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Abstract. Let µ be a probability measure on [0, 1] which is invariant and ergodic for Ta(x) =
ax mod 1, and 0 < dimµ < 1. Let f be a local diffeomorphism on some open set. We show that if
E ⊆ R and (fµ)|E ∼ µ|E , then f ′(x) ∈ {±ar : r ∈ Q} at µ-a.e. point x ∈ f−1E. In particular,
if g is a piecewise analytic map preserving µ then there is an open g-invariant set U containing
suppµ such that g|U is piecewise linear with slopes which are rational powers of a.

In a similar vein, for µ as above, if b is another integer and a, b are not powers of a common
integer, and if ν is a Tb-invariant measure, then fµ ⊥ ν for all local diffeomorphisms f of classC2.
This generalizes the Rudolph–Johnson Theorem and shows that measure rigidity of Ta, Tb is a
property not of the structure of the abelian action, but rather of their smooth conjugacy classes: if
U,V are maps of R/Z which are C2-conjugate to Ta, Tb then they have no common measure of
positive dimension that is ergodic for both.

Keywords. Measure rigidity, invariant measure, interval map, fractal geometry, geometric measure
theory, scenery flow

1. Introduction

1.1. Background

The motivating problem of this paper is to understand, for “structured” Borel probability
measures whose support is a Cantor set onR, which transformations can map one measure
to another, in whole or in part, and how the structure of the measures determines this.
More precisely, writing fµ for the measure fµ(A) = µ(f−1A), we ask what one can
say about maps f for which fµ is non-singular with respect µ, or with respect to some
other measure ν. The expectation is that highly structured measures should be preserved
by a small number of maps whose structure reflects that of the measure.

There are a few elementary things one can say. Since any two non-atomic probability
measures on R can be mapped to each other by a continuous function, one must impose
some regularity assumption for the question to make sense. In this paper we consider dif-
feomorphisms of the line, and denote the set of such maps by diff(R). Write diffk(R) for
the set of diffeomorphisms of class Ck . Also, there are some trivial cases of measures µ
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such that µ, fµ are non-singular for many f ∈ diff(R), namely if µ has a Lebesgue
component or atoms. One must therefore consider measures without such components.
Recall that the local dimension of a measure µ at x is the limit

D(µ, x) = lim
r→0

logµ(Br(x))
log r

where Br(x) is the ball of radius r around x. In general the local dimension may not exist
but it exists in the cases which will interest us. We will work with measures of interme-
diate dimension, meaning that 0 < D(µ, x) < 1 at µ-a.e. x. This rules out Lebesgue
component, and also any zero-dimensional component, including atoms.

In this work we consider probability measures which are invariant under the maps
Ta : [0, 1]→ [0, 1] defined for integers a ≥ 2 by

Tax = ax mod 1,

i.e. measures such that Taµ = µ. We sometimes view Ta as a map of the torus R/Z. We
note that there is a very rich supply of Ta-invariant measures, including some self-similar
measures but also many (most) which are not.

For Ta-invariant measures most work to date has focused on their behavior for maps
which are related to the group structure of R/Z, i.e. when f is one of the maps Tb
(an endomorphism of R/Z) or translation by an element of R/Z. The principal result
for endomorphisms is the measure rigidity theorem of Rudolph [18] and Johnson [10].
Write a ∼ b if a, b are powers of a common integer, i.e. a = ck and b = cm for some
c, k,m ∈ N, and otherwise write a � b. The Rudolph–Johnson Theorem states that if µ is
a Ta-invariant measure whose ergodic components all have entropy strictly between 0 and
log a, then it is not preserved by Tb for any b � a. The result can be slightly improved, us-
ing a later result of Rudolph–Johnson [12], to conclude that µ ⊥ ν for every Tb-invariant
measure ν of intermediate dimension. To date this is essentially the best result towards
Furstenberg’s×2,×3 conjecture, which predicts that there should be no non-atomic mea-
sures except Lebesgue which are jointly invariant under Ta and Tb for a � b. For a survey
of related algebraic conjectures and results see [14]. There are also strong rigidity results
for smooth actions of Zd and Rd : see e.g. Kalinin, Katok and Hertz [13].

For translations we are aware only of the work of Host [8]. Defineµ to be conservative
for a subgroup 3 ⊆ R/Z if for every set A with µ(A) > 0 there is some 0 6= r ∈ 3

such that µ(A ∩ (A + r)) > 0. For the groups 3 = Z[1/b] of b-adic rationals when
gcd(a, b) = 1, or for the cyclic subgroup generated by an element r ∈ R/Z such that
{T na r}n∈N is dense in R/Z, Host showed, using methods of harmonic analysis, that the
only conservative Ta-invariant measure is Lebesgue measure. Note that these results do
not require any assumption about the dimension of the measure, but also they do not
directly relate to our question, since they do not say anything about preservation of µ
under a particular rotation.

In another direction, the question we are interested in has been studied in the frac-
tal geometry literature for rather general functions f , e.g. C1 or bi-Lipschitz, but for re-
stricted classes of measures such as self-similar measures on attractors of iterated function
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systems. In situations like these it has been shown that measures arising from different
parameters are mutually singular, and cannot be easily deformed into each other (see for
example [3]). Related results for certain classes of Cantor sets are known (see for instance
[2, 1, 20]).

1.2. Statement of results

Write µ ∼ ν and µ ⊥ ν to indicate that the measures are equivalent or singular, respec-
tively, and let µ|E denote the restricted measure µ|E(A) = µ(A ∩ E). Thus µ, ν are
non-singular if and only if µ|E ∼ ν|E for some set E with ν(E) > 0.

Theorem 1.1. Let µ be a Ta-ergodic measure of intermediate dimension. Then there
exists n ∈ N such that if f ∈ diff(R) and (fµ)|E ∼ µ|E , then

f ′(x) ∈ {±ak/n : k ∈ Z} for µ-a.e. x ∈ f−1E.

More generally, if ν is another Ta-ergodic measure and (fµ)|E ∼ ν|E then there exists
t ∈ R such that

f ′(x) ∈ {±t · ak/n : k ∈ Z} for µ-a.e. x ∈ f−1E.

While we have stated the result for diffeomorphisms of R, the result is of a local nature
and immediately applies to partially defined or piecewise diffeomorphisms.

Theorem 1.1 is close to optimal. One clearly cannot hope to get information about f
except on the support ofµ|E . On the other hand, a Ta-invariant measureµ is also invariant
for Tan for every n ∈ N and sometimes also for n = 1/m when a1/m

∈ N. Thus one
cannot expect that some intrinsic property of µ will encode a, and the best one can hope
for is a power of a. The ergodicity assumption is necessary also: for example fix a T2-
invariant measure µ of intermediate dimension and form ν = 1

2µ +
1
2T3µ, which is

also T2-invariant. It is easy to see that there is a piecewise linear map f with f ν, ν non-
singular, and with slopes 2 and 3 on sets of positive ν-measure.

We do not know whether it can happen in the theorem that a1/n is not an integer. We
also do not know whether a version of the theorem is true under Lipschitz (rather than
differentiability) conditions on f .

Under mild additional assumptions, Theorem 1.1 implies that very few maps can pre-
serve a Ta-ergodic measure of intermediate dimension.

Corollary 1.2. Let µ and n be as in the theorem.. Then every piecewise analytic map of
[0, 1] which preserves µ is piecewise linear on an open set U containing the support of
µ and on U has slopes of the form ±ak/n, k ∈ N.

Corollary 1.3. If µ is a Ta-ergodic measure on R/Z which has intermediate dimension
and is globally supported, then every C1-map which preserves µ has the form Ta′ for an
integer a′ ∼ a.
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Easy examples show that there can be piecewise linear maps other than Ta which pre-
serve µ, for example one can easily construct them by hand for the uniform measure on
the middle third Cantor set (i.e. Hausdorff measure at the appropriate dimension, normal-
ized to mass 1), which is T3-invariant.

As a special case of the above we recover the Rudolph–Johnson Theorem [18, 10].
One may speculate that Theorem 1.1 holds without the entropy assumption, but proving
this would imply the full ×2,×3 conjecture.

Our methods also allow us to generalize the Rudolph–Johnson Theorem in other
ways:

Theorem 1.4. If a � b and µ, ν are respectively Ta- and Tb-ergodic measures of inter-
mediate dimension, then fµ ⊥ ν for every f ∈ diff2(R).

We can eliminate the ergodicity and regularity assumptions under some (rather weak)
additional hypotheses, for example no ergodicity is needed if f is affine, or when f ∈
diff(R) but the ergodic components of ν under Tb do not have spectrum of the form
n/log a.

An interesting consequence of the theorem above is that the measure rigidity phe-
nomenon in the Rudolph–Johnson Theorem is not a consequence of properties of the
abelian action generated by Ta and Tb, but rather of the smooth conjugacy classes of the
individual maps Ta, Tb:

Corollary 1.5. Let a � b and let f, g be self-maps of R/Z which are (separately)
C2-conjugate to Ta, Tb, respectively. Then there is no measure of positive Hausdorff di-
mension which is ergodic for both f and g, except possibly one which is equivalent to
Lebesgue, and this occurs precisely when the conjugating maps differ by a rotation.

Note that for f, g as above there will generally be no invariant measures at all, but it is
hard to verify this for any particular pair of conjugates. It is known that if f, g commute
then they are simultaneously C0-conjugate to Ta, Tb [11], and then Corollary 1.5 follows
from the Rudolph–Johnson Theorem.

After this paper was completed P. Shmerkin suggested another approach which proves
Theorem 1.4 for f ∈ diff(R) and non-ergodic measures, but which does not give any
version of Theorem 1.1. This will appear elsewhere.

1.3. Methods

To arrive at these results we study measures on Rd through the dynamics of the 1-
parameter, measure-valued family obtained by “zooming in” on typical points for the
measure. These families are called sceneries, and for the measures we are considering
they behave like generic orbits in an appropriate dynamical system. Many variants of the
notion of a scenery have appeared in the fractal geometry literature (see e.g. Bedford and
Fisher [1]), and have been used as a technical tool in the study of Tm-invariant measures,
in disguised form in Furstenberg’s paper [4] and more recently in [7]. Our definition of
the scenery flow follows that of Gavish [5]. A systematic study of this notion and related
ones can be found in [6].
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Briefly, we show that for a Ta-invariant measure the sceneries equidistribute for an
ergodic flow whose pure point spectrum contains a rational multiple of 1/log a, and the
remaining spectrum comes from the original dynamics of Ta . Since these flows are as-
sociated to measures in a geometric way, they are invariants of the measure under the
application of differentiable, locally bijective maps. Furthermore, the flows derived at
different points of a Ta-invariant measure may exhibit different phases with respect to
eigenvalues of the form n/log a, and applying a smooth map shifts the phase by the loga-
rithm of the derivative. The behavior of these phases underlies the proof of Theorems 1.1
and 1.4.

This method of proof gives a concrete necessary condition for a measure µ to be
a smooth image of a Ta-invariant measure, namely the spectrum of the associated flow
must contain a rational multiple of log a. In a sense, this explains how µ “encodes” the
arithmetic class of the dynamics which generated it.

1.4. Related questions

We end this introduction with some open questions. Let us begin by pointing out a con-
nection between Theorem 1.4 and another conjecture of Furstenberg [4]: If X, Y ⊆ [0, 1]
are closed and invariant, respectively, under Ta and Tb for a � b, then for every affine
map f (x) = ux + v,

dim(X ∩ f Y ) ≤ max{0, dimX + dimY − 1}.

This says that all affine images of Y should intersect X in as small a set as possible. The-
orem 1.4 gives an analog of this for measures, though of course singularity of measures
implies nothing about the intersection of their topological supports. On the other hand,
note that Theorem 1.4 has content even when both µ, ν are globally supported.

Returning to the ×2,×3 conjecture, the topological version was proved by Fursten-
berg with no entropy assumptions: any closed infinite subset of [0, 1] which is invariant
under Ta , Tb for a � b is the entire interval. One may similarly ask for topological ver-
sions of our results:

Problem 1.6. Suppose A ⊆ [0, 1] is an infinite, proper closed Ta-invariant subset. If
f ∈ diff1(R) preserves A, must |f ′(x)| be in {ar : r ∈ Q} for all non-isolated x ∈ A?

Problem 1.7. Let a � b and let f, g be maps of R/Z which are (separately) conju-
gate, respectively, to Ta, Tb. If the conjugating maps are sufficiently smooth, can we con-
clude that there are no infinite, closed proper subsets of R/Z which are jointly f - and
g-invariant?

We do not have answers except when for some s > 0 the s-dimensional Hausdorff mea-
sure is positive and finite on A. Then one can apply our results to this measure.

In another direction, there is a strengthening of the Rudolph–Johnson Theorem due
Host [8], which asserts that for gcd(a, b) = 1, if µ is Ta-invariant of intermediate dimen-
sion, then µ-a.e. point x equidistributes for Lebesgue measure under the action of Tb (in
this case x is said to be normal in base b). It is natural to ask whether the same is true
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when the measure is distorted by a nice enough map. Let us formulate this question in the
simplest and most plausible case:

Problem 1.8. Let µ be a Ta-invariant measure and of intermediate dimension, and
gcd(a, b) = 1. If f (x) = ux + v, u 6= 0, is f µ-a.e. point normal in base b?

Finally, it is very likely that analogs of Theorems 1.1 and 1.4 hold for more general
interval maps and in higher-dimensional settings, for instance for measures on the torus
which are invariant under hyperbolic automorphisms under suitable assumptions. How-
ever, in neither case does it appear that our methods apply directly.

1.5. Organization

In Section 2 we define the scenery flow in more detail, state without proof our results
about its spectral properties, and deduce the main results. The remaining proofs are given
in Section 3. We assume familiarity with basic notions in ergodic theory, recalling some
definitions as we go; for an introduction see [19]. For background on geometric measure
theory see [16].

2. Main elements of the proofs

In this section we give our main definitions and technical results, and derive the main
theorems from them. The remaining proofs are provided in the next section.

2.1. The scenery flow

Let M = Md denote the space of Radon measures on Rd , endowed with the weak
topology. We use the term measure for Radon measures on Rd , and denote measures
by µ, ν, σ, τ etc. We reserve the term distribution for Borel probability measures on M,
which we denote by P,Q,R etc. The space of distributions carries a measurable structure
defined by declaring the map µ 7→ µ(A) to be measurable for all Borel sets A ⊆ M.
Write λ for Lebesgue measure and δz for the point mass at z, which is a measure when
z ∈ Rd and a distribution when z ∈ M. Let suppµ denote the topological support of
a measure, that is, the complement of the union of all open sets of µ-measure zero. We
write∼ for equivalence of measures or distributions, and also write z ∼ µ to indicate that
z is distributed according to µ; the intended meaning will be clear from the context.

For x ∈ Rd let Ux : Rd → Rd denote the translation map

Ux(y) = y − x,

and for t ∈ R let St : Rd → Rd denote the scaling map

St (x) = e
tx.

Note the exponential time scale, which makes S = (St )t∈R into an action of the additive
group R on Rd . These operations induce maps on M: for µ ∈ M we have Uxµ(A) =
µ(A+ x) and Stµ(A) = µ(e−tA).
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Let µ 7→ µ
� denote the operation of normalizing a measure to have unit mass on

[−1, 1]d and restricting it to this cube, i.e.

µ
�
=

1
µ([−1, 1]d)

µ|[−1,1]d .

Let
M�
= {Probability measures on R supported on [−1, 1]d}

and define S�
t : M�

→M� by

S
�
t µ = (Stµ)

�

so that S�
= (S

�
t )t≥0 is a semigroup acting on the set of µ ∈M� with 0 ∈ suppµ. This

is a Borel subset of M, and the action is Borel, though not continuous (it is discontinuous
at measures which give positive mass to the boundary of [−1, 1]d ).

Definition 2.1. Let µ ∈ M and x ∈ suppµ. The scenery of µ at x is the orbit of Uxµ
under S� , i.e. the one-parameter family

µx,t = S
�
t (Uxµ), t ∈ R+.

In other words, the scenery is what one sees when “zooming in” to µ at x, restricting
and normalizing the measure as we go.

In order to discuss the limiting behavior of the scenery, note that M� may be iden-
tified with the weak-* compact set of probability measures on [−1, 1]d . Thus we may
speak of convergence of distributions on M� .

Definition 2.2. A measure µ ∈ M generates a distribution P at x ∈ suppµ if the
scenery (µx,t )t≥0 equidistributes for P , that is, if the uniform measure on the path
(µx,t )0≤t≤T converges weak-* to P as T →∞. Equivalently, for every f ∈ C(M�

),

lim
T→∞

1
T

ˆ T

0
f (µx,t ) dt =

ˆ
f dP.

In this case (M�
, P , S

�
) is called the scenery flow of µ at x.

For a discussion of the properties of distributions generated in this way see [6]. We
mention a few basic facts. First, if there is a positive µ-measure of points at which µ
generates some distribution (which may vary from point to point), then µ-a.e. one of the
distributions is S� -invariant.1 Second, standard density arguments show that if ν � µ

then a ν-typical point generates a distribution for ν if and only if it does for µ, and in this
case the distributions are the same. This applies in particular when ν = µ|A.

The following simple observation is a key ingredient in our arguments. Let diff+(R)
⊆ diff(R) denote the subgroup of orientation preserving maps.

1 Note that S� acts discontinuously, so this is not a complete triviality.
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Lemma 2.3. Let µ ∈ M(R), x ∈ suppµ and f ∈ diff1
+(R). Then after a time-shift of

s = log f ′(x) the sceneries µx,t and (fµ)f (x),t are asymptotic, i.e.

lim
t→∞

(µx,t − (fµ)f (x),t−s) = 0 (weak-∗).

In particular µ generates P at x if and only if fµ generates P at f (x).

The proof is immediate from the fact that, locally, f acts like Ss near x.
The assumption that f preserve orientation is necessary for the conclusion that the

scenery flows are the same, but if f is orientation reversing then the scenery flows are
isomorphic to measure preserving flows by way of the map induced on M� from x 7→

−x. We omit the details. More generally, a similar lemma holds in Rd but then one must
also account for skewing of the image.

2.2. The scenery flow of Ta-invariant measures and its spectral properties

Next we describe the scenery flow of a Ta-invariant measure and, more generally, products
of such measures. Recall that the diagonal action of Ta on [0, 1]d is given by Ta(x) =
(Tax1, . . . , Taxd). A product of Ta-invariant measures is invariant under the diagonal
action.

We require two more standard constructions, which we recall briefly. First, the nat-
ural extension of an ergodic system (�, ν, T ) is an invertible ergodic system (�̃, ν̃, T̃ )

factoring onto (�, ν, T ) and characterized by the property that every factor map from an
invertible system to (�, ν, T ) factors through (�̃, ν̃, T̃ ). The natural extension may be
realized as the inverse limit of the diagram of factor maps

· · · → (�, ν, T )
T
−→ (�, ν, T )

T
−→ (�, ν, T ).

See also Section 3.
Second, the t0-suspension of the discrete time system (�, ν, T ) is the flow defined on

�× [0, t0] by

Tt (ω, s) =

(
T [(s+t)/t0]ω,

{
s + t

t0

}
t0

)
where [r] and {r} are the integer and fractional parts of r , respectively. This flow preserves
the product measure ν × 1

t0
λ|[0,t0).

Proposition 2.4. Let µ1, . . . , µd be Ta-invariant measures and µ = ×di=1 µi . Then µ
generates an S� -ergodic distribution Px at a.e. point x, and the system (M�

, Px, S
�
)

arises as a factor of the log b-suspension of the ergodic component µ(x) of x in
([0, 1]d , µ, Ta). In particular Px depends only on the ergodic component µ(x) of x. Fur-
thermore, if µ(x) has intermediate dimension then Px is supported on measures of inter-
mediate dimension.

The construction and analysis are carried out in detail in Sections 3.1–3.4.
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Write e(t) = exp(2πit). Recall that α ∈ R is an eigenvalue of an ergodic measure
preserving system (�,B, ν, T ) if there is a complex function ϕ ∈ L2 such that ϕ ◦ T =
e(α)ϕ, and α is an eigenvalue of a measure preserving flow (�,B, ν, (Tt )t∈R) if there is a
function ϕ ∈ L2 such that ϕ ◦Tt = e(αt)ϕ for all t ∈ R. Such ϕ are called eigenfunctions,
and for ergodic transformations and flows they a.s. have constant modulus, which we shall
always assume has been normalized to 1. We denote the set of eigenvalues by 6, with
subscripts to indicate the system in question.

Theorem 2.5. Let µ be Ta-invariant with intermediate entropy. Let 6µ(x) denote the
spectrum of the ergodic component µ(x) of ([0, 1], µ, Ta) to which x belongs. Let Px
be the distribution generated at x, and 6Px the spectrum of (M�, Px, S

�). Then there is
an n ∈ N such that

n

log a
Z ⊆ 6Px ⊆

1
log a

6µ(x) ∪
n

log a
Z.

The proof is given in Section 3.6. Note that in the theorem one cannot assume that n = 1
since if µ is Ta-invariant then for every n it is also Tan -invariant, since Tan = T na .

Let us show how this theorem implies one of our main results:

Proof of Theorem 1.4 under spectral assumptions. Suppose f ∈ diff1 and µ, ν are re-
spectively Ta, Tb-invariant, have intermediate entropy, and the ergodic components of ν
do not have pure point spectrum of the form n/log a, n ∈ Z. By the theorem above the
scenery flows generated a.e. by µ have pure point spectrum of this form. If fµ 6⊥ ν then
by Lemma 2.3, with positive µ-probability, the scenery flow generated by µ at x is iso-
morphic to the one generated by ν at f (x). These possibilities are incompatible. ut

2.3. The distribution of phases

More refined information can be obtained from the distribution of phases of the eigen-
functions of the scenery flow. That is, for a Ta-ergodic measure and typical points x, y,
we may consider the sceneries at x and y and compare the relative phase of the eigenfunc-
tions corresponding to α = k/log a. There is a technical problem with this idea, since the
eigenfunctions are defined only a.e. for the scenery flow distribution, and not necessar-
ily on any of the measures of the scenery itself. To overcome this, one can consider the
joining of the scenery flow generated at the two points.

Recall that a joining of S� -invariant distributions P1, P2 is a distribution P on
M�
×M� which projects to Pi on the i-th coordinate, and which is invariant under

the diagonal flow S
� given by S�

t (µ, ν) = (S
�
t µ, S

�
t ν). When P1, P2 are ergodic, the

ergodic components of a joining of P1, P2 are also joinings of P1, P2. A P -joining is a
joining of P with itself.

Let µ be a measure generating an ergodic distribution Px at x. Note that there is
a bijective correspondence between pairs (σ, τ ) ∈ M�

1 ×M�
1 and product measures

σ ×τ ∈M�
2 , and that the set of product measures is closed in M�

×M� . Therefore the
accumulation points of the sceneries ofµ×µ are product measures, and ifµ×µ generates
a scenery flow it is supported on product measures. Furthermore, if µ × µ generates
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a scenery flow Px,y at (x, y), one may verify that, making the identification between
product measures and pairs, Px,y is a joining of the scenery flows Px, Py generated by µ
at x and y. Note that by Proposition 2.4, if µ is Ta-invariant then µ×µ indeed generates
sceneries a.e.

Let P be an S� -invariant and ergodic distribution with an eigenvalue α and corre-
sponding eigenfunction ϕ. Then the function pα : M�

×M�
→ C defined by

pα(σ, τ ) =
ϕ(σ)

ϕ(τ)

is a.e. invariant on any ergodic P -joining, since

pα(S
�
t σ, S

�
t τ) =

ϕ(S
�
t σ)

ϕ(S
�
t τ)
=
e(αt)ϕ(σ )

e(αt)ϕ(τ)
= pα(σ, τ ).

Therefore if R is a P -joining then pα is constant on a.e. ergodic component of R, and if
R is ergodic then we may define

pα(R) = R-a.s. value of pα(·, ·).

Let µ generate some distribution P at a.e. point and assume that µ× µ generates an
ergodic P -joining Px,y at µ×µ-a.e. (x, y). Fix a µ-typical x0 so that Px0,y is defined for
µ-a.e. y and for such y let

pα(µ, x0, y) = pα(Px0,y).

Definition 2.6. Let µ be a measure which a.e. generates P , and such that µ×µ generates
an ergodic distribution at a.e. point. Let α ∈ 6P . For a µ-typical point x0 the phase
measure θα = θα(µ, x0) is the push-forward of µ under the map y 7→ pα(µ, x0, y).

Under the further assumption that µ × µ × µ generates an ergodic distribution at
a.e. point, the dependence of the phase measure on x0 is very mild. Indeed, if we choose
another point x1 then, by considering the threefold joining Q generated by µ× µ× µ at
(x0, y, x1) we find that, writing (σ1, σ2, σ3) for a Q-typical element,

pα(µ, x1, y) =
ϕ(σ3)

ϕ(σ2)
=
ϕ(σ3)

ϕ(σ1)
·
ϕ(σ1)

ϕ(σ2)
= c · pα(µ, x0, y),

where c = pα(µ, x1, x0) does not depend on y. Thus pα(µ, x0, ·) depends on x0 only up
to a rotation, and the measures θα(µ, x0) and θα(µ, x1) are rotations of one another. Since
we shall be interested in properties which are independent of rotation, we often suppress
the dependence on x0 and write θα(µ).

Theorem 2.7. Let µ be a Ta-invariant measure of intermediate entropy whose ergodic
components a.s. generate the same distribution P . Let α ∈ 6P and θα = θα(µ) . Then

(i) If α ∈ 6P \ (1/log a)Q then θα is Lebesgue measure.
(ii) If α ∈ 6P ∩ (1/log a)Q then θα is singular with respect to Lebesgue measure.

(iii) If α ∈ 6P ∩ (1/log a)Z and µ is ergodic then θα consists of a single atom.

This is proved in Section 3.7.
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We do not know how large the phase measure can be for non-ergodic µ. With our
methods we can go a little further and show that dim θα(µ) ≤ 1−dimµ, where dim is the
lower Hausdorff dimension of µ. On the other hand, starting with a Ta-ergodic measure µ
with α = n/log a in the spectrum of the scenery flow, the measure ν =

∑
∞

b=1 2−bTbµ
is again Ta-invariant and its phase measure consists of atoms at e(log b/log a), b ∈ N.
We suspect that the phase measure is always atomic or at least of dimension zero, but we
have not resolved this.

We next examine how the phase distribution changes when a smooth map is applied
to a measure. First, suppose that µ is a measure satisfying the conditions in Definition 2.6
and the discussion following it. In particular for µ × µ-a.e. (x, y) the scenery (µx,t ×
µy,t )t≥0 equidistributes for some P -joining Px,y . Now let s ∈ R and consider the family
(µx,t × µy,t+s)t≥0, in which we have shifted the second component by S�

s . This family
equidistributes for the P -joiningQ = (id×S�

s )Px,y obtained as the push-forward of Px,y
through the map (σ, τ ) 7→ (σ, S

�
s τ).

2 For α ∈ 6P and corresponding eigenfunction ϕ,
let (σ, τ ) be a Px,y-typical pair such that (σ, S�

s τ) is Q-typical. Then

pα(Q) = pα(σ, S
�
s τ) =

ϕ(σ)

e(αs)ϕ(τ)
= e(−αs) · pα(σ, τ ) = e(−αs) · pα(Px,y).

Together with Lemma 2.3, this leads to the following result:

Proposition 2.8. Let µ be a Ta-invariant measure of intermediate dimension which a.e.
generates a distribution P , let α ∈ 6P and let f ∈ diff1(R). Then θα(fµ) is well defined,
and, fixing a µ-typical x0, is given up to rotation by

θα(fµ) =

ˆ
δe(−α log f ′(y))·pα(Px0,y )

dµ(y).

The discussion above proves the proposition when f preserves orientation. An obvious
modification of the statement and proof is needed when f is orientation reversing. See
the remark after Lemma 2.3.

2.4. Proof of the main results

Proof of Theorem 1.1. Let µ, ν be Ta-ergodic measures of intermediate dimension. Sup-
pose f ∈ diff1(R) and fµ|E ∼ ν|E for some set E with ν(E) > 0. Then θα(fµ|E) and
θα(ν|E) are equivalent for every α ∈ 6P . Choosing n ∈ N and α = n/log a ∈ 6P , as we
may by Theorem 2.5, it follows from Theorem 2.7 that θα(ν) is a point mass. Therefore
θα(fµ|E) is a point mass, and by Proposition 2.8 this implies that e(α · log f ′(·)) is µ-a.s.
constant on f−1E, giving the result.

In the case ν = µ we have fµ|E � µ|E so θα(fµ|E) � θα(µ), and since both
consist of a single atom we have equality. Hence e(α · log f ′(·)) = 1 at µ-a.e. point of
f−1E, so f ′|f−1E is µ-a.e. an integer power of a1/n. ut

Before proving the next theorems we require one more technical result:

2 This requires a short argument since S� is not continuous, but we omit it.
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Proposition 2.9. Let µ be a Ta-invariant measure of intermediate entropy generating P ,
and α ∈ 6P ∩ (1/log a)Z. Suppose one of the following holds:

(i) µ is ergodic and f ∈ diff2(R),
(ii) f is affine.

Then θα(fµ) is singular with respect to Lebesgue measure.

Proof. In the first case θλ(µ, x0) consists of a single atom (Theorem 2.7), and pλ(x0, ·) is
independent of y. Then by Proposition 2.8, up to rotation, θα(fµ) is the image of µ under
g : x 7→ e(f ′(x)). Since f ∈ C2 we have f ′ ∈ C1 and in particular f ′, and hence g,
is Lipschitz. Since µ has intermediate dimension, it is singular with respect to Lebesgue
measure, so this is also true of gµ, as desired.

In the second case f (x) = ux + v and we need only consider the case u 6= 0. Since
f ′(x) does not depend on x, we find by Proposition 2.8 that θα(fµ) is a rotation of θα(µ)
by e(log u), and so, since θλ is singular by Theorem 2.7, so is θα(fµ). ut

Proof of Theorem 1.4 and variants. Let µ be a Ta-invariant measure and ν a Tb-invariant
measure, both of intermediate entropy. Suppose that f ∈ diff2(R) and that (fµ)|E ∼ ν|E
for some E with ν(E) > 0. Then θα(fµ|E) is equivalent to θα(ν|E) for all α, and it
suffices to show that this is impossible.

Assume that µ is ergodic, let P denote the distribution generated by µ, and choose
α ∈ 6P ∩ (1/log a)Z, which is possible by Theorem 3.13. Then by Proposition 2.9,
θα(fµ) is singular with respect to Lebesgue measure, while by Theorem 2.7, θα(ν) is
absolutely continuous. Thus the two are not equivalent. Note that for this argument we
did not require ergodicity of ν.

Assume instead that f is affine (but µ, ν need not be ergodic). We first disintegrate µ
according to the partition of [0, 1] determined by the level sets of x 7→ Px , where Px is
the distribution generated by µ at x. Since Px depends only on µ(x), this is a coarsening
of the ergodic decomposition. Decompose ν similarly. By Lemma 2.3, f respects these
partitions, so it suffices to prove the result for the corresponding conditional measures,
which in the case of µ are Ta-invariant, and Tb-invariant in the case of ν. Hence we may
assume from the start thatµ, ν generate a single distribution P a.e. The result now follows
as above from the second part of Proposition 2.9.

The case of C1-maps when µ, ν satisfy some spectral assumptions was sketched after
Theorem 2.5. ut

Proof of Corollary 1.5. Suppose ϕf ϕ−1
= Ta and ψgψ−1

= Tb for ϕ,ψ ∈ diff2(R/Z).
Let µ be a common ergodic measure of positive dimension. The measures ϕµ, ψµ are
invariant, respectively, for Ta and Tb, and the dimension hypothesis implies that they have
no ergodic component of entropy zero. Now ψϕ−1(ϕµ) = ψµ and ψϕ−1

∈ diff2(R/Z),
so Theorem 1.4 implies that ϕµ is Lebesgue. Therefore ψϕ−1(ϕµ) is a Tb-invariant mea-
sure equivalent to Lebesgue, so it must be Lebesgue measure as well, and so ψϕ−1 pre-
serves Lebesgue measure. The only diffeomorphism on R/Z with this property is a rota-
tion. ut
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3. Construction and properties of the scenery flow

Throughout this section we fix an integer b > 1 and a non-atomic probability measure µ
on [0, 1] which is invariant under Tb. We write [u; v) = [u, v) ∩ Z, and similarly [u; v]
etc. Our convention is N = {1, 2, 3 . . .}.

3.1. The extended scenery flow

For the moment fix the dimension d = 1 and consider measures on R. We use ∗ to denote
the operation of normalizing a measure on [−1, 1]d , that is, if τ is a Radon measure on
Rd and τ([−1, 1]) > 0, then

τ ∗ =
1

τ([−1, 1])
τ.

Thus τ�
= τ ∗|[−1,1]. Let M∗

⊆ M denote the set of measures giving unit mass to
[−1, 1]. Write S∗t : M∗

→M∗ for the partially defined map

S∗t µ = (Stµ)
∗.

Thus S∗ = (S∗t )t∈R is a measurable flow on the Borel subset of measures µ ∈M∗ with 0
in their support.

While working with S∗ is more natural than with S� , we used the latter in the def-
inition of the scenery flow because P(M∗) does not carry a nice topology with which
to define equidistribution of S∗-orbits. However there is a simple way to move between
invariant distributions of the two flows. First, one may verify that τ 7→ τ

� is a factor map
from the measurable flow (M∗, S∗) to the semi-flow (M�

, S
�
), i.e. S�

t (µ
�
) = (S∗t µ)

� ,
and so an S∗-invariant distribution Q is pushed via µ 7→ µ

� to an S� -invariant distri-
bution P = Q� called the restricted version of Q. Conversely, if P is a an S� -invariant
distribution then there is a unique S∗-invariant distributionQ on M∗, called the extended
version of P , satisfying Q�

= P . The extended version may be obtained as the inverse
limit of the diagram

· · ·
S
�
1
−−→M� S

�
1
−−→M� S

�
1
−−→M�

(so dynamically Q is the natural extension of P ). Indeed, starting from a left-infinite
sequence (. . . , µ−2, µ−1, µ0) with S�

1 µi+1 = µi , there is a unique measure µ∞ ∈M∗

such that µ∞|[−bn,bn] = S
∗
nµ−n, and the induced distributionQ on these measures is seen

to be S∗-invariant and satisfy Q�
= P .

We shall usually not make the distinction between the extended and restricted versions
of these flows. We note for later use that they have the same pure point spectrum.

3.2. Construction of the discrete scenery flow

In this section we construct a flow associated to a Tb-invariant measure, and study its
properties. Let � = �b = {0, . . . , b − 1}Z, and denote the shift map on � by T , i.e.
(T ω)i = ωi+1. We write ωI for the subsequence (ωi)i∈I .
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Let ξk : �→ [0, b−k] denote the map

ξk(ω) =

∞∑
i=k+1

b−iωi .

In particular we write
ξ = ξ0,

which is the base-b coding map taking ω ∈ � to the point x ∈ [0, 1] whose base-b
expansion is 0.ω1ω2 . . . (note that this map is everywhere uncountable-to-one since it
discards the non-positive coordinates of ω).

Every non-atomic Tb-invariant measure µ lifts to a unique T -invariant measure µ̃ on
� such that ξµ̃ = µ; the system (µ̃, T ) is a realization of the natural extension of (µ, Tb).
For x ∈ [0, 1] we denote by µ(x) the ergodic component of x in µ, and write µ̃(x) for the
unique ergodic component of µ̃ which maps under ξ0 to µ(x). We also write µ̃(ω) for the
ergodic component of ω ∈ �.

We next construct a map π : � →M, ω 7→ µω, which is defined a.e. for every T -
invariant measure on �. Let µ be a Tb-invariant measure. Given a left-infinite sequence
ω(−∞;k] ∈ {0, . . . , b − 1}(−∞;k] let µ̃(· | ω(−∞;k]) be the probability measure obtained
by conditioning µ̃ on the set {η ∈ � : η(−∞;k] = ω(−∞;k]}. Note that this set can
be identified, using ξk , with [0, b−k]. Define the measure µ(·|ω(−∞;k]) on [0, b−k] by
pushing these conditional measures forward through ξk , i.e.

µ(· | ω(−∞;k]) = µ̃(ξ
−1
k (·) | ω(−∞;k]).

Note that this definition depends only on the ergodic component µ̃(ω), rather than the pair
(µ̃, ω).

For any measurable A ⊆ [0, b−k] we have the relation

µ(A | ω(−∞;k]) = c
k
ω · µ(A+ b

−kωk | ω(−∞;k−1])

where ckω = 1/µ(ωk|ω∞k−1) (this constant is chosen so that equality holds for A =
[0, b−k]). More generally, for k < m and A ⊆ [0, b−m+1], we have

µ(A | ω(−∞;m]) = c
k,m
ω · µ

(
A+

∑
k<i≤m

b−iωi

∣∣∣ ω(−∞;k]

)
(1)

where ck,mω = ck+1
ω · . . . · cmω .

It follows that the sequence of measures µω,k ∈M defined for k ≤ 0 by

µω,k(A) = c
k,0
ω · µ

(
A+

∞∑
i=k+1

b−iωi

∣∣∣ ω(−∞,k]

)
(2)

agree as k→−∞ on the increasing sequence of intervals

[−ξk(ω), ξk(ω)+ b−k] =
[
−

∞∑
i=k+1

b−iωi,

∞∑
i=k+1

b−iωi + b
−k
]
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and vanish outside of them. Therefore, as k → −∞ the measures µω,k converge to a
Radon measure which we denote

µω = lim
k→−∞

µω,k. (3)

Recall that a measure on R has exact dimension α if its local dimension exists a.e. and
is a.e. equal to α.

Theorem 3.1. For every Tb-invariant measure µ, the following hold:

(i) µ(x) can be represented as

µ(x) =

ˆ
(U−ξ(ω)µω)|[0,1]d dµ̃

(x)(ω)

and in particular

µ =

ˆ
(U−ξ(ω)µω)|[0,1]d dµ̃(ω).

(ii) The map π∗ : ω 7→ µ∗ω intertwines the actions of T and S∗log b, i.e.

S∗log bµ
∗
ω = µ

∗

T ω.

In particular, the distribution
P̃x = π

∗µ̃(x)

is S∗log b-invariant, and the map

π∗ : (�, µ̃(x), T )→ (M∗, P̃x, S
∗

log b)

is a factor map of discrete-time systems.
(iii) µω has exact dimension h(µ̃(ω))/log b.

Proof. From equation (2) we see that for k < 0,

µω,k(A− ξ0(ω)) = c
k,0
ω · µ

(
A+

0∑
i=k+1

b−iωi

∣∣∣ ω(−∞,k]

)
which, from equation (1), implies

µω(A− ξ0(ω)) = µ(A | ω(−∞,0]).

Integrating over ω ∼ µ̃(x) or over ω ∼ µ̃ gives (i).
Note that 0 ∈ suppµω and (i) implies

µT ω(A) = cωµω

(
1
b
A

)
(4)

for some constant cω independent of A. Thus by (4), the map ω 7→ µ∗ω is defined µ̃-a.e.
and intertwines the shift T and the scaling map S∗log b, i.e.

S∗log bµ
∗
ω = µ

∗

T ω.

This establishes (ii) (the later statements in that part follow from the first).
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Let

[ω1 . . . ωn] = {η ∈ � : η1 . . . ηn = ω1 . . . ωn}

denote the cylinder set corresponding to a finite sequence ω1 . . . ωn. A variant of the
Shannon–McMillan–Breiman theorem (actually, a direct application of the ergodic theo-
rem and the definition of entropy) states that for µ̃-a.e. ω,

lim
n→∞

1
n

log µ̃([ω1, . . . , ωn] | ω(−∞;0]) = h(µ̃
(ω)).

As a consequence for µ̃-a.e. ω the measure τ = µ(·|ω(−∞,0]) has exact dimension
h(µ̃(ω))/log b, i.e.

lim
r↘0

log τ(Br(x))
log r

=
h(µ̃(ω))

log b
at τ -a.e. point x

(what is obvious is that this limit holds when, instead of Br(x), we consider the mass of
b-adic intervals containing x, since these correspond to cylinder sets; the version above
follows using e.g. [17, Theorem 15.3]). The same argument also holds for µ(·|ω(−∞,k])

and for any k < 0, hence for µω,k , and gives the result for µω. This proves (iii). ut

As a special case of the last part of the theorem, we remark that when h(µ̃) = 0 all the
conditional measures µ(·|ω(−∞,k]) consist of a single atom, and consequently µω = δ0.
Likewise, when µ̃ is λ∗ it is easy to verify that µω = λ∗ for µ̃-a.e. ω. In these cases the
flows Px are trivial, consisting of point masses at the S∗-fixed points δ0 or λ∗.

3.3. Convergence of the scenery to the scenery flow

We now turn to the sceneries of Tb-invariant measures and their relation to the flow con-
structed above. We continue to work in dimension d = 1 and with the notation of the
previous section. In particular µ is a Tb-invariant measure and µ̃, P̃x are as in Theorem
3.1. For µ-typical x let

Px =

ˆ 1

0
S∗t log bP̃x dt.

Note that by Proposition 2.4, P̃x is S∗log b-invariant and ergodic.

Let us introduce another sequence of measures µ′ω,k on [0, b−k] by

µ′ω,k(A) = c
k,0
ω · µ̃

(
ξ−1
k

(
A+

∞∑
i=k+1

b−iωi

))
.

This is the same as the definition of µω,k except we have not conditioned on ω(−∞,k].

Proposition 3.2. limk→−∞ µ
′

ω,k = µω weak-∗ on any compact set in R.
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Proof. Let µ̃(·|ω[k+1;∞)) denote the conditional measure µ̃ on sequences η ∈ � given
the “future” η[k+1;∞) = ω[k+1;∞). Then

µ′ω,k =

ˆ
µη,k dµ̃(η|ω[k+1;∞))

=

ˆ
(µη,k − µη) dµ̃(η|ω[k+1;∞)) +

ˆ
µη dµ̃(η|ω[k+1;∞))

The second term in the last expression is a measure-valued martingale in the variable ω
with respect to the filtration Fk ⊆ Fk−1 ⊆ · · · , where Fk is the σ -algebra generated by
coordinates k + 1, k + 2, . . . . Since these algebras generate the Borel algebra on �, the
term on the right converges µ̃-a.e. to µω as k→−∞.

In order to deal with the first term on the right, note that if we integrate against any
compactly supported function f on R, for k > k0(ω) the measures µη,k and µη,−∞
will agree on the support of f , and so the integral will vanish. Hence the first term also
converges to 0 weak-∗ on any compact set. ut

Corollary 3.3. limk→−∞(µ
′

ω,k)
�
= (µω)

� in the weak-∗ sense for µ̃-a.e. ω.

For the next step we rely on a classical ergodic theorem due to Maker:

Theorem 3.4 (Maker, [15]). Let (�, ν, T ) be a measure preserving system. Let Fn be
measurable functions with supn |Fn| ∈ L

1 and suppose that Fn→ F a.e. Then

1
N

N∑
n=1

T nFn→ E(F | E)

a.e., where E is the σ -algebra of T -invariant sets.

Proposition 3.5. For µ-a.e. x,

lim
N→∞

1
N

N∑
n=1

δµx,n log b → P̃x .

Proof. Define Fk(ω) = δ(µ′ω,−k)�
and Fk(ω) = δ(µω)� . From the corollary we know that

Fk → F a.s. and these distribution-valued functions are uniformly bounded in the space
of distributions on P(M�

). Thus by Maker’s theorem,

1
N

N∑
n=1

Fk(T
kω)→ E(F | E)

µ̃-a.e. One verifies from the definitions that

(µ′
T kω,k

)
�
= µx,k log k

for x = ξ0(ω). The proposition follows, since E(δ
(µω)

� | E) = P̃x . ut



1556 Michael Hochman

Proposition 3.6. µ generates Px at µ-a.e. x. In particular, the scenery flow generated
by µ at x depends only on the ergodic component of x and arises as a factor of the
log b-suspension of (�, µ̃(x), T ).

Proof. The first statement follows by applying the operator
´ 1

0 S
�
t log b dt to the limit in the

proposition above. For the second statement, note that from the definition of Px it follows
immediately that Px is S∗-invariant and ergodic, and that (M∗, Px, S

∗) is a factor of the
log b-suspension of the discrete time system (M∗, P̃x, S

∗

log b). Since the latter is a factor
of (�, µ̃(x), T ) by Theorem 3.1, the proof is complete. ut

3.4. The multidimensional case

We now turn to the higher-dimensional setting. Let ∗ denote the normalization operation
µ 7→ µ∗ = 1

µ([−1,1]d )µ and define the associated objects as in Section 3.1.
Let µ1, . . . , µd be Tb-invariant measures and write µ = µ1 × · · · × µd , which is

a measure on [0, 1]d invariant under the diagonal map Tb(x) = (Tbx1, . . . , Tbxd). The
measure µ̃ = µ̃1 × · · · × µ̃d on �d ∼= ({0, . . . , b − 1}d)Z is the natural extension of µ.
We may define maps ξk : �d → [0, b−k]d by applying ξk coordinatewise and define a
map ω 7→ µω ∈Md using the same procedure as in dimension d = 1.

Let ϕi denote projection to the i-th coordinate. Let π∗ and π∗i denote the maps
ω 7→ µ∗ω and η 7→ (µi)

∗
η respectively.

Proposition 3.7. Let µ1, . . . , µd be Tb-invariant measures on [0, 1], let µ = ×di=1 µi ,
and let ω 7→ µω be as above. Then:

(i) The analogs of Theorem 3.1 and Proposition 3.6 hold.
(ii) µω = ×di=1(µi)ωi .

(iii) If µ generates P̃x at x ∈ [0, 1]d and µi generates P̃i,y at y, and we identify prod-
uct measures with d-tuples of measures, then the following diagram of factor maps
commutes:

([0, 1]d , µ̃(x), T ) π∗ //

ϕi

��

(Md , P̃x, S
∗

log b)

ϕi

��
([0, 1], µ̃(xi )i , T )π∗i

// (M, P̃i,xi , S
∗

log b)

Proof. The proof of (i) is the same as in the 1-dimensional case.
For (ii), note that the space of product measures on Rd is closed and each µx,t is

a product measure, so the scenery flow of a product measure is supported on product
measures. Hence by (i), µω is a product measure.

In order to see that µω = ×di=1 µi,ωi , letQ be the S∗log b-invariant distribution on pairs
of measures obtained by pushing forward µ̃ through the map ω 7→ ((µ1)

∗

ω1 , µ
∗
ω), and let

Qx be the push-forward of µ̃(x) by the same map, so that Q =
´
Qx dµ̃(x). We wish to
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show thatQ-a.e. pair (τ, ν1×· · ·×νd) satisfies τ = ν1, so we must show that for µ-a.e. x
this holds for Qx . To see this, consider for µ-typical x ∈ [0, 1]d the sequence

(τn, νn) = ((µ1)x1,n log b, µx,n log b), n = 1, 2, . . . ,

and repeat the proof of Proposition 3.6 to conclude that 1
N

∑N
n=1 δ(τn,νn) → Qx . Since

the relationship τn = π1(νn) holds for all n and this is a closed condition, it also holds for
the limiting distribution Qx .

Finally, the commutativity of the diagram is a direct result of the relationship (µi)ωi
= πi(µω). ut

3.5. Eigenvalues and ergodicity of flows

We briefly present some technical facts about flows and their spectrum and ergodicity
properties. For the sake of economy we present the discussion for an invariant distribu-
tion P on (M∗, S∗).

A function f ∈ L2(P ) is generally defined only P -a.e. and hence for typical ν it
is defined at S∗t ν for only Lebesgue-a.e. t . The next lemma says that a function which
behaves like an eigenfunction at a.e. point along a.e. orbit may be modified on a set of
measure zero to become an eigenfunction.

Lemma 3.8. Let ϕ ∈ L2(P ) and suppose that for every t ∈ R we have S∗t ϕ = e(αt)ϕ
P -a.e. Then there exists ϕ ∈ L2(P ) which, for P -a.e. ν, satisfies S∗t ϕ(ν) = e(αt)ϕ(ν) for
every t ∈ R, and ϕ = ϕ a.e.

Proof. Define ϕ(ν) =
´ 1

0 e(−αt)ϕ(S
∗
t ν) dt . ut

Usually, the ergodic decomposition of a measure is defined only in an a.e. sense. For the
decomposition of P with respect to S∗t0 we can give a more canonical description. We say
that an S∗t0 -invariant distribution Q is an ergodic component of P (with respect to S∗t0 ) if

it is ergodic for S∗t0 and
´ 1

0 S
∗
t0·t
Qdt = P . Note that if P =

´
Qν dP (ν) is an abstract er-

godic decomposition of P with respect to S∗t0 then P =
´
(
´ 1

0 S
∗
t0·t
Qν dt) dP (ν), and each

of the inner integrals is S∗-invariant. Therefore, ergodicity of P implies that for P -a.e. ν
the inner integral is P , soQν is an ergodic component. Hence ergodic components exist.

Lemma 3.9. If Q and Q′ are ergodic components for S∗t0 then S∗t0·rQ
′
= Q for some

r ∈ [0, 1]. In particular, the representation of P as
´ 1

0 S
∗
t0·t
Qdt does not depend (up to a

translation modulo 1 of the parameter space) on the ergodic component Q.

Proof. Since
´ 1

0 S
∗
t0·t
Qdt and

´ 1
0 S
∗
t0·t
Q′ dt are both ergodic decompositions of P , by

uniqueness of the ergodic decomposition we see that for a.e. t ∈ [0, 1] there is an s ∈
[0, 1] with S∗t0·tQ = S∗t0·sQ

′. Then for r = s − t (or r = 1 + s − t if s < t), we have
Q = S∗t0(s−t)

Q′. The second statement is immediate from the first. ut

Lemma 3.10. Let Q be an ergodic component of P with respect to S∗t0 . Then either
Q = P , i.e. S∗t0 is ergodic, or there is a largest n ∈ N such thatQ is invariant under S∗t0/n.
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Proof. Consider the map q : R/Z → P(M) given by q(t) = S∗t0·tQ, which is well
defined since S∗t0Q = Q. Let 3 ⊆ R/Z denote the set of periods of q, that is, r ∈ 3
if q(t + r) = q(t) for t ∈ R/Z, or equivalently, q(r) = q(0). Since q is measurable
with respect to Lebesgue measure, either 3 is discrete or 3 = R/Z. In the latter case,
P =

´
R/Z q(t) dt = q(0) = Q. In the former case 3 has the form {k/n : 0 ≤ k < n} for

some n, and this is the n we are looking for. ut

Lemma 3.11. For t0 > 0 the following are equivalent:

(i) 1/t0 ∈ 6P .
(ii) For some (equivalently every) ergodic component Q of S∗t0 , the flow (M∗, P , S∗) is

isomorphic to the t0-suspension of (M∗,Q, S∗t0).
(iii) S∗t0 is not ergodic, and its ergodic components are not preserved under S∗t0/n for any

n ∈ N.

Proof (sketch). (i)⇒(ii): If ϕ is an eigenfunction for 1/t0 then one may verify that the
ergodic components of S∗t0 are precisely the conditional distributions of P on the level sets
of ϕ. Fixing an ergodic component Q supported on a level set ϕ−1(e(s)) let r : M∗

→

[0, t0) be the P -a.e. defined function such that e(r(ν)/t0) = ϕ(ν)/e(s), so for Q-a.e. ν
and 0 ≤ t < t0 we have r(S∗t ν) = t . Then ν 7→ (S∗

−r(ν)ν, ϕ(ν)) is an isomorphism of
(M∗, P , S∗) and the t0-suspension of (M∗,Q, S∗t0).

(ii)⇒(iii): Trivial since e.g. the subset of M∗ corresponding to M∗
× [0, t0/2) in the

suspension is S∗t0 -invariant, but not S∗t0/n-invariant for any 1 6= n ∈ N.
(iii)⇒(i): By the previous lemma we find that the action of S∗ on the ergodic compo-

nents for S∗t0 is isomorphic to [0, t0) with addition modulo t0. As P -a.e. point belongs to
a well defined ergodic component, this gives an eigenfunction with eigenvalue 1/t0. ut

From part (ii) and the proof of the implication (i)⇒(ii), we have:

Corollary 3.12. Let 1/t0 ∈ 6P with associated eigenfunction ϕ, and suppose thatQ,Q′

are ergodic components for S∗t0 . Then ϕ is almost surely constant for each of the distribu-
tions Q,Q′, with a.s. value denoted ϕ(Q), ϕ(Q′), respectively, and Q = S∗t0·rQ

′, where
r ∈ [0, 1] is such that e2πir

= ϕ(Q)/ϕ(Q′).

3.6. The spectrum of (M∗, Px, S
∗)

In this section we prove Theorem 2.5. Let µ be Tb-ergodic with entropy strictly between 0
and log b. Recall the construction and notation from Section 3.2: specifically (�, µ̃, T ) is
the natural extension of ([0, 1], µ, Tb), the image of µ̃ under ω 7→ µω is the S∗log b-ergodic
distribution P̃ (it does not depend on x or ω, as it did in previous sections, because µ
and µ̃ are now ergodic), and P =

´ 1
0 S
∗

t log bP̃ dt is the distribution of the scenery flow
of µ.

Recall that the lower Hausdorff dimension of a measure τ is

dim τ = inf{dimA : τ(A) > 0}.

We note that if τ has exact dimension α then dim τ = α as well.
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It is simple to verify that τ � τ ′ implies dim τ ≥ dim τ ′ and, more generally, if a
measure τ can be written as τ =

´
τi dσ(i), then dim τ ≥ ess infi∼σ dim τi . Thus if f is

a map then f τ =
´
f τi dσ(i), and a similar bound applies.

We are out to show that

n

log a
Z ⊆ 6Px ⊆

1
log a

6µ(x) ∪
n

log a
Z.

The right hand inclusion follows from the fact that (M∗, Px, S
∗) is a factor of the log b-

suspension of ([0, 1], µ, Tb). To establish the left hand inclusion it suffices to prove the
following theorem.

Theorem 3.13. There exists an n ∈ N such that n/log a ∈ 6(M∗,P ,S∗).

Proof. Since P̃ is an ergodic component of P with respect to S∗log a , by Lemmas 3.10
and 3.11 it suffices to show that P̃ is not S∗-invariant. Suppose that it were S∗-invariant.
We claim that this implies that µ is Lebesgue measure, contradicting the assumption of
intermediate dimension.

To this end, choose an integer d such that d dimµ > 1 and write µ∗d for the d-
fold convolution of µ, which is the image of the d-fold product ×di=1 µ under the map
f (x) =

∑d
i=1 xi . We first show that µ∗d has dimension 1. Recall that by Theorem 3.1,

µ =

ˆ
U−ξ(ω)µω dµ̃(ω).

Since P̃ is S∗-invariant, there is a function ξ(x, t) ∈ [0, 1] such that

µ =

ˆ ˆ 1

0
(U−ξ(ω,t)St log bµω)|[0,1] dt µ̃(ω). (5)

This gives a similar representation of the product measure: write t = (t1, . . . , td) and ud

for uniform measure on [0, 1]d , and likewise write ω = (ω1, . . . , ωd) and µ̃d = ×di=1 µ̃.
Then

d
×
i=1

µ =

ˆ
�d

ˆ
[0,1]d

d
×
i=1

(
(U−ξ(ωi ,t i )Sti log bµ

∗

ωi
)|[0,1]

)
dud(t) dµ̃d(ω).

Therefore, using the comments preceding the proposition,

dimµ∗d ≥ ess inf
ω∼µ̃d , t∼ud

f
( d
×
i=1
(U−ξ(ωi ,t i )Sti log bµ

∗

ωi
)|[0,1]

)
.

Since f is linear and ξ(ωi, t i) ∈ [0, 1], the above is

≥ ess inf
ω∼µ̃d , t∼ud

dim f
( d
×
i=1
(St log bµω)|[−1,1]

)
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because each of the previous measures is absolutely continuous with respect to the corre-
sponding measure above. Writing ft (x) =

∑
tixi , we have, by another absolute-continu-

ity argument,

≥ ess inf
ω∼µ̃d

(
ess inf
t∼ud

dim ft

(( d
×
i=1

µωi

)∣∣∣
[−b,2b]

))
.

Finally, for fixed typical ω we have

dim
d
×
i=1

µωi =

d∑
i=1

dimµωi > 1

so the inner ess inf (over t ∼ ud ) in the previous expression is 1 by the following version
of Mastrand’s classical theorem on projections of measures.

Theorem 3.14 (Hunt–Kaloshin [9]). Let σ be an exact-dimensional probability measure
on Rd with dim τ = α. Then for Lebesgue-a.e. (t1, . . . , td) ∈ Rd , the image of σ under
x 7→

∑d
i=1 tixi is exact-dimensional and has dimension min{1, dim σ }.

Thus, we have shown that µ∗d has dimension 1. Next, note that convolution in R/Z is ob-
tained by taking the convolution in Rmodulo 1. Since this is a countable-to-1 local isom-
etry R → R/Z, it does not change dimension, so the d-th convolution of µ in R/Z has
dimension 1. Since this convolved measure is also Tb-invariant, it is exact-dimensional,
and hence its exact dimension is 1, and it must be Lebesgue measure because this is the
only measure of dimension 1 invariant under Tb. Finally, by examining the Fourier co-
efficients and using the elementary relation (̂µ∗d)(k) = µ̂(k)d , we conclude that µ is
Lebesgue measure. This is the desired contradiction. ut

3.7. The phase

Let µ be a Tb-invariant measure of intermediate dimension generating a.e. the same (nec-
essarily S∗-ergodic) distribution P . As usual we denote by Px the distribution generated
by µ at x and by Px,y the distribution generated by µ × µ at (x, y), and by P̃x and P̃x,y
the distributions obtained from µ̃ and µ̃× µ̃ as in Theorem 3.1.

Throughout this section α ∈ 6P and ϕ is the corresponding eigenvalue. Recall that
the phase pα(Px,y) is the almost sure value of ϕ(σ)/ϕ(τ) for σ × τ ∼ Px,y , which is the
same as for σ × τ ∼ P̃x,y . Therefore for µ× µ-typical (x, y) and corresponding typical
(ω, η) ∈ �×�,

pα(Px,y) =
ϕ(µ∗ω)

ϕ(µ∗η)
.

Fixing a µ-typical x0, the phase measure θα = θα(µ, x0) is the push-forward of µ via
y 7→ pα(Px0,y). Thus, for ω0 corresponding to x0, we find that θα(µ, x0) is the push-
forward of µ̃ through the map η 7→ ϕ(µ∗ω0

)/ϕ(µ∗η).

Proposition 3.15. If λ ∈ 6P \ (1/log b)Q then θλ is Lebesgue measure.
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Proof. η 7→ ϕ(µ∗η) is an eigenfunction for the system (�, µ̃, T ) with eigenvalue λ log b.
Since λ log b is irrational, the distribution of ϕ(µ∗η) is uniform on the circle, so the same
is true for ϕ(µ∗ω0

)/ϕ(µ∗η), and the conclusion follows. ut

Proposition 3.16. If α = n/(m log b) ∈ 6(M∗,P ,S∗) and µ is ergodic then θα is uniform
measure on a rotation of the m-th roots of unity. In particular if m = 1 then θα consists
of a single atom.

Proof. η 7→ ϕ(µ∗η) is an eigenfunction of (�, µ̃, T ) with eigenvalue (log b)α = n/m.
The distribution of ϕ(µ∗η) for η ∼ µ̃ is just the distribution of this eigenfunction,
which is uniform on a rotation of the m-th roots of unity. Therefore the same is true
for ϕ(µ∗ω0

)/ϕ(µ∗η), η ∼ µ̃, proving the proposition. ut

Now we turn to the non-ergodic case. For z = e(t) with t ∈ [0, 1) let us denote L(z)
= t/α.

Lemma 3.17. The distribution of µ∗ω, ω ∼ µ̃, is the same as the distribution of S∗L(z)ν,
(ν, z) ∼ P̃x0 × θα , where θα = θα(µ, x0).

Proof. Write for brevity

p(ω) =
ϕ(µ∗ω0

)

ϕ(µ∗ω)

and consider the map �→M∗
× {|z| = 1} defined by

ω 7→ (S∗
−L(p(ω))µ

∗
ω, p(ω)),

It suffices to show that this map takes µ̃ to P̃ × θα , and for this we must show that (a) the
second component of the image measure is θα , and (b) conditioned on the value of the
second component, the distribution of the first component is P̃x0 .

For (a), fix x ∼ µ. Then for µ̃(x)-a.e. ω the value of p(ω) = ϕ(µ∗ω0
)/ϕ(µ∗ω) is

pα(P̃x0,x), because, by definition, µ∗ω0
× µ∗ω is a typical element of P̃x,x0 ; and this is the

same as pα(Px0,x), because Px0,x =
´ 1

0 S
∗

t log bP̃x0,x dt . The distribution of pα(Px0,x) for
x ∼ µ is by definition equal to θα .

Next, conditioned on the value p(ω) = ϕ(µ∗ω0
)/ϕ(µ∗ω) we know by Corollary 3.12

that S∗
−L(z)P̃x = P̃x0 . This proves the lemma. ut

Proposition 3.18. If α ∈ 6P ∩ (1/log b)Q then θα is singular with respect to Lebesgue
measure.

Proof. Our strategy is similar to the proof of Theorem 3.13. Choose an integer d with
d · dimµ > 1; we show that if θα were absolutely continuous with respect to Lebesgue
measure then this would imply that dimµ∗d = 1, which would contradict the intermediate
entropy of µ, as in Theorem 3.13.

We aim to show that dimµ∗d = 1. By Theorem 3.1 we have

µ =

ˆ
(Uξ(ω)µω)|[0,1] dµ̃(ω).
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Write ω = (ω1, . . . , ωd) and µ̃d = ×di=1 µ̃. Let f (x) =
∑d
i=1 xi . Then

dimµ∗d = dim f

(ˆ
d
×
i=1
(Uξ(ωi )µωi )|[0,1] dµ̃

d(ω)

)
≥ ess inf

ω∼µ̃d
dim f

(( d
×
i=1

Uξ(ωi )µωi

)∣∣∣
[0,1]d

)
≥ ess inf

ω∼µ̃d
dim f

(( d
×
i=1

µωi

)∣∣∣
[−1,1]d

)
where in the last equality we used linearity of f . Writing ν = (ν1, . . . , νd), z =
(z1, . . . , zd) and P̃ d , θdα for the d-fold product measures, we can apply the previous
lemma to get

= ess inf
ν∼P̃x0 , t∼θ

d
α

dim f
(( d
×
i=1

S∗
L(zi )

νi

)∣∣∣
[−1,1]d

)
.

Setting ft (x) =
∑d
i=1 e

tixi and L(z) = (L(z1), . . . , L(zd)), we obtain

≥ ess inf
ν∼P̃x0 , t∼θ

d
α

dim f−L(z)

(( d
×
i=1

νi
)∣∣∣

[−b,b]d

)
.

Now with ν1, . . . , νd fixed typical measures for P̃x0 we know that ×di=1 νi |[−b,b]d has
exact dimension d dimµ > 1. Also, since L is a piecewise smooth map, if θα were abso-
lutely continuous then the distribution of L(z) for z ∼ θdα would be absolutely continuous
with respect to d-dimensional Lebesgue measure. Hence, applying Marstrand’s theorem
again, we find that for P̃ dx0

-a.e. choice of ν the dimension in the expression above is 1, so
the essential infimum is 1. This completes the proof. ut
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