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Abstract. We improve and subsume the conditions of Johansson and Öberg [18] and Berbee [2]
for uniqueness of a g-measure, i.e., a stationary distribution for chains with complete connections.
In addition, we prove that these unique g-measures have Bernoulli natural extensions. In particular,
we obtain a unique g-measure that has the Bernoulli property for the full shift on finitely many
states under any one of the following additional assumptions.

(1)
∑
∞
n=1(varn log g)2 <∞,

(2) For any fixed ε > 0,
∑
∞
n=1 e

−(1/2+ε)(var1 log g+···+varn log g)
= ∞,

(3) varn log g = o(1/
√
n) as n→∞.

That the measure is Bernoulli in the case of (1) is new. In (2) we have an improved version of
Berbee’s [2] condition (concerning uniqueness and Bernoullicity), allowing the variations of log g
to be essentially twice as large. Finally, (3) is an example that our main result is new both for
uniqueness and for the Bernoulli property.

We also conclude that we have convergence in the Wasserstein metric of the iterates of the
adjoint transfer operator to the g-measure.

Keywords. Bernoulli measure, g-measure, chains with complete connections

1. Introduction

Let S be a countable set. Let Z+ = {0, 1, 2, . . .}, Z = {. . . ,−1, 0, 1, 2, . . .}, X = SZ,
X+ = SZ+ and X− = SZ\Z+ . For each n ∈ Z, a bi-infinite sequence x ∈ X gives
a one-sided infinite sequence x(n) = (x−n, x−n+1, . . .) in X+. Moreover, the stochastic
process {x(n)}n∈Z has the Markov property for any distribution of x in M(X), where
M(X) denotes the Borel probability measures onX, with respect to the product topology
on X.
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Let g ≥ 0 be a continuous function on X+ such that∑
x0∈S

g(x0x) = 1, x ∈ X+. (1.1)

A distribution µ ∈M(X) of x ∈ X is a g-chain if

µ(x(n)|x(n−1)) = g(x(n)) (1.2)

for all n ≥ 0. Thus, the process depends on the past according to the g-function. Note
that the distribution of a g-chain is uniquely determined by the distribution µ◦ (x(0))−1

∈

M(X+) of its “initial” value x(0).
If g depends only on the choice of the new state then we have an i.i.d. process, and

if g depends on the new state and the previous one, then we have a Markov chain on the
countable set S. If we have dependence on the k previous states, before moving to the
new state, we have a k-chain, and if there is no such restriction on the dependence, we
have a chain with complete, or infinite, connections.

In this paper, we will restrict our attention to the case when S is a finite set and g > 0.
A stationary measure for our process is sometimes called a g-measure (see Keane [22],
who introduced this notion in ergodic theory). Important contributions were also provided
by Ledrappier [23], who in particular showed that g-measures are equilibrium states, and
Walters [26], who connected the theory of g-measures with the transfer operator theory
for general potentials. The theory has also had a long, but slightly different appearance in
the probability theory of chains with complete connections: see e.g. Doeblin and Fortet
(1937) [9], where it was proved that uniqueness of g-measures follows from summable
variations, and the works by Iosifescu and co-authors, for instance that with Theoderescu
[16] and with Grigorescu [15]. The theory is also connected to that of iterated function
systems, or iterated random functions; see Diaconis and Freedman [8] and the references
therein. A recent contribution by Iosifescu is [14]. We have not attempted to give a com-
plete survey of the literature, but rather to point the reader in some important main direc-
tions of the different appearances of the problems we are considering here.

If T is the left shift map on X+, then a g-measure can alternatively be viewed as a
T -invariant probability measure µ ∈M(X+), with the property that g = dµ/d(µ ◦ T ).
Since X+ is compact due to the finiteness of S, it follows that there always exists a g-
measure. Uniqueness is however not automatic, as was clarified by Bramson and Kalikow
in [5]. Examples of non-uniqueness have since then been provided in, e.g., [4] and [13].

A useful way of viewing a g-measure is as a fixed point of the dual L∗ of the transfer
operator L, defined pointwise by

Lf (x) =
∑
Ty=x

g(y)f (y),

where L : C(X+)→ C(X+). Hence, a g-measure can be viewed as a probability measure
satisfying L∗µ = µ.

If we do not impose the probability assumption (1.1), the eigen-measure of the dual of
the transfer operator is not invariant in general, but we may instead look for eigen-measure
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solutions ν of L∗ν = λν, where λ > 0 is the greatest eigenvalue of the unrestricted
transfer operator L,

Lf (x) =
∑
Ty=x

eφ(y)f (y),

where φ is the potential function, usually belonging to a function space with the same
regularity conditions as the test functions f .

In this paper our results only concern the case of probabilistic weight functions, that
is, φ = log g, where g satisfies (1.1). In [18], it was proved that there exists a unique
g-measure if g > 0 and

∞∑
n=1

(varn log g)2 <∞, (1.3)

where the nth variation of a function f is defined as

varn f = sup
x∼ny
|f (x)− f (y)|,

where x ∼n y means that x and y coincide in the first n coordinates.
This condition of square summability of variations of the g-function for the g-chain

is proven [4] to be sharp, in the sense that for all ε > 0 there exists a g-function such that
∞∑
n=1

(varn log g)2+ε <∞,

with more than one g-measure. This should be compared to an older result of Dyson [10]
for general potentials φ, identifying summability of variations as sharp, in the sense that
we may have multiple eigen-measure solutions of Lν = λν when

∞∑
n=1

(varn φ)1+ε <∞.

In view of this dichotomy in terms of summability of powers of variations, Berbee’s two
results from the late 1980s are intriguing. He proves uniqueness of a g-measure and of an
eigen-measure in the general case when

∞∑
n=1

e−r1−···−rn = ∞, (1.4)

where rn = varn log g or rn = varn φ, respectively. This allows for the non-summable
sequence rn = 1/n. In the case of general potentials this is sharp, modulo a constant
factor (see [1]), but obviously not for g-measures, since square summability of variations
covers sequences rn = 1/n1/2+ε , ε > 0.

Since it was shown in [18] that there are sequences that satisfy Berbee’s condition but
not square summability, it becomes interesting in the case of proving uniqueness of a g-
measure to ask if there is a condition that subsumes in a natural way these two uniqueness
conditions. We provide conditions for uniqueness that contain both square summability
of variations and Berbee’s condition for a unique g-measure.
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Our method of proof also allows us to conclude that the unique g-measure is Bernou-
lli, meaning that if we look at the natural extension of the dynamical system, i.e.,

x(n) = (x−n, x−n+1, . . .), n ≥ 0,

with the g-measure µ as initial distribution for x(0), then this stochastic process is iso-
morphic to an i.i.d. process.

The Bernoulli property was also proved by Berbee, but is new for square summability
of variations (convergence for the iterates of the transfer operator is known from [19]).
For instance we prove that we have a unique g-measure that is furthermore Bernoulli
under the following three special conditions:

(1)
∑
∞

n=1(varn log g)2 <∞;
(2) For any fixed ε > 0,

∑
∞

n=1 e
−(1/2+ε)(r1+···+rn) = ∞;

(3) varn log g = o(1/
√
n) as n→∞.

The last example is in a sense the weakest condition we have for a unique Bernoulli
g-measure. The second is an improvement of Berbee’s condition with a constant, owing
to our method. For other results concerning the Bernoulli property for g-measures and
equilibrium states for general potentials, see [28].

It would be interesting to investigate whether there is a sharp constant so that we have
uniqueness and perhaps the Bernoulli property for varn log g ≤ c/

√
n. Perhaps the ≤

should be replaced by a < and perhaps the constants are different for uniqueness and for
the Bernoulli property.

Our method of proof relies on two main ideas.
Firstly, we use a forward block coupling, including solving the renewal equation to

obtain an estimate of the probability of having conflicts between two extensions of a
g-chain, starting from two different distributions. This argument is then applied to a per-
turbation of one of the extensions to a sequence of g-functions corresponding to a se-
quence of Bernoulli measures that converges in the d̄-metric to the unique g-measure
under investigation.

Secondly, we use Hellinger integral estimates from [17] to calculate the probability of
not having a conflict (that is, different entries in a corresponding coordinate) in the exten-
sions of two initial distributions when we add a new block of positive integer length bl (at
a certain height l ≥ 1 in the extension). We show that if these probabilities are e−ρl , the
maximal probability of not having a conflict, as defined through the total variations dis-
tance, then we can approximate ρl in such a way that it asymptotically includes a square
sum of the variations, where the sums are taken over the increasing blocks. More pre-
cisely, if we define recursively an increasing sequence of natural numbers Bl = Bl−1+bl ,
l ≥ 1, B0 = 0, and define for any ε > 0

sl :=
Bl−1∑
k=Bl−1

(
1
8
+ ε

)
(vark log g)2,

then we obtain ρl ≤ rl for
rl =

√
2sl + 2sl .
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In the special cases (1) and (3) above, we have found examples of exponential increase
of bl in l. If bl = 1 for all l ≥ 1, we obtain Berbee’s situation, in which case ρl ≤ rl =
varl log g. However our estimates show that although this is of the right order, our method
allows one to improve Berbee’s result by a constant; essentially, the variations are allowed
to be twice as big.

We can now state one version of our main result.

Theorem 1.1. We obtain a unique g-measure which is Bernoulli if there is a sequence
{bl}
∞

l=1 of positive integers such that, with {rl} defined from {bl} as above, lim sup rl = 0
and

∞∑
l=1

bl e
−r1−···−rl = ∞.

2. Preliminaries

2.1. The Bernoulli property and the d̄-metric

Let Mg(X) ⊂M(X) denote the set of g-chains corresponding to the g-function g, i.e.
the set of µ such that

µ ◦ (x(n))−1
= L∗n[µ ◦ (x(0))−1].

Let Mg
T (X) denote the set of g-measures.

On M(X+) we have the natural filtration {Fn} of the Borel σ -algebra, where Fn =
σ(x0, . . . , xn−1). For a measure ν ∈ M(X+) and a sub-σ -algebra B ⊂ F , we let ν|B
denote the restriction to B.

Recall that coupling (or joining) between two probability distributions µ ∈M(X,F)
and µ̂ ∈M(X̂, F̂) is a probability distribution ν ∈M(X× Y,F ⊗ F̂) of a pair (x, x̂) ∈
X × X̂ such that the marginals are given by x ∼ µ and x̂ ∼ µ̂. For a pair (µ, µ̂) of
probability measures on the measure space M(X,F), where X = SZ and F denotes the
corresponding product σ -algebra, let

d̄(µ, µ̂) := inf
ν

lim sup
n→∞

ν{x−n 6= x̂−n},

where the infimum is taken over all couplings ν between µ and µ̂. This corresponds to
the d̄-metric introduced by Ornstein (for a reference, see e.g. [7] or [25]), if we take the
restriction to the space MT (X) of shift invariant measures; on M(X) it is a pseudo-
metric. Notice that in our case, the definition of d̄ uses couplings that are not necessarily
translation invariant even if the marginals are. In [7], the authors define d̄ on MT (X)

by taking the infimum over couplings that are invariant under the transformation T × T
on X × X. However, the original definition by Ornstein does not presuppose translation
invariant couplings.

An invariant measureµ ∈MT (X) is Bernoulli if it can be realised by an isomorphism
with a Bernoulli shift. In other words, there is a bijectively measurable mapping φ :
AZ
→ X such that φ ◦ T ′ = T ◦ φ, where T ′ denotes the shift on AZ and such that µ =

µ′ ◦φ−1 where µ′ is a Bernoulli shift, which means that, under µ′, each symbol is chosen
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independently according to some fixed discrete probability on the finite set A. Ornstein
proves in [25] that the set B of measures in MT (X) having the Bernoulli property is
closed in the topology induced by the d̄-metric. Many classes of g-functions are well-
known to give rise to unique g-measures with the Bernoulli property. In particular, this
is the case if the g-function is determined by a finite number of coordinates, i.e., it is
the transition probabilities for N -chains, for some finite N ; see e.g. [25] or [7]. We also
remind the reader of the results of Walters [28].

It is easy to see that any given g-function g with varN log g → 0 as N → ∞ can
be arbitrarily well approximated by finitely determined g-functions, e.g. let ĝN (x) =
g(x0, x1, . . . , xNz), for a fixed z ∈ X+, whence

‖log ĝN − log g‖∞ ≤ varN log g.

Let µ and µ̂ denote g-chains corresponding to the g-functions g and ĝ, respectively.
Our strategy—which is similar to that in used in [7]—for proving that the g-measure µ
is Bernoulli, is first to show that the d̄-distance between µ and µ̂ can be bounded by a
function which is continuous in s = ‖log g − log ĝ‖∞ and that fixes zero.

A finite block-structure is a sequence {bl}Ml=1 of integers bl ≥ 0. We refer to the
index l as levels. By a block-variation pair, we mean a block-structure {bl} together
with a sequence {rl} of positive real numbers. For a block-variation pair ({rl}, {bl}) =
({rl}

M
l=1, {bl}

M
l=1) we define a real number

δ̄({rl}, {bl}) :=
1+

∑M
l=1 ble

−r1−···−rl−1(1− e−rl )∑M
l=1 ble

−r1−···−rl−1
, (2.1)

where for simplicity we have adopted the convention that e−r1−···−rl−1 = 1 for l = 1.
A block-variation function r associates a positive real number r(B, b) to integers B ≥ 0
and b > 0. Given a block-structure {bl} and a block-variation function r , we define the
corresponding sequence {rl} by setting

rl := r(b1 + · · · + bl−1, bl). (2.2)

In this context, we will denote the pair ({rl}, {bl}) by (r, {bl}).
Our first lemma establishes a bound on the d̄-metric between g-chains which is con-

tinuous in the supremum norm.

Lemma 2.1. Let g and µ be as above. There is a block-variation function ρg(B, b) such
that for any block-variation pair ({rl}, {bl}) satisfying

ρ
g
l ≤ rl (2.3)

we have
d̄(µ, µ̂) ≤ δ̄({rl + sbl}, {bl}) (2.4)

for all g-chains µ̂ corresponding to g-functions ĝ with

‖log g − log ĝ‖∞ = s.
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We say that pairs ({rl}, {bl}) satisfying (2.3) are valid for g. We prove this lemma in the
next subsection. Note that, for a fixed finite pair ({rl}Ml=1, {bl}

M
l=1), the quantity δ̄({rl}, {bl})

is clearly continuous in {rl} so that in particular

lim
s→0+

δ̄({rl + sbl}, {bl}) = δ̄({rl}, {bl}).

To see how we can deduce the Bernoulli property, notice that if

inf
{rl},{bl}

δ̄({rl}, {bl}) = 0, (2.5)

where the infimum is taken over all pairs ({rl}, {bl}) that are valid for g, then, for every
ε > 0, we can find a block-structure {bεl }

M
l=1 with δ̄(g, {bεl }) < ε. By the continuity of

δ̄(·, {bεl })we can take a finitely determined (locally constant) g-function ĝ with g-measure
µ̂ such that

d̄(µ, µ̂) ≤ δ̄(r + ‖log g − log ĝ‖∞, {bεl }) < 2ε,

say. It follows that the d̄-distance between the g-measure µ of g and the set B of Bernoulli
measures is zero, and since B is closed with respect to the d̄-distance [25], we conclude
that µ ∈ B. Moreover, it is well-known and easy to see that this g-measure corresponding
to g must be unique. We collect the conclusions in the following Theorem.

Theorem 2.2. If (2.5) holds then we have a unique Bernoulli g-measure µ correspond-
ing to g. Moreover, µ is attractive in the sense that L∗nν converges weakly to µ for any
initial distribution ν ∈M(X+).

We prove the last statement in Section 3.

2.2. The coupling argument and the proof of Lemma 2.1

In order to obtain the bound in (2.4), we will need to construct a coupling between a
g-chain µ and a ĝ-chain µ̂, by defining the two chains x ∼ µ and x̂ ∼ µ̂ on the same
probability space (�,F ,P). Assume that s = ‖log g− log ĝ‖∞. The distributions of x(0)

and x̂(0) are arbitrary.
The coupling we construct uses a block-structure {bl}, where we, at certain times n,

extend the two g-chains with blocks of symbols of length bl until we reach a conflict—i.e.
a coordinate with different symbols—in the extension. Extending the two chains x(n) and
x̂(n) with a block of length bl means specifying a distribution of the pair (x(n+bl), x̂(n+bl))
such that x(n+bl) has distribution L∗blg δx(n) and x̂(n+bl) has distribution L∗bl

ĝ
δx̂(n) . We are

at level l when we extend with a bl-block, and this presupposes that previously, without
conflict, we have extended with blocks at levels 0, 1, . . . , l − 1 of a total length

Bl−1 = b1 + · · · + bl−1.

For (y, ŷ) ∈ X+ ×X+, define the concordance time as the non-negative integer

κ(y, ŷ) = sup{k ≥ 0 : y ∼k ŷ}.
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The event of success (or “no conflict”) means that

κ(x(n+bl), x̂(n+bl)) = κ(x(n), x̂(n))+ bl .

We always use a maximal coupling between the chains, i.e., a coupling that makes the
probability of success maximal.

We show (2.4) by defining on the same probability space (�,F ,P) a Markov chain Yn
taking values in Z. Given a block-variation pair ({rl}, {bl}), we define an associated
Markov chain Yn = Y

{rl},{bl}
n , n ≥ 0, as follows: Let Y0 = 0. If Yn 6= Bl for some l,

simply let Yn+1 = Yn + 1, but if Yn = Bl−1 for some l = 1, . . . ,M , then

Yn+1 =

{
Bl−1 + 1 with probability e−rl ,
−bl with probability 1− e−rl .

(2.6)

If Yn = BM we set Yn+1 = 0, because we want to avoid infinite waiting time in mean
when we later solve the renewal equation.

By using the Renewal Theorem, we show in Section 3 the following.

Lemma 2.3. Assume that the Markov chain Yn is defined from parameters r and {bl} as
in (2.6). Then

lim sup
n→∞

P{Yn ≤ 0} ≤ δ̄(r, {bl})

where δ̄ is defined in (2.1).

We couple the Markov chain Yn = Y
{rl+sbl},{bl}
n with the block-extensions such that, for

all n,
κ(x(n), x̂(n)) ≥ Yn. (2.7)

Since x−n 6= x̂−n precisely when κ(x(n), x̂(n)) = 0, it becomes clear from Lemma 2.3
that

d̄(µ, µ̂) ≤ lim supP{Yn ≤ 0} ≤ δ̄({rl}, {bl}), (2.8)

which is (2.4).
We execute, at time n, a block-extension at level l, precisely when Yn = Bl−1. In

order to maintain (2.7), we should couple the transition of Yn so that Yn = −bl if the
extension is unsuccessful; then (2.7) holds true up to time n + bl even if coordinates
between −n and −n − bl should disagree. A sufficient and necessary condition for the
mechanism to work is therefore that the probability that Yn moves up one level, i.e. e−rl ,
is less than the probability that the block-extension is successful. We define ρg,ĝ(Bl−l, bl)
as the infimum, over (x(n), x̂(n)), of the probability of success, conditioned on (x(n), x̂(n)),
under the restriction that κ(x(n), x̂(n)) ≥ Bl−1. More precisely, we need to show that rl
being valid implies that rl + sbl is less than ρg,ĝ(Bl−1, bl). As before, we assume that
a maximal coupling is used. Notice that if the extension is executed at level l, we have
κ(x(n), x̂(n)) ≥ Yn = Bl−1, by (2.7).

What remains to complete the proof of Lemma 2.1 is to show that

ρg,ĝ(B, b) ≥ ρg,g(B, b)+ sb,

and to give an explicit expression for ρg := ρg,g .
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It is well-known that the probability for a successful extension in a maximal coupling
is given by the total variation metric between the marginals of the extension (see e.g.
[24]). The success probability is given by∫ (

dη̂

dη
∧ 1

)
dη =

(
1−

1
2
· dTV(η, η̂)

)
.

In our situation we can identify the marginals η and η̂ with the distributions on Fb given
by

η = L∗bg δx(n) |Fb , η̂ = L∗b
ĝ
δx̂(n) |Fb ,

for some x(n) and x̂(n) that satisfy κ(x(n), x̂(n)) ≥ B. Let Mg,ĝ
B,b denote the set of such

pairs (η, η̂).
We then define

ρg,ĝ(B, b) := sup
{
− log

∫ (
dη̂

dη
∧ 1

)
dη : (η, η̂) ∈Mg,ĝ

B,b

}
. (2.9)

Notice that, since ĝ/g ≥ e−s , we have

dη̂

dη
=
ĝ(x̂)ĝ(T x̂) · · · ĝ(T b−1x̃)

g(x)g(T x) · · · g(T b−1x)
≥ e−bs ·

g(x̃)g(T x̃) · · · g(T b−1x̃)

g(x)g(T x) · · · g(T b−1x)
(2.10)

and the right hand side equals e−bs · dη̃/dη, where

η̃ := L∗bg δx̂(n) .

We then deduce from (2.9) that

ρg,ĝ(B, b) ≤ ρg,g(B, b)+ sb, (2.11)

where

ρg,g(B, b) = sup
{
− log

∫ (
dη̃

dη
∧ 1

)
dη : (η, η̃) ∈Mg,g

B,b

}
. (2.12)

Since ρg = ρg,g , this concludes the proof of Lemma 2.1. ut

2.3. Estimates using Hellinger integrals

In order to arrive at verifiable conditions that ensure inf δ̄(r, {bl}) = 0, i.e. the assumption
(2.5) in Theorem 2.2, we estimate the total variation metric using the Hellinger integral.
This was done in some special cases also in our earlier paper [20]. Define the Hellinger
block-variation h(B, b) = hg(B, b) by

hg(B, b) = sup{− logH(η, η̃) : (η, η̃) ∈Mg,g
B,b} (2.13)

where

H(η, η̃) =

∫ (
dη̃

dη

)1/2

dη

is the Hellinger integral of η and η̃. We always have 0 ≤ H ≤ 1.
The relevant estimates we will need are collected in the following lemma.
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Lemma 2.4. We have the following relations between the block-variations defined above:

ρg ≤ − log
(
1−

√
1− exp(−2hg)

)
, and, in particular, (2.14)

ρg ≤
√

2hg + 2hg, (2.15)

hg(B, b) ≤

B+b−1∑
k=B

hg(k, 1), (2.16)

As k→∞,

hg(k, 1) = (1+ o(1))
1
8
(vark log g)2, (2.17)

and as w→ 0,

ρg(B, b) ≤ (1+O(w))
1
2
w where w =

√√√√B+b∑
k=B

(vark log g)2. (2.18)

A condition ensuring that (2.5) is satisfied is given in the following theorem. We say that
a block-variation pair ({rl}, {bl}) is eventually valid if for some l0, we have rl ≥ ρ

g
l for

l ≥ l0.

Theorem 2.5. A sufficient condition for the conclusions of Theorem 2.2 to hold is that
there is some infinite eventually valid block-variation pair ({rl}∞l=1, {bl}

∞

l=1) such that
lim sup rl = 0 and

∞∑
l=1

e−r1−···−rl−1bl = ∞. (2.19)

Proof. We verify (2.5), that is, we show that

inf
{rl}

M
l=1,{bl}

M
l=1

1+
∑M
l=1 ble

−r1−···−rl−1(1− e−rl )∑M
l=1 ble

−r1−···−rl−1
= 0. (2.20)

To see this, note that 1− e−rl ≤ rl . Hence, by the assumption (2.19) and since rl → 0 as
l→∞, we have

inf
{rl}

M
l=1,{bl}

M
l=1

1+
∑M
l=1 ble

−r1−···−rl−1rl∑M
l=1 ble

−r1−···−rl−1
= 0,

and the conclusion follows. ut

2.4. Examples

By setting bl = 1 and noting that rl = (1/2 + ε) varl log g eventually dominates ρgl by
(2.18), we can deduce the special case (2) in the Introduction. We now show the results
under the hypotheses in the special cases (1) and (3), by verifying that the conditions in
Theorem 2.5 are satisfied.
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Note that the following proposition gives a uniqueness result that is not covered by
earlier results, for instance in [18].

Proposition 2.6. We have a unique g-measure with the Bernoulli property if

varn log g = o(1/
√
n).

Proof. Take c > 1. Let B0 = 0 and Bl = dcl/(c − 1)e for l ≥ 1, so that for l ≥ 2,
bl = Bl − Bl−1 satisfies

bl ≥ bc
l/(c − 1)− cl−1/(c − 1)c = bclc ≥ 1.

Define rl by

r2
l =

Bl−1∑
n=Bl−1

(varn log g)2.

For l ≥ 2, we have by assumption (as l→∞)

r2
l ≤ o(1)

Bl−1∑
n=Bl−1

1
n
≤ o(1)

∫ cl/(c−1)

cl−1/(c−1)

1
x
dx = o(log c) = o((log c)2).

The integral estimate of the partial sums of the harmonic series follows since Bl−1 ≥

cl−1/(c − 1) and Bl − 1 ≤ cl/(c − 1).
Since, by (2.18), ρgl ≤ rl eventually, we can apply Theorem 2.5. We already know

that rl = o(log c) → 0 as l → ∞. Moreover, each term in the sum of (2.19) can be
estimated as

ble
−r1−···−rl ≥ exp{l log c − l · o(log c)} → ∞, (2.21)

which verifies (2.19). ut

We now show that the uniqueness condition of [18] also gives the Bernoulli property.

Proposition 2.7. We have a unique g-measure with the Bernoulli property if∑
n

(varn log g)2 <∞.

Proof. First note that if {rl} is a block-variation relative to blocks {bl} such that

r1 + r2 + · · · <∞,

then it is clear that the conditions in Theorem 2.5 hold for {rl} and {bl}.
We define the blocks Bl such that B0 = 0 and

Bl = inf
{
B > Bl−1 :

∞∑
n=B

(varn log g)2 ≤ L/2l
}

where L =
∑
∞

n=0(varn log g)2. Then with rl defined by

r2
l =

Bl−1∑
n=Bl−1

(varn log g)2,

we have rl+1 ≤ O(
√
L/2l) and {rl} is clearly a summable sequence since it decreases

geometrically. Moreover, ρgl ≤ rl eventually by (2.18). ut
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3. Remaining proofs

3.1. Proof of Lemma 2.4

Note that (2.18) is easily deduced from (2.17) and (2.16).

Proof of (2.14) and (2.15). In order to relate the two variation functions ρg and hg , we
use the following bound (Proposition V.4.4 in [17, p. 311]) on the total variaton metric:

dTV(η, η̃) ≤ 2
√

1−H(η, η̃)2. (3.1)

This relation immediately gives (2.14) by rewriting the relations in terms of ρg and hg .
From this, we obtain (2.15) as a useful approximation by easy calculations. In the estimate
(2.15), the first term

√
2 ·
√
hg is sharp (

√
2 is the sharp number), but the second, 2 · hg ,

is not. Slightly lower numbers than 2 are possible. ut

Proof of (2.16). Let (η, η̃) ∈Mg,g
B,b. We can explicitly write

H(η, η̃) =

∫ (
g(x̃)g(T x̃) · · · g(T K−1x̃)

g(x)g(T x) · · · g(T K−1x)

)1/2

dη(x), (3.2)

where (x, x̃) ∈ X+×X+ satisfies κ(x, x̃) ≥ B+ b. Taking the conditional η-expectation
of
√
g(x̃)/g(x) conditioned on T x gives

H(η, η̃) =

∫
h(T x, T x̃)

(
g(T x̃) · · · g(T K−1x̃)

g(T x) · · · g(T K−1x)

)1/2

dη(x)

where
h(y, ỹ) =

∑
α∈S

√
g(αỹ)

√
g(αy). (3.3)

Since − logh(T x, T x̃)) ≤ −hg(B + b − 1, 1), we obtain the recursive expression

− logH(η, η̃) ≤ hg(B + b − 1, 1) · {− logH(η′, η̃′)},

where (η′, η̃′) ∈Mg,g

B−1,b−1. This proves (2.16). ut

Proof of (2.17). The relation (2.17) follows from the arithmetic-geometric mean in-
equality: Fix (x, x̃) ∈ X+ × X+, and assume that g(x̃) = eδ(x,x̃)g(x), say, where
|δ(x, x̃)| ≤ varκ(x,x̃) log g. Then

√
g(x̃)

√
g(x) =

1
2
(g(x)+ g(x̃))− δ2f (δ)g(x), (3.4)

where f is the continuous and strictly positive function

f (δ) =
1
δ2

(
1
2
(1+ eδ)− eδ/2

)
,
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tending to 1/8 as δ → 0. Summing (3.4) over y and ỹ such that (y, ỹ) = (αT x, αT x̃),
α ∈ S, gives

− logh(T x, T x̃) = − log
(

1−
∑
y

δ2(y, ỹ)f (δ(y, ỹ))g(y)
)
= (1+ o(1))δ2f (δ),

where h as in (3.3). Taking the infimum over (T x, T x̃) such that κ(T x, T x̃) ≥ k proves
(2.17). ut

3.2. Proof of Lemma 2.3

We now use renewal theory to show Lemma 2.3. Our aim is to prove that

P(Yn ≤ 0)→ 0 as n→∞.

The Markov chain {Yn}will return to 0 at random times {S0, S1, S2, . . . }where S0=0,
since Y0 = 0. For time n, define the number Nn of returns as

Nn = |{k : 0 ≤ k ≤ n, Yk = 0}| = sup{k : Sk ≤ n}.

Define the waiting times Tk = Sk−Sk−1 which are independent and identically distributed
waiting times due to the Markov property of Yn. The waiting time TNn is the length of the
“cycle” that Yn currently completes and this cycle YSNn . . . YSNn+1 has length Bl for some
level l. Let Ln denote this level, i.e. BLn = TNn .

We now use the renewal equation to analyse

An = P(Yn ≤ 0). (3.5)

The expansion
An = P(Yn ≤ 0, Nn = 1)+ P(Yn ≤ 0, Nn > 1) (3.6)

leads to the renewal equation

An = an +

∞∑
j=1

An−jpj , (3.7)

where an = P(Yn ≤ 0, Nn = 1) and pj = P(T1 = j).
Let ql = P {Ln = l}. Then

ql = P {Ln ≥ l} − P {Ln ≥ l + 1} = e−r1−···−rl−1(1− e−rl ),

where we use our convention that er1−···−rl−1 = 1 when l = 1, i.e., q1 = 1 − e−r1 . Note
that

pj =


ql, j = Bl, l = 1, . . . ,M − 1,
1−

∑M−1
l=1 ql, j = BM ,

0, otherwise.
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Since ql is the probability that, in the first cycle, Yn ≤ 0 for Bl−1 < n ≤ Bl = T1, we
obtain

an =


1, n = 0,
ql, Bl−1 < n ≤ Bl, l = 1, . . . ,M,
0, otherwise.

It is well known that the renewal equation (3.7) has the solution

An =

∞∑
j=0

un−jaj , (3.8)

where un = E[Nn]− E[Nn−1] and the theorem in [11, p. 362] states that

lim
n→∞

An =

∑
∞

j=0 aj

E[T1]
,

provided
∑
∞

j=0 |aj | < ∞. In our case T1 ≤ BM < ∞ and this condition is trivially
satisfied.

The ratio
∑
j aj/E[T1] can be transformed to that in (2.1). We have

∞∑
j=0

aj = 1+
M∑
l=1

blql = 1+
M∑
l=1

ble
−r1−···−rl−1(1− e−rl ),

and

E[T1] =
M−1∑
l=1

qlBl +
(

1−
M−1∑
l=1

ql

)
BM ,

where the last term is due to the fact that we let Yn+1 = 0 whenever Yn = BM (recall the
definition of pj above). Since Bl = b1 + · · · + bl , E[T1] equals

M−1∑
l=1

(e−r1−···−rl−1 − e−r1−···−rl )(b1 + · · · + bl)+ e
−r1−···−rM−1(BM−1 + bM)

=

M∑
l=1

ble
−r1−···−rl−1 ,

which is the denominator in (2.1). ut

3.3. Proof of the last statement in Theorem 2.2

We now prove the remaining statement in Theorem 2.2: that (2.5) implies that L∗nµ′
converges weakly to (the necessarily unique) g-measure in Mg

T for any initial distribution
µ′ ∈M(X+).
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In fact, we prove convergence in the Wasserstein metric. Given an underlying (pseudo-)
metric d on the space Y , the corresponding Wasserstein (pseudo-) metric dW between
probability measures µ, µ̃ ∈M(Y ) is defined as

dW(µ, µ̃) := inf
λ
Eλ[d(x, x̃)],

where the infimum is taken over all couplings λ ∈ M(Y × Y ) of µ and µ̃. On the
space X+, we consider the underlying metric d(x, x̃) = 2−κ(x,x̃) and the corresponding
Wasserstein metric dW.

We already know that the condition (2.5) in Lemma 2.2 implies that the d̄-distance
between any pair of g-chains is zero. In other words

inf
ν

lim
n→∞

Eν[1κ=0(x
(n), x̃(n))] = 0 (3.9)

where ν ∈M(X × X) signifies couplings of the two arbitrary g-chains. We shall show
that (3.9) implies that

lim sup
n→∞

dW(L∗nµ,L∗nµ̃) = 0. (3.10)

Since dW metrizes the weak topology, (3.10) is equivalent to stating that g has a unique
attractive g-measure, i.e. for any µ, {L∗nµ} converges weakly to a unique g-measure as
n→∞.

The statement (3.10) follows readily from (3.9) : Let N ≥ 0 be fixed but arbitrary.
A coupling ν ∈M(X × X) of the g-chains with initial distributions µ and µ̃ also gives
a coupling λ = ν ◦ (x(n))−1

⊗ ν ◦ (x̃(n))−1 of L∗nµ and L∗nµ̃. Since

d(x, x̃) ≤ 2−N + 1κ≤N (x, x̃) ≤ 2−N +
N−1∑
n=0

1κ=0(T
nx, T nx̃)

it therefore follows from (3.9) that

lim sup
n

dW(L∗nµ,L∗nµ̃) ≤ 2−N + lim sup
n

inf
ν
Eν

[N−1∑
n=0

1κ=0(T
kx(n), T k x̃(n))

]
≤ 2−N +N · 0.

Since N was arbitrary, this concludes the proof. ut
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