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Abstract. In [22], it was proved that as long as the integrand has certain properties, the correspond-
ing Itô integral can be written as a (parameterized) Lebesgue integral (or Bochner integral). In this
paper, we show that such a question can be answered in a more positive and refined way. To do this,
we need to characterize the dual of the Banach space of some vector-valued stochastic processes
having different integrability with respect to the time variable and the probability measure. The
latter can be regarded as a variant of the classical Riesz Representation Theorem, and therefore it
will be useful in studying other problems. Some remarkable consequences are presented as well,
including a reasonable definition of exact controllability for stochastic differential equations and a
condition which implies a Black–Scholes market to be complete.

Keywords. Itô integral, Lebesgue integral, Bochner integral, range inclusion, Riesz-type Repre-
sentation Theorem

1. Introduction

Let (�,F ,F,P) be a complete filtered probability space with F = {Ft }t≥0, on which a
one-dimensional standard Brownian motion {W(t)}t≥0 is defined so that F is its natural
filtration augmented by all the P-null sets. Let H be a Banach space with the norm | · |H
and with the dual space H ∗. For any p ∈ [1,∞), let LpFT (�;H) be the set of all FT -
measurable (H -valued) random variables ξ : � → H such that E|ξ |pH < ∞. Next, for
any p, q ∈ [1,∞), put

L
p

F(�;L
q(0, T ;H)) =

{
ϕ : [0, T ]×�→ H

∣∣∣∣ ϕ(·) is F-progressively measurable and

E
(∫ T

0
|ϕ(t)|

q
H dt

)p/q
<∞

}
,
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L
q

F(0, T ;L
p(�;H)) =

{
ϕ : [0, T ]×�→ H

∣∣ ϕ(·) is F-progressively measurable and∫ T

0
(E|ϕ(t)|pH )

q/p dt <∞
}
.

In an obvious way, we may also define (for 1 ≤ p, q <∞){
L∞F (�;L

q(0, T ;H)), L
p

F(�;L
∞(0, T ;H)), L∞F (�;L

∞(0, T ;H)),

L∞F (0, T ;L
p(�;H)), L

q

F(0, T ;L
∞(�;H)), L∞F (0, T ;L

∞(�;H)).

It is clear that

L
p

F(�;L
p(0, T ;H)) = LpF(0, T ;L

p(�;H)) ≡ L
p

F(0, T ;H), 1 ≤ p ≤ ∞.

Also, by Minkowski’s inequality,{
L
p

F(�;L
q(0, T ;H)) ⊆ LqF(0, T ;L

p(�;H)), 1 ≤ p ≤ q ≤ ∞,

L
q

F(0, T ;L
p(�;H)) ⊆ L

p

F(�;L
q(0, T ;H)), 1 ≤ q ≤ p ≤ ∞.

(1.1)

In particular,

L1
F(0, T ;L

p(�;H)) ⊆ L
p

F(�;L
1(0, T ;H)), 1 ≤ p ≤ ∞. (1.2)

We now introduce two linear operators
I : L1

F(�;L
2(0, T ;H))→ L1

FT (�;H) (when H is a Hilbert space),

I(ζ(·)) =
∫ T

0
ζ(t) dW(t), ∀ζ(·) ∈ L1

F(�;L
2(0, T ;H)),

and 
L : L1

F(0, T ;H)→ L1
FT (�;H),

L(u(·)) =
∫ T

0
u(t) dt, ∀u(·) ∈ L1

F(0, T ;H).

We call I and L the Itô integral operator and the Lebesgue integral operator, respectively.
It is clear that{
I
(
L
p

F(�;L
2(0, T ;H))

)
⊆ L

p

FT (�;H), ∀p ∈ [1,∞) (when H is a Hilbert space),

L
(
L
p

F(�;L
1(0, T ;H))

)
⊆ L

p

FT (�;H), ∀p ∈ [1,∞).
(1.3)

The first inclusion in (1.3) can be refined (whenH is a Hilbert space). Indeed, for any
ξ ∈ L

p

FT (�;H) (with p ∈ [1,∞)), E[ξ |Ft ] is an H -valued continuous Lp-martingale.
Hence, by the Martingale Representation Theorem ([11]), there exists a unique ζ(·) ∈
L
p

F(�;L
2(0, T ;H)) (called the Malliavin derivative ([17]) of ξ and sometimes denoted

by D·ξ ) such that

E[ξ |Ft ] = Eξ +
∫ t

0
ζ(s) dW(s), ∀t ∈ [0, T ].



Representation of Itô integrals by Lebesgue/Bochner integrals 1797

In particular, by taking t = T in the above, we see that

ξ = Eξ +
∫ T

0
ζ(s) dW(s).

Therefore, in the case that H is a Hilbert space, the first inclusion in (1.3) can be refined
to

L
p

FT (�;H) = H ⊕
[
I
(
L
p

F(�;L
2(0, T ;H))

)]
, (1.4)

where “⊕” stands for direct sum. Now, for the second inclusion in (1.3), we have the
following simple result.

Proposition 1.1. Let H be a Hilbert space and p ∈ [1,∞). Then

L
(
L
p

F(�;L
1(0, T ;H))

)LpFT (�;H) = LpFT (�;H), (1.5)

where G
L
p

FT
(�;H)

stands for the closure of G in LpFT (�;H).

Proof. For any ζ ∈ LpFT (�;H), let

ξ(t) = E[ζ |Ft ], t ∈ [0, T ].

Then ξ(·) is anH -valued Lp-martingale. By the Martingale Representation Theorem and
the Burkholder–Davis–Gundy inequality, we have

E|ξ(t)− ζ |pH ≤ CE
(∫ T

t

|Dsζ |
2 ds

)p/2
→ 0 as t → T .

Now, for any δ > 0, let

uδ(t) =
ξ(T − δ)

δ
I[T−δ,T ](t), t ∈ [0, T ].

Then uδ(·) ∈ L
p

F(�;L
∞(0, T ;H))∩L∞F (0, T ;L

p(�;H)) ⊆ L
p

F(�;L
1(0, T ;H)), and

E
∣∣∣∣∫ T

0
uδ(t) dt − ζ

∣∣∣∣p = E|ξ(T − δ)− ζ |p → 0 as δ→ 0,

proving the proposition. ut

Remark 1.2. From the proof of Proposition 1.1, it is easy to see that we have proved the
following result stronger than (1.5):

L
(
L
p

F(�;L
∞(0, T ;H))

)LpFT (�;H)= L
(
L∞F (0, T ;L

p(�;H))
)LpFT (�;H)= LpFT (�;H).

From Proposition 1.1, it is seen that we do not expect to have a refinement for the
Lebesgue integral operator L similar to (1.4). Instead, it is very natural for us to pose the
following problem:
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Problem (E). Is the following true:

L
(
L
p

F(�;L
1(0, T ;H))

)
= L

p

FT (�;H) ? (1.6)

Note that the above is equivalent to the following: When is the range of the operator
L : LpF(�;L

1(0, T ;H)) → L
p

FT (�;H) closed? An interesting problem closely related
to the above, taking into account (1.4), reads as follows.

Problem (R). Under what additional conditions on ζ(·) ∈ LpF(�;L
2(0, T ;H)), is there

a u(·) ∈ LpF(�;L
1(0, T ;H)) such that∫ T

0
ζ(t) dW(t) =

∫ T

0
u(t) dt a.s. ? (1.7)

For convenience, any u(·) ∈ LpF(�;L
1(0, T ;H)) satisfying (1.7) is called a repre-

sentor of ζ(·). Since the Itô integral in the usual sense can only be defined on Hilbert
spaces, we pose Problem (R) for the case that H is a Hilbert space. It is clear that when
u(·) is a representor of ζ(·), so is u(·) + v(·) as long as

∫ T
0 v(t) dt = 0, almost surely.

Therefore, if ζ(·) admits one representor, it admits infinitely many representors. Problem
(R) with H = R was posed and studied in [22]. Various integrability conditions were
imposed on ζ(·) so that it admits a representor. Let us now briefly recall several relevant
results from [22], which will give us some feeling about the representation (1.7). To this
end, we define

uα(s) ≡
1− α
(T − s)α

∫ s

0

ζ(t)

(T − t)1−α
dW(t), s ∈ [0, T ),

for α ∈ [0, 1). The following is a summary of the relevant results presented in [22].

Theorem 1.3. (i) Let p ≥ 1. For any ζ(·) ∈ LpF(�;L
2(0, T ;R)),

u0(·) ≡

∫
·

0

ζ(t)

T − t
dW(t) ∈

⋃
ε>0

L
p

F(�;L
2(0, T − ε;R)),

and (1.7) holds with u(·) = u0(·) in the following sense:

lim
ε→0

E
∣∣∣∣∫ T−ε

0
u0(t) dt −

∫ T

0
ζ(t) dW(t)

∣∣∣∣p = 0.

(ii) Suppose ζ(·) ∈ L1
F(0, T ;L

2(�;R)) is such that∫ T

0

[∫ s

0

E|ζ(t)|2

(T − t)2
dt

]1/2

ds <∞.

Then

u0(·) ≡

∫
·

0

ζ(t)

T − t
dW(t) ∈ L1

F(0, T ;R),

and (1.7) holds with u(·) = u0(·).
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(iii) Suppose ζ(·) ∈ L1
F(0, T ;R) is such that for some δ > 0,∫ T

0

E|ζ(t)|2

(T − t)δ
dt <∞.

Then

uα(·) ∈ L
2
F(�;L

q(0, T ;R)), ∀α ∈
(

1− δ
2

,
1
q

)
∩[0, 1], q ∈

[
1,

2
2−min(δ, 1)

)
,

and

uα(·) ∈ L
q

F(0, T ;R), ∀α ∈

(
1−

δ

2
−

1
q
,

1
q

)
∩ [0, 1], q ∈

[
1,

2
2−min(δ, 1)

)
.

Moreover, (1.7) holds with u(·) = uα(·).
(iv) Suppose ζ(·) ∈ LpF(0, T ;R) for some p > 2. Then

uα(·) ∈ L
p

F(�;L
q(0, T ;R)), ∀α ∈

(
1
2
,

1
2
+

1
p

)
∩ [0, 1], q ∈

[
1,

2p
p + 2

)
.

Moreover, (1.7) holds with u(·) = uα(·).

The above shows that there are many ζ(·) ∈ LpF(�;L
2(0, T ;R)) such that one can find a

corresponding representor u(·).
Note that although Problem (R) is posed for the case where H is a Hilbert space,

Problem (E) can be posed for a general Banach space since Itô’s integral is not involved
here. The main purpose of this paper is to give a positive answer to Problem (E) when H
is a Banach space withH ∗ having the Radon–Nikodým property. Our result seems to be a
little surprising in some sense, and it refines the results of [22] on Problem (R). More pre-
cisely, when the answer to Problem (E) is positive, any ζ(·) ∈ LpF(�;L

2(0, T ;H)) (when
H is a Hilbert space) admits a representor u(·) ∈ LpF(�;L

1(0, T ;H)), without assuming
further integrability conditions on ζ(·). This means that an Itô integral on a given (fixed)
interval can be represented by a (parameterized) Bochner integral on that interval. We
should emphasize here that any representor u(·) of ζ(·) ∈ LpF(�;L

2(0, T ;H)) depends
on T , in general. In other words, it will be more appropriate to write∫ T

0
ζ(t) dW(t) =

∫ T

0
u(t, T ) dt a.s. (1.8)

Hence, by allowing the upper limit to change, we should have∫ s

0
ζ(t) dW(t) =

∫ s

0
u(t, s) dt, ∀s ∈ [0, T ], a.s. (1.9)

According to Theorem 1.3, when ζ(·) satisfies certain (better) integrability conditions, we
can find a representor of the form

u(t, s) =
1− α
(s − t)α

∫ t

0

ζ(r)

(s − r)1−α
dW(r), 0 ≤ t < s ≤ T ,
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for some α ∈ [0, 1). Clearly, such an s 7→ u(t, s) is smooth in s ∈ (t, T ]. Therefore it
is natural to further ask the following question, without assuming the better integrability
conditions on ζ(·).

Problem (C). Does any ζ(·) ∈ LpF(�;L
2(0, T ;H)) have a representor u(t, s) which is

continuous with respect to the variable s?

We will also show that the answer to Problem (C) is positive. Note that, since the Itô
integral s 7→

∫ s
0 ζ(t) dW(t) is at most Hölder continuous up to order 1/2, generally,

one cannot expect the differentiability of s 7→ u(t, s) (given in (1.9)). Nevertheless, it is
natural to expect that s 7→ u(t, s) is Hölder continuous up to order 1/2. But we do not
have a proof for this yet.

Remark 1.4. The fact that u(·) in (1.8) depends on T tells us that the positive answer to
Problem (E) does not mean that Itô integrals can be completely replaced by (parameter-
ized) Bochner integrals.

The rest of this paper is organized as follows. In Section 2, as a preliminary result,
we establish a Riesz-type Representation Theorem for the dual of the Banach space
L
p

M(X1;L
q(X2;H)) (see Subsection 2.1 for its definition). An interesting byproduct

in this section is a characterization of the dual space of both LpF(�;L
q(0, T ;H)) and

L
q

F(0, T ;L
p(�;H)), which will be useful in some problems in stochastic distributed

parameter control systems and/or stochastic partial differential equations. Section 3 ad-
dresses Problems (E) and (R). Section 4 is devoted to answering Problem (C), for which
the key tool is the continuous selection theorem of [15]. In Section 5, we present two
remarkable consequences of our positive solution to Problem (E), one of which is related
to a reasonable formulation of exact controllability for stochastic differential equations,
and the other is a condition guaranteeing that a Black–Scholes market is complete.

2. The dual of LpM(X1;L
q(X2;H))

As a key preliminary to answering Problem (E), we need to characterize the dual space of
L
p

F(�;L
q(0, T ;H)) and LqF(0, T ;L

p(�;H)). We will go a little further by considering
the dual of LpM(X1;L

q(X2;H)), to be defined below. It seems to us that this result is of
independent interest.

2.1. Statement of the result

Let (X1,M1, µ1) and (X2,M2, µ2) be finite measure spaces. Let M be a sub-σ -field of
M1 ⊗M2 (the σ -field generated by M1 ×M2), and for any 1 ≤ p, q <∞, let

L
p

M(X1;L
q(X2;H)) =

{
ϕ : X1 ×X2 → H

∣∣∣∣ ϕ(·) is M-measurable and∫
X1

(∫
X2

|ϕ(x1, x2)|
q
H dµ2

)p/q
dµ1 <∞

}
.
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Likewise, let

L∞M(X1;L
q(X2;H)) =

{
ϕ : X1 ×X2 → H

∣∣∣∣ ϕ(·) is M-measurable and

ess sup
x1∈X1

(∫
X2

|ϕ(x1, x2)|
q
H dµ2

)1/q

<∞

}
,

L
p

M(X1;L
∞(X2;H)) =

{
ϕ : X1 ×X2 → H

∣∣∣∣ ϕ(·) is M-measurable and∫
X1

ess sup
x2∈X2

|ϕ(x1, x2)|
p
H dµ1 <∞

}
,

L∞M(X1;L
∞(X2;H)) =

{
ϕ : X1 ×X2 → H

∣∣∣∣ ϕ(·) is M-measurable and

ess sup
(x1,x2)∈X1×X2

|ϕ(x1, x2)|H <∞

}
.

We denote

L
p

M(X1 ×X2;H) = L
p

M(X1;L
p(X2;H)), 1 ≤ p ≤ ∞.

Also, for any f ∈ LpM(X1;L
q(X2;H)) (1 ≤ p, q ≤ ∞), we denote

‖f ‖p,q;H ≡ ‖f ‖LpM(X1;Lq (X2;H))
1
=

[∫
X1

(∫
X2

|f (x1, x2)|
q
H dµ2

)p/q
dµ1

]1/p

.

The definitions of ‖f ‖∞,q,H , ‖f ‖p,∞,H and ‖f ‖∞,∞,H are obvious. Let

‖f ‖p;H ≡ ‖f ‖p,p;H , 1 ≤ p ≤ ∞.

The definition of LqM(X2;L
p(X1;H)) (1 ≤ p, q ≤ ∞) is similar. By Hölder’s inequal-

ity and Minkowski’s inequality, we have the following inclusions:

L
p

M(X1;L
q(X2;H)) ⊆ L

r
M(X1;L

s(X2;H)), 1 ≤ r ≤ p ≤ ∞, 1 ≤ s ≤ q ≤ ∞,
(2.1)

and (compare with (1.1)–(1.2)){
L
p

M(X1;L
q(X2;H)) ⊆ L

q

M(X2;L
p(X1;H)), 1 ≤ p ≤ q ≤ ∞,

L
p

M(X1;L
q(X2;H)) ⊇ L

q

M(X2;L
p(X1;H)), 1 ≤ q ≤ p ≤ ∞.

Next, for any p ∈ [1,∞], denote

p′ =


p/(p − 1), 1 < p <∞,

1, p = ∞,

∞, p = 1.

The definition of q ′ ∈ [1,∞] for q ∈ [1,∞] is similar.
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Let (X,6,µ) be a finite measure space and B a Banach space. We recall that B is said
to have the Radon–Nikodým property with respect to (X,6,µ) if, for every countably
additive vector measure ν on (X,6) with values in B which has bounded variation and
is absolutely continuous with respect to µ, there is a µ-(Bochner) integrable function
g : X→ B such that

ν(E) =

∫
E

g dµ, ∀E ∈ 6.

The Banach space B is said to have the Radon–Nikodým property if B has the Radon–
Nikodým property with respect to every finite measure space. It is known that spaces
with the Radon–Nikodým property include reflexive spaces, in particular, Hilbert spaces
(e.g. [7]).

We have the following result.

Lemma 2.1. Let H be a Banach space, (X1,M1, µ1) and (X2,M2, µ2) be finite mea-
sure spaces, M be a sub-σ -field of M1 ⊗M2, and let 1 ≤ p, q <∞. Then H ∗ has the
Radon–Nikodým property with respect to (X1 × X2,M, µ1 × µ2) if and only if for any
F ∈ L

p

M(X1;L
q(X2;H))

∗, there exists a unique g ∈ Lp
′

M(X1;L
q ′(X2;H

∗)) such that

F(f ) =

∫
X1×X2

(f (x1, x2), g(x1, x2))H,H ∗ dµ1 dµ2, ∀f ∈ L
p

M(X1;L
q(X2;H)),

and

‖F‖LpM(X1;Lq (X2;H))∗
= ‖g‖p′,q ′,H ∗ . (2.2)

Due to the above result, we make the following identification (for the case that H ∗ has
the Radon–Nikodým property with respect to (X1 ×X2,M, µ1 × µ2)):

L
p

M(X1;L
q(X2;H))

∗
= L

p′

M(X1;L
q ′(X2;H

∗)), 1 ≤ p, q <∞.

The above is a Riesz-type Representation Theorem for the dual of LpM(X1;L
q(X2;H)).

It seems to us that Lemma 2.1 should be a known result but we have not found an exact
reference. Therefore, for the reader’s convenience, we provide a detailed proof in the
next three subsections. As a corollary of Lemma 2.1, we will characterize the dual of
L
p

F(�;L
q(0, T ;H)) and LqF(0, T ;L

p(�;H)) in the last subsection.
The main idea for the proof of Lemma 2.1 is similar to that of the relevant result in [4,

Appendix B, pp. 375–376] (see also [7, Theorem 1, Chapter IV, pp. 98–99]). However,
Lemma 2.1 does not follow from the main result in [4, Appendix B] because the latter
considered only the special case that p = q andH = R, for which, by Fubini’s Theorem,
one can reduce the problem to the case with one measure on the product space. Also,
Lemma 2.1 does not seem to be a corollary of [7, Theorem 1, Chapter IV, pp. 98–99]
because of the very fact that our M is an “interconnecting” sub-σ -field of the σ -field
generated by M1 ×M2.
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2.2. Proof of the necessity in Lemma 2.1 for H = R

As a key step in proving Lemma 2.1, in this subsection we show first the “only if” part of
this lemma for the special case H = R.

For any g ∈ Lp
′

M(X1;L
q ′(X2;R)), define Fg : LpM(X1;L

q(X2;R))→ R by

Fg(f ) =

∫
X1×X2

f (x1, x2)g(x1, x2) dµ1 dµ2, ∀f ∈ L
p

M(X1;L
q(X2;R)).

By the linearity of the integral, g 7→ Fg is a linear map. It follows from Hölder’s inequal-
ity that

|Fg(f )| ≤ ‖f ‖p,q,R‖g‖p′,q ′,R, ∀f ∈ L
p

M(X1;L
q(X2;R)).

Hence Fg ∈ L
p

M(X1;L
q(X2;R))∗ and

‖Fg‖LpM(X1;Lq (X2;R))∗ ≤ ‖g‖p′,q ′,R. (2.3)

Therefore, g 7→ Fg is a linear nonexpanding map. Now, we show that this map is surjec-
tive and is an isometry.

To show the surjectivity of g 7→ Fg , take any F ∈ LpM(X1;L
q(X2;R))∗. Since for

any A ∈M, IA ∈ L
p

M(X1;L
q(X2;R)), we may define

ν(A) = F(IA), ∀A ∈M.

Then ν is a totally finite signed measure on (X1 × X2,M), and ν << µ1 × µ2. By the
Radon–Nikodým Theorem, there is an M-measurable map g ∈ L1

M(X1 × X2;R) such
that

ν(A) =

∫
A

g dµ1 dµ2, ∀A ∈M,

i.e.,

F(IA) =

∫
X1×X2

gIA dµ1 dµ2, ∀A ∈M.

Consequently, for any M-measurable simple function f ,

F(f ) =

∫
X1×X2

f (x1, x2)g(x1, x2) dµ1 dµ2.

Select a sequence {An}∞n=1 ⊂M such that

An ⊂ An+1, n = 1, 2, . . . , (µ1 × µ2)
(
(X1 ×X2) \

∞⋃
n=1

An

)
= 0,

and g is bounded on each An. For any n ≥ 1, note that

f 7→

∫
X1×X2

f (x1, x2)g(x1, x2)IAn(x1, x2) dµ1 dµ2
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is a bounded linear functional on LpM(X1;L
q(X2;R)) which agrees with F on all M-

measurable simple functions which vanish off An. It follows that

F(f IAn) =

∫
X1×X2

fgIAn dµ1 dµ2, ∀f ∈ L
p

M(X1;L
q(X2;R)). (2.4)

Since gIAn is bounded, one sees that gIAn ∈ L
p′

M(X1;L
q ′(X2;R)). We claim that g ∈

L
p′

M(X1;L
q ′(X2;R)), and

‖g‖p′,q ′;R ≤ ‖F‖LpM(X1;Lq (X2;R))∗ . (2.5)

To show this, we distinguish four cases.

Case 1: p, q ∈ (1,∞). Choose

f =


a

(∫
X2

|g|q
′

IAn dµ2

)p′/q ′−1

|g|q
′
−1(sgn g)IAn if

∫
X2

|g|q
′

IAn dµ2 6= 0,

0, if
∫
X2

|g|q
′

IAn dµ2 = 0,

where

a =

[∫
X1

(∫
X2

|g|q
′

IAn dµ2

)p′/q ′
dµ1

]1/p′−1

.

Then

‖f ‖p,q =

[∫
X1

(∫
X2

|f |q dµ2

)p/q
dµ1

]1/p

=

{∫
X1

[∫
X2

aq
(∫

X2

|g|q
′

IAn dµ2

)(p′/q ′−1)q

|g|(q
′
−1)qIAn dµ2

]p/q
dµ1

}1/p

= a

{∫
X1

[(∫
X2

|g|q
′

IAn dµ2

)(p′/q ′−1)p(∫
X2

|g|q
′

IAn dµ2

)p/q]
dµ1

}1/p

= a

{∫
X1

(∫
X2

|g|q
′

IAn dµ2

)p′/q ′
dµ1

}1/p

= 1.

Taking the above f in (2.4), we find that

F(f ) =

∫
X1

∫
X2

fgIAn dµ2 dµ1

= a

∫
X1

[∫
X2

(∫
X2

|g|q
′

IAn dµ2

)p′/q ′−1

|g|q
′

IAn dµ2

]
dµ1

= a

∫
X1

(∫
X2

|g|q
′

IAn dµ2

)p′/q ′
dµ1 =

[∫
X1

(∫
X2

|g|q
′

IAn dµ2

)p′/q ′
dµ1

]1/p′

= ‖gIAn‖p′,q ′;R,
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which gives

‖gIAn‖p′,q ′;R ≤ ‖F‖LpM(X1;Lq (X2;R))∗ .

Letting n→∞, by making use of Fatou’s Lemma, one deduces (2.5).

Case 2: p = 1, 1 < q < ∞. In this case, we first take p ∈ (1,∞), and take f as in
Case 1. Then

‖f ‖1,q =

∫
X1

(∫
X2

|f |q dµ2

)1/q

dµ1 ≤

[∫
X1

(∫
X2

|f |q dµ2

)p/q
dµ1

]1/p

µ1(X1)
1/p′

= µ1(X1)
1/p′ .

Consequently,

‖gIAn‖p′,q ′;R = F(f ) ≤ ‖F‖L1
M(X1;Lq (X2;R))∗‖f ‖1,q

≤ ‖F‖L1
M(X1;Lq (X2;R))∗µ1(X1)

1/p′ .

Letting n→∞ and then p→ 1 (which means p′→∞), we obtain

‖g‖∞,q ′;R ≤ ‖F‖L1
M(X1;Lq (X2;R))∗ ,

which is (2.5) for p = 1.

Case 3: 1 < p < ∞, q = 1. In this case, we first take q ∈ (1,∞), and take f as in
Case 1. Then

‖f ‖p,1;R =

[∫
X1

(∫
X2

|f | dµ2

)p
dµ1

]1/p

≤

[∫
X1

(∫
X2

|f |q dµ2

)p/q
dµ1

]1/p

µ2(X2)
1/q ′
= µ2(X2)

1/q ′ .

Hence,

‖gIAn‖p′,q ′;R = F(f ) ≤ ‖F‖LpM(X1;L1(X2;R))∗‖f ‖p,1;R

≤ ‖F‖LpM(X1;L1(X2;R))∗µ2(X1)
1/q ′

Letting n→∞ and then q → 1 (which means q ′→∞), we obtain

‖g‖p′,∞;R ≤ ‖F‖LpM(X1;L1(X2;R))∗ ,

which is (2.5) for q = 1.
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Case 4: p = q = 1. In this case, we still first let p, q ∈ (1,∞), and take f as in Case 1
with q = r . Then

‖f ‖1,1 =

∫
X1

∫
X2

|f | dµ2 dµ1

≤

[∫
X1

(∫
X2

|f |q dµ2

)p/q
dµ1

]1/p

µ1(X1)
1/p′µ2(X2)

1/q ′

= µ1(X1)
1/p′µ2(X2)

1/q ′ .

Consequently,

‖gIAn‖p′,q ′;R = F(f ) ≤ ‖F‖L1
M(X1;L1(X2;R))∗‖f ‖1,1

≤ ‖F‖L1
M(X1;L1(X2;R))∗µ1(X1)

1/p′µ2(X1)
1/q ′ .

Letting n→∞ and then p, q → 1 (which means p′, q ′→∞), we obtain

‖g‖∞;R ≤ ‖F‖L1
M(X1;L1(X2;R))∗ ,

which is (2.5) for p, q = 1.

Finally, (2.3) means that Fg ∈ (L
p

M(X1;L
q(X2;R)))∗ and since F and Fg coincides

on a dense subset of LpM(X1;L
q(X2;R)), one has F = Fg . Also, (2.2) follows easily

from (2.3) and (2.5).

2.3. Proof of the necessity in Lemma 2.1 for the general case

We are now in a position to prove the “only if” part of Lemma 2.1 for the general case.
The proof is divided into two steps.

Step 1. We show thatLp
′

M(X1;L
q ′(X2;H

∗)) is isometrically isomorphic to a subspace H
of LpM(X1;L

q(X2;H))
∗.

For any given g ∈ Lp
′

M(X1;L
q ′(X2;H

∗)), define a linear functional Fg on the space
L
p

M(X1;L
q(X2;H)) as follows:

Fg(f ) =

∫
X1×X2

〈f (x1, x2), g(x1, x2)〉H,H ∗ dµ1 dµ2, ∀f ∈ L
p

M(X1;L
q(X2;H)).

Then, by means of the Hölder inequality and similar to (2.3), we conclude that Fg belongs
to LpM(X1;L

q(X2;H))
∗, and

‖Fg‖LpM(X1;Lq (X2;H))∗
≤ ‖g‖p′q ′;H ∗ . (2.6)

Therefore the norm of Fg is not greater than ‖g‖p′q ′,H ∗ . Define

H ≡ {Fg | g ∈ Lp
′

M(X1;L
q ′(X2;H

∗))}.
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It remains to prove the reverse of inequality (2.6). Clearly, without loss of generality,
we may assume that g 6= 0.

Suppose first that g =
∑
∞

i=1 h
∗

i IEi where h∗i is a sequence in H ∗ and {Ei}∞i=1 is a
countable partition of X1 × X2 by members of M with (µ1 × µ2)(Ei) > 0 for all i.
Since we have shown that LpM(X1;L

q(X2;R))∗ = L
p′

M(X1;L
q ′(X2;R)) (in Subsection

2.2) and noting that 0 < |g|H ∗ ∈ L
p′

M(X1;L
q ′(X2;R)), for any ε > 0 there exists a

nonnegative function ϕ ∈ LpM(X1;L
q(X2;R)) such that

0 < ‖ϕ‖p,q ≤ 1, ‖g‖p′q ′;H ∗ − ε ≤

∫
X1×X2

|g|H ∗ϕ dµ1 dµ2.

Further, choose hi ∈ H with |hi |H = 1 such that

|h∗i |H ∗ − ε/‖ϕ‖1,1 ≤ h
∗

i (hi),

and define

f =

∞∑
i=1

ϕhiIEi ∈ L
p

M(X1;L
q(X2;H)).

Then ‖f ‖p,q,H = ‖ϕ‖p,q ≤ 1, and we have∫
X1×X2

〈f (x1, x2), g(x1, x2)〉H,H ∗ dµ1 dµ2 =

∫
X1×X2

ϕ

∞∑
i=1

〈hi, h
∗

i 〉H,H ∗IEi dµ1 dµ2

≥

∫
X1×X2

ϕ

∞∑
i=1

(
|h∗i |H ∗ −

ε

‖ϕ‖1,1

)
IEi dµ1 dµ2

≥

∫
X1×X2

|g|H ∗ϕ dµ1 dµ2 −
ε

‖ϕ‖1,1

∫
X1×X2

ϕ dµ1 dµ2 ≥ ‖g‖p′,q ′,H ∗ − 2ε.

This gives
‖Fg‖LpM(X1;Lq (X2;H))∗

≥ ‖g‖p′q ′;H ∗ ,

and therefore
‖Fg‖LpM(X1;Lq (X2;H))∗

= ‖g‖p′q ′;H ∗ ,

whenever g ∈ Lp
′

M(X1;L
q ′(X2;H

∗)) is countably valued.

For the general case, we choose a sequence {gn}∞n=1 ⊂ L
p′

M(X1;L
q ′(X2;H

∗)) such
that each gn is countably valued and

lim
n→∞
‖gn − g‖p′,q ′;H ∗ = 0. (2.7)

We have obtained
‖Fgn‖LpM(X1;Lq (X2;H))∗

= ‖gn‖p′,q ′;H ∗ ,

and by virtue of (2.6),

‖Fgn − Fg‖LpM(X1;Lq (X2;H))∗
= ‖Fgn−g‖LpM(X1;Lq (X2;H))∗

≤ ‖gn − g‖p′,q ′;H ∗ .
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Therefore, noting (2.7), we end up with

‖Fg‖LpM(X1;Lq (X2;H))∗
= lim
n→∞
‖Fgn‖LpM(X1;Lq (X2;H))∗

= lim
n→∞
‖gn‖p′q ′,H ∗ = ‖g‖p′q ′;H ∗ .

Hence we conclude that Lp
′

M(X1;L
q ′(X2;H

∗)) is isometrically isomorphic to H.

Step 2. We show that the subspace H is equal to LpM(X1;L
q(X2;H))

∗.
To this end, for F ∈ LpM(X1;L

q(X2;H))
∗, we define

G(E)(h) = F(hIE), ∀E ∈M, h ∈ H.

From

|F(hIE)| ≤ ‖F‖LpM(X1;Lq (X2;H))∗
‖hIE‖p,q,H ≤ ‖F‖LpM(X1;Lq (X2;H))∗

|h|H‖IE‖p,q ,

we see that G : M → H ∗ and it is countably additive. Let E1, . . . , En (n ∈ N) be a
partition of X1 ×X2 by members of M with (µ1 ×µ2)(Ei) > 0 for all 1 ≤ i ≤ n. Then
G(Ei) ∈ H

∗. Define

G1
Ei
(h) = ReG(E)(h), G2

Ei
(h) = ImG(E)(h), ∀h ∈ H.

Clearly, |G(Ei)|H ∗ ≤ |G1
Ei
|H ∗ + |G

2
Ei
|H ∗ . Noting that both G1

Ei
and G2

Ei
are real func-

tionals, we see that, for any ε > 0, one can find h1
i and h2

i in the closed unit ball of H
such that

|G1
Ei
|H ∗ −

ε

2n
< ReG(Ei)(h1

i ), |G2
Ei
|H ∗ −

ε

2n
< ImG(Ei)(h

2
i ).

It follows that
n∑
i=1

|G(Ei)|H ∗ − ε < Re
n∑
i=1

G(Ei)(h
1
i )+ Im

n∑
i=1

G(Ei)(h
2
i )

= ReF
( n∑
i=1

h1
i IEi

)
+ ImF

( n∑
i=1

h2
i IEi

)
≤ ‖F‖LpM(X1;Lq (X2;H))∗

(∥∥∥ n∑
i=1

h1
i IEi

∥∥∥
p,q,H

+

∥∥∥ n∑
i=1

h2
i IEi

∥∥∥
p,q,H

)
≤ 2‖F‖LpM(X1;Lq (X2;H))∗

∥∥∥ n∑
i=1

IEi

∥∥∥
p,q

≤ 2‖F‖LpM(X1;Lq (X2;H))∗
µ1(X1)

1/pµ2(X2)
1/q .

Hence |G(X1×X2)|H ∗ <∞ andG is a (µ1×µ2)-continuous vector-valued measure of
bounded variation. SinceH ∗ has the Radon–Nikodým property with respect to (X1×X2,

M, µ1 × µ2), there exists a Bochner integrable g : X1 ×X2 → H ∗ such that

G(E) =

∫
E

g dµ1 dµ2, ∀E ∈M.
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Clearly, if f ∈ LpM(X1;L
q(X2;H)) is a simple function, then

F(f ) =

∫
X1×X2

〈f (x1, x2), g(x1, x2)〉H,H ∗ dµ1 dµ2.

Select an expanding sequence {En}∞n=1 in M such that
⋃
∞

n=1 En = X1 × X2 and such
that g is bounded on each En. Fixing n0 ∈ N and noting that the linear functional∫
En0
〈·, g(x1, x2)〉H,H ∗ dµ1 dµ2 is a bounded linear functional on LpM(X1;L

q(X2;H))

which agrees with F on all simple functions supported on En0 , it follows that

F(f IEn0
)=

∫
X1×X2

〈f (x1, x2), g(x1, x2)IEn0
〉H,H ∗ dµ1 dµ2,

∀f ∈ L
p

M(X1;L
q(X2;H)). (2.8)

Further, since gIEn0
is bounded, one has gIEn0

∈ L
p′

M(X1;L
q ′(X2;H

∗)) and

‖gIEn0
‖p′,q ′;H ∗ ≤ ‖F‖LpM(X1;Lq (X2;H))∗

. (2.9)

Since inequality (2.9) holds for each n0, by the Monotone Convergence Theorem, we
conclude that g ∈ Lp

′

M(X1;L
q ′(X2;H

∗)).
Finally, for any f ∈ LpM(X1;L

q(X2;H)), it follows from (2.8) that

F(f ) = lim
n→∞

∫
X1×X2

〈f (x1, x2), g(x1, x2)IEn〉H,H ∗ dµ1 dµ2

=

∫
X1×X2

〈f (x1, x2), g(x1, x2)〉H,H ∗ dµ1 dµ2 = Fg(f ).

This means that F = Fg . Hence LpM(X1;L
q(X2;H))

∗ coincides with the linear space

L
p′

M(X1;L
q ′(X2;H

∗)).

2.4. Proof of the sufficiency in Lemma 2.1

In order to complete the proof of Lemma 2.1, it remains to prove its “if” part, which is
the main concern in this subsection.

Let G : M→ H ∗ be a (µ1 × µ2)-continuous vector measure of bounded variation.
We want to show that there exists a g̃ ∈ L1

M(X1;L
1(X2;H

∗)) such that

G(E) =

∫
E

g̃ dµ1 dµ2, ∀E ∈M. (2.10)

Firstly, we show that if E0 ∈M has a positive (µ1×µ2)-measure, thenG has a Bochner
integrable Radon–Nikodým derivative on an M-measurable set B satisfying B ⊂ E0 and
(µ1 × µ2)(B) > 0.

Denote by |G| the variation of G, which is a scalar measure (see [7, Definition 4 and
Proposition 9 of Chapter 1, pp. 2–3]). It is easy to see that |G| is a (µ1 × µ2)-continuous
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R+-valued measure. Applying the Radon–Nikodým Theorem (to |G| and µ1 × µ2), one
can find an M-measurable subset B of E0 and a positive integer k such that |G|(A) ≤
k(µ1×µ2)(A) for allA ∈M withA ⊂ B. Define a linear functional ` on the subspace S
of simple functions in LpM(X1, L

q(X2, H)) as follows:

`(f ) =

n∑
i=1

G(Ei ∩ B)(xi),

where

f =

n∑
i=1

xiIEi , xi ∈ H, 1 ≤ i ≤ n,

with {Ei | 1 ≤ i ≤ n} being a partition of X1 ×X2. It follows that

|`(f )| =

∣∣∣ n∑
i=1

G(Ei ∩ B)(xi)

∣∣∣ = ∣∣∣∣ n∑
i=1

G(Ei ∩ B)

(µ1 × µ2)(Ei ∩ B)
((µ1 × µ2)(Ei ∩ B)xi)

∣∣∣∣
≤

n∑
i=1

k|(µ1 × µ2)(Ei ∩ B)xi | ≤ k‖f ‖L1(Xi×X2;H)

≤ kµ1(X1)
1/pµ2(X2)

1/q
‖f ‖LpM(X1;Lq (X2;H))

.

Therefore ` is a bounded linear functional on S. By the Hahn–Banach Theorem, it has
a bounded linear extension to LpM(X1, L

q(X2, H)) (the extension is still denoted by `).

Hence there exists a g ∈ Lp
′

M(X1, L
q ′(X2, H

∗)) such that

`(f ) =

∫
X1×X2

〈f, g〉H,H ∗ dµ1 dµ2, ∀f ∈ L
p

M(X1, L
q(X2, H)).

We have

G(E ∩ B)(x) = `(xIE) =

∫
E

〈x, g〉H,H ∗ dµ1 dµ2, ∀x ∈ H, E ∈ M.

Since g ∈ Lp
′

M(X1, L
q ′(X2, H

∗)) is Bochner integrable, we see that

G(E ∩ B)(x) =
( ∫

E

g dµ1 dµ2

)
(x), ∀x ∈ H, E ∈ M.

Consequently,

G(E ∩ B) =

∫
E

g dµ1 dµ2, ∀E ∈M. (2.11)

Noting that B ∈M, and therefore replacing E in (2.11) by E ∩ B, we see that

G(E ∩ B) =

∫
E∩B

g dµ1 dµ2, ∀E ∈M.
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Now by the Exhaustion Lemma ([7, p. 70]), there exist a sequence {An}∞n=1 of disjoint
members of M such that

⋃
∞

n=1An = X1 × X2 and a sequence {gn}∞n=1 of Bochner
integrable functions on X1 ×X2 such that

G(E ∩ An) =

∫
E∩An

gn dµ1 dµ2, ∀E ∈M, n ∈ N.

Define g̃ : X1 × X2 → H ∗ by g̃(x1, x2) = gn(x1, x2) if (x1, x2) ∈ An. It is obvious that
g̃ is (µ1 × µ2)-measurable. Moreover, for each E ∈M and all m ∈ N,

G
(
E ∩

m⋃
n=1

An

)
=

∫
E

g̃I⋃m
n=1 An

dµ1 dµ2.

Consequently,

G(E) = lim
m→∞

∫
E

g̃I⋃m
n=1 An

dµ1 dµ2, ∀E ∈M.

For h ∈ H ∗∗, the variation of |G(h)| satisfies

|G(h)|(X1 ×X2) ≥ lim
m→∞

∫
X1×X2

|〈h, g̃〉H ∗∗,H ∗ |I
⋃m
n=1 An

dµ1 dµ2.

Hence by the Monotone Convergence Theorem, 〈h, g̃〉H ∗∗,H ∗ ∈ L1
M(X1;L

1(X2;R)) for
each h ∈ H ∗∗. If E ∈M and h ∈ H ∗∗, from the Dominated Convergence Theorem we
have

〈h,G(E)〉H ∗∗,H ∗ = lim
m→∞

∫
X1×X2

〈h, g̃〉H ∗∗,H ∗I
⋃m
n=1 An

dµ1 dµ2

=

∫
X1×X2

〈h, g̃〉H ∗∗,H ∗ dµ1 dµ2.

Therefore g̃ is Pettis integrable and its Pettis integral P-
∫
X1×X2

g̃ dµ1 dµ2 equals G(E)
for each E ∈ M. Since |G|(X1 × X2) is finite,

∫
X1×X2

|̃g|H ∗I
⋃m
n=1 An

dµ1 dµ2 ≤

|G|(X1 × X2) for all m ∈ N. By the Monotone Convergence Theorem, |̃g|H ∗ ∈
L1
M(X1;L

1(X2;R)). Hence g̃ is Bochner integrable. Since the Pettis and Bochner in-
tegrals coincide whenever they coexist, we obtain (2.10), proving the Radon–Nikodým
property of H ∗ with respect to (X1 ×X2,M, µ1 × µ2).

2.5. A corollary of Lemma 2.1

We now give an interesting corollary of Lemma 2.1. We first state the following.

Lemma 2.2. Let

M = {A ∈ B[0, T ]⊗ FT
∣∣ t 7→ IA(t, ·) is F-progressively measurable}.
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Then M is a sub-σ -field of B[0, T ] ⊗ FT . Moreover, a process ϕ : [0, T ] × � → H is
F-progressively measurable if and only if it is M-measurable.

According to Lemmas 2.1 and 2.2, we have the following interesting corollary, whose
proof is straightforward.

Corollary 2.3. Let 0 < s ≤ T and suppose H ∗ has the Radon–Nikodým property with
respect to ([0, T ]×�,M, m×P) (wherem is the Lebesgue measure). Then the following
identities hold:{

L
p

F(�;L
q(0, s;H))∗ = Lp

′

F (�;L
q ′(0, s;H ∗)),

L
q

F(0, s;L
p(�;H))∗ = L

q ′

F (0, s;L
p′(�;H ∗)),

1 ≤ p, q <∞.

This Riesz-type Representation Theorem will be very useful below.

Remark 2.4. It is easy to see that the conclusions in both Lemma 2.2 and Corollary 2.3
hold for any given filtration F (i.e., not necessarily for the natural filtration generated by
the Brownian motion {W(t)}t≥0), and also if one replaces the F-progressive measurability
by any other measurability requirement, for example, adapted, optional, predictable, etc.

We refer to [14] for an application of Corollary 2.3 in the study of null controllability
of forward stochastic heat equations with one control. We will give more applications of
this result in our forthcoming papers.

3. Answers to Problems (E) and (R)

In this section, we return to our complete filtered probability space (�,F ,F,P) and give
answers to Problems (E) and (R).

For any p ∈ [1,∞) and 0 < s ≤ T , define an operator Ls : LpF(�;L
1(0, s;H))→

L
p

Fs (�;H) by

Ls(u(·)) =
∫ s

0
u(t) dt, ∀u(·) ∈ L

p

F(�;L
1(0, s;H)).

Concerning Problem (E), noting that L1
F(0, s;L

p(�;H)) ⊆ L
p

F(�;L
1(0, s;H)), we

give the following positive answer (which is a little stronger than the desired (1.6)):

Theorem 3.1. If H ∗ has the Radon–Nikodým property, then

Ls
(
L1
F(0, s;L

p(�;H))
)
= L

p

Fs (�;H). (3.1)

Moreover, for each φ(·, s) ∈ LpFs (�;H), there is a ς(·, s) ∈ L1
F(0, s;L

p(�;H)) such
that {

Ls(ς(·, s)) = φ(·, s),
‖ς(·, s)‖L1

F(0,s;L
p(�;H)) ≤ ‖φ(·, s)‖L1

F(0,s;L
p(�;H)).

(3.2)

(In general, the above ς(·, s) is NOT unique.)
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The result in Theorem 3.1 turns out to be sharp for p ∈ (1,∞). Indeed, we have the
following result of negative nature.

Theorem 3.2. For any p ∈ (1,∞) and any r ∈ (1,∞],

Ls
(
LrF(0, s;L

p(�;H))
)
( L

p

Fs (�;H).

Remark 3.3. (1) In [6, VI, 68, pp. 130–131] and [8], some Radon–Nikodým type the-
orems were established for real-valued or vector-valued processes with finite variation.
However, it seems that none of these results could be applied to prove Theorem 3.1.

(2) Thanks to Remark 2.4, the conclusion in Theorem 3.1 holds for any given filtra-
tion F; and one may replace the F-progressive measurability by any other measurability
requirement.

(3) We believe that (3.1) is sharp in the sense that, for any r ∈ (1,∞] and any p ∈
[1,∞], {

Ls
(
LrF(0, s;L

p(�;H))
)
( L

p

Fs (�;H),

Ls
(
L
p

F(�;L
r(0, s;H))

)
( L

p

Fs (�;H).
(3.3)

Theorem 3.2 shows that the first conclusion in (3.3) is true for p ∈ (1,∞), and that,
noting (1.1), the second conclusion in (3.3) is true for p ∈ (1, r] ∩ (1,∞). The general
case is under our investigation. Note that the above can also be written as

Ls
(⋃
q>1

L
p

F(�;L
q(0, s;H))

)
( L

p

Fs (�;H).

As a consequence of Theorem 3.1, our answer to Problem (R) is as follows:

Corollary 3.4. If H is a Hilbert space, then for any p ∈ [1,∞), one can find a constant
C>0 such that for any ζ(·)∈LpF(�;L

2(0, T ;H)), there is a u(·)∈L1
F(0, T ;L

p(�;H))

so that equality (1.7) holds and

‖u(·)‖L1
F(0,T ;L

p(�;H)) ≤ C‖ζ(·)‖LpF(�;L
2(0,T ;H)).

Remark 3.5. By Remark 3.3(2), it is easy to see that the conclusion in Corollary 3.4 also
holds for adapted, optional or predictable stochastic processes.

Corollary 3.4 shows the existence of the representation of Itô integrals by Lebesgue/
Bochner integrals. The corollary follows easily from Theorem 3.1 by applying the well-
known result that any Hilbert space has the Radon–Nikodým property (e.g., [7]) and also
using the Burkholder–Davis–Gundy inequality for vector-valued stochastic processes (see
[5, Theorem 5.4] and [16, Corollary 3.11]).

The rest of this section is devoted to proving Theorems 3.1–3.2. For this, besides
Corollary 2.3, we need the following result concerning range inclusion for operators,
which can be found in [19, Lemma 4.13, pp. 94–95 and Theorem 4.15, p. 97], for example.
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Lemma 3.6. Suppose BX and BZ are the open unit balls in Banach spaces X and Z,
respectively. Let L : X → Z be a bounded linear operator whose range is denoted by
R(L), and whose adjoint operator is denoted by L∗ : Z∗ → X∗. Then the following two
conclusions hold:

(i) If R(L) = Z, then there is a constant C > 0 such that

‖z∗‖Z∗ ≤ C‖L
∗z∗‖X∗ , ∀z∗ ∈ Z∗. (3.4)

(ii) If (3.4) holds for some constant C > 0, then

BZ ⊂ CL(BX) ≡
{
CLx

∣∣ x ∈ BX}.
Remark 3.7. (1) Clearly, by Lemma 3.6, we see that R(L) = Z if and only if (3.4) holds
for some constant C > 0. But this lemma goes a little further than this. Indeed, the second
conclusion of the lemma provides a “quantitative” characterizationBZ ⊂ CL(BX), which
is more delicate than R(L) = Z. We shall use this result essentially when we answer
Problem (C) in the next section.

(2) One should compare Lemma 3.6 with the following general range inclusion result
(e.g., [13, Lemma 2.4 in Chap. 7]): Let X, Y and Z be Banach spaces with X being
reflexive, and let F : Y → Z and G : X→ Z be bounded linear operators. Then

|F ∗z∗|Y ∗ ≤ C|G
∗z∗|X∗ , ∀z

∗
∈ Z∗, for some constant C > 0 ⇔ R(F ) ⊆ R(G).

(3.5)
As shown in [1], the equivalence (3.5) may fail when X is not reflexive. Nevertheless,
when F is surjective (in particular when Y = Z and F = I , the identity operator, the
case considered in Lemma 3.6), this equivalence remains true (even without the reflexivity
assumption for X) (see [20, Theorem 1.2 and Remark 1.3]). We refer to [21] for further
range inclusion results.

Further, we need the following property of Wiener integrals, a special case of Itô
integrals with deterministic integrands (e.g., [12, Theorem 2.3.4 in Chapter 2, p. 11]).

Lemma 3.8. For each 0 ≤ a < b ≤ T and f ∈ L2(a, b) (which is a deterministic
function, i.e., it does not depend on ω ∈ �), the Wiener integral

∫ b
a
f (t) dW(t) is a

Gaussian random variable with mean 0 and variance
∫ b
a
|f (t)|2 dt .

We are now in a position to prove Theorems 3.1–3.2.

Proof of Theorem 3.1. It suffices to show (3.2). Since L1
F(0, s;L

p(�;H)) ⊆

L
p

F(�;L
1(0, s;H)) (algebraically and topologically), the restriction of the operator

Ls : LpF(�;L
1(0, s;H))→ L

p

Fs (�;H)

to L1
F(0, s;L

p(�;H)) is a bounded linear operator from L1
F(0, s;L

p(�;H)) to
L
p

Fs (�;H) (for simplicity, we still denote it by Ls). By Lemma 3.6(ii) and Corollary
2.3, by a simple scaling, we see that the desired result (3.2) is a consequence of

‖L∗sη‖L∞F (0,s;Lp′ (�;H ∗)) ≥ ‖η‖Lp′Fs (�;H ∗)
, ∀η ∈ L

p′

Fs (�;H
∗). (3.6)
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In order to prove (3.6), let us first find the adjoint operator L∗s of Ls . For any u(·) ∈
L1
F(0, s;L

p(�;H)), and η ∈ LpFs (�;H)
∗
= L

p′

Fs (�;H
∗), we have

〈Lsu, η〉 = E
(∫ s

0
u(t) dt, η

)
H,H ∗

=

∫ s

0
E(u(t), η)H,H ∗ dt

=

∫ s

0
E(u(t),E[η |Ft ])H,H ∗ dt = 〈u,L∗sη〉,

which leads to the following representation of the adjoint operator L∗s :{
L∗s : Lp

′

Fs (�;H
∗)→ L1

F(0, s;L
p(�;H))∗ = L∞F (0, s;L

p′(�;H ∗)),

(L∗sη)(t) = E[η |Ft ], t ∈ [0, s], η ∈ Lp
′

Fs (�;H
∗).

(3.7)

Now, we let p > 1. Making use of (3.7), we find that

‖L∗sη‖L∞F (0,s;Lp′ (�;H ∗)) =
[

sup
t∈[0,s]

E
∣∣E[η |Ft ]

∣∣p′
H ∗

]1/p′

≥
[
E
∣∣E[η |Fs]

∣∣p′
H ∗

]1/p′
= [E|η|p

′

]1/p′
= ‖η‖

L
p′

Fs (�;H
∗)
.

Therefore, (3.6) holds for p > 1.
Next, for p = 1, we have

‖L∗sη‖L∞F (�;L∞(0,s;H ∗)) = ess sup
ω∈�

sup
t∈[0,s]

|E[η |Ft ]|H ∗

≥ ess sup
ω∈�

|E[η |Fs]|H ∗ = ess sup
ω∈�

|η(ω)|H ∗ = ‖η‖L∞Fs (�;H
∗).

This implies that our conclusion also holds for p = 1. ut

Proof of Theorem 3.2. Noting (2.1), it suffices to prove Theorem 3.2 for r ∈ (1,∞).
Towards a contradiction, assume that

Ls
(
LrF(0, s;L

p(�;H))
)
= L

p

Fs (�;H) for some p, r ∈ (1,∞). (3.8)

Since LrF(0, s;L
p(�;H)) ⊆ L1

F(0, s;L
p(�;H)) ⊆ L

p

F(�;L
1(0, s;H)) (algebraically

and topologically), the restriction of the operator

Ls : LpF(�;L
1(0, s;H))→ L

p

Fs (�;H)

to LrF(0, s;L
p(�;H)) is again a bounded linear operator from LrF(0, s;L

p(�;H)) to
L
p

Fs (�;H) (for simplicity, still denoted by Ls). Similar to (3.7), the representation of the
adjoint operator L∗s is given as follows:{

L∗s : Lp
′

Fs (�;H
∗)→ Lr

′

F (0, s;L
p′(�;H ∗)),

(L∗sη)(t) = E[η |Ft ], t ∈ [0, s], η ∈ Lp
′

Fs (�;H
∗).

(3.9)
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By (3.8), using Lemma 3.6(i) and Corollary 2.3, we conclude that there exists a con-
stant C > 0 such that for any η ∈ Lp

′

Fs (�;H
∗),

‖η‖
L
p′

Fs (�;H
∗)
≤ C‖L∗sη‖Lr′F (0,s;Lp′ (�;H ∗))

, (3.10)

where r ′ = r/(r − 1).
Fix any x0 ∈ H

∗ satisfying |x0|H ∗ = 1 (which is independent of the time variable t
and the sample point ω). Consider a sequence {ηn}∞n=1 of random variables defined by

ηn =

∫ s

0
ent dW(t)x0, n ∈ N.

It is obvious that ηn ∈ L
p′

Fs (�;H
∗) for any n ∈ N. By Lemma 3.8, the integral∫ s

0 e
nt dW(t) is a Gaussian random variable with mean 0 and variance e2ns

−1
2n . Hence,[

E
∣∣∣∣∫ s

0
ent dW(t)

∣∣∣∣p′]1/p′

=

[∫
∞

−∞

√
n|x|p

′√
(e2ns − 1)π

e
−

nx2

e2ns−1 dx

]1/p′

=

[∫
∞

−∞

(
e2ns
− 1
n

)p′/2
|x|p

′

√
π
e−x

2
dx

]1/p′

=

(
1
√
π

∫
∞

−∞

|x|p
′

e−x
2
dx

)1/p′
√
e2ns − 1

n
. (3.11)

Now, by (3.11), it is easy to see that

‖ηn‖
L
p′

Fs (�;H
∗)
=

[
E
∣∣∣∣∫ s

0
ent dW(t)x0

∣∣∣∣p′]1/p′

=

[
E
∣∣∣∣∫ s

0
ent dW(t)

∣∣∣∣p′]1/p′

=

(
1
√
π

∫
∞

−∞

|x|p
′

e−x
2
dx

)1/p′
√
e2ns − 1

n
. (3.12)

Using (3.11) again, we have

‖E[ηn | Ft ]‖Lr′F (0,s;Lp′ (�;H ∗)) =
{∫ s

0

[
E
∣∣∣∣∫ t

0
enτ dW(τ)x0

∣∣∣∣p′]r ′/p′ dt}1/r ′

=

{∫ s

0

[
E
∣∣∣∣∫ t

0
enτ dW(τ)

∣∣∣∣p′]r ′/p′ dt}1/r ′

=

{∫ s

0

[(
1
√
π

∫
∞

−∞

|x|p
′

e−x
2
dx

)1/p′
√
e2nt − 1
n

]r ′
dt

}1/r ′

≤
1
√
n

(
1
√
π

∫
∞

−∞

|x|p
′

e−x
2
dx

)1/p′(∫ s

0
enr
′t dt

)1/r ′

≤
1
√
n

(
1
√
π

∫
∞

−∞

|x|p
′

e−x
2
dx

)1/p′
ens

(nr ′)1/r
′
. (3.13)



Representation of Itô integrals by Lebesgue/Bochner integrals 1817

From (3.12) and (3.13), it follows that

lim
n→∞

‖E[ηn | Ft ]‖Lr′F (0,s;Lp′ (�;H ∗))
‖ηn‖

L
p′

Fs (�;H
∗)

≤ lim
n→∞

ens

(nr ′)1/r
′
√
e2ns − 1

= 0.

This, combined with (3.9), gives

lim
n→∞

‖L∗sηn‖Lr′F (0,s;Lp′ (�;H ∗))
‖ηn‖

L
p′

Fs (�;H
∗)

= 0,

which contradicts inequality (3.10). This completes the proof of Theorem 3.2. ut

4. Answer to Problem (C)

In this section we give a positive answer to Problem (C). Theorem 3.1 tells us that any Itô
integral

∫ s
0 ζ(t) dW(t) with ζ(·) ∈ LpF(�;L

2(0, T ;H)) admits a (parameterized) Boch-
ner integral representation, i.e. we can find a representor u(·, s) ∈ L1

F(0, s;L
p(�;H))

(which is of course NOT unique) such that∫ s

0
ζ(t) dW(t) =

∫ s

0
u(t, s) dt, ∀s ∈ [0, T ]. (4.1)

Put Z ≡ L1
F(0, T ;L

p(�;H)). We now show that one can choose a u(·, s), which is
continuous in Z with respect to s, such that (4.1) holds. More precisely, we have the
following result:

Theorem 4.1. For any given ζ(·) ∈ LpF(�;L
2(0, T ;H)), define a (set-valued) mapping

F : [0, T ]→ 2Z by

F(s) =

{
η(·, s) ∈ Z

∣∣∣∣ ∫ s

0
η(t, s) dt =

∫ s

0
ζ(t) dW(t), and η(t, s) = 0, ∀t > s

}
,

∀s ∈ [0, T ]. (4.2)

Then F has a continuous selection f .

Remark 4.2. If we choose u(·, s) to be the above f (s), then u(·, s) is the desired process
(for (4.1)), which is continuous in Z with respect to s.

Before proving Theorem 4.1, we recall the following useful preliminary results.

Lemma 4.3. Let X and Y be two topological spaces. Then, for any set-valued mapping
φ : X→ 2Y , the following two statements are equivalent:

(i) The map φ is lower semicontinuous, i.e., for any open subset V of Y , the set {x ∈ X |
φ(x) ∩ V 6= ∅} is open in X;
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(ii) If x ∈ X, y ∈ φ(x), and V is a neighborhood of y in Y , then there exists a neighbor-
hood U of x in X such that for every x′ ∈ U , there exists a y′ ∈ φ(x′) ∩ V .

Lemma 4.4 ([15, Theorem 3.2′′]). The following properties of a T1-space are equivalent:

(i) X is paracompact (i.e., any open cover of X admits a locally finite open refinement,
which is the case if X is compact or is a metric space).

(ii) If Y is a Banach space, then every lower semicontinuous mapping F : X → 2Y

such that F(x) is a nonempty, closed, convex subset of Y for any x ∈ X, admits a
continuous selection, i.e., there exists a continuous mapping f : X → Y such that
f (x) ∈ F(x) for any x ∈ X.

We can now give a proof of Theorem 4.1.

Proof of Theorem 4.1. The main idea is to use Lemma 4.4. It is obvious that [0, T ] is a
T1-space and is paracompact. Hence we need only prove that F(s) is a nonempty, closed,
convex subset of Z for any s ∈ [0, T ] and F is lower semicontinuous. By Theorem 3.1,
we see that F(s) is nonempty. Also, it is very easy to check that F(s) is a convex subset
of Z and is closed in Z.

It remains to show that F is lower semicontinuous. Fix any s ∈ [0, T ], any η(·, s) ∈
F(s), and any neighborhood V of η(·, s) in Z. Clearly, there exists a δ > 0 such that

V1 = {z(·) ∈ Z | ‖z(·)− η(·, s)‖Z < δ} ⊂ V.

We claim that there exists an ε > 0 such that for any r satisfying |r − s| < ε,

F(r) ∩ V1 6= ∅. (4.3)

This will yield the lower semicontinuity of F(·). To prove our claim, we first make use
of the Burkholder–Davis–Gundy inequality for vector-valued stochastic process (see [5,
Theorem 5.4] and [16, Corollary 3.11]) to get

E
∣∣∣∣ ∫ s

r

ζ(t) dW(t)

∣∣∣∣p
H

≤ E
[

sup
r≤h≤s

∣∣∣∣ ∫ h

r

ζ(t) dW(t)

∣∣∣∣p
H

]
≤ CE

[ ∫ s

r

|ζ(t)|2H dt

]p/2
.

(4.4)
Choose an increasing sequence {rk}∞k=1 such that 0 ≤ r1 ≤ r2 ≤ · · · → s. Since ζ(·) ∈
L
p

F(�;L
2(0, T ;H)), by the Dominated Convergence Theorem we have

lim
k→∞

E
[ ∫ s

rk

|ζ(t)|2H dt

]p/2
= lim
k→∞

E
[ ∫ T

0
I[rk,s]|ζ(t)|

2
H dt

]p/2
= 0.

Hence,

lim
r→s

E
[ ∫ s

r

|ζ(t)|2H dt

]p/2
≤ lim
k→∞

E
[ ∫ s

rk

|ζ(t)|2H dt

]p/2
= 0. (4.5)

Therefore, it follows from (4.4) that there exists an ε1 > 0 such that for any 0 ≤ s − r
< ε1, ∥∥∥∥ ∫ s

r

ζ(t) dW(t)

∥∥∥∥
L
p

Fs (�;H)
< δ/3. (4.6)
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On the other hand, by the Hölder inequality and using the Dominated Convergence The-
orem, similar to the proof of (4.5), we see that there exists an ε2 > 0 (which may depend
on s) such that for any 0 ≤ s − r < ε2,∥∥∥∥ ∫ s

r

η(t, s) dt

∥∥∥∥
L
p

Fs (�;H)
≤

∫ s

r

‖η(t, s)‖LpFs (�;H)
dt =

∫ s

r

[E|η(t, s)|pH ]1/p dt < δ/3.

(4.7)

Put ε3 = min{ε1, ε2}. From (4.6)–(4.7) and noting that
∫ s

0 η(t, s) dt =
∫ s

0 ζ(t) dW(t), we
conclude that for any r with 0 ≤ s − r < ε3,∥∥∥∥ ∫ r

0
η(t, s) dt −

∫ r

0
ζ(t) dW(t)

∥∥∥∥
L
p

Fs (�;H)

≤

∥∥∥∥ ∫ r

0
η(t, s) dt −

∫ s

0
η(t, s) dt

∥∥∥∥
L
p

Fs (�;H)

+

∥∥∥∥ ∫ r

0
ζ(t) dW(t)−

∫ s

0
ζ(t) dW(t)

∥∥∥∥
L
p

Fs (�;H)

< 2δ/3. (4.8)

By the second conclusion in Theorem 3.1 and (4.8), we see that there is a φ(·, r) ∈
L1
F(0, r;L

p(�;H)) such that ‖φ(·, r)‖L1
F(0,r;L

p(�;H)) < 2δ/3, and

∫ r

0
φ(t, r) dt =

∫ r

0
ζ(t) dW(t)−

∫ r

0
η(t, s) dt.

Put %(·, r) = I[0,r]φ(·, r)+ I[0,r]η(·, s). It is obvious that %(·, r) ∈ F(r), and

‖η(·, s)−%(·, r)‖L1
F(0,s;L

p(�,H)) ≤

∫ s

r

[E|η(t, s)|pH ]1/p dt+‖φ(·, r)‖L1
F(0,r;L

p(�;H)) < δ.

Therefore, for any 0 ≤ s − r < ε3, we have %(·, r) ∈ V1, which gives (4.3). By a
similar argument, one can show that there exists an ε4 > 0 such that (4.3) holds for any
0 ≤ r − s < ε4. Choosing ε = min{ε3, ε4}, we see that (4.3) holds for any |r − s| < ε.
By Lemma 4.3, we know that F : [0, T ]→ Z is lower semicontinuous.

Finally, thanks to Lemma 4.4, we conclude that there exists a continuous selection f
of F . ut

5. Two illustrative applications

In this section, we give two simple applications of our Theorems 3.1–3.2. More interesting
and sophisticated applications will be presented in our forthcoming publications.
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5.1. Application to the controllability problem

Consider a one-dimensional controlled stochastic differential equation

dx(t) = [bx(t)+ u(t)] dt + σ dW(t), (5.1)

with b and σ being given constants. We say that system (5.1) is exactly controllable if for
any x0 ∈ R and xT ∈ L

p

FT (�;R), there exists a control u(·) ∈ LpF(�;L
1(0, T ;R)) such

that the corresponding solution x(·) satisfies x(0) = x0 and x(T ) = xT . By the variation
of constants formula, we have

x(T ) = ebT x0 +

∫ T

0
eb(T−t)u(t) dt +

∫ T

0
eb(T−t)σ dW(t).

Thus, exact controllability is equivalent to

xT − e
bT x0 −

∫ T

0
eb(T−t)σ dW(t) =

∫ T

0
eb(T−t)u(t) dt. (5.2)

Since xT ∈ L
p

FT (�;R), there exists a unique ζ(·) ∈ LpF(�;L
2(0, T ;R)) such that

xT = ExT +
∫ T

0
ζ(t) dW(t).

Hence, to ensure (5.2), it suffices to have

ExT − ebT x0 +

∫ T

0
[ζ(t)− eb(T−t)σ ] dW(t) =

∫ T

0
eb(T−t)u(t) dt,

which is guaranteed by Theorem 3.1. This means that (5.1) is exactly controllable.
On the other hand, surprisingly, in virtue of [18, Theorem 3.1], it is clear that system

(5.1) is NOT exactly controllable if one restricts the admissible controls u(·) to be in
L2
F(�;L

2(0, T ;R))! Moreover, by Theorem 3.2, we see that system (5.1) is NOT exactly
controllable either if one uses admissible controls u(·) in L2

F(�;L
q(0, T ;R)) for any

q ∈ (1,∞]. This leads to a corrected formulation for the exact controllability of stochastic
differential equations, as presented below.

A little more generally, we can consider the following multi-dimensional controlled
linear stochastic differential equation:{

dy(t) = [Ay(t)+ Bu(t)] dt + [Cy(t)+Du(t)] dW(t), 0 ≤ t ≤ T ,

y(0) = y0 ∈ Rn,
(5.3)

where A,C ∈ Rn×n and B,D ∈ Rn×m (n,m ∈ N) are matrices. Various controllability
issues for system (5.3) were studied, say, in [2, 3, 10, 18] and the references cited therein.
Note however that, unlike the classical deterministic case, as far as we know, there exist
no universally accepted notions of controllability in the stochastic setting so far. Inspired
by the main results of this paper, we introduce the following definition.
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Definition 5.1. System (5.3) is said to be exactly controllable if for any y0 ∈ Rn and
yT ∈ L

p

FT (�;R
n), there exists a control u(·) ∈ LpF(�;L

1(0, T ;Rm)) such that Du(·) ∈
L
p

F(�;L
2(0, T ;Rn)) and the corresponding solution y(·) of (5.3) satisfies y(T ) = yT .

We need Du(·) ∈ LpF(�;L
2(0, T ;Rn)) in the above definition because it appears

in the Itô integral
∫ T

0 [Cy(t) + Du(t)] dW(t). It is clear that, for the controllability of
deterministic linear (time-invariant) ordinal differential equations, there is no difference
between the controllability by usingL1 (in time) control and by usingL2 (or even analytic
in time) control. However, our analysis above indicates that things are completely differ-
ent in the stochastic setting. A detailed study of the controllability for system (5.3) (in the
sense of Definition 5.1) seems to deviate from the theme of this paper, and therefore we
shall address this topic in our forthcoming works.

Mimicking the above, we can also consider the more general case where the spaces Rn
and Rm in system (5.3) and Definition 5.1 are replaced respectively by two Hilbert spaces
H1 andH2, and the matricesA,B,C andD therein are replaced by suitable linear (maybe
unbounded) operators. Definitely, such an extension will open the door to a systematic
study of exact controllability of stochastic partial differential equations. This is actually
one of the original motivations for the current paper. We hope that the results of this paper
indeed pave the way to a better understanding of controllability problems for infinite-
dimensional stochastic control systems.

5.2. Application to a Black–Scholes model

Consider a Black–Scholes market model{
dx0(t) = rX0(t) dt,

dx(t)(t) = bX(t) dt + σX(t) dW(t),

with r, b, σ being constants. Under conditions of self-financing, and no transaction costs,
the investor’s wealth process Y (·) satisfies the equation

dY (t) = [rY (t)+ (b − r)Z(t)] dt + σZ(t) dW(t),

where Z(t) is the amount invested in the stock. For convenience, a European contingent
claim with payoff at the maturity T being ξ ∈ LpFT (�;R) is identified with ξ . Any such
ξ is said to be replicatable if there exists a trading strategy Z(·) such that for some Y0
(the price of the contingent claim at t = 0), one has

Y (0) = Y0, Y (T ) = ξ.

In other words, a contingent claim ξ is replicatable if and only if the following backward
stochastic differential equation (BSDE, for short) admits an adapted solution (Y (·), Z(·)):{

dY (t) = [rY (t)+ (b − r)Z(t)] dt + σZ(t) dW(t), t ∈ [0, T ],

Y (T ) = ξ.
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In this case, Y (t) is the price of the contingent claim at time t . See [9] and [23] for some
relevant details. Now, let us look at an extreme case,

b − r > 0, σ = 0. (5.4)

In this case, ξ is replicatable if and only if the following BSDE admits an adapted solution
(Y (·), Z(·)): {

dY (t) = [rY (t)+ (b − r)Z(t)] dt, t ∈ [0, T ],

Y (T ) = ξ.

Similar to the above subsection, we see that the above equation admits an adapted solution
(Y (·), Z(·)), which means that ξ is replicatable. Further, since ξ is arbitrary, this also
means that the market with conditions (5.4) is complete! This is a little surprising since
σ = 0 in the market model. Some further study along these lines will be carried out in
our future publications.
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