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Abstract. For a group G and a positive real number x, define dG(x) to be the number of inte-
gers less than x which are dimensions of irreducible complex representations of G. We study the
asymptotics of dG(x) for algebraic groups, arithmetic groups and finitely generated linear groups.
In particular we prove an “alternative” for finitely generated linear groups G in characteristic zero,
showing that either there exists α > 0 such that dG(x) > xα for all large x, orG is virtually abelian
(in which case dG(x) is bounded).

1. Introduction

In this paper we study some asymptotic questions concerning the dimensions of irre-
ducible complex representations of various groups. These include complex algebraic
groups, p-adic groups, arithmetic groups, finitely generated soluble groups and finitely
generated linear groups. One of our main results (Theorem 4) constitutes an “alternative”
for finitely generated linear groups in characteristic zero: either they have many represen-
tation degrees, or they are virtually abelian.

For a group G, define DG to be the set of (finite) degrees of irreducible complex
representations of G; when G is complex algebraic or profinite, we allow only rational
representations and continuous representations (i.e. representations that factor through a
quotient by an open normal subgroup), respectively, in this definition. For a real number x,
define

DG(x) = {n ∈ DG : n ≤ x}, dG(x) = |DG(x)|.

While we are not aware of any previous systematic study (or indeed definition) of this
function, there are various related results in the literature, mainly for finite groups. Per-
haps the first is the theorem of Isaacs and Passman [8], bounding the index of an abelian
subgroup of a finite group G in terms of max(n : n ∈ DG). Another is the result of
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Isaacs [7] bounding the derived length of a finite soluble group in terms of max(dG).
Related results for finite simple groups can be found in [13], [14].

A related active field of study is representation growth, where one counts the number
rn(G) of irreducible representations of G of dimension n—see [11] and the references
therein.

In this paper we study the asymptotics of the density function dG(x) for various in-
finite groups G. Our results form an interesting contrast with those in [11], particularly
for the case of arithmetic groups (see Theorem 3). The analogous notion of the density of
subgroup indices is studied in [20].

We begin with complex simple algebraic groups. For these, we include only rational
representations in our definition of DG.

Theorem 1. Let G = G(C) be a simply connected simple algebraic group of rank r
over C, and let u be the number of positive roots in the root system of G. Then there is a
constant c depending only on G such that

xr/u−c/log log x
≤ dG(x) ≤ x

r/u+(r−1)/log log x .

In particular
dG(x) = x

r/u+o(1).

The final statement of Theorem 1 can also be deduced from [11, 5.1].
For p-adic groups, dG(x) is much smaller. Let G be an absolutely simple, simply

connected algebraic k-group, where k is an algebraic number field. For each prime ideal p
of the ring of integers O of k, let Op be the corresponding discrete valuation ring and
G(Op) the group ofOp-rational points inG. If p is the characteristic ofO/p, thenG(Op)

is virtually pro-p. Hence, letting b be the index of the maximal normal pro-p subgroup,
we have

DG(Op) ⊆ {ap
i : 1 ≤ a ≤ b, i ≥ 0},

whereDG(Op) is the set of degrees of complex irreducible finite representations ofG(Op).
It follows that there is a constant c such that

dG(Op)(x) ≤ c logp x. (1)

We shall need to deal with products of the groups G(Op) for different primes p.

Theorem 2. Let G and k be as above, and define R = R(G) as in Table 1. Let H =∏
G(Op), where p ranges over all but finitely many primes of O. Then

dH (x) = x
1/R+o(1).

Table 1

G Ar Br Cr Dr G2 F4 E6 E7 E8
R(G) r 2r − 2 r 2r − 3 3 8 11 17 29
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The numbers R(G) are the degrees of the polynomials in p expressing the minimal di-
mensions of complex irreducible representations of the groups G(Fp) (see [10], [15]).

The next theorem combines the above results to study dG(x) for arithmetic groups.

Theorem 3. Let k be a algebraic number field, let G be an absolutely simple, simply
connected k-group, and let 0 = G(OS) where S is a finite set of primes of k and OS is
the ring of S-integers. Assume that 0 has the congruence subgroup property. Then

d0(x) = x
r/u+o(1),

where r is the rank of G and u is the number of positive roots in the root system of G.

The congruence subgroup property means that the profinite completion of 0 is isomorphic
(modulo a finite normal subgroup) to a group H as in Theorem 2, hence the density of
degrees of finite representations of 0 is given by Theorem 2. The above theorems show
that asymptotically the function dG(OS ) is similar to dG(C), and is at least (and often larger
than) dH , since r/u ≥ 1/R. In other words, the main contribution to DG(OS ) comes from
rational representations rather than finite representations. This is in sharp contrast to a
result of Larsen and Lubotzky [11, 8.1], showing that in large rank, G(OS) has many
more finite representations than rational representations.

We note that it was believed for some time that arithmetic groups as in Theorem 3
had xr/u+o(1) irreducible representations of degree at most x; this is refuted in [11], and
the precise representation growth of arithmetic groups is still unknown. Theorem 3 above
shows that the suggested estimate above holds if instead of counting irreducible represen-
tations we count their degrees.

The above results are a major ingredient in the proof of the following “alternative” for
linear groups in characteristic zero.

Theorem 4. Let G be a finitely generated linear group in characteristic zero. Then one
of the following holds:

(i) there exists α > 0 such that dG(x) > xα for all sufficiently large x;
(ii) there exists c > 0 such that dG(x) < c for all x, and G is virtually abelian.

The proof of Theorem 4 uses a version of the “Lubotzky alternative” ([16, Window 9])
and the previous theorems to reduce to the case where G is virtually soluble. It is well
known ([22, 4.7]) that finitely generated linear groups in characteristic zero are virtually
residually p for almost all primes p. In Theorem 6.12 we prove that every finitely gen-
erated virtually soluble group with this property satisfies either (i) or (ii) of Theorem 4,
thereby completing the proof of Theorem 4. The proof of this involves both analytic and
algebraic number theory (see Subsections 6.2 and 6.3). We are grateful to Roger Heath-
Brown for some useful discussions relating to sieve theory and Subsection 6.3.

Theorem 4 is not true for finitely generated linear groups in positive characteristic,
as is shown for example by the group SLd(Fp[t]). However there is a weaker alternative
that holds in this case, where (i) is replaced by dG(x) >

c log x
log log x . For finitely generated

residually finite groups that are neither linear nor soluble, the function dG(x) can grow
arbitrarily slowly. Details will appear in a future paper.
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2. Preliminaries

For a natural number n and a groupG, let rn(G) denote the number of irreducible complex
representations of G of dimension n, and define Rn(G) =

∑n
m=1 rm(G). The following

is clear.

Lemma 2.1. For any group G,

Rn(G)

max(rm(G) : m ≤ n)
≤ dG(n) ≤ Rn(G).

For any group G, define a “zeta function” δG : R→ R ∪ {∞} by

δG(s) =
∑
n∈DG

n−s .

Lemma 2.2. Let I be countable set, and for each i ∈ I let Gi be a group. Let G =∏
i∈I Gi be their Cartesian product. Then

δG(s) ≤
∏
i∈I

δGi (s)

for every s ∈ R.

Proof. We are only counting representations whose kernel contains all but finitely many
of the factors in the product. The result then follows easily from the fact that every finite-
dimensional irreducible representation of a finite product of the Gi is a tensor product of
irreducible representations of the Gi . ut

Lemma 2.3. Let G be a group and s a positive real number.

(i) If δG(s) <∞, then dG(x) = O(xs).
(ii) If dG(x) = O(xs), then δG(t) <∞ for any t > s.

Proof. (i) Fix x > 0, and for i ≥ 0 define

Di = {n ∈ DG : 2−(i+1)x < n ≤ 2−ix}.

Observe that
dG(x) =

∑
i≥0

|Di |. (2)

Now
δG(s) ≥

∑
n∈Di

n−s ≥ (2−ix)−s |Di | = 2isx−s |Di |.

Therefore
|Di | ≤ δG(s) · 2−is · xs,

and so by (2),
dG(x) ≤ δG(s) · x

s
∑
i≥0

2−is = O(xs),

as required.
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(ii) This is quite similar. For i ≥ 0 define Ci = {n ∈ DG : 2i ≤ n < 2i+1
}, and for

t > s define

δi(t) =
∑
n∈Ci

n−t .

Then δi(t) ≤ |Ci | · (2i)−t ≤ dG(2i+1) · 2−it . By our assumption, dG(2i+1) ≤ c · (2i+1)s .
Hence δi(t) ≤ c · 2s−i(t−s). Consequently,

δG(t) =
∑
i≥0

δi(t) ≤ c
∑
i≥0

2s−i(t−s),

which is finite. ut

The next result shows that the function dG does not change much when passing to a
subgroup of finite index. In the statement, d(m) denotes the number of positive divisors
of m.

Lemma 2.4. Let G be a group and let H be a normal subgroup of finite index m in G.
Then

(i) dG(x) ≥ 1
d(m)

dH (x/m);

(ii) dH (x) ≥ 1
d(m)

dG(x).

Proof. (i) For each n ∈ DH (x/m), choose an irreducible representation ρ of H of di-
mension n, and an irreducible constituent ρ′ of the induced representation ρ↑G. Then ρ
is a constituent of ρ′↓H by Frobenius Reciprocity, so by [6, 11.29], dim ρ′/dim ρ is an
integer dividing m. Let n′ = dim ρ′. Then n′ ∈ DG(x) and n′ = ni for some divisor i
ofm. This defines a (non-canonical) map fromDH (x/m) toDG(x)which is at most d(m)
to 1. The result follows.

(ii) For each n ∈ DG(x), choose an irreducible representation ρ ofG of dimension n,
and an irreducible constituent ρ′ of ρ↓H . Then dim ρ/dim ρ′ is an integer dividing m,
by [6, 11.29]. Let n′ = dim ρ′. Then n′ ∈ DH (x) and n′ = n/i for some divisor i of m.
This defines a (non-canonical) map from DG(x) to DH (x) which is at most d(m) to 1.
The result follows. ut

We remark that if H is a finite index subgroup of G (not necessarily normal), then by
considering its core, we see that the conclusions of 2.4 hold with m replaced by m!. The
next result follows immediately.

Corollary 2.5. Let G be a group and let H be a subgroup of finite index in G.

(i) Suppose dH (x) ≥ cxs for all x ≥ 1, where c, s > 0. Then there is a positive constant
c′ (depending on c and |G : H |) such that dG(x) ≥ c′xs .

(ii) Suppose dG(x) ≥ cxs for all x ≥ 1, where c, s > 0. Then there is a positive constant
c′ (depending on c and |G : H |) such that dH (x) ≥ c′xs .
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For any finite group G, let m(G) be the smallest dimension of a nontrivial complex rep-
resentation of G. For a Lie type X, we denote by Xε(q) (ε ∈ {1, 2, 3}) a possibly twisted
group of type X (and unspecified isogeny type) over the finite field Fq , where ε = 1 in-
dicates the untwisted group, ε = 2 indicates the twisted groups 2An, 2Dn, 2E6, and ε = 3
indicates 3D4. (Note that we are excluding the Suzuki and Ree groups, as these do not
arise in any proofs in the paper.)

Lemma 2.6. Fix a type G of simply connected simple algebraic group, and define R =
R(G) as in Table 1. There there are positive absolute constants c1, c2 such that for any
prime p > 3 and any power q of p,

c1q
R < m(Gε(Fq)) < c2q

R.

Moreover, for p > 3 and G 6= G2, m(Gε(Fq)) is given by a polynomial in q of degree R
which depends only on the type ofG (and the twisted typeGε); forG = G2 it is given by
one of two polynomials, depending on the congruence class of q modulo 6.

Proof. This follows from [21, 1.1] for classical groups, and from [15] for exceptional
types. ut

3. The complex case

In this section we prove Theorem 1. Let G = G(C) be a simply connected simple al-
gebraic group of rank r over C. Let 8 be the root system of G, with fundamental roots
α1, . . . , αr , and let λ1, . . . , λr be the corresponding fundamental dominant weights. Let
u = |8+|. For λ a dominant weight, let V (λ) be the Weyl module for G of highest
weight λ. The Weyl character formula (see for example [5, p. 139]) states that

dimV (λ) =

∏
α∈8+〈λ+ δ, α〉∏
α∈8+〈δ, α〉

, (3)

where δ is half the sum of the positive roots, and 〈λ+ δ, α〉 is defined as (λ+ δ, αv) with
αv = 2α/(α, α), the dual root. Write N(λ) for the numerator and l for the denominator
in (3)—that is,

N(λ) =
∏
α∈8+

〈λ+ δ, α〉, l =
∏
α∈8+

〈δ, α〉.

We refer to [1, p. 250] for descriptions of root systems.

Lemma 3.1. We have

rn(G) ≤ d(ln)
u
≤ nc/log log n

≤ no(1),

where d(m) is the number of divisors of m, and c = c(r).
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Proof. Each irreducible complex representation ofG is afforded by a Weyl module V (λ)
for some λ. By (3), we therefore have to count the number of weights λ for which N(λ)
= ln. For such λ, N(λ) is a product of u natural numbers 〈λ+ δ, α〉 which are all divisors
of ln. Hence there are at most d(ln)u possibilities for these u numbers 〈λ + δ, α〉. Since
these numbers determine λ uniquely, it follows that rn(G) ≤ d(ln)u. Finally, it is well
known that d(m) ≤ mc/log logm, proving the second inequality. ut

The following proposition is our main tool for proving the upper bound in Theorem 1.

Proposition 3.2. Write λ =
∑r
i=1miλi , and let u = |8+|, the number of positive roots.

Then

N(λ) ≥

r∏
i=1

(mi + 1)u/r .

Proof. Since δ =
∑r
i=1 λi , we have

N(λ) =
∏
α∈8+

〈 r∑
i=1

(mi + 1)λi, α
〉
. (4)

We begin by considering G of type Ar (i.e. G = SLr+1(C)). The positive roots take
the form αst = αs + · · · + αt (s ≤ t), and〈 r∑

i=1

(mi + 1)λi, αst
〉
= ms + · · · +mt + t − s + 1.

Write mst = ms + · · · +mt + t − s + 1. Then

N(λ) =
∏

1≤s≤t≤r

mst .

Hence

N(λ)2 =

r∏
s=1

(∏
t≥s

mst
∏
t≤s

mts

)
.

Since mst ≥ ms + 1 and mts ≥ ms + 1, it follows that

N(λ)2 ≥

r∏
s=1

(ms + 1)r+1
=

r∏
s=1

(ms + 1)2u/r ,

as required.
Next consider G of type Br . The positive roots are

αsr = αs + · · · + αr (s ≤ r),

αst = αs + · · · + αt , βst = αs + · · · + αt + 2(αt+1 + · · · + αr) (s ≤ t < r),

and we have αvsr = 2αsr , while αvst = αst , β
v
st = βst for s ≤ t < r . It follows by (4) that

N(λ) =
∏
s≤r

ksr
∏
s≤t<r

mstnst ,
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where

ksr = 2ms + · · · + 2mr−1 +mr + 2r − 2s + 1,
mst = ms + · · · +mt + t − s + 1,
nst = ms + · · · +mt + 2mt+1 + · · · + 2mr−1 +mr + 2r − s − t.

HenceN(λ) ≥
∏
s≤r ksr

∏
s≤t<r m

2
st , and by the typeA case applied forAr−1, the second

product is at least
∏
s<r(ms + 1)r . As ksr ≥ mr + 1, it follows that

N(λ) ≥
∏
s≤r

(ms + 1)r =
r∏
s=1

(ms + 1)u/r ,

giving the result for type B.
The proof forG of type Cr is very similar to that for Br . TypeDr is not very different:

here the positive roots are

αst = αs + · · · + αt (s ≤ t ≤ r − 1),
αsr = αs + · · · + αr−2 + αr (s 6= r − 1),
βst = αs + · · · + αt + 2(αt+1 + · · · + αr−2)+ αr−1 + αr (s ≤ t ≤ r − 2).

Hence, defining mst as above for s ≤ t ≤ r − 1, and msr = ms + · · · +mr−2 +mr + 1,
we have

N(λ) ≥
∏

s≤t≤r−2

m2
st

∏
s≤r−1

ms,r−1
∏
s≤r−2

ms,r · (mr + 1).

By the Ar−2 case, the first product is at least
∏
s≤r−2(ms + 1)r−1, and hence

N(λ) ≥
∏
s≤r

(ms + 1)r−1
=

r∏
s=1

(ms + 1)u/r ,

giving the result for type D.
The exceptional types are straightforward. First consider G of type E6. The positive

roots α with α2-coefficient 0 are in an A5 subsystem, so by the Al case, these contribute
at least

∏
s 6=2(ms+1)3 to the expression (4) forN(λ). Next the six roots 010000, 010100,

011100, 111100, 010110, 010111 contribute at least (m2 + 1)6. It is easy to list the re-
maining 15 positive roots (using [1, p. 260]) and to see that these contribute at least∏
s 6=2(ms + 1)3. Hence N(λ) ≥

∏6
i=1(ms + 1)6, giving the result for E6.

Types E7 and E8 are similar. For E7 we note that by the E6 case, the positive roots α
with α7-coefficient 0 contribute at least

∏
s≤6(ms+1)6 to (4), and one can list the remain-

ing positive roots to see that they contribute at least (m7 + 1)9
∏
s≤6(ms + 1)3. For E8,

the E7 case shows that the roots with α8-coefficient 0 contribute at least
∏
s≤7(ms + 1)9,

and the rest contribute at least (m8 + 1)15∏
s≤7(ms + 1)6. Finally, types F4 and G2 are

similar and easier, and we leave them to the reader.
This completes the proof of the proposition. ut
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Proposition 3.3. We have

b1x
r/u
≤ Rx(G) ≤ b2x

r/u(log x)r−1,

where b1, b2 are positive constants. In particular,

Rx(G) = x
r/u+o(1).

The final statement of this proposition also follows from [11, Theorem 5.1], with a some-
what different proof to ours.

Proof. First we obtain the upper bound for Rx(G). Let c =
∏
α∈8+〈δ, α〉, the denomina-

tor in (3). Let λ =
∑
miλi as above, and assume dimV (λ) ≤ x, so that N(λ) ≤ cx. By

Proposition 3.2,
∏r
i=1(mi + 1)u/r ≤ cx, and hence

r∏
i=1

(mi + 1) ≤ c1x
r/u (5)

(where c1 = cr/u). We claim that the number f (r, x) of r-tuples (a1, . . . , ar) of natu-
ral numbers satisfying a1 · · · ar ≤ x is at most c2x (log x)r−1. This is easily proved by
induction on r: observe that f (r, x) ≤

∑x
ar=1 f (r − 1, x/ar), so by induction we have

f (r, x) ≤ c3

x∑
ar=1

x

ar
(log(x/ar))r−2

≤ c3x(log x)r−2
x∑

ar=1

a−1
r ≤ c2x(log x)r−1.

By the claim and (5), the number of possibilities for λ =
∑
miλi with N(λ) ≤ cx is

at most c3x
r/u (log x)r−1, and hence this is an upper bound for Rx(G).

For the lower bound, let λ =
∑r
i=1miλi , and for each α ∈ 8+, define lα = 〈λ+δ, α〉.

Choose ε > 0 such that for any choice of m1, . . . , mr ≤ εx
1/u, we have lα ≤ (cx)1/u for

all α ∈ 8+. So for all such mi we have

dimV (λ) =

∏
α∈8+ lα

c
≤ x.

The number of choices of (m1, . . . , mr) with all mi ≤ εx1/u is at least εrxr/u, and hence
Rx(G) ≥ b1x

r/u for some positive constant b1. ut

Theorem 1 follows from Proposition 3.3 and Lemma 3.1, together with Lemma 2.1.

4. Products of p-adic groups

In this section we prove Theorem 2. Let G be an absolutely simple, simply connected
k-group, where k is an algebraic number field. Define R = R(G) as in Table 1, let c1 > 0
be as in Lemma 2.6, and recall the Gε(q) notation in that lemma.
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Lemma 4.1. For almost all primes p of O, the dimension of any nontrivial irreducible
complex finite representation ρ of G(Op) satisfies

dim ρ = api

for some a, i ∈ N such that a ≥ c1q
R , where q = pf = N(p), and a divides |Gε(Fq)|

for some ε.

Proof. We may assume that p is sufficiently large so that good reduction holds (see [18,
Section 3]). Let Ḡ = G(Op)/ker ρ. Then Ḡ is a finite group which is an extension of a
p-group V by some Gε(Fq). If V = 1 the result follows from Lemma 2.6.

Now assume that V 6= 1. It is well known (see [23, 5.2]) that the successive congru-
ence quotients ofG(Op) have the structure of adjoint modules forGε(Fq). Assuming (as
we may) that p > rank(G) + 1, the adjoint module is irreducible for Gε(Fq). It follows
that if W is a minimal normal subgroup of Ḡ contained in Z(V ), then Gε(Fq) fixes no
nonzero element of Z(V )∗. By Clifford’s theorem, ρ↓W = e

∑
i∈1 θi , where e ∈ N

and the sum is over a Ḡ-orbit 1 of irreducible representations θi of W . By the previous
remark, we have |1| > 1, and hence |1| is the index of a proper subgroup of Gε(Fq).
Clearly such an index is at least m(Gε(Fq)), hence at least c1q

R . Finally, dim ρ = e|1|

divides |Ḡ|. The result follows, by defining a = ep′ |1|, where ep′ is the p′-part of e. ut

Now let p and q = N(p) be as in Lemma 4.1, and define δp to be the zeta function δG(Op).
Let

Ap = {a ∈ N : a ≥ c1q
R and a divides |Gε(Fq)| for some ε}.

For each a ∈ Ap and s ∈ R, define

δp,a(s) =
∑
i≥0

(api)−s =
a−s

1− p−s
.

Then by Lemma 4.1,

δp(s) ≤ 1+
∑
a∈Ap

δp,a(s) (6)

where the first term 1 accounts for the trivial representation. Hence for s > 0,

δp(s) ≤ 1+
∑
a∈Ap

a−s

1− p−s
. (7)

In particular, for s > 0, δp(s) is finite.

Lemma 4.2. For any s > 1/R, there exists t > 1 such that δp(s) ≤ 1 + cq−t , where
q = N(p) and c depends only on the rank of G.
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Proof. We may assume that p satisfies the conclusion of Lemma 4.1. Since a ≥ c1q
R for

a ∈ Ap, it follows from (7) that

δp(s) ≤ 1+ |Ap|(c1q
R)−s

1
1− p−s

. (8)

Now |Ap| ≤
∑
ε d(|G

ε(Fq)|), where Gε are the possible twisted types, and d(n) is
the number of divisors of n. Since |Gε(Fq)| < q4r2

and d(n) = no(1), it follows that
|Ap| = q

o(1): in other words, for every ε > 0,

|Ap| ≤ q
ε provided q > f (ε). (9)

Take f such that also c1q
R > qR−ε for q > f (ε). Since s > 1/R, we may choose ε > 0

such that t := s(R − ε)− ε > 1. Then for q > f (ε), we have by (8) and (9),

δp(s) ≤ 1+ qε · q−(R−ε)s ·
1

1− p−1/R ≤ 1+ cq−t , where c =
1

1− 2−1/R . ut

Now define H =
∏

pG(Op), where p ranges over all but finitely many primes of O.

Lemma 4.3. If s > 1/R, then δH (s) <∞.

Proof. By Lemma 2.2, δH (s) ≤
∏

p δp(s), and so by Lemma 4.2,

δH (s) ≤
∏
p

(1+ cN(p)−t ).

This converges for t > 1 by the convergence of the Dedekind zeta function ζO(t) =∑
N(I)−t , where I ranges over all nonzero ideals of O. ut

Lemma 4.4. There is a set P of rational primes of positive density such that for each
p ∈ P , H maps epimorphically onto G(Fp).

Proof. Choose a finite Galois extension k′ of k over which G is split, and let P be the set
of rational primes that split completely in k′ and are sufficiently large for G to have good
reduction. The Chebotarev density theorem shows that P has positive density.

Now let P be a prime of k′ dividing p ∈ P and set p = P ∩Ok . Then G(Op) maps
onto

G(Op/p) ∼= G(Ok′/P) ∼= G(Fp). ut

Lemma 4.5. Let L be a group which maps onto G(Fp) for all p ∈ P , where P is a set
of rational primes of positive density. Then

dL(x) ≥ x
1/R+o(1), where R = R(G).
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Proof. ClearlyDL contains the numbersm(G(Fp)) for all primes p ∈ P . By Lemma 2.6,
we have m(G(Fp)) < c2p

R . Given x, let Px be the set of primes p ∈ P with p > 3 and
c2p

R
≤ x. Since P has positive density, there exists b > 0 such that

|Px | ≥
bx1/R

log x
= x1/R+o(1).

For p ∈ Px we have m(G(Fp)) ≤ x, and by Lemma 2.6, m(G(Fp)) is given by a poly-
nomial in p of degree R (two polynomials if G = G2). This implies that each number in
the sequence (m(G(Fp)) : p ∈ Px) occurs at most 2R times, and hence

dL(x) ≥
|Px |

2R
= x1/R+o(1). ut

Proof of Theorem 2. It follows from Lemmas 2.3(i) and 4.3 that dH (x) = O(xs) for any
s > 1/R. Hence dH (x) ≤ x1/R+o(1), giving the upper bound in Theorem 2. The lower
bound follows from the preceding two lemmas.

5. Arithmetic groups

In this section we prove Theorem 3. Let k be a algebraic number field, let G be an abso-
lutely simple, simply connected k-group, and let 0 = G(OS) where S is a finite set of
primes of k. Assume that 0 has the congruence subgroup property. By [11, 3.3], 0 has a
finite index subgroup 00 such that the proalgebraic completion A(00) satisfies

A(00) = G(C)j ×
∏
p 6∈S

Lp

where j is the number of infinite places of k and Lp is an open subgroup ofG(Op), equal
to it for almost all p. In view of Corollary 2.5, we may assume that 0 = 00. As explained
in [11, Section 2], we then have

D0 = DG(C)j×H ,

where H =
∏

p6∈S Lp. Note that H has finite index in H1 =
∏

p 6∈S G(Op).
Fix s > r/u. Then δG(C)(s) <∞ by Theorem 1 and Lemma 2.3(ii). Hence δG(C)j (s)

<∞ by Lemma 2.2. Now we consider δH (s). By inspection we have r/u ≥ 1/R, where
R = R(G) is as defined in Table 1 in the Introduction. Since s > r/u, it follows that
s > 1/R, and so Lemma 4.3 (applied to H1) implies that δH (s) < ∞. Consequently,
Lemma 2.2 implies that

δG(C)j×H (s) ≤ δG(C)j (s)δH (s) <∞.

Now Lemma 2.3(i) yields δG(C)j×H (x) = O(x
s). Hence

d0(x) = dG(C)j×H (x) ≤ x
r/u+o(1),

giving the upper bound in Theorem 3. For the lower bound, observe that d0(x)≥dG(C)(x)
≥ xr/u+o(1) by Theorem 1. This completes the proof of Theorem 3.
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6. Linear groups

In this section we prove Theorem 4. First we quickly reduce to the case where the linear
group G is virtually soluble.

6.1. Reduction to soluble groups

The key to the reduction is the following version of the “Lubotzky alternative” (see [17,
Chapter II, Corollary 6.2]).

Proposition 6.1. Let G be a finitely generated linear group in characteristic zero, and
suppose thatG is not virtually soluble. Then there exist a subgroup L of finite index inG,
a fixed (untwisted) Lie typeX, and a set P of primes of positive density, such that L maps
onto X(Fp) for each p ∈ P .

Corollary 6.2. IfG is as in Proposition 6.1, then there exists α > 0 such that dG(x) > xα

for all sufficiently large x.

Proof. This follows from the proposition together with Lemma 4.5. ut

The rest of the proof concerns the soluble case. This has a strong number-theoretic flavour,
and we begin with some preparations for this.

6.2. Some number theory, I: number fields

Let k be an algebraic number field. To each prime p of k is associated a finite residue field
k(p) = O/p. Let Fk denote the set of residue fields k(p) for primes p of k. The following
is elementary algebraic number theory.

Lemma 6.3. If (K : Q) = f then for every (rational) prime p there exists s with 1 ≤
s ≤ f such that Fps ∈ Fk .

A subring R of k will be called full if R is finitely generated as a ring and k is its field
of fractions. In this case, there is a finite set S of primes of k such that each prime p /∈ S
corresponds to a maximal ideal P of R with R/P ∼= k(p). We write πp : R → k(p) for
the associated epimorphism. Let 1 be a finitely generated subgroup of k∗ such that the
additive span R = R(1) of 1 is a full subring of k. Then the following is immediate
from Lemma 6.3:

Lemma 6.4. There exist natural numbers f and N such that for every prime p ≥ N

there is a prime p of k such that R(1)πp = Fps with 1 ≤ s ≤ f .

If π : R(1) → Fps is an epimorphism then 1π is cyclic, and a generator is a primitive
element for Fps ; hence

s ≤ |1π | | ps − 1. (10)

Now let N (1) denote the set of numbers
∣∣1πp∣∣ with p as in the preceding lemma.

The key to our argument is the following sieve-theoretic result.
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Theorem 6.5. Let h ∈ N. Then there exist d = d(h) ∈ N and c = c(h) > 0 such that for
all sufficiently large x, there is a set Qx of primes with the following properties:

ph < x for all p ∈ Qx,

(ph − 1, qh − 1) | d for all p 6= q ∈ Qx,

|Qx | > xc.

This will be proved in the next subsection. Now we use it to deduce

Proposition 6.6. Suppose that 1 is infinite. Then there exists c > 0 such that

|N (1) ∩ [1, x]| ≥ xc

for all sufficiently large x.

Proof. Put h = f !. Then Lemma 6.4, with (10), shows that for every sufficiently large
prime p, the set N (1) contains a number np =

∣∣1πp∣∣ which divides ph − 1. If np | d =
d(h) then 1d − 1 ⊆ kerπp; as the intersection of any infinite set of prime ideals in R is
zero, while 1 is infinite, this can occur for at most finitely many p. Hence if p and q are
sufficiently large distinct primes and np = nq then (ph − 1, qh − 1) does not divide d.

Let Q denote the finite set of insufficiently large primes in the above sense, and let
x be a large real number. The preceding observations show that p 7→ np maps Qx \ Q
injectively into the set N (1) ∩ [1, x]. The result now follows from Theorem 6.5, on
replacing c by any slightly smaller positive number. ut

6.3. Some number theory, II: a sieve result

Here we prove Theorem 6.5. The proof depends on the following result.

Lemma 6.7. Fix an integer h ≥ 1, and let x be a sufficiently large real number. Then
there is a set Q1 of primes p ≤ x, a constant a > 0, a positive real number c1(h), and a
positive integer d1(h), with the following properties:

(i) |Q1| > ax(log x)−h ;
(ii) for all p ∈ Q1, d1(h) divides ph − 1 properly;

(iii) for all p ∈ Q1, all prime factors of (ph − 1)/d1(h) are greater than xc1(h).

Proof. This follows from [3, Theorem 2.6] (taking u = 1/c1(h) large enough for the first
error term in (8.4) to be at most 1/2). ut

We now prove Theorem 6.5. Let y = x1/h; then ph−1 < x for p < y. Apply Lemma 6.7
with y replacing x, giving Q1, c1(h), d1(h). Define d(h) = d1(h), and choose a maximal
subset Q of Q1 satisfying the second condition of Theorem 6.5.

Let p ∈ Q, and write ph − 1 = d(h)p1 · · ·pb where the pi are primes. As p ∈ Q1,
we have pi > yc1(h) for all i. Hence

x = yh > ph − 1 > yc1(h)b.

It follows that h > c1(h)b, so b < b(h) := h/c1(h).
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We claim that for each i, the number of primes q ∈ Q1 such that pi divides qh − 1
is at most hy/pi . Indeed, qh − 1 is a polynomial in q which has at most h roots in Fpi .
For each such root α, there are at most y/pi numbers up to y which are congruent to
α mod pi . This proves the claim.

As pi > yc1(h), the number of primes q ∈ Q1 such that pi divides qh − 1 is at most
hy1−c1(h). Thus the number of primes q ∈ Q1 with gcd((ph − 1)/d(h), (qh − 1)/d(h))
> 1 is at most b(h)hy1−c1(h). Letting p ∈ Q vary, we conclude that the number of q ∈ Q1
satisfying gcd((ph − 1)/d(h), (qh − 1)/d(h)) > 1 for some p ∈ Q is at most

|Q|b(h)hy1−c1(h).

By the maximality of Q, this number must be at least |Q1|, giving

|Q|b(h)hy1−c1(h) ≥ |Q1| ≥ ay(log y)−h.

This yields
|Q| > ab(h)−1h−2(log y)−hyc1(h).

This is greater than xc(h) for any c(h) < c1(h)/h.
This completes the proof of Theorem 6.5.

6.4. Soluble groups

For a finite field F , let A(F) denote the 1-dimensional affine group F+ o F ∗. We call a
subgroup H of A(F) full if H = F+oU , where 1 < U ≤ F ∗ and U spans F additively;
this holds if and only if F+ is irreducible and nontrivial as a U -module.

Proposition 6.8. Let G be a torsion-free finitely generated metabelian group, and sup-
pose that G is not virtually nilpotent. Then there exist an algebraic number field k and a
homomorphism φ : G→ k∗ such that:

(i) Gφ is infinite and spans a full subring R of k;
(ii) for almost all primes p of k, there is a homomorphism θp : G → A(k(p)) such that

the diagram

G
φ
−→ R∗

θp↓ ↓πp

A(k(p)) � k(p)∗
(11)

commutes, and Gθp is a full subgroup of A(k(p)).

Proof. Set A = G′ and consider A as an additively-written module for 0 = G/A. Put
S = Z0. Then S is a finitely generated Z-algebra and A is a finitely generated, hence
Noetherian, S-module (cf. [12, 11.1.1]). Let

0 = A1 ∩ · · · ∩ At

be a primary decomposition of zero in the S-module A; say A/Ai is Pi-primary where
P1, . . . , Pt are prime ideals of S, char(S/Pi) = 0 for i = 1, . . . , r and char(S/Pi) =
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qi 6= 0 for i = r + 1, . . . , t . There exists s ∈ N such that AP si ≤ Ai for each i. Put
q =

∏t
i=r+1 q

s
i . Then

q(A1 ∩ · · · ∩ Ar) ≤ A1 ∩ · · · ∩ Ar ∩ AP
s
r+1 ∩ · · · ∩ AP

s
t = 0.

Since G is torsion-free, it follows that A1 ∩ · · · ∩ Ar = 0.
For each n there exists i ≤ r such that 0n! does not act nilpotently on A/Ai . At least

one value of i occurs infinitely often, say i = m. Then no subgroup of finite index in 0
acts nilpotently onA/Am. ReplacingG byG/Am, we may as well assume henceforth that
A is a P -primary S-module, where P is a prime ideal such that |0 : 0 ∩ (1+ P)| = ∞
and char(S/P ) = 0.

Now S/P is a finitely generated infinite integral domain. According to [2, Theo-
rem A], there exist an algebraic number field k and a homomorphism θ : S → k, with
P ≤ ker θ = Q say, such that θ induces an injective homomorphism from the group
of units (S/P )∗ into k∗. We may take k to be the field of fractions of Sθ = R, and put
1 = 0θ ≤ R∗. Then

1 ∼= 0/(0 ∩ (1+Q)) = 0/(0 ∩ (1+ P))

is an infinite group.
Now let

φ : G→ 0→ k∗

be the map induced by θ . Then Gφ = 1 is an infinite subgroup of k∗, and 1 spans the
full subring R of k.

Since A is a P -primary S-module, there exists a ∈ A with annS(a) = P . Then

aS/aQ ∼= S/Q.

Let K ≥ aQ be an S-submodule of A maximal subject to A/K containing a copy of
S/Q. Using the Artin–Rees Lemma it is easy to see that AQ ≤ K and A/K is torsion-
free of rank one as an S/Q-module. Replacing G by G/K , we may suppose that A it-
self is torsion-free of rank one as an S/Q-module. Then A contains a free cyclic S/Q-
submodule B such that As ≤ B for some s ∈ S r Q, and A/AL ∼= S/L for every
maximal ideal L of S with L ≥ Q and s /∈ L.

Let p be a prime of k corresponding to a maximal ideal Pp of R, and put L = Ppθ−1,
so L is a maximal ideal of S containing Q and S/L ∼= k(p) := F . Let us assume that
s /∈ L and that 1 − 1 * Pp: this excludes only finitely many possibilities for p. Then
A/AL ∼= S/L ∼= F , the action of g ∈ G on A/AL corresponding to multiplication by
gφπp ∈ F , and U := Gφπp 6= 1. In particular, A/AL is simple and non-trivial as a
G-module.

Put C = CG(A/AL) = ker(φπp) and set Z/AL = Z(G/AL). Then C/Z embeds in
Hom(G/A,A/AL), so C/Z is an elementary abelian p-group where p = char(F ); on
the other hand, G/C ∼= U ≤ F ∗, a p′-group. It follows that C/Z = T/Z × Y/Z where
Y/Z = CC/Z(G) and

T/Z = [C,G]Z/Z = AZ/Z ∼= A/(A ∩ Z) = A/AL.
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As (|G/C| , |C/Y |) = 1 this now implies that

G/Y ∼= (T Y/Y )o (G/C) ∼= (A/AL)o (G/C) ∼= F+ o U,

a full subgroup of A(F); a suitable epimorphism θp : G→ G/Y → F+oU then makes
the diagram (11) commute. ut

For a full subgroup H = F+ o U of A(F), write n(H) = |U |; this is the p′-part of |H |
where p = char(F ).

Proposition 6.9. Let H be a full subgroup of A(Fpf ). Then the irreducible character
degrees of H are 1 and n(H).

Proof. This is a special case of [6, 12.3]. ut

Now let φ : G → Gφ = 1 ≤ k∗ be as in Proposition 6.8. Then for almost all primes p
of k we have

Gθp ∼= k(p)+ o1πp

so G has a character of degree n(Gθp) =
∣∣1πp∣∣. Thus

DG ⊇ N (1)r T (12)

for some finite set T . The results of Section 6.2 therefore imply lower bounds for the
growth of DG, and for any group that maps onto G. We will exploit these.

Let us say that a group G is strongly torsion-free if there exist disjoint sets of primes
π and σ such that G is residually a π -group and residually a σ -group. As noted in the
Introduction, finitely generated linear groups in characteristic zero are virtually strongly
torsion-free; so are torsion-free finitely generated abelian-by-polycyclic groups ([19]).
Strongly torsion-free groups are evidently torsion-free; they also have many natural tor-
sion-free quotients, as exemplified in

Lemma 6.10. IfG is strongly torsion-free and A is maximal among abelian normal sub-
groups of G then G/A is strongly torsion-free.

Proof. Let X denote the set of N C G such that G/N is a π -group. Then[ ⋂
N∈X

NA,
⋂
N∈X

NA
]
≤

⋂
N∈X

N = 1,

so
⋂
N∈XNA = A. Thus G/A is residually a π -group, and similarly with σ in place

of π . ut

Proposition 6.11. Let G be a finitely generated virtually nilpotent group that is not vir-
tually abelian. Then there exists α > 0 such that dG(x) > xα for all large x.
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Proof. By 2.5, we may assume that G is nilpotent. Since G has a maximal normal sub-
group N such that G/N is not virtually abelian, we may further assume that G is just
non-virtually abelian (i.e. every proper quotient is virtually abelian). We have Z(G) 6= 1,
and hence G/Z(G) is virtually abelian, so G is virtually of class 2. So we may assume
G is of class 2. Replacing G by a subgroup of finite index, we may also assume that G
is torsion-free. For a prime p, define Gp = G/Gp. This a finite p-group of exponent p,
generated by d = d(G) elements. Hence |Gp| ≤ pb, where b = d +

(
d
2

)
.

We claim that for all sufficiently large primes p, Gp is non-abelian. Indeed, if this
is not the case, then there is an infinite set P of primes p such that G′ ⊆ Gp for all
p ∈ P . However, according to a result of Higman [4], we have

⋂
p∈P G

p
= 1, which is

a contradiction.
Say Gp is non-abelian for all p > c. Then for all p > c, Gp has an irreducible

character χp of degree pip , where 1 ≤ ip ≤ b/2. This shows that

DG ⊇ {p
ip : p > c},

which gives dG(x) ≥ xα for any α < 2/b and large enough x. ut

Theorem 6.12. Let G be a finitely generated virtually soluble group, and assume that G
is virtually strongly torsion-free. Then exactly one of the following holds:

(a) G is virtually abelian, and dG(x) is bounded for all x;
(b) there exists α > 0 such that dG(x) > xα for all large x.

Proof. If G has an abelian normal subgroup of index m then dG(x) ≤ m for all x, by
Lemma 2.4. Assume now thatG is not virtually abelian. IfG has a non-(virtually abelian)
quotient that is virtually nilpotent, the result follows from Proposition 6.11, so we shall
assume further that every virtually nilpotent quotient of G is virtually abelian.

We claim that G has normal subgroups G0 > N such that G/G0 is finite and G0/N

is torsion-free and metabelian. Accepting the claim for now, we apply Proposition 6.8 to
the group G0/N . With (12) and Proposition 6.6 this shows that dG0/N (x) satisfies the
inequality specified in (b). The result follows by Lemma 2.4.

The claim is proved by induction on l(G), the least derived length of any soluble
subgroup of finite index in G. If l(G) ≤ 2 then l(G) = 2 and we take N = 1. Suppose
that l(G) = l ≥ 3, and letG1 be a strongly torsion-free soluble normal subgroup of finite
index in G having derived length l. Let A1 be maximal among abelian normal subgroups
ofG1 containingG(l−1)

1 , and putA = coreG(A1). ThenG/A is not virtually abelian since
l(G) ≥ 3, and G1/A1 is strongly torsion-free by Lemma 6.10, and hence so is G1/A. As
the derived length of G1/A is l − 1, the claim now follows on applying the inductive
hypothesis to G/A. ut

Proof of Theorem 4. Let G be a finitely generated linear group over a field of character-
istic zero, and assume that G is not virtually abelian. By Corollary 6.2 we may assume
thatG is virtually soluble. NowG is virtually strongly torsion-free by [22, Theorem 4.7].
The conclusion follows by Theorem 6.12.
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