∑
(i,j)∈�

aijx
′
iϕj (x

′) = 0, hence aij = 0 for (i, j) ∈ �.

Therefore xd
∑d
j=1 adjϕj (x) = 0 and

∑d
j=1 adjϕj (x) = 0, since the ϕj are continuous.

Hence, also adj = 0, a contradiction.

Case 2: k < d. Take k1 = k and argue as above to obtain

dim[xiϕj (x)] ≥ k
(
d − 1− k − 1

2

)
+ k = k

(
d − k − 1

2

)
.

This proves the lemma. ut
Remark. The assumption that the ϕj are continuous in Lemma 13.1 cannot be dropped.
Take, for instance, a basis e1, . . . , ed and define

ϕj (ej ) = 1, ϕj (x) = 0 if x 6= ej .

Since xiϕj = δijϕj , dim[xiϕj ; 1 ≤ i, j ≤ d] = d.

Lemma 13.4. Let 1 ≤ k ≤ d − 1 and ϕ : O → Gd,k , O ⊂ Cd some open set, a
continuous map satisfying ϕ(x) ⊂ [x]⊥. Then

dim[x ⊗ ϕ(x); x ∈ O] ≥ (k + 1)d − 1. (13.5)

Proof. One may clearly choose a subspace E of Cd such that dimE = d − k + 1 and

(13.6) dim[ϕ(x) ∩ E] = 1,
(13.7) ProjE⊥ϕ(x) = E⊥,

for x ∈ O. Hence

dim[x ⊗ ϕ(x)] ≥ dim[x ⊗ (ϕ(x) ∩ E)]+ dim[x ⊗ PE⊥ϕ(x)] = (13.8)+ d(k − 1).

Introduce a continuous function ψ : O → Cd \ {0} such that ψ(x) ∈ ϕ(x) ∩ E, hence
〈x,ψ(x)〉 = 0. Since clearly dim[ψ1, . . . , ψd ] ≥ 2, application of Lemma 13.1 with
k = 2 gives

(13.8) ≥ dim[x ⊗ ψ(x)] ≥ 2k − 1

This proves Lemma 13.4.
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14. Assumption (∗) (general case)

Following the preceding analysis for d = 3, we may introduce the set D of all (d+, d−) ∈
{1, . . . , d − 1}2 for which there is g ∈ 0 and a local field Kv such that the exponents of
g may be ordered as

v(λ1) = · · · = v(λd+) > v(λd++1) ≥ · · · > v(λd−d−+1) = · · · = v(λd) (14.1)

where d+, d− < d, as we assume v(λi) (1 ≤ i ≤ d) are not all equal and d+ + d− ≤ d .
Fixing a configuration (d+, d−) ∈ D, we obtain a proximal representation by consid-

ering the extension of the adjoint representation to the exterior power∧D
(V ⊗Kv) (14.2)

where D = d+d−. The proximal vector is given by

ξ = ∧
1≤i≤d+

d−d−<j≤d

(ei ⊗ ej ) (14.3)

in a suitable orthonormal basis {e1, . . . , ed}; the eigenvalue is (λ1/λd)
D .

Denote
S = spank[ρg(ξ); g ∈ 0], (14.4)

a subspace of
∧D

V . Again from Zariski density of 0 in SLd(C),

S ⊗ C = spanC[ρg(ξ); g ∈ GLd(C)] (14.5)

and 0 acts strongly irreducibly on S.
From random matrix product theory, also

S = span[ρg(η); g ∈ H ] for any η ∈ S \ {0} (14.6)

provided H satisfies
ν(k)(H) > e−εk (14.7)

with k large enough and ε small enough.
Assume we are given a nontrivial subspace L of V satisfying

ρg(L) = L for g ∈ H. (14.8)

The space
∧D

V decomposes as the direct sum∧D0 L ∧∧D1 L⊥ (14.9)

where D0 + D1 = D. Note also that since L was obtained as complexification of a
subspace of su(d), we have L = L∗.

Taking some element g ∈ H which has the property that its eigenvalue quotients
are not all roots of unity and considering an appropriate valuation, we obtain some type
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(d+, d−) ∈ S with expanding vector η ∈ ∧D
V of the type (14.3). Note that we may

always assume that d+ ≥ d− since g may be replaced by g−1.
Since the components of the decomposition (14.9) are g-invariant, we conclude that

η ∈∧D0 L ∧∧D1 L⊥ (14.10)

for some D0,D1 with D = D0 +D1. By (14.6),

S ⊂∧D0 L ∧∧D1 L⊥. (14.11)

We also note that from (14.5), S ⊗ C contains any element of the form∧
1≤i≤d+
1≤j≤d−

(xi ⊗ yj ) (14.12)

where {x1, . . . , xd+ , y1, . . . , yd−} are orthogonal vectors in Cd (for the Hermitian inner
product).

By (14.11), it follows that L (respectively L⊥) will contain D0 (respectively D1)
linearly independent elements from

span[xi ⊗ yj ; 1 ≤ i ≤ d+, 1 ≤ j ≤ d−]. (14.13)

Note that ifD1 = 0, then obviously L contains (14.13) and hence any element x⊗y with
〈x, y〉 = 0. Thus L = V = {x ∈ Matd×d(C); Tr x = 0} would be trivial.

Hence we assume D0,D1 ≥ 1.
It follows from (14.13) that, given orthogonal subspaces E+, E− of Cd , dimE+ =

d+, dimE− = d−,

dim(L ∩ (E+ ⊗ E−))+ dim(L⊥ ∩ (E+ ⊗ E−)) = dim(E+ ⊗ E−). (14.14)

Hence

dim ProjL(E+ ⊗ E−)+ dim ProjL⊥(E+ ⊗ E−) = dim(E+ ⊗ E−). (14.15)

Denoting F0 = ProjL(E+⊗E−), F1 = ProjL⊥(E+⊗E−), clearly E+⊗E− ⊂ F0 +F1
and (14.15) implies E+ ⊗ E− = F0 + F1. Therefore

ProjL(E+ ⊗ E−) ⊂ E+ ⊗ E−, ProjL⊥(E+ ⊗ E−) ⊂ E+ ⊗ E−. (14.16)

Next, let x, y ∈ Cd \ {0}, 〈x, y〉 = 0. From (14.16),

ProjL(x ⊗ y) ∈
⋂
x∈E+
y∈E−

(E+ ⊗ E−) ≡ Sx,y ⊂ V. (14.17)

Assume d+, d− ≥ 2.
We claim that Sx,y = [x ⊗ y]. For if T ∈ Sx,y , we have

Im T ⊂
⋂
E−, (14.18)



A spectral gap theorem in SU(d) 1509

where E− ranges over all d−-dimensional subspaces of [x]⊥ such that y ∈ E−. Since
d+ ≥ 2 we have d− < d − 1 and (14.18) = [y].

Similarly, since T ∗ ∈⋂x∈E+,y∈E−(E− ⊗ E+), it follows that

(Ker T )⊥ = Im T ∗ ⊂ [x].

Hence T ∈ [x ⊗ y], proving the claim.
Thus

ProjL(x ⊗ y) ∈ [x ⊗ y] and ProjL⊥(x ⊗ y) ∈ [x ⊗ y],

implying that

x ⊗ y ∈ L if ProjL(x ⊗ y) 6= 0, (14.19)

and similarly for L⊥.
Fixing orthogonal vectors e, e′ ∈ Cd \ {0}, either ProjL(e⊗ e′) 6= 0 or ProjL⊥(e⊗ e′)

6= 0. If ProjL(e ⊗ e′) 6= 0, clearly ProjL(x ⊗ y) 6= 0 for x ∈ U , y ∈ U ′, 〈x, y〉 = 0, with
U (resp. U ′) some neighborhood of e (resp e′). From (14.19),

(U ⊗ U ′) ∩ V ⊂ L, (14.20)

which is easily seen to imply that V = L, a contradiction.
It remains to consider the case d+ = 1 (and similarly d− = 1).
Taking E+ = [x], x ∈ Cd \ {0}, it follows from (14.14) that given any subspace

E− of [x]⊥ with dimE− = d−, there is a decomposition E− = W0 + W1 such that
x ⊗W0 ⊂ L, x ⊗W1 ⊂ L⊥. Therefore clearly, for given x ∈ Cd \ {0},

dim(L ∩ (x ⊗ [x]⊥))+ dim(L⊥ ∩ (x ⊗ [x]⊥)) = d − 1. (14.21)

Specifying k0 = dim(L ∩ (x ⊗ [x]⊥)), k1 = dim(L⊥ ∩ (x ⊗ [x]⊥)) for x restricted to
some open subset O ⊂ Cd , Lemma 13.4 in §13 implies

dimL ≥ (k0 + 1)d − 1 and dimL⊥ ≥ (k1 + 1)d − 1,

and hence, by (14.21),

d2 − 1 ≥ (d + 1)d − 2,

giving a contradiction and completing the proof of the main theorem.
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