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Abstract. For a proper local embedding between two Deligne-Mumford stacks Y and X, we find,
under certain mild conditions, a new (possibly non-separated) Deligne—-Mumford stack X’, with
an étale, surjective and universally closed map to the target X, and whose fiber product with the
image of the local embedding is a finite union of stacks with corresponding étale, surjective and
universally closed maps to Y. Moreover, a natural set of weights on the substacks of X’ allows
the construction of a universally closed push-forward, and thus a comparison between the Chow
groups of X’ and X. We apply the construction above to the computation of the Chern classes of
a weighted blow-up along a regular local embedding via deformation to a weighted normal cone
and localization. We describe the stack X’ in the case when X is the moduli space of stable maps
with local embeddings at the boundary. We apply the methods above to find the Chern classes of
the stable map spaces.

Introduction

Local embeddings form an important class of morphisms of algebraic stacks. For instance,
the morphisms from the components of the inertia stack of a Deligne-Mumford stack into
the stack itself are in general local embeddings. As another fundamental example, the
diagonal morphism of a stack is a local embedding and thus, the local study of this type
of morphisms has led to a good definition of an intersection product on smooth Deligne—
Mumford stacks by A. Vistoli [V], with a subsequent simplification by A. Kresch [K].
Their work relies on the existence, for any local embedding ¥ — X, of an étale atlas
V — Y such that the composition V' — X can be factored into a closed embedding
V — U followed by an étale atlas U — X. Based on these covers, the normal cone
of a local embedding ([V]) and a deformation of the ambient stack to the normal cone
([K]) can be constructed. However, these constructions are local in essence and as such,
they fail to completely encode information on global invariants like Chern classes or
Chow ring structures, and cannot be directly employed in Riemann—Roch type theorems
like the Riemann—Roch without denominators as formulated for closed embeddings of
schemes.

Under suitable assumptions, in this paper we replace the local construction above by
one more suited to the purposes just mentioned, at the expense of working with non-
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separated stacks rather than separated schemes. Let g : Y — X be a proper, local em-
bedding of Noetherian stacks. Assume that Y is reduced and geometrically unibranch,
that the morphism on the image ¥ — g(Y) is equidimensional, and that its degree is
equal to a fixed number d at all generic points. Theorems 1.20 and 1.30 highlight the
existence, for every such map g : ¥ — X, of an étale cover by a stack X’ — X such
that Y := g(¥) xx X', a finite union of étale covers ¥/ of Y, is embedded in X’, and
such that the morphisms ¥’ — Y and X’ — X are universally closed. Moreover, the
morphism X’ — X is an isomorphism outside the image of Y. Thus the study of proper
local embeddings can be reduced for practical purposes to that of closed embeddings of
stacks.

While the map p : X’ — X is forcefully not proper, it is universally closed. A weight
function w on the set of substacks of X’ is naturally attached to the map p, referring to the
number of possible extensions of maps involved in the valuative criterion of properness.
This “probabilistic weight” contributes to a good definition of push-forward p, between
the Chow groups of X’ and X, an extension of the usual definition of proper push-forward
to this type of universally closed maps. In effect, the Chow group A(X) can be recovered
from A(X’) via the universally closed push-forward p.

The definition of the étale lift X’ associated to the proper local embedding g : ¥ — X
and the subsequent constructions are based on a network of local embeddings associated
to g. This network in turn depends on the choice of a suitable atlas U of X and a par-
tition of ¥ x x U, with properties specified in Proposition 1.11. The dependence is only
partial: while the number of spaces which are nodes in the network may vary, the spaces
themselves are intrinsically associated to g. For example, by replacing U with a number
of copies of itself, one increases the number of components in ¥ x x X’. In view of this,
one could enquire on the existence of a “minimal” choice of étale atlas for X that would
yield a canonical étale lift X’ — X. This problem is addressed by the authors in [MM4].
However, there are contexts where other factors, like, e.g., a moduli problem, may deter-
mine the naturalness of a (non-minimal) choice of étale atlas, and thus of an étale lift X’.
This is the case for the moduli spaces of stable maps with their boundary, which we study
in the third part of this article.

One useful feature of our construction comes from the fact that for a suitable étale
atlas U of X, we take into account the entire pull-back of that atlas to the locally em-
bedded Y. Locally, in the neighborhoods of some points in U, this pull-back may con-
sist of a number of intersecting components. Their intersections contribute essentially to
the structure of the morphism ¥ — X; in a first instance, to the associated flat strat-
ification of X. For this reason we encode them in a network of morphisms of stacks,
a stack version of the configuration schemes of [L]. In [MMI1], we have defined the
extended Chow ring of such a network. In Theorem 1.34 we prove that this extended
Chow ring is isomorphic to A(X’). In particular, in the case of the moduli space of stable
maps and the local embeddings of its boundary divisors, the extended Chow ring has
been calculated in [MM1]. In Theorem 3.12 we now identify the corresponding stack
Mé),m (P", d) and formulate its moduli problem in terms of stable maps with marked com-
ponents.
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Our approach is relevant, for instance, when considering a blow-up along a local
embedding. Let us return to the initial picture of a commutative diagram

V—U

)

Yy —X

where the top map is an embedding. Then simply taking the blow-up of U along V does
not lead to an étale atlas of a complete blow-up of X along Y, due to a break in symmetry
at the level of relations. Indeed, in small enough neighborhoods around each point in U,
one needs to consider blow-up along each of the components of ¥ x y U before defining
the étale atlas for Bly X. In Section 2, we show how this can be done for smooth stacks Y
and X.

Weighted blow-ups form a class of morphisms with a variety of applications. They
come up, for example, when considering variation of GIT. As algebraic stacks provide
a natural context for the study of weighted blow-ups, this class may be extended to
weighted blow-ups along regular local embeddings. Moduli spaces of (weighted) curves
and (weighted) stable maps are examples for which this type of morphisms comes up
naturally.

As an application to the universally closed étale cover construction, blowing up Chern
classes along local embeddings of smooth stacks is reduced to the case of smooth em-
beddings. The basic idea of this computation, like in the case of schemes, is to retrieve
the Chern classes from their pull-back to the exceptional divisor, for example via the
Riemann—Roch without denominators formula ([F]). However, when weights are consid-
ered, a less standard approach is necessary for the retrieval step. By a deformation to
a “weighted normal cone”, we reduce the problem to the case when both the blow-up
locus and the exceptional divisor are fixed loci for C*-actions making the blow-down
morphism equivariant. The Atiyah—Bott localization theorem then means that the class
of the exceptional divisor can be inverted, allowing us to retrieve a class on the blow-up
from its pull-back to the exceptional divisor.

The paper is organized as follows: In the first section we construct the universally
closed morphism which turns a proper local embedding ¥ — X into an embedding. The
first step is the case when the local embedding is étale on its image. The general case is
reduced to this situation by flat stratification. A network of local embeddings depending
on the étale structure of the strata is highlighted in Section 1.2, and X’ is constructed
by induction on strata, such that all the local embeddings in the network are replaced by
embeddings. In Section 1.3, universally closed morphisms and push-forwards associated
to probabilistic weights are defined. The existence of an isomorphism between the Chow
rings of X’ and of the corresponding network, as introduced in [MM 1], is proven, and the
relation between the Chow rings of X and X’ is discussed. The second section contains
the calculation of Chern classes for weighted blow-ups. The third section is dedicated
to the example of stable map spaces and intermediate weighted stable map spaces. The
Appendix discusses the Euler sequence of a weighted projective bundle. Although this se-
quence is most likely known, we could not find a proof in the literature, and so decided to
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carefully trace the sequence through the groupoid presentation of the weighted projective
bundle.

1. The universal lift of a local embedding

The stacks in this article are assumed to be algebraic in the sense of Deligne—Mumford,
Noetherian, and all morphisms considered between them are of finite type.

1.1. The lift of a local embedding étale on its image

Definition 1.1. Following [V], we will let a local embedding be any representable unram-
ified morphism of finite type of stacks. A regular local embedding is a local embedding
which is also locally a complete intersection.

Given a proper local embedding ¥ — X, there is a diagram

V U
Pll lp
y 8

—_°.X
the vertical morphisms being étale atlases and g; being a closed embedding of schemes
(Lemma 1.19 in [V]). Let V be the scheme representing the fiber product Y x x U, with
the induced map gy : V — U, and the image of gy denoted by W. As Vi — Y and
V — Y are étale, then so must be the induced morphism i; : Vi — V. Since V| — U is
an embedding, so must be Vi — V. We write V = V| U V,, where V> is the closure in V
of V' \ Vj.In fact, V| and V; are disjoint, as the map V = V; U V, — Y is étale. Denote
by p; the restriction p; : V; — Y, and by W; the image of V; in U.

Furthermore, if the morphism g is étale on its image, then by the étale lifting property
([G, I, Proposition 8.1]), Vi and U can be chosen such that

81
e

Vi=g) xx U,

and so there is an étale morphism /2 : V. — V| with h o ij =idy,.

We recall the étale groupoid presentation [R = U] of the stack X, given by the two
projection morphisms R := U xx U = U, together with canonical morphisms e, m,
and i. Here the identity e is the diagonal morphisme : U — U x x U, the multiplication m
is

m:=nw3:UxxUxxUZEUxxU)xyUxxU)—UxxU,

and the inverse morphismi : U xx U — U x x U switches the two terms of the product.
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Notation. Let
Sij :=Im(¢;j : V; xy V; - U xx U),

for the map ¢;; given as the composition
Vixy Vi VxyV=Vxy ¥ xxU)=EV xxU—>UxxU.
We denote by R’ the subset
R :=R\ (S12U 821 U (S22 \ S11)) UIme.

From now on let g : ¥ — X be a proper local embedding. Then S;; are closed
subschemes of R. In general S>> \ S1; might not be closed, but it is so in the case when
g is étale on its image, for dimension reasons. As U is an étale atlas of X, the diagonal
e : U — U xx U is an open embedding, and thus, under the above condition on g, the
subscheme R’ of R is open.

Proposition 1.2. Let g : Y — X be a proper morphism, étale on its image. The restric-
tions s1, 52 : R — U of the two projection morphisms R — U, together with e, and
with the restriction of m to R' xy R’ and of i to R', form the groupoid presentation of
a Deligne—Mumford stack Xy.

Proof. First note that S;o N S1; = ¥ and S3; N S11 = @. Indeed,
UxxU <= VixxU ZVixyx(YxxU) =V xy(ViuVa) = (Vi xy V)u(V1 xy Vo).
In fact R’ may be written alternatively as the difference

R':= R\ (S12U 821 U S0\ S11).

Indeed, S;o NIme C S1» N S11 = @, and symmetrically S12 NIme = S NIme = @.
Furthermore, there is a sequence of consecutive Cartesian diagrams

V, C Vi U

N .

Voxy Ve—sVxy Vi—=U xx U

where the vertical maps are diagonal morphisms, with Vo xy Vo € VoxyVand VxyV =
V xx U. This implies that S;p N Ime = Imey, where for each i € {1, 2}, ¢; is the
composition of the diagonal V; — V; xy V; with the morphism ¢;; : Vi xyV; - UxxU.
ButImey = Ime; C Sy1, due to the commutative diagram

Vs v—" sy Ly

N

VoxyVp—=VxyV—————=UxxU
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As R’ is both symmetric and reflexive by construction, the existence of a groupoid struc-
ture [R" = U] reduces to checking the closedness of R’ under multiplication. We note
that for k, [ € {1, 2},

75 (Su) S W xx U xx W= (W xxU) xy (Uxx W).

But W xx U is the image of V xx U = ||, jc(1.2y Vi xv Vj, namely U; jc1.2) Sij-
The injectivity of g; : Vi — U directly implies 713(S1; Xy S11) € Si1. Thus the
multiplication m is well defined on R’. O

Example 1.3. Let Z < X be a closed embedding of stacks and let Y := | [, Z;,
where Z; = Z, with the natural morphism to X identifying all copies of Z. Then Xy is
obtained by gluing n copies of X along X \ Z.

With the notation from the previous proposition, the following also holds.

Proposition 1.4. There exist a natural embedding Y — Xy and an étale map Xy — X
making the following diagram Cartesian:

Y —— Xy
g¥)——X

Proof. The composition of étale morphisms R’ < R = U being étale, the natural
morphism of groupoids

R ——R

Iy

U——U

induces an étale morphism of stacks Xy — X. Next we check that V| = Y xx, U,
namely that the diagram defining a groupoid morphism

Vi xy Vi —— R’

'

Vi——U
is Cartesian. Indeed,
Vxy VEVXxUZEVXxy(UxxU)=V xy R
and therefore

Vxy R=(V xyV)xg R= (Vi xy Vi) U¢y (Si),
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and by restriction to V1,
Vi xy R = V) xy V.

This proves the existence of a natural embedding of ¥ in Xy whose composition with the
étale map Xy — X yields the local embedding of Y into X.
At the beginning of this section, the cover V; of Y was constructed as a fiber product
Vi =g(Y)xxU,andthus Vi xy V| = V; xy R’ = g(Y) x x R’, forming an isomorphism
of groupoids
Vi xy Vi 2 VIl = [g(Y) xx R' = g(¥) xx U],
which induces an isomorphism ¥ = g(Y) xx Xy. O

Although the groupoid presentation of the stack Xy depended on particular choices of
covers for X and Y, the stack Xy is uniquely defined by a universality property, which
can be expressed in terms of moduli problems as follows:

Theorem 1.5. There is an equivalence of categories from the category of morphisms
Z — Xy defined on stacks Z of finite type to that of morphisms Z — X endowed with a
section

s:g¥Y)xxZ—>Y xxZ
forthe étalemap Y xx Z — g(¥Y) xx Z.

Proof. Indeed, at the level of objects, given a map Z — Xy from a scheme Z of fi-
nite type to Xy, and its composition with the étale map Xy — X, there is an induced
isomorphism

g(Y) xng (g(Y) Xx Xy) XXy Z=Y XXy Z,
and a natural map Y xx, Z — Y xx Z which, when composed with the étale map
8z: Y xxZ — g(Y) xx Z=Y xx, Z, yields the identity map.

Consider now a scheme of finite type Z and a morphism Z — X represented by a
morphism of groupoids

R; —— R

I

U ——U

Assume that there is asections : g(Y)xx Z > Y xx Zof gz : Y xxZ — g(Y)xx Z,
represented by the groupoid map

Vixu Rz ——V Xy Rz

I

VixyUz ——=V xy Uz
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Then the map Rz — R factors through Rz — R’ — R. Indeed, as the restrictions of R
and R’ to U \ Im V] coincide, it is enough to show the factorization of groupoid maps

Vixy Rz ——=Vixy R ——= Vi xy R

I

V1 Xy UZ V1 Vl

The map V| xy Uz — Vj is the composition of V| xy Uz — V xy Uz above with the
natural maps V xy Uz — V — Vi, while V] xy Rz — V) xy R’ is the composition

VixuRz > VxyRz—>VXxyREVxyV
> VixyVEVxyR - Vi xy RR=ZV; xy V.

Together these maps induce the desired morphism Z — Xy. A direct check shows that
the constructions above are functorial, and that the two functors constructed between the
category Hom(Z, Xy) and that of morphisms Z — X with the extra property specified
in the hypothesis are inverse to each other. O

Remark 1.6. Although the embedding V| < V does induce morphisms V| xy Uz —
VxyUzand Vi xy Rz — V xy Rz, together these induced morphisms do not in general
form a morphism of groupoids, as they are not necessarily compatible with multiplication
on Rz. In particular, when Z = X, our construction does not imply the existence of a
section for Y — g(Y), or for Xy — X.

Corollary 1.7. (a) Let g : Y — X be a morphism étale on its image, and let Z — Y be
a closed embedding such that g,z is proper and Z = g(Z) xx Y. Then there exists a
natural morphism g' 1 Y — Xz étale on its image.

(b) Furthermore, if g is proper; then g’ is proper as well and (X z)y = Xy.

Proof. A canonical section
s:8Z)yxxY —>ZxxY

is given by the diagonal morphism Z — Z x x Z via the isomorphisms g(Z) xx Y = Z
and Z xx Z = Z x x Y. By the previous theorem, this induces a morphism g’ : ¥ — X7,
making the triangles in the following diagram commutative:

Xz;—X

SNA

Z——Y

Also, g'(Y) = Xz xx g(Y). Indeed, by Proposition 1.4, g(Z) xx Xz = Z = ¢'(2),
while X \ g(Z2) = Xz \ ¢'(2).

(b) Assume g is proper. As a consequence of the relation g/(Y) = Xz xx g(¥),
g’ is closed. It is separated, because g is. Moreover, g’ satisfies the valuative criterion
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of properness ([V]). Indeed, consider a valuation ring R’ with fraction field K’, and a
commutative diagram

Spec K’ —— Spec R’

L,k

Yy — X,

Since the composition Y — Xz — X is a proper morphism, there exists a finite extension
K of K’ such that, for the integral closure R of R’ in K, the composition morphism
Spec K — Y extends to ¢ : Spec R — Y. Let r denote the composition Spec R —
Spec R — Xz. It remains to check that g’ o ¢ = r, or, equivalently, via Theorem 1.5,
that the section

g(Z) xx Spec R — Z xx Spec R

induced by ¢ is obtained from the canonical section s, after fiber product with Spec R
over Y viar:

8(Z) xx Y xy Spec R = g(Z) xx SpecR — Z xx Y xy Spec R = Z x x Spec R.

Indeed, this is the case as both morphisms g’ o ¢ and r give the same morphism when
composed with the projection Xz — X. This proves the properness of g’. Furthermore,
as g is étale on its image and X 7 — X is étale, g’ will be étale on the image as well. Thus
we can construct (Xz)y as in Proposition 1.2.

Note that, by the same argument as above with Spec R replaced by ¥ xx Xz, the
triangles in the following diagram are commutative:

YXXXzLXZ

| 7

y ——X

We apply this to show that the functors of (Xz)y and Xy are equivalent. Indeed, any map
T — Xy induces amap 7 — X and a section

t:g¥)xxT —->Y xxT,

which by restriction yields a section g(Z) xx T — Z xx T, andthusamap 7 — Xz.
For the existence of a morphism T — (Xz)y, asectiont’ : g'(Y) xx, T — Y xx, T is
necessary and sufficient. But

§Y)xx, T =) xx Xz) xx, T =g(¥Y) xx T,
YXXTg(YXXXZ)XXZTEYXXZT,
due to the two commutative triangles above, so via these isomorphisms we can identify
t' with 7. Conversely, any map T — (Xz)y induces a map T — Xz and a section

t": ¢g'(Y) xx, T — Y xx, T which yields the section ¢ canonically via the above
isomorphisms. O
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Corollary 1.8. Consider any morphism of Noetherian stacks f : X1 — X; and any
proper map g : Yo — X étale on its image, and let Y1 := Y, x x, X1. Then there exists
a morphism [’ : (X1)y, = (X2)y, making the following diagram Cartesian:

XDy, —L> (X2)y,

o,

X ——Xp

In particular, if f is proper, then f' is proper as well.

Proof. The induced map g; : Y1 — X is also étale on its image so that (X )y, satisfying
the functorial property in Theorem 1.5 exists. Also, for any stack Z with a morphism
Z — X1, there are isomorphisms

Y2 XX, zZ= Y2 XX, (X1 XX Z) = (Y2 XX, Xl) XX Z= Y1 XX Z,
82(1) xx, Z = g(V2) xx, (X1 xx, Z) = (g2(Y2) xx, X1) xx; Z = g1(Y1) xx, Z.
Thus any morphism Z — (X)y,, corresponding to a section g1(Y1) xx, Z — Y| xx, Z
by Theorem 1.5, induces a section g2(Y2) xx, Z — Y»> xx, Z and thus a morphism

Z — (X3)y,. Conversely, any two morphisms Z — (X2)y, and Z — X making the
diagram

Z — (X2)y,

l

X1 — X3

commutative, factor through a unique morphism Z — (X)y,. O

1.2. The étale structure of a local embedding

Under certain assumptions, we can find a more precise description for the local étale
structure of a local embedding. We recall the following definitions which we will need
for our assumptions.

Definition 1.9. A morphism of schemes g : ¥ — X is called equidimensional if the
following conditions hold:

(1) g is a morphism of finite type.
(2) The function dim, g '(g(y)) is constant forall y € Y.
(3) Any irreducible component of ¥ dominates an irreducible component of X.

As these conditions are stable under étale base change ([EGA, 13.3.8]), the notion of
equidimensional morphism extends canonically to morphisms of stacks.
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Definition 1.10. Let Y be a Noetherian stack. It is called geometrically unibranch if it
has an étale atlas V which is geometrically unibranch, meaning that for any point v of V,
the scheme Spec Of}jv is irreducible, where Oi{lv denotes the strict henselization of the
local ring of v in V.

Notation. Consider a proper local embedding of Noetherian stacks g : ¥ — X, with ¥
reduced. Let Y| denote the locus of points in ¥ where the map g is not étale on its image.

Proposition 1.11. Let g : Y — X be a proper, local embedding of Noetherian stacks.
Assume that Y is reduced and geometrically unibranch, that the morphism on the image
Y — g(Y) is equidimensional, and that its degree is equal to a fixed number d at all
points of g(Y \ Y1).

There exist an étale atlas U of X and closed, isomorphic subschemes {W;}ic1, of U,
with intersections Wy = (), Wi for each I € P(L), as well as isomorphic subschemes
{Vl“}leL,aeA,;:{l ,,,,, ay of Y xx U, each mapping onto Y, with isomorphisms Vl“ - W
forming commutative diagrams with g : Y — g(Y), such that, at the level of supports,

g xxU=Jw. vxxUu= || V& groxxu= |J Wy
leL leL,acA; l,jeL,l#]j

In particular Y1 = g~ ({p € X; deg gp = 2d})).

More generally, for integers k > 1, each Yi_1 = g '({p € X; degg, > dk})
satisfies
g(Yi_1) xx U = U Wi and Y1 xxU= U Vi,
1€P; 1€Pyr,acA;

at the level of supports, where Py C ‘P(L) is the set of cardinality k subsets of L; for
each I € Py as above, Aj .= |_|le1 Aj; and forl € I and a € Ay, the scheme V' is the
preimage of Wy in V.

Proof. For any quasi-finite map f, we denote by md(f) the maximum degree of f:

md(f) := max deg f,.
pelm f

el

The degree function deg g, is upper semicontinuous. Let Z,, denote the locus of points in
y € Y where the degree of g reaches its maximum, so that, unless g is étale on its image,

md(g|z,,) > deg(gir\r;) =d. (1.1)

We will first focus on proving the existence of an étale atlas U 0 of X and {Wlo}l6 L,
{V}ieL, aea, such that

0 __ Oa
Y xx U= || v™.
laeA;

and such that each VIO” is mapped isomorphically to Wl0 C g(¥) xx U, and étale
surjectively to ¥ by natural morphisms. We note that once such an atlas U? has been
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found, any other scheme U’ mapping étale surjectively to U” will work as well, as we can
construct W, and V; as pull-backs of Wlo and V,O“, respectively.

We proceed by induction on md(g). If md(g) = 1, then g is an embedding and any
étale atlas U° of X would work, with V0 = ¥ x x U 0 gtale atlas of Y, embedded in Uy.
Assume now that md(g) > 2, and that the statement above can be proven for morphisms
of smaller maximum degree.

Consider a commutative diagram as in Lemma 1.19 of [V],

vi v

Y & X
such that the vertical morphisms are étale and surjective, and g; is a closed embedding.
The induced morphism V; — Y xx U is a closed embedding, and étale, and so V| is a
union of connected components of ¥ x x U. Let gy denote the morphism ¥ xxy U — U.
The fibered product ¥ x x U can be split into a disjoint union

YxxU=Viuvuv’,

where V" is the union of all components Vo ¢ Vi with g (Vo) € gu(Vi). We note that
Y x x U is geometrically unibranch, and so its connected components are also irreducible.
Let Wy := gy (V1), W := gy (V') and W" := gy (V"). By construction, W' and W are
closed subsets of U and none contains an irreducible component of the other.

First we notice that

g(Y) =my (Wi nW'). (1.2)

In other words, for any closed point y of ¥ and for any v € V; such that 7y, (v) = y, the
map g is étale on its image at y if and only if w := gy (v) € W) \ W'. Indeed, if g is étale
on its image at y, then the composition of the natural morphisms W; = Vi — Y — g(Y),
as well as the projection Wi U W' = g(¥Y) xx U — g(Y) are étale at v, which makes
the inclusion Wy — W; U W’ étale at w = gy (v), so w € Wi \ W’. Conversely, in the
natural Cartesian square

Y xx Wi\ W) —— Wi\ W

7

Y —————g(¥)

both the vertical morphisms and f; are étale, making the upper horizontal map étale
as well. Thus the restriction of g to g~ (ry (W) \ W’)) must be étale. Here f; is the
composition Wi\ W — W =V, — Y.

Both gy, and gy, are proper local embeddings. Clearly the definition of V” im-
plies that the maximum degrees satisfy

md(gy|,,) < md(gy). (1.3)
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Assuming V” # @, we note that gy (V") = W). This is true as gy (V") is closed in U
due to the properness of gy, and Wi \ W' C gy (V”). Indeed, as W) N W' has positive
codimension in Wy, while dim gy (V") = dim Wy, it follows that gy (V") N (W \ W)
# @. Due to the definition of V”, the degree of gy on this set is at least 2. But (1.2) and
the condition that deg g|y\y, is constant imply that deg gy is constant on Wy \ W’, and
as such, at least 2 at every point there. This can only happen if W \ W' C gy (V"), and
therefore if gy (V") = Wj.

Next we show that for appropriate choices of U, we also have

md(gy|,,) < md(gy). (1.4)

Consider E a connected, closed subscheme of g(Y) x x U, and assume that the restriction
of gy on gl_/1 (E) is étale on its image. Then we can assume that either £ N W; = J or
E € W;. Furthermore, in the first case, U can be replaced by U \ E without changing V1,
or any of the properties of U above.

Indeed, the restriction of gy on gljl (E) can be split as

(gg (E)YN(ViuV")u (g (E)YNV) = (ENW)U(ENW') = E,

and thus either ENW) =0, or ENW =@, or EC Wi NW'.
In particular, taking £ = 7, ! (g(Zy)), for an appropriate choice of U we may assume
that

7, (8(Zm)) € Wi

This, together with (1.1), implies that md(gy),,) < md(gy).

Moreover, the degrees of gu|y and gu|,, are constant over all points in W'\ Wy and
Wi \ W', respectively. Due to (1.3) and (1.4), we can now apply the induction hypothesis
to gu|,, and gy, obtaining two surjective, étale morphisms U’ — U and U” — U and

’ "
(Vi Yrew (V¥ Yiver such that
/ 4
VixgU'=[]v¥. Vv'xgU"=]]V.
l/,u/ l//’a//

the maps Vﬂ/ — U’ and Vl‘,’,// — U” are closed embeddings, while Vl‘}/ — V’ and
Vl‘,‘,” — V" are surjective, étale. Consider now U? = U’ xy U”, as well as Vl(,)“/ =
Vl‘,‘/ Xy U9 and Vl(,),“// = Vl‘f,// Xy U°. Finally, let Vlo =VixyU%and L = L'uL”u{l}.
The schemes {Vlo“ }ier thus obtained satisfy

lLaeA;

and each Vloa is naturally embedded into U,
The surjectivity of the maps VIO“ — Y remains to be established. Since Vl(,)“/ -V’

and VI(Z“U — V" are known to be surjective from the above, this reduces to showing that
both V' and V" map surjectively to ¥ (unless V" = ).
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Now, if for any closed point y; of Y \ Y| we have ({y1} xx U)NV’ = @, then consider
v1 € ({y1} xx U) N Vy and replace U by U U Uy, (v)), Where Ug, vy C U\ W' is an
open neighboorhood of gy (v1) in U. Thus V' is replaced by V' Ui g,' (Ugy (uy)), while the
maximum degree of gy remains unchanged. Since Y is Noetherian, we may thus assume
that all points in ¥ \ Y1 have preimages in V’. They have preimages in V" as well, as long
as V" # (. Indeed, if deg g, > 2 forany p € g(Y), then for any y; closed pointin ¥\ Yy,
choose y» € Y such that g(y;) = g(y2), and v € ({y2} xx U) N Vi. Then since 8Uyy, is
injective, @ # {y1} xx {gu(v2)} C V".

If y; € Y1, we can prove ({y1} xx U) NV’ # @ due to the structure of g(Y) xx U
around {g(y1)} xx U. For this, first let y, € Y; be such that g(y2) = g(y1), and vy €
({32} xx U)NV’ (cf. (1.2)). Consider a valuation ring R; and a map T} = Spec R| — Y,
taking the closed point to y; and the generic point (0) to z; € Y \ Y;. Construct another
map Tp = Spec R, — Y taking the closed point of the valuation ring R, to y, and the
generic point to zo € Y \ Yj such that g(z1) = g(z2) (such a map exists because g is
proper), as well as T, = Spec R, — V" taking the closed point to v2 (since V' — Y is
étale). Let C; denote its image in U. Then the generic point of {z1} x x C, must be in V'
and by specialization, we get a point in V’ whose image in Y is y;.

The same argument works for V" as well. With this, the proof that V' and V" map
surjectively to Y is complete.

Consider now the étale atlas U° of X constructed above and let Wl0 denote the image
of VIO“ — U for each [. The arguments in the proof of (1.2), when applied successively
to g0 and its restrictions to each Y x x Uy, yield

gV xx U= w).
1Py

However, each W? may not necessarily map surjectively to g(Yx). To adjust this, we
consider the permutation group Sz, of L and relabel

U= || U0 while W= | | W0, and Vii= || V%
oesy oeSy oeSy

for each/ € L and a € A; (for fixed bijections between the sets A;). Then U satisfies all
the conditions required in the proposition. Moreover, we note that now W; = W; for any /
and j as above. o

Definition 1.12. Consider a proper local embedding of Noetherian stacks g : ¥ — X.
Assume that there exists an étale atlas U of X with all the properties listed in Proposition
1.11. With the notation from the same proposition, let

Vi=YxxU=| |V and V=] |V
i,a a
foreachi € L, wherea € A;. Forany i, j € L,a € A; and b € Aj, we denote

Siajh = Im(‘/ia Xy th — Wi Xx VVJ)

For fixedi € L anda € A;, we define Rz ; := I_IbeA,- Siaih'
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Lemma 1.13. With the notation from Definition 1.12, Rz ; does not depend on the choice
of a.
Proof. Foranyi, j € L,a,c € A; and b € Aj, the sequences of Cartesian diagrams

Vi xy VP) Xy (VE Xy V) —= V¥ xy V ——= V¢

| .

Vixy VP U xx U——>U

~

yield a canonical isomorphism F' : th xy Vi xy Ve = (VF xy Vj”) Xuxyu (VS xy V).
These spaces are also isomorphic to (Vi xy V) Xyxyy (ij xy V) over V, e.g. due to
the sequence of Cartesian diagrams

(Vi xu Vi) Xyuxy (V) <y V) ——= V) xg V ——=V

o |

Vi xy VE YxxY —Y

Moreover,

1

(Vi xy V) xusxu (V6 xy Vi) Z (VE xu VE) vy (V xu V) (15)

contains the image of (ij \ Uk;,,E j Vj};{) xy Vi xy V{ through F and, as the codimension
of Uk# j Vﬁc in Vj]’ is at least 1, F' can also be understood as

VP xy Vi xy VEZ (VE xy V) oo (VE xy V). (1.6)

In particular, when i = j, this yields | |, §ab = Lpea, S for any a, ¢ € A;. |

113

Lemma 1.14. Let g : Y — X be a proper local embedding of Noetherian stacks, and
assume that the degree of g is the same at all points of g(Y \ Y1). Assume that there exists
an étale atlas U of X satisfying the conditions in Proposition 1.11. Then there exists a
stack Z, an étale morphism f : Y — Z and a proper local embedding h : Z — X of
generic degree 1 suchthat g = ho f.

Moreover, with the notation from Proposition 1.11,

| [wi=zxxu.

leL
Proof. The restrictions to Rz ; of the two natural projections on W xx W = W yield
a groupoid scheme Rz ; = W;. Indeed, the identity e : W; — S C Rz; is induced
by the diagonal V{* — V xy V¢, and there are natural inverse and multiplication maps,
built from i : Sfib — S}’i‘l and m : Sl.“l.b XU Sff — §7¢, the last of which can be identified
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with the projection on the first and third factors Vi" Xy Vl.b Xy Vic — Vl.“ Xy VlC We will
denote by Z the Deligne—-Mumford stack with groupoid presentation [Rz ; == W;].
Due to (1.6), the following is a Cartesian diagram of groupoid schemes:

‘ d
Lle.a Vi xy Vf —— Rz,

o

L. Vi Wi

proving the existence of an étale morphism f : Y — Z.

There is also a natural morphism of groupoid schemes from Rz ; = W; to W; xx W;
= W;, which is moreover an isomorphism over W; \ Uj#i W;. This yields g : Z —
g(Y) — X, generically one-to-one.

It remains to construct an étale map |_| ; Wj — Z and prove that

ZxxUZZxgy @) xxU)=Z x| JW = W
J J
Let W= ; Wj. As Wi xx W Z Ve xx U Z V8 xy (¥ xx U) Z L, Vi xy V),
the projection from W; xx W to the second term factors through p, : W; xx W —

L ; Wj. Moreover, p> is étale and surjective. Next, we check the existence of a canonical
isomorphism of groupoids

(Wi xx W) x| | w, (Wi xx W) ——| |, Sflib xx W

u [

W, xx W W, xx W

which, after descent, will induce the map |_| ;Wi — Z. (1.7) follows from a sequence of
isomorphisms

(Wi xx W) x| w; (Wi xx W) = (V xy V) xgw, (VExy V)
= v sy VO o (VE xy VI = || VE xy ((VF o VD) xyepr (VE xu Vi)

j.cd j.cd
= [V 5y ((VF xu V) sy (V xu V) Z [V sy (V] <y (VE xu Vi)
Je Jj-c

(based on isomorphisms (1.5) and (1.6)), and furthermore

;|_|v,.“ xy (VE xy (VE xw, V) 2V xy V xy Vi ;|_|S,.“,.b xx W.

1
J.c b

Finally, we note that (|_|j W)xxW = ([_|j W) xy(UxxU) = |_|j W; is the pull-back
on || j W of the groupoid presentation of X, and that the fibered product via p; on the
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left, and then p; : W; xx W — W; — | | W; on the right end,

(Wi xx W) x| | w, <|_| W xx W) X1y, w; (Wi xx W)
J
EWxx (W; xx W) X|_|]-Wj (W; xx W)

=W oxy (|_|S;”) xx W= (W; xx W) x, (I_leih) w, (Wi xx W)
b b

give alternative groupoid presentations of Z, and so Z xx U = | | ; Wi O

Definition 1.15. Let g : ¥ — X be a proper local embedding of Noetherian stacks, and
assume that the degree of g is the same at all points of g(Y \ Y1). Assume that there exists
an étale atlas U — X with the properties from Proposition 1.11. The network of local
embeddings of g and U is a set of stacks {Y;};cp () and morphisms ¢§ 1Yy, — Yy for
each pair I C J, I € P; and J € P}, constructed as follows:

(1) If g factors through f : ¥ — Z étale and i : Z — X of generic degree one
on its image, as in the previous lemma, then we define Y; := Z; xz Y, where the
network {Z;, (pj} of Z is constructed as below. The morphisms ¢§ Yy — Y are
also obtained by pull-back from the network of Z.

(2) If g is generically one-to-one on its image, then:

Let Yy := X with the given presentation [Ry := U xx U = U].If I = {i} € Py, then
Y; =Y, having thus a groupoid presentation R; = V;* where

Ri =V xy V&= W; xx Wi\ 5%,
J#
for Slf‘jb = Im(Vl.” Xy ij — W; xx W;). (In this case the indices a and b are uniquely
associated to i and j, respectively, but we keep employing upper indices as for i, j € I,
we can thus discriminate between Vl.“ D Vi £ Vlb C ij).

For any I € Py, define Y as the stack of groupoid presentation
— . a ~ — .
[RI - (H)R(,,Rl S Vi =Wr= (H)UW’]’
iel iel

where ([])&, denotes the fiber product over Ry, the groupoid structure is induced from
[R; = V{ = W;], and a is the index associated to some i € I.

For any K, J there is a natural isomorphism Ryux = R; xg,,x Rg. By induction
we find that for a fixed index a,
Ry =V xy, Vi =W xx Wi\ (] s (1.8)
Jj#iel
The morphisms ¢§ : Yy — Yy forJ D I correspond to the natural morphism between
the groupoid presentations [R; = V] and [R; = V}']. In particular, d){ =idy,.
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Notation. If 7 isasetand & ¢ I, we will write Ih := I U {h}.

Alternatively, the objects Y; and the morphisms ¢>§ : Yy — Y1 are uniquely defined
by the following lemma.

Lemma 1.16. Forany I, K € Py and b € Ak, there exists a natural étale map V[? — Y7
and

Yin xy, Vp = |_| Ve, (1.9)
jEL\K

More generally, for all J € Py and I € Py such that J D 1,

Yy xy, Vf = |_| Ve (1.10)
K=K;DK;_ 1D DKy41DK=I

for all chains Ki D Kj—1 D --- D Kixy1 D Ky = I with Ky € Py for each s. When
J =0,

Yy xx U= |_| Vi (1.11)
a,K=K;DKy_1D---DK1DKo=0

fora € K.

Proof. 1t is enough to prove the lemma in the case when g is generically one-to-one, due
to Lemma 1.14 and the construction of the network. Once (1.9) is known forall I € Py_1,
the isomorphisms (1.10) and (1.11) follow for all I € Pi by successive applications
of (1.9). We will prove (1.9) by induction on k. The case k = 1 results from the definition
of ¥;’s. Assume that (1.9) holds for all I € Py_;. Choose I and K € Py.

We will denote V. := Y xx U and V; = ||, k—x,5k,_ 55K oko= Vk =
Y; xx U (from the induction hypothesis). We will construct an étale, surjective mor-
phism |_] e V,’; ;= Y1, For this, recall the groupoid presentation [R;, = V[, ] of Y.
We note that the first projection p; : V}, xy, V}; — Vyj, is étale and surjective. We will
prove the existence of another étale, surjective morphism

p2: Vi xy, VE = Vi xy, | JVE = || Ve (1.12)
J JEL

and a morphism of groupoid schemes

Vi, <y, 143) XL, v, Vi, <y, VE) —— Ry

N

a b a
Vin Xy Vi Vin

Indeed, V), = Wy, = Vi xy V), inducing an isomorphism

@ Vi, Xy, VI? — (Vi xuy V§) xy, VI?.
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As V}; xyV = V}; xy Y xxU)= V}; X x Y, there is a sequence of Cartesian diagrams

(V& xu VE) Xysyy (VE Xy V) —=VE xy V ——= VL

X L

V]aXUVhC Y xx Y ——=Y;

giving a canonical isomorphism F' : (Vi xy V) xy, V}; = (V! xu Vi) Xyxyxy
(V}? xy V). Via the isomorphisms ¢ and V}; Xy de = V}; i for any j, we can now define
P2 Vi, Xy, VI? — |_|jeL V};j as 7rp, which is moreover étale.
Via the isomorphism F, the fiber product space (V}), xy, VI?) X\ vE, Vi, <y, V};)
J J
is isomorphic to
(Vi xu VE) Xyixxy (VE xu V) XLy ve, (V2 xu V) xy,xyy (Vi xu V)
= (V] xu Vi) Xy;xxy (V}? xy V) Xy, xxy (Vi xu Vi)
= (V8 xy VE) Xy xyy (VF xu V) xy, VE.
On the other hand, as
Rin = (Vi xy, Vi) xuxyxu (Vy xy Vi) = (V] xu Vi) Xy, xxy (V] xu Vy),
there is a natural projection
b b
(Vin v, Vi) L vE (Vin xv; Vi) = Run
making (1.13) into a morphism of groupoid schemes. Finally, due to the isomorphisms
above, the étale atlas V}, xy, VI? of Yy, yields a groupoid presentation with relations
(Vi X, VE) Xy, (Vi Xy, VR) Z (Vi Xy, V) Xya Rin xye (Vi Xy, V)
= VII; Xy, (Vla Xy th) XY xxY (Vla Xy th) Xy, VI?

= Vg xyy (Vi Xy VE) x| ve, (Vi v, 14

~ b b b b

= (Vin xv; Vi) Ly vE, (l_l Vij xvi VK) L vE, (Vg xv; Vi),
J

while (|]; V;;j xy, Vo) = L, V}éj is the pull-back of V2 xy, V§ = V2. This completes
the proof of isomorphism (1.9). O

Corollary 1.17. The morphisms ¢>5 : Yy — Yy for J D I are proper local embeddings.
Let J = 1 U{j} for some j ¢ I.If U is an étale atlas of X with the properties listed
in Proposition 1.11 for the morphism Y — X, then W; = V[ is an étale atlas of Yy

satisfying the same set of properties for the morphism ¢5 : Yy — Yy, and the network of
local embeddings associated to the local embedding ¢§ with the étale atlas W consists
of {(p¥ 1 Yk = Yulkouoy.
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Proof. The properness of the morphisms ¢§ 1 Y; — Yy is adirect consequence of (1.10)
and the fact that g : Y — X is proper. Formulas (1.9) and (1.10) also show that W; = VI”
has the properties listed in Proposition 1.11. Thus for J = I U {;j}, the network of local
embeddings associated to ¢ } with the étale atlas V' is made up of stacks with étale atlases
given by W for some K 2 J, and relations given by

( 1_[) Rix = Rk,

keK\I Ri

due to Definition 1.15. The stacks in the network are thus {Yx}x>;. Accordingly, the
morphisms of the network are exactly ¢II;I with K D H D J. O

Although the stacks Y; are not fibered products of stacks ¥; with i € I, the above ar-
guments show that they can be constructed intrinsically from a succession of fibered
products, after removing the diagonal components. In particular, there exists a closed

embedding
Y, < (]’[) i
iel

More precisely:

Corollary 1.18. Each (), := (¢}h, ‘Mlh) 2 Y — Yy xx Y is aclosed embedding, and

Y xx Y = ( I_l Imt,h) L (l_lIm(q&;,qu)),

hél, beAy iel

with the diagonal morphisms (¢>; , ¢§) 1Yy — Y5 xx Y yielding the higher-dimensional
components of Y; xx Y.

Proof. This is also a direct consequence of Lemma 1.16, due to the Cartesian diagrams

Ll Vis —= Vi xy V —Vy

]

Yjh —=Y xx Y ——=1Y;
where V = | |; , V7, while Vf; = Vf* xy V/ for fixed b € A;. O

Remark 1.19. By the previous corollary applied successively to each index I, the objects
of the network of local embeddings associated to the proper local embedding g : ¥ — X
and the étale atlas U are in fact independent of the choice of atlas with the properties listed
in Proposition 1.11. The choice of U determines only the number of copies of each Y;
contained in the associated network. For example, by replacing the étale atlas U of X
with U U U and keeping the choice of étale atlases for ¥ unchanged, we obtain a network
which, apart from the morphisms ¥; — X, is a disjoint union of two copies of the network
forU.
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Notation. Let g : Y — X be a proper local embedding of Noetherian stacks satisfying
the assumptions from Proposition 1.11. For any two generic points &; and &k of Y
and Yk respectively, such that K O J and such that &; specializes to ¢ IJ< (¢x), we denote

by [Ex — &] the degree of <pIJ< at (pIJ((EK).

For K € Py and J € P; as above, the following relation follows directly from Lemma
1.16:

5k — &71 = N(K, J)v(Ek. &r),

where N (K, J) is the number of all maximal chains K = Ky D Ky—1 D --- D Kj41 D
Kj =J and

V(Ek, £7) = {K' € Py; g generic point of Y such that 9, (Ex) = @7 (§x)}1.
Thus if K € Py, J € Pjand I € P; satisfy K D J D I, then by a count of chains

(Ex — &s1[65 — &1 _ HKr € Px; Ki DI}
[k — &1l HKr € Pe; K D J}IHK; € Pj; K; DI}

(1.14)

for any generic points &7, £; and £k of Y7, Y and Yk respectively, such that £; specializes
to ¢y (k) and & to ¢} (€)).

Theorem 1.20. Consider a network of proper local embeddings ¢5 Yy — Yp for
I € J,1 € P;iandJ € Pj, associated to a proper local embedding Y — X by Definition
1.15 under the assumptions of Proposition 1.11, where by convention Yy = X. For each
such morphism ¢>§, there exists a closed embedding of stacks qb’f : Y, — Y], together
with étale surjective morphisms py : Y, — Yj and p; : Y; — Y| making the diagram

o/
I /
Y, =Y
p,l lp,
¢
Y, —=Y;
commutative, and such that
Yy Xy, Y] = I_l Y, forJ €Pj
J'eP;, 21
Proof. We construct Y 1’ in decreasing order of /, with Y ,/ = Y; for I maximal. For

I € P,_1, the stack N; := |_|DI Yy comes with a natural map ny : Ny — Y; étale on
its image, and the étale atlas

|| ws = nivp) <y, Wi
JDoI

Y 1’ is constructed as in Proposition 1.2, so that it admits

(1) asurjective étale morphism p; : Y 1’ — Yy,
(2) an embedding Ny — Y 1/ whose composition with p; isnj,
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(3) an étale atlas W; satisfying Y Xy, W; = Wy, and
(4) a groupoid presentation R, = W; given by

Ri=wrxxwi\ J s\ U s
i#jiel kL, k1 ¢l
Given any k < n — 1, I € Py and assuming the stacks Y, with the above properties
constructed for all / D I, the network stack N; is constructed out of all stacks Y;u{h}’
by gluing each pair Y7, and Y;U{h’} along YI/U{h,h’} as in [AGV, Proposition A.1.1 and
Corollary A.1.2]. Accordingly, N; admits a natural groupoid presentation [| J,—; R/, =
U -1 Wil where the unions are considered inside U xx U and U, respectively. Next,
the composition maps Yl/u{h} — Yjupy — Y7 glue together to a morphismn; : Ny — Y;
which is étale on its image, as noted from the groupoid presentations of Ny and Y;. More-
over, for every J 2 I there exists a canonically defined closed embedding Y/, — N;. If
ny were proper, the construction in Proposition 1.2 applied to n; would yield the stack
Y; := (Y7)n, with the desired properties (1)—(4). However, n; is not necessarily proper,
so we will obtain the same construction indirectly. We consider a canonical stratification

N?L)N}’lilc_)...t_)N;H»] :NI

and a sequence of lifts (Yl)Nj’ forO <k <[l <n-—1, where N;’ = I—'JDI,JEPn Y;hasa
proper map into Yy, and Nf“ = Ny has a proper map into (¥;) NE+2- This is discussed in
the next lemma.

Although the process described in the lemma is indirect, the groupoid presentation
of the resulting space can be constructed directly as in Proposition 1.2, as indicated by
property (2) in the lemma. Moreover, the étale atlas (_J J~1 Wy of Ny is embedded in the
étale atlas Wy of Y7, and so the relations R/, defining (Y) y, are obtained, via Proposition

1.2, by restricting the preimage of (_J;~; W, in R; so that R}lU w coincides with the
JoI1 "

image of [ J;-; R/, in R;. This directly yields the presentation given at point (4) above.
At the final step, the stack X’ admits a groupoid presentation [R’ = U], with

R'=UxxU\[Js?. (1.15)

o
#J O

Lemma 1.21. With the notation above, let k and | be any integers such that0 < k <1 <
n — 1, and let I € Py. Define

N} = Im( I_l Y, — Nl).
J2I, JeP,
Then there exists a sequence of étale, surjective morphisms
Y; = (YI)NIHI — (YI)N;<+2 —> e (YI)N;H — (YD = Y1,

and morphisms nlI Ny = Nf‘H — (Y,)N; for each |, étale on their images, such that
the following properties hold:
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(1) The restriction ofnll+1 to N} is a proper morphism. In particular, forl = k + 1, the
morphismny : Ny — (Y) yk+2 is proper.
1
(2) With the notation from Proposition 1.2, (Y1) yi+1 )Nf = (YI)N}'
1
(3) ForeachJ DI, J € Py andl > s, there exist canonical Cartesian diagrams

[
N]

]

(Y2 it ——= (YD) e

l
NI

Proof. The construction of (¥;) N and the proofs of properties (1)—(3) are conducted by

decreasing induction on /. When / = n, consider N ;’“ =@ and (Y;) Nt = Y1 The map
1

n N/
n[INn'NI_ |_| Y; > Y
! JoI, JEP,

is proper and étale on its image, so (Y7)y» is constructed as in Proposition 1.2. As nj :
N; — Y; is étale on its image and N has a closed embedding in N; satisfying the
conditions of Corollary 1.7(a), the map n; lifts to n? Ny — (Y)) NI Furthermore, for
all J € P;, 1 > k, the Cartesian diagram

n n
N] NI

|

YJ—>Y]

induces a proper morphism (Y;) Nt > 042 N as in Corollary 1.8. Gluing all Y/’s

with J D I, J € P,_1 gives N?_l with a proper morphism to (Y7)y», the restriction
of n. This leads to the next step of induction, with the construction of (¥),n-1 =
1

(Yp) N;‘) nn-1- Assume now the constructions of (¥) NZ nlj/ and properties (1)—(3) are
1 J

known forall’ > [ > s — 1, J 2 I, J € P,. Then by property (3) and Corollaries 1.8,
1.7, there is a proper morphism

Yyt = ((YK)N?—I)N;( — ((YJ)N1]+I)N5 = Yy

forany K > J 2 1. Gluing the stacks Yz = (Yx); for all such K € Pr— gives N~
with a proper morphism to (Y;) N This is the restriction of the morphism nlJ :N;jy —

Yy N étale on its image, which was obtained from nlj‘|rl by Corollary 1.7. Finally, these
proper morphisms fit together in Cartesian diagrams as in (3) with / replaced by [ — 1,
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since the diagrams

Uxss kero, YNy — Ukor ker, Yo Ny

| |

Yy YDns

are Cartesian for all s > /, due to Corollary 1.8 and decreasing induction on s. O

Definition 1.22. For a proper local embedding g : ¥ — X and an étale atlas U, the
morphism p = py : X’ — X introduced in Theorem 1.20 (in the particular case when
I = () will be called the érale lift of g with respect to the étale atlas U'.

Remark 1.23. We note that with this terminology, the étale morphisms p; : Y; — Y;
introduced in Theorem 1.20 are the étale lifts of ¢ 5 with respect to the étale atlas Wy for
any J = I U{j}and j ¢ I. Indeed, this is a direct consequence of Corollary 1.17, as all
the stacks N } and Y} for J O I constructed in the course of the proof of Theorem 1.20
depend only on the network {¢g Yk = Yulk-oHoy-

Example 1.24. Consider a projective curve X whose singular locus consists of a simple
node x, and let g : ¥ — X be its normalization, with g~ (x) = {y1, y2}. Then X’ is the
union of two copies ¥'! and Y2 of ¥, glued together along g~ ' (x) such that y} = y% and

v =

Example 1.25. Let U0 = Spec k[x1, x2, x3] and consider the action of Z3z = A3 on U
which permutes the coordinates,

o ([x1, x2, x3]) == [X5(1), X5 2)s X 3)]-

Let VO := Spec k[x1, x2] L Spec k[x2, x3] L Spec k[x1, x3], with the natural local embed-
ding g° : VO — (xjx2x3 = 0) — UO, and the natural action of Z3 on V° which is
compatible with g°. Taking quotients yields a local embedding

g A% — [A%)Z3).

We denote Y := A2, X := [A3/Z3]. Then U := Lges, UV is an étale atlas of X satisfying
all the properties listed in Proposition 1.11, where Y xx U = Viu Vo U Vzand V; =
Wi = pe 53 (Xa(i) = 0) = |, S5 A3. The associated network of local embeddings will
thus be of the form

Yis3 ——= V31 Y, —X
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Yxy X'

Fig. 1. Example 1.25.

where Y] = Y, = ¥3 = Y = A? withthe map g : ¥ — X. Moreover Y15 = Y31 = Yp3 =
AU Al and ¢112 : Y12 — Y1 = Speck[x1, xo] maps each copy of Alinto (x; = 0) and
(x2 = 0), respectively, while (;5%2 = q)llz o T, where 7 is thg transposition switching the
two copies of A!, and similarly for the other morphisms é; Iz Finally, Y>3 is a copy of
two points, each mapped to zero on one of the lines of Y;;, respectively. Thus, with the
notation from Theorem 1.20, ¥/ = (¥;); is obtained by gluing two copies of A? outside
the union of two lines, and N is the union of Yi”s fori € {1, 2, 3}, glued along the Y;;’s
as indicated by the arrows in the network. The colors in Figure 1 (see the pdf file) show
which pairs of lines are identified in N. Thus X’ = Xy is isomorphic to X outside N,
while

N=g(¥)xx X and Y xyx x’=|_|Y,.’,

as shown in the figure.

1.3. Chow rings and universally closed push-forwards

Let g : Y — X be a proper, local embedding of Noetherian stacks. Assume that Y
is reduced and geometrically unibranch, that the morphism on the image ¥ — g(Y) is
equidimensional, and that its degree is equal to a fixed number d at all generic points. The
stacks Y constructed in the previous sections are in general non-separated. However, they
do satisfy the existence part in the valuative criterion of properness.

Definition 1.26. A morphism of stacks f : F — G will be called universally closed if it
is of finite type and, for any complete valuation ring R with field of fractions K and any
commutative diagram

Spec K —— F

|l

SpecR —— G
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there exist finite extensions K’ of K such that, for the integral closure R’ of R in K’, the
composition morphism Spec K’ — F extends to Spec R’. As in [V], we are mostly in-
terested in stacks having coarse moduli schemes. Then by Proposition 2.6 and Definition
2.1 in [V], the image of such a morphism of stacks is defined and the definition above is
a natural extension to stacks of the notion of universally closed morphism of schemes.

Definition 1.27. Consider a universally closed morphism of stacks f : F — G. A prob-
abilistic weight w of f is a map defined on the set of all integral substacks of F, with
values in the interval [0, 1], such that the weight of the generic point of F is 1 and, for
any commutative diagram as in Definition 1.26,

w(D) =) w(P),

1

where D is the image in F of the unique point in Spec K, and P; are the images of the
closed point in Spec R’ for all map extensions Spec R’ — F as above.

Definition 1.28. Given a universally closed morphism of integral stacks f : F — G
with probabilistic weight w, let

V]I =w(V)deg(V/W)[W]

for any closed integral substack V of F, where W = f(V) and deg(V/W) is as in
[V, Definition 1.15]. A homomorphism f; : Zx(F) — Z;(G) is then defined by linear
extension.

Proposition 1.29. The homomorphism f, : Zy(F) — Zi(G) induces a well defined
universally closed push-forward homomorphism f, : Ax(F) — Ax(G).

Proof. Propositions 3.7 in [V] and Proposition 1.4 of [F] deal with the proper push-
forward in the cases of stacks and schemes, respectively. The difference for universally
closed maps lies in the proof of the latter, in the case when dim F = dim G. The case
when f is finite is identical to Case 2 in Proposition 1.4 of [F]. Following [F] closely,
we take normalizations of the source and target, and the problem is thus reduced to the
case of a universally closed morphism of normal varieties. Let W be a codimension one
subvariety of G, let A be the local ring of W on G, and B the integral closure of A in the
field k(F) of rational functions on F, such that B is a discrete valuation ring. Then by
Definition 1.26, for each maximal ideal m; of B there are a finite number of codimension
one subvarieties Vl.l of F such that B dominates, and is therefore equal to, the local ring
of each Vil in X. Then for any r € k(F)*,

Z ordy:(r) deg(Vil/W) = ordy (N(r)),

where for each i a choice of the index / has been fixed, and N (r) is the determinant of the
k(G)-linear endomorphism of k(F) given by multiplication by r. Finally,

fldivin] =) ordyi () ful V1= ) ordyi (Mw(V)) deg(V}/ W)LW].

1 1
Z v,



The structure of a local embedding and Chern classes of weighted blow-ups 1765

For i fixed, ordy (r) deg(Vil /W) is constant and ), w(Vl.’ ) = w(F) = 1 from Definition
1.27. Thus
fuldiv(r)] =) ordw (N (r)[W]
w

as in the case of proper morphisms. This finishes the part of the proof specific to the
universal closedness of f. o

Universally closed push-forwards enjoy the usual properties of their proper relatives: for
example, they commute with flat pull-backs, and the usual projection formula holds for
f universally closed and flat.

Theorem 1.30. Let g : Y — X be a proper, local embedding of Noetherian stacks.
Assume that Y is reduced and geometrically unibranch, that the morphism on the image
Y — g(Y) is equidimensional, and that its degree is equal to a fixed number d at all
points of g(Y \ Y}). There exists a Deligne—-Mumford stack X' with a surjective étale
morphism to X, such that the fiber product Y' = g(Y) x x X' is a finite union of stacks Y/
mapping étale onto Y, and such that the maps Y — Y and p : X' — X are universally
closed. Moreover, p admits a probabilistic weight w.

Proof. Consider a network of local embeddings for g : ¥ — X as in Definition 1.15. Let
X’ be the corresponding lift of X constructed in Theorem 1.20. Let ¢; denote a generic
point of Y}, with ¢y the generic point of X’ which specializes to the image of ¢;. With the
notation from (1.14), define

1
[Pllér — &gl

for any I € Py. Here for any K, we let £¢ denote the image of {x in Yx. Then (1.14)
becomes

w(¢y) =

w(e) =Y _[& — Elw(Z)), (1.16)

where the sum is taken over all J € P;, J D I, such that &; specializes to <p§ &y).
As {Y; \ U 5; Y;}1 forms a locally closed stratification of X’, the generic point of any
integral substack D of X’ will be found in exactly one of the above strata. We extend w
to a function on all points of X’ by identifying w(D) with the weight of the generic point
of its associated stratum which specializes to it.

The universal closedness property will result during the proof that w is a probabilistic
weight of p : X’ — X. Consider a complete discrete valuation ring R with field of
fractions K, a commutative diagram

Spec K —— X'

| b

Spec R —— X
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such that the image go in X" of the generic point of Spec R lies in a stratum Y;\| Jg~; Y.
and the image ¢ in X of the closed point of Spec R lies in Im(Y; \ Jg~,; Yk — X) for
some J 2 I.Since Y; \ Ug~; Yx = Y1 \ Uk, Yk and the map ¥; — X is proper,
there is a unique extension v’ : Spec R” — Y; of the composition Spec K’ — Spec K —
Y; — Y;, with the notation of Definition 1.26. Let ¢ € Im(Y; — Y;) be the lift of g;
through this extension. Then through each point in the preimage of ¢ in Y; C X' there is
a unique lift Spec R" — Y; < X’ of the map v’". The generic point of each such lift has
to be go, because the map p; : ¥; — Y restricts to the above mentioned isomorphism
Y\ Ugor Yk = Y1\ Ugos Yk Let y; be the images of the closed points of these lifts.
They all have the same weight w(£;). Then by (1.16),

w(go) = Y w(y),

1

which proves that w is a probabilistic weight for the universally closed morphism p. O

Corollary 1.31. Foreachi € {0,...,n}and I € P;, there is a universally closed push-
forward map pry @ Ax(Yy) — Ax(Yr) such that for any connected component Z of Yy,
the restriction of the map

prxo py : Ac(Y) — Ar(Y))

to Ak(Z) is d-ida, (z), where d is the degree of the morphism p?l (Z) — Z. In particular,
the flat pull-back py is injective.

We note that all maps p; are universally closed due to Theorem 1.30 in conjunction with
Remark 1.23.

By convention, X’ = YQ’), and thus the corollary shows how A(X) can be regarded as
a subgroup of A(X’), and how classes in A(X) can be recovered from A(X’) via push-
forward.

In addition to the assumptions of Theorem 1.30, for the remainder of this section we
will assume that X is smooth, and that the morphisms ¢>IJ : Yy — Y, are local regular
embeddings. An extended Chow ring of the network {¢ ,J : Y1 — Yy}1.; was introduced
in Definition 3.6 of [MM1]. We recall this definition with a slight variation that does
without the action of a symmetry group on P = | Px.

Notation. Fix / and / U {h} € P. For any cycle o = [V] € Z;(Im(Yjuny — Yr)), let
ap € Zi(Yiuny) be defined as follows:

I
op = 7 ]
deg((¢lu{h}) W)/v)

where {V}f}i are the /-dimensional components of (qb{u{h})’l V).
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Definition 1.32. The vector spaces A;({Y;};cp; Q) are defined by
Al{Y1}ep; Q) == @) /o2 Yi(yy) /~,

1

the sum taken over all I € P with codimy Y; < [. The equivalence relation ~ is generated
by rational equivalence together with relations of the type

o« Ve
h/

for any cycle o = ¢’{U{h}*°‘h € Zi(Im(Yrupmy — Y1)).

The field of coefficients QQ will be omitted in the notation throughout the rest of the
text.

Definition 1.33. Multiplication is defined as

CtOp(¢II$JNYI \X)Ctop (¢‘IIJ]NYJ 1x)

Ctop (NYIUJ\X )

in A(Yyuy), for any two classes « € A(Yy) and 8 € A(Yy). Here ¢[’L"jj, q&{jJ are the

(generalized) Gysin homomorphisms, as defined in [V], while ctop(NyK| x) denotes the
highest Chern class of the normal bundle Ny, x.

a- Bi=gl @) -7, (B) -

Theorem 1.34. The following rings are isomorphic:

AX)) = A{Y1}iep)-

Proof. Compositions of the flat pull-backs p with the push-forward of embeddings ¢}‘i
add up to a morphism @;.p A(Y;) — A(X’), which moreover factors through F :
A({Y;}jep) — A(X'). The compatibility of the group morphism F with the product
operations is a direct consequence of the excess intersection formula for the embeddings
of Y; and Y into Y, ,, with intersection Y, .

Construct an inverse for F as follows. For each J € P, let U; denote the complement
in Y of all the images of Y;, with J/ C I. (To define this complement one can work
with supports of the corresponding coarse moduli schemes, but there is a canonical stack
structure on U;.) Note that Uy = Y, \ UDJ Im(Y; — Y;) as well. Working with the
commutative diagram of open/closed exact sequences

Drgs A¥uy) — AY)) —= AU;) —=0

Pju(k)l P’}l =L

@kg.] A(Y}U{k}) — A(Y)) —= A(U;) —=0
one finds, for each o, € A(Y)), classes ay € A(Y;) and a/JU{k} € A(Y}U{k}) such that

JUlk
O‘/J = pjas + Z‘ﬁ/J* { }a/JU{k}'
keJ
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Reiterating this argument one finds a collection of classes [e;] € €D; A(Y;) for all ]
containing J such that

’ * o1
@y = Z PyPis-

12J

The choice of «; is unique up to the equivalence relation ~. Indeed, if ) 157 p*}¢§ Br

= 0 then Y ,5, ¢}.B1 = 0 by Corollary 1.31, or equivalently, B; = — 3,5, ¢} Bi.
After applying the equivalence relation to each ¢5 .Br, By can be replaced by a sum of
classes from A(Yy) with I D J, and induction on the index set can then be applied by
Lemma 3.13 in [MM1]. When J = @, the collection [a;] € @I A(Y)) defines the desired
inverse of F. O

2. The Chern classes of a weighted projective blow-up

In this section we extend the notion of a blow-up along a closed embedding to the case
of a proper local embedding g : ¥ — X of Noetherian stacks. We assume that Y is
reduced and geometrically unibranch, that the morphism on the image ¥ — g(Y) is
equidimensional, and that its degree is equal to a fixed number d at all generic points.

We note that for practical purposes, it is often enough to work with just BlYi’ X', for
universally closed étale lifts p : X" — X, and a corresponding étale morphism Y/ — Y
constructed as in Section 1. For example, this is the case when one is interested in in-
tersection theory on a smooth Deligne-Mumford stack. However, in other contexts, a
stack X with a proper morphism f : X > Xis required. A natural construction of X
follows. For special morphisms g : ¥ — X, the stack X was defined in [MM1].

Definition 2.1. Let g : Y < X be a proper local embedding of smooth stacks, and
consider a groupoid presentation [R = U] of X suchthat Y xx U = [_| V¢ has all the
properties listed in Proposition 1.11. The blow-up X = Bly X of X along Y is defined as
the Deligne—Mumford stack of étale groupoid presentation X = [R = U], where U is
the fibered product over U of the blow-ups Bly; U for all i, and R is the fibered product
over R of the blow-ups Bl Sub R for all i, j, b, where a is fixed.

The natural morphlsms 5.t R = 0, aswellas é : U — 1%,2 : R — R and

: R X R — R making up the groupoid structure are induced from the groupoid

morphlsms s,t,e,i,mof [R = U] by the universal property of the blow-up. Indeed, this
is due to the following lemma.

Lemma 2.2. With the notation from Proposition 1.11, the following hold:

(1) Vixy R= |_|j b S“b via each of the étale morphisms s, t.

1

) Blu sab R = (B]W U) Xy R via each of the étale morphisms s, t.
3) e~ IV“XUR = ZLw,, while i~ Isab = Isba and m~ ISab = Il_lch“‘ usg:
4) R X5 RZ (ni,a,j,b,k,c)RXUR Blsfk”xus,gj?(R Xy R).
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Proof. We will identify V with its image W; in U. Statements (1) and (3) follow from
the definitions of V and S“b Statement (2) is a consequence of (1), together with the

observation that Il’il sb = (s_IIWl)" = *I" and ILI 5o = (t_lIW Y= t*I" due
j.b Pij lj.b

to the fact that s, ¢ are étale. Statement (4) follows in the same way, due to (3) and the fact
that m is étale. m]

In particular, statement (2) leads to

Corollary 2.3. Let g : Y — X be a proper local embedding of smooth stacks, and
consider a groupoid presentation [R = U] of X suchthatY xx U = Ui,a Vi has all the

properties listed in Proposition 1.11. Then the blow-up morphism f : X > Xis proper,
and there exists a Cartesian diagram

f/

X —= X'

1)
s f
X——=X
where p : X' — X is the universally closed étale cover constructed in Section 1, and
with the notation from Section 1,

X = (H)X Bly, X

Proof. With the notation from Definition 2.1, we have U = X xyx U, due to Lem-
ma 2.2(2). Thus f is proper since U — U is. On the other hand, U is also an étale
atlas of X', and so U is also an étale atlas of X'. It remains to study the morphisms in-
duced at the level of relations. Due to (1.15), we have U]’b Sl“]b NR = L. Sl“f NR’, which
is the relation space for Y/ (Definition 1.15). This is enough to deduce that the diagram of
stacks is Cartesian. O

The blow-up X is independent of the choice of étale atlas U. This follows by standard
functorial arguments.

For the remainder of this article, whenever we talk about the Chern class of X , We
will assume that X and Y are smooth stacks, and that the images W; of Vl.“ in U for all
i intersect each other, as well as their intersections, transversely, so that X is a smooth
stack. In this case,

PTx =Ty, P T =Tg.  piNvix gN’Y,-’lX” ‘li*N’y\x _NY '

for p; : Y/ — Y and the map g; : Y = Y between exceptional divisors. Thus calculating
the Chern invariants of X reduces to the calculation for X’ due to Corollary 1.31. We can
thus reduce the problem for a local embedding of smooth stacks to that for a succession
of smooth embeddings. If, moreover, the ideals Z; of Yl.’ have compatible filtrations with
weights such that weighted blow-ups can be defined, then the above reasoning applies to
weighted blow-ups as well.
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Remark 2.4. If X and Y are smooth, but the images W; of Vi" in U do not intersect each

other or their intersections transversely for all i, then in general X and X’ are not smooth
stacks. However, even in this case they come equipped with a Chow class suitable enough
for intersection theory. Indeed, in this case X" := ([];)x’ Bly X' is still a fibered product
of smooth stacks over a smooth stack, and the Cartesian diagtram

X/ _ s ni X’

]

X' — T, Bly X’

produces a Chow class A'([[]; Bly: X']) on X', invariant under deformations of the map g
to X.

2.1. Weighted projective blow-up and locally trivial weighted projective fibration

In this section we will work with stacks over C. Let Y be a smooth substack of a smooth
stack X. Consider an increasing filtration {Z,},>0 of the ideal Zy of Y in X such that
To=0x,I)y =ZIy and 7,7,, < Z;yy4,, forallm,n > 0.

Lemma 2.5. Assume that {Z,,},>0 has the following properties (MM, Section 3]):
) LN =Y LTy,
(2) Ii/(Tx N I2) is a subbundle of the conormal bundle Ty /T%.

Then Proj (@nzo Tn) has only quotient singularities. This implies the existence of a nat-
ural desingularization X of Proj(@nzo T,) (constructed as in [V, Proposition 2.8]) such
that locally in the étale topology the morphism f : X — Proj (®n20 Tn) is of the form

(W/H] — W/H,
where W is a scheme and H is a finite group acting on it.

Proof. Consider an étale atlas of X made up of affine schemes U = Spec R such that
V :=7Y xx U is complete intersection in U, and such that there exists a set of generators
{xnitn,i of Z(U) with x,; € Z,(U) \ Z,4+1(U), and with the property that the images of
{Xnitn<k,i in Z(U) /(T (U) N T2 (U)) form a basis for T (U) /(Zx (U) N I3 (U)). Let

Ry = R{yni}nil/ Ui = Xniln.i)

and let Y1 = V be the zero locus of 1] := {yy;}n,; in Uy := Spec R;. Then U; is smooth
and Y7 is smooth too, because Y is. The finite group G = EBM Z, has a natural action
on Rj. Due to condition (1),

= > [lnw=1.w). @D

Sikar=n k

Here a; are non-negative integers.
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If || g Spec R is an étale atlas for X, then L r(Bly, U1/G) is an étale atlas for the
stack Proj(Q}n>O 1,), where Bly, U; represents the blow-up of U; along Yi, with the
natural action of G induced from the action on Rj.

As | |z(Bly, U1/G) has only quotient singularities, we can construct a natural desin-
gularization of Proj(€P,,~, Z,) by following [V, Proposition 2.8]: We can choose T =
L Rox Ux/ M, for finitely many choices of x € Bly, U; and suitable neighborhoods Ijx
in Bly, Uy, where M is the largest small subgroup of the stabilizer for x (which ensures
that 7" is smooth). Then the normalization Ry of T X pyoj(ep,_, 7,) T'» With the morphisms
induced by the two projections on 7', defines an étale groupoid structure on 7. Indeed,
the multiplicative structure comes naturally via the isomorphism of Ry x7 R7 with the
normalization of

(T Xproj(@,.0 T T) X1 (T Xproj(@,-0Z) T) = T Xproj(@,-0 T T XProj(@,20Z0 T

(by the Purity of the Branch Locus). 5
By (2.1), the quotient W/(G/M) of the smooth scheme W := U,/M is open in
Proj(€D,> Zn|v)- Moreover,

W x(G/M) =W x W,

UG

where W x 0./G W denotes the normalization of W x 0./G W (by the Purity of the Branch

Locus). The construction of X now implies that the following diagram is Cartesian:

(W/(G/M)] ——— X

|

W/(G/M) ——Proj(D,,~0 Zn)
and the horizontal arrows are €tale. O

Definition 2.6. Let Y be a smooth substack of a smooth stack X, satisfying conditions (1)
and (2) in Lemma 2.5. Then X constructed above, with the natural morphism 7 : X - X,
will be called the weighted blow-up of X along Y, with the filtration {Z,},>0.

Let X* := Proj(D,~(Zx), with the morphism 7* : X* — X. By Lemma 3.1 in
[MM1], the reduced structure of X* xx Y is Y¥# := Proj(@n>0 Tn/Tyhs1), and Z,, =
7Ty
Recall the morphism f : X — X*. The closure in X of f~!(Y*\ Sing(X*)) will be
called the exceptional divisor of 7, and denoted by Y. With the notation from the proof
of Lemma 2.5, Y is given locally in the étale topology by [(Y1x/M)/(G/M)), where
le C Ux is the restriction of the exceptional divisor Y1 in Bly, Spec Ry to the open
set Ux.

Lemma 2.5 also implies fxOg = O+ and f*I" =71

y#>as Xand X # coincide outside

a codimension two locus. Thus rr*I;f/ = 7, for any n.
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Definition 2.7. Consider the weighted blow-up X — X constructed in Lemma 2.5. De-

fine
A= Spec(@In/In+1>.
n>0

Suppose A — Y is a C*-equivariant affine fibration, with a trivialization (locally in the
Zariski topology) on which C* acts linearly on the fibers. Thus the fixed point locus of A
with respect to C* is a section of A — Y. We will call it the zero section of the fibration,
and identify it with Y.

Denote £ := Oy R0y, O;((—l? ) =1; /Ié, the conormal bundle of the regularly

embedded Y in X.

Lemma2.8. Let v : X — X be a weighted blow-up of X along Y — X, with the
filtration {I,,},>0, and let Y denote its exceptional divisor. With the notation set up above,
i L =T, /T4, and

A= Spec(@ E") — A= Spec(@ JT*E")

is the weighted blow-up of A along its zero section Y, for the filtration {J,}, of the ideal
T =®D,~0Zn/Zns1 given by T := @y, Ik /Li+1. Then Y = Proj(p,, L") is also the
exceptional divisor of A.

Proof. We noted that f*I; = 7y, and thus also f*(I;/I;H) = I;#/I;;H as f has
finite-dimensional fibers. This implies 7.L" = 7, /Z,4+1 due to [MM1, proof of Lem-
ma 3.1].

Consider an étale atlas of X made up of affine schemes U = Spec R, as in the proof
of Lemma 2.5. We construct the weighted blow-up A — A by the method outlined in the
above mentioned proof. We will keep the notation found there throughout this proof as
well. Let V = Spec § := Y xx U. Then an étale atlas of A is made up of affine schemes
Spec S[{xui}n.i].- Consider covers T1 := Spec S[{yni}n,i] with y”;l. = xpi,let Z1 EV
be the zero locus of Ji := {yn;i}n,; in T1, and consider the blow-up fl = Blz, T1, with
exceptional divisor Z;. The group G = @n’i Zy acts on T7 and its blow-up.

With these data, Z; = Y1 = V. Moreover, there is an isomorphism of normal bundles
N, Zn = Ny1|U1, compatible with the action of G on them. Thus Zl = 171, as well
as V. G = N, 7110, and the largest small subgroups of the stabilizer for corresponding
points in the exceptional divisors coincide as well (while for points not in the exceptional
divisor, the stabilizer itself is a small group). An étale atlas of A is L1, Ty, /M, for finitely
many choices of x € Zj, with the corresponding small subgroup M and suitable open
neighborhoods f"lx C Tl. Then

oz spee( @73, 73) = seee( DT /75
so that N
T]/M = Spe(:(@I’i /I’jH) ~ Spec(@(lﬁl /IQH)M),
>0 ARVA et "W

thus T /M = Spec(D,~( I;IX/M/I;I}M). This proves A = Spec(ED, L£"). o
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~

Conversely, given a morphism p : P — Y with a sheaf £ on P such that P =
Proj(éP,, 7« L"), then P can be understood as the exceptional divisor of the following

weighted blow-up:
Spec (EHB L’") — Spec (@ s E”).

Lemma2.9. Let A — Y be a C*-equivariant affine fibration with a trivialization
(locally in the Zariski topology) on which C* acts linearly on the fibers, as in Defini-
tion 2.7. Consider the natural filtration of the ideal I of the zero section Y in A induced
by the weights of the C*-action, and let A — A be the corresponding weighted blow-up,
with exceptional divisor Y. Then

Y =[(A\Y)/C*.

Proof. Here we will employ the same notation as in the proof of Lemma 2.8. For x € Z;,
with the corresponding small subgroup M and suitable open neighborhood Ty, C Ty, let
le := T1x N Zy, and let Ty, be the preimage of le in the C*-bundle T} \ Z; — 21
Consider the commutative diagram of GIT quotients

Ty —Tix/M
e e
Zix — Zix/M

Let O, denote the C*-orbit parametrized by x. We claim that M keeps O, pointwise
fixed, so C* acts freely on O,/M = O,, and thus for suitable choice of T, we have

Z1x/M = [(T1/M)/C*]. (22)

Indeed, any element in 0; € M is a reflection, meaning that its fixed point locus is a
divisor D in T},. Moreover, from the definition of the G-actions, the divisor D is a strict
transform of a divisor D = (y,; = 0) fixed by o;. But x € D & O, C D, and thus
M = Stab, for any g € Oy.

From (2.2) it follows that

[(Z1x/M)/(G/M)] = [[(T1x/M)/C*1/(G/M)] = [[(Tix/M)/(G/M)]/C*]
= [(T1x/G)/C7],

where 71, /G isanopenin A \ Y. O

Notation. For any C*-equivariant affine fibration A — Y with a trivialization on which
C* acts linearly on the fibers, we denote

PY(A) :=[(A\Y)/C"].

We will say that P (A) is a weighted projective fibration.
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We return now to the weighted blow-up 7 : X > Xof X along Y, with filtration
{Zn}n>0. We saw that the relation JT*I?; = 7, holds for any n. The proof of Lemma 2.5
also implies isomorphisms between Chow groups:

AX) = AX") and AY) = A(YH),

as X and X* have the same coarse moduli space. With this, we have the following de-
scription of the Chow ring of ¥ (Lemma 3.2 in [MM1]).

Lemma 2.10. (a) The normal bundle in A = Spec(@nzo Tn/Zn+1) of the fixed locus Y
under the natural C*-action on A is

Nyja = @Nn//\/nﬂ,

n>1

where {Ny}, is the filtration of the normal bundle Ny|x dual to the filtration
{Z0/(Tu N IPYa of Ty /T3
(b) There is a ring isomorphism

A(Y; Q) = A(Y; QLt]/(Pyx (7)),

where Py|x(t) is the top equivariant Chern class of the bundle Ny|a. In particular,
the free term of Py x (t) is the top Chern class of Ny|x. Here t is the first Chern class

~ . Vv
of O;(1) := Nf/lff'
Lemma 2.10 sets up the context for calculating the Chern classes of the locally trivial
weighted projective fibration p : ¥ — Y by deforming Y to a weighted projective bundle
on Y and applying the Euler sequence from the Appendix. Here by a weighted projective
bundle on Y we mean a stacky quotient [(N \ Y)/C*] where N — Y is a vector bundle
with a linear C*-action.

Indeed, with the notation above, consider the standard deformation

D = Blyx(oo)(A x P\ A

of A to the total space Ny 4 of the normal bundle N v|A, Where A= Bly A is one of the
components of the fiber over oo of Bly x{c0} (A X IP’I) — P!. Thus the fiber over oo of
D — Plis Ny|a, and the action of C* over A x P!, with fixed locus ¥ x P!, induces a
natural C*-action on D. Moreover, due to Lemma 2.10(a), the quotient of Ny|4 \ Y by
C* is a weighted projective bundle, where we have identified the zero section in Ny
with Y. Push-forward by the composition

[(Nyja\Y)/C*l < [(D\ Z2)/C*] - ¥ x P! - ¥

(where Z is the fixed locus in D) induces an isomorphism between the Chow rings of Y
and of the weighted projective bundle [(Ny4 \ ¥)/C*]. We obtain the following
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Proposition 2.11. Let p : Y > Ybea weighted projective fibration as above, and
On = Ny, /Nu,.,, for all indices w, such that N, # Ny on which C* acts with
weight wy,. Then the total Chern class of C is

c(V) = p*e¥) [ [ e(Qn ® L&),

n+1°

with £ := O3(1) and c(Q), ® LOWn) = [1;(A + ai + wyc1(L)) where a; are the Chern
roots of Q.

Proof. Letis : [(Nyja \ ¥)/C*] — [(D\ Z)/C*] and iy : Y - [(D \ Z)/C*] be
embeddings of fibers in the flat family [(D\ Z)/C*] — P! andlet g : [(D\ Z)/C*] — Y
be the natural projection obtained after taking quotients of D — A, such that goip = idy.
Then by the projection formula and the rational equivalence of fibers,

i0+¢(Ty) = i0+igc(T(p\2)/C) = looxinC(T[(D\2)/C*]) = fcoxC([(Nyja \ ¥)/C*]),

and thus after composing with g,

c(Ty) = guicoxc([(Nyja \ Y)/C*)),

which by the Appendix and Lemma 2.10 is of the form described in this proposition. O

2.2. Model for a weighted blow-up

We start our Chern class calculations with the most approachable type of weighted blow-
ups: when the blow-up locus is the fixed locus of a C*-action on the entire space. In
this case, equivariant cohomology techniques permit the recovery of Chern classes of
the blow-up from their pull-backs to the exceptional divisor, which in turn are easily
computable.

Let Y be a stack, A a C*-equivariant affine fibration on Y as in Definition 2.7, such
that the C*-action on A induces a decomposition of the normal bundle of the fixed locus Y

Nyia =P Q.
i

with weights {w, }, and tk Q,, = k. Let Oy denote the trivial line bundle on Y. Consider
the torus 7 := C* x C* action on A x Oy coming from the individual action of the first C*
on A and the second on Oy. In this subsection we will denote by X := P (A & Oy) the
locally trivial weighted projective fibration obtained as a quotient of A x Oy \ Z by C*
embedded diagonally in 7 (where Z denotes the fixed locus), and we set Y := P¥(A)
and X := P(O5(—1) ® O7).

We obtain a blow-up diagram
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where ¥ = P(Oy) — PY(A & Oy), and similarly j : Y < X is the embedding
Y = P(Oy) <= P(Oy;(—1) & Oy), the exceptional divisor in the weighted projective
blow-up f : X - X.

Proposition 2.12. Keeping notation from the above, assume that for each n, the total

Chern class c(Qy) = ck,(Qn) + -+ + c1(Qyn) + 1 can be written as the pull-back of a
class p(Qn) = pr, (Qn) + -+ p1(Qy) + 1 € A(X; Q). Then

(E+ D [T—; p(Qu(—wyE))
IT.; P(Qu)

where E is the class of the exceptional divisor and p(Qy,(wys)) 1= ]_[f":1 (ai + wys + 1)
where the pull-backs of a; on Y are the Chern roots of Q.

c(X) = f*e(X)

Proof. The morphism f is equivariant with respect to the natural C* := 7/C*-actions
on X and X with the weights specified above, such that Y and the section at infinity are
the fixed loci for the C*-action on X, and Y and the section at infinity are the fixed loci for
the C*-action on X. Thus the diagram above yields another weighted blow-up diagram

5 Jor ¢
Yor —— X+

gc*l lfc*
i

Yor —S > X
where Zc+ := Z x ¢+ EC* for each stack Z, and BC* is the classifying space of C*, with
universal family EC*. As noticed above, Yc+ = Y and Yor =Y.
In the following, for ease of notation, we will drop the subscript C* for maps, and
only employ it to denote equivariant classes.
In the equivariant Chow ring Acx (Y),

e (7 (Tp)) = e© (Ve Wy ). e (i (Tx)) = & ()™ Wy,

SO
X)Wy W) (e 41+ DT e(Qu(wi))
JEfreC(X) T g e (Wyjx) g5 (Y) [T, c(Qn(wnt)) ’
where & is the first Chern class of Oy (1).
Let

(=&+t+1) I—[n 1 P(Qn(wp§))
nn=1 p(Qn (wy1))

We note that P(§) = 0. Thus 8 := P(t)/(t—&) is well defined and by the self-intersection

formula on the exceptional divisor,

Jfa = j*jB. (2.3)

=S X0/ (X)—1 and P@):= —1.
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By the Atiyah—Bott localization theorem,
*o o

o
T EW T W, @4

where j : Y <> X and! : Es <> X are the two fixed point loci of X under the C*-action.
On the one hand, by (2.3),

I o R

j* e(c*

and on the other hand, as the section at infinity Eoo = P¥(N) and Y are disjoint, [* T3 =
I* f*Tx and thus the second term on the right-hand side of (2.4) is zero. Thus in fact
a = jf, which implies

(E+1+DJT_; p(Qu(—wnE))
1. _, p(Qn(wyt))

The classical limit # — 0 yields the desired relation. O

C (X)) = f*eC (X)

2.3. Deformation to the weighted normal cone

Returning to the general case, let Y be a smooth substack of a smooth stack X. Let 7 :
X — X be the weighted blow-up of X along Y for an increasing filtration {Z, },>¢ of the
ideal Zy, satisfying properties (1) and (2) in Lemma 2.5. The ideal sheaf 7 of ¥ x {co}
in X x P! admits a filtration formed by the sheaves 7, := Y {_, ZxK"~* where K is the
ideal of oo in P! pulled back to X x P'. Let M be the weighted projective blow-up of
X x Plalong Y x {oo} with the filtration {7,},.

The usual properties of the deformation to the normal cone carry out for this construc-
tion with the suitable changes in weights:

(1) There is a natural closed regular embedding J : ¥ x P! < M.

(2) The composition p = p o IT of the blow-up map IT : M — X x P! with the
projection py : X x P! — P! is a flat morphism of stacks, and the following diagram
commutes:

Y xP' L M

9%

]P)l
(3) Over P!\ {oo}, p~1(Al) = X x Al and J is the trivial embedding.
(4) As a Cartier divisor, ~
Mo = p~'(00) = P + X,
where P = 73”’(Spec(69nZO Tn/Tn+1)) is a locally trivial weighted projective
fibration and X is the weighted blow-up of X along the locus Y, with the fil-
tration {Z,}. Both P and X are Cartier divisors of M, intersecting in ¥ :=
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pPw (Spec((G}nZO Tn/Th+1)), which is embedded as the section at infinity in P and

as the exceptional divisor in X. On the other hand, Yoo = Y x {oo} embeds in Mo
as the zero section in P and is thus disjoint from X — My,

The proof is analogous to [F, (5.1)].

Theorem 2.13. Consider the weighted blow-up f : X — X of a smooth stack X along
a smooth substack Y with an increasing filtration {1, },>0 of the ideal Iy, satisfying con-
ditions (1)—=(2) in 2.1. Let {N,}, denote the filtration of the normal bundle Ny|x dual to
the filtration {Z,, /(Z, N I}z,)},, ofIy/I)z,. Let Q, = Ny, /Nu,., for all indices w, such
that Ny, # Nu,,,. Then C* acts with weight w,, on Q,,.

Assume that for each n, the total Chern class c(Q,) = ¢k, (Qn)+- - -+c1(Qy)+1 can
be written as the pull-back of a class p(Qp) = pr,(Qn) + -+ p1(Qp) +1 € A(X; Q).
Then

n+1

(E+ D [T\e; p(Qu(—wyE))
T\i P(Qu)

where E is the class of the exceptional divisor in X and p(Qn(wys)) = ]_[k” (ait+w,s+1)
where the pull-backs of a; on Y are the Chern roots of Q.

c(X) = f*e(X)

Proof. Let M be the weighted blow-up of M along ¥ x P! with the filtration r*Z,, were
r = pi o I is the composition M — X x P! — X. Looking at the fibers over 0 and
oo € P,

Joo

)N(—>M<—F+)~(
[ [ |
X—>~M<£P+X'
0 00

]Pl

The embeddings Joo, Tespectively joo, split into & : P—>MI:X—>M, respectively
k:P — M,l:X — M, where F ol and [ can be naturally identified. Pull-backs of
the quotient sheaf Gy, := T;/F*Ty yield ]'ggM = Go := T;/f;Tx and ]gogM = G
which on P is the quotient 75/f*Tp, and on X is the zero sheaf. We note that the maps
of locally free sheaves on stacks

Ta— FTu, T3 — foTx and T — fTp

are monomorphisms, as M and M are isomorphic outside the exceptional divisor and its
image, etc. Moreover,

Joxc(G0) = Joxjec(Gum) = c(Gum) - [Mo],
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which by rational equivalence is identified with
c(Gum) - [Moo] = Joorc(Goo) = kxc(Gy ) + [X],

as I*¢(Gy) = c(I*Gy) = 1 on X. On the one hand, the formula for c(gw‘;) is given by
Proposition 2.11.

On the other hand, M is isomorphic to the blow-up of X x P! along Y x {00}, where
Y is the exceptional divisor of X. Hence, there is a map H : M — X x P! whose
composition g with the projection X x P! — X satisfies qo Jjo = id . From this and the
model case in Proposition 2.12 we recover the general formula in the theorem. O

3. The moduli space M, ,,(P", d)

Let m, n,d be nonnegative integers. In this section we apply the general theory for
weighted blow-ups along local embeddings of smooth stacks to calculate the total Chern
class of the moduli space of stable maps My, (P", d). We first set up the context by
briefly recalling the blow-up constructions of ﬁo’m(ﬂ"", d) from [MMI1] (for m = 1),
[MM2] (for m > 1), and [MM3] (for m = 0). They pertain to a family of smooth
Deligne-Mumford stacks M _4(P", d, a), and of weighted blow-ups

Mo 4P, d,a) - Mo 4 P",d,a),

where a,a’ € Q, A= (a1, ...,an), A = (4], ..., a),) € Q" such that

/
>
> aj_O

m m
Zai+da>2, Zal{+da/>2, l1>a>d >0, 1>a;>

forall j =1,...,m. Here MO,A(IP’”, d, a) is the stack of (A, a)-weighted stable maps as
defined in [MM2], parametrizing (A4, a)-stable maps.

Definition 3.1. An (A, a)-stable map consists of a family of rational curves 7: C — S,
whose fibers are either smooth or with nodes as singularities, with m marked sections
not intersecting the nodes of the fibers, with a line bundle £ on C of degree d on each
fiber Cy, and a morphism e : (’)g‘|r1 — L (specified up to isomorphisms of the target)
satisfying a series of stability conditions:

(1) weis(QL, aipi) ® L is relatively ample over S,

(2) G := Cokere, restricted over each fiber Cy, is a skyscraper sheaf supported only on
smooth points of Cy, and

(3) forany s € S and p € Cs and for any /I C {1, ..., m} (possibly empty) such that
p = p; foralli € I we have

Zai +adim§G, < 1.

iel



1780 Anca M. Mustata, Andrei Mustata

Let C be a curve. A tail of C is a closed connected subcurve C’ of C with the property
that C \ C’ is connected.

We will now consider the case when A = {1}. The basic definitions for this case are
introduced in [MM1]. All the other cases of weights .4 which will be of interest to us can
be deduced from this case ((MM2], [MM3]).

Definition 3.2. Let D = {1,...,d}. Wesay I C P(D)\ {9, D} is a nested set if, for any
two h, i’ € I, the intersection & N /' is either h, h’ or .

For any number / > 0, we denote I<; := {h € I; |h| < l} and I, := {h € I;
|h| > 1}.

Fix a positive number ¢ < 1 and a nested set I C P \ {#J, D} such that 2 N E =0
fﬁr any distinct &, A’ € I<; /a- In [MM1, Proposition 2.3], a boundary map M{; —
Mo 1(P", d, a) was described.

Definition 3.3. With our notation, M‘; is the stack of I-type, a-stable, degree d maps
from a rational curve into P", i.e.

(Ca p1, {ph}helsl/av {Ch}h€1>|/as £9 €)

made up of an a-stable, degree d pointed map (C, p1, L, e), together with marked points
{pn}ne I<1/4 and connected subcurves {Cj }rer satisfying the following properties:

>1/a

(1) forallh € I.1/q4, p1 € C;, C C and degE\Ch = |h|;
(2) forall h € I<y/4, dimCokerey,, = |h|;
(3) compatibility of incidence relations:
o forallh € I<i/qand h' € I.1/q, h C I iff py € Cp;
o forallh,h' € I.1)4,if K C h then Cjy C Cp, if h C b’ then Cj, C Cyy, otherwise
ChNCyp =0.

Notation. By convention, M; = Moﬁl(IP’”, d,a). When I = {h}, we will denote M?
simply by MZ

For each nested set I, we let G; C Sy be the largest subgroup that keeps each h € [
invariant. In particular, |G| = |h|!(d — |h])!.

When |k| > 1/a, the stack MZ maps to a codimension 1 substack of MOJ P, d, a),
and its generic point represents a map whose source is split as a union of two curves, one
containing the marked point and the other of degree |k|. If |h| < 1/a, the stack MZ maps
to a substack of higher codimension in Moyl(IP’”, d, a), and its generic point represents
a map whose source contains the marked point p; and another marked point of weight
|hla.

There is a special étale atlas for M()’ 1(P*, d, a). Its definition is based on the notion of
t-rigid weighted stable maps, for any system 7 of homogeneous coordinates on P, These
are an adaptation of the rigid stable maps introduced in [FP], and were discussed in more
detail in [MM1].
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Definition 3.4. A t-rigid stable map is given by the same data as a point of the moduli
space Mo 1 (P", d, a), together with an extra set of sections {g;, j}o<i<n,1<j<a Of weights
a;,j = a/(n + 1), and satisfying, via e,

d
&) =Y qi;
j=1

for each homogeneous coordinate #; in .

The moduli space of Mo 1(P", d, a, ) of f-rigid weighted stable maps is represented by
a torus bundle over an open subset of M 4/, Hassett’s moduli spaces of weighted stable
curves. There is a natural action on Mo,l(]P’”, d, a, t) by the finite group (Sd)”“, which
permutes the extra marked points g; ; defined above.

Lemma 3.5 ([MM1, Propoiition 1.11], and in more generality [MM2, Proposition 1.7]).
An étale atlas for the stack Mo 1(P", d, a) is given by

U= |u.®.
x,t

where for suitable choices of finitely many coordinate systems t and of finitely many
points x in Mo,l(E””, d,a,r), the smooth scheme U,(t) represents the quotient of an
appropriately small affine neighborhood of x by the largest small subgroup H, of the
stabilizer Staby C (Sg)" .

This construction is based on [V, proof of Proposition 2.8].

Notation. We choose & to be the integer in {2, ...,d} with 1/k < a < 1/(k —1), or
k=1ifa = 1. (Wenote thatif 0 < a < 1/d, then the space M 1(P", d, a) is empty.)

With this notation, the following holds:

Lemma 3.6. For each nested set I whose elements h satisfy |h| > k, the map ¢y : M‘Il —
Mo,] (P", d, a) is a proper local embedding. Moreover, for choices of Uy (f) appropriately
small, the étale atlas U for the stack Mo (P", d, a) defined in Lemma 3.5 satisfies the
properties listed in Proposition 1.11 for each of these local embeddings ¢;. Thus

UXM()J(]P’",d,a)M?Z |_| Very and, more generally, leﬁc;ﬁzz |_| Ve
884/ G g€Gr/Gy

for J D I whose elements also satisfy |h| > k. Here Vq(yy are étale atlases of M‘}
naturally embedded in U, and V; — V; whenever J D I.

Moreover, Vi N Vk = V yk is a transverse intersection in Vjnk for all nested sets
J, K whose elements h satisfy |h| > k.

Let Vi := U. For each nested set [ and h € I with |h| > k, the network of local
embeddings associated to ¢, : M?h — M? and the étale atlas V| consists of morphisms
¢IJ< : M{;( — ﬁz where K and J are nested sets with K D J D I, whose elements h’
satisfy |h'| = |h|.
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Proof. We recall the relevant construction from [MM1, proof of Proposition 2.3]. There
exists a sequence of smooth varieties and morphisms

Mo1(P",d,a, 1) = Moo x P!, (d, 1), (@, 1),7) 25 P15y L (@1)20+D),

where IP’)(7) is a (C*)"-torus over an open subset of PH40+D “and f is a composition
of blow-ups along some diagonals and their strict transforms, in a suitable order.

Let N = {0,...,n}, let Ayx; denote the diagonal in (Pl)d(”+1) where the coor-
dinates corresponding to the set N x h C N x {l,...,d} agree. More precisely, the
blow-ups are along the (strict transforms of) diagonals Ay with || > k, in increas-
ing order of dimension. At each blow-up step /, all (strict transforms of) diagonals with
|h| > I will intersect each other, and intersections of other (strict transforms of) diagonals,
transversely ([M]).

DY, (D) C Mo (P", d, a,7) is constructed from A%, (7) = p- ' (Ayxn) by taking
its strict transforms through the successive blow-ups, respectively the exceptional divisor
at the (d — |h|)-th step, and finally intersecting the resulting space with Mo, (P, d,a,t).
We then let D, (1) := (s Df ., (*) for any nested set I C P.

Define

vie=[] L]  W@®nD§ . )/H, G.1

x,t [g'1e(Sa/G "

for finitely many x, 7 also employed in the construction of U, where the set of orbits
(S4/G )" corresponds to permutations on (N \ {0}) x I, and H] is the largest small
subgroup of the stabilizer of x for the action of G7+1 on Dg,( Nx 1)(17) (via conjugation
by g').

With the notation from the previous lemma, H; = H, whenever all the elements & €
I satisfy alh| > 1. Then each such V; embeds in U and is an étale atlas of M‘Il, canonically
constructed as in [V, proof of Proposition 2.8]. Moreover, from the construction of V7,

=54 ey
U Xﬁo,l(ﬂ”’,d,a) MI = I_l Vg(]); as well, V[ XM[II MJ = I_l Vg(j),
g€S4/Gy 8€G1/Gy

for J O I whose elements also satisfy a|k| > 1. These formulae are equivalent to Lemma
1.16 for the spaces M?, which uniquely defines networks of local embeddings. Accord-
ingly, for each nested set I and & ¢ I with |h| > k, the morphisms qb,l( : M?( — M‘}
where K and J are nested sets with K D J D I, whose elements &’ satisfy |h'| = |h|,
form the network of local embeddings associated to ¢?, : M?h — M(; and the étale
atlas V;.

Furthermore, since the diagonals and their transforms intersect each other, and inter-
sections of other diagonals, transversely, it follows that V; N Vg = Vg is a transverse
intersection in Vjng for all nested sets J, K whose elements 4 satisfy a|h| > 1. m]

Letd E: a positive integer. As described in [MM2], contracLions Mo,m(IP’”, d, a) of the
space Mo, (P", d) can be thought of as locally embedded in Mg 1 (P", d+m—1, a) when
a < 1. More precisely, after choosing a privileged point 1, among the m marked points
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and adjoining the rest of marked points M = {2y, ..., mp} to the set {lp,...,dp} to
form D' = {l1p,...,dp,2um, ..., mp}, one can write

Mo A(P",d,a) =M

for J = {{2m}, Bm}, - - ., {dy}} and the m-tuple A = (1, a, ..., a).
For this reason we introduce the following notation.

Notation. From now on, we will let A denote the m-tuple (1, a, ..., a), and work with
subsets & of D' = {1p, ... ,d/D, 2um, ...,mp}, and all nested subsets will be elements
in P(D"). We letd' := d + m — 1. As before, we choose k > 1 to be the integer with
1/k<a<1/(k—1),ork=1ifa=1.

We note that while for the generic curve parametrized by M{;, all tails and base locus
points are marked by elements of I, other curves, represented by points in the boundary
of M‘IJ may have unmarked tails and base points. It is due to such points that the maps
M’; — M‘; are in general only local embeddings. This suggests that marking all compo-
nents and base points of curves and their maps will result in moduli stacks M/Ia embedded
in M:) A(P", d, a), constructed as in Theorem 1.20.

Definition 3.7. Consider the moduli functor from schemes to sets, associating to any

scheme S the set of (A, a)-stable, degree d pointed maps (C — S, {pi}ic1,...m}, L, €),
together with a collection { Py} cg of partitions
D= |_| B,
a€eNg
of theset D = {1, ..., d}, one for each s € S, such that for every s € S, the set

N, = {irreducible components of the curve Cy},

and

(1) the partition is compatible with the structure of the map given by (L, e): if ¢ € N;
corresponds to the component C C Cy then |By| = deg £|.;

(2) the partition is compatible with specialization in S: if s1, 50 € S then 51 € @ =
Py, is a refinement of P,.

A set of data as above will be called a semi-rigid (A, a)-stable map over S. An isomor-
phism of semi-rigid (A, a)-stable maps is an isomorphism of (A, a)-stable maps which
also preserves the partitions of D.

Definition 3.8. Let Mé)’ AP, d,a) — MO’ A(P", d, a) be the étale surjective morphism
constructed inductively as follows:

M@ d, a) = Mo 4P, d,a), My = M,

while forl € {k,...,d — 1},

My AP, d, a) — My 1 (P". d, a)



1784 Anca M. Mustata, Andrei Mustata

is the étale lift for the proper local embedding MZ’(ZH) — M(()IJ;\]) (P, d, a), for some h

satisfying |h| = [, with the étale atlas U from Lemmas 3.5 and 3.6, while for each nested
set I suchthath ¢ I,

— —a,(I+1
M;”([) - Ml;’(H)

is the étale lift for the proper local embedding MZ'I(IH) — ﬁ[}'(H—l)

las V7. Finally,

with the étale at-

My 4(P",d,a) = Mgfg(]?", d,a).
The following lemma ensures that Theorem 1.20 can be applied at each step in the
definition above.

. . —a,(l
Lemma 3.9. The following properties hold for the spaces M ? ¢ ):
(1) There exist natural proper local embeddings qb; O Ml} O M?’(l).

(2) Forh & I, the maps q)[J(’(Z) : M‘;(’(l) — Maj’(l), with K D J 2 I such that the elements

K € K\ J satisfy |h'| = |h|, form the network of local embeddings associated to the
proper local embedding ¢f}l(l) with the étale atlas V; defined by (3.1).
(3) The following diagram is Cartesian:

——a,(l) —a.(l)
Mg — M,

L

—a,(l) —a,(l)
MK MKQJ

4) ForJ D I andl > k, the following diagram is Cartesian:

—a,([—1) —a,(l—1)
Ueec, 160 Moty ——M;

| |

Mz, O] Mcll,(l)
where Ji_1 ={h e J; |h|=1—1orhel}.

All properties hold as long as all the elements h of J \ I, K \ I satisfy |h| > k. Here,

according to our convention, M;’(l) = Mg’)A(lP’", d,a).

Proof. Properties (1)—(3) follow by decreasing induction on /. The first step, when ! = d’,

is true due to Lemma 3.6. If (1)—(3) hold for [ > k, then by (3), Corollary 1.8 can be

applied at each step in the proof of Theorem 1.20, yielding the Cartesian diagram

ij,(lfl) M(Iz,(lfl)
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for J D I such that J \ I contains no elements 4 with || =/ — 1, and ! > k, while for
J D I such that J \ I contains only elements / with |#| = [ — 1, Theorem 1.20 implies
that the following diagram is Cartesian:

—a, (1) —a,(—1)
Uecr/6, Mgy - ——= M/

l |

—a,(l) w7,

In general, splitting J = J;—1 U (J \ J;—1) yields (4). As well, at the level of étale atlases,

—a,(l) ~
My Mz;,(l) Vi = I_l Ve)-
gEGJ[_|/GJ

This ensures that (1)—(3) are true when [ is replaced by / — 1 as well. Indeed, (1) and (3)
follow directly from the Cartesian diagrams above, while (2) follows from the relation
between étale atlases, which is equivalent to Lemma 1.16 for our spaces. O

Remark 3.10. Alternatively, ME)’ A", d,a) can be constructed by applying the con-
struction steps in the proof of Theorem 1.20 directly to the network {¢§ : Mlj —
M}l}, where I and J are nested sets whose elements i satisfy || > k. Indeed, the
étale atlases do not change throughout the construction, while the groupoid relations of

ME)’ AP, d, a), obtained by applying (1.15) to the étale atlases of Lemma 3.6, are inde-
pendent of the order in which the étale lifts above are performed.

Remark 3.11. One could ask if simply applying Proposition 1.11 and Theorem 1.20
directly to the local embedding

Y= | |M) - X :=Moa(P".d,a)
h

(when the union is taken over one copy of & for each cardinality |2| > 1/a) would not
yield the same outcome as in Definition 3.8. However we note that for the map above, the
étale atlas U introduced in Lemma 3.5 does admit a partition of Y x x U with all properties
listed in Proposition 1.11. Moreover, the étale lift associated to the map above would
contain the same number of copies of boundary divisors mapping onto MZ irrespectively
of |h|, which is different from the case of M, 0.4P", d, a) constructed by us.

We also note, in view of Remark 1.19, that while the étale atlas U from Lemma 3.5 is
suitable for all the local embeddings

MZ — M(),A(IP’", d,a)

(with || > 1/a) at once, it is not minimal for each map taken separately. For example,
if || > d/2 then M), is embedded in Mo _4(P",d, a), and yet M’O, AP", d, a) will still
contain (Ii\) copies of M;,a.
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Theorem 3.12. The moduli problem of semi-rigid (A, a)-stable maps is finely repre-
sented by the Deligne—Mumford stack M6 AP, d,a).

Proof. Let p : Mé)’ AP, d,a) — My _A(P",d,a) denote the universally closed, étale
map resulting from the construction in Definition 3.8, and let I/ denote the universal
family on MO’A(]P’", d,a).Foreachs e MZ)’A(IP’", d, a), we will define a partition P; of
D compatible with U, () in the sense of Definition 3.7. Then U/ together with the family
of partitions { Ps}; will form the universal family Z{’ on ﬁé) AP, d,a).

Indeed, for every s € ME)’ AP, d, a) there exists a uniquely associated nested set /

(possibly I = () such that s € (M?)’ \ UJDI(M‘})’, and if /; and I, are associated to
s1, $2, respectively, then

s1€{s2) = I 2 D.

There exists a correspondence between nested sets / € P (D) and partitions Py of D such
that

J D1 & Pjisarefinement of Py,

namely the elements of the partition P; are the sets it \ Ujres prpn h” forall b € 1,
together with D \ (J;nc; 1"

Conversely, given any semi-rigid (A, a)-stable map (C — S, {p;};, L, e), then for
each point s € S, the associated partition P; of D uniquely defines a nested set I(s):
the elements & of I (s) correspond to chains of components of C, of length at least two,
which start from the component containing the special marked point p; and end with a
tail. Then 2 = |, By, where the union is taken over all the components Cy, in the chain
with the exception of the first one. This leads to a stratification of S indexed by nested
sets, with locally closed strata

{sesS; I(s)=1}.
Let S; denote the closure of the above set in S. Then by condition (2) in Definition 3.7,
S;={seS; I(s)DI}.
If J and K are nested sets such that J U K is nested as well, then S; N Sxg = S;uk. For
each nested set I, there exists a natural map f; : Sy — M?, obtained by forgetting the

partitions Py but remembering the associated nested sets. When I = ¢ we get f : § —
Mo Ao(P",d,a). If J D I, then the diagram

s, M
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is commutative. Moreover, if G; C Sy is the largest subgroup that keeps each h € [
fixed,

S] Xﬁc; ¢§(M(;) = U Sg(J). (32)
8€G1/Gy

These conditions are sufficient to define f/ : § — Mé) A(P", d,a). Indeed, lifts
fk + Sk — (M;)’ can be constructed by decreasing induction on K. For the
largest sets K > I, relation (3.2) implies S; >z ¢;((M7() = |geq, /6y Sek) =
Leec, /64 (MZ,( k))'» which by Theorem 1.5 induces a morphism from S to the étale lift
(M';)(K ) of ¢;(; the commutative diagram above lifts as well. Now for any nested set K,

moving on to the step when (M‘;)/ have been constructed for all / O K, then by [AGV,
Appendix 1], the lifts of the commutative diagram above glue to a morphism

Sk Xm ¢{((M‘;) = U Sg(1) — Ng,
geGr/Gk

where N is obtained by gluing all (Mg(l))’ along (M;(I)Ug,(l))’. We note that ¢X (M)
is the image of Nk in M’;( Now the lift (M(;()’ is constructed so that Ny <> (Mlé)’.
Again by Theorem 1.5, one obtains a lift Sg — (M‘;()/ .

We note that (C — S, {pi}i, L, e) is the pull-back through f of the universal fam-
ily U. As for every s € S, the partition P on C; is completely determined by the nested
set 1 such that s € Sy \ |J;5; Sy, it follows that the partition Py is also inherited by

pull-back through f’ from the universal family on ME)’ AP, d,a). O

Notation. For each integer k € {2, ..., d}, let a; be any real number with 1/k < a; <
1/(k —1).Leta; = 1.

By E/IMZ], a sequence of birational contractions of Mo,m(IP’”, d) is given by the
spaces Mo 4, (", d, ay) with Ay = (1, ay, ..., a) ford > k > 0.
Lemma 3.13. For each integer | with d’ > | > k, the morphism flk‘(l) : ﬁ‘;k_l’(l) —

M(Ilk'(l) is a weighted blow-up along the local embedding ‘1’;}:(1) MYy RN M?k’(l) with

h & I such that |h| = k.
Ifk =1, then ¢;}l(l) is an embedding and f Ik ‘D s the weighted blow-up along all such
embeddings with |h| = I.

Proof. The statement follows by decreasing induction on [. The paragraph above the
lemma sets up the initial step / = d. Assume that the lemma holds for / > k. Consider &

and /' such that |#| = k and |h’| = [ — 1. By the induction hypothesis, both flk’(l) and

f Ik };,(l) are weighted blow-ups along the local embeddings, and the corresponding local
embeddings are connected by a Cartesian diagram due to Lemma 3.9(3) applied to K =
TU{h}and J = TU{K'}. Thus the natural diagram containing f Ik @ and f Ik ;lfl) is Cartesian,
following the definition of blow-ups along the local embeddings and the natural étale
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atlases described in the proof of Lemma 3.9. We can now apply Corollary 1.8 at each
step in the construction of the (I — 1)-étale lifts, leading to the following diagram being
Cartesian:

k.(I-1)
—aq_p, (-1 i —a,(-1)

MI > Ml
l k, (1) l
—ai_1,(0) i —a. (1)

If ] — 1 > k, the following diagram is Cartesian both when j = k and when j = k — 1 by
Lemma 3.9(4):

-1 e (-1
7% ,U— Ih 7% U—
M, —M;

L

—a; () b1 —a;, (1)
MI]h MIJ

Since flk’(l) was assumed to be a weighted blow-up along the local embedding ¢;;l(l),

from the above it follows that f,k’(l_l) is a weighted blow-up along the local embedding

qbf;l(l_l). Finally, when /! — 1 = k, Lemma 3.9(4) implies that the following diagrams are
Cartesian:
1,(—1)
—aj,(-1) Y —a;,(-1)
L=k My - M/
L
—a;, () D1 —a; ()
M, My
. . —a;, (k
and f Ik ‘® is the weighted blow-up along |_|| W=k M I;’h,f ). O

Theorem 3.14. Consider the normalization M?k of a boundary stratum in Mgk =

MO,] (P"*, d, ax). The total Chern class of M‘;k is written in A(M%k’(k)) as

d—l;
M) =+ A+ ]+ H+ iyt
i=1

_ h / .
(1 D)1+ ) P T Hp 4 gy
' MUper B .
niit=e (YD TNy, gy

’
er 'l

where the product is taken after all h such that 1 U {h} is still a nested set. Here
I == |Upes hl and s; is the number of maximal elements of 1. Moreover H denotes
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the pull-back of the hyperplane divisor from ",  denotes the cotangent line class, and
Dy, represents the class of the divisor M ?,I;}, while

Yni=y =) Dy and Y=y~ ) Dy,

h'2h W' Dh

Hpn :=H~|—(d— ’hU(U h’) )yf— 3 h’\(hu(U h”))‘Dh/.

hel h'Dh h"el

Proof. We proceed by induction on k. The last member in the sequence of contractions
of Mo,l (P", d) is MO,I (P",d,aq—1), a weighted projective fibration P(A) over P" de-
scribed in [MM1, Lemma 3.3]. The normal bundle of the zero section in A splits by
weights as Nprjg = @; Ni/Ni41, where

(n+1)(d-1)

N = ( D opn(l))/opn.
i=1
Thus by Proposition 2.11, the total Chern class is

d
c(Mo1(P", d,aq—1) = (1+ H)""' (1 +y)~ ]+ H +1y)" ™
=1
More generally, for any I € P(D), denote I; := || J,; | and let s; be the number
of maximal elements of I, i.e. elements & € I such that thereisnoh’ € I withh C h'.
The normal bundle
(n+1)(d—1p)
S
NM‘,"’—‘W“M ZNPIXP'W(IPI)WXM,,,I o = (Opln ® @ OP"(1)>/OP"
i=1
admits a natural filtration {\/;}; described in Lemma 3.2 of [MM1]. Here

(n+1)(d—1;=1)
Ni=(0he @ Om®)/Om.
i=1
C* acts on the bundle N' = @, N /N4 with weights (1, ..., d — ;). Thus by Proposi-
tion 2.11, the total Chern class of the weighted projective fibration M;*™" — P" is

d—l;
C(M‘Ildfl) — (1 +H)l’l+1(l _i_w)s[fl 1_[(1 +H+l¢)n+l
i=1

The morphism fi* : M7™" — M" is a weighted blow-up along the local embeddings
MY — M for h ¢ I with |h] = k. By Lemma 3.13, the k-th étale lift 7'

Mﬁak’(k)) is obtained by successive weighted blow-ups of all embeddings Mﬁk’(k» —
M?gk’(k» where h ¢ [ with |h| = k. As the étale covers are preserved through étale lifts,
with the notation from Lemma 3.6, the étale atlas V; of M(,“k’“‘” satisfies Vj xﬁgakxk))
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7@k (k)

My, = VJ;, by construction, while by Lemma 3.6, all strata Vjj;, with |h| = k intersect
each_other, and_their intersections, transversely. The normal bundle of the blow-up locus
for M 7“ - M ‘7 whenk € {1, ..., d — 1} and the weights of the appropriate C*-action

on it have been calculated in [MM1, Lemma 3.21]. Let # € P(D) be such that |h| = k
and denote by I, C I the setof all A’ € I such that i’ C h.

The top equivariant Chern class of the normal bundle ./\/'ﬁak « when evaluated at
V]

!
t = Dy is
M\Uprer, 'l
A4yt TT O+ Hew + juw)™™,
j=1

and thus formula (2.1) reads in this case

c(ﬁ?k_])
e (14 Dp)(1 + )= H]‘-’L\Pf”e’ "I Hp o+ jumy |
I S O Ll VW a7
Iterating the formula above for all k € {1, ..., d — 1}, we obtain the relation stated in the
theorem. o

In particular,

c(Mo, (P, d))
4 H iy DA+ YD T (4 Hy + ) ™!

I+y i Qe T A+ By + gyt

— (1 +H)n+l ]_[

where H, = H + (d — |h)Y¥ — Y/, |W'\h|Dy = Hgj, from above. We recall that the
spaces Mo,m(]P’”, d,ax) withk € {1, ..., d — 1} can be thought of as normalized strata of
Mo 1(P",d +m — 1, ax). Indeed, as mentioned before, one can write

Mo (P, d,a) =M}

for I = {{2m}, Bu)s ... {dul € PUlp,....dp, 2m, ..., mu)}). Thus

d
(Mo (P, d)) = (1 + H)" T A+ y)y" 2 T]( + H + i)™
i=1

— h .
(14 D) (1 + )P =V TP 4 Hyeg + )
’ o IhnD )
hePONG ) (L WD TP A g gyt

where hyy = h N {2, ..., my} and

Hyip = H +|D\ hly = Y |D NI\ Dy.
h'>h
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In particular, one recovers the formulae for the first Chern classes as calculated in [P]
and in a more general setup in [DJS].

Let f : Mo,l(]P’", d) — Mo,o(]P’”, d) be the forgetful morphism. In [MM3] this
has been split into a sequence of simple blow-ups and a relatively simpler fibration
THD2 30 0P, ).

Choose I :={h C {1,...,d}; |h| > d/2}if d is odd, and let I additionally contain
half of the sets i with || = d /2 if d is even, under the condition that no two sets &, h are
simultaneously in /. The class

vy izilf—ZDh

hel

can be considered as the O(1)-line bundle for the fibration U "/* Mo o(P", d)

above. When d is odd, 1} is the pull-back of the relative cotangent class for the morphism

ﬁud*l)/ 2 — Mo,o(]P’”, d). The classes Dy, with h € I are pull-backs of the classes of the

exceptional divisors on Mo, 1(P", d). From the sequence of blow-ups mentioned above we
obtain a formula comparing the total Chern classes of moduli spaces with/without marked
points:

[Tpe; (1 + Dp)Pu(1 — Dy)
P+ Y1) [Thes Pn(D)
where P (1) and P, (—Dy,) are the quadratic expressions in [MM2, Theorem 3.3(1)—(2)].

Proposition 2.1 in [MM3] shows how to recover the class c(ﬁo,o(]P’”, d)) from its
pull-back.

[*(c(Moo(P", d))) = c(Mo,1(P", d))

)

Appendix. Euler’s sequence for a weighted projective bundle

Let g : P — Y be a weighted projective bundle and a smooth morphism of stacks. With
the notation from Section 2, consider the splitting N/ Y|A = @i L; such that for all n with
N, # Ny4q there is a unique index i with L; = N, /N, 11. Denote by w; = n the weight
of the naturally induced C*-action on L;.

Let Tpjy = ker(Tp — g*7Ty) denote the relative tangent bundle of g : P — Y.

Lemma 3.15. There is an exact sequence of vector bundles on P

0—> 0p > @g*Li ® Op(w;) > Tpyy — 0.
i

Proof. The weighted projective bundle P is locally trivial over Y, i.e. Py = Plwg : - - - :
wy] x U for each open set U in some open cover of Y. We first discuss briefly the case of

the weighted projective space Plwg : --- : w,] = [Spec C[xo, ..., x,] \ {0}/C*], where
C* acts on x; with weight w;.
An étale presentation of the Deligne-Mumford stack Plwyg : - - - : w,] is given by

|_| Vij:;-I_I Vi
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where V; = C" with coordinates {Mf}ke{o,...,n}\{i} and V;; = V;; = C"! x C* with

,,,,,

by

] k 0 j i
¢;j({vij}k) = (U,'jw cees (Ul'/j)wj’ ceey U,'nj),

with (vij j)wf in the j-th position, and the change of coordinates

i i k k i ..
v = l/viJj, v = vl.j/(vijj)w" fork #1i, j

J
on V;;.
If {Mff}ke{o ,,,,, a)\(i} are coordinates on V;, then the map to the coarse moduli space
Plwg : -+ : wy]—Plwg : -+ : wy,] sends (uf)ke{o ,,,,, i €Vito [u? S R 4

with 1 in the i-th position.
The line bundle Opyyy,.....s,1(1) is determined by the trivializations L; = V; x C, with
gluing maps
$iiLi — ¢/ L;

given by ¢/s; = v/;¢/*s;, where 5; and s; are the unitary sections on L; and L;. Thus
the total space of Opyy:....w,1(1) is

Plwo:---:wy : 1J\{[0:---:0:1]} = Plwg : -+ : wy].

Each weighted projective coordinate x; gives rise to a global section of Oppy.....u,1 (Wi),
which will be denoted by x; as well.

The tangent bundle to Plwg : --- : w,] is determined by the vector bundles Ty, =
Vi x C" with isomorphisms

j ~ 4 J*
$i; Tv, = 3 Ty,

identifying

A 0 j ; 0 i O T Wk ad

J* (] Wk I J* (Wi ik k

Ll — ) = (v Sl —), N — ) = (v, A [ — v —).
% (auf) /) ¢,](au§) % (au}) @) ¢,J( ;wi ,,M)
Indeed,

,,,,,

; iwf 0 ol iwf O I ad
O Ty, = <{¢,!*<_> - _} , ¢€f‘(—,> - _(v._)wj—l_‘>’
Y Y Buf‘ 8vf]. ke{0,...n)\{i} Y 8u; w;j H 8vj’.l.

and the identifications above are naturally derived from the change of coordinates vf‘j
: k
mto v i

The short exact sequence

o e
0— O’P[wg:---:wn] - @O’P[wo:-»-:wn](wi) - TP[wO:-u:wn] -0
i
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is defined locally by

0 ) Wy 0
- Raky ._ ®aiy . __ k
o (1) := (woxo, ..., waxy), e(s; )= @, e(s2hy = — Z —uf—
and by the presentation of the bundles above this is well defined globally.
Given a weighted projective bundle g : P =[A/C*]— Y with weights (wo, ..., wy),
consider two open embeddings U, U’ < Y and trivializations xy : Ajy = U x C"*+! and
xpr s Ay 2 U’ x C'L with gluing morphisms over U xy U’

@ = (@0, 9n) s (U xy U) x C"F! — L

such that ¢; is homogeneous of degree w; with respect to the given weights. For each
trivialization above there is an étale presentation

|_| (Vij x U) = |_| (Vi x U)  for Pig-1 ).
i,jel0,....n} i€{0,....n}

respectively

L] vixuvh= | v xU) for Pgig.
i,j€{0,...,n} i€{0,...,n}

Let gy denote the restriction of g to Pj,-1(y), and similarly for U ’. Pull-back of the
trivialization xy to V; x p g7;(Aju), of xyr to Vi x p g7;(Ajv) and of the gluing morphism
1/w;
i

pto (Vi xU) xp (Vi’ x U")) x C**! amounts to choosing a root ¢
a point (V; x U) xp (V] x U’) admits a change of coordinates

of ¢; such that

—wj/wi

! = j (g (), pi(w)g; (g(u), pi (),

where u = (g(u), (u{)#,-) and p;(u) = (u?, Lo ul) e C™*!, with 1 in the i-th
position. Thus differentiating,

0 d —we/wi Wk 4 O 1
Ek Pk j au;k (ﬁol ) Dij § Wi i au;k (QD, )

J
Bui k

for j # i, where the functions ¢; := d¢y/dx; define a local change of basis for the pull-

back of the normal bundle Ny‘ A and (pl.— /% defines a local change of basis for Op(1).
Furthermore, as P is a weighted projective bundle, ¢; = 0 unless wy = wj.

This proves that the trivial extensions of the exact sequence (3.1) to Pj,-1(yy and
Pg-1(yry glue to a restriction of the sequence (3.2) on Pjg-1 7y - |

Acknowledgments. The initial motivation for this article came from a question of Jason Michael
Starr. We also wish to thank David Rydh and the referee for most useful comments and sugges-
tions. The first ideas for this paper were formulated during our stay at the Mathematical Sciences
Research Institute. A first draft was finished during the second author’s stay at the Max Planck In-
stitute for Mathematics in Bonn. We are grateful for the hospitality of both institutes. The authors
acknowledge support by Science Foundation Ireland via grant 08/RFP/MTH1759.



1794 Anca M. Mustata, Andrei Mustata

References

[AGV] Abramovich, D., Graber, T., Vistoli, A.: Gromov-Witten theory of Deligne-Mumford
stacks. Amer. J. Math. 130, 1337-1398 (2008) Zbl 1193.14070 MR 2450211

[DJS] de Jong, A.J., Starr, J. M.: Divisor classes and the virtual canonical bundle for genus 0
maps. arXiv:math/0602642.

[F] Fulton, W.: Intersection Theory. Springer, Berlin (1984) Zbl 0541.14005 MR 0732620

[FP]  Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology. In: Al-
gebraic Geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math. 62, Amer. Math. Soc.,
45-96 (1997) Zbl 0898.14018 MR 1492534

[EGA] Grothendieck, A.: Eléments de géométrie algébrique. IV. Etude locale des schémas et
des morphismes de schémas. Premiére partie. Publ. Math. IHES 32, 361 pp. (1967)
Zbl 0136.15901 MR 0173675

[G] Grothendieck, A.: Séminaire de Géométrie Algébrique du Bois Marie 1 (1960-61).
Revétements étales et groupe fondamental (SGA 1). Lecture Notes in Math. 224, Berlin,
Springer (1971) Zbl 0234.14002 MR 0354651

[K] Kresch, A.: Canonical rational equivalence of intersections of divisors. Invent. Math. 136,
483-496 (1999) Zbl 0923.14003 MR 1695204

[L] Lunts, V.: Coherent sheaves on configuration schemes. J. Algebra 244, 379-406 (2001)
Zbl 1008.14001 MR 1857751

[M] Mustatd, Andrei: Intermediate moduli spaces of stable maps to the projective space. Ph.D.
Thesis, Univ. of Utah (2003) MR 2704426

[MM1] Mustatd, Anca, Mustatd, Andrei: Intermediate moduli spaces of stable maps. Invent. Math.
167, 47-90 (2007) Zbl 1111.14018 MR 2264804

[MM2] Mustata, Anca, Mustata, Andrei: The Chow ring of Mo, m(n,d). J. Reine Angew. Math.
615, 93-119 (2008) Zbl 1139.14043 MR 2384333

[MM3] Mustatd, Anca, Mustatd, Andrei: Universal relations on stable map spaces in genus zero.
Trans. Amer. Math. Soc. 362, 1699-1720 (2010) Zbl pre05692490 MR 2574874

[MM4] Mustatd, Anca, Mustatd, Andrei: A universal étale lift of a proper local embedding.
arXiv:1011.1596v1.

[P] Pandharipande, R.: The canonical class of Mo,n (P, d) and enumerative geometry. Int.
Math. Res. Notices 1997, no. 4, 173-186 Zbl 0898.14010 MR 1436774

[Po]  Porteous, I. R.: Blowing up Chern classes. Proc. Cambridge Philos. Soc. 56, 118-124
(1960) Zbl 0166.16701 MR 0121813

[S] Stack Theory and Applications. Notes taken by H. Clemens at an informal seminar run by
A. Bertram, H. Clemens and A. Vistoli; www.math.utah.edu/ bertram/lectures

[V] Vistoli, A.: Intersection theory on algebraic stacks and their moduli spaces. Invent. Math.

97, 613-670 (1989) Zbl 0694.14001 MR 1005008


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1193.14070&format=complete
http://www.ams.org/mathscinet-getitem?mr=2450211
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0541.14005&format=complete
http://www.ams.org/mathscinet-getitem?mr=0732620
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0898.14018&format=complete
http://www.ams.org/mathscinet-getitem?mr=1492534
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0136.15901&format=complete
http://www.ams.org/mathscinet-getitem?mr=0173675
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0234.14002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0354651
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0923.14003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1695204
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1008.14001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1857751
http://www.ams.org/mathscinet-getitem?mr=2704426
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1111.14018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2264804
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1139.14043&format=complete
http://www.ams.org/mathscinet-getitem?mr=2384333
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05692490&format=complete
http://www.ams.org/mathscinet-getitem?mr=2574874
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0898.14010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1436774
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0166.16701&format=complete
http://www.ams.org/mathscinet-getitem?mr=0121813
http://www.math.utah.edu/~bertram/lectures
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0694.14001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1005008

	The universal lift of a local embedding
	The Chern classes of a weighted projective blow-up
	The moduli space M_0,m'(Pn, d) 

