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Abstract. For a proper local embedding between two Deligne–Mumford stacks Y and X, we find,
under certain mild conditions, a new (possibly non-separated) Deligne–Mumford stack X′, with
an étale, surjective and universally closed map to the target X, and whose fiber product with the
image of the local embedding is a finite union of stacks with corresponding étale, surjective and
universally closed maps to Y . Moreover, a natural set of weights on the substacks of X′ allows
the construction of a universally closed push-forward, and thus a comparison between the Chow
groups of X′ and X. We apply the construction above to the computation of the Chern classes of
a weighted blow-up along a regular local embedding via deformation to a weighted normal cone
and localization. We describe the stack X′ in the case when X is the moduli space of stable maps
with local embeddings at the boundary. We apply the methods above to find the Chern classes of
the stable map spaces.

Introduction

Local embeddings form an important class of morphisms of algebraic stacks. For instance,
the morphisms from the components of the inertia stack of a Deligne–Mumford stack into
the stack itself are in general local embeddings. As another fundamental example, the
diagonal morphism of a stack is a local embedding and thus, the local study of this type
of morphisms has led to a good definition of an intersection product on smooth Deligne–
Mumford stacks by A. Vistoli [V], with a subsequent simplification by A. Kresch [K].
Their work relies on the existence, for any local embedding Y → X, of an étale atlas
V → Y such that the composition V → X can be factored into a closed embedding
V → U followed by an étale atlas U → X. Based on these covers, the normal cone
of a local embedding ([V]) and a deformation of the ambient stack to the normal cone
([K]) can be constructed. However, these constructions are local in essence and as such,
they fail to completely encode information on global invariants like Chern classes or
Chow ring structures, and cannot be directly employed in Riemann–Roch type theorems
like the Riemann–Roch without denominators as formulated for closed embeddings of
schemes.

Under suitable assumptions, in this paper we replace the local construction above by
one more suited to the purposes just mentioned, at the expense of working with non-
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separated stacks rather than separated schemes. Let g : Y → X be a proper, local em-
bedding of Noetherian stacks. Assume that Y is reduced and geometrically unibranch,
that the morphism on the image Y → g(Y ) is equidimensional, and that its degree is
equal to a fixed number d at all generic points. Theorems 1.20 and 1.30 highlight the
existence, for every such map g : Y → X, of an étale cover by a stack X′ → X such
that Y ′ := g(Y ) ×X X

′, a finite union of étale covers Y ′i of Y , is embedded in X′, and
such that the morphisms Y ′ → Y and X′ → X are universally closed. Moreover, the
morphism X′ → X is an isomorphism outside the image of Y . Thus the study of proper
local embeddings can be reduced for practical purposes to that of closed embeddings of
stacks.

While the map p : X′→ X is forcefully not proper, it is universally closed. A weight
functionw on the set of substacks ofX′ is naturally attached to the map p, referring to the
number of possible extensions of maps involved in the valuative criterion of properness.
This “probabilistic weight” contributes to a good definition of push-forward p∗ between
the Chow groups ofX′ andX, an extension of the usual definition of proper push-forward
to this type of universally closed maps. In effect, the Chow group A(X) can be recovered
from A(X′) via the universally closed push-forward p∗.

The definition of the étale liftX′ associated to the proper local embedding g : Y → X

and the subsequent constructions are based on a network of local embeddings associated
to g. This network in turn depends on the choice of a suitable atlas U of X and a par-
tition of Y ×X U , with properties specified in Proposition 1.11. The dependence is only
partial: while the number of spaces which are nodes in the network may vary, the spaces
themselves are intrinsically associated to g. For example, by replacing U with a number
of copies of itself, one increases the number of components in Y ×X X′. In view of this,
one could enquire on the existence of a “minimal” choice of étale atlas for X that would
yield a canonical étale lift X′ → X. This problem is addressed by the authors in [MM4].
However, there are contexts where other factors, like, e.g., a moduli problem, may deter-
mine the naturalness of a (non-minimal) choice of étale atlas, and thus of an étale lift X′.
This is the case for the moduli spaces of stable maps with their boundary, which we study
in the third part of this article.

One useful feature of our construction comes from the fact that for a suitable étale
atlas U of X, we take into account the entire pull-back of that atlas to the locally em-
bedded Y . Locally, in the neighborhoods of some points in U , this pull-back may con-
sist of a number of intersecting components. Their intersections contribute essentially to
the structure of the morphism Y → X; in a first instance, to the associated flat strat-
ification of X. For this reason we encode them in a network of morphisms of stacks,
a stack version of the configuration schemes of [L]. In [MM1], we have defined the
extended Chow ring of such a network. In Theorem 1.34 we prove that this extended
Chow ring is isomorphic to A(X′). In particular, in the case of the moduli space of stable
maps and the local embeddings of its boundary divisors, the extended Chow ring has
been calculated in [MM1]. In Theorem 3.12 we now identify the corresponding stack
M
′

0,m(Pn, d) and formulate its moduli problem in terms of stable maps with marked com-
ponents.
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Our approach is relevant, for instance, when considering a blow-up along a local
embedding. Let us return to the initial picture of a commutative diagram

V

��

// U

��
Y // X

where the top map is an embedding. Then simply taking the blow-up of U along V does
not lead to an étale atlas of a complete blow-up of X along Y , due to a break in symmetry
at the level of relations. Indeed, in small enough neighborhoods around each point in U ,
one needs to consider blow-up along each of the components of Y ×X U before defining
the étale atlas for BlY X. In Section 2, we show how this can be done for smooth stacks Y
and X.

Weighted blow-ups form a class of morphisms with a variety of applications. They
come up, for example, when considering variation of GIT. As algebraic stacks provide
a natural context for the study of weighted blow-ups, this class may be extended to
weighted blow-ups along regular local embeddings. Moduli spaces of (weighted) curves
and (weighted) stable maps are examples for which this type of morphisms comes up
naturally.

As an application to the universally closed étale cover construction, blowing up Chern
classes along local embeddings of smooth stacks is reduced to the case of smooth em-
beddings. The basic idea of this computation, like in the case of schemes, is to retrieve
the Chern classes from their pull-back to the exceptional divisor, for example via the
Riemann–Roch without denominators formula ([F]). However, when weights are consid-
ered, a less standard approach is necessary for the retrieval step. By a deformation to
a “weighted normal cone”, we reduce the problem to the case when both the blow-up
locus and the exceptional divisor are fixed loci for C∗-actions making the blow-down
morphism equivariant. The Atiyah–Bott localization theorem then means that the class
of the exceptional divisor can be inverted, allowing us to retrieve a class on the blow-up
from its pull-back to the exceptional divisor.

The paper is organized as follows: In the first section we construct the universally
closed morphism which turns a proper local embedding Y → X into an embedding. The
first step is the case when the local embedding is étale on its image. The general case is
reduced to this situation by flat stratification. A network of local embeddings depending
on the étale structure of the strata is highlighted in Section 1.2, and X′ is constructed
by induction on strata, such that all the local embeddings in the network are replaced by
embeddings. In Section 1.3, universally closed morphisms and push-forwards associated
to probabilistic weights are defined. The existence of an isomorphism between the Chow
rings of X′ and of the corresponding network, as introduced in [MM1], is proven, and the
relation between the Chow rings of X and X′ is discussed. The second section contains
the calculation of Chern classes for weighted blow-ups. The third section is dedicated
to the example of stable map spaces and intermediate weighted stable map spaces. The
Appendix discusses the Euler sequence of a weighted projective bundle. Although this se-
quence is most likely known, we could not find a proof in the literature, and so decided to
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carefully trace the sequence through the groupoid presentation of the weighted projective
bundle.

1. The universal lift of a local embedding

The stacks in this article are assumed to be algebraic in the sense of Deligne–Mumford,
Noetherian, and all morphisms considered between them are of finite type.

1.1. The lift of a local embedding étale on its image

Definition 1.1. Following [V], we will let a local embedding be any representable unram-
ified morphism of finite type of stacks. A regular local embedding is a local embedding
which is also locally a complete intersection.

Given a proper local embedding Y → X, there is a diagram

V1

p1

��

g1 // U

p

��
Y

g // X

the vertical morphisms being étale atlases and g1 being a closed embedding of schemes
(Lemma 1.19 in [V]). Let V be the scheme representing the fiber product Y ×X U , with
the induced map gU : V → U , and the image of gU denoted by W . As V1 → Y and
V → Y are étale, then so must be the induced morphism i1 : V1 → V . Since V1 → U is
an embedding, so must be V1 → V . We write V = V1 ∪ V2, where V2 is the closure in V
of V \ V1. In fact, V1 and V2 are disjoint, as the map V = V1 ∪ V2 → Y is étale. Denote
by pi the restriction pi : Vi → Y , and by Wi the image of Vi in U .

Furthermore, if the morphism g is étale on its image, then by the étale lifting property
([G, I, Proposition 8.1]), V1 and U can be chosen such that

V1 = g(Y )×X U,

and so there is an étale morphism h : V → V1 with h ◦ i1 = idV1 .
We recall the étale groupoid presentation [R ⇒ U ] of the stack X, given by the two

projection morphisms R := U ×X U ⇒ U , together with canonical morphisms e, m,
and i. Here the identity e is the diagonal morphism e : U → U×XU , the multiplicationm
is

m := π13 : U ×X U ×X U ∼= (U ×X U)×U (U ×X U)→ U ×X U,

and the inverse morphism i : U ×X U → U ×X U switches the two terms of the product.
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Notation. Let
Sij := Im(φij : Vi ×Y Vj → U ×X U),

for the map φij given as the composition

Vi ×Y Vj ↪→ V ×Y V = V ×Y (Y ×X U) ∼= V ×X U → U ×X U.

We denote by R′ the subset

R′ := R \ (S12 ∪ S21 ∪ (S22 \ S11)) ∪ Im e.

From now on let g : Y → X be a proper local embedding. Then Sij are closed
subschemes of R. In general S22 \ S11 might not be closed, but it is so in the case when
g is étale on its image, for dimension reasons. As U is an étale atlas of X, the diagonal
e : U → U ×X U is an open embedding, and thus, under the above condition on g, the
subscheme R′ of R is open.

Proposition 1.2. Let g : Y → X be a proper morphism, étale on its image. The restric-
tions s1, s2 : R′ → U of the two projection morphisms R → U , together with e, and
with the restriction of m to R′ ×U R′ and of i to R′, form the groupoid presentation of
a Deligne–Mumford stack XY .

Proof. First note that S12 ∩ S11 = ∅ and S21 ∩ S11 = ∅. Indeed,

U×XU ←↩ V1×XU ∼= V1×Y×(Y×XU) = V1×Y (V1tV2) = (V1×Y V1)t(V1×Y V2).

In fact R′ may be written alternatively as the difference

R′ := R \ (S12 ∪ S21 ∪ S22 \ S11).

Indeed, S12 ∩ Im e ⊆ S12 ∩ S11 = ∅, and symmetrically S12 ∩ Im e = S21 ∩ Im e = ∅.

Furthermore, there is a sequence of consecutive Cartesian diagrams

V2

��

� � // V

��

� // U

��
V2 ×Y V

� � // V ×Y V
� // U ×X U

where the vertical maps are diagonal morphisms, with V2×Y V2 ⊆ V2×Y V and V×Y V ∼=
V ×X U . This implies that S22 ∩ Im e = Im e2, where for each i ∈ {1, 2}, ei is the
composition of the diagonal Vi → Vi×Y Vi with the morphism φii : Vi×Y Vi → U×XU .
But Im e2 = Im e1 ⊆ S11, due to the commutative diagram

V2 //

��

V
h //

��

V1
g1 //

e1

##

U

e

��
V2 ×Y V2 // V ×Y V // U ×X U
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As R′ is both symmetric and reflexive by construction, the existence of a groupoid struc-
ture [R′ ⇒ U ] reduces to checking the closedness of R′ under multiplication. We note
that for k, l ∈ {1, 2},

π−1
13 (Skl) ⊆ W ×X U ×X W

∼= (W ×X U)×U (U ×X W).

But W ×X U is the image of V ×X U ∼=
⊔
i,j∈{1,2} Vi ×Y Vj , namely

⋃
i,j∈{1,2} Sij .

The injectivity of g1 : V1 → U directly implies π13(S11 ×U S11) ⊆ S11. Thus the
multiplication m is well defined on R′. ut

Example 1.3. Let Z ↪→ X be a closed embedding of stacks and let Y :=
⊔n
i=1 Zi ,

where Zi ∼= Z, with the natural morphism to X identifying all copies of Z. Then XY is
obtained by gluing n copies of X along X \ Z.

With the notation from the previous proposition, the following also holds.

Proposition 1.4. There exist a natural embedding Y ↪→ XY and an étale map XY → X

making the following diagram Cartesian:

Y //

��

XY

��
g(Y ) // X

Proof. The composition of étale morphisms R′ ↪→ R ⇒ U being étale, the natural
morphism of groupoids

R′

�� ��

// R

�� ��
U // U

induces an étale morphism of stacks XY → X. Next we check that V1 = Y ×XY U ,
namely that the diagram defining a groupoid morphism

V1 ×Y V1

�� ��

// R′

�� ��
V1 // U

is Cartesian. Indeed,

V ×Y V ∼= V ×X U ∼= V ×U (U ×X U) = V ×U R

and therefore

V ×U R
′ ∼= (V ×Y V )×R R

′ ∼= (V1 ×Y V1) t φ
−1
22 (S11),
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and by restriction to V1,

V1 ×U R
′ ∼= V1 ×Y V1.

This proves the existence of a natural embedding of Y in XY whose composition with the
étale map XY → X yields the local embedding of Y into X.

At the beginning of this section, the cover V1 of Y was constructed as a fiber product
V1 = g(Y )×XU, and thus V1×Y V1 ∼= V1×UR

′ ∼= g(Y )×XR
′, forming an isomorphism

of groupoids

[V1 ×Y V1 ⇒ V1] ∼= [g(Y )×X R′ ⇒ g(Y )×X U ],

which induces an isomorphism Y ∼= g(Y )×X XY . ut

Although the groupoid presentation of the stack XY depended on particular choices of
covers for X and Y , the stack XY is uniquely defined by a universality property, which
can be expressed in terms of moduli problems as follows:

Theorem 1.5. There is an equivalence of categories from the category of morphisms
Z→ XY defined on stacks Z of finite type to that of morphisms Z→ X endowed with a
section

s : g(Y )×X Z→ Y ×X Z

for the étale map Y ×X Z→ g(Y )×X Z.

Proof. Indeed, at the level of objects, given a map Z → XY from a scheme Z of fi-
nite type to XY , and its composition with the étale map XY → X, there is an induced
isomorphism

g(Y )×X Z ∼= (g(Y )×X XY )×XY Z
∼= Y ×XY Z,

and a natural map Y ×XY Z → Y ×X Z which, when composed with the étale map
gZ : Y ×X Z→ g(Y )×X Z ∼= Y ×XY Z, yields the identity map.

Consider now a scheme of finite type Z and a morphism Z → X represented by a
morphism of groupoids

RZ

�� ��

// R

�� ��
UZ // U

Assume that there is a section s : g(Y )×X Z→ Y ×X Z of gZ : Y ×X Z→ g(Y )×X Z,
represented by the groupoid map

V1 ×U RZ //

�� ��

V ×U RZ

�� ��
V1 ×U UZ // V ×U UZ
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Then the map RZ → R factors through RZ → R′ → R. Indeed, as the restrictions of R
and R′ to U \ ImV1 coincide, it is enough to show the factorization of groupoid maps

V1 ×U RZ //

�� ��

V1 ×U R
′ //

�� ��

V1 ×U R

�� ��
V1 ×U UZ // V1 // V1

The map V1 ×U UZ → V1 is the composition of V1 ×U UZ → V ×U UZ above with the
natural maps V ×U UZ → V → V1, while V1 ×U RZ → V1 ×U R

′ is the composition

V1 ×U RZ → V ×U RZ → V ×U R ∼= V ×Y V

→ V1 ×Y V ∼= V ×U R
′
→ V1 ×U R

′ ∼= V1 ×Y V1.

Together these maps induce the desired morphism Z → XY . A direct check shows that
the constructions above are functorial, and that the two functors constructed between the
category Hom(Z,XY ) and that of morphisms Z → X with the extra property specified
in the hypothesis are inverse to each other. ut

Remark 1.6. Although the embedding V1 ↪→ V does induce morphisms V1 ×U UZ →

V×UUZ and V1×URZ → V×URZ , together these induced morphisms do not in general
form a morphism of groupoids, as they are not necessarily compatible with multiplication
on RZ . In particular, when Z = X, our construction does not imply the existence of a
section for Y → g(Y ), or for XY → X.

Corollary 1.7. (a) Let g : Y → X be a morphism étale on its image, and let Z ↪→ Y be
a closed embedding such that g|Z is proper and Z ∼= g(Z)×X Y . Then there exists a
natural morphism g′ : Y → XZ étale on its image.

(b) Furthermore, if g is proper, then g′ is proper as well and (XZ)Y ∼= XY .

Proof. A canonical section

s : g(Z)×X Y → Z ×X Y

is given by the diagonal morphism Z→ Z ×X Z via the isomorphisms g(Z)×X Y ∼= Z
and Z×XZ ∼= Z×X Y . By the previous theorem, this induces a morphism g′ : Y → XZ ,
making the triangles in the following diagram commutative:

XZ // X

Z

>>

// Y

g′

OO

g

>>

Also, g′(Y ) ∼= XZ ×X g(Y ). Indeed, by Proposition 1.4, g(Z) ×X XZ ∼= Z ∼= g′(Z),
while X \ g(Z) ∼= XZ \ g′(Z).

(b) Assume g is proper. As a consequence of the relation g′(Y ) ∼= XZ ×X g(Y ),
g′ is closed. It is separated, because g is. Moreover, g′ satisfies the valuative criterion
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of properness ([V]). Indeed, consider a valuation ring R′ with fraction field K ′, and a
commutative diagram

SpecK ′ //

��

SpecR′

r ′

��
Y

g′ // XZ

Since the composition Y → XZ → X is a proper morphism, there exists a finite extension
K of K ′ such that, for the integral closure R of R′ in K , the composition morphism
SpecK → Y extends to φ : SpecR → Y . Let r denote the composition SpecR →
SpecR′ → XZ . It remains to check that g′ ◦ φ = r , or, equivalently, via Theorem 1.5,
that the section

g(Z)×X SpecR→ Z ×X SpecR

induced by φ is obtained from the canonical section s, after fiber product with SpecR
over Y via r:

g(Z)×X Y ×Y SpecR ∼= g(Z)×X SpecR→ Z ×X Y ×Y SpecR ∼= Z ×X SpecR.

Indeed, this is the case as both morphisms g′ ◦ φ and r give the same morphism when
composed with the projection XZ → X. This proves the properness of g′. Furthermore,
as g is étale on its image andXZ → X is étale, g′ will be étale on the image as well. Thus
we can construct (XZ)Y as in Proposition 1.2.

Note that, by the same argument as above with SpecR replaced by Y ×X XZ , the
triangles in the following diagram are commutative:

Y ×X XZ
p1 //

p2

��

XZ

��
Y //

g′
::

X

We apply this to show that the functors of (XZ)Y andXY are equivalent. Indeed, any map
T → XY induces a map T → X and a section

t : g(Y )×X T → Y ×X T ,

which by restriction yields a section g(Z) ×X T → Z ×X T , and thus a map T → XZ .
For the existence of a morphism T → (XZ)Y , a section t ′ : g′(Y )×XZ T → Y ×XZ T is
necessary and sufficient. But

g′(Y )×XZ T
∼= (g(Y )×X XZ)×XZ T

∼= g(Y )×X T ,

Y ×X T ∼= (Y ×X XZ)×XZ T
∼= Y ×XZ T ,

due to the two commutative triangles above, so via these isomorphisms we can identify
t ′ with t . Conversely, any map T → (XZ)Y induces a map T → XZ and a section
t ′ : g′(Y ) ×XZ T → Y ×XZ T which yields the section t canonically via the above
isomorphisms. ut
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Corollary 1.8. Consider any morphism of Noetherian stacks f : X1 → X2 and any
proper map g2 : Y2 → X2 étale on its image, and let Y1 := Y2 ×X2 X1. Then there exists
a morphism f ′ : (X1)Y1 → (X2)Y2 making the following diagram Cartesian:

(X1)Y1

f ′ //

��

(X2)Y2

��
X1

f // X2

In particular, if f is proper, then f ′ is proper as well.

Proof. The induced map g1 : Y1 → X1 is also étale on its image so that (X1)Y1 satisfying
the functorial property in Theorem 1.5 exists. Also, for any stack Z with a morphism
Z→ X1, there are isomorphisms

Y2 ×X2 Z
∼= Y2 ×X2 (X1 ×X1 Z)

∼= (Y2 ×X2 X1)×X1 Z
∼= Y1 ×X1 Z,

g2(Y2)×X2 Z
∼= g2(Y2)×X2 (X1 ×X1 Z)

∼= (g2(Y2)×X2 X1)×X1 Z
∼= g1(Y1)×X1 Z.

Thus any morphism Z→ (X1)Y1 , corresponding to a section g1(Y1)×X1 Z→ Y1×X1 Z

by Theorem 1.5, induces a section g2(Y2) ×X2 Z → Y2 ×X2 Z and thus a morphism
Z → (X2)Y2 . Conversely, any two morphisms Z → (X2)Y2 and Z → X1 making the
diagram

Z //

��

(X2)Y2

��
X1

f // X2

commutative, factor through a unique morphism Z→ (X1)Y1 . ut

1.2. The étale structure of a local embedding

Under certain assumptions, we can find a more precise description for the local étale
structure of a local embedding. We recall the following definitions which we will need
for our assumptions.

Definition 1.9. A morphism of schemes g : Y → X is called equidimensional if the
following conditions hold:

(1) g is a morphism of finite type.
(2) The function dimy g

−1(g(y)) is constant for all y ∈ Y .
(3) Any irreducible component of Y dominates an irreducible component of X.

As these conditions are stable under étale base change ([EGA, 13.3.8]), the notion of
equidimensional morphism extends canonically to morphisms of stacks.
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Definition 1.10. Let Y be a Noetherian stack. It is called geometrically unibranch if it
has an étale atlas V which is geometrically unibranch, meaning that for any point v of V ,
the scheme SpecOsh

v,V is irreducible, where Osh
v,V denotes the strict henselization of the

local ring of v in V .

Notation. Consider a proper local embedding of Noetherian stacks g : Y → X, with Y
reduced. Let Y1 denote the locus of points in Y where the map g is not étale on its image.

Proposition 1.11. Let g : Y → X be a proper, local embedding of Noetherian stacks.
Assume that Y is reduced and geometrically unibranch, that the morphism on the image
Y → g(Y ) is equidimensional, and that its degree is equal to a fixed number d at all
points of g(Y \ Y1).

There exist an étale atlas U of X and closed, isomorphic subschemes {Wl}l∈L of U ,
with intersections WI =

⋂
l∈I Wl for each I ∈ P(L), as well as isomorphic subschemes

{V al }l∈L, a∈Al :={1,...,d} of Y ×X U , each mapping onto Y , with isomorphisms V al → Wl

forming commutative diagrams with g : Y → g(Y ), such that, at the level of supports,

g(Y )×X U =
⋃
l∈L

Wl, Y ×X U =
⊔

l∈L, a∈Al

V al , g(Y1)×X U =
⋃

l,j∈L, l 6=j

Wlj .

In particular Y1 = g
−1({p ∈ X; deg gp ≥ 2d}).

More generally, for integers k > 1, each Yk−1 := g−1({p ∈ X; deg gp ≥ dk})

satisfies

g(Yk−1)×X U =
⋃
I∈Pk

WI and Yk−1 ×X U =
⋃

I∈Pk, a∈AI
V aI ,

at the level of supports, where Pk ⊂ P(L) is the set of cardinality k subsets of L; for
each I ∈ Pk as above, AI :=

⊔
l∈I Al; and for l ∈ I and a ∈ Al , the scheme V aI is the

preimage of WI in V al .

Proof. For any quasi-finite map f , we denote by md(f ) the maximum degree of f :

md(f ) := max
p∈Im f

deg fp.

The degree function deg gp is upper semicontinuous. Let Zm denote the locus of points in
y ∈ Y where the degree of g reaches its maximum, so that, unless g is étale on its image,

md(g|Zm) > deg(g|Y\Y1) = d. (1.1)

We will first focus on proving the existence of an étale atlas U0 of X and {W 0
l }l∈L,

{V 0a
l }l∈L, a∈Al such that

Y ×X U
0
=

⊔
l,a∈Al

V 0a
l ,

and such that each V 0a
l is mapped isomorphically to W 0

l ⊆ g(Y ) ×X U
0, and étale

surjectively to Y by natural morphisms. We note that once such an atlas U0 has been
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found, any other scheme U ′ mapping étale surjectively to U0 will work as well, as we can
construct W ′l and V ′l as pull-backs of W 0

l and V 0a
l , respectively.

We proceed by induction on md(g). If md(g) = 1, then g is an embedding and any
étale atlas U0 of X would work, with V 0

= Y ×X U
0 étale atlas of Y , embedded in U0.

Assume now that md(g) ≥ 2, and that the statement above can be proven for morphisms
of smaller maximum degree.

Consider a commutative diagram as in Lemma 1.19 of [V],

V1

πV1
��

g1 // U

πU

��
Y

g // X

such that the vertical morphisms are étale and surjective, and g1 is a closed embedding.
The induced morphism V1 → Y ×X U is a closed embedding, and étale, and so V1 is a
union of connected components of Y ×X U . Let gU denote the morphism Y ×X U → U .
The fibered product Y ×X U can be split into a disjoint union

Y ×X U = V1 t V
′
t V ′′,

where V ′′ is the union of all components V0 * V1 with gU (V0) ⊆ gU (V1). We note that
Y×XU is geometrically unibranch, and so its connected components are also irreducible.
Let W1 := gU (V1), W ′ := gU (V ′) and W ′′ := gU (V ′′). By construction, W ′ and W1 are
closed subsets of U and none contains an irreducible component of the other.

First we notice that

g(Y1) = πU (W1 ∩W
′). (1.2)

In other words, for any closed point y of Y and for any v ∈ V1 such that πV1(v) = y, the
map g is étale on its image at y if and only if w := gU (v) ∈ W1 \W

′. Indeed, if g is étale
on its image at y, then the composition of the natural morphismsW1 ∼= V1 → Y → g(Y ),
as well as the projection W1 ∪ W

′
= g(Y ) ×X U → g(Y ) are étale at v, which makes

the inclusion W1 → W1 ∪W
′ étale at w = gU (v), so w ∈ W1 \W

′. Conversely, in the
natural Cartesian square

Y ×X (W1 \W
′) //

��

W1 \W
′

��f1
ww

Y // g(Y )

both the vertical morphisms and f1 are étale, making the upper horizontal map étale
as well. Thus the restriction of g to g−1(πU (W1 \ W

′)) must be étale. Here f1 is the
composition W1 \W

′
→ W1 ∼= V1 → Y .

Both gU |V ′′ and gU |V ′ are proper local embeddings. Clearly the definition of V ′′ im-
plies that the maximum degrees satisfy

md(gU |V ′′ ) < md(gU ). (1.3)
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Assuming V ′′ 6= ∅, we note that gU (V ′′) = W1. This is true as gU (V ′′) is closed in U
due to the properness of gU , and W1 \W

′
⊆ gU (V

′′). Indeed, as W1 ∩W
′ has positive

codimension in W1, while dim gU (V
′′) = dimW1, it follows that gU (V ′′) ∩ (W1 \ W

′)

6= ∅. Due to the definition of V ′′, the degree of gU on this set is at least 2. But (1.2) and
the condition that deg g|Y\Y1 is constant imply that deg gU is constant on W1 \ W

′, and
as such, at least 2 at every point there. This can only happen if W1 \W

′
⊆ gU (V

′′), and
therefore if gU (V ′′) = W1.

Next we show that for appropriate choices of U , we also have

md(gU |V ′ ) < md(gU ). (1.4)

Consider E a connected, closed subscheme of g(Y )×XU , and assume that the restriction
of gU on g−1

U (E) is étale on its image. Then we can assume that either E ∩W1 = ∅ or
E ⊆ W1. Furthermore, in the first case, U can be replaced by U \E without changing V1,
or any of the properties of U above.

Indeed, the restriction of gU on g−1
U (E) can be split as

(g−1
U (E) ∩ (V1 t V

′′)) t (g−1
U (E) ∩ V ′)→ (E ∩W1) ∪ (E ∩W

′) = E,

and thus either E ∩W1 = ∅, or E ∩W ′ = ∅, or E ⊆ W1 ∩W
′.

In particular, takingE = π−1
U (g(Zm)), for an appropriate choice ofU we may assume

that

π−1
U (g(Zm)) ⊆ W1.

This, together with (1.1), implies that md(gU |V ′ ) < md(gU ).
Moreover, the degrees of gU |V ′ and gU |V ′′ are constant over all points in W ′ \W1 and

W1 \W
′, respectively. Due to (1.3) and (1.4), we can now apply the induction hypothesis

to gU |V ′ and gU |V ′′ , obtaining two surjective, étale morphisms U ′→ U and U ′′→ U and
{V a

′

l′
}l′∈L′ , {V a

′′

l′′
}l′′∈L′′ such that

V ′ ×U U
′
=

⊔
l′,a′

V a
′

l′ , V ′′ ×U U
′′
=

⊔
l′′,a′′

V a
′′

l′′ ,

the maps V a
′

l′
→ U ′ and V a

′′

l′′
→ U ′′ are closed embeddings, while V a

′

l′
→ V ′ and

V a
′′

l′′
→ V ′′ are surjective, étale. Consider now U0

= U ′ ×U U
′′, as well as V 0a′

l′
:=

V a
′

l′
×U ′U

0 and V 0a′′
l′′

:= V a
′′

l′′
×U ′′U

0. Finally, let V 0
1 = V1×U U

0 and L = L′tL′′t{1}.
The schemes {V 0a

l }l∈L thus obtained satisfy

Y ×X U
0
=

⊔
l,a∈Al

V 0a
l

and each V 0a
l is naturally embedded into U0.

The surjectivity of the maps V 0a
l → Y remains to be established. Since V 0a′

l′
→ V ′

and V 0a′′
l′′
→ V ′′ are known to be surjective from the above, this reduces to showing that

both V ′ and V ′′ map surjectively to Y (unless V ′′ = ∅).
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Now, if for any closed point y1 of Y \Y1 we have ({y1}×XU)∩V
′
= ∅, then consider

v1 ∈ ({y1} ×X U) ∩ V1 and replace U by U t UgU (v1), where UgU (v1) ⊂ U \ W ′ is an
open neighboorhood of gU (v1) in U . Thus V ′ is replaced by V ′tg−1

U (UgU (v1)), while the
maximum degree of gU remains unchanged. Since Y is Noetherian, we may thus assume
that all points in Y \Y1 have preimages in V ′. They have preimages in V ′′ as well, as long
as V ′′ 6= ∅. Indeed, if deg gp ≥ 2 for any p ∈ g(Y ), then for any y1 closed point in Y \Y1,
choose y2 ∈ Y such that g(y1) = g(y2), and v2 ∈ ({y2} ×X U) ∩ V1. Then since gU|V1

is
injective, ∅ 6= {y1} ×X {gU (v2)} ⊂ V

′′.
If y1 ∈ Y1, we can prove ({y1} ×X U) ∩ V

′
6= ∅ due to the structure of g(Y ) ×X U

around {g(y1)} ×X U . For this, first let y2 ∈ Y1 be such that g(y2) = g(y1), and v2 ∈

({y2}×XU)∩V
′ (cf. (1.2)). Consider a valuation ring R1 and a map T1 = SpecR1 → Y ,

taking the closed point to y1 and the generic point (0) to z1 ∈ Y \ Y1. Construct another
map T2 = SpecR2 → Y taking the closed point of the valuation ring R2 to y2 and the
generic point to z2 ∈ Y \ Y1 such that g(z1) = g(z2) (such a map exists because g is
proper), as well as T ′2 = SpecR′2 → V ′ taking the closed point to v2 (since V ′ → Y is
étale). Let C2 denote its image in U . Then the generic point of {z1} ×X C2 must be in V ′

and by specialization, we get a point in V ′ whose image in Y is y1.
The same argument works for V ′′ as well. With this, the proof that V ′ and V ′′ map

surjectively to Y is complete.
Consider now the étale atlas U0 of X constructed above and let W 0

l denote the image
of V 0a

l → U for each l. The arguments in the proof of (1.2), when applied successively
to gU0 and its restrictions to each Yk ×X U0, yield

g(Yk)×X U
0
=

⋃
I∈Pk

W 0
I .

However, each W 0
I may not necessarily map surjectively to g(Yk). To adjust this, we

consider the permutation group SL of L and relabel

U :=
⊔
σ∈SL

U0, while Wl :=
⊔
σ∈SL

W 0
σ(l) and V al :=

⊔
σ∈SL

V 0a
σ(l)

for each l ∈ L and a ∈ Al (for fixed bijections between the sets Al). Then U satisfies all
the conditions required in the proposition. Moreover, we note that nowWl

∼= Wj for any l
and j as above. ut

Definition 1.12. Consider a proper local embedding of Noetherian stacks g : Y → X.
Assume that there exists an étale atlas U of X with all the properties listed in Proposition
1.11. With the notation from the same proposition, let

V := Y ×X U =
⊔
i,a

V ai and Vi :=
⊔
a

V ai

for each i ∈ L, where a ∈ Ai . For any i, j ∈ L, a ∈ Ai and b ∈ Aj , we denote

Sabij := Im(V ai ×Y V
b
j → Wi ×X Wj ).

For fixed i ∈ L and a ∈ Ai , we define RZ,i :=
⊔
b∈Ai

Sabii .
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Lemma 1.13. With the notation from Definition 1.12, RZ,i does not depend on the choice
of a.

Proof. For any i, j ∈ L, a, c ∈ Ai and b ∈ Aj , the sequences of Cartesian diagrams

(V ai ×Y V
b
j )×U×XU (V

c
i ×Y V )

//

��

V ci ×Y V
//

��

V ci

��
V ai ×Y V

b
j

// U ×X U // U

yield a canonical isomorphism F : V bj ×Y V
a
i ×U V

c
i
∼= (V ai ×Y V

b
j )×U×XU (V

c
i ×Y V ).

These spaces are also isomorphic to (V ai ×U V
c
i )×Y×XY (V

b
j ×U V ) over V , e.g. due to

the sequence of Cartesian diagrams

(V ai ×U V
c
i )×Y×XY (V

b
j ×U V )

//

��

V bj ×U V
//

��

V bj

��
V ai ×U V

c
i

// Y ×X Y // Y

Moreover,

(V ai ×Y V
b
j )×U×XU (V

c
i ×Y Vj )

∼= (V
a
i ×U V

c
i )×Y×XY (V

b
j ×U Vj ) (1.5)

contains the image of (V bj \
⋃
k 6=j V

b
jk)×Y V

a
i ×U V

c
i through F and, as the codimension

of
⋃
k 6=j V

b
jk in V bj is at least 1, F can also be understood as

V bj ×Y V
a
i ×U V

c
i
∼= (V

a
i ×Y V

b
j )×U×XU (V

c
i ×Y Vj ). (1.6)

In particular, when i = j , this yields
⊔
b∈Ai

Sabii =
⊔
b∈Ai

Scbii for any a, c ∈ Ai . ut

Lemma 1.14. Let g : Y → X be a proper local embedding of Noetherian stacks, and
assume that the degree of g is the same at all points of g(Y \Y1). Assume that there exists
an étale atlas U of X satisfying the conditions in Proposition 1.11. Then there exists a
stack Z, an étale morphism f : Y → Z and a proper local embedding h : Z → X of
generic degree 1 such that g = h ◦ f .

Moreover, with the notation from Proposition 1.11,⊔
l∈L

Wl
∼= Z ×X U.

Proof. The restrictions to RZ,i of the two natural projections on W ×X W ⇒ W yield
a groupoid scheme RZ,i ⇒ Wi . Indeed, the identity e : Wi → Saaii ⊂ RZ,i is induced
by the diagonal V ai → V ai ×Y V

a
i , and there are natural inverse and multiplication maps,

built from i : Sabii → Sbaii and m : Sabii ×U S
bc
ii → Sacii , the last of which can be identified
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with the projection on the first and third factors V ai ×Y V
b
i ×Y V

c
i → V ai ×Y V

c
i . We will

denote by Z the Deligne–Mumford stack with groupoid presentation [RZ,i ⇒ Wi].
Due to (1.6), the following is a Cartesian diagram of groupoid schemes:⊔

c,d V
c
i ×Y V

d
i

�� ��

// RZ,i

�� ��⊔
c V

c
i

// Wi

proving the existence of an étale morphism f : Y → Z.
There is also a natural morphism of groupoid schemes from RZ,i ⇒ Wi toWi ×XWi

⇒ Wi , which is moreover an isomorphism over Wi \
⋃
j 6=i Wj . This yields g : Z →

g(Y ) ↪→ X, generically one-to-one.
It remains to construct an étale map

⊔
j Wj → Z and prove that

Z ×X U ∼= Z ×g(Y ) (g(Y )×X U) ∼= Z ×g(Y )
⋃
j

Wj ∼=
⊔
j

Wj .

Let W :=
⋃
j Wj . As Wi ×X W ∼= V

a
i ×X U

∼= V ai ×Y (Y ×X U)
∼=
⊔
j,b V

a
i ×Y V

b
j ,

the projection from Wi ×X W to the second term factors through p2 : Wi ×X W →⊔
j Wj . Moreover, p2 is étale and surjective. Next, we check the existence of a canonical

isomorphism of groupoids

(Wi ×X W)×
⊔
j Wj

(Wi ×X W)

�� ��

// ⊔
b S

ab
ii ×X W

�� ��
Wi ×X W // Wi ×X W

(1.7)

which, after descent, will induce the map
⊔
j Wj → Z. (1.7) follows from a sequence of

isomorphisms

(Wi ×X W)×
⊔
j Wj

(Wi ×X W) ∼= (V
a
i ×Y V )×

⊔
j Wj

(V ei ×Y V )

∼=

⊔
j,c,d

(V ai ×Y V
c
j )×U (V

e
i ×Y V

d
j )
∼=

⊔
j,c,d

V ai ×Y
(
(V cj ×U V

d
j )×Y×XY (V

e
i ×U Vi)

)
∼=

⊔
j,c

V ai ×Y
(
(V cj ×U V )×Y×XY (V

e
i ×U Vi)

)
∼=

⊔
j,c

V ai ×Y (V
c
j ×Y (V

e
i ×U Vi))

(based on isomorphisms (1.5) and (1.6)), and furthermore

∼=

⊔
j,c

V ai ×Y (V
c
j ×Y (V

e
i ×Wi Vi))

∼= V
a
i ×Y V ×Y Vi

∼=

⊔
b

Sabii ×X W.

Finally, we note that (
⊔
j Wj )×XW

∼= (
⊔
j Wj )×U (U×XU)⇒

⊔
j Wj is the pull-back

on
⊔
j Wj of the groupoid presentation of X, and that the fibered product via p2 on the
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left, and then p1 : Wi ×X W → Wi →
⊔
Wj on the right end,

(Wi ×X W)×
⊔
j Wj

(⊔
j

Wj ×X W
)
×
⊔
j Wj

(Wi ×X W)

∼= W ×X (Wi ×X W)×
⊔
j Wj

(Wi ×X W)

∼= W ×X

(⊔
b

Sabii

)
×X W ∼= (Wi ×X W)×Wi

(⊔
b

Sabii

)
×Wi (Wi ×X W)

give alternative groupoid presentations of Z, and so Z ×X U ∼=
⊔
j Wj . ut

Definition 1.15. Let g : Y → X be a proper local embedding of Noetherian stacks, and
assume that the degree of g is the same at all points of g(Y \Y1). Assume that there exists
an étale atlas U → X with the properties from Proposition 1.11. The network of local
embeddings of g and U is a set of stacks {YI }I∈P(L) and morphisms φIJ : YJ → YI for
each pair I ⊆ J , I ∈ Pi and J ∈ Pj , constructed as follows:

(1) If g factors through f : Y → Z étale and h : Z → X of generic degree one
on its image, as in the previous lemma, then we define YI := ZI ×Z Y , where the
network {ZI , ϕIJ } of Z is constructed as below. The morphisms φIJ : YJ → YI are
also obtained by pull-back from the network of Z.

(2) If g is generically one-to-one on its image, then:

Let Y∅ := X with the given presentation [R∅ := U ×X U ⇒ U ]. If I = {i} ∈ P1, then
Yi ∼= Y , having thus a groupoid presentation Ri ⇒ V ai where

Ri = V
a
i ×Y V

a
i
∼= Wi ×X Wi \

⋃
j 6=i

Sabij ,

for Sabij = Im(V ai ×Y V
b
j → Wi ×X Wj ). (In this case the indices a and b are uniquely

associated to i and j , respectively, but we keep employing upper indices as for i, j ∈ I ,
we can thus discriminate between V ai ⊇ V

a
I 6= V

b
I ⊆ V

b
j ).

For any I ∈ Pk , define YI as the stack of groupoid presentation[
RI =

(∏
i∈I

)
R∅
Ri ⇒ V aI

∼= WI =

(∏
i∈I

)
U
Wi

]
,

where (
∏
)R∅ denotes the fiber product over R∅, the groupoid structure is induced from

[Ri ⇒ V ai
∼= Wi], and a is the index associated to some i ∈ I .

For any K, J there is a natural isomorphism RJ∪K ∼= RJ ×RJ∩K RK . By induction
we find that for a fixed index a,

RI = V
a
I ×YI V

a
I
∼= WI ×X WI \

⋃
j 6=i∈I

Sabij . (1.8)

The morphisms φIJ : YJ → YI for J ⊇ I correspond to the natural morphism between
the groupoid presentations [RJ ⇒ V aJ ] and [RI ⇒ V aI ]. In particular, φII = idYI .
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Notation. If I is a set and h 6∈ I , we will write Ih := I ∪ {h}.

Alternatively, the objects YI and the morphisms φIJ : YJ → YI are uniquely defined
by the following lemma.

Lemma 1.16. For any I ,K ∈ Pk and b ∈ AK , there exists a natural étale map V bK → YI
and

YIh ×YI V
b
K
∼=

⊔
j∈L\K

V bKj . (1.9)

More generally, for all J ∈ Pl and I ∈ Pk such that J ⊃ I ,

YJ ×YI V
a
I
∼=

⊔
K=Kl⊃Kl−1⊃···⊃Kk+1⊃Kk=I

V aK (1.10)

for all chains Kl ⊃ Kl−1 ⊃ · · · ⊃ Kk+1 ⊃ Kk = I with Ks ∈ Ps for each s. When
J = ∅,

YJ ×X U ∼=
⊔

a,K=Kk⊃Kk−1⊃···⊃K1⊃K0=∅

V aK (1.11)

for a ∈ K1.

Proof. It is enough to prove the lemma in the case when g is generically one-to-one, due
to Lemma 1.14 and the construction of the network. Once (1.9) is known for all I ∈ Pk−1,
the isomorphisms (1.10) and (1.11) follow for all I ∈ Pk by successive applications
of (1.9). We will prove (1.9) by induction on k. The case k = 1 results from the definition
of Yi’s. Assume that (1.9) holds for all I ∈ Pk−1. Choose I and K ∈ Pk .

We will denote V := Y ×X U and VI :=
⊔
a,K=Kk⊃Kk−1⊃···⊃K1⊃K0=∅

V aK
∼=

YI ×X U (from the induction hypothesis). We will construct an étale, surjective mor-
phism

⊔
j∈L V

b
Kj → YIh. For this, recall the groupoid presentation [RIh ⇒ V aIh] of YIh.

We note that the first projection p1 : V aIh ×YI V
b
K → V aIh is étale and surjective. We will

prove the existence of another étale, surjective morphism

p2 : V aIh ×YI V
b
K = V

a
Ih ×YI

⋃
j

V bKj →
⊔
j∈L

V bKj , (1.12)

and a morphism of groupoid schemes

(V aIh ×YI V
b
K)×

⊔
j V

b
Kj
(V aIh ×YI V

b
K)

//

�� ��

RIh

�� ��
V aIh ×YI V

b
K

// V aIh

(1.13)

Indeed, V aIh ∼= WIh
∼= V aI ×U V

c
h , inducing an isomorphism

ϕ : V aIh ×YI V
b
K → (V aI ×U V

c
h )×YI V

b
K .
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As V bK ×U V ∼= V
b
K ×U (Y ×XU)

∼= V bK ×X Y , there is a sequence of Cartesian diagrams

(V aI ×U V
c
h )×YI×XY (V

b
K ×U V )

//

π2

��

V bK ×U V
//

��

V bK

��
V aI ×U V

c
h

// YI ×X Y // YI

giving a canonical isomorphism F : (V aI ×U V
c
h ) ×YI V

b
K
∼= (V aI ×U V

c
h ) ×YI×XY

(V bK ×U V ). Via the isomorphisms ϕ and V bK ×U V
d
j
∼= V bKj for any j , we can now define

p2 : V aIh ×YI V
b
K →

⊔
j∈L V

b
Kj as π2, which is moreover étale.

Via the isomorphism F , the fiber product space (V aIh ×YI V
b
K)×

⊔
j V

b
Kj
(V aIh ×YI V

b
K)

is isomorphic to

(V aI ×U V
c
h )×YI×XY (V

b
K ×U V )×

⊔
j V

b
Kj
(V bK ×U V )×YI×XY (V

a
I ×U V

c
h )

∼= (V
a
I ×U V

c
h )×YI×XY (V

b
K ×U V )×YI×XY (V

a
I ×U V

c
h )

∼= (V
a
I ×U V

c
h )×YI×XY (V

a
I ×U V

c
h )×YI V

b
K .

On the other hand, as

RIh ∼= (V
a
I ×YI V

a
I )×U×XU (V

c
h ×Y V

c
h )
∼= (V

a
I ×U V

c
h )×YI×XY (V

a
I ×U V

c
h ),

there is a natural projection

(V aIh ×YI V
b
K)×

⊔
j V

b
Kj
(V aIh ×YI V

b
K)→ RIh

making (1.13) into a morphism of groupoid schemes. Finally, due to the isomorphisms
above, the étale atlas V aIh ×YI V

b
K of YIh yields a groupoid presentation with relations

(V aIh ×YI V
b
K)×YIh (V

a
Ih ×YI V

b
K)
∼= (V

a
Ih ×YI V

b
K)×V aIh

RIh ×V aIh
(V aIh ×YI V

b
K)

∼= V
b
K ×YI (V

a
I ×U V

c
h )×YI×XY (V

a
I ×U V

c
h )×YI V

b
K

∼= V
b
K ×YI (V

a
Ih ×YI V

b
K)×

⊔
j V

b
Kj
(V aIh ×YI V

b
K)

∼= (V
a
Ih ×YI V

b
K)×

⊔
j V

b
Kj

(⊔
j

V bKj ×YI V
b
K

)
×⊔

j V
b
Kj
(V bK ×YI V

a
Ih),

while (
⊔
j V

b
Kj×YI V

b
K)⇒

⊔
j V

b
Kj is the pull-back of V bK×YI V

b
K ⇒ V bK . This completes

the proof of isomorphism (1.9). ut

Corollary 1.17. The morphisms φIJ : YJ → YI for J ⊃ I are proper local embeddings.
Let J = I ∪ {j} for some j 6∈ I . If U is an étale atlas of X with the properties listed
in Proposition 1.11 for the morphism Y → X, then WI

∼= V aI is an étale atlas of YI
satisfying the same set of properties for the morphism φIJ : YJ → YI , and the network of
local embeddings associated to the local embedding φIJ with the étale atlas WI consists
of {φHK : YK → YH }K⊃H⊇J .
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Proof. The properness of the morphisms φIJ : YJ → YI is a direct consequence of (1.10)
and the fact that g : Y → X is proper. Formulas (1.9) and (1.10) also show thatWI

∼= V aI
has the properties listed in Proposition 1.11. Thus for J = I ∪ {j}, the network of local
embeddings associated to φIJ with the étale atlas V aI is made up of stacks with étale atlases
given by WK for some K ⊇ J , and relations given by( ∏

k∈K\I

)
RI
RIk ∼= RK ,

due to Definition 1.15. The stacks in the network are thus {YK}K⊇J . Accordingly, the
morphisms of the network are exactly φHK with K ⊃ H ⊇ J . ut

Although the stacks YI are not fibered products of stacks Yi with i ∈ I , the above ar-
guments show that they can be constructed intrinsically from a succession of fibered
products, after removing the diagonal components. In particular, there exists a closed
embedding

YI ↪→
(∏
i∈I

)
X
Yi .

More precisely:

Corollary 1.18. Each ιIh := (φIIh, φ
h
Ih) : YIh ↪→ YI ×X Y is a closed embedding, and

YI ×X Y ∼=

( ⊔
h6∈I, b∈Ah

Im ιIh

)
t

(⊔
i∈I

Im(φII , φ
i
I )
)
,

with the diagonal morphisms (φII , φ
i
I ) : YI → YI ×X Y yielding the higher-dimensional

components of YI ×X Y .

Proof. This is also a direct consequence of Lemma 1.16, due to the Cartesian diagrams⊔
j 6∈I V

a
Ij

//

��

V aI ×U V
//

��

V aI

��
YIh // YI ×X Y // YI

where V =
⊔
j,b V

b
j , while V aIj ∼= V

a
I ×U V

b
j for fixed b ∈ Aj . ut

Remark 1.19. By the previous corollary applied successively to each index I , the objects
of the network of local embeddings associated to the proper local embedding g : Y → X

and the étale atlasU are in fact independent of the choice of atlas with the properties listed
in Proposition 1.11. The choice of U determines only the number of copies of each YI
contained in the associated network. For example, by replacing the étale atlas U of X
with U tU and keeping the choice of étale atlases for Y unchanged, we obtain a network
which, apart from the morphisms Yi → X, is a disjoint union of two copies of the network
for U .



The structure of a local embedding and Chern classes of weighted blow-ups 1759

Notation. Let g : Y → X be a proper local embedding of Noetherian stacks satisfying
the assumptions from Proposition 1.11. For any two generic points ξJ and ξK of YJ
and YK respectively, such that K ⊃ J and such that ξJ specializes to ϕJK(ξK), we denote
by [ξK → ξJ ] the degree of ϕJK at ϕJK(ξK).

ForK ∈ Pk and J ∈ Pj as above, the following relation follows directly from Lemma
1.16:

[ξK → ξJ ] = N(K, J )ν(ξK , ξJ ),

where N(K, J ) is the number of all maximal chains K = Kk ⊃ Kk−1 ⊃ · · · ⊃ Kj+1 ⊃

Kj = J and

ν(ξK , ξJ ) = |{K
′
∈ Pk; ∃ξK ′ generic point of YK ′ such that ϕJK ′(ξK ′) = ϕ

J
K(ξK)}|.

Thus if K ∈ Pk , J ∈ Pj and I ∈ Pi satisfy K ⊃ J ⊃ I , then by a count of chains

[ξK → ξJ ][ξJ → ξI ]
[ξK → ξI ]

=
|{Kk ∈ Pk; Kk ⊃ I }|

|{Kk ∈ Pk;Kk ⊃ J }| |{Kj ∈ Pj ; Kj ⊃ I }|
(1.14)

for any generic points ξI , ξJ and ξK of YI , YJ and YK respectively, such that ξJ specializes
to ϕJK(ξK) and ξI to ϕIJ (ξJ ).

Theorem 1.20. Consider a network of proper local embeddings φIJ : YJ → YI for
I ⊆ J , I ∈ Pi and J ∈ Pj , associated to a proper local embedding Y → X by Definition
1.15 under the assumptions of Proposition 1.11, where by convention Y∅ = X. For each
such morphism φIJ , there exists a closed embedding of stacks φ′IJ : Y ′J ↪→ Y ′I , together
with étale surjective morphisms pJ : Y ′J → YJ and pI : Y ′I → YI making the diagram

Y ′J

φ′IJ //

pJ

��

Y ′I

pI

��
YJ

φIJ // YI

commutative, and such that

YJ ×YI Y
′

I =

⊔
J ′∈Pj , J ′⊇I

Y ′J ′ for J ∈ Pj .

Proof. We construct Y ′I in decreasing order of I , with Y ′I = YI for I maximal. For
I ∈ Pn−1, the stack NI :=

⊔
J⊃I YJ comes with a natural map nI : NI → YI étale on

its image, and the étale atlas ⊔
J⊃I

WJ
∼= nI (NI )×YI WI .

Y ′I is constructed as in Proposition 1.2, so that it admits

(1) a surjective étale morphism pI : Y ′I → YI ,
(2) an embedding NI ↪→ Y ′I whose composition with pI is nI ,



1760 Anca M. Mustaţǎ, Andrei Mustaţǎ

(3) an étale atlas WI satisfying Y ′J ×Y ′I WI
∼= WJ , and

(4) a groupoid presentation R′I ⇒ WI given by

R′I
∼= WI ×X WI \

⋃
i 6=j, i∈I

Sabij \
⋃

k 6=l, k,l 6∈I

Saclk .

Given any k < n − 1, I ∈ Pk and assuming the stacks Y ′J with the above properties
constructed for all J ⊃ I , the network stack NI is constructed out of all stacks Y ′I∪{h},
by gluing each pair Y ′I∪{h} and Y ′

I∪{h′}
along Y ′

I∪{h,h′}
as in [AGV, Proposition A.1.1 and

Corollary A.1.2]. Accordingly, NI admits a natural groupoid presentation [
⋃
J⊃I R

′

J ⇒⋃
J⊃I WJ ], where the unions are considered inside U ×X U and U , respectively. Next,

the composition maps Y ′I∪{h}→ YI∪{h}→ YI glue together to a morphism nI : NI → YI
which is étale on its image, as noted from the groupoid presentations ofNI and YI . More-
over, for every J ⊇ I there exists a canonically defined closed embedding Y ′J ↪→ NI . If
nI were proper, the construction in Proposition 1.2 applied to nI would yield the stack
Y ′I := (YI )NI with the desired properties (1)–(4). However, nI is not necessarily proper,
so we will obtain the same construction indirectly. We consider a canonical stratification

Nn
I ↪→ Nn−1

I ↪→ · · · ↪→ Nk+1
I = NI

and a sequence of lifts (YI )N lI , for 0 ≤ k ≤ l ≤ n− 1, where Nn
I =

⊔
J⊃I,J∈Pn YJ has a

proper map into YI , and Nk+1
I = NI has a proper map into (YI )Nk+2

I
. This is discussed in

the next lemma.
Although the process described in the lemma is indirect, the groupoid presentation

of the resulting space can be constructed directly as in Proposition 1.2, as indicated by
property (2) in the lemma. Moreover, the étale atlas

⋃
J⊃I WJ of NI is embedded in the

étale atlasWI of YI , and so the relations R′I defining (YI )NI are obtained, via Proposition
1.2, by restricting the preimage of

⋃
J⊃I WJ in RI so that R′I |⋃

J⊃I WJ

coincides with the

image of
⋃
J⊃I R

′

J in RI . This directly yields the presentation given at point (4) above.
At the final step, the stack X′ admits a groupoid presentation [R′ ⇒ U ], with

R′ = U ×X U \
⋃
i 6=j

Sabij . (1.15)

ut

Lemma 1.21. With the notation above, let k and l be any integers such that 0 ≤ k ≤ l ≤
n− 1, and let I ∈ Pk . Define

N l
I := Im

( ⊔
J⊇I, J∈Pl

Y ′J → NI

)
.

Then there exists a sequence of étale, surjective morphisms

Y ′I = (YI )Nk+1
I
→ (YI )Nk+2

I
→ · · · → (YI )Nn−1

I
→ (YI )NnI

→ YI ,

and morphisms nlI : NI = Nk+1
I → (YI )N lI

for each l, étale on their images, such that
the following properties hold:
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(1) The restriction of nl+1
I to N l

I is a proper morphism. In particular, for l = k + 1, the
morphism nI : NI → (YI )Nk+2

I
is proper.

(2) With the notation from Proposition 1.2, ((YI )N l+1
I
)N lI
∼= (YI )N lI

.

(3) For each J ⊃ I , J ∈ Ps and l > s, there exist canonical Cartesian diagrams

N l
J

//

��

N l
I

��
(YJ )N l+1

J

// (YI )N l+1
I

Proof. The construction of (YI )N lI and the proofs of properties (1)–(3) are conducted by

decreasing induction on l. When l = n, consider Nn+1
I = ∅ and (YI )Nn+1

I
= YI . The map

nnI |Nn
I

: Nn
I =

⊔
J⊃I, J∈Pn

YJ → YI

is proper and étale on its image, so (YI )NnI is constructed as in Proposition 1.2. As nI :
NI → YI is étale on its image and Nn

I has a closed embedding in NI satisfying the
conditions of Corollary 1.7(a), the map nI lifts to nnI : NI → (YI )NnI

. Furthermore, for
all J ∈ Pl , l ≥ k, the Cartesian diagram

Nn
J

//

��

Nn
I

��
YJ // YI

induces a proper morphism (YJ )NnJ
→ (YI )NnI

as in Corollary 1.8. Gluing all Y ′J ’s

with J ⊃ I , J ∈ Pn−1 gives Nn−1
I with a proper morphism to (YI )NnI , the restriction

of nnI . This leads to the next step of induction, with the construction of (YI )Nn−1
I

:=

((YI )NnI
)
Nn−1
I
. Assume now the constructions of (YJ )N l′J

, nl
′

J and properties (1)–(3) are

known for all l′ > l > s − 1, J ⊇ I , J ∈ Ps . Then by property (3) and Corollaries 1.8,
1.7, there is a proper morphism

(YK)N lK
:= ((YK)N l+1

K
)N lK
→ ((YJ )N l+1

J
)N lJ
=: (YJ )N lJ

for any K ⊃ J ⊇ I . Gluing the stacks Y ′K = (YK)N lK for all such K ∈ Pl−1 gives N l−1
J

with a proper morphism to (YJ )N lJ . This is the restriction of the morphism nlJ : NJ →

(YJ )N lJ
étale on its image, which was obtained from nl+1

J by Corollary 1.7. Finally, these
proper morphisms fit together in Cartesian diagrams as in (3) with l replaced by l − 1,
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since the diagrams⊔
K⊃J,K∈Pl−1

(YK)N sK
//

��

⊔
K⊃I,K∈Pl−1

(YK)N sK

��
(YJ )N sJ

// (YI )N sI

are Cartesian for all s ≥ l, due to Corollary 1.8 and decreasing induction on s. ut

Definition 1.22. For a proper local embedding g : Y → X and an étale atlas U , the
morphism p = p∅ : X′ → X introduced in Theorem 1.20 (in the particular case when
I = ∅) will be called the étale lift of g with respect to the étale atlas U .

Remark 1.23. We note that with this terminology, the étale morphisms pI : Y ′I → YI

introduced in Theorem 1.20 are the étale lifts of φIJ with respect to the étale atlas WI for
any J = I ∪ {j} and j 6∈ I . Indeed, this is a direct consequence of Corollary 1.17, as all
the stacks N s

J and Y ′J for J ⊇ I constructed in the course of the proof of Theorem 1.20
depend only on the network {φHK : YK → YH }K⊃H⊇J .

Example 1.24. Consider a projective curve X whose singular locus consists of a simple
node x, and let g : Y → X be its normalization, with g−1(x) = {y1, y2}. Then X′ is the
union of two copies Y 1 and Y 2 of Y , glued together along g−1(x) such that y1

1 = y
2
2 and

y1
2 = y

2
1 .

Example 1.25. Let U0 := Spec k[x1, x2, x3] and consider the action of Z3 ∼= A3 on U0
which permutes the coordinates,

σ([x1, x2, x3]) := [xσ(1), xσ(2), xσ(3)].

Let V 0 := Spec k[x1, x2] t Spec k[x2, x3] t Spec k[x1, x3], with the natural local embed-
ding g0 : V 0

→ (x1x2x3 = 0) ↪→ U0, and the natural action of Z3 on V 0 which is
compatible with g0. Taking quotients yields a local embedding

g : A2
→ [A3/Z3].

We denote Y := A2,X := [A3/Z3]. ThenU :=
⊔
α∈S3

U0 is an étale atlas ofX satisfying
all the properties listed in Proposition 1.11, where Y ×X U = V1 t V2 t V3 and Vi ∼=
Wi =

⊔
α∈S3

(xα(i) = 0) ↪→
⊔
α∈S3

A3. The associated network of local embeddings will
thus be of the form

Y12 //

  

Y1

��
Y123

<<

//

""

Y31

>>

  

Y2 // X

Y23

>>

// Y3

??
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g(Y)xX X'

YxX X'

Fig. 1. Example 1.25.

where Y1 ∼= Y2 ∼= Y3 ∼= Y = A2 with the map g : Y → X. Moreover Y12 ∼= Y31 ∼= Y23 =

A1
t A1, and φ1

12 : Y12 → Y1 = Spec k[x1, x2] maps each copy of A1 into (x1 = 0) and
(x2 = 0), respectively, while φ2

12 = φ1
12 ◦ τ , where τ is the transposition switching the

two copies of A1, and similarly for the other morphisms φiij . Finally, Y123 is a copy of
two points, each mapped to zero on one of the lines of Yij , respectively. Thus, with the
notation from Theorem 1.20, Y ′i = (Yi)Ni is obtained by gluing two copies of A2 outside
the union of two lines, and N is the union of Y ′i ’s for i ∈ {1, 2, 3}, glued along the Yij ’s
as indicated by the arrows in the network. The colors in Figure 1 (see the pdf file) show
which pairs of lines are identified in N . Thus X′ = XN is isomorphic to X outside N ,
while

N = g(Y )×X X
′ and Y ×X X

′
=

⊔
Y ′i ,

as shown in the figure.

1.3. Chow rings and universally closed push-forwards

Let g : Y → X be a proper, local embedding of Noetherian stacks. Assume that Y
is reduced and geometrically unibranch, that the morphism on the image Y → g(Y ) is
equidimensional, and that its degree is equal to a fixed number d at all generic points. The
stacks Y ′I constructed in the previous sections are in general non-separated. However, they
do satisfy the existence part in the valuative criterion of properness.

Definition 1.26. A morphism of stacks f : F → G will be called universally closed if it
is of finite type and, for any complete valuation ring R with field of fractions K and any
commutative diagram

SpecK u //

��

F

f

��
SpecR // G
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there exist finite extensions K ′ of K such that, for the integral closure R′ of R in K ′, the
composition morphism SpecK ′ → F extends to SpecR′. As in [V], we are mostly in-
terested in stacks having coarse moduli schemes. Then by Proposition 2.6 and Definition
2.1 in [V], the image of such a morphism of stacks is defined and the definition above is
a natural extension to stacks of the notion of universally closed morphism of schemes.

Definition 1.27. Consider a universally closed morphism of stacks f : F → G. A prob-
abilistic weight w of f is a map defined on the set of all integral substacks of F , with
values in the interval [0, 1], such that the weight of the generic point of F is 1 and, for
any commutative diagram as in Definition 1.26,

w(D) =
∑
i

w(Pi),

where D is the image in F of the unique point in SpecK , and Pi are the images of the
closed point in SpecR′ for all map extensions SpecR′→ F as above.

Definition 1.28. Given a universally closed morphism of integral stacks f : F → G

with probabilistic weight w, let

f∗[V ] = w(V ) deg(V/W)[W ]

for any closed integral substack V of F , where W = f (V ) and deg(V/W) is as in
[V, Definition 1.15]. A homomorphism f∗ : Zk(F ) → Zk(G) is then defined by linear
extension.

Proposition 1.29. The homomorphism f∗ : Zk(F ) → Zk(G) induces a well defined
universally closed push-forward homomorphism f∗ : Ak(F )→ Ak(G).

Proof. Propositions 3.7 in [V] and Proposition 1.4 of [F] deal with the proper push-
forward in the cases of stacks and schemes, respectively. The difference for universally
closed maps lies in the proof of the latter, in the case when dimF = dimG. The case
when f is finite is identical to Case 2 in Proposition 1.4 of [F]. Following [F] closely,
we take normalizations of the source and target, and the problem is thus reduced to the
case of a universally closed morphism of normal varieties. Let W be a codimension one
subvariety of G, let A be the local ring of W on G, and B the integral closure of A in the
field k(F ) of rational functions on F , such that B is a discrete valuation ring. Then by
Definition 1.26, for each maximal ideal mi of B there are a finite number of codimension
one subvarieties V li of F such that B dominates, and is therefore equal to, the local ring
of each V li in X. Then for any r ∈ k(F )∗,∑

i

ordV li (r) deg(V li /W) = ordW (N(r)),

where for each i a choice of the index l has been fixed, and N(r) is the determinant of the
k(G)-linear endomorphism of k(F ) given by multiplication by r . Finally,

f∗[div(r)] =
∑
V li

ordV li (r)f∗[V
l
i ] =

∑
V li

ordV li (r)w(V
l
i ) deg(V li /W)[W ].
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For i fixed, ordV li (r) deg(V li /W) is constant and
∑
l w(V

l
i ) = w(F) = 1 from Definition

1.27. Thus
f∗[div(r)] =

∑
W

ordW (N(r))[W ]

as in the case of proper morphisms. This finishes the part of the proof specific to the
universal closedness of f . ut

Universally closed push-forwards enjoy the usual properties of their proper relatives: for
example, they commute with flat pull-backs, and the usual projection formula holds for
f universally closed and flat.

Theorem 1.30. Let g : Y → X be a proper, local embedding of Noetherian stacks.
Assume that Y is reduced and geometrically unibranch, that the morphism on the image
Y → g(Y ) is equidimensional, and that its degree is equal to a fixed number d at all
points of g(Y \ Y1). There exists a Deligne–Mumford stack X′ with a surjective étale
morphism to X, such that the fiber product Y ′ = g(Y )×X X′ is a finite union of stacks Y ′i
mapping étale onto Y , and such that the maps Y ′i → Y and p : X′ → X are universally
closed. Moreover, p admits a probabilistic weight w.

Proof. Consider a network of local embeddings for g : Y → X as in Definition 1.15. Let
X′ be the corresponding lift of X constructed in Theorem 1.20. Let ζI denote a generic
point of Y ′I , with ζ∅ the generic point of X′ which specializes to the image of ζI . With the
notation from (1.14), define

w(ζI ) :=
1

|Pk|[ξI → ξ∅]

for any I ∈ Pk . Here for any K , we let ξK denote the image of ζK in YK . Then (1.14)
becomes

w(ζI ) =
∑

[ξJ → ξI ]w(ζJ ), (1.16)

where the sum is taken over all J ∈ Pj , J ⊃ I , such that ξI specializes to ϕIJ (ξJ ).
As {Y ′I \

⋃
J⊃I Y

′

J }I forms a locally closed stratification of X′, the generic point of any
integral substack D of X′ will be found in exactly one of the above strata. We extend w
to a function on all points of X′ by identifying w(D) with the weight of the generic point
of its associated stratum which specializes to it.

The universal closedness property will result during the proof that w is a probabilistic
weight of p : X′ → X. Consider a complete discrete valuation ring R with field of
fractions K , a commutative diagram

SpecK u //

��

X′

f

��
SpecR v // X
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such that the image q0 inX′ of the generic point of SpecR lies in a stratum Y ′I \
⋃
K⊃I Y

′

K ,
and the image q1 in X of the closed point of SpecR lies in Im(YJ \

⋃
K⊃J YK → X) for

some J ⊇ I . Since Y ′I \
⋃
K⊃I Y

′

K
∼= YI \

⋃
K⊃I YK and the map YI → X is proper,

there is a unique extension v′ : SpecR′→ YI of the composition SpecK ′→ SpecK →
Y ′I → YI , with the notation of Definition 1.26. Let q ∈ Im(YJ → YI ) be the lift of q1
through this extension. Then through each point in the preimage of q in Y ′I ⊂ X

′ there is
a unique lift SpecR′ → Y ′I ↪→ X′ of the map v′. The generic point of each such lift has
to be q0, because the map pi : Y ′I → YI restricts to the above mentioned isomorphism
Y ′I \

⋃
K⊃I Y

′

K
∼= YI \

⋃
K⊃I YK . Let yi be the images of the closed points of these lifts.

They all have the same weight w(ξJ ). Then by (1.16),

w(q0) =
∑
i

w(yi),

which proves that w is a probabilistic weight for the universally closed morphism p. ut

Corollary 1.31. For each i ∈ {0, . . . , n} and I ∈ Pi , there is a universally closed push-
forward map pI∗ : Ak(Y ′I ) → Ak(YI ) such that for any connected component Z of YI ,
the restriction of the map

pI∗ ◦ p
∗

I : Ak(YI )→ Ak(YI )

toAk(Z) is d ·idAk(Z), where d is the degree of the morphism p−1
I (Z)→ Z. In particular,

the flat pull-back p∗I is injective.

We note that all maps pI are universally closed due to Theorem 1.30 in conjunction with
Remark 1.23.

By convention, X′ = Y ′
∅
, and thus the corollary shows how A(X) can be regarded as

a subgroup of A(X′), and how classes in A(X) can be recovered from A(X′) via push-
forward.

In addition to the assumptions of Theorem 1.30, for the remainder of this section we
will assume that X is smooth, and that the morphisms φJI : YI → YJ are local regular
embeddings. An extended Chow ring of the network {φJI : YI → YJ }I,J was introduced
in Definition 3.6 of [MM1]. We recall this definition with a slight variation that does
without the action of a symmetry group on P =

⋃
Pk .

Notation. Fix I and I ∪ {h} ∈ P . For any cycle α = [V ] ∈ Zl(Im(YI∪{h} → YI )), let
αh ∈ Zl(YI∪{h}) be defined as follows:

αh =

∑
i[V

i
h]

deg((φII∪{h})
−1(V )/V )

where {V ih}i are the l-dimensional components of (φII∪{h})
−1(V ).
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Definition 1.32. The vector spaces Al({YI }I∈P ;Q) are defined by

Al({YI }I∈P ;Q) :=
⊕
I

Zl−codimZ YI (YI )/∼,

the sum taken over all I ∈ P with codimX YI ≤ l. The equivalence relation∼ is generated
by rational equivalence together with relations of the type

α ∼
∑
h′

αh′

for any cycle α = φII∪{h}∗αh ∈ Zl(Im(YI∪{h}→ YI )).

The field of coefficients Q will be omitted in the notation throughout the rest of the
text.

Definition 1.33. Multiplication is defined as

α ·r β := φI∗I∪J (α) · φ
J∗
I∪J (β) ·

ctop(φ
I∗
I∪JNYI |X)ctop(φ

J∗
I∪JNYJ |X)

ctop(NYI∪J |X )

in A(YI∪J ), for any two classes α ∈ A(YI ) and β ∈ A(YJ ). Here φI∗I∪J , φ
J∗
I∪J are the

(generalized) Gysin homomorphisms, as defined in [V], while ctop(NYK |X) denotes the
highest Chern class of the normal bundle NYK |X.

Theorem 1.34. The following rings are isomorphic:

A(X′) ∼= A({YI }I∈P ).

Proof. Compositions of the flat pull-backs p∗I with the push-forward of embeddings φ′∅I∗
add up to a morphism

⊕
I∈P A(YI ) → A(X′), which moreover factors through F :

A({YI }I∈P ) → A(X′). The compatibility of the group morphism F with the product
operations is a direct consequence of the excess intersection formula for the embeddings
of Y ′I and Y ′J into Y ′I∩J , with intersection Y ′I∪J .

Construct an inverse for F as follows. For each J ∈ P , let UJ denote the complement
in Y ′J of all the images of Y ′I , with J ⊂ I . (To define this complement one can work
with supports of the corresponding coarse moduli schemes, but there is a canonical stack
structure on UI .) Note that UJ = YJ \

⋃
I⊃J Im(YI → YJ ) as well. Working with the

commutative diagram of open/closed exact sequences⊕
k 6∈J A(YJ∪{k})

//

p∗J∪{k}

��

A(YJ ) //

p∗J

��

A(UJ ) //

=

��

0

⊕
k 6∈J A(Y

′

J∪{k})
// A(Y ′J )

// A(UJ ) // 0

one finds, for each α′J ∈ A(Y
′

J ), classes αJ ∈ A(YJ ) and α′J∪{k} ∈ A(Y
′

J∪{k}) such that

α′J = p
∗

JαJ +
∑
k 6∈J

φ
′J∪{k}
J∗ α′J∪{k}.
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Reiterating this argument one finds a collection of classes [αI ] ∈
⊕

I A(YI ) for all I
containing J such that

α′J =
∑
I⊇J

p∗Jφ
I
J∗αI .

The choice of αI is unique up to the equivalence relation ∼. Indeed, if
∑
I⊇J p

∗

Jφ
I
J∗βI

= 0 then
∑
I⊇J φ

I
J∗βI = 0 by Corollary 1.31, or equivalently, βJ = −

∑
I⊃J φ

I
J∗βI .

After applying the equivalence relation to each φIJ∗βI , βJ can be replaced by a sum of
classes from A(YI ) with I ⊃ J , and induction on the index set can then be applied by
Lemma 3.13 in [MM1]. When J = ∅, the collection [αI ] ∈

⊕
I A(YI ) defines the desired

inverse of F . ut

2. The Chern classes of a weighted projective blow-up

In this section we extend the notion of a blow-up along a closed embedding to the case
of a proper local embedding g : Y → X of Noetherian stacks. We assume that Y is
reduced and geometrically unibranch, that the morphism on the image Y → g(Y ) is
equidimensional, and that its degree is equal to a fixed number d at all generic points.

We note that for practical purposes, it is often enough to work with just BlY ′i X
′, for

universally closed étale lifts p : X′ → X, and a corresponding étale morphism Y ′i → Y

constructed as in Section 1. For example, this is the case when one is interested in in-
tersection theory on a smooth Deligne–Mumford stack. However, in other contexts, a
stack X̃ with a proper morphism f : X̃ → X is required. A natural construction of X̃
follows. For special morphisms g : Y → X, the stack X̃ was defined in [MM1].

Definition 2.1. Let g : Y ↪→ X be a proper local embedding of smooth stacks, and
consider a groupoid presentation [R ⇒ U ] of X such that Y ×X U =

⊔
i,a V

a
i has all the

properties listed in Proposition 1.11. The blow-up X̃ = BlY X of X along Y is defined as
the Deligne–Mumford stack of étale groupoid presentation X̃ = [R̃ ⇒ Ũ ], where Ũ is
the fibered product over U of the blow-ups BlWi U for all i, and R̃ is the fibered product
over R of the blow-ups BlSabij R for all i, j, b, where a is fixed.

The natural morphisms s̃, t̃ : R̃ ⇒ Ũ , as well as ẽ : Ũ → R̃, ĩ : R̃ → R̃ and
m̃ : R̃ ×

Ũ
R̃ → R̃ making up the groupoid structure are induced from the groupoid

morphisms s, t, e, i, m of [R ⇒ U ] by the universal property of the blow-up. Indeed, this
is due to the following lemma.

Lemma 2.2. With the notation from Proposition 1.11, the following hold:

(1) V ai ×U R ∼=
⊔
j,b S

ab
ij via each of the étale morphisms s, t .

(2) Bl⊔
j,b S

ab
ij
R ∼= (BlWi U)×U R via each of the étale morphisms s, t .

(3) e−1IV ai ×UR = IWi , while i−1ISabij = ISbaji and m−1ISabij = I⊔
k,c S

ac
ik ×US

cb
kj

.

(4) R̃ ×
Ũ
R̃ ∼= (

∏
i,a,j,b,k,c)R×UR BlSacik ×UScbkj (R ×U R).
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Proof. We will identify V ai with its image Wi in U . Statements (1) and (3) follow from
the definitions of V ai and Sabij . Statement (2) is a consequence of (1), together with the
observation that In⊔

j,b S
ab
ij

∼= (s−1IWi )n ∼= s∗InWi and In⊔
j,b S

ab
ij

∼= (t−1IWi )n ∼= t∗InWi due

to the fact that s, t are étale. Statement (4) follows in the same way, due to (3) and the fact
that m is étale. ut

In particular, statement (2) leads to

Corollary 2.3. Let g : Y ↪→ X be a proper local embedding of smooth stacks, and
consider a groupoid presentation [R ⇒ U ] ofX such that Y ×XU =

⊔
i,a V

a
i has all the

properties listed in Proposition 1.11. Then the blow-up morphism f : X̃ → X is proper,
and there exists a Cartesian diagram

X̃′
f ′ //

p̃
��

X′

p

��
X̃

f // X

where p : X′ → X is the universally closed étale cover constructed in Section 1, and
with the notation from Section 1,

X̃′ :=
(∏
i

)
X′

BlY ′i X
′.

Proof. With the notation from Definition 2.1, we have Ũ ∼= X̃ ×X U , due to Lem-
ma 2.2(2). Thus f is proper since Ũ → U is. On the other hand, U is also an étale
atlas of X′, and so Ũ is also an étale atlas of X̃′. It remains to study the morphisms in-
duced at the level of relations. Due to (1.15), we have

⊔
j,b S

ab
ij ∩R

′
=
⊔
c S

ac
ii ∩R

′, which
is the relation space for Y ′i (Definition 1.15). This is enough to deduce that the diagram of
stacks is Cartesian. ut

The blow-up X̃ is independent of the choice of étale atlas U . This follows by standard
functorial arguments.

For the remainder of this article, whenever we talk about the Chern class of X̃, we
will assume that X and Y are smooth stacks, and that the images Wi of V ai in U for all
i intersect each other, as well as their intersections, transversely, so that X̃ is a smooth
stack. In this case,

p∗TX ∼= TX′ , p̃∗T
X̃
∼= T

X̃′
, p∗iNY |X

∼= NY ′i |X
′ , q∗i NỸ |X̃

∼= N
Ỹ ′i |X̃

′

for pi : Y ′i → Y and the map qi : Ỹ ′i → Ỹ between exceptional divisors. Thus calculating
the Chern invariants of X̃ reduces to the calculation for X̃′ due to Corollary 1.31. We can
thus reduce the problem for a local embedding of smooth stacks to that for a succession
of smooth embeddings. If, moreover, the ideals Ii of Y ′i have compatible filtrations with
weights such that weighted blow-ups can be defined, then the above reasoning applies to
weighted blow-ups as well.
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Remark 2.4. If X and Y are smooth, but the imagesWi of V ai in U do not intersect each
other or their intersections transversely for all i, then in general X̃ and X̃′ are not smooth
stacks. However, even in this case they come equipped with a Chow class suitable enough
for intersection theory. Indeed, in this case X̃′ := (

∏
i)X′ BlY ′i X

′ is still a fibered product
of smooth stacks over a smooth stack, and the Cartesian diagram

X′
1 // ∏

i X
′

X̃′

OO

// ∏
i BlY ′i X

′

OO

produces a Chow class1!([
∏
i BlY ′i X

′]) on X̃′, invariant under deformations of the map g
to X.

2.1. Weighted projective blow-up and locally trivial weighted projective fibration

In this section we will work with stacks over C. Let Y be a smooth substack of a smooth
stack X. Consider an increasing filtration {In}n≥0 of the ideal IY of Y in X such that
I0 = OX, I1 = IY and InIm ⊆ Im+n for all m, n ≥ 0.

Lemma 2.5. Assume that {In}n≥0 has the following properties ([MM1, Section 3]):

(1) Ik ∩ I2
Y =

∑k−1
j=1 IjIk−j ,

(2) Ik/(Ik ∩ I2
Y ) is a subbundle of the conormal bundle IY /I2

Y .

Then Proj(
⊕

n≥0 In) has only quotient singularities. This implies the existence of a nat-
ural desingularization X̃ of Proj(

⊕
n≥0 In) (constructed as in [V, Proposition 2.8]) such

that locally in the étale topology the morphism f : X̃→ Proj(
⊕

n≥0 In) is of the form

[W/H ]→ W/H,

where W is a scheme and H is a finite group acting on it.

Proof. Consider an étale atlas of X made up of affine schemes U = SpecR such that
V := Y ×X U is complete intersection in U , and such that there exists a set of generators
{xni}n,i of I(U) with xni ∈ In(U) \ In+1(U), and with the property that the images of
{xni}n≤k,i in Ik(U)/(Ik(U) ∩ I2

Y (U)) form a basis for Ik(U)/(Ik(U) ∩ I2
Y (U)). Let

R1 := R[{yni}n,i]/〈{ynni − xni}n,i〉,

and let Y1 ∼= V be the zero locus of I1 := {yni}n,i in U1 := SpecR1. Then U1 is smooth
and Y1 is smooth too, because Y is. The finite group G ∼=

⊕
n,i Zn has a natural action

on R1. Due to condition (1),

(In1 )
G
=

∑
∑
k kak=n

∏
k

Iakk (U) = In(U). (2.1)

Here ak are non-negative integers.
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If
⊔
R SpecR is an étale atlas for X, then

⊔
R(BlY1 U1/G) is an étale atlas for the

stack Proj(
⊕

n≥0 In), where BlY1 U1 represents the blow-up of U1 along Y1, with the
natural action of G induced from the action on R1.

As
⊔
R(BlY1 U1/G) has only quotient singularities, we can construct a natural desin-

gularization of Proj(
⊕

n≥0 In) by following [V, Proposition 2.8]: We can choose T =⊔
R,x Ũx/M , for finitely many choices of x ∈ BlY1 U1 and suitable neighborhoods Ũx

in BlY1 U1, where M is the largest small subgroup of the stabilizer for x (which ensures
that T is smooth). Then the normalization RT of T ×Proj(

⊕
n≥0 In) T , with the morphisms

induced by the two projections on T , defines an étale groupoid structure on T . Indeed,
the multiplicative structure comes naturally via the isomorphism of RT ×T RT with the
normalization of

(T ×Proj(
⊕
n≥0 In) T )×T (T ×Proj(

⊕
n≥0 In) T )

∼= T ×Proj(
⊕
n≥0 In) T ×Proj(

⊕
n≥0 In) T .

(by the Purity of the Branch Locus).
By (2.1), the quotient W/(G/M) of the smooth scheme W := Ũx/M is open in

Proj(
⊕

n≥0 In|U ). Moreover,

W × (G/M) ∼= W ×Ũx/G
W,

whereW ×
Ũx/G

W denotes the normalization ofW×
Ũx/G

W (by the Purity of the Branch

Locus). The construction of X̃ now implies that the following diagram is Cartesian:

[W/(G/M)] //

��

X̃

��
W/(G/M) // Proj(

⊕
n≥0 In)

and the horizontal arrows are étale. ut

Definition 2.6. Let Y be a smooth substack of a smooth stackX, satisfying conditions (1)
and (2) in Lemma 2.5. Then X̃ constructed above, with the natural morphism π : X̃→ X,
will be called the weighted blow-up of X along Y , with the filtration {In}n≥0.

Let X# := Proj(
⊕

n≥0 In), with the morphism π# : X#
→ X. By Lemma 3.1 in

[MM1], the reduced structure of X#
×X Y is Y # := Proj(

⊕
n≥0 In/In+1), and In =

π#
∗InY # .

Recall the morphism f : X̃ → X#. The closure in X̃ of f−1(Y #
\ Sing(X#)) will be

called the exceptional divisor of π , and denoted by Ỹ . With the notation from the proof
of Lemma 2.5, Ỹ is given locally in the étale topology by [(Ỹ1x/M)/(G/M)], where
Ỹ1x ⊂ Ũx is the restriction of the exceptional divisor Ỹ1 in BlY1 SpecR1 to the open
set Ũx .

Lemma 2.5 also implies f∗OX̃
∼= OX# and f∗In

Ỹ
∼= In

Y # , as X̃ andX# coincide outside
a codimension two locus. Thus π∗In

Ỹ
∼= In for any n.
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Definition 2.7. Consider the weighted blow-up X̃ → X constructed in Lemma 2.5. De-
fine

A := Spec
(⊕
n≥0

In/In+1

)
.

Suppose A → Y is a C∗-equivariant affine fibration, with a trivialization (locally in the
Zariski topology) on which C∗ acts linearly on the fibers. Thus the fixed point locus of A
with respect to C∗ is a section of A→ Y . We will call it the zero section of the fibration,
and identify it with Y .

Denote L := O
Ỹ
⊗O

X̃
O
X̃
(−Ỹ ) = I

Ỹ
/I2
Ỹ
, the conormal bundle of the regularly

embedded Ỹ in X̃.

Lemma 2.8. Let π : X̃ → X be a weighted blow-up of X along Y ↪→ X, with the
filtration {In}n≥0, and let Ỹ denote its exceptional divisor. With the notation set up above,
π∗Ln ∼= In/In+1, and

Ã = Spec
(⊕

n

Ln
)
→ A = Spec

(⊕
n

π∗Ln
)

is the weighted blow-up of A along its zero section Y , for the filtration {Jn}n of the ideal
J =

⊕
n≥0 In/In+1 given by Jn :=

⊕
k≥n Ik/Ik+1. Then Ỹ = Proj(

⊕
n Ln) is also the

exceptional divisor of Ã.
Proof. We noted that f∗In

Ỹ
∼= In

Y # and thus also f∗(In
Ỹ
/In+1
Ỹ

) ∼= In
Y #/In+1

Y # as f has
finite-dimensional fibers. This implies π∗Ln ∼= In/In+1 due to [MM1, proof of Lem-
ma 3.1].

Consider an étale atlas of X made up of affine schemes U = SpecR, as in the proof
of Lemma 2.5. We construct the weighted blow-up Ã→ A by the method outlined in the
above mentioned proof. We will keep the notation found there throughout this proof as
well. Let V = Spec S := Y ×X U . Then an étale atlas of A is made up of affine schemes
Spec S[{xni}n,i]. Consider covers T1 := Spec S[{yni}n,i] with ynni = xni , let Z1 ∼= V

be the zero locus of J1 := {yni}n,i in T1, and consider the blow-up T̃1 = BlZ1 T1, with
exceptional divisor Z̃1. The group G ∼=

⊕
n,i Zn acts on T1 and its blow-up.

With these data, Z1 ∼= Y1 ∼= V . Moreover, there is an isomorphism of normal bundles
NZ1|T1

∼= NY1|U1 , compatible with the action of G on them. Thus Z̃1 ∼= Ỹ1, as well
as N

Z̃1|T̃1
∼= N

Ỹ1|Ũ1
, and the largest small subgroups of the stabilizer for corresponding

points in the exceptional divisors coincide as well (while for points not in the exceptional
divisor, the stabilizer itself is a small group). An étale atlas of Ã is

⊔
x T̃1x/M , for finitely

many choices of x ∈ Z̃1, with the corresponding small subgroup M and suitable open
neighborhoods T̃1x ⊂ T̃1. Then

T̃1 ∼= Spec
(⊕
n≥0

In
Z̃1
/In+1
Z̃1

)
∼= Spec

(⊕
n≥0

In
Ỹ1
/In+1
Ỹ1

)
,

so that
T̃1/M ∼= Spec

(⊕
n≥0

In
Z̃1
/In+1
Z̃1

)M
∼= Spec

(⊕
n≥0

(In
Ỹ1
/In+1
Ỹ1

)M
)
,

thus T̃1x/M ∼= Spec(
⊕

n≥0 InỸ1x/M
/In+1
Ỹ1x/M

). This proves Ã = Spec(
⊕

n Ln). ut
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Conversely, given a morphism p : P → Y with a sheaf L on P such that P ∼=
Proj(

⊕
n π∗Ln), then P can be understood as the exceptional divisor of the following

weighted blow-up:

Spec
(⊕

n

Ln
)
→ Spec

(⊕
n

π∗Ln
)
.

Lemma 2.9. Let A → Y be a C∗-equivariant affine fibration with a trivialization
(locally in the Zariski topology) on which C∗ acts linearly on the fibers, as in Defini-
tion 2.7. Consider the natural filtration of the ideal I of the zero section Y in A induced
by the weights of the C∗-action, and let Ã→ A be the corresponding weighted blow-up,
with exceptional divisor Ỹ . Then

Ỹ ∼= [(A \ Y )/C∗].

Proof. Here we will employ the same notation as in the proof of Lemma 2.8. For x ∈ Z̃1,
with the corresponding small subgroup M and suitable open neighborhood T̃1x ⊂ T̃1, let
Z̃1x := T̃1x ∩ Z̃1, and let T1x be the preimage of Z̃1x in the C∗-bundle T1 \ Z1 → Z̃1.

Consider the commutative diagram of GIT quotients

T1x //

/C∗
��

T1x/M

/C∗
��

Z̃1x // Z̃1x/M

Let Ox denote the C∗-orbit parametrized by x. We claim that M keeps Ox pointwise
fixed, so C∗ acts freely on Ox/M ∼= Ox , and thus for suitable choice of T1x we have

Z̃1x/M ∼= [(T1x/M)/C∗]. (2.2)

Indeed, any element in σi ∈ M is a reflection, meaning that its fixed point locus is a
divisor D̃ in T̃1x . Moreover, from the definition of the G-actions, the divisor D̃ is a strict
transform of a divisor D = (yni = 0) fixed by σi . But x ∈ D̃ ⇔ Ox ⊆ D, and thus
M = Stabq for any q ∈ Ox .

From (2.2) it follows that

[(Z̃1x/M)/(G/M)] ∼= [[(T1x/M)/C∗]/(G/M)] ∼= [[(T1x/M)/(G/M)]/C∗]
∼= [(T1x/G)/C∗],

where T1x/G is an open in A \ Y . ut

Notation. For any C∗-equivariant affine fibration A→ Y with a trivialization on which
C∗ acts linearly on the fibers, we denote

Pw(A) := [(A \ Y )/C∗].

We will say that Pw(A) is a weighted projective fibration.
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We return now to the weighted blow-up π : X̃ → X of X along Y , with filtration
{In}n≥0. We saw that the relation π∗In

Ỹ
∼= In holds for any n. The proof of Lemma 2.5

also implies isomorphisms between Chow groups:

A(X̃) ∼= A(X
#) and A(Ỹ ) ∼= A(Y

#),

as X̃ and X# have the same coarse moduli space. With this, we have the following de-
scription of the Chow ring of Ỹ (Lemma 3.2 in [MM1]).

Lemma 2.10. (a) The normal bundle in A = Spec(
⊕

n≥0 In/In+1) of the fixed locus Y
under the natural C∗-action on A is

NY |A =

⊕
n≥1

Nn/Nn+1,

where {Nn}n is the filtration of the normal bundle NY |X dual to the filtration
{In/(In ∩ I2

Y )}n of IY /I2
Y .

(b) There is a ring isomorphism

A(Ỹ ;Q) ∼= A(Y ;Q)[τ ]/〈PY |X(τ )〉,

where PY |X(t) is the top equivariant Chern class of the bundle NY |A. In particular,
the free term of PY |X(t) is the top Chern class of NY |X. Here τ is the first Chern class
of O

Ỹ
(1) := N∨

Ỹ |X̃
.

Lemma 2.10 sets up the context for calculating the Chern classes of the locally trivial
weighted projective fibration p : Ỹ → Y by deforming Ỹ to a weighted projective bundle
on Y and applying the Euler sequence from the Appendix. Here by a weighted projective
bundle on Y we mean a stacky quotient [(N \ Y )/C∗] where N → Y is a vector bundle
with a linear C∗-action.

Indeed, with the notation above, consider the standard deformation

D = BlY×{∞}(A× P1) \ Ã

of A to the total space NY |A of the normal bundle NY |A, where Ã = BlY A is one of the
components of the fiber over ∞ of BlY×{∞}(A × P1) → P1. Thus the fiber over ∞ of
D → P1 is NY |A, and the action of C∗ over A × P1, with fixed locus Y × P1, induces a
natural C∗-action on D. Moreover, due to Lemma 2.10(a), the quotient of NY |A \ Y by
C∗ is a weighted projective bundle, where we have identified the zero section in NY |A
with Y . Push-forward by the composition

[(NY |A \ Y )/C∗] ↪→ [(D \ Z)/C∗]→ Ỹ × P1
→ Ỹ

(where Z is the fixed locus in D) induces an isomorphism between the Chow rings of Ỹ
and of the weighted projective bundle [(NY |A \ Y )/C∗]. We obtain the following
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Proposition 2.11. Let p : Ỹ → Y be a weighted projective fibration as above, and
Qn := Nwn/Nwn+1 , for all indices wn such that Nwn 6= Nwn+1 , on which C∗ acts with
weight wn. Then the total Chern class of C̃ is

c(Ỹ ) = p∗c(Y )
∏
n

c(Qn ⊗ L⊗wn),

with L := O
Ỹ
(1) and c(Qn ⊗ L⊗wn) :=

∏
i(1+ ai + wnc1(L)) where ai are the Chern

roots of Qn .

Proof. Let i∞ : [(NY |A \ Y )/C∗] ↪→ [(D \ Z)/C∗] and i0 : Ỹ → [(D \ Z)/C∗] be
embeddings of fibers in the flat family [(D \Z)/C∗]→ P1 and let q : [(D \Z)/C∗]→ Ỹ

be the natural projection obtained after taking quotients ofD→ A, such that q◦i0 = id
Ỹ

.
Then by the projection formula and the rational equivalence of fibers,

i0∗c(TỸ ) = i0∗i
∗

0c(T[(D\Z)/C∗]) = i∞∗i
∗
∞c(T[(D\Z)/C∗]) = i∞∗c([(NY |A \ Y )/C∗]),

and thus after composing with q∗,

c(T
Ỹ
) = q∗i∞∗c([(NY |A \ Y )/C∗]),

which by the Appendix and Lemma 2.10 is of the form described in this proposition. ut

2.2. Model for a weighted blow-up

We start our Chern class calculations with the most approachable type of weighted blow-
ups: when the blow-up locus is the fixed locus of a C∗-action on the entire space. In
this case, equivariant cohomology techniques permit the recovery of Chern classes of
the blow-up from their pull-backs to the exceptional divisor, which in turn are easily
computable.

Let Y be a stack, A a C∗-equivariant affine fibration on Y as in Definition 2.7, such
that the C∗-action onA induces a decomposition of the normal bundle of the fixed locus Y

NY |A =

⊕
h

Qn

with weights {wn}n and rkQn = kn. LetOY denote the trivial line bundle on Y . Consider
the torus T := C∗×C∗ action onA×OY coming from the individual action of the first C∗
on A and the second on OY . In this subsection we will denote by X := Pw(A⊕OY ) the
locally trivial weighted projective fibration obtained as a quotient of A × OY \ Z by C∗
embedded diagonally in T (where Z denotes the fixed locus), and we set Ỹ := Pw(A)
and X̃ := P(O

Ỹ
(−1)⊕O

Ỹ
).

We obtain a blow-up diagram

Ỹ
j //

g

��

X̃

f

��
Y

i // X
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where Y = P(OY ) ↪→ Pw(A ⊕ OY ), and similarly j : Ỹ ↪→ X̃ is the embedding
Ỹ = P(O

Ỹ
) ↪→ P(O

Ỹ
(−1) ⊕ O

Ỹ
), the exceptional divisor in the weighted projective

blow-up f : X̃→ X.

Proposition 2.12. Keeping notation from the above, assume that for each n, the total
Chern class c(Qn) = ckn(Qn) + · · · + c1(Qn) + 1 can be written as the pull-back of a
class p(Qn) = pkn(Qn)+ · · · + p1(Qn)+ 1 ∈ A(X;Q). Then

c(X̃) = f ∗c(X)
(E + 1)

∏l
n=1 p(Qn(−wnE))∏l
n=1 p(Qn)

,

where E is the class of the exceptional divisor and p(Qn(wns)) :=
∏kn
i=1(ai +wns + 1)

where the pull-backs of ai on Y are the Chern roots of Qn.

Proof. The morphism f is equivariant with respect to the natural C∗ := T/C∗-actions
on X̃ and X with the weights specified above, such that Ỹ and the section at infinity are
the fixed loci for the C∗-action on X̃, and Y and the section at infinity are the fixed loci for
the C∗-action on X. Thus the diagram above yields another weighted blow-up diagram

ỸC∗
jC∗ //

gC∗

��

X̃C∗

fC∗

��
YC∗

iC∗ // XC∗

where ZC∗ := Z×C∗ EC∗ for each stack Z, and BC∗ is the classifying space of C∗, with
universal family EC∗. As noticed above, YC∗ ∼= Y and ỸC∗ ∼= Ỹ .

In the following, for ease of notation, we will drop the subscript C∗ for maps, and
only employ it to denote equivariant classes.

In the equivariant Chow ring AC∗(Ỹ ),

eC
∗

(j∗(T
X̃
)) = eC

∗

(Ỹ )eC
∗

(N
Ỹ |X̃
), eC

∗

(i∗(TX)) = eC
∗

(Y )eC
∗

(NY |X),

so

j∗eC
∗

(X̃)

j∗f ∗eC∗(X)
=

eC
∗

(N
Ỹ |X̃
)

g∗eC∗(NY |X)

eC
∗

(Ỹ )

g∗eC∗(Y )
=
(−ξ + t + 1)

∏l
n=1 c(Qn(wnξ))∏l

n=1 c(Qn(wnt))
,

where ξ is the first Chern class of O
Ỹ
(1).

Let

α := eC
∗

(X̃)/f ∗eC
∗

(X)− 1 and P(t) :=
(−ξ + t + 1)

∏l
n=1 p(Qn(wnξ))∏l

n=1 p(Qn(wnt))
− 1.

We note that P(ξ) = 0. Thus β := P(t)/(t−ξ) is well defined and by the self-intersection
formula on the exceptional divisor,

j∗α = j∗j∗β. (2.3)
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By the Atiyah–Bott localization theorem,

α = j∗
j∗α

eC∗(N
Ỹ |X̃
)
+ l∗

l∗α

eC∗(N
E∞|X̃

)
, (2.4)

where j : Ỹ ↪→ X̃ and l : E∞ ↪→ X̃ are the two fixed point loci of X̃ under the C∗-action.
On the one hand, by (2.3),

j∗
j∗α

eC∗(N
Ỹ |X̃
)
= j∗

j∗j∗β

eC∗(N
Ỹ |X̃
)
= j∗β,

and on the other hand, as the section at infinity E∞ = Pw(N) and Ỹ are disjoint, l∗T
X̃
∼=

l∗f ∗TX and thus the second term on the right-hand side of (2.4) is zero. Thus in fact
α = j∗β, which implies

eC
∗

(X̃) = f ∗eC
∗

(X)
(E + t + 1)

∏l
n=1 p(Qn(−wnE))∏l

n=1 p(Qn(wnt))
.

The classical limit t → 0 yields the desired relation. ut

2.3. Deformation to the weighted normal cone

Returning to the general case, let Y be a smooth substack of a smooth stack X. Let π :
X̃→ X be the weighted blow-up of X along Y for an increasing filtration {In}n≥0 of the
ideal IY , satisfying properties (1) and (2) in Lemma 2.5. The ideal sheaf J of Y × {∞}
in X × P1 admits a filtration formed by the sheaves Jn :=

∑n
k=0 IkKn−k where K is the

ideal of ∞ in P1 pulled back to X × P1. Let M be the weighted projective blow-up of
X × P1 along Y × {∞} with the filtration {Jn}n.

The usual properties of the deformation to the normal cone carry out for this construc-
tion with the suitable changes in weights:

(1) There is a natural closed regular embedding J : Y × P1 ↪→ M .
(2) The composition ρ = p2 ◦ 5 of the blow-up map 5 : M → X × P1 with the

projection p2 : X×P1
→ P1 is a flat morphism of stacks, and the following diagram

commutes:
Y × P1 J //

p2
��

M

ρ
||

P1

(3) Over P1
\ {∞}, ρ−1(A1) = X × A1 and J is the trivial embedding.

(4) As a Cartier divisor,
M∞ := ρ−1(∞) = P + X̃,

where P = Pw(Spec(
⊕

n≥0 Jn/Jn+1)) is a locally trivial weighted projective
fibration and X̃ is the weighted blow-up of X along the locus Y , with the fil-
tration {In}. Both P and X̃ are Cartier divisors of M , intersecting in Ỹ :=
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Pw(Spec((
⊕

n≥0 In/In+1)), which is embedded as the section at infinity in P and
as the exceptional divisor in X̃. On the other hand, Y∞ = Y × {∞} embeds in M∞
as the zero section in P and is thus disjoint from X̃ ↪→ M∞.

The proof is analogous to [F, (5.1)].

Theorem 2.13. Consider the weighted blow-up f : X̃ → X of a smooth stack X along
a smooth substack Y with an increasing filtration {In}n≥0 of the ideal IY , satisfying con-
ditions (1)–(2) in 2.1. Let {Nn}n denote the filtration of the normal bundle NY |X dual to
the filtration {In/(In ∩ I2

Y )}n of IY /I2
Y . Let Qn = Nwn/Nwn+1 for all indices wn such

that Nwn 6= Nwn+1 . Then C∗ acts with weight wn on Qn.
Assume that for each n, the total Chern class c(Qn) = ckn(Qn)+· · ·+c1(Qn)+1 can

be written as the pull-back of a class p(Qn) = pkn(Qn)+ · · · + p1(Qn)+ 1 ∈ A(X;Q).
Then

c(X̃) = f ∗c(X)
(E + 1)

∏l
n=1 p(Qn(−wnE))∏l
n=1 p(Qn)

,

whereE is the class of the exceptional divisor in X̃ and p(Qn(wns)) :=
∏kn
i=1(ai+wns+1)

where the pull-backs of ai on Y are the Chern roots of Qn.

Proof. Let M̃ be the weighted blow-up of M along Y × P1 with the filtration r∗In, were
r = p1 ◦ 5 is the composition M → X × P1

→ X. Looking at the fibers over 0 and
∞ ∈ P1,

X̃
j̃0 //

f0

��

M̃

F

��

P̃ + X̃
j̃∞oo

f∞
��

X
j0 //

��

M

ρ

��

P + X̃
j∞oo

��
0 // P1

∞oo

The embeddings j̃∞, respectively j∞, split into k̃ : P̃ → M̃ , l̃ : X̃→ M̃ , respectively
k : P → M , l : X̃ → M , where F ◦ l̃ and l can be naturally identified. Pull-backs of
the quotient sheaf GM := T

M̃
/F ∗TM yield j̃∗0 GM = G0 := T

X̃
/f ∗0 TX and j̃∗∞GM = G∞

which on P̃ is the quotient T
P̃
/f ∗TP , and on X̃ is the zero sheaf. We note that the maps

of locally free sheaves on stacks

T
M̃
→ F ∗TM , T

X̃
→ f ∗0 TX and TP̃ → f ∗∞TP

are monomorphisms, as M̃ and M are isomorphic outside the exceptional divisor and its
image, etc. Moreover,

j̃0∗c(G0) = j̃0∗j̃
∗

0 c(GM) = c(GM) · [M̃0],
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which by rational equivalence is identified with

c(GM) · [M̃∞] = j̃∞∗c(G∞) = k∗c(G∞|P̃ )+ [X̃],

as l̃∗c(GM) = c(l̃∗GM) = 1 on X̃. On the one hand, the formula for c(G
∞|P̃ ) is given by

Proposition 2.11.
On the other hand, M̃ is isomorphic to the blow-up of X̃× P1 along Ỹ × {∞}, where

Ỹ is the exceptional divisor of X̃. Hence, there is a map 5̃ : M̃ → X̃ × P1 whose
composition q with the projection X̃× P1

→ X̃ satisfies q ◦ j̃0 = id
X̃

. From this and the
model case in Proposition 2.12 we recover the general formula in the theorem. ut

3. The moduli space M ′0,m(Pn, d)

Let m, n, d be nonnegative integers. In this section we apply the general theory for
weighted blow-ups along local embeddings of smooth stacks to calculate the total Chern
class of the moduli space of stable maps M0,m(Pn, d). We first set up the context by
briefly recalling the blow-up constructions of M0,m(Pn, d) from [MM1] (for m = 1),
[MM2] (for m > 1), and [MM3] (for m = 0). They pertain to a family of smooth
Deligne–Mumford stacks M0,A(Pn, d, a), and of weighted blow-ups

M0,A(Pn, d, a)→ M0,A′(Pn, d, a′),

where a, a′ ∈ Q, A = (a1, . . . , am),A′ = (a′1, . . . , a
′
m) ∈ Qm such that

m∑
i=1

ai + da > 2,
m∑
i=1

a′i + da
′ > 2, 1 ≥ a ≥ a′ > 0, 1 ≥ aj ≥ a′j ≥ 0

for all j = 1, . . . , m. HereM0,A(Pn, d, a) is the stack of (A, a)-weighted stable maps as
defined in [MM2], parametrizing (A, a)-stable maps.

Definition 3.1. An (A, a)-stable map consists of a family of rational curves π : C → S,
whose fibers are either smooth or with nodes as singularities, with m marked sections
not intersecting the nodes of the fibers, with a line bundle L on C of degree d on each
fiber Cs , and a morphism e : On+1

C → L (specified up to isomorphisms of the target)
satisfying a series of stability conditions:

(1) ωC|S(
∑m
i=1 aipi)⊗ La is relatively ample over S,

(2) G := Coker e, restricted over each fiber Cs , is a skyscraper sheaf supported only on
smooth points of Cs , and

(3) for any s ∈ S and p ∈ Cs and for any I ⊆ {1, . . . , m} (possibly empty) such that
p = pi for all i ∈ I we have ∑

i∈I

ai + a dimGp ≤ 1.
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Let C be a curve. A tail of C is a closed connected subcurve C′ of C with the property
that C \ C′ is connected.

We will now consider the case when A = {1}. The basic definitions for this case are
introduced in [MM1]. All the other cases of weights A which will be of interest to us can
be deduced from this case ([MM2], [MM3]).

Definition 3.2. LetD = {1, . . . , d}. We say I ⊂ P(D) \ {∅,D} is a nested set if, for any
two h, h′ ∈ I , the intersection h ∩ h′ is either h, h′ or ∅.

For any number l > 0, we denote I≤l := {h ∈ I ; |h| ≤ l} and I>l := {h ∈ I ;
|h| > l}.

Fix a positive number a < 1 and a nested set I ⊂ P \ {∅,D} such that h ∩ h′ = ∅
for any distinct h, h′ ∈ I≤1/a . In [MM1, Proposition 2.3], a boundary map M

a

I →

M0,1(Pn, d, a) was described.

Definition 3.3. With our notation, M
a

I is the stack of I -type, a-stable, degree d maps
from a rational curve into Pn, i.e.

(C, p1, {ph}h∈I≤1/a , {Ch}h∈I>1/a ,L, e)

made up of an a-stable, degree d pointed map (C, p1,L, e), together with marked points
{ph}h∈I≤1/a and connected subcurves {Ch}h∈I>1/a satisfying the following properties:

(1) for all h ∈ I>1/a , p1 6∈ Ch ⊂ C and degL|Ch = |h|;
(2) for all h ∈ I≤1/a , dim Coker eph = |h|;
(3) compatibility of incidence relations:
• for all h ∈ I≤1/a and h′ ∈ I>1/a , h ⊂ h′ iff ph ∈ Ch′ ;
• for all h, h′ ∈ I>1/a , if h′ ⊂ h then Ch′ ⊂ Ch, if h ⊂ h′ then Ch ⊂ Ch′ , otherwise
Ch ∩ Ch′ = ∅.

Notation. By convention, M
a

∅ = M0,1(Pn, d, a). When I = {h}, we will denote M
a

I

simply by M
a

h.
For each nested set I , we let GI ⊂ Sd be the largest subgroup that keeps each h ∈ I

invariant. In particular, |Gh| = |h|!(d − |h|)!.

When |h| > 1/a, the stack M
a

h maps to a codimension 1 substack of M0,1(Pn, d, a),
and its generic point represents a map whose source is split as a union of two curves, one
containing the marked point and the other of degree |h|. If |h| ≤ 1/a, the stack M

a

h maps
to a substack of higher codimension in M0,1(Pn, d, a), and its generic point represents
a map whose source contains the marked point p1 and another marked point of weight
|h|a.

There is a special étale atlas forM0,1(Pn, d, a). Its definition is based on the notion of
t̄-rigid weighted stable maps, for any system t̄ of homogeneous coordinates on Pn. These
are an adaptation of the rigid stable maps introduced in [FP], and were discussed in more
detail in [MM1].
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Definition 3.4. A t̄-rigid stable map is given by the same data as a point of the moduli
space M0,1(Pn, d, a), together with an extra set of sections {qi,j }0≤i≤n,1≤j≤d of weights
ai,j = a/(n+ 1), and satisfying, via e,

(t̄i) =

d∑
j=1

qi,j

for each homogeneous coordinate t̄i in t̄ .

The moduli space of M0,1(Pn, d, a, t̄) of t̄-rigid weighted stable maps is represented by
a torus bundle over an open subset of M0,A′ , Hassett’s moduli spaces of weighted stable
curves. There is a natural action on M0,1(Pn, d, a, t̄) by the finite group (Sd)n+1, which
permutes the extra marked points qi,j defined above.

Lemma 3.5 ([MM1, Proposition 1.11], and in more generality [MM2, Proposition 1.7]).
An étale atlas for the stack M0,1(Pn, d, a) is given by

U :=
⊔
x,t̄

Ux(t̄),

where for suitable choices of finitely many coordinate systems t̄ and of finitely many
points x in M0,1(Pn, d, a, t̄), the smooth scheme Ux(t̄) represents the quotient of an
appropriately small affine neighborhood of x by the largest small subgroup Hx of the
stabilizer Stabx ⊆ (Sd)n+1.

This construction is based on [V, proof of Proposition 2.8].

Notation. We choose k to be the integer in {2, . . . , d} with 1/k ≤ a < 1/(k − 1), or
k = 1 if a = 1. (We note that if 0 < a < 1/d , then the space M0,1(Pn, d, a) is empty.)

With this notation, the following holds:

Lemma 3.6. For each nested set I whose elements h satisfy |h| ≥ k, the map φI : M
a

I →

M0,1(Pn, d, a) is a proper local embedding. Moreover, for choices ofUx(t̄) appropriately
small, the étale atlas U for the stack M0,1(Pn, d, a) defined in Lemma 3.5 satisfies the
properties listed in Proposition 1.11 for each of these local embeddings φI . Thus

U×M0,1(Pn,d,a)M
a

I=

⊔
g∈Sd/GI

Vg(I) and, more generally, VI×M
a
I
M
a

J =

⊔
g∈GI /GJ

Vg(J ),

for J ⊃ I whose elements also satisfy |h| ≥ k. Here Vg(J ) are étale atlases of M
a

J

naturally embedded in U , and VJ ↪→ VI whenever J ⊃ I .
Moreover, VJ ∩ VK = VJ∪K is a transverse intersection in VJ∩K for all nested sets

J,K whose elements h satisfy |h| ≥ k.
Let V∅ := U . For each nested set I and h 6∈ I with |h| ≥ k, the network of local

embeddings associated to φIIh : M
a

Ih→ M
a

I and the étale atlas VI consists of morphisms
φJK : M

a

K → M
a

J , where K and J are nested sets with K ⊃ J ⊇ I , whose elements h′

satisfy |h′| = |h|.
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Proof. We recall the relevant construction from [MM1, proof of Proposition 2.3]. There
exists a sequence of smooth varieties and morphisms

M0,1(Pn, d, a, t̄) ↪→ M0,0(Pn × P1, (d, 1), (a, 1), t̄)
ft̄
−→ Pnd(t̄)

pt̄
−→ (P1)d(n+1),

where Pnd(t̄) is a (C∗)n-torus over an open subset of (P1)d(n+1), and ft̄ is a composition
of blow-ups along some diagonals and their strict transforms, in a suitable order.

Let N = {0, . . . , n}, let 1N×h denote the diagonal in (P1)d(n+1) where the coor-
dinates corresponding to the set N × h ⊂ N × {1, . . . , d} agree. More precisely, the
blow-ups are along the (strict transforms of) diagonals 1N×h with |h| ≥ k, in increas-
ing order of dimension. At each blow-up step l, all (strict transforms of) diagonals with
|h| ≥ l will intersect each other, and intersections of other (strict transforms of) diagonals,
transversely ([M]).

DaN×h(t̄) ⊂ M0,1(Pn, d, a, t̄) is constructed from 10
N×h(t̄) = p

−1
t̄
(1N×h) by taking

its strict transforms through the successive blow-ups, respectively the exceptional divisor
at the (d−|h|)-th step, and finally intersecting the resulting space withM0,1(Pn, d, a, t̄).
We then let DaN×I (t̄) :=

⋂
h∈I D

a
N×h(t̄) for any nested set I ⊂ P .

Define

VI :=
⊔
x,t̄

⊔
[g′]∈(Sd/GI )n

(Ux(t̄) ∩D
a
g′(N×I )(t̄))/H

′
x, (3.1)

for finitely many x, t̄ also employed in the construction of U , where the set of orbits
(Sd/GI )

n corresponds to permutations on (N \ {0}) × I , and H ′x is the largest small
subgroup of the stabilizer of x for the action of Gn+1

I on Da
g′(N×I )

(t̄) (via conjugation
by g′).

With the notation from the previous lemma, H ′x = Hx whenever all the elements h ∈
I satisfy a|h| ≥ 1. Then each such VI embeds inU and is an étale atlas ofM

a

I , canonically
constructed as in [V, proof of Proposition 2.8]. Moreover, from the construction of VI ,

U ×M0,1(Pn,d,a) M
a

I =

⊔
g∈Sd/GI

Vg(I); as well, VI ×M
a
I
M
a

J =

⊔
g∈GI /GJ

Vg(J ),

for J ⊃ I whose elements also satisfy a|h| ≥ 1. These formulae are equivalent to Lemma
1.16 for the spaces M

a

I , which uniquely defines networks of local embeddings. Accord-
ingly, for each nested set I and h 6∈ I with |h| ≥ k, the morphisms φJK : M

a

K → M
a

J ,
where K and J are nested sets with K ⊃ J ⊇ I , whose elements h′ satisfy |h′| = |h|,
form the network of local embeddings associated to φIIh : M

a

Ih → M
a

I and the étale
atlas VI .

Furthermore, since the diagonals and their transforms intersect each other, and inter-
sections of other diagonals, transversely, it follows that VJ ∩ VK = VJ∪K is a transverse
intersection in VJ∩K for all nested sets J,K whose elements h satisfy a|h| ≥ 1. ut

Let d be a positive integer. As described in [MM2], contractions M0,m(Pn, d, a) of the
spaceM0,m(Pn, d) can be thought of as locally embedded inM0,1(Pn, d+m−1, a)when
a < 1. More precisely, after choosing a privileged point 1M among the m marked points
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and adjoining the rest of marked points M = {2M , . . . , mM} to the set {1D, . . . , dD} to
form D′ = {1D, . . . , dD, 2M , . . . , mM}, one can write

M0,A(Pn, d, a) ∼= M
a

J

for J = {{2M}, {3M}, . . . , {dM}} and the m-tuple A = (1, a, . . . , a).
For this reason we introduce the following notation.

Notation. From now on, we will let A denote the m-tuple (1, a, . . . , a), and work with
subsets h of D′ = {1D, . . . , d ′D, 2M , . . . , mM}, and all nested subsets will be elements
in P(D′). We let d ′ := d + m − 1. As before, we choose k > 1 to be the integer with
1/k ≤ a < 1/(k − 1), or k = 1 if a = 1.

We note that while for the generic curve parametrized by M
a

I , all tails and base locus
points are marked by elements of I , other curves, represented by points in the boundary
of M

a

I , may have unmarked tails and base points. It is due to such points that the maps
M
a

J → M
a

I are in general only local embeddings. This suggests that marking all compo-
nents and base points of curves and their maps will result in moduli stacksM

′a

I embedded
in M

′

0,A(Pn, d, a), constructed as in Theorem 1.20.

Definition 3.7. Consider the moduli functor from schemes to sets, associating to any
scheme S the set of (A, a)-stable, degree d pointed maps (C → S, {pi}i∈{1,...,m},L, e),
together with a collection {Ps}s∈S of partitions

D =
⊔
α∈Ns

Bα

of the set D = {1, . . . , d}, one for each s ∈ S, such that for every s ∈ S, the set

Ns ∼= {irreducible components of the curve Cs},

and

(1) the partition is compatible with the structure of the map given by (L, e): if α ∈ Ns
corresponds to the component C ⊂ Cs then |Bα| = degL|C ;

(2) the partition is compatible with specialization in S: if s1, s2 ∈ S then s1 ∈ {s2} ⇔
Ps1 is a refinement of Ps2 .

A set of data as above will be called a semi-rigid (A, a)-stable map over S. An isomor-
phism of semi-rigid (A, a)-stable maps is an isomorphism of (A, a)-stable maps which
also preserves the partitions of D.

Definition 3.8. Let M
′

0,A(Pn, d, a)→ M0,A(Pn, d, a) be the étale surjective morphism
constructed inductively as follows:

M
(d ′)

0,A(P
n, d, a) := M0,A(Pn, d, a), M

a,(d ′)

h := M
a

h,

while for l ∈ {k, . . . , d ′ − 1},

M
(l)

0,A(P
n, d, a)→ M

(l+1)
0,A (Pn, d, a)
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is the étale lift for the proper local embedding M
a,(l+1)
h → M

(l+1)
0,A (Pn, d, a), for some h

satisfying |h| = l, with the étale atlas U from Lemmas 3.5 and 3.6, while for each nested
set I such that h 6∈ I ,

M
a,(l)

I → M
a,(l+1)
I

is the étale lift for the proper local embedding M
a,(l+1)
hI → M

a,(l+1)
I with the étale at-

las VI . Finally,

M
′

0,A(P
n, d, a) := M

(k)

0,A(P
n, d, a).

The following lemma ensures that Theorem 1.20 can be applied at each step in the
definition above.

Lemma 3.9. The following properties hold for the spaces M
a,(l)

I :

(1) There exist natural proper local embeddings φI,(l)J : M
a,(l)

J → M
a,(l)

I .

(2) For h 6∈ I , the maps φJ,(l)K : M
a,(l)

K → M
a,(l)

J , withK ⊃ J ⊇ I such that the elements
h′ ∈ K \ J satisfy |h′| = |h|, form the network of local embeddings associated to the
proper local embedding φI,(l)Ih with the étale atlas VI defined by (3.1).

(3) The following diagram is Cartesian:

M
a,(l)

J∪K
//

��

M
a,(l)

J

��

M
a,(l)

K
// M

a,(l)

K∩J

(4) For J ⊃ I and l > k, the following diagram is Cartesian:⊔
g∈GJl−1/GJ

M
a,(l−1)
g(J )

//

��

M
a,(l−1)
I

��

M
a,(l)

J
// M

a,(l)

I

where Jl−1 = {h ∈ J ; |h| = l − 1 or h ∈ I }.
All properties hold as long as all the elements h of J \ I , K \ I satisfy |h| ≥ k. Here,
according to our convention, M

a,(l)

∅ = M
(l)

0,A(Pn, d, a).
Proof. Properties (1)–(3) follow by decreasing induction on l. The first step, when l = d ′,
is true due to Lemma 3.6. If (1)–(3) hold for l > k, then by (3), Corollary 1.8 can be
applied at each step in the proof of Theorem 1.20, yielding the Cartesian diagram

M
a,(l−1)
J

//

��

M
a,(l−1)
I

��

M
a,(l)

J
// M

a,(l)

I
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for J ⊃ I such that J \ I contains no elements h with |h| = l − 1, and l > k, while for
J ⊃ I such that J \ I contains only elements h with |h| = l − 1, Theorem 1.20 implies
that the following diagram is Cartesian:⊔

g∈GI /GJ
M
a,(l−1)
g(J )

//

��

M
a,(l−1)
I

��

M
a,(l)

J
// M

a,(l)

I

In general, splitting J = Jl−1 t (J \ Jl−1) yields (4). As well, at the level of étale atlases,

M
a,(l)

J ×
M
a,(l)
I

VI ∼=
⊔

g∈GJl−1/GJ

Vg(J ).

This ensures that (1)–(3) are true when l is replaced by l − 1 as well. Indeed, (1) and (3)
follow directly from the Cartesian diagrams above, while (2) follows from the relation
between étale atlases, which is equivalent to Lemma 1.16 for our spaces. ut

Remark 3.10. Alternatively, M
′

0,A(Pn, d, a) can be constructed by applying the con-
struction steps in the proof of Theorem 1.20 directly to the network {φIJ : M

a

J →

M
a

I }, where I and J are nested sets whose elements h satisfy |h| ≥ k. Indeed, the
étale atlases do not change throughout the construction, while the groupoid relations of
M
′

0,A(Pn, d, a), obtained by applying (1.15) to the étale atlases of Lemma 3.6, are inde-
pendent of the order in which the étale lifts above are performed.

Remark 3.11. One could ask if simply applying Proposition 1.11 and Theorem 1.20
directly to the local embedding

Y :=
⊔
h

M
a

h→ X := M0,A(Pn, d, a)

(when the union is taken over one copy of h for each cardinality |h| ≥ 1/a) would not
yield the same outcome as in Definition 3.8. However we note that for the map above, the
étale atlasU introduced in Lemma 3.5 does admit a partition of Y×XU with all properties
listed in Proposition 1.11. Moreover, the étale lift associated to the map above would
contain the same number of copies of boundary divisors mapping onto M

a

h irrespectively
of |h|, which is different from the case of M

′

0,A(Pn, d, a) constructed by us.
We also note, in view of Remark 1.19, that while the étale atlas U from Lemma 3.5 is

suitable for all the local embeddings

M
a

h→ M0,A(Pn, d, a)

(with |h| ≥ 1/a) at once, it is not minimal for each map taken separately. For example,
if |h| > d/2 then M

a

h is embedded in M0,A(Pn, d, a), and yet M
′

0,A(Pn, d, a) will still
contain

(
d
|h|

)
copies of M

′a

h .
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Theorem 3.12. The moduli problem of semi-rigid (A, a)-stable maps is finely repre-
sented by the Deligne–Mumford stack M

′

0,A(Pn, d, a).

Proof. Let p : M
′

0,A(Pn, d, a) → M0,A(Pn, d, a) denote the universally closed, étale
map resulting from the construction in Definition 3.8, and let U denote the universal
family on M0,A(Pn, d, a). For each s ∈ M

′

0,A(Pn, d, a), we will define a partition Ps of
D compatible with Up(s) in the sense of Definition 3.7. Then U together with the family
of partitions {Ps}s will form the universal family U ′ on M

′

0,A(Pn, d, a).
Indeed, for every s ∈ M

′

0,A(Pn, d, a) there exists a uniquely associated nested set I
(possibly I = ∅) such that s ∈ (M

a

I )
′
\
⋃
J⊃I (M

a

J )
′, and if I1 and I2 are associated to

s1, s2, respectively, then

s1 ∈ {s2} ⇒ I1 ⊇ I2.

There exists a correspondence between nested sets I ∈ P(D) and partitions PI ofD such
that

J ⊇ I ⇔ PJ is a refinement of PI ,

namely the elements of the partition PI are the sets h \
⋃
h′′∈I, h′′ 6=h h

′′ for all h ∈ I ,
together with D \

⋃
h′′∈I h

′′.
Conversely, given any semi-rigid (A, a)-stable map (C → S, {pi}i,L, e), then for

each point s ∈ S, the associated partition Ps of D uniquely defines a nested set I (s):
the elements h of I (s) correspond to chains of components of C, of length at least two,
which start from the component containing the special marked point p1 and end with a
tail. Then h =

⋃
α Bα , where the union is taken over all the components Cα in the chain

with the exception of the first one. This leads to a stratification of S indexed by nested
sets, with locally closed strata

{s ∈ S; I (s) = I }.

Let SI denote the closure of the above set in S. Then by condition (2) in Definition 3.7,

SI = {s ∈ S; I (s) ⊇ I }.

If J and K are nested sets such that J ∪K is nested as well, then SJ ∩ SK = SJ∪K . For
each nested set I , there exists a natural map fI : SI → M

a

I , obtained by forgetting the
partitions Ps but remembering the associated nested sets. When I = ∅ we get f : S →
M0,A(Pn, d, a). If J ⊃ I , then the diagram

SJ
fJ //

⊂

��

M
a

J

φIJ
��

SI
fI // M

a

I
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is commutative. Moreover, if GI ⊂ Sd is the largest subgroup that keeps each h ∈ I
fixed,

SI ×M
a
I
φIJ (M

a

J )
∼=

⋃
g∈GI /GJ

Sg(J ). (3.2)

These conditions are sufficient to define f ′ : S → M
′

0,A(Pn, d, a). Indeed, lifts
f ′K : SK → (M

a

K)
′ can be constructed by decreasing induction on K . For the

largest sets K ⊃ I , relation (3.2) implies SI ×Ma
I
φIK(M

a

K)
∼=
⊔
g∈GI /GK

Sg(K) →⊔
g∈GI /GK

(M
a

g(K))
′, which by Theorem 1.5 induces a morphism from SI to the étale lift

(M
a

I )
(K) of φIK ; the commutative diagram above lifts as well. Now for any nested set K ,

moving on to the step when (M
a

I )
′ have been constructed for all I ⊃ K , then by [AGV,

Appendix 1], the lifts of the commutative diagram above glue to a morphism

SK ×M
a
K
φKI (M

a

I )
∼=

⋃
g∈GI /GK

Sg(I)→ NK ,

where NK is obtained by gluing all (M
a

g(I))
′ along (M

a

g(I)∪g′(I ))
′. We note that φKI (M

a

I )

is the image of NK in M
a

K . Now the lift (M
a

K)
′ is constructed so that NK ↪→ (M

a

K)
′.

Again by Theorem 1.5, one obtains a lift SK → (M
a

K)
′.

We note that (C → S, {pi}i,L, e) is the pull-back through f of the universal fam-
ily U . As for every s ∈ S, the partition Ps on Cs is completely determined by the nested
set I such that s ∈ SI \

⋃
J⊃I SJ , it follows that the partition Ps is also inherited by

pull-back through f ′ from the universal family on M
′

0,A(Pn, d, a). ut

Notation. For each integer k ∈ {2, . . . , d}, let ak be any real number with 1/k ≤ ak <
1/(k − 1). Let a1 = 1.

By [MM2], a sequence of birational contractions of M0,m(Pn, d) is given by the
spaces M0,Ak

(Pn, d, ak) with Ak = (1, ak, . . . , ak) for d > k > 0.

Lemma 3.13. For each integer l with d ′ ≥ l > k, the morphism f
k,(l)
I : M

ak−1,(l)
I →

M
ak,(l)

I is a weighted blow-up along the local embedding φI,(l)Ih : M
ak,(l)

Ih → M
ak,(l)

I with
h 6∈ I such that |h| = k.

If k = l, then φI,(l)Ih is an embedding and f k,(l)I is the weighted blow-up along all such
embeddings with |h| = l.

Proof. The statement follows by decreasing induction on l. The paragraph above the
lemma sets up the initial step l = d. Assume that the lemma holds for l > k. Consider h
and h′ such that |h| = k and |h′| = l − 1. By the induction hypothesis, both f k,(l)I and
f
k,(l)

Ih′
are weighted blow-ups along the local embeddings, and the corresponding local

embeddings are connected by a Cartesian diagram due to Lemma 3.9(3) applied to K =
I∪{h} and J = I∪{h′}. Thus the natural diagram containing f k,(l)I and f k,(l)

Ih′
is Cartesian,

following the definition of blow-ups along the local embeddings and the natural étale
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atlases described in the proof of Lemma 3.9. We can now apply Corollary 1.8 at each
step in the construction of the (l − 1)-étale lifts, leading to the following diagram being
Cartesian:

M
ak−1,(l−1)
I

f
k,(l−1)
I //

��

M
ak,(l−1)
I

��

M
ak−1,(l)
I

f
k,(l)
I // M

ak,(l)

I

If l− 1 > k, the following diagram is Cartesian both when j = k and when j = k− 1 by
Lemma 3.9(4):

M
aj ,(l−1)
Ih

φ
I,(l−1)
Ih //

��

M
aj ,(l−1)
I

��

M
aj ,(l)

Ih

φ
I,(l)
Ih // M

aj ,(l)

I

Since f k,(l)I was assumed to be a weighted blow-up along the local embedding φI,(l)Ih ,
from the above it follows that f k,(l−1)

I is a weighted blow-up along the local embedding
φ
I,(l−1)
Ih . Finally, when l − 1 = k, Lemma 3.9(4) implies that the following diagrams are

Cartesian: ⊔
|h′′|=kM

aj ,(l−1)
Ih′′

tφ
I,(l−1)
Ih′′ //

��

M
aj ,(l−1)
I

��

M
aj ,(l)

Ih

φ
I,(l)
Ih // M

aj ,(l)

I

and f k,(k)I is the weighted blow-up along
⊔
|h′′|=kM

aj ,(k)

Ih′′
. ut

Theorem 3.14. Consider the normalization M
ak
I of a boundary stratum in M

ak
∅ :=

M0,1(Pn, d, ak). The total Chern class of M
ak
I is written in A(M

ak,(k)

∅ ) as

c(M
ak
I ) = (1+H)

n+1(1+ ψ)sI−1
d−lI∏
i=1

(1+H + iψ)n+1

·

∏
h, |h|>k

(1+Dh)(1+ ψh)|Ih|−1∏|h\⋃h′∈I h
′
|

j=1 (1+HI ;h + jψh)n+1

(1+ ψ0
h)
|Ih|−1

∏|h\⋃h′∈I h
′|

j=1 (1+HI ;h + jψ0
h)
n+1

where the product is taken after all h such that I ∪ {h} is still a nested set. Here
lI := |

⋃
h∈I h| and sI is the number of maximal elements of I . Moreover H denotes
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the pull-back of the hyperplane divisor from Pn, ψ denotes the cotangent line class, and
Dh represents the class of the divisor M

ak
{h}, while

ψh := ψ −
∑
h′⊇h

Dh′ and ψ0
h := ψ −

∑
h′⊃h

Dh′ ,

HI ;h := H +
(
d −

∣∣∣h ∪ (⋃
h′∈I

h′
)∣∣∣)ψ −∑

h′⊃h

∣∣∣h′ \ (h ∪ (⋃
h′′∈I

h′′
))∣∣∣Dh′ .

Proof. We proceed by induction on k. The last member in the sequence of contractions
of M0,1(Pn, d) is M0,1(Pn, d, ad−1), a weighted projective fibration P(A) over Pn de-
scribed in [MM1, Lemma 3.3]. The normal bundle of the zero section in A splits by
weights as NPn|A =

⊕
l Nl/Nl+1, where

Nl =

((n+1)(d−l)⊕
i=1

OPn(1)
)
/OPn .

Thus by Proposition 2.11, the total Chern class is

c(M0,1(Pn, d, ad−1)) = (1+H)n+1(1+ ψ)−1
d∏
l=1

(1+H + lψ)n+1.

More generally, for any I ∈ P(D), denote lI := |
⋃
h∈I h| and let sI be the number

of maximal elements of I , i.e. elements h ∈ I such that there is no h′ ∈ I with h ⊂ h′.
The normal bundle

N
M
ad−1
I |M

ad−1 = NP1×Pn|(P1)sI×Pnd−lI

∣∣
Pn =

(
OsI

Pn ⊕
(n+1)(d−lI )⊕

i=1

OPn(1)
)
/OPn

admits a natural filtration {Nl}l described in Lemma 3.2 of [MM1]. Here

Nl =

(
OsI

Pn ⊕
(n+1)(d−lI−l)⊕

i=1

OPn(1)
)
/OPn .

C∗ acts on the bundle N =
⊕

l Nl/Nl+1 with weights (1, . . . , d − lI ). Thus by Proposi-
tion 2.11, the total Chern class of the weighted projective fibration M

ad−1
I → Pn is

c(M
ad−1
I ) = (1+H)n+1(1+ ψ)sI−1

d−lI∏
i=1

(1+H + iψ)n+1.

The morphism f
ak
I : M

ak−1
I → M

ak
I is a weighted blow-up along the local embeddings

M
ak
Ih → M

ak
I for h 6∈ I with |h| = k. By Lemma 3.13, the k-th étale lift M

(ak−1,(k))
I →

M
(ak,(k))

I is obtained by successive weighted blow-ups of all embeddings M
(ak,(k))

Ih →

M
(ak,(k))

I where h 6∈ I with |h| = k. As the étale covers are preserved through étale lifts,
with the notation from Lemma 3.6, the étale atlas VI of M

(ak,(k))

I satisfies VI ×
M
(ak ,(k))

I
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M
(ak,(k))

Ih = VIh by construction, while by Lemma 3.6, all strata VIh with |h| = k intersect
each other, and their intersections, transversely. The normal bundle of the blow-up locus
for M

ak−1
I → M

ak
I when k ∈ {1, . . . , d − 1} and the weights of the appropriate C∗-action

on it have been calculated in [MM1, Lemma 3.21]. Let h ∈ P(D) be such that |h| = k
and denote by Ih ⊆ I the set of all h′ ∈ I such that h′ ⊂ h.

The top equivariant Chern class of the normal bundle N
M
ak
I∪{h}|M

ak
I

when evaluated at

t = Dh is

(1+ ψh)|Ih|−1
|h\
⋃
h′∈Ih

h′|∏
j=1

(1+HI ;h + jψh)n+1,

and thus formula (2.1) reads in this case

c(M
ak−1
I )

= f
ak∗
I c(M

ak
I )

∏
h, |h|=k

(1+Dh)(1+ ψh)|Ih|−1∏|h\⋃h′∈I h
′
|

j=1 (1+HI ;h + jψh)n+1

(1+ ψ0
h)
|Ih|−1

∏|h\⋃h′∈I h
′|

j=1 (1+HI ;h + jψ0
h)
n+1

.

Iterating the formula above for all k ∈ {1, . . . , d − 1}, we obtain the relation stated in the
theorem. ut

In particular,

c(M0,1(Pn, d))

= (1+H)n+1
∏d
i=1(1+H + iψ)

n+1

1+ ψ

∏
h

(1+Dh)(1+ ψ0
h)
∏|h|
j=1(1+Hh + jψh)

n+1

(1+ ψh)
∏|h|
j=1(1+Hh + jψ

0
h)
n+1

,

where Hh = H + (d − |h|)ψ −
∑
h′⊃h |h

′
\h|Dh′ = H∅;h from above. We recall that the

spacesM0,m(Pn, d, ak) with k ∈ {1, . . . , d− 1} can be thought of as normalized strata of
M0,1(Pn, d +m− 1, ak). Indeed, as mentioned before, one can write

M0,m(Pn, d, ak) ∼= M
ak
I

for I = {{2M}, {3M}, . . . , {dM}} ⊂ P({1D, . . . , dD, 2M , . . . , mM}). Thus

c(M0,m(Pn, d)) = (1+H)n+1(1+ ψ)m−2
d∏
i=1

(1+H + iψ)n+1

·

∏
h∈P(D′)\{∅,{2M },...,{mM }}

(1+Dh)(1+ ψh)|hM |−1∏|h∩D|
j=1 (1+Hm;h + jψh)n+1

(1+ ψ0
h)
|hM |−1

∏|h∩D|
j=1 (1+Hm;h + jψ0

h)
n+1

,

where hM = h ∩ {2M , . . . , mM} and

Hm;h = H + |D \ h|ψ −
∑
h′⊃h

|D ∩ h′\h|Dh′ .
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In particular, one recovers the formulae for the first Chern classes as calculated in [P]
and in a more general setup in [DJS].

Let f : M0,1(Pn, d) → M0,0(Pn, d) be the forgetful morphism. In [MM3] this
has been split into a sequence of simple blow-ups and a relatively simpler fibration
U
b(d−1)/2c

→ M0,0(Pn, d).
Choose I := {h ⊂ {1, . . . , d}; |h| > d/2} if d is odd, and let I additionally contain

half of the sets h with |h| = d/2 if d is even, under the condition that no two sets h, h̄ are
simultaneously in I . The class

ψ ′I := ψ −
∑
h∈I

Dh

can be considered as the O(1)-line bundle for the fibration U
b(d−1)/2c

→ M0,0(Pn, d)
above. When d is odd, ψ ′I is the pull-back of the relative cotangent class for the morphism

U
b(d−1)/2c

→ M0,0(Pn, d). The classesDh with h ∈ I are pull-backs of the classes of the
exceptional divisors onM0,1(Pn, d). From the sequence of blow-ups mentioned above we
obtain a formula comparing the total Chern classes of moduli spaces with/without marked
points:

f ∗(c(M0,0(Pn, d))) = c(M0,1(Pn, d))
∏
h∈I (1+Dh)Ph(1−Dh)
P (1+ ψI )

∏
h∈I Ph(1)

,

where P(ψI ) and Ph(−Dh) are the quadratic expressions in [MM2, Theorem 3.3(1)–(2)].
Proposition 2.1 in [MM3] shows how to recover the class c(M0,0(Pn, d)) from its

pull-back.

Appendix. Euler’s sequence for a weighted projective bundle

Let g : P → Y be a weighted projective bundle and a smooth morphism of stacks. With
the notation from Section 2, consider the splitting NY |A =

⊕
i Li such that for all n with

Nn 6= Nn+1 there is a unique index i with Li = Nn/Nn+1. Denote by wi = n the weight
of the naturally induced C∗-action on Li .

Let TP |Y = ker(TP → g∗TY ) denote the relative tangent bundle of g : P → Y .

Lemma 3.15. There is an exact sequence of vector bundles on P

0→ OP
σ
−→

⊕
i

g∗Li ⊗OP (wi)
e
−→ TP |Y → 0.

Proof. The weighted projective bundle P is locally trivial over Y , i.e. P|U ∼= P[w0 : · · · :
wn]×U for each open set U in some open cover of Y . We first discuss briefly the case of
the weighted projective space P[w0 : · · · : wn] = [SpecC[x0, . . . , xn] \ {0}/C∗], where
C∗ acts on xi with weight wi .

An étale presentation of the Deligne–Mumford stack P[w0 : · · · : wn] is given by⊔
i,j∈{0,...,n}

Vij ⇒
⊔

i∈{0,...,n}

Vi
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where Vi = Cn with coordinates {uki }k∈{0,...,n}\{i} and Vij = Vji = Cn−1
× C∗ with

coordinates {vkij }k∈{0,...,n}\{i} such that vjij 6= 0, and the étale maps φiij : Vij → Vi given
by

φiij ({v
k
ij }k) = (v

0
ij , . . . , (v

j
ij )
wj , . . . , vnij ),

with (vjij )
wj in the j -th position, and the change of coordinates

vij i = 1/vjij , vkji = v
k
ij/(v

j
ij )
wk for k 6= i, j

on Vij .
If {uki }k∈{0,...,n}\{i} are coordinates on Vi , then the map to the coarse moduli space

P[w0 : · · · : wn]→P[w0 : · · · : wn] sends (uki )k∈{0,...,n}\{i}∈Vi to [u0
i : · · · : 1 : · · · : uni ]

with 1 in the i-th position.
The line bundle OP[w0:···:wn](1) is determined by the trivializations Li ∼= Vi×C, with

gluing maps

φi∗ij Li → φ
j∗
ij Lj

given by φj∗ij sj = v
j
ijφ

i∗
ij si , where si and sj are the unitary sections on Li and Lj . Thus

the total space of OP[w0:···:wn](1) is

P[w0 : · · · : wn : 1] \ {[0 : · · · : 0 : 1]} → P[w0 : · · · : wn].

Each weighted projective coordinate xi gives rise to a global section of OP[w0:···:wn](wi),
which will be denoted by xi as well.

The tangent bundle to P[w0 : · · · : wn] is determined by the vector bundles TVi ∼=
Vi × Cn with isomorphisms

φi∗ij TVi ∼= φ
j∗
ij TVj ,

identifying

φ
j∗
ij

(
∂

∂ukj

)
= (v

j
ij )
wkφi∗ij

(
∂

∂uki

)
, φ

j∗
ij

(
∂

∂uij

)
= (v

j
ij )
wiφi∗ij

(
−

∑
k 6=i

wk

wi
vkij

∂

∂uki

)
.

Indeed,

φi∗ij TVi =
〈{
φi∗ij

(
∂

∂uki

)
=

∂

∂vkij

}
k∈{0,...,n}\{i}

, φi∗ij

(
∂

∂uij

)
=

1
wj
(v
j
ij )
wj−1 ∂

∂vij i

〉
,

and the identifications above are naturally derived from the change of coordinates vkij
into vkji .

The short exact sequence

0→ OP[w0:···:wn]
σ
−→

⊕
i

OP[w0:···:wn](wi)
e
−→ TP[w0:···:wn] → 0
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is defined locally by

σ(1) := (w0x0, . . . , wnxn), e(s
⊗ak
i ) :=

∂

∂uki

, e(s
⊗ai
i ) := −

∑
k 6=i

wk

wi
uki

∂

∂uki

,

and by the presentation of the bundles above this is well defined globally.
Given a weighted projective bundle g : P = [A/C∗]→Y with weights (w0, . . . , wn),

consider two open embeddings U,U ′ ↪→Y and trivializations xU : A|U ∼= U ×Cn+1 and
xU ′ : A|U ′ ∼= U ′ × Cn+1, with gluing morphisms over U ×Y U ′

ϕ = (ϕ0, . . . , ϕn) : (U ×Y U ′)× Cn+1
→ Cn+1,

such that ϕi is homogeneous of degree wi with respect to the given weights. For each
trivialization above there is an étale presentation⊔

i,j∈{0,...,n}

(Vij × U)⇒
⊔

i∈{0,...,n}

(Vi × U) for P|g−1(U),

respectively ⊔
i,j∈{0,...,n}

(V ′ij × U
′)⇒

⊔
i∈{0,...,n}

(V ′i × U
′) for P|g−1(U ′).

Let gU denote the restriction of g to P|g−1(U), and similarly for U ′. Pull-back of the
trivialization xU to Vi×P g∗U (A|U ), of xU ′ to Vi×P g∗U (A|U ) and of the gluing morphism
ϕ to ((Vi × U)×P (V ′i × U

′))× Cn+1 amounts to choosing a root ϕ1/wi
i of ϕi such that

a point (Vi × U)×P (V ′i × U
′) admits a change of coordinates

u
′j
i = ϕj (g(u), pi(u))ϕ

−wj /wi
i (g(u), pi(u)),

where u = (g(u), (uji )j 6=i) and pi(u) = (u0
i , . . . , 1, . . . , uni ) ∈ Cn+1, with 1 in the i-th

position. Thus differentiating,

∂

∂u
j
i

=

∑
k

ϕkj
∂

∂u′ki

(ϕ
−wk/wi
i )− ϕij

(∑
k

wk

wi
u′ki

∂

∂u′ki

)
(ϕ−1
i ),

for j 6= i, where the functions ϕkj := ∂ϕk/∂xj define a local change of basis for the pull-
back of the normal bundle NY |A and ϕ−1/wi

i defines a local change of basis for OP (1).
Furthermore, as P is a weighted projective bundle, ϕkj = 0 unless wk = wj .

This proves that the trivial extensions of the exact sequence (3.1) to P|g−1(U) and
P|g−1(U ′) glue to a restriction of the sequence (3.2) on P|g−1(U×YU ′)

. ut
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