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Abstract. We give a new perspective on the homological characterisations of amenability given
by Johnson & Ringrose in the context of bounded cohomology and by Block & Weinberger in
the context of uniformly finite homology. We examine the interaction between their theories and
explain the relationship between these characterisations. We apply these ideas to give a new proof
of non-vanishing for the bounded cohomology of a free group.

We will illuminate the relationship between the following two remarkable characterisa-
tions of amenability for a group.

Theorem (Johnson–Ringrose, [5]). A group G is amenable if and only if

H 1
b (G, (`

∞(G)/C)∗) = 0.

Theorem (Block–Weinberger, [1]). A group G is amenable if and only if H uf
0 (G) 6= 0.

It should be noted that both statements are part of a much larger picture. In the first theo-
rem H 1

b (G, (`
∞(G)/C)∗) denotes the bounded cohomology with coefficients in the dual

of `∞(G)/C. Vanishing of the cohomology is guaranteed by the triviality of a particu-
lar cocycle, the Johnson class [J ], defined below. Furthermore this ensures triviality of
bounded cohomology with any coefficients in dimensions greater than or equal to 1. In the
second theoremH uf

0 (G) denotes the uniformly finite homology of Block and Weinberger.
Vanishing of the zero-dimensional homology group is guaranteed by the triviality of a
fundamental class. (Analogous results concerning `p homology and c0 homology were
considered by Elek in [4] who introduced the attractive technology of binary schemes as a
generalisation of the Block–Weinberger method to kill 0-cycles in a non-amenable graph.
We are grateful to the referee for drawing our attention to this paper.)

It should also be noted that the notion of amenability and the definition of uniformly
finite homology can be extended from groups to arbitrary metric spaces, and the Block–
Weinberger theorem applies in full generality. However there is no natural analog for the
Johnson and Ringrose theorem in that context. We examine this issue further in [2] where
we define a cohomology (analogous to bounded cohomology) for a metric space. We
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use it there to give a generalisation of the Johnson–Ringrose theorem characterising Yu’s
property A, which is the natural generalisation of amenability in the context of coarse
geometry.

Here we give a short, unified proof of the Johnson–Ringrose and Block–Weinberger
theorems by exploiting duality and the short exact sequence of coefficients

0→ C ι
−→ `∞(G)

π
−→ `∞(G)/C→ 0.

The interaction between the two theories arises from a pairing between homology and
cohomology.

It is well known that the free group of rank at least 2 is non-amenable and therefore ac-
cording to Johnson and Ringrose the class [J ] is non-zero. As an application of the duality
principle we demonstrate this non-vanishing by pairing J with an explicit `1-cycle. This
construction should be compared with the argument in [6] for the linear independence of
the Brooks cocycles in the bounded cohomology of a surface.

Recall the following definition.

Definition. A mean on a group G is a positive linear functional µ on `∞(G) such that
‖µ‖ = 1. A group G is amenable if it admits a G-invariant mean.

Recall that for a Banach space V equipped with an isometric action of a group G,
Cmb (G, V

∗) denotes the G-module of equivariant bounded cochains φ : Gm+1
→ V ∗.

(Here bounded is defined by the Banach norm on the dual space V ∗.) This yields a cochain
complex (Cmb (G, V

∗), d) where d denotes the natural differential induced from the ho-
mogeneous bar resolution:

dφ(g0, . . . , gm+1) =

m+1∑
i=0

(−1)iφ(g0, . . . , ĝi, . . . , gm+1).

(As usual ĝi denotes the omission of the entry indexed i.)
The cohomology of this complex is the bounded cohomology of the group with co-

efficients in V ∗, denoted H ∗b (G, V
∗). For V = `∞(G)/C there is a particular class in

dimension 1 detecting amenability which we will call the Johnson element. This is repre-
sented by the function

J (g0, g1) = δg1 − δg0 ,

where δg denotes the Dirac delta function supported at g. Note that J (g0, g1) lies in the
predual `1

0(G) of V , which we view as a subspace of V ∗.
Now consider the chain complex (C`

1

m (G, V ), ∂), where C`
1

m (G, V ) consists of equiv-
ariant functions c : Gm+1

→ V which are `1 on the subspace {e} × Gm. The boundary
map is defined by

∂c(g0, . . . , gm−1) =
∑

g∈G, i∈{0, ...,m}

(−1)ic(g0, . . . , gi−1, g, gi, . . . , gm−1).

The homology of this complex is the `1-homology of the group with coefficients in V ,
denoted H `1

∗ (G, V ).
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We note that the pairing of V ∗ with V , denoted 〈−,−〉V , induces a pairing of
Hm
b (G, V

∗) with H `1

m (G, V ) defined by

〈[φ], [c]〉 =
∑

g1,...,gm∈G

〈φ(e, g1, . . . , gm), c(e, g1, . . . , gm)〉V .

It is clear that the pairing is defined at the level of cochains. It is well defined on classes
since the differential d is the adjoint of the boundary map ∂ .

The proof of the following result is a standard application of the snake lemma:

Proposition. The short exact sequence of G-modules 0 → C ι
−→ `∞(G)

π
−→ `∞(G)/C

→ 0 induces a short exact sequence of chain complexes

0→ C`
1

m (G,C)
ι
−→ C`

1

m (G, `
∞(G))

π
−→ C`

1

m (G, `
∞(G)/C)→ 0

and hence a long exact sequence of `1-homology groups.

The short exact sequence of G-modules 0 → (`∞(G)/C)∗ π∗

−→ `∞(G)∗
ι∗

−→ C → 0
induces a short exact sequence of cochain complexes

0→ Cmb (G, (`
∞(G)/C)∗) π∗

−→ Cmb (G, `
∞(G)∗)

ι∗

−→ Cmb (G,C)→ 0

and hence a long exact sequence of bounded cohomology groups. ut

Now we consider the Block–Weinberger uniformly finite homology. The definition in [1]
works for an arbitrary metric space, however we will restrict attention to the case of a
countable discrete group G, where the group is equipped with a proper left invariant
metric d, which simplifies the definition.

Let Cuf
q (G,C) denote the vector space of complex valued functions c : Gq+1

→ C
which are bounded, and have controlled support in the sense that there is a constant K
(depending on the function c) such that if diam{g0, . . . , gq} ≥ K then c(g0, . . . , gq) = 0.
Again the boundary map ∂ on the homogeneous bar resolution induces the differential
∂ : Cuf

q (G,C) → Cuf
q−1(G,C). The uniformly finite homology of G is the homology

of this chain complex. Let 1 denote the constant function with value 1 ∈ C. Block and
Weinberger showed that the fundamental class [1] in degree 0 is non-trivial if and only if
G is amenable [1, Theorem 3.1].

In fact the uniformly finite homology coincides with the classical group homology
Hq(G, `

∞(G)), with coefficients in the module of bounded complex valued functions
on G. The corresponding chain complex consists of equivariant functions from Gq+1 to
`∞(G)which are supported on finitely manyG-orbits. To see that the two homologies co-
incide we note that a cochain c ∈ Cuf

q (G,C) can be inflated to a map c : Gq+1
→ `∞(G)

by setting c(g0, . . . , gq)(g) = c(g−1g0, . . . , g
−1gq). This function is, by construction,

equivariant and the controlled support condition ensures that c is supported on finitely
manyG-orbits. It is easy to see that this process is invertible. Since the differentials in both
complexes are induced from the homogeneous bar resolution, this map is an isomorphism
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between the chain complexes, hence we may identifyH uf
q (G,C)withHq(G, `∞(G)). We

note that 1 = ι1.
The function 1 represents classes in all of the following objects:H 0

b (G,C),H0(G,C),
H `1

0 (G,C). The above identification shows that the Block–Weinberger fundamental class
is ι[1] ∈ H0(G, `

∞(G)). The Johnson class is d[1] ∈ H 1
b (G, (`

∞(G)/C)∗), where d
denotes the connecting map H 0

b (G,C) → H 1
b (G, (`

∞(G)/C)∗). To see this, note that
d[1] is obtained by lifting 1 to the element g 7→ δg in C0

b(G, (`
∞(G))∗) and taking the

coboundary. This produces the Johnson cocycle J (g0, g1) = δg1 − δg0 . By exploiting
the connecting maps arising in the proposition together with these observations we will
obtain a new proof that G is amenable if and only if the Johnson cocycle in bounded co-
homology vanishes, and that this is equivalent to non-vanishing of the Block–Weinberger
fundamental class.

We now turn to the statement and proof of our main theorem. We first observe that
the non-vanishing of H 0

b (G, `
∞(G)∗) is equivalent to amenability since elements of

H 0
b (G, `

∞(G)∗) are maps φ : G → `∞(G)∗ which are G-equivariant and also, since
they are cocycles, constant on G. Hence the value of a cocycle φ at any (and hence all)
g ∈ G is a G-invariant linear functional on `∞(G). If φ is non-zero then taking its ab-
solute value and normalising we obtain an invariant mean on the group. Conversely, any
invariant mean on the group is an invariant linear functional on `∞(G) and hence gives a
non-zero element of H 0

b (G, `
∞(G)∗).

Theorem 1. Let G be a countable discrete group. The following are equivalent:

(1) G is amenable.
(2) ι∗ : H 0

b (G, `
∞(G)∗)→ H 0

b (G,C) is surjective.
(3) The Johnson class d[1] vanishes in H 1

b (G, (`
∞(G)/C)∗).

(4) 〈d[1], [c]〉 = 0 for all [c] in H `1

1 (G, `
∞(G)/C). (Hence for a non-amenable group,

the non-triviality of d[1] is detected by the pairing.)
(5) ι[1] ∈ H `1

0 (G, `
∞(G)) is non-zero.

(6) The Block–Weinberger fundamental class ι[1] ∈ H0(G, `
∞(G)) is non-zero.

Proof. (1)⇒(2) since H 0
b (G,C) = C, and for µ an invariant mean, ι∗[µ] = [1].

(2)⇔(3): By exactness, surjectivity of ι∗ is equivalent to vanishing of d , hence in
particular this implies d[1] = 0. The converse follows from the fact that [1] generates
H 0
b (G,C), so if d[1] = 0 then d = 0 and ι∗ is surjective.

The implication (3)⇒(4) is trivial.
(4)⇒(5): (4) is equivalent to 〈[1], ∂[c]〉 = 0 for all [c] in H `1

1 (G, `
∞(G)/C) by

duality. We note that the space of 0-cycles in C`
1

0 (G,C) is C, and that the pairing of the

class [1] in H 0
b (G,C) with the class [1] in H `1

0 (G,C) is 〈[1], [1]〉 = 1. Hence [1] ∈

H `1

0 (G,C) is not a boundary. Thus H `1

0 (G,C) = C and the pairing with H 0
b (G,C) is

faithful so 〈[1], ∂[c]〉 = 0 for all [c] implies ∂ = 0. From this we deduce that ι is injective
by exactness, hence we have (5): ι[1] is non-zero.
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(5)⇒(6) since ι[1] ∈ H `1

0 (G, `
∞(G)) is the image of the fundamental class in

H0(G, `
∞(G)) under the forgetful map.

(6)⇒(1): We use an argument due to Nowak. Let δ : C0(G, `1(G))→ C1(G, `1(G))

denote the restriction of d : C0(G, `∞(G)∗)→ C1(G, `∞(G)∗). This is the predual of ∂ .
First we note that δ is not bounded below, since if it were then ∂ = δ∗ would be surjective
and H0(G, `

∞(G)) would vanish, giving ι[1] = 0, which is a contradiction.
The fact that δ is not bounded below is precisely the Reiter condition for amenability.

ut

As an example of this approach we give a proof of non-amenability for a non-abelian
free group Fn by constructing an explicit element [c] ∈ H `1

1 (Fn, `
∞(Fn)/C) for which

〈d[1], [c]〉 6= 0.
Let Fn be a non-abelian free group with free basis s1, . . . , sn, and let S =

{s±1
1 , . . . , s±1

n }. Let 0 denote the Cayley graph of Fn with respect to this generating set.
0 is a tree and the action ofG on 0 extends to the Gromov boundary. We choose a point p
in the Gromov boundary of 0.

For a generator s ∈ S we set c(e, s)(g) = 1 if (e, s) is the first edge on the geodesic
from e to gp and set c(e, s)(g) = 0 otherwise. Extending the definition by equivariance
we obtain a function c defined on the edges of 0 with values in `∞(Fn) and this represents
an element ĉ ∈ `∞(Fn)/C.

Now consider ∂c(e) =
∑
s∈S c(s, e)− c(e, s). For a given g exactly one of the edges

(e, s), s ∈ S, is the first edge on the geodesic [e, gp], so the sum
∑
s∈S c(e, s) is the

constant function 1 on Fn. On the other hand for a generator s, c(s, e)(g) = 1 if and only
if the edge (s, e) is the first edge on the geodesic from s to gp. For a given g ∈ Fn there
is a unique s ∈ S which lies on the geodesic from e to gp, and this is the only one for
which the corresponding term of the sum

∑
s∈S c(s, e) takes the value 0, so this sum is

the constant function (2n− 1)1.
Hence ∂c(e) = (2n− 1)1− 1 = (2n− 2)1. Now by equivariance ∂c(g) = (2n− 2)1

for all g, hence ∂ĉ vanishes in `∞(Fn)/C, and therefore ĉ represents an element in
H `1

1 (Fn, `
∞(Fn)/C).

We now compute the pairing 〈d[1], [̂c]〉:

〈d[1], [̂c]〉 = 〈[1], ∂ [̂c]〉 = 〈[1], [∂c]〉 = 〈[1], (2n− 2)[1]〉 = 2n− 2.

Hence Fn is not amenable for n > 1.
We conclude by noting that amenability is also equivalent to vanishing of the Johnson

class as an element of the classical group cohomology H 1(G, (`∞(G)/C)∗). To see this,
replace the pairing of H 1

b (G, (`
∞(G)/C)∗) and H `1

1 (G, `
∞(G)/C) in the proof of The-

orem 1 with the standard pairing of H 1(G, (`∞(G)/C)∗) and H1(G, `
∞(G)/C), hence

deducing that vanishing of the Johnson element in H 1(G, (`∞(G)/C)∗) implies non-
vanishing of the Block–Weinberger fundamental class. Hence we obtain the following
theorem.
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Theorem 2. Let G be a countable discrete group. The following are equivalent:

(1) G is amenable.
(2) [1] lies in the image of i∗ : H 0(G, `∞(G)∗)→ H 0(G,C).
(3) The Johnson class d[1] vanishes in H 1(G, (`∞(G)/C)∗).
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