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Abstract. We study the extension problem for germs of holomorphic isometries f : (D; x0) →
(�; f (x0)) up to normalizing constants between bounded domains in Euclidean spaces equipped
with the Bergman metrics ds2

D
on D and ds2

� on �. Our main focus is on boundary extension for
pairs of bounded domains (D,�) such that the Bergman kernel KD(z, w) extends meromorphi-
cally in (z, w) to a neighborhood of D × D, and such that the analogous statement holds true for
the Bergman kernel K�(ζ, ξ) on �. Assuming that (D; ds2

D
) and (�; ds2

�) are complete Kähler
manifolds, we prove that the germ of f extends to a proper holomorphic isometric embedding such
that Graph(f ) extends to a complex-analytic subvariety on some neigborhood of D × �. In the
event that the Bergman kernel KD(z, w) extends to a rational function of (z, w) and the analogue
holds true for the Bergman kernel K�(ζ, ξ), we show that Graph(f ) extends to an affine-algebraic
variety. Our results apply in particular to pairs (D,�) of bounded symmetric domains in their
Harish-Chandra realizations. When D is the complex unit ball Bn of dimension n ≥ 2, we obtain a
new rigidity result which guarantees the total geodesy of the map under certain conditions. On the
other hand, we construct examples of holomorphic isometries of the unit disk into polydisks which
are not totally geodesic, answering in the negative a conjecture of Clozel–Ullmo’s.

LetX be a simply connected complex manifold equipped with a real-analytic Kähler met-
ric g. By the seminal work of Calabi’s ([Ca], 1953), every germ of holomorphic isometry
of (X, g) into the projective space (PN , ds2

FS), 1 ≤ N ≤ ∞, equipped with the Fubini–
Study metric extends to a holomorphic isometry on (X, g).

In the current article we study the extension problem for germs of holomorphic isome-
tries f : (D; x0) → (�; f (x0)) up to normalizing constants between bounded domains
in Euclidean spaces equipped with the Bergman metrics ds2

D on D and ds2
� on �. Our

basic extension results are of two types: extension results of the germ Graph(f ) ⊂ D×�
at (x0, f (x0)) to a complex-analytic subvariety S of D × �, and extension results on S
beyond the boundary of D × � under certain assumptions. We call the former type in-
terior extension results and the latter type boundary extension results. Interior extension
follows from the work of Calabi [Ca] (cf. Remarks after the proof of Theorem 2.1.1).
Our main focus will be on boundary extension for pairs of bounded domains (D,�) such
that the Bergman kernel KD(z, w) extends meromorphically in (z, w) to a neighborhood
of D × D, and such that the analogous statement holds true for the Bergman kernel
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K�(ζ, ξ) on �. Examples include pairs (D,�) of bounded symmetric domains in their
Harish-Chandra realizations. The special case whereD is the unit disk1,� is a polydisk
1p, and f : (1, λds2

1; 0) → (�, ds2
�; 0) is a germ of holomorphic isometry in which

the normalizing constant λ is a positive integer q, was studied by Clozel–Ullmo ([CU],
2003) in connection to a problem in arithmetic dynamics. For such a germ of map they
established a real-analytic functional identity arising from equating potential functions of
Kähler metrics, and deduced as a consequence that the germ of subvariety Graph(f ) at
(0, 0) in 1×1p extends algebraically to C×Cp. In their case the germ of holomorphic
map f arises from an algebraic correspondence on some finite-volume quotient of the unit
disk, and, exploiting the action of the underlying lattice 0 on an extension of Graph(f ) to
1 × 1p, they proved that f must be totally geodesic, but conjectured ([CU, Conjecture
2.2, p. 52]) that in fact any f : (1, qds2

1; 0)→ (1p, ds2
1p ; 0) is totally geodesic.

To start with, we consider the case of f : (D, λdsD; 0) → (�, ds2
�; 0) between

bounded complete circular domains with base points at 0. Generalizing the real-analytic
functional identity expressed in terms of Bergman kernels, by polarization we obtain an
infinite number of holomorphic identities, and the first question is to determine whether
these identities are sufficiently non-degenerate to force analytic continuation. While ex-
amples show that in general this is not the case, we resolve the difficulty by studying de-
formations of simultaneous solutions of the holomorphic functional equations, and force
analytic continuation by showing that, in the event that there are non-trivial deformations
of simultaneous solutions to these equations, the germ of holomorphic isometry must take
values in linear sections of the canonical image of the domain in the infinite-dimensional
projective space P∞, where the linear sections correspond to zeros of certain square-
integrable holomorphic functions which are in some sense extremal with respect to the
Bergman metric. For a bounded complete circular domain G b Cm with Bergman ker-
nel KG(z, w), the domains of definition of KD,w := KG(z, w) grow to Cn as w shrinks
to 0. Using this we prove the analytic continuation of Graph(f ) ⊂ D ×� to a complex-
analytic subvariety S] in the Euclidean space. In the special case of bounded symmetric
domains in their Harish-Chandra realizations, we prove the following stronger result.

Theorem 1.3.1. Let D b Cn and � b CN be bounded symmetric domains in their
Harish-Chandra realizations. Let λ be any positive real number and f : (D, λds2

D; 0)→
(�, ds2

�; 0) be a germ of holomorphic isometry at 0 ∈ D. Then the germ Graph(f ) at
(0, 0) extends to an affine-algebraic subvariety S] ⊂ Cn×CN such that S := S]∩(D×�)
is the graph of a proper holomorphic isometric embedding F : D → � extending the
germ of holomorphic map f .

Bounded symmetric domains provide a first source of holomorphic isometries up to nor-
malizing constants. A holomorphic totally geodesic embedding F : D → � between
bounded symmetric domains is a holomorphic isometry with respect to the Bergman
metric up to a rational normalizing constant whenever D is irreducible. In terms of Borel
embeddings, F extends algebraically to a holomorphic map between the dual Hermitian
symmetric manifolds of the compact type, thus to rational maps on Euclidean spaces when
D b Cn and � b CN are bounded symmetric domains in their Harish-Chandra realiza-
tions. At the same time, holomorphic totally geodesic embeddings of bounded symmetric
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domains into homogeneous disk bundles over them give examples of holomorphic isome-
tries with any prescribed normalizing isometric real constant λ > 1. On the other hand we
produce examples of holomorphic isometric embeddings of the Poincaré disk into certain
bounded symmetric domains � which are not totally geodesic. More precisely, we prove
(cf. (3.2) for the meaning of ‘congruence’)

Theorem 3.2.1. For every positive integer p > 1 there exists a holomorphic isometric
embedding F : (1, ds2

1)→ (1p, ds2
1p ), F = (F1, . . . , Fp), where each component Fk ,

1 ≤ k ≤ p, is non-constant, such that F is not totally geodesic. In particular, Con-
jecture 2.2 of Clozel–Ullmo [CU] is false. Furthermore, for p ≥ 3 there exists a real-
analytic 1-parameter family of mutually incongruent holomorphic isometric embeddings
Ft : (1, ds2

1)→ (1p, ds2
1p ), t ∈ R.

It is in general an interesting problem to construct non-standard holomorphic isometric
embeddings of the Poincaré disk1 into bounded domains �, including the case where �
is a bounded symmetric domain. For the special case where � is the polydisk1p, p ≥ 2,
the classification problem has been posed, but only very partial results are known (Ng
[Ng]), including a complete classification for p = 2, 3. As a further example we also
give an explicit construction of a non-trivial (proper) holomorphic isometric embedding
F : 1 → H3 of the Poincaré disk into the Siegel upper half-plane H3 of genus 3. We
will show that the latter is distinguishable from a holomorphic isometry into a polydisk
by checking that the branch points of F do not lie on the Shilov boundary Sh(H3) and in-
voking results of Ng [Ng]. It is also interesting to find domainsD other than the Poincaré
disk admitting non-standard holomorphic isometric embeddings into some bounded do-
main�. Restricted to the case where bothD and� are assumed to be bounded symmetric
domains, the main interest lies in D = Bn, n ≥ 2. For a discussion of this and related
problems cf. the survey article Mok [Mk5, §5].

Our study of extensions of germs of holomorphic isometries generalizes to those be-
tween arbitrary bounded domains. Interior extension holds true unconditionally, while
boundary extension holds true under certain conditions on Bergman kernels, as given by

Theorem 2.1.2 (main part). LetD b Cn and� b CN be bounded domains. Let x0 ∈ D,
y0 ∈ �, λ be a positive real number and f : (D, λds2

D; x0)→ (�, ds2
�; y0) be a germ of

holomorphic isometry. Suppose furthermore that the Bergman kernel KD(z, w) extends
as a meromorphic function of (z, w) to a neighborhood of D ×D and K�(ζ, ξ) extends
as a meromorphic function of (ζ, ξ) to a neighborhood of � × �. Then there exists a
neighborhood D] of D and a neighborhood �] of � such that the germ of Graph(f ) ⊂
D ×� at (x0, y0) extends to an irreducible complex-analytic subvariety S] of D] ×�].

Theorem 2.1.2 further generalizes to relatively compact domains on complex manifolds
provided that the domains admit Bergman metrics and the canonical maps on them are
embeddings (cf. 2.2).

Holomorphic isometries between bounded domains are meaningful for the study of
holomorphic functions on such domains. As an illustration a bona fide holomorphic iso-
metric embedding F : (D, ds2

D) → (�, ds2
�) between bounded circular domains star-

shaped with respect to 0, with F(0) = 0, is induced by a Hilbert space isomorphism
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µ : H 2(D) → H 2(�) onto the orthogonal complement of the Hilbert subspace E ⊂
H 2(�) consisting of the functions vanishing on Z := F(D), yielding for holomorphic
functions square-integrable on Z (with respect to the measure induced from D) norm-
preserving holomorphic extensions to � square-integrable with respect to the Lebesgue
measure.

1. Extension of germs of holomorphic isometries with respect to the Bergman
metric on bounded complete circular domains

1.1. Extension of germs of holomorphic isometries via holomorphic functional equations

In connection to a problem in arithmetic dynamics, Clozel–Ullmo [CU] considered a
germ of holomorphic isometry f : (1, qds2

1; 0) → (1, ds2
1; 0)

p from the unit disk 1
into a polydisk, where q is a positive integer. (Here and in what follows, for a bounded
domain D, ds2

D stands for the Bergman metric.) They obtained a real-analytic func-
tional identity arising from Kähler potentials, and proceeded from there to prove that
Graph(f ) extends to an affine-algebraic subvariety. In higher dimensions the method
of [CU] is difficult to generalize directly. In Mok [Mk3] we considered the analogous
problem for the complex unit ball Bn. There, by polarization we obtained instead a con-
tinuous family of holomorphic functional identities, and we solved the problem for Bn,
n ≥ 2, by forcing analytic continuation by means of these identities. Here we formulate
the starting point of our argument more generally for germs of holomorphic isometries
between bounded complete circular domains, allowing at the same time the normalizing
constant λ to be any positive real number. Recall that a circular domain D ⊂ Cn is a
domain invariant under the action of the circle group S1 given by 8 : S1

× D → D,
8(eiθ , z) = eiθz, θ ∈ R. The domain D is complete if and only if 0 ∈ D. For a bounded
complete circular domain D b Cn and for θ ∈ R, the Bergman kernel KD(·, ·) satisfies
KD(e

iθz, eiθw) = KD(z, w), so that KD(z, 0) = KD(eiθz, 0), implying that KD(z, 0) is
a (positive) constant.

Proposition 1.1.1. Let D b Cn and � b CN be bounded complete circular domains.
Denote by ds2

D , resp. ds2
�, the Bergman metric on D, resp. �, and by KD , resp. K�, the

Bergman kernel onD, resp.�. Let λ be any positive real number and f : (D, λds2
D; 0)→

(�, ds2
�; 0) be a germ of holomorphic isometry at 0 ∈ D. Then there exists some real

number A > 0 such that for z,w ∈ D sufficiently close to 0 we have

K�(f (z), f (z)) = A ·KD(z, z)
λ, and hence

K�(f (z), f (w)) = A ·KD(z, w)
λ, where KD(z, w)

λ
= eλ logKD(z,w),

in which log denotes the principal branch of logarithm.

Proof. Following the argument of Clozel–Ullmo [CU], we have from the hypothesis
√
−1 ∂∂ logK�(f (z), f (z)) = λ

√
−1 ∂∂ logKD(z, z),

logK�(f (z), f (z)) = λ logKD(z, z)+ Re(ψ)
(1)
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for some holomorphic function ψ . Consider the Taylor expansion of logKD(z, z) in
z1, . . . , zn and z1, . . . , zn. For a multi-index I = (i1, . . . , in) with i1, . . . , in ≥ 0, we
write zI = zi11 · · · z

in
n and |I | = i1 + · · · + in. By the invariance of the Bergman kernel

under the circle group action (eiθ , z) 7→ eiθz, θ ∈ R, the coefficient of zI zJ is zero
whenever |I | 6= |J |. The analogue is also true for the complete circular domain �. Since
f (0) = 0, it follows by substitution that in the Taylor expansion of logK�(f (z), f (z))
at 0, the coefficients of terms of pure type zI and zI must vanish for any I = (i1, . . . , in),
i1, . . . , in ≥ 0, such that at least one of the indices ik , 1 ≤ k ≤ n, is non-zero. On the
other hand, the Taylor expansion of 2 Re(ψ) = ψ + ψ at 0 consists precisely of terms of
pure type, and it follows by comparing the two sides of (1) that Re(ψ) must be a (real)
constant.

We now introduce holomorphic functional identities by polarization, viz.,

logK�(f (z), f (w)) = λ logKD(z, w)+ a +H(z,w),

where a is a real constant and

H(z,w) =
∑

(I,J ) 6=(0,0)

HIJ z
IwJ

is holomorphic in z and anti-holomorphic in w. Recall that KD(0, 0) and K�(0, 0) are
real and ‘log’ stands for the principal branch of the logarithm. Restricting to the diagonal
{z = w} we have H(z, z) = 0, i.e.,

∑
(I,J ) 6=(0,0)HIJ z

I zJ = 0, so that HIJ = 0 for all
(I, J ) 6= (0, 0), hence H(z,w) = 0 where defined, yielding

logK�(f (z), f (w)) = λ logKD(z, w)+ a, hence

K�(f (z), f (w)) = A ·KD(z, w)
λ,

where A := ea and KD(z, w)λ = eλ logKD(z,w), as desired. ut

For the application of Proposition 1.1.1 to extension problems, we recall first of all the
following well-known fact about the Bergman kernel on a complete circular domain.

Lemma 1.1.1. Let D b Cn be a complete circular domain and denote by KD(z, w) the
Bergman kernel on D. Suppose r is a real number, 0 < r < 1, so that rD ⊂ D. Then for
z ∈ D and w ∈ rD we have KD(z, w) = KD(rz, w/r). In particular, for every w ∈ rD
the holomorphic function KD,w(z) := KD(z, w) = KD(rz, w/r) := KD,w/r(rz) of
z ∈ D extends holomorphically to (1/r)D when we define KD,w(z) := KD,w/r(rz) for
z ∈ (1/r)D.

Proof. From the invariance of D under the circle group action (eiθ , z) 7→ eiθz we have

KD(z, w) =
∑
|I |=|J |

aIJ z
IwJ .

Observing that (rz)I (w/r)J = zIwJ whenever |I | = |J |, we have KD(z, w) =
KD(rz, w/r) for z ∈ D and w ∈ rD. Fixing w0 ∈ rD, KD(rz, w0/r) is defined for
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z ∈ (1/r)D. Hence, KD,w0(z) = KD(rz, w0/r) extends holomorphically from D to
(1/r)D, as desired. ut

For r > 0 we write Dr := Bn(0; r). Choose e > 0 such that f : (D, λds2
D; 0) →

(�, ds2
�; 0) is represented by a holomorphic embedding defined on De, and such that

moreover KD(z, w) and K�(f (z), f (w)) are non-zero whenever z,w ∈ De. For nota-
tional convenience later on, we will also require that e < 1. Similarly for ρ > 0 we write
�ρ := BN (0; ρ). Choose δ0 such that 0 < δ0 < 1 and �δ0 b �.

In Mok [Mk3] we studied germs of holomorphic isometries f from the unit ball
Bn, n ≥ 2, to its Cartesian products in the case where the normalizing constant is a
positive integer q. There, making use of the explicit form of the holomorphic functional
identities arising from equating potential functions, we extended Graph(f ) to an affine-
algebraic subvariety. To prove an analogue for the general case we encounter first of all
the problem that the associated functional identities are in general not sufficiently ‘non-
degenerate’ to force analytic continuation. We overcome difficulties arising from such
degenerate situations by imposing additional constraints to cut down the set of simulta-
neous solutions to the functional equations. Recall that KD(z, 0) = C > 0. Let D] b Cn
be a neighborhood of D. By Lemma 1.1.1, there exists ε0 satisfying 0 < ε0 < e such
that for any w ∈ Dε0 = Bn(0; ε0), KD(z, w) is defined for z ∈ D] (by analytic exten-
sion of KD,w(·) = KD(·, w)), and Re(KD(z, w)) > 0 for any (z, w) ∈ D] ×Dε0 . Then
KD(z, w)

λ
= eλ logKD(z,w) is defined for (z, w) ∈ D] × Dε0 . We will further assume

that f (Dε0) b �δ0 . Suppose now 0 < ε ≤ ε0. Instead of a germ of map, the symbol f
will sometimes stand for the map f : (Dε, λds2

D|Dε ) → (�, ds2
�). Thus, KD(z, w)λ is

defined on D] × Dε as a function holomorphic in (z, w). Writing K�(0, 0) =: C′ and
A := C′C−λ, we have

Proposition 1.1.2. For each w ∈ Dε , let Vw ⊂ D × � be the set of all (z, ζ ) ∈ D × �
such that

(Iw) K�(ζ, f (w)) = A ·KD(z, w)
λ.

Define Vε =
⋂
w∈Dε

Vw. Suppose dim(z,f (z))(Vε ∩ ({z} × �)) ≥ 1 for a general point
z ∈ Dε . Then there exists a family of holomorphic functions hα ∈ H 2(�), α ∈ A, such
that

Graph(f ) ⊂ Dε × E, where E :=
⋂
α∈A

Zero(hα),

and dim(z,f (z))(Vε ∩ ({z} × E)) = 0 for a general point z ∈ Dε .

By a general point on a complex manifold we mean the complement of a nowhere dense
complex-analytic subvariety. By the Identity Theorem for holomorphic functions, Vε ⊂
D × � is independent of ε > 0, and we will write V in place of Vε . We say that the
system of functional equations (Iw), w ∈ Dε , is sufficiently non-degenerate whenever any
irreducible branch of V containing Graph(f ) must be of dimension n = dim(Graph(f )).

Proof of Proposition 1.1.2. Graph(f ) ⊂ Dε × � is by definition contained in V . By
hypothesis, dim(z,f (z))(V ∩ ({z} × �)) =: q ≥ 1 at a general point z ∈ Dε (hence
actually at any point z ∈ Dε by upper semicontinuity of the fiber dimension). Fix a
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Stein neighborhood �0 of 0 in � such that f (Dε0) ⊂ �0. (We may take for instance
�0 = B

N (0; δ0).) Let Zε ⊂ V ∩(Dε×�0) be an irreducible complex-analytic subvariety
ofDε×�0 containing Graph(f ) such that dim(z,f (z))(Zε ∩ ({z}×�0)) = 1 for a general
point z ∈ Dε . The subvariety Zε ⊂ V may be obtained by an inductive procedure, as
follows. If q = 1, it suffices to take Zε to be an irreducible component of V ∩ (Dε ×�0)

containing Graph(f ). If q > 1, choose any x1 ∈ V ∩ (Dε × �0) lying outside the
subvariety Graph(f ) ⊂ V ∩ (Dε × �0). Since V ∩ (Dε × �0) is Stein, there exists a
holomorphic function g1 on V ∩ (Dε×�0) such that g1|Graph(f ) ≡ 0 and g1(x1) 6= 0. We
now define Z(n+q−1)

ε ⊂ V ∩ (Dε × �0) to be an irreducible component of the zero set
Zero(g1) ⊂ V ∩ (Dε×�0) of g1 containing Graph(f ). If q = 2 we take Zε := Z(n+1)

ε . If
q > 2 we proceed further with V ∩ (Dε×�0) replaced by Z(n+q−1)

ε , x1 replaced by x2 ∈

Z
(n+q−1)
ε − Graph(f ) to find g2 holomorphic on Z(n+q−1)

ε such that g2|Graph(f ) ≡ 0 and
g2(x2) 6= 0. Proceeding inductively we reach Zε := Z(n+1)

ε such that Zε ⊂ Dε ×� is an
irreducible subvariety containing Graph(f ) and such that dim(z,f (z))(Zε ∩ ({z}×�)) = 1
at a general point z ∈ Dε .

Write ν : Z̃ε → Zε for the normalization of Zε . Since the singular set of Z̃ε is of
codimension ≥ 2, and ν−1(Graph(f )) ⊂ Z̃ε is of pure codimension 1, a general point p̃
of any irreducible branch B of ν−1(Graph(f )) is a smooth point of Z̃ε . We may choose p̃
to be also a smooth point of B such that ν|B : B → Graph(f ) is a local biholomorphism
at p̃. Write p := ν(p̃), p = (z0, f (z0)) ∈ Dε × �, and denote by πD : D × � → D

the canonical projection. Choose a neighborhood W of p̃ in Z̃ε and a neighborhood U
of z0 in Dε such that πD ◦ ν|W∩B : W ∩B → U is a biholomorphism which extends to a
biholomorphism σ : W → U ×1 when U is identified with U × {0}. (A neighborhood
is always understood to be connected.) Write ν(σ−1(z, t)) = (h(z, t), g(z, t)). Since h
is a holomorphic submersion at (z0, 0), it remains a holomorphic submersion at (z, t)
sufficiently close to (z0, 0), and without loss of generality we may choose W , U and ν
such that h(z, t) = z. For t ∈ 1, write ft (z) = g(z, t). We have

K�(ft (z), f (w)) = A ·KD(z, w)
λ

such that f0(z) = f (z). Assume that ∂k

∂tk
ft (z)

∣∣
t=0 ≡ 0 for k < ` and η(f (z)) :=

∂`

∂t`
ft (z)

∣∣
t=0 6≡ 0. Let (hj )∞j=0 be an orthonormal basis of H 2(�). We have

K�(ft (z), f (w)) =
∑
j

hj (ft (z))hj (f (w)) = A ·KD(z, w)
λ (1)

for every t . Hence, differentiating both sides of (1) ` times against t and noting that the
right-hand side is independent of t , we have

∂`

∂t`
K�(ft (z), f (w))

∣∣∣∣
t=0
≡ 0, i.e.,

∑
i,j

∂hj

∂ζi

∂`f it

∂t`
(z)hj (f (w)) ≡ 0, i.e.,

∑
j

dhj (η(f (z)))hj (f (w)) ≡ 0. (2)
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Denote by H the separable Hilbert space of square-integrable sequences of complex num-
bers. Let 8 : �→ H be defined by

8(ζ) = (h0(ζ ), h1(ζ ), . . .).

By the choice of ε, f is injective onDε , hence f |U : U → � is a holomorphic embedding
onto a locally closed complex submanifold 6. In terms of the Hermitian inner product
〈·, ·〉 on the Hilbert space H, the identity (2) is given by〈

d8(η(f (z))),8(f (w))
〉
= 0,

where η(f (z)) is interpreted as a vector field along 6 and d8(η) as a vector field along
4 := 8(6) ⊂ H. In other words, we have a non-trivial holomorphic vector field along 4
which is orthogonal to the linear span of 8(f (w)) as w ranges over Dε . We may assume
η(f (z0)) 6= 0. Let h0 be chosen so that |h(f (z0))| attains its maximum value at h = h0
among all h ∈ H 2(�) of unit norm. Choose h1 ⊥ h0 such that |dh(η(f (z0)))| attains its
maximum value at h = h1 among all h ∈ H 2(�) of unit norm and orthogonal to h0. Then,
for any h such that h ⊥ h0 and h ⊥ h1 we have h(f (z0)) = 0 and dh(η(f (z0))) = 0.
Thus, completing (h0, h1) to any orthonormal basis (h0, h1, . . . ) of H 2(�), for all w
in Dε we derive from (2) that

dh0(η(f (z0)))h0(f (w))+ dh1(η(f (z0)))h1(f (w)) = 0. (3)

Substituting w = z0, h1(f (z0)) = 0 and h0(f (z0)) 6= 0 imply that dh0(η(f (z0))) = 0.
Since |dh((η(f (z0)))| attains its maximum among h ⊥ h0 of unit norm at h = h1,
we must have dh1(η(f (z0))) 6= 0, and it follows from (3) that h1(f (w)) = 0. Writing
(x0, x1, . . . ) for a point in H we conclude that 8(f (U)) lies in a hyperplane section
which is the zero set of a continuous linear functional on H, given by

8(f (U)) ⊂ {x1 = 0} ⊂ H.

Note that the function hα = h1,z0 is defined on all of�. Consider all deformations ft (z) =
g(t, z) on some domain U ⊂ Dε defined as above, and denote by A the set of indices α
for all functions hα thus obtained. Define E := {hα ∈ H 2(�) : α ∈ A} and denote by
E ⊂ � the common zero set of all hα ∈ E . Thus8(E) ⊂ H is a (closed) linear section of
8(�) containing 4. Now consider the functional equations (Iw), w ∈ Dε , together with
a restriction on the indeterminate ζ , given by

K�(ζ, f (w)) = A ·KD(z, w)
λ, ζ ∈ E.

For the proof of Proposition 1.1.2 it remains to prove that

(†) dim(z,f (z))(V ∩ ({z} × E)) = 0

for a general point z ∈ Dε . Suppose otherwise. Repeating the same argument as above,
we obtain a holomorphic 1-parameter family {ft }t∈1, f0 = f , defined on some domain
U ⊂ Dε such that ft takes values in E, thereby deriving the existence of a holomorphic
vector field η along 6 = f (U) and h1 ∈ E such that dh1(η(f (z0))) 6= 0 for a general
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point z0 ∈ U . By definition h1 must vanish identically on E, hence h1(ft (z)) = 0 for
z ∈ U and for t ∈ 1. Now, differentiating the latter identity ` times against t we conclude
that dh1(η(f (z0))) = 0, contradicting the choice of h1. Thus, we have established (†) by
contradiction, proving Proposition 1.l.2. ut

Example (functional equations are not sufficiently non-degenerate). The following ex-
ample shows that the situation where the system of holomorphic functional equations
are not sufficiently ‘non-degenerate’ does occur. In other words, the example is one for
which dim(z,f (z))(V ∩ ({z}×�)) ≥ 1. LetN > n ≥ 1 be integers and consider the totally
geodesic holomorphic isometric embedding f :

(
Bn, N+1

n+1 ds
2
Bn

)
→ (BN , ds2

BN
) given

by f (z) = (z, 0) for z = (z1, . . . , zn). In this case the holomorphic functional equations
relating Bergman kernels are given by

KBN (ζ, f (w)) = A ·KBn(z, w)
N+1
n+1

for some A > 0. Denoting by 〈·, ·̄〉 the Euclidean Hermitian inner product, we have
KBm(z, w) = cm(1− 〈z,w〉)−(m+1) for some constant cm > 0. We thus have

cN

(1− 〈ζ, (w, 0)〉)N+1
= A

(
cn

(1− 〈z,w〉)n+1

)N+1
n+1
. (1)

Substituting (z, w) = (0, 0) and ζ = f (0) = 0 we have cN = Ac
(N+1)/(n+1)
n . For w

sufficiently small and z ∈ Bn, the functional equation (1) on ζ is equivalent to

1− 〈ζ, (w, 0)〉 = 1− 〈z,w〉 (2)

for ζ sufficiently close to (z, 0). Clearly ζ = f (z) = (z, 0), which describes the image of
the holomorphic isometry, satisfies the functional equations (2). However, when (z, w) is
fixed and we put ζ = (z, z′), where z′ ∈ CN−n is arbitrary, (2) remains satisfied. In fact,
these ζ give all possible simultaneous solutions to (2), and we have

V = {(z, ζ ) ∈ Bn × BN : ζ = (z, z′), z′ ∈ CN−n},

hence dim(z,f (z))(V ∩({z}×B
N )) = N−n ≥ 1. Infinitesimal variations η of simultaneous

solutions ft (z) = (z, gt (z)), g0(z) ≡ 0, to (3) are of the form

η(f (z)) = η(z, 0) =
N∑

`=n+1

a`(z)
∂

∂ζ`
,

where a`(z) are holomorphic functions in z defined on some non-empty open subset
U ⊂ Bn. Here the fiber of the canonical projection π : V → Bn over a general
point z ∈ Bn can be cut down to an isolated point when we impose the conditions
ζn+1 = · · · = ζN = 0, which in fact corresponds to cutting BN by zero sets of ex-
tremal functions maximizing the derivatives in the direction ∂/∂ζ`, n + 1 ≤ ` ≤ N , at
(z, 0) ∈ BN .
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In the proof of Proposition 1.1.2, in the case where (Iw), w ∈ Dε , are not sufficiently
non-degenerate, we have to consider extremal functions h ∈ E . Since these functions will
play a crucial role in extension problems in the rest of the article, we will now prove
a number of their basic properties. Recall the initial choice of ε0 > 0 as specified in
the paragraph preceding Proposition 1.1.2. The set E ⊂ H 2(�) of extremal functions
depends on the choice of ε > 0, 0 < ε ≤ ε0 . We will write E(ε), A(ε), E(ε) to indicate
this dependence, and from now on write E = E(ε0), E = E(ε0) and regard f as being
defined on Dε0 .

Note that each h ∈ E(ε) is of the form h1 in the notation of the proof of Proposition
1.1.2. More precisely, given a holomorphic 1-parameter family {ft }t∈1 defined on a do-
main U ⊂ Dε obtained as a deformation of f0 = f |U of simultaneous solutions of the
holomorphic functional equations (Iw), by differentiation we obtain a holomorphic vec-
tor field η defined along 6 = f (U) ⊂ �, and, for each z0 ∈ U we have an h1 which is
determined by η and by the choice of z0. We write h1 = hη,z0 . We are going to relate h1
to the Bergman kernel K� on �, thereby extending its domain of definition by means of
properties of Bergman kernels on complete circular domains as given in Lemma 1.1.1.

Recall that h0 ∈ H
2(�) has been chosen such that, among all h ∈ H 2(�) of unit

norm, the maximum of |h(f (z0))| is attained at h = h0. Moreover, h1 ∈ H
2(�) has been

chosen such that, among all h ∈ H 2(�) of unit norm and orthogonal to h0, the maximum
of |dh(η(f (z0)))| is attained at h = h1. Both h0 and h1 = hη,z0 are uniquely determined
only up to a scalar constant of modulus 1. We have

Lemma 1.1.2. The extremal function h1 = hη,z0 ∈ E can be expressed in terms of the
Bergman kernel K� as

h1(ζ ) =
∂η(f (z0))K�(f (z0), ζ )−

(
∂η(f (z0))h0

)
h0(ζ )

∂η(f (z0))h1
.

Furthermore, if we choose the unique h1 = hη,z0 such that dh1(η) 6= 0 is (real and)
positive, then, with the vector field η along 6 ⊂ � being fixed and h1 = hη,z depending
on the base point z ∈ U ⊂ Dε0 , hη,z(ζ ) varies real-analytically in (z, ζ ).

Here in ∂η(f (z0))K�(f (z0), ξ), the notation η(f (z0)) signifies the (1, 0)-tangent vector
(η(f (z0)), 0) at (f (z0), ξ) ∈ � × �, and ∂η(f (z0))h0 means ∂η(f (z0))h0(f (z0)), etc. We
will call h1 = hη,z0 a normalized extremal function to mean that dh1(η) is positive.

Proof of Lemma 1.1.2. Complete (h0, h1) to an orthonormal basis (h0, h1, . . . ) of
H 2(�). From the expansion ofK� in terms of the chosen orthonormal basis, for ζ, ξ ∈ �,

K�(ζ, ξ) = h0(ζ )h0(ξ)+ h1(ζ )h1(ξ)+ · · · . (1)

Note that K�(ξ, ζ ) = K�(ζ, ξ). Substituting ζ = f (z0) in (1) and using the fact that
hj (f (z0)) = 0 whenever j ≥ 1, we deduce

K�(f (z0), ξ) = h0(f (z0))h0(ξ),
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so that

h0(ξ) =
K�(ξ, f (z0))

h0(f (z0))
, (2)

expressing h0 in terms of f andK�. Furthermore, differentiating both sides of (1) against
η(f (z0)) and using the fact that dhj ((η(f (z0))) = 0 whenever j ≥ 2 we have

∂η(f (z0))K�(f (z0), ξ) = (∂η(f (z0))h0)h0(ξ)+ (∂η(f (z0))h1
)
h1(ξ), (3)

so that

h1(ζ ) =
∂η(f (z0))K�(f (z0), ζ )−

(
∂η(f (z0))h0

)
h0(ζ )

∂η(f (z0))h1
, (4)

where we replace ξ in (3) by ζ in (4), proving the first half of Lemma 1.1.2.
For the proof of the last statement of Lemma 1.1.2, we may also fix the choice of h0

by requiring h0(z) to be (real and) positive. By the formulas (2) and (4) it suffices to
check that h0(f (z)) (with a hidden dependence of h0 on z) and dh1(η) = ∂η(f (z))h1 both
depend real-analytically on z. Now from K�(f (z), f (z)) = |h0(f (z))|

2 (by (2)) and
the normalization that h0(f (z)) is positive it follows that h0(f (z)) =

√
K�(f (z), f (z))

depends real-analytically on z. On the other hand from (1) by differentiation against η
in the ζ variable and then against η in the ξ variable and evaluating at (f (z), f (z)) it
follows that |∂η(f (z))h1|

2 can be expressed as a real-analytic function of z, noting that
hj (f (z)) = dhj (f (z)) = 0 whenever j ≥ 2 so that h2, h3, . . . do not enter into the
formula for |∂η(f (z))h1|

2, and ∂η(f (z))h1 varies real-analytically in z by our normalization
that ∂η(f (z))h1 is real and positive, proving Lemma 1.1.2. ut

For the tangent bundle π : T� → � we denote by T ′� ⊂ T� the subset of non-zero
tangent vectors. In general, for τ ∈ T ′� we have the notion of an extremal function adapted
to τ , meaning an element hτ ∈ H 2(�) of unit norm such that dh(τ) attains maximal
modulus at h = hτ among all h ∈ H 2(�) of unit norm satisfying h(π(τ)) = 0. Such an
hτ is unique up to multiplication by a scalar of unit modulus. As above, we can fix hτ
by requiring that dhτ (τ ) is real and positive, and we call hτ ∈ H 2(�) the normalized
extremal function adapted to τ ∈ T ′�. For a real-analytic manifold X, we will say that
a mapping B : X → H 2(�) is separately real-analytic to mean that B(x)(ζ0) is real-
analytic in x ∈ X for any ζ0 ∈ �. Obviously the Identity Theorem holds true for B
in the sense that B ≡ 0 whenever B vanishes on a non-empty open subset U ⊂ X.
Denote by H : T ′� → H 2(�) the mapping defined by H(τ ) = hτ and denote its image
by X(�) ⊂ H 2(�). From the formula for hτ implicit in Lemma 1.1.2, the mapping
h : � × T ′� → C defined by h(ζ, τ ) = hτ (ζ ) is holomorphic in ζ and real-analytic in
(ζ, τ ), thus H : T ′�→ H 2(�) is separately real-analytic.

For the further study of extremal functions hα , α ∈ A(ε), and extension problems on
their common zero sets, it is convenient to give a variation of the description ofE(ε) ⊂ �,
0 < ε ≤ ε0. Recall that �0 ⊂ � is a Stein neighborhood of 0, and Zε ⊂ V ∩ (Dε ×�0)

denotes an irreducible subvariety containing Graph(f ) and consisting of solutions (z, ζ )
of functional equations (Iw), w ∈ Dε , such that dim(z,f (z))(Zε ∩ ({z} × �)) = 1 for a
general point z ∈ Dε . For the normalization ν : Z̃ε → Zε , the extremal functions hα ,
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α ∈ A(ε), were constructed using πD ◦ν : Z̃ε → Dε , where πD : D×�→ D and (later
on) π� : D × � → � denote the canonical projections. Write γ = πD ◦ ν. Denote by
E(Zε) ⊂ E(ε) the subset of extremal functions thus obtained through Zε and byE(Zε) ⊂
� their common zero set. Write 0(ε) for the set of all such γ : Z̃ε → Dε and denote
by [Zε] the member in 0(ε) corresponding to the latter map. Then E(ε) =

⋃
{E(Zε) :

[Zε] ∈ 0(ε)} and E(ε) =
⋂
{E(Zε) : [Zε] ∈ 0(ε)}. The choice of the extremal functions

hα ∈ E(Zε) depends on the choice of one of the finitely many irreducible components Bj
of ν−1(Graph(f |Dε )). We denote by E(Zε, Bj ) ⊂ E(Zε) those arising from Bj , and by
E(Zε, Bj ) ⊂ � the set of common zeros of E(Zε, Bj ). Clearly E(Zε) =

⋂
j E(Zε, Bj ).

We are ready to prove

Lemma 1.1.3. For 0 < ε2 ≤ ε1 ≤ ε0 we have E(ε2) ⊂ E(ε1). Moreover, supposing that
�′ ⊃ � is a domain such that every h ∈ E(ε1) ∪ E(ε2) extends holomorphically to �′

and denoting by E′(εi) ⊂ �′, i = 1, 2, the common zero set of the extended functions h′

on �′ of h ∈ E(εi), we have E′(ε2) ⊂ E
′(ε1).

Proof. We continue with some generalities on E(Zε, B), where 0 < ε ≤ ε0, and B = Bj
is one of the irreducible branches of ν−1(Graph(f |Dε )). Since B is a hypersurface in the
normal complex space Z̃ε , for some hypersurface H ⊂ Z̃ε such that Sing(Z̃ε) ⊂ H and
B 6⊂ H , any p ∈ B − H is a non-singular point of B and γ = πD ◦ ν is a submersion
at p. Denote by TZ̃ε the tangent sheaf of Z̃ε and by F ⊂ TZ̃ε the relative tangent sheaf
of γ : Z̃ε → Dε . Since B is Stein, there is µ ∈ 0(B,F), µ 6≡ 0. Write ϕ = π� ◦ ν. In
particular, for p ∈ B − H , the fiber Fγ (p) := γ−1(γ (p)) of γ : Z̃ε → Dε is smooth at
p ∈ Fγ (p). Suppose the restriction of ϕ − f (γ (p)) to Fγ (p) vanishes exactly to the order
`− 1 at a general point of B −H . Let X be a holomorphic vector field defined on some
non-empty open set V ⊂ Z̃ε − H tangent to fibers Fγ (p) such that X|B∩V ≡ µ|B∩V .
Since ϕ − f (γ (p)) vanishes on Fγ (p) to the order ` − 1 at p, X`ϕ(p) is independent
of the choice of X ∈ 0(V,F) extending µ|B∩V . Thus, there exists σ ∈ 0(B − H,ON )

such that σ |B∩V = X`ϕ|B∩V for any such choices of V and X ∈ 0(V,F). Since F is of
rank 1, for σ ′ ∈ 0(B − H,ON ) arising from any non-trivial section µ′ ∈ 0(B,F), we
must have µ′ = λµ for some non-trivial meromorphic function λ on B, hence σ ′ = λ`σ
on B −H .

For p ∈ B − H , and σ ∈ 0(B − H,ON ) as above, σ(p) can be interpreted as an
element τ(p) ∈ Tϕ(p)� ∼= CN . We thus have a holomorphic map τ : B−H−Zero(σ )→
T ′�, and hence a separately real-analytic map A : B −H − Zero(σ )→ X(�) ⊂ H 2(�)

given by A(p) = hτ(p) = h(·, τ (p)). LetEσ ⊂ � be the common zero set of the extremal
functions {A(p) : p ∈ B−H−Zero(σ )}. For σ ′ = λ`σ as in the last paragraph, denoting
by A′ : B −H −Zero(σ ′)→ X(�) the analogue of A, the two extremal functions A′(p)
and A(p) are non-zero multiples of each other for p belonging to the dense open subset
B −H − Zero(σ )− Zero(σ ′) ⊂ B, hence a priori the two closed subsets Eσ , Eσ

′

⊂ �

are the same. In other words, Eσ depends only on the rank-1 coherent subsheaf F ⊂ TZ̃ε .
Consider any holomorphic deformation {ft }t∈1 over U ⊂ Dε constructed from

(Zε, B) as in the proof of Proposition 1.1.2. There exists by construction W ⊂ B such
that ν|W : W → U is a biholomorphism, so that, writing γ (p) = z for p ∈ W , at a gen-
eral point z ∈ U we have η(f (z)) = λ(z)τ (p) for some λ(z) ∈ C∗. By Lemma 1.1.2 and
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by the Identity Theorem for real-analytic functions, the common zero set of the extremal
functions hη,z, z ∈ U , agrees with Eσ . Hence, Eσ = E(Zε, B).

We proceed now to prove E(ε2) ⊂ E(ε1) whenever 0 < ε2 ≤ ε1 ≤ ε0. For
[Zε1 ] ∈ 0(ε1), write [Zε1 |Dε2

] ∈ 0(ε2) for the member obtained by restricting γ :
Z̃ε1 → Dε1 to Dε2 , i.e., γ |γ−1(Dε2 )

: γ−1(Dε2) → Dε2 . Let B ′ be an irreducible

branch of ν−1(Graph(f |Dε2 )), and B be that of ν−1(Graph(f |Dε1 )) containing B ′. Tak-
ing σ1 ∈ 0(B − H,ON ) as above (replacing ε by ε1 and hence σ by σ1), we have
E(Zε1 , B) = E

σ1 and E(Zε1 |Dε2
, B ′) = Eσ2 , where σ2 is the restriction of σ1 to B ′−H .

By Lemma 1.1.2 and the Identity Theorem we have Eσ2 = Eσ1 , hence E(Zε1 |Dε2
, B ′) =

E(Zε1 , B). Finally, E(ε2) ⊂ E(ε1) follows from E(ε) =
⋂
{E(Zε) : [Zε] ∈ 0(ε)} and

E(Zε) =
⋂
j E(Zε, Bj ). Exactly the same argument gives the other statement in Lemma

1.1.3 when any h ∈ E(ε1) ∪ E(ε2) extends to �′ ⊃ �, as desired. ut

We are now ready to prove

Theorem 1.1.1. Let D b Cn and � b CN be bounded complete circular domains.
Denote by ds2

D , resp. ds2
�, the Bergman metric on D, resp. �. Let λ be any positive real

number and f : (D, λds2
D; 0) → (�, ds2

�; 0) be a germ of holomorphic isometry. Then
there exists an irreducible complex-analytic subvariety S] ⊂ Cn × CN of dimension n
which contains the germ of Graph(f ) at (0, 0).

Proof. Choose α � 1 such that D b αDε0 = B
n(0;αε0). Let now ε′ > 0 be such that

αε′ < ε0. By Lemma 1.1.1, KD|D×Dε′ extends holomorphically as a function of (z, w)
to αDε0 ×Dε′ when we define

KD(αz,w) := KD(z, αw) (1)

for w ∈ Dε′ . In particular, for each w ∈ Dε′ , the function KD,w(z) = KD(z, w) ex-
tends holomorphically from D to Bn(0;αε0). Recall for w ∈ Dε′ we have the functional
equation

(Iw) K�(ζ, f (w)) = A ·KD(z, w)
λ. (2)

To proceed we make use of the proof of Proposition 1.1.2 and the notation adopted there.

Case 1: the functional equations are sufficiently non-degenerate. Consider first of all the
case where (Iw), w ∈ Dε , are sufficiently non-degenerate. On Dε0 × Dε0 the function
logKD(z, w) is well-defined and on the right-hand side of (2) the expression KD(z, w)λ

:= eλ logKD(z,w) is holomorphic in (z, w), hence by (1) the same holds true for (z, w) ∈
αDε0 × Dε′ , noting that D b αDε0 = Bn(0;αε0). Recall that Vw ⊂ D × � is the set
of all (z, ζ ) ∈ D × � satisfying (Iw), w ∈ Dε , and that V =

⋂
{Vw : w ∈ Dε′} (noting

that 0 < ε′ < ε0). Recall that 0 < δ0 < 1 and f (Dε0) b �δ0 b � (cf. first and second
paragraphs after Lemma 1.1.1). Choose now β � 1 such that � b β�δ0 = B

N (0;βδ0)

and let δ > 0 be such that βδ < δ0. Then, by Lemma 1.1.1, K�(ζ, ξ) is defined by
extension for ζ ∈ β�δ0 and ξ ∈ �δ . Hence, for w ∈ Dε the functional equation (2) is
defined for (z, ζ ) ∈ αDε0 × β�δ0 . The set of all solutions (z, ζ ) ∈ αDε0 × β�δ0 gives a
subvariety V ′ ⊂ αDε0 × β�δ0 such that V ′ ∩ (D ×�) = V .
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Let k ≥ 1 be any positive integer. The functionKD,w(z) can be extended holomorphi-
cally from D to Bn(0; k) = Dk whenever |w| < k−1ε2

0 (< ε0). Likewise, letting ` ≥ 1
be any positive integer, the functionK�,ξ (ζ ) can be extended holomorphically from� to
BN (0; `) = �` whenever |ξ | < δ` := `−1δ2

0 (< δ0). By the continuity of f at 0, for each
` ≥ 1 there exists k(`) such that f (Dε`) ⊂ �δ` for ε` := k(`)−1ε2

0 . We will choose k(`)
to be strictly increasing as `→∞. From the argument in the last paragraph we have irre-
ducible subvarieties V ]` ⊂ Dk(`)×�` such that V ]` ∩(D×�) = V for ` sufficiently large
and such that for `′ > ` ≥ 1 we must have V ]

`′
∩ (Dk(`)×�`) = V

]
` , by the Identity The-

orem for holomorphic functions. Since k(`)→ ∞ as `→ ∞, writing V ] :=
⋃
`≥1 V

]
` ,

we have obtained a subvariety V ] ⊂ Cn × CN such that V ] ∩ (D × �) = V and
V ] ∩ (Dk(`)×�`) = V

]
` for each positive integer `. When the system of functional equa-

tions (Iw), w ∈ Dε , is sufficiently non-degenerate, it suffices to take S] to be the irre-
ducible component of V ] containing Graph(f ), so that dim(S]) = n = dim(Graph(f )),
and S] ⊂ Cn × CN extends Graph(f ) as a subvariety.

Case 2: the functional equations are not sufficiently non-degenerate. For 0 < ε ≤ ε0
we define Ê(ε) :=

⋃
{E(β) : 0 < β ≤ ε}, and write Ê(ε) ⊂ � for the common zero

set of Ê(ε). Thus, Ê(ε) =
⋂
{E(β) : 0 < β ≤ ε}. Obviously, Ê(ε) ⊃ Ê(ε0) whenever

0 < ε ≤ ε0. By Lemma 1.1.3, we have E(ε2) ⊂ E(ε1) whenever 0 < ε2 ≤ ε1 ≤ ε0,
hence Ê(ε) ⊂ Ê(ε0). Thus Ê(ε) = Ê(ε0) := Ê whenever 0 < ε ≤ ε0.

From Proposition 1.1.2, for 0 < ε ≤ ε0 we have Graph(f ) ⊂ V ∩ (D×E(ε)), hence
Graph(f ) ⊂ V ∩ (D × Ê). Recall that there exists an increasing sequence k(`), 1 ≤
` <∞, of positive integers such that f (Dε`) ⊂ �δ` for ε` := k(`)−1ε2

0 and δ` = `−1δ2
0 .

By Lemma 1.1.2, any hα ∈ Ê(ε`) is definable on �`, with common zero set on �` to be
denoted by Ê]` ⊂ �`. By Lemma 1.1.3 (cf. last paragraph),

⋃
` Ê

]
` := Ê] ⊂ CN is a

subvariety such that Ê] ∩� = Ê. Define now T ] := V ] ∩ (Cn× Ê]) ⊃ Graph(f ). Then
the unique irreducible component S] of T ] containing Graph(f ) extends the latter as a
subvariety, as desired. ut

1.2. Holomorphic isometric embeddings defined by extensions of germs of graphs

Let f : (D, λds2
D; 0) → (�, ds2

�; 0) be a germ of holomorphic isometry at 0 between
bounded complete circular domains, with f (0) = 0, and S ⊂ D × � be the extension
of Graph(f ) to D × � as a complex-analytic subvariety. For the study of properties of
S we will need the following well-known lemma resulting from the Cauchy–Schwarz
inequality.

Lemma 1.2.1. Let G be a bounded domain and denote by KG(z, w) its Bergman kernel.
Then for any z,w ∈ G we have |KG(z, w)|2 ≤ KG(z, z)KG(w,w). Moreover, equality
holds if and only if z = w.

Proof. Let (gj )∞j=0 be an orthonormal basis of the Hilbert space H 2(G) of square-inte-
grable holomorphic functions on G. Then KG(z, w) =

∑
∞

j=0 gj (z)gj (w), and the in-
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equality |KG(z, w)|2 ≤ KG(z, z)KG(w,w) results from the Cauchy–Schwarz inequality
for the Hilbert space H of square-integrable sequences of complex numbers. Writing
9(z) = (g0(z), g2(z), . . . ), equality holds if and only if 9(z) = α9(w) for some com-
plex number α. From the reproducing property of KG(z, w) this is the case if and only if
g(z) = αg(w) for any g ∈ H 2(G), which obviously holds true if and only if z = w. ut

Under some mild conditions we have a sharpened result on interior extension.

Theorem 1.2.1. Let D and � be bounded complete circular domains, λ be any positive
real number, and f : (D, λds2

D; 0) → (�, ds2
�; 0) be a germ of holomorphic isometry.

Then Graph(f ) ⊂ D ×� extends to a complex-analytic subvariety S ⊂ D ×� which is
the graph of a holomorphic isometry F : (D′, λds2

D|D
′)→ (�, ds2

�) for some connected
open subset D′ ⊂ D containing Dε . Suppose ϕ�(ζ ) := K�(ζ, ζ ) is an exhaustion func-
tion on �. Then D = D′ and F : (D, λds2

D) → (�, ds2
�) is a holomorphic isometry. If

furthermore ϕD(z) := KD(z, z) is an exhaustion function on D, then F is proper.

Proof. By Theorem 1.1.1, Graph(f ) extends analytically to an irreducible subvariety S ⊂
D×�. Let ρD : S → D and ρ� : S → � be the canonical projections. By definition the
real-analytic identity (†) λρ∗D(ds

2
D) = ρ

∗
�(ds

2
�) holds true on Graph(f ), hence on Reg(S)

by analytic continuation. We claim that for any p ∈ D, the fiber 8p := ρ−1
D (p) is 0-

dimensional. Suppose otherwise. Let8p be a positive-dimensional fiber and (p, q) ∈ 8p
be a smooth point belonging to an irreducible branch of positive dimension. Let η =
(η′, η′′) be a non-zero real vector tangent to 8p at (p, q). Then η′ = 0, η′′ 6= 0. Thus,
ρ∗D(ds

2
D)(η, η) = 0 while ρ∗�(ds

2
�)(η, η) = ds

2
�(η
′′, η′′) > 0. If (p, q) ∈ Reg(S), then

we have reached a contradiction since (†) holds true on Reg(S).
In general, let I ⊂ OD×� be the ideal sheaf of S ⊂ D ×�, and let F ⊂ O(TD×�|S)

be the coherent sheaf on S whose stalk at s ∈ S consists of all ξ ∈ Os(TD×�)

such that ξf = 0 for every f ∈ Is . Then there exists ξ ∈ F(p,q) such that
Re ξ(p, q) = η. Thus, writing ξ = (ξ ′, ξ ′′), by analytic continuation the germ of function
λρ∗Dds

2
D(Re ξ ′,Re ξ ′)−ρ∗�ds

2
�(Re ξ ′′,Re ξ ′′) at (p, q) vanishes, which is a contradiction

since Re ξ ′(p, q) = η′ = 0 and Re ξ ′′(p, q) = η′′ 6= 0.
Denote by B ( S the subvariety over which ρD fails to be a local biholomorphism.

Then S − B is locally the graph of a holomorphic isometry between open subsets of D
and�with respect to restrictions of the Kähler metrics λds2

D and ds2
�. Since ρD : S → D

is a local biholomorphism at a general point and its fibers are 0-dimensional, it is an open
map. We claim that ρD : S → D is injective. Suppose otherwise. By the openness of ρD ,
there exists x ∈ D and two distinct points y1, y2 ∈ � such that (x, y1), (x, y2) ∈ S − B.
Thus, there exist some simply connected neighborhoods U of x and W1, resp. W2, of
(x, y1), resp. (x, y2), such that ρD|W1 : W1 ∼= U and ρD|W2 : W2 ∼= U are biholo-
morphisms. For z ∈ U and i = 1, 2 we describe Wi as the graph of fi : U → �,
which is a holomorphic isometry with respect to λds2

D|U and ds2
�. Recall that KD(z, 0)

is a positive constant C. By Lemma 1.1.1, shrinking ε0 > 0 if necessary we may as-
sume that ReKD(z, w) > 0 for any (z, w) ∈ D × Dε0 , so that KD(z, w)λ is de-
fined as a function holomorphic in (z, w) for (z, w) ∈ D × Dε0 . By Proposition 1.1.2
K�(f (z), f (w)) − A · KD(z, w)

λ
= 0 for z,w ∈ Dε0 . Thus, by analytic continuation
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K�(y, f (w)) − A · KD(x,w)
λ
= 0 holds true for w ∈ Dε0 and for any (x, y) ∈ S. In

particular, we have

K�(y1, f (w)) = A ·KD(x,w)
λ
= K�(y2, f (w)).

Since x ∈ U is arbitrary, we conclude that

K�(f1(z), f (w)) = K�(f2(z), f (w)) (1)

for any (z, w) ∈ U × Dε0 . Fix an arbitrary point z ∈ U . Consider ψ : � → C defined
by ψ(ξ) = K�(ξ, f1(z)) − K�(ξ, f2(z)). Define furthermore s : S → C by s(x, y) =
ψ(y) for (x, y) ∈ S. By (1) we have s(w, f (w)) = 0 whenever w ∈ Dε0 . From the
irreducibility of S, we deduce by analytic continuation that s ≡ 0 on S. In particular,
substituting (x, y) = (z, fi(z)) ∈ S − B, i = 1, 2, we conclude from s(z, f1(z)) =

s(z, f2(z)) = 0 that

K�(f1(z), f1(z)) = K�(f1(z), f2(z)), K�(f2(z), f1(z)) = K�(f2(z), f2(z))

for any z ∈ U . Thus, K(f1(z), f2(z)) is real and we have

K�(f1(z), f2(z)) = K�(f1(z), f1(z)) = K�(f2(z), f2(z)). (2)

From Lemma 1.1.2 we have

|K�(f1(z), f2(z))|
2
≤ K�(f1(z), f1(z))K�(f2(z), f2(z))

and equality holds if and only if f1(z) = f2(z). Thus, (2) implies that f1(z) = f2(z) for
z ∈ U , proving that each fiber of ρD : S → D consists of at most one point. Hence,
S is the graph of some holomorphic map F : D′ → � defined on some neighborhood
D′ ⊂ D of 0 containing Dε0 . To prove that F is injective let z1, z2 ∈ D

′ be such that
F(z1) = F(z2). For w ∈ Dε0 ,

KD(z1, w)
λ
= A−1K�(F (z1), f (w)) = A

−1K�(F (z2), f (w)) = KD(z2, w)
λ. (3)

SinceKD(z, 0) = A is positive, (3) implies that for some ε sufficiently small, 0 < ε ≤ ε0,

KD(z1, w) = KD(z2, w)

whenever w ∈ Dε0 , hence for any w ∈ D by the Identity Theorem. By the reproducing
property of KD(z, w), h(z1) = h(z2) for any h ∈ H 2(D), hence z1 = z2, i.e., F is
injective.

Assume now ϕ�(ζ ) := K�(ζ, ζ ) is an exhaustion function. Suppose D′ ( D and let
p ∈ ∂D′ ∩D. From the functional equations (Iw), w ∈ Dε0 , we have K�(F (z), F (z)) =
A · KD(z, z)

λ. Since K�(ζ, ζ ) is an exhaustion function of ζ , any limit point (p, q) of
points (z, F (z)) as z approaches p must lie in D ×�, i.e., q ∈ �. Since S ⊂ D ×� is a
subvariety, in particular closed, it follows that (p, q) ∈ S, so that S is the graph of some
holomorphic map in a neighborhood of (p, q) ∈ S, so that p ∈ D′, a plain contradiction.
We conclude that D′ = D, i.e., F : D→ � is a global holomorphic isometry.
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Finally, assume ϕD(z) = KD(z, z) is an exhaustion function. Then, for any dis-
crete sequence of points (zm)∞m=0 on D, KD(zm, zm) must diverge to ∞ as n → ∞.
Hence, K�(F (zm), F (zm)) = A · KD(zm, zm)

λ must also diverge to ∞, implying that
(F (zm))

∞

m=0 is discrete. As a consequence, F : D→ � must be proper, as desired. ut

Remarks. For bounded complete circular domains D1 and D2, a biholomorphism 8 :
(D1; 0)→ (D2, 0) must be linear, by a result of H. Cartan’s (cf. Mok [Mk2, Chap. 4, §2,
Thm. 1]). Thus, the exhaustive property of ϕD(z) is a property of (D; 0) independent of
its realization as a bounded complete circular domain marked at 0.

From the proof of Theorem 1.2.1 we deduce

Corollary 1.2.1. In the notation of the proof of Theorem 1.1.1, let S] ⊂ Cn × CN be
the irreducible component of V ]∩ (Cn× Ê]) containing Graph(f ). Suppose the function
ϕ� = K�(ζ, ζ ) is an exhaustion function on�. Then S]∩(D×�) is irreducible. In other
words, denoting by S the irreducible component of V ∩ (D × Ê) containing Graph(f ),
we have S] ∩ (D ×�) = S.

Proof. By Theorem 1.2.1, S is the graph of F : (D, λds2
D) → (�, ds2

�). Suppose over
some non-empty open subset U ⊂ D × � there are two branches of S] ∩ (D × �)
described by (z, f1(z)) and (z, f2(z)), where fi : U → �, i = 1, 2, are holomorphic
maps. The argument of analytic continuation leading to the identitiesK�(f1(z), f2(z)) =

K�(f1(z), f1(z)) = K�(f2(z), f2(z)) remains valid. To conclude it suffices to note that
the argument using the Cauchy–Schwarz inequality on 8(�) ⊂ H, which gives f1(z) =

f2(z) once the identities are established, remains applicable since both f1(z) and f2(z)

lie on �. ut

As will be seen in 3.2, there exist non-standard holomorphic isometric embeddings of the
Poincaré disk into polydisks. In such an example Graph(f ) extends to an affine-algebraic
variety S], but S] is no longer the graph of a ‘univalent’ map.

1.3. Holomorphic isometric embeddings between bounded symmetric domains

In 2003, Clozel–Ullmo proved an extension theorem for germs of holomorphic isometries
up to integral normalizing constants from the unit disk into the polydisk equipped with the
Bergman metric, showing that any such germ of map extends to a holomorphic isomet-
ric immersion on the unit disk and that moreover its graph extends to an affine-algebraic
variety. This was a crucial step in the proof of the total geodesy of such germs of holo-
morphic isometries arising from some special algebraic correspondences in [CU]. (For a
discussion on methods of analytic continuation in relation to [CU], cf. Mok [Mk5, (2.2)
and §4].) For germs of holomorphic isometries between bounded symmetric domains in
general, applications of Theorem 1.1.1 and Theorem 1.2.1 and their proofs yield

Theorem 1.3.1. Let D b Cn and � b CN be bounded symmetric domains in their
Harish-Chandra realizations. Let λ be any positive real number and f : (D, λds2

D; 0)→
(�, ds2

�; 0) be a germ of holomorphic isometry at 0 ∈ D. Then the germ Graph(f ) at
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(0, 0) extends to an affine-algebraic subvariety S] ⊂ Cn×CN such that S := S]∩(D×�)
is the graph of a proper holomorphic isometric embedding F : (D, λds2

D)→ (�, ds2
�).

For the proof of Theorem 1.3.1 we will make use of specific forms of Bergman kernels
on bounded symmetric domains as given by the following well-known lemma.

Lemma 1.3.1. Let G b Cm be an irreducible bounded symmetric domain in its Harish-
Chandra realization, and denote by KG(z, w) its Bergman kernel. Then KG(z, w) =
1/QG(z, w), where QG is a polynomial in (z1, . . . , zm, w1, . . . , wm) such that QG(z, z)

> 0 on G and QG(z, z) = 0 for z ∈ ∂G.

We have more precisely QG(z, w) = hG(z, w)
pG , where hG(z, w) is some polynomial

in (z1, . . . , zm, w1, . . . , wm) and pG is a positive integer depending on G. The polyno-
mial hG(z, w) in (z, w) is characterized by the property (†) to be specified below (cf.
Faraut–Korányi [FK, pp. 76–77]). Denote by r the rank of G as a bounded symmetric
domain. The isotropy subgroup K of Aut0(G) acts as a group of G-preserving unitary
transformations on the Euclidean space Cm. Using Harish-Chandra coordinates, for each
maximal polydisk P ∼= 1r on G passing through 0 there exists γ ∈ K such that γ (P )
is the unit polydisk 5 = 1r × {0}. Each z ∈ G is contained in a maximal polydisk
P ⊂ G, hence there exists γ ∈ K such that γ (z) = (a1, . . . , ar ; 0) ∈ 5. For some
positive constant αG the polynomial hG(z, w) in (z, w) is characterized by the property
(†) hG(z, z) = αG(1 − |a1|

2) × · · · × (1 − |ar |2). As examples, in the case of type-I
domainsDI

p,q in the complex Euclidean spaceM(p, q) of p-by-q matrices with complex

entries defined by DI
p,q := {Z ∈ M(p, q) : I − Z

t
Z > 0}, the Bergman kernel is given

by KDI
p,q
(Z,W) = αp,q · det(I −W

t
Z)−(p+q) for some positive constant αp,q (cf. Mok

[Mk2, Chap. 4, p. 80 ff.] for this and other classical domains).

Proof of Theorem 1.3.1. Recall the functional equations (Iw), w ∈ Dε , in Proposition
1.1.2, arising from a germ of holomorphic isometry f : (D, λds2

D; 0) → (�, ds2
�; 0),

where f is assumed to be defined on Dε0 = B
n(0; ε0) b Cn. It may happen a priori that

the normalizing constant λ is irrational (cf. Proposition 3.1.2). The functions ϕD(z) =
KD(z, z) and ϕ�(ζ ) = K�(ζ, ζ ) are exhaustion functions by Lemma 1.3.1. Thus, by
Theorem 1.2.1, f extends to a proper holomorphic map F : (D, λds2

D)→ (�, ds2
�) such

that Graph(F ) ⊂ D × � extends to a complex-analytic subvariety S] ⊂ Cn × CN . By
the fine structure of the boundary of bounded symmetric domains in their Harish-Chandra
realizations (cf. Wolf [Wo]), there is a decomposition of ∂D into a finite union of orbits
under Aut0(D). The set Reg(∂D) of regular points of ∂D is a locally closed real-analytic
submanifold of Cn which is dense in ∂D. The preceding discussion holds analogously for
the bounded symmetric domain � b CN in its Harish-Chandra realization.

We claim that λ must be a rational number. Since Graph(F ) extends to a subvariety
S] ⊂ Cn × CN , for a general point b ∈ Reg(∂D), there is a neighborhood Ub of b in Cn
and a holomorphic map F [ : Ub → CN such that F [|Ub∩D agrees with F |Ub∩D . We have

K�(F
[(z), F [(z)) = A ·KD(z, z)

λ
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for z,w ∈ Ub ∩D. By Lemma 1.3.1 we have

A ·Q�(F
[(z), F [(z)) = QD(z, z)

λ (1)

for z ∈ Ub ∩D. Write ρD(z) = −hD(z, z) on Cn and ρ�(ζ ) = −h�(ζ, ζ ) on CN . On Ub
the function σ(z) = ρ�(F [(z)) is real-analytic. We have σ < 0 on Ub ∩D and σ = 0 on
Ub ∩ ∂D. The function ρD , resp. ρ�, vanishes to order 1 along Reg(∂D), resp. Reg(∂�).
Letting ` ≥ 1 be the vanishing order of σ along Ub∩∂�, by equating vanishing orders on
both sides of (1) we conclude that `p� = λpD , hence λ = `p�/pD is a rational number,
as claimed.

Write now λ = p/q, where p and q are positive integers. We adopt the notation in
the proof of Theorem 1.1.1. There we have a subvariety V ] ⊂ Cn × CN , a subvariety
Ê] ⊂ CN such that T ] = V ] ∩ (Cn × Ê]) contains Graph(f ), T ] is irreducible and
of dimension n at a general point of Graph(f ), and S] ⊂ Cn × CN is the unique irre-
ducible component of T ] containing Graph(f ). In the current situation where λ = p/q
is rational, let W ] be the set of common solutions (z, ζ ) on Cn × CN to the equa-
tions K�(ζ, f (w))q = A · KD(z, w)

p as w ranges over some Dε0 = Bn(0; ε0). Then
V ] ⊂ W ] and the germs of V ] and W ] at (0, 0) agree with each other. By Lemma 1.3.1,
the functions KD,w(z) = KD(z, w) and K�,ξ = K�(ζ, ξ) are rational functions, hence
W ]
⊂ Cn × CN is affine-algebraic. The subvariety Ê = Ê(ε0) ⊂ � is defined by ex-

tremal functions {hα}α∈A(β), 0 < β ≤ ε0, and Ê = Ê] ∩ �. By the formula in Lemma
1.1.2 expressing hα = hη,z0 in terms of K�, it follows that each hα is a rational function.
Thus Ê = H ∩ � for some affine-algebraic variety H ⊂ CN . Finally, S] is equivalently
the irreducible component of W ]

∩ (Cn × Ĥ ) containing Graph(f ), hence also affine-
algebraic, as desired. ut

When D is the unit disk 1, and F : (1, λds2
1)→ (�, ds2

�) is a holomorphic isometry,
by Theorem 1.3.1, F is a proper holomorphic isometric embedding, and S := Graph(F )
extends as a subvariety to an affine-algebraic subvariety S] ⊂ C × CN . It follows in
particular that F : 1 → � extends to a continuous mapping F [ : 1 → �. For a
general point b ∈ ∂1, there is a neighborhood Ub of b on C such that F |Ub∩1 extends
holomorphically to Ub. When the latter fails to be the case, b will be called a singular
point of F , and we will say that b lies over the branch point F [(b) ∈ ∂�.

Germs of holomorphic isometries up to normalizing constants between bounded sym-
metric domains equipped with the Bergman metric may fail to be totally geodesic (cf.
3.2 and 3.3). In view of such examples we pose the question of finding conditions un-
der which germs of holomorphic isometries are necessarily totally geodesic. In the case
where the domain is irreducible and of rank ≥ 2, as observed by Clozel–Ullmo [CU],
total geodesy follows from the proof of Hermitian metric rigidity of Mok [Mk1, Mk2].
Mok [Mk3] proved an analogue on algebraic extension for germs of holomorphic isome-
tries up to integral normalizing constants from an n-ball to a product of n-balls under a
certain non-degeneracy assumption, showing in the case of n ≥ 2 that any such map must
necessarily be totally geodesic by applying Alexander’s Theorem [Al]. Using Theorem
1.3.1, the latter result can be improved by removing the non-degeneracy assumption and
by allowing the normalizing constant λ to be a priori any positive real number. Regarding
the characterization of totally geodesic maps among holomorphic isometries we now have
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Theorem 1.3.2. Let D b Cn and � b CN be bounded symmetric domains, λ > 0, and
f : (D, λds2

D; 0)→ (�, ds2
�; 0) be a germ of holomorphic isometry. Then f extends to

a totally geodesic holomorphic embedding F : (D, λds2
D)→ (�, ds2

�)

(a) whenever each irreducible component of D is of rank ≥ 2;
(b) whenever D is of rank 1 and dimension ≥ 2, i.e., D ∼= Bn, n ≥ 2, and � is a

Cartesian product of copies of Bn.

Proof. (a) The zeros of holomorphic bisectional curvature are preserved by a holomor-
phic isometry. Thus, whenever RD

ααζζ
= 0, we have R�

ααζζ
= 0 and ‖σαζ‖2 = R�

ααζζ
−

RD
ααζζ

= 0. When D is irreducible and of rank ≥ 2 the partial vanishing σαζ = 0 is
enough to imply σ ≡ 0, by Mok [Mk1, proof of Corollary to Theorem 3′, p. 138 ff.] (cf.
also Clozel–Ullmo [CU, §3]). Assume now that D is reducible, D = D1 × · · · × Dk ,
k ≥ 2, and each irreducible component Di , 1 ≤ i ≤ k, is of rank ≥ 2. Fix x ∈ D. For
ηi, η

′

i ∈ Tx(D) tangent to the i-th direct factor we have σηiη′i = 0. On the other hand,
if ηj ∈ Tx(D) is tangent to the j -th direct factor and i 6= j , then RDηiηiηjηj = 0, and we

deduce by ‖σηiηj ‖
2
= R�ηiηiηjηj

− RDηiηiηjηj
= 0 that σηiηj = 0. From σηiη′i

= σηiηj = 0

we conclude that σ ≡ 0 on D, proving that f : (D, λds2
D; 0) → (�, ds2

�; 0) is totally
geodesic.

(b) The statement for the germ of map f : (Bn, λds2
Bn; 0)→ ((Bn)p, ds2

(Bn)p ; 0) was
established in Mok [Mk3] under the assumptions that (i) the normalizing constant λ is a
positive integer, and that (ii) writing f = (f1, . . . , fp), fi : Bn → Bn, for 1 ≤ i ≤ p,
each fi is of maximal rank at some point. When the normalizing constant λ > 0 is an
arbitrary positive real number, results of the current article apply. In fact, by Theorem
1.3.1, Graph(f ) extends as an affine-algebraic variety. The final argument in [Mk3] using
Alexander’s Theorem remains valid to show that f is totally geodesic, as follows. The
functional identities as in Proposition 1.1.1 apply and we have in particular the identity

p∏
i=1

(1− ‖fi‖2) = (1− ‖z‖2)λ (1)

analogous to Mok [Mk3, proof of Theorem (3.1)]. Pick b ∈ ∂Bn where f extends holo-
morphically to a neighborhood Ub of b in Cn. From (1) one of the factors 1 − ‖fi‖2,
1 ≤ i ≤ p, must vanish on ∂Bn. We may take i = p. Since n ≥ 2 and fp is obviously
nonconstant, Alexander’s Theorem (stated below) applies to force fp to extend to a bi-
holomorphism Fp : Bn → Bn. Since fp(0) = 0 we must have ‖fp(z)‖ = ‖z‖, hence
by (1) we have

∏p−1
i=1 (1 − ‖fi‖

2) = (1 − ‖z‖2)λ−1, and (b) follows by induction, as
desired. ut

Theorem (Alexander [Al]). Let Bn b Cn be the complex unit ball of dimension n ≥ 2.
Let b ∈ ∂Bn, Ub be a connected open neighborhood of b in Cn, and f : Ub → Cn be
a non-constant holomorphic map such that f (Ub ∩ ∂Bn) ⊂ ∂Bn. Then there exists an
automorphism F : Bn→ Bn such that F |Ub∩Bn ≡ f |Ub∩Bn .
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2. Generalizations of extension results for bounded domains and for complex
manifolds

2.1. Extension of germs of holomorphic isometries for bounded domains

We have considered the extension problem for bounded complete circular domains on
germs of holomorphic isometries f at 0, where f (0) = 0. Here we generalize the re-
sults to holomorphic isometries f : (D; λds2

D; x0)→ (�, ds2
�; f (x0)) between arbitrary

bounded domains.

Theorem 2.1.1. Let D b Cn and � b CN be bounded domains. Let x0 ∈ D, λ be
a positive real number, and f : (D, λds2

D; x0) → (�, ds2
�; f (x0)) be a germ of holo-

morphic isometry. Then the germ of complex-analytic subvariety Graph(f ) at (x0, f (x0))

extends to an irreducible complex-analytic subvariety S ⊂ D × � which is the graph of
a holomorphic isometric embedding F : (D′, λds2

D|D
′) → (�, ds2

�) defined on some
neighborhoodD′ of x0 inD. If (�, ds2

�) is complete as a Kähler manifold, thenD′ = D,
so that the germ of holomorphic isometric immersion f extends to a holomorphic isomet-
ric embedding F : (D, λds2

D)→ (�, ds2
�).

In what follows for ε, δ > 0 sufficiently small we will write Dε := Bn(x0; ε) b D and
�δ := BN (x0; δ) b �. The germ of holomorphic map f : (D; x0) → (�; f (x0)) will
be taken to be defined on some Dε0 , ε0 > 0 being sufficiently small and fixed.

Proof of Theorem 2.1.1. With some minor differences Theorem 1.2.1 deals with the spe-
cial case where D b Cn and � b CN are complete circular domains, x0 = 0, and
f (x0) = 0. In the proof there we made use of the circle group action. With reference
to the proof given there and in the same notation, we examine what is needed on the
coordinates (zi) and (ζj ) for the proof to work. We have

logK�(f (z), f (z)) = λ logKD(z, z)+ Re(ψ), (1)

where ψ is a holomorphic function on Dε0 . The pluriharmonic function Re(ψ) is shown
to be a constant by the observations that for |I | 6= |J |, (a) the coefficient of zI zJ in
logKD(z, z) is always 0; and (b) the coefficient of ζ I ζ J in logK�(ζ, ζ ) is always 0. By
(b), substituting ζ = f (z) satisfying f (0) = 0, we conclude that the coefficient of zI (and
hence of zI ) in logK�(f (z), f (z)) is always 0 whenever I = (i1, . . . , in) is non-zero.
Using (a) and (b) and comparing the two sides of (1) it follows that ψ must be a constant.

The observations (a) and (b) hold true because of the invariance of the Bergman ker-
nels under the circle group action at 0. But, in order to conclude that ψ is a constant, it
is sufficient that whenever I = (i1, . . . , in) is non-zero, (a′) the coefficient of (z − x0)

I

in logKD(z, z) is always 0; and (b′) the coefficient of (ζ − f (x0))
I in logK�(ζ, ζ ) is

always 0. Such coordinates do not always exist. However, in place of using logKD(z, z),
resp. logK�(ζ, ζ ), we can first remove pluriharmonic functions from the potential func-
tions before comparing the two sides in the functional equations. For (a′) and (b′) to
hold true it suffices that we choose a potential function at x0 for the Bergman metric
which is a convergent sum of ±|θ |2 for a countable number of holomorphic functions θ
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on D vanishing at x0, and an analogous potential function at y0 := f (x0). For this pur-
pose let (s0, s1, . . . ) be an orthonormal basis of H 2(D) adapted to x0 so that si(x0) = 0
for i ≥ 1. Then the Bergman kernel KD is given by KD(z, z) = |s0|2K ′D(z, z), where
K ′D(z, z) = 1 +

∑
i≥1 |si/s0|

2. Expanding in power series on some neighborhood of x0,
the function logK ′D(z, z) is the convergent sum of a countable number of functions of the
form ±|θk|2, where each θk is a holomorphic function vanishing at x0. Choose now anal-
ogously an orthonormal basis (r0, r1, . . . ) of H 2(�) adapted to y0 so that rj (y0) = 0 for
every j ≥ 1, and write in a similar wayK�(ζ, ζ ) = |r0|2K ′�(ζ, ζ ). Again, on some neigh-
borhood of y0 the function logK ′�(ζ, ζ ) is the convergent sum of a countable number of
functions of the form ±|χ`|2, where each χ` is a holomorphic function on � vanishing
at y0. Noting that log |s0|2, resp. log |r0|2, is a pluriharmonic function on a neighborhood
of x0, resp. y0, the hypothesis that f : (D, x0)→ (�, y0) is a holomorphic isometry up
to a normalizing constant gives rise to

√
−1 ∂∂ logK�(f (z), f (z)) = λ

√
−1 ∂∂ logKD(z, z),

logK ′�(f (z), f (z)) = λ logK ′D(z, z)+ Re(ψ ′),
(2)

where ψ ′ is a germ of holomorphic function at x0. Thus, we have logK ′�(f (z), f (z)) =∑
`±|(χ` ◦ f )(z)|

2, where (χ` ◦ f )(x0) = χ`(f (x0)) = χ`(y0) = 0. Expanding in
power series at x0 and observing that 2 Re(ψ ′) = ψ ′ +ψ ′ is a sum of terms of pure type,
it follows that in fact the pluriharmonic function Re(ψ ′) vanishes identically, giving

logK ′�(f (z), f (z)) = λ logK ′D(z, z). (3)

From K ′D(z, z) we define the function K ′D(z, w) holomorphic in z and anti-holomorphic
in w such that one recovers the original definition by restricting to z = w. The same
applies to K ′�(ζ, ξ). Writing the extremal functions s0 ∈ H 2(D) and r0 ∈ H 2(�) as

s0(z) =
KD(z, x0)
√
KD(x0, x0)

, r0(ζ ) =
K�(ζ, y0)
√
K�(y0, y0)

,

from K ′D(z, w) =
KD(z,w)

s0(z)s0(w)
and K ′�(ζ, ξ) =

K�(ζ,ξ)

r0(ζ )r0(ξ)
we have

K ′D(z, w) =
KD(z, w)KD(x0, x0)

KD(z, x0)KD(x0, w)
, K ′�(ζ, ξ) =

K�(ζ, ξ)K�(y0, y0)

K�(ζ, y0)K�(y0, ξ)
. (4)

Observe from (4) that
K ′D(z, x0) = 1, K ′�(ζ, y0) = 1. (5)

Let (hj )∞j=0 be an orthonormal basis of H 2(�) and write h′j = hj/r0. Define8 : �→ H
by

8(ζ) = (h0(ζ ), h1(ζ ), . . .).

We also write

8′(ζ ) = (h′0(ζ ), h
′

1(ζ ), . . .) =
8(ζ)

r0(ζ )
.
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Each component h′j of8′ is meromorphic on � and may in general have poles. However,
since r0(y0) 6= 0, without loss of generality we will assume that f (Dε0) ⊂ �δ0 where
r0 has no zeros on �δ0 , so that 8′ ◦ f is holomorphic on Dε0 . We are going to prove the
extendibility of Graph(f ) to S ⊂ D × � as a complex-analytic subvariety by imposing
first of all the following simplifying assumption on the Bergman kernel KD(z, w):

(]) The holomorphic function KD(z, x0) of z does not have any zero on D.

Assuming (]), the function K ′D(z, w) is holomorphic in (z, w) on D × D. Let G b D

be an open neighborhood of Dε0 . Since K ′D(z, x0) ≡ 1 by (5), from the continuity of
K ′D(z, w), for some ε satisfying 0 < ε ≤ ε0 we must have Re(K ′D(z, w)) > 0 whenever
(z, w) ∈ G×Dε . Thus, for (z, w) ∈ G×Dε , the function logK ′D(z, w) is well-defined
and holomorphic in (z, w) for the principal branch log of the natural logarithm, so that
(K ′D(z, w))

λ
= exp(λ logK ′D(z, w)) is defined and holomorphic in (z, w) there. Con-

sider
(Iw) K ′�(ζ, f (w)) = (K

′

D(z, w))
λ, w ∈ Dε,

restricted to (z, ζ ) ∈ G × �, and denote by VG ⊂ G × � the set of common solutions
to (Iw), w ∈ Dε . By polarizing (3) and exponentiating, it follows that (Iw) is satisfied by
ζ = f (z) for w ∈ Dε . Suppose connected open subsets G and G′ are chosen such that
Dε b G b G′ b D and ε, ε′ are chosen so that 0 < ε′ < ε ≤ ε0 and Re(K ′D(z, w)) > 0
whenever (z, w) ∈ G × Dε or (z, w) ∈ G′ × Dε′ . Then VG′ ∩ (G × �) = VG by the
Identity Theorem for holomorphic functions. Choose a sequence (Gk)∞k=1 of connected
open subsets of D such that Dε b · · · b Gk b Gk+1 b · · · b D and

⋃
k≥1Gk = D,

and a corresponding strictly decreasing sequence of positive numbers (εk)∞k=1 converging
to 0 such that Re(K ′D(z, w)) > 0 whenever (z, w) ∈ Gk × Dεk for some integer k ≥ 1.
Then the union V =

⋃
k≥1 VGk is a subvariety of D ×�.

Let U ⊂ Dε0 , and let {ft (z)} for t ∈ 1 and z ∈ U be a holomorphic 1-parameter
family of solutions to the functional equations (Iw), w ∈ Dε , given by

K ′�(ft (z), f (w)) = (K
′

D(z, w))
λ, w ∈ Dε, (6)

as w ranges over Dε . Write 6 := f (U) ⊂ � and 4′ := 8′(6) ⊂ H. Again, let `
be the first positive integer such that ∂`

∂t`
ft (z)

∣∣
t=0 is not identically zero on U . Then,

as in the proof of Proposition 1.1.2, differentiating the identities (6) against t exactly `
times and evaluating at t = 0 we obtain a holomorphic vector field η(f (z)) on 6 and a
corresponding holomorphic vector field along d8′(η) along 4′ satisfying

〈d8′(η(f (z))),8′(f (w))〉 = 0.

Write

K ′�(ζ, ξ) =
1

r0(ζ )r0(ξ)
K�(ζ, ξ) =

1

r0(ζ )r0(ξ)
(h0(ζ )h0(ξ)+ h1(ζ )h1(ξ)+ · · · )

= h′0(ζ )h
′

0(ξ)+ h
′

1(ζ )h
′

1(ξ)+ · · · .
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Choose now the orthonormal basis (h0, h1, . . . ) of H 2(�) adapted to a point z0 on U
and η(f (z0)) as in the proof of Proposition 1.1.2, so that hj (z0) = 0 whenever j ≥ 1,
and dhj (η(f (z0))) = 0 whenever j ≥ 2. Clearly, we also have h′j (z0) = 0 whenever
j ≥ 1, and dh′j ((η(f (z0))) = 0 whenever j ≥ 2. By the analogues of (2)–(4) in the proof
of Lemma 1.1.2, applied instead to (h′j )

∞

j=0, we conclude that h′1(f (w)) = 0 and hence
h1(f (w)) = 0 for any w ∈ Dε . Defining E ⊂ H 2(�) to consist of h1 = hη,z0 from
infinitesimal variations of solutions to (Iw), and E ⊂ � to consist of common zeros of
hα ∈ E (cf. the proof of Proposition 1.1.2), the irreducible component S of V ∩ (D ×E)
containing Graph(f ) gives an extension of Graph(f ) to a subvariety of D ×�.

In the absence of (]) there is the problem of making sense of the identity (3) and
its polarization, formally written logK ′�(f (z), f (w)) = λ logK ′D(z, w), both sides of
which can only be understood as multi-valued functions when the domain of definition
of f : Dε0 → � is enlarged. Recall that for z,w ∈ D we write KD,w(z) = KD(z, w)

and likewise for (ζ, ξ) ∈ � we write K�,ξ (ζ ) = K�(ζ, ξ). For each w ∈ Dε0 , denote by
2w b D ×� the complex-analytic subvariety given by

2w :=
(
(Zero(KD,x0)∪Zero(KD,w))×�

)
∪
(
D× (Zero(K�,f (x0))∪Zero(K�,f (w)))

)
.

Given a relatively compact subdomain inD×�−2x0 we will consider functional equa-
tions (Jw) which are well-defined on the subdomain provided that w is sufficiently close
to x0, where the requirement of proximity of w to x0 depends on the subdomain chosen.

Let G b D − Zero(KD,x0) and O b � − Zero(K�,f (x0)) be arbitrary relatively
compact subdomains. Observe that for ε > 0 sufficiently small,K ′D(z, w) is holomorphic
in (z, w) for (z, w) ∈ G × Dε , and we have K ′D(z, x0) ≡ 1 for z ∈ D − Zero(KD,x0).
Likewise for δ > 0 sufficiently small, K ′�(ζ, ξ) is holomorphic in (ζ, ξ) for (ζ, ξ) ∈
O × �δ , and we have K ′�(ζ, f (x0)) ≡ 1 for ζ ∈ � − Zero(K�,f (x0)). Hence, for some
ε = ε(G,O) < ε0 we have Re(K ′D(z, w)) > 0 and Re(K ′�(ζ, f (w))) > 0 whenever
w ∈ Dε and (z, ζ ) ∈ G×O. Let WG be the set of common solutions (z, ζ ) ∈ G×O to
the functional equations

(I′w) logK ′�(ζ, f (w)) = λ logK ′D(z, w), w ∈ Dε,

where log stands for the principal branch of logarithm. WG contains Graph(f ) and the
germs of WG and VG at a general point of Graph(f ) agree with each other. Using (4) we
have the following equivalent family of functional equations:

(Jw) H(z, ζ ;w) := log
(

K�(ζ, f (w))

K�(ζ, f (x0))K�(f (x0), f (w))

)
− λ log

(
KD(z, w)

KD(z, x0)KD(x0, w)

)
+ a = 0, w ∈ Dε,

where a = logK�(f (x0), f (x0))− λ logKD(x0, x0). Thus Hw(z, ζ ) := H(z, ζ ;w) is a
holomorphic function on G×O. Note that H(z, ζ ;w) depends anti-holomorphically on
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w ∈ Dε . For 1 ≤ i ≤ n and w ∈ Dε consider now the new equations (Liw) defined by
differentiating the equations (Jw), given by

(Liw) Liw(z, ζ ) :=
∂Hw

∂wi
(z, ζ ) = 0,

where by definition ∂Hw
∂wi

(z, ζ ) = ∂
∂wi
H(z, ζ ;w). More explicitly we have

(Liw)

∑N
j=1

∂

∂ξj
K�(ζ, ξ)

∣∣
ξ=f (w)

∂f j

∂wi
(w)

K�(ζ, f (w))
−

∑N
j=1

∂

∂ξj
K�(f (x0), ξ)

∣∣
ξ=f (w)

∂f j

∂wi
(w)

K�(f (x0), f (w))

− λ

( ∂
∂wi
KD(z, w)

KD(z, w)
−

∂
∂wi
KD(x0, w)

KD(x0, w)

)
= 0,

which shows that each Liw(z, ζ ), a priori only defined on G × O, extends meromorphi-
cally to D ×�, a crucial fact in what follows. To proceed we need the following obvious
lemma.

Lemma 2.1.1. Let U ⊂ Cm be a domain and E ⊂ U be the common zero set of a real-
analytic family {ϕt : t = (t1, . . . , ts) ∈ (−1, 1)s} of holomorphic functions parametrized
by an open cube (−1, 1)s ⊂ Rs . Write ψ(z, t) := ϕt (z), and define ψt,i(z) := ∂ψ

∂ti
(z, t).

Then E is the common zero set of ϕ0 and of {ψt,i : t ∈ (−1, 1)s, 1 ≤ i ≤ s}.

Returning to Theorem 2.1.1, for w ∈ Dε consider the real-analytic family of holomor-
phic functions Hw(z, ζ ) := H(z, ζ ;w) on D × � as being parametrized by the real 2n-
dimensional parameter space Dε in the variables (Re(wi), Im(wi)), 1 ≤ i ≤ n. Observe
the crucial fact that Hx0(z, ζ ) = 0 when w = x0, so that in the application of Lemma
2.1.1 the function ϕ0 there is the zero function, leaving us with only the first derivatives
ofHw(z, ζ ) against w. SinceHw varies anti-holomorphically in w, to apply Lemma 2.1.1
above it suffices to take the first derivatives against wi, 1 ≤ i ≤ n, i.e., to consider
Liw(z, ζ ) =

∂Hw
∂wi

(z, ζ ). Recall that for (z, ζ ) ∈ G × O the functional equation (Jw) for
w ∈ Dε is well-defined. More generally, let (Gk)∞k=1 be a sequence of subdomains of
D−Zero(KD,x0) such thatG1 b G2 b · · · b D and

⋃
k≥1Gk = D−Zero(KD,x0), and

likewise let (Ok)
∞

k=1 be a sequence of subdomains of�−Zero(K�,f (x0)) such that O1 b
O2 b · · · b � and

⋃
k≥1 Ok = �− Zero(K�,f (x0)). Then there exists a strictly decreas-

ing sequence (εk)∞k=1 of positive numbers converging to 0 such that Re(K ′D(z, w)) > 0
whenever (z, w) ∈ Gk × Dεk for some k ≥ 1, and Re(K ′�(ζ, f (w))) > 0 whenever
(w, ζ ) ∈ Dεk × Ok for some k ≥ 1. Thus, given z ∈ Gk , Hw(z, ζ ) is defined whenever
(w, ζ ) ∈ Dεk ×Ok . Define now the subvariety W ⊂ (D×�)−2x0 , resp. V ′ ⊂ D×�,
by (Jw), resp. (Liw), as follows:

W := {(z, ζ ) ∈ (D ×�)−2x0 : Hw(z, ζ ) = 0 for all w sufficiently close to x0},

V ′ := {(z, ζ ) ∈ D ×� : Liw(z, ζ ) = 0 for all w ∈ Dε, 1 ≤ i ≤ n}.

Thus, V ′ is the common solution set of (Liw), w ∈ Dε, 1 ≤ i ≤ n, i.e., the intersection
of the zero sets of the meromorphic functions Liw(z, ζ ) on D × �. By Lemma 2.1.1,



1642 Ngaiming Mok

W agrees with V ′ ∩ ((D × �) − 2x0), hence Graph(f ) ⊂ V ′. In terms of exhaustion
sequences as explained above, for k ≥ 1 and for (z, ζ ) ∈ Gk × Ok we consider only
the functional equations for Hw(z, ζ ) for w ∈ Dεk . If we denote by Wk ⊂ Gk × Ok

the intersection of the zero sets of Hw(z, ζ ) as w ranges over Dεk , then Wk+1 ∩ (Gk ×

Ok) = Wk for k ≥ 1 by the Identity Theorem for (anti-)holomorphic functions, and we
have W =

⋃
k≥1Wk .

Using V ′ in place of V (as in the case with the additional assumption (])) and the same
extremal functions hα ∈ E , with common zero set E ⊂ �, the irreducible component S
of T := V ′ ∩ (D × E) containing Graph(f ) gives the desired analytic continuation of
Graph(f ) to a subvariety of D × �. To prove that S is the graph of some holomorphic
isometry F : (D′, λds2

D|D
′)→ (�, ds2

�), by the arguments of Theorem 1.2.1 and using
the identities (3) above, for two branches f1(z), f2(z) of the analytic continuation of f
over some subdomain of D, we have

K ′�(f1(z), f1(z)) = K
′
�(f1(z), f2(z)) = K

′
�(f2(z), f2(z)). (7)

Since K�(ζ, ξ) =
K�(ζ,y0)K�(y0,ξ))

K�(y0,y0)
K ′�(ζ, ξ), we conclude from (7) that

|K�(f1(z), f2(z))|
2
= K�(f1(z), f1(z))K�(f2(z), f2(z)). (8)

Write 8 : � → H for the canonical map defined in terms of any orthonormal basis of
H 2(�). By the Cauchy–Schwarz inequality, it follows from (8) that for some non-zero
complex number c we have

8(f1(z)) = c8(f2(z)), so that f1(z) = f2(z).

Consequently, the argument S = Graph(F ) for some F : (D′, λds2
D|D

′) → (�, ds2
�)

works verbatim as in the proof of Theorem 1.2.1. The proof of injectivity of F is also
the same. Finally, supposing that (�, ds2

�) is complete as a Kähler manifold, we have to
prove thatD′ = D. Suppose otherwise, i.e.,D′ ( D. Let r ∈ ∂D′∩D and γ : [0, 1]→ D

be a smooth curve such that γ (0) = x0 and γ (1) = r . Among t ∈ [0, 1] let t0 be the first
element such that γ (t0) /∈ D′ and write p = γ (t0). Since F : (D′, λds2

D) → (�, ds2
�)

is a holomorphic isometry, restricting to γ [0, t0) we see that F(γ (t)) converges to some
point q ∈ � as t increases to t0. Since S ⊂ D × � is closed we must have (p, q) ∈ S,
contradicting the statement that p /∈ D′.

Remarks. Theorem 2.1.1 can be deduced from Calabi [Ca]. Using the canonical em-
bedding 9G : G → P(H 2(G)∗), by the existence and uniqueness theorems of [Ca] one
can analytically continue holomorphic isometries along paths. Global extension can be
deduced using the diastasis δ as defined and developed in [Ca], noting that δD(z, x0) =

logK ′D(z, z). For a proof of interior extension using [Ca] we refer the reader to Mok
[Mk5, (2.3)]. [Ca] does not however apply to boundary extension, since ∂G essentially
disappears under 9G. Here interior extension is presented as a natural intermediate out-
come of our direct method which at the same time yields boundary extension.
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For boundary extension results on bounded domains we have

Theorem 2.1.2. Let D b Cn and � b CN be bounded domains. Let x0 ∈ D, λ be
a positive real number and f : (D, λds2

D; x0) → (�, ds2
�; f (x0)) be a germ of holo-

morphic isometry. Suppose furthermore that the Bergman kernel KD(z, w) extends as a
meromorphic function of (z, w) to a neighborhood of D ×D and K�(ζ, ξ) extends as a
meromorphic function of (ζ, ξ) to a neighborhood of�×�. Then there exist a neighbor-
hood D] of D and a neighborhood �] of � such that the germ of Graph(f ) ⊂ D × �
at (x0, f (x0)) extends to an irreducible complex-analytic subvariety S] of D] × �]. If
(�, ds2

�) is complete as a Kähler manifold, then S := S] ∩ (D × �) is the graph of a
holomorphic isometric embedding F : (D, λds2

D)→ (�, ds2
�). If furthermore (D, ds2

D)

is complete, then F : D→ � is proper.

Proof. We refer to the proof of Theorem 2.1.1 and use the same notation. Under the
present hypothesis the domain of definition of the equations defining V ′ ⊂ D × �, viz.,
the functional equations (Liw) for w ∈ Dε and for 1 ≤ i ≤ n, can be extended from
D × � to D] × �]. Denote by V ′] the common solution set of the extension of the
functional equations (Liw) thus defined. On the other hand, from the formula for h1 =

hα = hη,z0 , α ∈ A, given in (2) and (4) in the proof of Lemma 1.1.2, under the present
assumption, each hα can be extended from� to�] as a meromorphic function h]α . Recall
that E ⊂ � is the common zero set of hα , α ∈ A. Defining E] to be the common zero
set of the meromorphic functions h]α , α ∈ A, on �], and writing S] ⊂ D] × �] for the
irreducible component of V ′]∩(D]×E]) containing Graph(f ), we infer that S] furnishes
an extension of Graph(f ) fromD×� toD]×�] and S]∩(D×�) = S = Graph(f ), by
the proof of Corollary 1.2.1. By Theorem 2.1.1, S ⊂ D×� is the graph of a holomorphic
isometric embedding F : (D, λds2

D)→ (�, ds2
�).

It remains to prove that F : D → � is proper whenever (D, ds2
D) is complete.

Suppose otherwise; then there exists b := (p, y) ∈ S] − S such that p ∈ ∂D and
y ∈ �. Let W be a neighborhood of (p, y) on S] such that W ⊂ D] ×�, and denote by
ρ : W̃ → W a desingularization of W . Let η = (x1, y1) ∈ W ∩ Graph(F ) and denote by
η̃ ∈ W̃ the unique point lying over (x1, y1). Let b̃ ∈ W̃ be any point such that ρ(̃b) = b.
Let γ : [0, 1] → W̃ be any smooth curve on W̃ such that γ (0) = η̃ and γ (1) = b̃.
Define γ1 : [0, 1] → D] and γ2 : [0, 1] → � by γi(t) = πi(ρ(γ (t)), i = 1, 2, where
π1 : D]×�→ D] and π2 : D]×�→ � are the canonical projections. Let 0 < t[ ≤ 1 be
the first point such that γ1(t

[) ∈ ∂D and write x[ := γ1(t
[) ∈ ∂D and y[ := γ2(t

[) ∈ �.
Then γ1|[0,t[] : [0, t[] → D] joins γ1(0) = x1 to x[ with γ1(t) ∈ D for 0 ≤ t < t[.
On the other hand, γ2|[0,t[] : [0, t[] → � joins γ2(0) = y1 to γ2(t

[) = y[. Since γ is
smooth, γ2|[0,t[] is of finite length. Clearly F(γ1(t)) = γ2(t) whenever 0 ≤ t < t[. Since
F is an isometry, γ1|[0,t[) must be of finite length with respect to the Bergman metric
ds2
D . However, γ1|[0,t[] is a smooth curve joining x1 ∈ D to x[ ∈ ∂D, and hence γ1|[0,t[)

must be of infinite length on the complete Kähler manifold (D, ds2
D). This contradiction

proves that F : D→ � is proper, and the proof is complete. ut

Remarks. In Theorem 1.1.1 we deal with boundary extension for germs of holomorphic
isometries f : (D, λds2

D; 0)→ (�, ds2
�; 0) between bounded complete circular domains
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with base points at 0. For arbitrary base points x0 ∈ D and y0 = f (x0) ∈ �, Theorem
2.1.2 applies provided that tD ⊂ D and t� ⊂ � whenever 0 < t < 1. To see this, by
Lemma 1.1.1, KD,w(z) = KD(z, w) extends holomorphically to some neighborhood D]

of D whenever w is sufficiently close to x0, and the analogue holds true for K�,ξ (ζ ) =
K�(ζ, ξ) whenever ξ is sufficiently close to y0, so that Theorem 2.1.2 is applicable.

2.2. Generalizations to relatively compact subdomains of complex manifolds

We consider more general extensions of germs of holomorphic isometries on complex
manifolds equipped with Bergman metrics. First of all, we introduce some terminology.

Definition 2.2.1. Let X be a complex manifold and denote by ωX its canonical line
bundle. Suppose the Hilbert space H 2(X, ωX) of square-integrable holomorphic n-forms
onX has no base points, and denote by KX(z, w) the Bergman kernel form onX. Regard-
ing KX(z, z) as a Hermitian metric h on the anti-canonical line bundle ω∗X, we denote by
βX ≥ 0 the curvature form of the dual metric h∗ on ωX, and write ds2

X for the correspond-
ing semi-Kähler metric onX. We say that (X, ds2

X) is a Bergman manifold whenever ds2
X

is positive definite. If furthermore the canonical map 9X : X → P(H 2(X, ωX)
∗) is an

embedding, we call (X, ds2
X) a canonically embeddable Bergman manifold.

For a bounded domain D b Cn, we have KD(z, w) = KD(z, w)
(
i
2dz

1
∧ dw1

)
∧ · · · ∧(

i
2dz

n
∧ dwn

)
. Our extension results generalize to canonically embeddable Bergman

manifolds, including bounded domains on Stein manifolds:

Theorem 2.2.1. LetD and� be canonically embeddable Bergman manifolds. LetD b M

(resp. � b Q) be a realization of D (resp. �) as a relatively compact domain on a com-
plex manifoldM (resp.Q) such that the Bergman kernel form KD(z, w) (resp. K�(ζ, ξ))
extends meromorphically in (z, w) toM×D (resp. in (ζ, ξ) toQ×�). Then the analogue
of Theorem 2.1.2 holds true with M replacing D] and Q replacing �].

Proof. Let µ be a square-integrable holomorphic n-form on D such that µ(x0) 6= 0, and
ν be a square-integrable holomorphic N -form on � such that ν(f (x0)) 6= 0. For m > 0,

write εm =
(√
−1
)m2

so that εmα∧α ≥ 0 for any (m, 0)-covector α on anm-dimensional
complex manifold. Define K[

D(z, w) on D ×D, resp. K[
�(ζ, ξ) on �×�, by

KD(z, w) = K[
D(z, w)(εnµ(z) ∧ µ(w)), K�(ζ, ξ) = K[

�(ζ, ξ)(εNν(ζ ) ∧ ν(ξ)).

Using K[
D(z, w), resp. K[

�(ζ, ξ), in place of K ′D(z, w), resp. K ′�(ζ, ξ), Theorems 2.1.1
and 2.1.2 generalize as follows. Let σ0 ∈ H 2(D,ωD) be such that the (n, n)-vector
εnσ(x0) ∧ σ(x0) is maximized among square-integrable holomorphic n-forms of unit
norm by σ = σ0. Then σ(x0) = 0 for any σ ⊥ σ0. Complete σ0 to an orthonormal basis
(σi)
∞

i=0 of H 2(D,ωD). Choosing µ = σ0, we have

K
[
D(z, z) =

∞∑
i=0

∣∣∣∣ σi(z)σ0(z)

∣∣∣∣2 = 1+
∞∑
i=1

∣∣∣∣ σi(z)σ0(z)

∣∣∣∣2.
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Similarly let (τi)∞i=0 be an orthonormal basis of H 2(�, ω�) adapted to y0 = f (x0) de-
fined in exactly the same way. Choosing ν = τ0, we have

K
[
�(ζ, ζ ) =

∞∑
i=0

∣∣∣∣ τi(ζ )τ0(ζ )

∣∣∣∣2 = 1+
∞∑
i=1

∣∣∣∣ τi(ζ )τ0(ζ )

∣∣∣∣2.
Then K[

D(z, w), resp. K[
�(ζ, ξ), plays the role of K ′D(z, w), resp. K ′�(ζ, ξ), in Theorem

2.1.1, and by the analogues of (2) and (3) in the proof of Theorem 2.1.1 we have
√
−1 ∂∂ logK[

�(f (z), f (z)) = λ
√
−1 ∂∂ logK[

D(z, z),

logK[
�(f (z), f (z)) = λ logK[

D(z, z),

and the proofs there carry over with minor modifications to yield Theorem 2.2.1. ut

Remarks. For a bounded symmetric domainG ⊂ N embedded in its compact dual N
by the Borel embedding, KG(z, w) extends meromorphically in (z, w) to N (cf. Lemma
1.3.1). Thus, Theorem 2.2.1 implies Theorem 1.3.1.

3. Examples of holomorphic isometries with respect to the Bergman metric

3.1. Totally geodesic examples on bounded symmetric domains

The first examples of non-equidimensional holomorphic isometric embeddings f :
D → � up to normalizing constants with respect to the Bergman metric are given by
holomorphic totally geodesic embeddings from an irreducible bounded symmetric do-
main into any bounded symmetric domain, such as the embedding of the Poincaré disk
into the complex unit ball Bn, n ≥ 2, given by f (z) = (z, 0), or the diagonal map into
the polydisk 1n, n ≥ 2, given by fn(z) = (z, . . . , z). More generally, if � is a bounded
symmetric domain of rank r ≥ 1, then, up to automorphisms of �, there are exactly r
such maps, obtained from a maximal polydisk P ⊂ �, where P ∼= 1r , and f : 1→ �

is given by composing the diagonal map fk : 1 → 1k with the standard embedding
1k × {0} ⊂ 1r ∼= P ⊂ �, 1 ≤ k ≤ r .

Totally geodesic holomorphic embeddings f : D → � from irreducible bounded
symmetric domains into bounded symmetric domains have been classified by Satake
[Sa] and Ihara [Ih]. As higher-dimensional examples write M(p, q) for the complex vec-
tor space of p-by-q matrices with complex entries, and recall that the domain DI

p,q ⊂

M(p, q) consists of matrices Z satisfying I − Z
t
Z > 0. Let Ma(n) ⊂ M(n, n), resp.

Ms(n) ⊂ M(n, n), be the complex vector subspace consisting of skew-symmetric, resp.
symmetric, matrices. Define DII

n := DI
n,n ∩ Ma(n) and DIII

n := DI
n,n ∩ Ms(n). Then

DI
p,q b M(p, q), resp. DII

n b Ma(n), resp. DIII
n b Ms(n), are classical symmetric do-

mains of type I, resp. II, resp. III, in their Harish-Chandra realizations, and the inclusions
DII
n ⊂ D

I
n,n and DIII

n ⊂ D
I
n,n are totally geodesic. They extend to holomorphic embed-

dings Ma(n) ⊂ M(n, n) and Ms(n) ⊂ M(n, n). More generally, using the characteriza-
tion of totally geodesic submanifolds on a Riemannian symmetric manifold in terms of
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Lie triple systems (cf. Helgason [He, §7, p. 224 ff.]), the Borel embedding between dual
pairs of Hermitian symmetric spaces, and Harish-Chandra coordinates (cf. Wolf [Wo]),
we have the following summary of basic facts for which the proof is omitted.

Proposition 3.1.1. Let (D, h) and (�, g) be Hermitian symmetric manifolds of the non-
compact type and denote by (M, hc), resp. (Q, gc), the compact dual of D, resp. �.
Identify D and � as bounded symmetric domains D b Cn, � b CN in their Harish-
Chandra realizations, so that D b Cn ⊂ M and � b CN ⊂ Q, where D ⊂ M and
� ⊂ Q are given by the Borel embedding. Let F : D → (�, g) be a holomorphic to-
tally geodesic embedding. Then F extends to a holomorphic totally geodesic embedding
8 : M → (Q, gc). As a consequence, Graph(F ) ⊂ D×� extends to a complex submani-
fold S ⊂ M×Q. WhenD is irreducible, F is a holomorphic isometry up to a normalizing
constant. If F(0) = 0, then F is the restriction of a linear map 3 : Cn→ CN .

Let D b Cn be an irreducible bounded symmetric domain in its Harish-Chandra realiza-
tion. Denote by π : L → D the anti-canonical line bundle on D. Writing (z1, . . . , zn)

for the Harish-Chandra coordinates on D, for t ∈ C the n-vector t ∂
∂z1
∧ · · · ∧

∂
∂zn

at any z ∈ D is identified with (z, t), giving a trivialization L ∼= D × C. The ac-
tion of Aut(D) on D induces an action on L, and π : L → D is equipped with an
Aut(D)-invariant Hermitian metric h. Thus, given any z ∈ D and γ ∈ Aut(D) we have
f∗
(
∂
∂z1
∧· · ·∧

∂
∂zn

)
= Jγ (z)·

∂
∂z1
∧· · ·∧

∂
∂zn

, where Jγ (z) = det(dγ (z)) is the Jacobian de-
terminant of γ , and the action of Aut(D) on L is given by8(γ )(z, t) = (γ (z), Jγ (z) · t).
On L we have the open subset � ⊂ L consisting of all n-vectors η of length < 1 with
respect to h. By the Schwarz Lemma, the volume form of the Bergman metric ds2

D

is bounded from below by a constant multiple of the Euclidean volume form, so that
� ⊂ D × 1(R) b Cn+1 for some R > 0,1(R) being the disk of radius R centered
at 0. Let now α be a positive real number. We define Lα := D ×C set-theoretically to be
the same as L, but regard π : Lα → D as being equipped with the Hermitian metric hα ,
where, writing e for the basis of L ∼= D×C corresponding toD×{1}, and writing eα for
the basis of Lα ∼= D × C corresponding to D × {1}, we have ‖eα‖hα = ‖e‖αh . We define
�α ⊂ Lα to consist of vectors η of length < 1 with respect to hα , �α b Cn+1. Thus,
�α ⊂ L

α is the unit disk bundle of π : Lα → D with respect to a Hermitian metric of
strictly negative curvature on Lα = D × C, so that every boundary point b ∈ ∂�α − ∂D
is strictly pseudoconvex (D being identified with D × {0}). With this set-up we prove

Proposition 3.1.2. Let α > 0 and f : D → �α be the embedding given by f (z) =
(z, 0). Then f : (D, λds2

D) → (�α, ds
2
�α
) is a totally geodesic holomorphic isometric

embedding for λ = 1+ α. Furthermore, (�α, ds2
�α
) is a complete Kähler manifold.

Proof. Since D is simply connected, for γ ∈ Aut(D) a holomorphic logarithm log Jγ (z)
can be defined for the Jacobian determinant Jγ (z) = det(dγ (z)), and the mapping
9γ (z, η) = (γ (z), exp(α log Jγ (z)) defines an automorphism of π : Lα → D as a
holomorphic line bundle which preserves the Hermitian metric hα . IdentifyD as the zero
section of π : Lα → D and denote by H ⊂ Aut(�α) the subgroup which leaves D
invariant as a set. SinceH acts transitively onD ⊂ Lα by means of 9γ , γ ∈ Aut(D), the



Extension of germs of holomorphic isometries with respect to the Bergman metric 1647

restriction of the Bergman kernel �α to D can be computed from a single point, giving

K�α ((z, 0), (z, 0)) = |det(dγ (0))|−2(1+α)K�α (0, 0), (1)

where γ is an automorphism of D such that γ (0) = z. On the other hand,

KD(z, z) = |det(dγ (0))|−2KD(0, 0). (2)

Comparing (1) and (2) we conclude that

K�α ((z, 0), (z, 0)) = cα ·KD(z, z)1+α (3)

for cα > 0. Writing ϕD(z) := KD(z, z) and ϕ�α (ζ ) = K�α (ζ, ζ ), from (3) we deduce
√
−1 ∂∂ logϕ�α |D = (1+ α)

√
−1 ∂∂ logϕD, i.e.,

f ∗ds2
�α
= (1+ α)ds2

D,

as desired. Since D ⊂ �α is the fixed point set of the circle group S1 acting by
(eiθ ; (z, t)) 7→ (z, eiθ t), D ⊂ �α is totally geodesic with respect to ds2

�α
. It remains to

prove that (�α, ds2
�α
) is complete, for which it suffices to show that, given any sequence

(xj )
∞

j=1 of points approaching b ∈ ∂�α , d(0, xj ) must diverge to ∞ as j → ∞. Let
x ∈ �α be any point and γ : [0, 1]→ �α be a piecewise C1-curve joining 0 to x. Then
π ◦ γ : [0, 1] → D is a piecewise C1-curve joining 0 to π(x) ∈ D. Denote by dD(·, ·),
resp. d�α (·, ·), the distance function for the Kähler manifold (D, ds2

D), resp. (�α, ds2
�α
).

For a complex manifold X we denote by κX its Carathéodory pseudo-metric, which is an
Aut(X)-invariant continuous complex Finsler pseudo-metric, and by δX(·, ·) the pseudo-
distance function of (X, κX). When X is a bounded domain, κX is a metric, and δX(·, ·)
is a distance function. Since D is homogeneous, any two Aut(D)-invariant continuous
complex Finsler metrics are equivalent to each other, in particular δD(·, ·) ≥ c · dD(·, ·)
for some constant c > 0. By the distance-decreasing property of the Carathéodory metric,
δD(π(x), 0) ≤ δ�α (x, 0). Since the Bergman metric on any bounded domain dominates
the Carathéodory metric, d�α (x, 0) ≥ δ�α (x, 0) ≥ δD(π(x), 0) ≥ c · dD(π(x), 0). Let
(xj )
≤∞

j=1 be a discrete sequence on �α converging to b ∈ ∂D ⊂ ∂�α . Then d�α (xj , 0) ≥
c · dD(π(xj ), 0)→∞ since (D, ds2

D) is complete. On the other hand, if b ∈ ∂�α − ∂D,
then b is a smooth strictly pseudoconvex boundary point of�α . By a standard localization
argument, δ�α (xj , 0)→∞ as j →∞, and d�α (xj , 0) ≥ δ�α (xj , 0)→∞, proving that
(�α, ds

2
�α
) is complete, as desired. ut

3.2. Examples of holomorphic isometric embeddings of the Poincaré disk into the
polydisk

Motivated by Clozel–Ullmo [CU], our first aim was to study germs of holomorphic isome-
tries f : (D; 0)→ (�; 0) between bounded symmetric domains. In particular, in relation
to the case where D is the unit disk 1 and � is the polydisk 1p, it was conjectured in
[CU, Conjecture 2.2] that for any positive integer q, every germ of holomorphic isometry
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f : (1, qds2
1; 0)→ (1p, ds2

1p ; 0) is necessarily totally geodesic. We can a priori allow
the normalizing (positive) real constant λ to be arbitrary. By Theorem 1.3.1, f necessarily
extends to a proper holomorphic embedding F : 1 → 1p whose graph extends to an
irreducible affine-algebraic subvariety S] ⊂ C × Cp. It follows readily that λ is neces-
sarily a positive integer q. (This can be seen by comparing Bergman kernels via a local
holomorphic extension F [ across a general boundary point b ∈ ∂1.)

Let D and � be bounded symmetric domains, and F, F̃ : D → � be holomorphic
maps. We say that F and F̃ are congruent whenever there exists ϕ ∈ Aut(D) and ψ ∈
Aut(�) such that F̃ = ψ ◦ F ◦ ϕ, and incongruent otherwise. Concerning holomorphic
isometric embeddings F : (1, qds2

1)→ (1p, ds2
1p ), we have

Theorem 3.2.1. For every positive integer p > 1 there exists a holomorphic isometric
embedding F : (1, ds2

1) → (1p, ds2
1p ), F = (F1, . . . , Fp), where each component

Fk, 1 ≤ k ≤ p, is nonconstant, such that F is not totally geodesic. In particular, Con-
jecture 2.2 of Clozel–Ullmo [CU] is false. Furthermore, for p ≥ 3 there exists a real-
analytic 1-parameter family of mutually incongruent holomorphic isometric embeddings
Ft : (1, ds2

1)→ (1p, ds2
1p ), t ∈ R.

We start with an example of a holomorphic isometric embedding of the Poincaré disk into
the bi-disk. The unit disk is conformally equivalent to the upper half-plane H. For τ ∈ H,
τ = ρeiϕ , where ρ > 0, 0 < ϕ < π , write

√
τ =
√
ρ eiϕ/2. Then we have

Lemma 3.2.1. Equip H with the Poincaré metric ds2
H = 2 Re dτ⊗dτ

2(Im τ)2
of constant Gaus-

sian curvature −1, and H2 with the product metric. Then the proper holomorphic map
f : H→ H2 given by f (τ) = (

√
τ , i
√
τ) is a holomorphic isometric embedding.

Proof. Let ωH, resp. ωH2 , be the Kähler forms of the chosen canonical Kähler metrics
on H, resp. H2. Writing τ = s + it ,

√
τ = α + iβ, where s, t, α and β are real, we have

ωH =
√
−1 ∂∂(−2 log t) =

√
−1

dτ ∧ dτ

2t2
,

f ∗ωH2 = −2
√
−1 ∂∂(log(Im(

√
τ))+ log(Im(i

√
τ)))

= −2
√
−1 ∂∂ log(Im(

√
τ) · Im(i

√
τ)),

Im(
√
τ) · Im(i

√
τ) = βα =

1
2

Im((α2
− β2)+ 2iαβ) =

1
2

Im(τ ) =
t

2
,

f ∗ωH2 = −2
√
−1 ∂∂ log(t/2) =

√
−1∂∂(−2 log t) = ωH.

In other words, f : (H, ds2
H) → (H, ds2

H) × (H, ds
2
H) is a holomorphic isometry. It is

an embedding since the function
√
τ is already injective on H. ut

For τ ∈ H, τ = ρeiϕ , and an integer p ≥ 2, write τ 1/p
= ρ1/peiϕ/p. Then we have

Proposition 3.2.1. Let p ≥ 2 be a positive integer and γ = eπi/p. Then the proper
holomorphic mapping f : (H, ds2

H)→ (H, ds2
H)

p defined by

f (τ) = (τ 1/p, γ τ 1/p, . . . , γ p−1τ 1/p)

is a holomorphic isometric embedding.
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Proof. Write τ 1/p
= reiθ , 0 < θ < π/p. Thus, rp = ρ, pθ = ϕ, and, for 0 ≤ k ≤ p−1,

Im(γ kτ 1/p) = r ·Im(ei(kπ/p+θ)). Let τk be the standard coordinate of the k-th direct factor
of Hp, and write τk = sk + itk with sk , tk real. Then to prove the proposition it suffices to
check that f ∗(log t1 + · · · + log tp) = ap + log t for some constant ap. Now

f ∗(log t1 + · · · + log tp) = log
(p−1∏
k=0

Im(ei(kπ/p+θ))
)
+ p log r

= log
(p−1∏
k=0

sin
(
kπ

p
+ θ

))
+ log ρ. ut

Writing t = Im(τ ) = ρ sinϕ = ρ sin(pθ), it remains to verify the following identity.

Lemma 3.2.2. Let p ≥ 2 be a positive integer. Then the trigonometric identity

sin θ sin
(
π

p
+ θ

)
· · · sin

(
(p − 1)π

p
+ θ

)
= cp sin(pθ)

holds true for some positive constant cp.

Proof. Both sides of the displayed equation are trigonometric polynomials with exactly
the same zero sets in θ consisting only of simple zeros. Hence, they must agree for some
nonzero constant cp, which is positive by substitution of some θ ∈ (0, π/p). ut

Proof of Theorem 3.2.1. The p-th root map as in Proposition 3.2.1 gives via the Cayley
transform a holomorphic isometry fp : (1, ds2

1) → (1p, ds2
1p ). Here for the domain

disk we use the Cayley transform ι : H → 1 given by z = ι(τ ) = (τ − i)/(τ + i),
and likewise the same map for each component of the target polydisk 1p. This gives ex-
amples proving the first half of Theorem 3.2.1. We have fp(0) = 0, and fp is singular
exactly at two points 1,−1 ∈ ∂1 on the boundary circle, with images fp(1) = (1, . . . , 1)
and fp(−1) = (−1, . . . ,−1). An example of a real-analytic 1-parameter family of holo-
morphic isometries Ft : (1, ds2

1) → (1p, ds2
1p ) which are mutually incongruent to

each other can be constructed from fp−1 and f2 as follows. Write f2(z) = (α(z), β(z)),
fp−1(z) = (γ1(z), . . . , γp−1(z)), and let ϕ ∈ Aut(1) be an arbitrary automorphism. De-
fine h : 1 → 1p by h(z) := (α(ϕ(γ1(z))), β(ϕ(γ1(z)), γ2(z), . . . , γp−1(z)). Then h =
g◦fp−1, where g : 1p−1

→ 1p is given by g(z1, . . . , zp−1)=(f2(ϕ(z1)); z2, . . . , zp−2).
Thus, g and hence h are holomorphic isometries with respect to Bergman metrics. Ob-
serve that γ1(z), which corresponds to taking the p-th root in the coordinate τ = s + it
of the upper half-plane H (cf. Proposition 3.2.1), maps the lower semi-circle S1

− :=
{eiθ : −π < θ < 0} bijectively onto itself. (Note that the positive s-axis is mapped
via z = ι(τ ) = (τ − i)/(τ + i) to S1

− since ι(1) = −i.) Given any two distinct points
a, b ∈ S1

−, we can choose ϕ ∈ Aut(1) such that ϕ(γ1(a)) = 1 and ϕ(γ1(b)) = −1. Then,
noting that in fact each component γk , 1 ≤ k ≤ p − 1, of fp−1 : 1 → 1p−1 can be
analytically continued to no neighborhood of either 1 or −1, h is singular precisely at the
four distinct points 1,−1, a, b. If we fix a and let b vary, we get holomorphic isometries
hb : (1, ds2

1) → (1p, ds2
1p ) depending on b. For b1 6= b2, hb1 cannot be congruent
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to hb2 since the two sets {1,−1, a, b1} and {1,−1, a, b2} cannot be transformed to each
other by any automorphism of 1. Letting b vary on a connected component of S1

− − {a},
we thus obtain a real-analytic 1-parameter family of mutually incongruent holomorphic
isometries Ft : (1, ds1)→ (1p, ds2

1p ), as desired. ut

3.3. An example of holomorphic isometric embedding of the unit disk into a Siegel upper
half-plane

In this section we construct an example of a holomorphic isometric embedding from the
Poincaré disk into some Siegel upper half-plane which does not arise from the examples
given in 3.2. For a positive integer g, recall that Ms(g) stands for the vector space of
symmetric g-by-g complex matrices, and Hg ⊂ Ms(g) for the Siegel upper half-plane of
genus g, Hg := {T ∈ Ms(g) : ImT > 0}. We have

Proposition 3.3.1. For ζ = ρeiϕ , ρ > 0, 0 < ϕ < π , n a positive integer, we write
ζ 1/n := ρ1/neiϕ/n. Then the holomorphic mapping G : H→ Ms(3) defined by

G(τ) =

 eπi/6τ 2/3
√

2 e−πi/6τ 1/3 0
√

2 e−πi/6τ 1/3 i 0
0 0 eπi/3τ 1/3


maps H into H3, and G : (H, 2ds2

H)→ (H3, ds
2
H3
) is a holomorphic isometry.

Proof. Write τ 1/3
= α + iβ. We have τ = (α + iβ)3 = (α3

− 3αβ2) + i(3α2β − β3).
In particular, Im(τ ) = 3α2β − β3

= β(3α2
− β2). Note that τ ∈ H if and only if

0 < Arg(τ 1/3) < π/3, i.e., 0 < β <
√

3α. We compute

eπi/6τ 2/3
=

(√
3

2
+
i

2

)
((α2
− β2)+ 2iαβ), hence

Im(eπi/6τ 2/3) =
1
2
(α2
− β2)+

√
3αβ;

√
2 e−πi/6τ 1/3

=
√

2
(√

3
2
−
i

2

)
(α + iβ), hence Im(

√
2e−πi/6τ 1/3) =

√
6

2
β −

√
2

2
α;

eπi/3τ 1/3
=

(
1
2
+

√
3

2
i

)
(α + iβ), hence Im(eπi/3τ 1/3) =

√
3

2
α +

β

2
.

Thus,

det(ImG) = det

 1
2 (α

2
− β2)+

√
3αβ

√
6

2 β −
√

2
2 α 0

√
6

2 β −
√

2
2 α 1 0

0 0
√

3
2 α +

β
2


= (−2β2

+ 2
√

3αβ)
(√

3
2
α+

β

2

)
= β(
√

3α− β)(
√

3α+ β) = β(3α2
− β2) = Im τ.
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Write λ := β/α, 0 < λ <
√

3. From the above, the determinant of the upper 2-by-2
matrix of ImG is positive. To check positivity of ImG it suffices to note that the entry
1
2 (α

2
− β2) +

√
3αβ = α2

2 (1 + λ(
√

3 − λ)) is positive whenever 0 < λ <
√

3. Noting
that the Bergman kernel of H3 is of the form c(det(ImT))−4 we have

G∗ωH3 = −4
√
−1 ∂∂ log(det(ImG(τ))) = −4

√
−1 ∂∂ log(Im τ) = 2ωH,

proving that G : (H, 2ds2
H)→ (H3, ds

2
H3
) is a holomorphic isometry, as desired. ut

Recall the cube-root map ρ3 : H→ H×H×H. Realizing the latter as a totally geodesic
complex submanifold in H3 via a standard embedding ι : H ×H ×H→ H3 where the
image consists precisely of all diagonal matrices in H3, we have a holomorphic isometry
F := ι ◦ ρ3 : (H, 2ds2

H)→ (H3, ds
2
H3
). Note that ι : H ×H ×H→ H3 is a holomor-

phic isometric embedding with respect to the Bergman metric with normalizing constant
λ = 2. For the holomorphic isometry G : H → H3, a priori it is not evident that F
and G are incongruent to each other. They can however be distinguished by examining
the nature of the branch points on ∂H3. More precisely, we have

Proposition 3.3.2. The two holomorphic isometric embeddings F,G : (H, 2ds2
H) →

(H3, ds
2
H3
), F := ι ◦ ρ3, are not congruent to each other. In fact, for any holomorphic

isometric embedding h : H → H × H × H, and for H := ι ◦ h, the two holomorphic
embeddings G,H : (H, 2ds2

H)→ (H3, ds
2
H3
) are incongruent to each other.

Proof. Regard H×H×H as an open subset of P1
×P1
×P1 and likewise the Siegel upper

half-plane H3 canonically (via the Borel embedding) as an open subset of the compact
dual M of H3. The map F : H → H3 has two branch points on ∂(H ×H ×H), viz. 0
and a point at infinity, both of which lie on the Shilov boundary of H×H×H and hence
on the Shilov boundary Sh(H3) of H3. The branch point at infinity corresponds to the
point 0 on the boundary of the image of F̂ := −F(τ)−1. Likewise the map G : H→ H3

has two branch points on ∂H3, viz., the point F(0) =
[ 0 0 0

0 i 0
0 0 0

]
and the branch point at

infinity correspond to the branch point
[ 0 0 0

0 i 0
0 0 0

]
of the map Ĝ := −G(τ)−1. The finite part

of Sh(H3) consists precisely of the real (symmetric) matrices lying on ∂H3. Thus the two
branch points of G on ∂H3 do not belong to the Shilov boundary, which implies that F
and G are incongruent to each other.

For the general case of H = ι ◦ h in place of F , according to [Ng, Theorem 8.1],
the set of all holomorphic isometries h : H→ H ×H ×H up to normalizing constants
are completely determined. In particular, when the normalizing constant is λ = 1, h is
either congruent to the cube-root map ρ3, or to (ρ(

√
τ), i
√
τ), where ρ : H→ H×H is

a holomorphic map congruent to the square-root map ρ2. The map ρ is singular exactly
at two distinct points b1, b2 ∈ ∂H ∪ {∞}. If H = ι ◦ h and G are congruent as maps
from H to H3, then we must have {b1, b2} = {0,∞}, and in this case ρ = ψ ◦ µ, where
µ(τ) = (

√
τ , i
√
τ), and ψ ∈ Aut(H × H). In this case H is congruent to the map

S(τ) = (τ 1/4, iτ 1/4, iτ 1/2). The latter S has exactly two branch points, the point 0 and
an infinite point corresponding to the branch point 0 of the map Ŝ : H → H3 defined



1652 Ngaiming Mok

by Ŝ(τ ) = −S(τ)−1. In particular, both branch points of H lie on Sh(H3), implying that
G,H : H→ H3 are not congruent to each other. ut

4. Bona fide holomorphic isometries between complete circular domains

4.1. From holomorphic isometries to norm-preserving extensions of square-integrable
holomorphic functions

In this section we explore the meaning of holomorphic isometries in a special case, viz.,
bona fide holomorphic isometries between bounded complete circular domains. Here a
holomorphic mapping between two Bergman manifolds is said to be a bona fide isometry
if it is an isometry with respect to the Bergman metric, i.e., the normalizing constant is
λ = 1. We will show that they lead to norm-preserving extensions of square-integrable
functions which can be expressed explicitly in terms of the Bergman kernel.

For a Hilbert spaceH we denote byH ∗ its dual space. For any vector subspace S ⊂ H
we denote by S⊥ the orthogonal complement of S inH , and by SAnn

⊂ H ∗ the annihilator
of S consisting of continuous linear functionals on H vanishing on S.

For a bounded Euclidean domain G, we write 9G : G ↪→ P(H 2(G)∗) for the canon-
ical embedding on G, G\ ⊂ P(H 2(G)∗) for its image 9G(G), to be called the canonical
image. For z ∈ G, we denote by ẑ ∈ H 2(G)∗ the continuous linear function on H 2(G)

given by ẑ(f ) = f (z) for any f ∈ H 2(G). Fixing an orthonormal basis (hi)∞i=0 and
denoting by H the Hilbert space of square-integrable sequences of complex numbers, we
also write 8G(z) = (h0(z), h1(z), . . . ) ∈ H, and write 9G(z) = [8G(z)] ∈ P(H).

Lemma 4.1.1. G\ ⊂ P(H 2(G)∗) is topologically linearly non-degenerate, i.e., denot-
ing by Span(G\) ⊂ P(H 2(G)∗) the projective linear span of G\, we have Span(G\) =
P(H 2(G)∗) for its topological closure.

Proof. Let (a0, a1, . . . ) be a square-integrable sequence of complex numbers orthogonal
to the image of 8G. Then, writing h := a0h0 + a1h1 + · · · ∈ H

2(G) we have h(z) = 0
for every z ∈ G, which is absurd unless ai = 0 for 0 ≤ i <∞, as desired. ut

Let now D b Cn and � b CN be bounded complete circular domains. Suppose F :
D → � is a bona fide holomorphic isometric embedding with respect to the Bergman
metric. Identifying D, resp. �, with its canonical image D\ ⊂ P(H 2(D)∗), resp. �\ ⊂
P(H 2(�)∗), F : D → � corresponds to a holomorphic isometry F \ : D\ → �\. Since
D\ ⊂ P(H 2(D)∗) and �\ ⊂ P(H 2(�)∗) are topologically linearly non-degenerate, by
Calabi [Ca], F ∗ is induced by some linear isometry2 : H 2(D)∗→ H 2(�)∗. Identifying
a Hilbert space with its dual by a conjugate linear map, 2 is equivalently given by a
linear isometry µ : H 2(D) → H 2(�) onto a Hilbert subspace. In the case at hand, we
determine µ in terms of the Bergman kernels, as follows.

Theorem 4.1.1. Let D b Cn and � b CN be complete circular domains, and assume
that tD ⊂ D and t� ⊂ � for 0 < t < 1. Let F : (D, ds2

D) → (�, ds2
�) be a

holomorphic isometric embedding with F(0) = 0. Write Z := F(D) ⊂ �, and denote by
F−1 : Z→ D the inverse of F : D→ Z. Define J := {g ∈ H 2(�) : g|Z ≡ 0}. Then, for
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the canonical embedding 9� : � ↪→ P(H 2(�)∗), we have Span(9�(Z)) = P(JAnn).
Moreover, the holomorphic isometry F is induced by a linear isometry µ : H 2(D) →

H 2(�) such that µ(s)|Z = s ◦ F−1 for any s ∈ H 2(D) and E := Imµ = J⊥.

We write KD,w(z) := KD(z, w) and K�,ξ (ζ ) := K�(ζ, ξ). For J ⊂ H 2(�) we have

Lemma 4.1.2. For the Hilbert subspace J ⊂ H 2(�) consisting of square-integrable
holomorphic functions vanishing on Z, we have J⊥ = Span({K�,ζ : ζ ∈ Z}).

Proof. By the reproducing property of K�, we have h(ζ ) =
∫
�
K�(ζ, ξ)h(ξ) dV (ξ) for

any h ∈ H 2(�), where dV denotes the Euclidean volume form. Thus, for any ζ ∈ �,
h(ζ ) = 0 whenever h ⊥ K�,ζ , hence h ∈ J whenever h ⊥ K�,ζ for every ζ ∈ Z.
It follows that J⊥ is the minimal Hilbert subspace of H 2(�) containing K�,ζ for each
ζ ∈ Z, i.e., the topological closure of the linear span of {K�,ζ : ζ ∈ Z}, as desired. ut

Proof of Theorem 4.1.1. Without loss of generality we may assume that bothD b Cn and
� b CN are of Euclidean volume 1, so that KD(z, 0) = 1 for z ∈ D and K�(ζ, 0) = 1
for ζ ∈ �. By Proposition 1.1.1, K�(F (z), F (w)) = KD(z, w) for any z,w ∈ D. By the
reproducing property of KD(z, w), for s ∈ H 2(D) we have

s(z) =

∫
D

KD(z, w)s(w) dV (w),

where dV denotes the Euclidean volume form. For 0 < t < 1 and s ∈ H 2(D) define

µt (s)(ζ ) =

∫
D

K�(ζ, F (tw))s(w) dV (w), (1)

noting that for 0 < t < 1 the right-hand side is well-defined since in fact tD b D, so that
K�(ζ, F (tw)) is bounded as a function of w ∈ D, and we have µt (s) ∈ H 2(�) since
‖K�,F(tw)‖H 2(�) is uniformly bounded for w ∈ D. On the other hand, the right-hand
side of (1) is a priori undefined when t = 1 since the holomorphic function ϕ(w) :=
K�(F (w), ζ ) is not known to be in H 2(D). We are going to show nonetheless that,
as t → 1−, µt : H 2(D) → H 2(�) converges weakly to some linear isometry µ :
H 2(D)→ H 2(�). For s ∈ H 2(D) and 0 < t < 1, write ht = µt (s). Then

‖ht‖
2
H 2(�)

=

∫
�

(∫
D

K�(ζ, F (tw
′))s(w′) dV (w′)

)(∫
D

K�(ζ, F (tw))s(w) dV (w)

)
dV (ζ )

=

∫
D

(∫
D

(∫
�

K�(F (tw), ζ )K�(ζ, F (tw
′)) dV (ζ )

)
s(w′) dV (w′)

)
s(w) dV (w).

(2)

Since t� ⊂ �, by Lemma 1.1.1 it follows that K�(ζ, ξ) extends holomorphically in
(ζ, ξ) to some neighborhood of � × t�. Hence K�(ζ, F (tw)) is uniformly bounded on
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� ×D, which justifies the change of order of integration by Fubini’s theorem in (2). By
the reproducing property of K�(ζ, ξ) applied to θ(ζ ) := K�(ζ, F (tw′))) on �, we have∫

�

K�(F (tw), ζ )K�(ζ, F (tw
′)) dV (ζ ) =

∫
�

K�(F (tw), ζ )θ(ζ ) dV (ζ )

= θ(F (tw)) = K�(F (tw), F (tw
′)).

Thus,∫
�

|ht (ζ )|
2 dV (ζ ) =

∫
D

(∫
D

K�(F (tw), F (tw
′))s(w′) dV (w′)

)
s(w) dV (w)

=

∫
D

(∫
D

KD(tw, tw
′)s(w′) dV (w′)

)
s(w) dV (w)

=

∫
D

(∫
D

KD(t
2w,w′)s(w′) dV (w′)

)
s(w) dV (w)

=

∫
D

s(t2w)s(w) dV (w). (3)

By exactly the same arguments, for 0 < t1, t2 < 1 we have

〈µt1(s), µt2(s)〉H 2(�) =

∫
�

ht1(ζ )ht2(ζ ) dV (ζ ) =

∫
D

s(t1t2w)s(w) dV (w),

‖µt1(s)− µt2(s)‖
2
H 2(�)

=

∫
D

(s(t21w)+ s(t
2
2w)− 2s(t1t2w))s(w) dV (w).

As t1, t2 → 1−, the function δt1,t2(s) : s(t21w)+ s(t
2
2w)− 2s(t1t2w) tends to 0 inH 2(D),

hence ‖µt1(s)−µt2(s)‖H 2(�) converges to 0. As a consequence, the weak limit µ of µt :
H 2(D)→ H 2(�) exists. By (3), ‖µ(s)‖H 2(�) = ‖s‖H 2(D), i.e.,µ : H 2(D)→ H 2(�) is
a Hilbert space isomorphism onto some Hilbert subspace E ⊂ H 2(�), which we proceed
to identify. From the definition of µt for 0 < t < 1 in (2), µt (s) is a limit in H 2(�) of
linear combinations of K�,F(tw) as w ranges over D. Now f ∈ H 2(�) is orthogonal to
Imµt =: Et ⊂ H 2(�) whenever it vanishes at every point of F(tw),w ∈ D (cf. proof
of Lemma 4.1.2). Since J = {f ∈ H 2(�) : f |Z ≡ 0}, for 0 < t < 1 we have J ⊂ E⊥t ,
and hence J ⊂ E⊥ when one passes to the limit as t → 1−, i.e., E ⊂ J⊥. From (1) and
the reproducing property of KD(z, w), for ζ ∈ � and w ∈ D we have

µt (KD,w)(ζ ) =

∫
D

KD(w,w′)K�(F (tw′), ζ )) dV (w′)

= K�(F (tw), ζ ) = K�(ζ, F (tw)) = K�,F(tw)(ζ ) .

Hence,
µ(KD,w) = lim

t→1−
µt (KD,w) = lim

t→1−
K�,F(tw) = K�,F(w).

As a result, E contains Span({K�,ζ : ζ ∈ Z}), which is precisely J⊥. Thus, E ⊃ J⊥

and hence E = J⊥. Recall that for z ∈ D, ẑ ∈ H 2(D)∗ is identified with 8D(z), and
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similarly for ζ ∈ �, ζ̂ ∈ H 2(�)∗ is identified with8�(ζ ). Denoting by ν : E→ H 2(D)

the inverse isomorphism ofµ : H 2(D)→ E, for the adjoint operator ν∗ : H 2(D)∗→ E∗

we have

ν∗( ẑ )(K�,F(w)) = ẑ(KD,w) = KD(z, w) = K�(F (z), F (w)) = F̂ (z)(K�,F(w)),

which gives 2 : H 2(D)∗→ H 2(�)∗ inducing the holomorphic isometry F \ : D\→ �\

when we define 2(λ)(f ) = 0 for any λ ∈ H 2(D)∗ and f ∈ J . Then 2(H 2(D)∗) is
precisely JAnn, and Span(F \(D\)) = P(2(H 2(D)∗)) = P(JAnn). Finally, for 0< t < 1,

µt (s)(F (z)) =

∫
D

K�(F (z), F (tw))s(w) dV (w) =

∫
D

KD(z, tw)s(w) dV (w)

=

∫
D

KD(tz, w)s(w) dV (w) = s(tz),

µ(s)(F (z)) = lim
t→1−

µt (s)(F (z)) = lim
t→1−

s(tz) = s(z),

hence µ(s)|Z = s ◦ F−1, completing the proof of Theorem 4.1.1. ut
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[FK] Faraut, J., Korányi, A.: Function spaces and reproducing kernels on bounded symmetric
domains. J. Funct. Anal. 88, 64–89 (1990) Zbl 0718.32026 MR 1033914

[He] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press,
Orlando (1978) Zbl 0451.53038 MR 0514561

[Ih] Ihara, S.: Holomorphic embeddings of symmetric domains. J. Math. Soc. Japan. 19, 261–
302 (1967); Supplement, ibid., 543–544 Zbl 0159.11201 MR 0222335

[Mk1] Mok, N.: Uniqueness theorems of Hermitian metrics of seminegative curvature on lo-
cally symmetric spaces of negative Ricci curvature. Ann. of Math. 125, 105–152 (1987)
Zbl 0616.53040 MR 0873379

[Mk2] Mok, N.: Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds. Ser. Pure
Math. 6, World Sci. (1989) Zbl 0912.32026 MR 1081948

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0272.32006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0352531
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0051.13103&format=complete
http://www.ams.org/mathscinet-getitem?mr=0057000
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1042.11027&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0718.32026&format=complete
http://www.ams.org/mathscinet-getitem?mr=1033914
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0451.53038&format=complete
http://www.ams.org/mathscinet-getitem?mr=0514561
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0159.11201&format=complete
http://www.ams.org/mathscinet-getitem?mr=0222335
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0616.53040&format=complete
http://www.ams.org/mathscinet-getitem?mr=0873379
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0912.32026&format=complete
http://www.ams.org/mathscinet-getitem?mr=1081948


1656 Ngaiming Mok

[Mk3] Mok, N.: Local holomorphic isometric embeddings arising from correspondences in the
rank-1 case. In: Contemporary Trends in Algebraic Geometry and Algebraic Topology,
S.-S. Chern et al. (eds), World Sci., 155–166 (2002) Zbl 1083.32019 MR 1945359

[Mk4] Mok, N.: On the asymptotic behavior of holomorphic isometries of the Poincaré disk into
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