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Abstract. A regular normal parabolic geometry of type G/P on a manifold M gives rise to se-
quences Di of invariant differential operators, known as the curved version of the BGG resolution.
These sequences are constructed from the normal covariant derivative ∇ω on the corresponding
tractor bundle V, where ω is the normal Cartan connection. The first operator D0 in the sequence
is overdetermined and it is well known that ∇ω yields the prolongation of this operator in the ho-
mogeneous case M = G/P . Our first main result is the curved version of such a prolongation.
This requires a new normalization of the tractor covariant derivative on V . Moreover, we obtain an
analogue for higher operators Di . In that case one needs to modify the exterior covariant derivative
d∇

ω
by differential terms. Finally we illustrate these results with simple examples in projective,

conformal and Grassmannian geometry. Our approach is based on standard BGG techniques.

Keywords. Parabolic geometry, prolongation of invariant overdetermined PDE’s, BGG sequence,
tractor covariant derivatives

1. Introduction

The problem how to find a prolongation of an overdetermined system of PDE’s acting
between sections of vector bundles is classical and has been studied for a long time.
A systematic procedure to solve such problems was developed by D. C. Spencer (see [32])
and his coworkers. One of the tools employed by him was the Spencer resolution of the
system, which is useful for description of many properties of solutions of the system. In
particular, there is a class of systems of finite type whose solutions are determined by
a finite jet at a chosen point. Spencer found a suitable characterization of such systems
in his studies. His general results are quite useful but in specific examples, in particular
for equations arising in a geometric context, a more efficient analysis can be obtained by
employing techniques more adapted to the geometric structure.
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Important examples of overdetermined systems can be found in many areas of geom-
etry. Examples in conformal geometry include, e.g., Killing vectors, conformal Killing
vectors, Killing–Yano forms, equations for Einstein scales, etc. (see [30, 19, 26]). In such
cases, it was possible to get much better results, because the relevant manifolds were
equipped with a rich geometric structure making it possible to use very efficient tools
coming from representation theory. To illustrate this in more detail, let us recall that the
most famous example of a resolution of an overdetermined system is the de Rham se-
quence for differential forms on a general manifold. The overdetermined system in this
case is the gradient of a function. The de Rham differentials d forming the resolution are
distinguished by their invariance with respect to the group of diffeomorphisms acting on
the manifold.

Many more explicit examples of overdetermined systems and their resolutions can
be described in cases where the manifold is equipped with a richer geometric structure.
Typical examples are manifolds with a given projective, conformal, quaternionic, or CR
structure. Homogeneous models of such structures are given by homogeneous spaces
G/P, where G is a semisimple Lie group and P a parabolic subgroup. On such spaces
there exist infinite sequences of resolutions (analogues to the de Rham resolutions), one
for each irreducible G-module. The de Rham resolution is the resolution for the trivial
G-module. A feature of such resolutions is that operators forming the sequence are (typ-
ically) higher order operators (with orders rising with the complexity of the G-module).
They are dual versions of the famous Bernstein–Gel’fand–Gel’fand resolutions of irre-
ducibleG-modules by Verma modules found in the 70’s in representation theory. Follow-
ing ideas of É. Cartan, it is possible to introduce ‘curved versions’ of such homogeneous
models known under the name of parabolic geometries (see [8]). Curved versions of such
resolutions were constructed recently in complete generality in [9, 5]. They are again
formed by invariant differential operators, but their composition is now nontrivial due to
nontrivial curvature of general curved structures.

To be more specific, let us now recall more details on parabolic geometries. Let
G be a (real) semisimple Lie group and P its parabolic subgroup. Following ideas of
É. Cartan, the homogeneous space G/P is a flat model for a curved parabolic geome-
try of type (G, P ), which is specified by a couple (G, ω), where G → M is a principal
P -bundle and ω is a Cartan connection. It is well known that such a geometry can be
characterized by an underlying geometric structure on the manifold M, together with
suitable conditions applied to the Cartan connection needed to remove ambiguities in its
definition. A key condition is a normalization condition expressed using the language
of cohomology of Lie algebras. Cartan connections satisfying this normalization condi-
tion are called normal Cartan connections. To have an equivalence of categories between
the category of parabolic structures (G, ω) on M and the underlying geometric structure
on M, it is necessary to add an additional technical condition on ω (called regularity).
Full details on this correspondence can be found in [8].

Distinguished examples of this procedure are the normal Cartan connections con-
structed for a conformal structure by É. Cartan and for a CR structure by Chern and
Moser ([10, 12]). Let us consider a regular normal parabolic geometry (G, ω) of type
(G, P ). For any G-module V, the tractor bundle V over M is (by definition) the vec-
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tor bundle associated to G and the representation V (restricted to P ). The normal Cartan
connection ω on G then induces the tractor covariant derivative ∇ω on V, which is then
used in various problems in analysis and/or geometry on M (e.g., to construct differen-
tial invariants on the corresponding parabolic geometry). For example, it plays the key
role in the construction of Bernstein–Gel’fand–Gel’fand (BGG) sequences of invariant
differential operators (see [9, 5]) and prolongation procedures for first operators in BGG
sequences (see e.g. [4]).

In particular, there is a lot of interest in the study of properties of the first opera-
tors in the BGG sequences, or their semilinear versions. Ideas behind the construction
of these operators by the BGG machinery can be helpful in such problems. The con-
struction uses tractor covariant derivatives acting on tractor bundles and suitable splitting
operators (for details, see Sect. 3). In some simple cases there is a one-to-one correspon-
dence between solutions of the first BGG equation and the kernel of the corresponding
tractor covariant derivative. In other words, the tractor covariant derivative is the pro-
longation of the first BGG operator. But such a simple correspondence is not valid in
general.

A general scheme for prolongation of the first BGG operator for parabolic geometries
with commutative nilpotent radical was introduced in [4]. The authors not only treat the
prolongation for linear overdetermined systems with a particular behavior of the symbol
but they also allow semilinear systems having the same symbol as in the linear case and
allowing general nonlinear behavior of the lower order part of the operator. A generaliza-
tion to contact cases can be found in [16] and an extension to general parabolic geometries
is discussed in [28]. The procedure used in [4] is efficient but not invariant. In quite a few
special cases (see [6, 13, 17, 15, 21, 19]), several authors found an invariant way to com-
pute a deformation of the normal tractor covariant derivative having the property that its
kernel can be identified with solutions of the first BGG sequence.

The new normalization of tractor covariant derivatives developed in this paper is moti-
vated by a wish to extend these examples to a general scheme. We shall study the problem
of a suitable normalization for tractor covariant derivatives for a general parabolic geom-
etry in a systematic way and show that there is a distinguished alternative of the usual
normalization of tractor covariant derivatives on tractor bundles giving directly a canoni-
cal prolongation of the first BGG operator in an invariant way.

The normal tractor covariant derivative is induced from the normal Cartan connection
on the principal bundle G. An important observation is that if we want to find a covariant
derivative on tractor bundles giving an invariant prolongation of the first BGG operator, it
is necessary to adapt (in contrast to ∇ω) the normalization condition to the choice of the
tractor bundle under consideration.

The main results of the paper can be described as follows. Let us consider a regular
normal parabolic geometry of type (G, P ) given by the couple (G, ω). To any irreducible
G-module V, there is associated the covariant derivative ∇ω on the associated vector
bundle V. The space of all covariant derivatives on V is the affine space modeled on
the vector space E1(EndV ). We want to find a deformation of ∇ω by 8 ∈ E1(EndV )
satisfying a new normalization condition (adapted to the choice of V) in such a way that
the resulting covariant derivative will have suitable properties.
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The deformation 8 cannot be chosen arbitrarily. Firstly, the construction of the BGG
sequence leads to the requirement of preserving the lowest homogeneous component
of ∇ω (having homogeneity zero), hence we shall restrict to 8 ∈ E1(EndV )1, where
the superscript 1 indicates that8 should have (total) homogeneity at least one. The desire
to have good properties of the new covariant derivative in the prolongation procedure for
the first BGG operator imposes further restrictions on the choice of 8. They will be ex-
pressed by properties of values of 8(s) ∈ E1(V ), where s is a section of V. This leads to
the following class of covariant derivatives on the tractor bundle V.

Definition 1.1. Let ω be the regular normal Cartan connection on the principal bundle G
and let ∇ω be the associated covariant derivative on the associated vector bundle V. The
class C of admissible covariant derivatives on V is defined by

C = {∇ = ∇ω +8 | 8 ∈ Im(∂∗V ⊗ IdV ∗), 8 ∈ E1(EndV )1},

where ∂∗V is the Kostant differential corresponding to homology of g− with values in V
(cf. [25]).

The condition 8 ∈ Im(∂∗V ⊗ IdV ∗) is equivalent to 8(s) ∈ Im ∂∗V ⊂ E1(V ) for all
s ∈ 0(V ), where 0(V ) denotes the space of sections of V.

The main theorem of the paper is then

Theorem 1.2. There exists a unique covariant derivative ∇ ∈ C such that

(∂∗V ⊗ IdV ∗)(R∇) = 0,

where R∇ ∈ E2(EndV ) is the curvature of ∇. Again, the condition (∂∗V ⊗ IdV ∗)(R∇)=0
can be equivalently expressed as ∂∗V (R

∇(s)) = 0 for all sections s of V.

The new covariant derivative ∇ constructed in Theorem 1.2 gives a prolongation of the
first BGG operator, hence we shall call the covariant derivative satisfying this new nor-
malization condition the prolongation covariant derivative. The next main result is the
theorem stating this property.

Theorem 1.3. Let us consider a parabolic geometry (G, ω) modeled on a couple (G, P ).
There is a one-to-one correspondence between the kernel of the first BGG operator for
a G-module V and the kernel of the prolongation covariant derivative on the associated
bundle V over M.

In Section 4, we extend the previous construction to other operators in the BGG sequence.
In these cases, we have to consider a more general deformation of the exterior derivative
d∇ by adding a differential term (instead of just an algebraic one, which was sufficient
for the first operator in the BGG sequence).

Finally, we compare the general procedure developed in this paper with particular
results obtained in some special cases and compute some other examples of prolongation
covariant derivatives. They come from projective and Grassmannian geometry.
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2. Normalization of tractor covariant derivatives

2.1. The double filtration on EndV

LetG be a semisimple Lie group (real or complex) and P a parabolic subgroup ofG. The
choice of P induces a grading g =

⊕k
i=−k gi on the Lie algebra of G: there is a grading

element E in g0 acting by i on gi .
Every irreducible module V for G is also graded by the action of E as follows:

V =
⊕
a∈A

Va, V∗ =
⊕
b∈A

V∗
−b,

where A is the set of all eigenvalues of E on V. A similar decomposition of g+ is given
by g+ = g1 ⊕ · · · ⊕ gk.

The representation EndV ' V⊗ V∗ has the standard ‘diagonal’ grading induced by
the action of E, given by

EndV =
⊕
`

(EndV)`, (EndV)` :=
⊕

a−b=`; a,b∈A

Va ⊗ V∗
−b.

The key point for the iterative process below is to consider the second ‘vertical’ grad-
ing on the product V ⊗ V∗ by keeping the grading on V and using the trivial grading
on V∗. Hence the vertical grading is given by

EndV =
⊕
a∈A

(EndV)a, (EndV)a := Va ⊗ V∗.

The gradings are not P -invariant. We shall hence consider filtrations induced by the
gradings above. For the diagonal grading, we shall define the filtration by

(EndV)` =
⊕
k≥`

(EndV)k.

In particular, (EndV)1 always denotes the corresponding component with respect to the
diagonal filtration.

For the vertical grading, the filtration is defined by

(EndV)a =
⊕
b≥a

(EndV)b.

The grading of g+ also gives the standard filtration gk ⊂ · · · ⊂ g1
= g+.

These filtrations (together with the filtration on g+) also induce the filtrations on the
chain spaces3j (g+)⊗EndV for the Lie algebra homology and cohomology complexes.
The differentials in the Lie algebra (co)homology of g− with values in g-modules W
are the maps ∂W : 3j (g+) ⊗ W → 3j+1(g+) ⊗ W, resp. ∂∗W : 3j (g+) ⊗ W →

3j−1(g+) ⊗ W. If W = EndV ' V ⊗ V∗ for a g-module V, we shall denote the
operators ∂V⊗ IdV∗ , resp. ∂∗V⊗ IdV∗ , simply by ∂V, resp. ∂∗V. This should not lead to any
confusion.
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The definition of ∂V and ∂∗V implies immediately that they preserve both the vertical
and diagonal gradings on3j (g+)⊗EndV. Hence they respect both vertical and diagonal
filtrations on 3j (g+) ⊗ EndV. Below we shall use the induced operators between the
graded bundles associated to the vertical filtration and we shall denote them by gr ∂V,
resp. gr ∂∗V.

2.2. Induced operators on associated graded bundles

The spaces of j -forms on M with values in a bundle W will be denoted by Ej (W).
They are isomorphic to the bundle induced by the P -module3j (g+)⊗W. Similarly, the
tangent bundle is isomorphic to the bundle associated to the P -module g/p. All filtra-
tions mentioned above are P -invariant and so they induce the corresponding filtrations on
Ej (EndV ).We shall need, in particular, the diagonal filtrations Ej (EndV )`, resp. the ver-
tical filtration Ej (EndV )a, induced on Ej (EndV ). We shall denote by gr`(Ej (EndV )),
resp. gra(Ej (EndV )) the associated graded bundles.

The operators gr ∂∗V and gr ∂V are P -equivariant, hence they induce well defined
maps ∂∗V , resp. ∂V , between the corresponding associated graded bundles.

We shall denote by gr ∂V , resp. gr ∂∗V , the direct sum of all maps gra ∂V , resp. gra ∂
∗

V ,
acting on the direct sum gr Ej (EndV ) :=

⊕
a gra(Ej (EndV )). The operators gr ∂V and

gr ∂∗V then have the usual properties of the Kostant differentials. In particular, they are
dual to each other (with respect to a suitable scalar product), which implies the usual
properties of their kernels and images (Hodge decomposition).

Note also that Ej (V ) ⊗ V ∗ = Ej (EndV ). Hence the standard filtration on Ej (V )
is transferred (by the tensor product with V ∗) to the vertical grading on Ej (EndV ). As
an immediate corollary, ϕ ∈ Ej (EndV )a if and only if ϕs ∈ Ej (V )a for all sections
s ∈ E0(V ).

2.3. A choice of normalization

Let us consider a regular parabolic geometry (G, ω) overM with the homogeneous model
given by a couple (G, P ). For an irreducible G-module V, we shall consider the associ-
ated tractor bundle V on M. The curvature κ of the Cartan connection ω is a two-form
with values in the adjoint tractor bundle A ' G ×P g. The usual normalization condition
for ω, expressed in terms of the Kostant differential ∂∗ corresponding to homology of g−
with values in g, requires the curvature κ to be ∂∗-closed. In terms of the associated co-
variant derivative ∇ω on V, the curvature R∇

ω
of ∇ω is a two-form with values in EndV

and the normalization condition can be expressed using the Kostant differential ∂∗ for
EndV as

∂∗(R∇
ω

) = 0.

Given a choice of the bundle V, we are going to change the normalization condition
for a covariant derivative ∇ on V. Let IdV ∗ denote the identity map on V ∗. As above in
the algebraic version, we shall consider the operators

∂V ⊗ IdV ∗ , ∂∗V ⊗ IdV ∗
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acting on Ej (EndV ), forms with values in EndV ' V ⊗ V ∗. Abusing the notation, we
shall denote them by ∂V , resp. ∂∗V . It will always be clear whether the differentials act on
forms with values in V or forms with values in EndV.

We shall now introduce a new normalization for covariant derivatives on V.

Definition 2.1. We shall call a covariant derivative ∇ ∈ C the prolongation covariant
derivative if

∂∗V (R
∇) = 0,

where R∇ ∈ E2(EndV ) is the curvature of ∇.

The choice of the name should suggest that the new normalization condition gives
better properties to ∇ in the prolongation procedure for the first operator in the BGG
sequence corresponding to the representation V.

We shall need the following property.

Lemma 2.2. If ϕ ∈ E1(EndV )a and τ ∈ E1(V ), then

ϕ ∧ τ ∈ E2(V )a+1.

Proof. Indeed, we can decompose ϕ into homogeneous components

ϕ =
∑
j

αj ⊗ vj ⊗ wj , αj ∈ E1, vj ∈ V, wj ∈ V
∗,

where the sum of the homogeneities of αj and vj is greater than or equal to a. If we also
decompose τ as

τ =
∑
k

βk ⊗ uk, βk ∈ E1, uk ∈ V,

then the expression
ϕ ∧ τ =

∑
j,k

wj (uk)αj ∧ βk ⊗ vj

clearly has summands of homogeneity greater than or equal to a + 1. ut

2.4. The main lemma

The key information for the normalization procedure is the following fact concerning the
induced change of curvature.

Lemma 2.3. Let ∇1, resp. ∇2, be two covariant derivatives from C related to each other
by the deformation8 = ∇2−∇1 ∈ E1(EndV )1 and let R1, resp. R2, be the correspond-
ing curvatures. If 8 ∈ E1(EndV )a, then R2 − R1 ∈ E2(EndV )a and

gra(R2 − R1) = (gra ∂V )(gra 8).
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Proof. Let ω be the normal Cartan connection for the chosen parabolic geometry and ∇
the associated covariant derivative. It is well known that ∇ and d∇ preserve the standard
filtration on Ej (V ) and that the corresponding graded version of ∇, resp. d∇ , is equal to
gr ∂V . A shift of ∇ by 8 ∈ E1(EndV )1 does not change this property, the same being
true for d∇+8.

The change in curvature is then

R2 − R1 = d
∇8+ [8,8].

The result clearly belongs to E2(EndV )a, because the operator d∇ preserves the filtra-
tions and we can use Lemma 2.2 for the second term.

Then we get, for any s ∈ E0(V ),

gra((d
∇8+ [8,8])s) = gra((d

∇8)s) = gra(d
∇(8s)−8 ∧ (∇s))

= gra(∂V (8(s))) = (gra ∂V )(gra(8(s))). ut

2.5. Existence and uniqueness of the prolongation covariant derivative

We now show the main theorem of this article:

Theorem 2.4. For each irreducible G-module V, there exists a unique prolongation co-
variant derivative ∇ ∈ C, i.e., a unique ∇ ∈ C such that

∂∗V (R
∇) = 0. (1)

Proof. The curvature function of the regular normal connection ω for the corresponding
parabolic geometry belongs (by definition of regularity) to E2(A)1, soR∇

ω
∈E2(EndV )1,

and ∂∗V (R
∇
ω
) ∈ E1(EndV )1. Lemma 2.5 below now shows that we can start with ∇ω and

obtain by induction a unique ∇ ∈ C satisfying (1). ut

Lemma 2.5. Suppose that there is a tractor covariant derivative ∇ ∈ C with

∂∗V (R
∇) ∈ E1(EndV )1 ∩ E1(EndV )a,

where a ∈ A is such that a + 1 belongs to A. Then there exists

8 ∈ E1(EndV )1 ∩ E1(EndV )a ∩ Im(∂∗V ⊗ IdV ∗)

such that for ∇̃ = ∇ +8, one has

∂∗V (R
∇̃) ∈ E1(EndV )1 ∩ E1(EndV )a+1. (2)

Moreover, 8 is unique up to terms of homogeneity a + 1. In particular, ∇̃ ∈ C satisfy-
ing (2) is unique up to modifications by elements in

E1(EndV )1 ∩ Im(∂∗V ⊗ IdV ∗) ∩ E1(EndV )a+1.
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Proof. The spaces {E1(EndV )1 ∩ E1(EndV )a}ra=0 give a descending filtration of
E1(EndV )1. The filtration is preserved by the maps ∂V and ∂∗V , hence they induce maps
on the associated graded bundle (for simplicity we denote them by the same symbols
as for the full filtration of E1(EndV )). The standard Kostant decomposition says that
Ker gr ∂∗V and Im gr ∂V are complementary subspaces of the graded bundle gr E1(EndV )1.
In particular, gr ∂∗V restricts to an isomorphism of Im gr ∂V and Im gr ∂∗V .

Hence we can define ϕ ∈ gra(E1(EndV )1) by

ϕ := �−1∂∗V (R
∇̃),

which then has the property that

(gr ∂∗V )((gr ∂V )(ϕ)) = gra(∂
∗

V (R
∇)).

Let8 ∈ E1(EndV )1 ∩ E1(EndV )a ∩ Im(∂∗V ⊗ IdV ∗) be a preimage of ϕ. Then we define
a corrected covariant derivative by ∇̃ := ∇ −8.

Due to Lemma 2.3, we get

gra(∂
∗

V (R
∇̃)) = gra(∂

∗

V (R
∇))− (gr ∂∗V )(gra(R

∇
− R∇̃))

= gra(∂
∗

V (R
∇))− (gr ∂∗V )((gr ∂V )(gra(8))) = 0.

Hence ∇̃ has the required properties.
For the uniqueness up to terms of homogeneity higher than a, assume that we have

another 8′ ∈ E1(EndV )1 ∩ E1(EndV )a ∩ Im(∂∗V ⊗ IdV ∗) such that ∇̃ ′ = ∇ + 8′ sat-

isfies ∂∗V (R
∇̃
′

) ∈ E1(EndV )a+1. Then 8′ − 8 belongs to E1(EndV )1 ∩ Im ∂∗V , and by

assumption gra(R
∇̃
′

− R∇̃) lies in the kernel of gr ∂∗V . By Lemma 2.3, we have

gra(R
∇̃
′

− R∇̃) = (gr ∂V )(gra(8
′
−8)).

But Ker gr ∂∗V ∩Im gr ∂V is trivial, hence gra(R
∇̃
′

−R∇̃) = 0. Thus gra(8
′
−8) lies in the

kernel of gr ∂V , and also in the image of gr ∂∗V , by assumption. Hence gra(8
′
−8) = 0,

and thus

∇̃
′
− ∇̃

′
= 8′ −8 ∈ E1(EndV )a+1. ut

Remark. The construction of ∇ as outlined above depends at first on some choices (e.g.,
the choice of the preimage8 of ϕ). However, the uniqueness of the prolongation covariant
derivative shows that the result of the construction is independent of all choices. Hence the
prolongation covariant derivative is invariant—it only depends on the data of the chosen
parabolic structure and the bundle V .
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3. Prolongation of the first BGG operator

The BGG complexes are sequences of invariant differential operators on a homogeneous
model for a given parabolic geometry. A curved version of them, i.e., an extension of
operators in the sequence to invariant differential operators on general (nonflat) mani-
folds with a given parabolic structure, was first constructed in [9] and the construction
was simplified and extended in [5]. The first operator in such a sequence always gives
an overdetermined system of invariant differential equations. A prolongation of this op-
erator for the case of 1-graded parabolic geometries was constructed in [4]. However, the
methods used there needed a choice of a Weyl structure, hence the resulting covariant
derivative was not invariant. We are now going to show that the normalization of trac-
tor covariant derivatives described in this paper can be used to obtain invariant (natural)
prolongations.

We begin by introducing the setting and basic operators of the BGG machinery in a
generalized version needed for the next section. Let V be a tractor bundle over M with a
covariant derivative ∇ and the exterior covariant derivative d∇ : Ek(V )→ Ek+1(V ). Re-
call from the above that we have a well defined differential ∂∗ = ∂∗V : Ek+1(V )→ Ek(V ).
The property ∂∗ ◦ ∂∗ = 0 allows us to define the cohomology Hk as the vector bundle
quotient Hk = Ker ∂∗/Im ∂∗, where Ker ∂∗ ⊂ Ek(V ) is the space of cycles and
Im ∂∗ ⊂ Ek(V ) is the space of boundaries. The canonical surjection Ker ∂∗V ⊂ Ek(V )
→ Hk will be denoted by 5k .

Due to regularity of the parabolic geometry under consideration, the operators d∇ are
homogeneous of degree zero with respect to the natural filtration of the spaces Ek(V ) and
they induce the algebraic differential gr ∂V : gr(Ek(V ))→ gr(Ek+1(V )) on the associated
graded spaces. Thus it is possible to regard d∇ as a natural lift of gr ∂V to a differential
operator from Ek(V ) to Ek+1(V ).

The main ingredients in the BGG machinery are the differential splitting operators
Lk : Hk → Ker ∂∗V ⊂ Ek(V ) with the property ∂∗ ◦ d∇ ◦ Lk = 0. This allows one to
define the BGG operators Dk : Hk → Hk+1 in the obvious way: Dk := 5k ◦ d∇ ◦ Lk .
The definition is encoded in the diagram

Ek(V ) d∇ // Ek+1(V )

Ker ∂∗

i

OO

Ker ∂∗

i

OO

5k+1
��

Hk

Lk

OO

Dk // Hk+1

(3)

where i denotes inclusion.
We shall introduce the construction of the splitting operators in a more general situ-

ation, where the exterior covariant derivatives d∇ on Ek(V ) will be replaced by general
differential operators Ek with suitable properties (see the theorem below). The opera-
tors Dk are defined by the same construction as the BGG operators and they depend, in
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general, on the choice of Ek. The theorem below shows that for certain classes of opera-
tors Ek, the resulting operators Lk and Dk do not change.

Theorem 3.1. Let (Ek(V ))j denote the filtration on Ek(V ) and let gr(Ek(V )) denote the
associated graded bundle, and similarly for Ek+1(V ). Let Ek be a filtration preserving
differential operator from Ek(V ) to Ek+1(V ) with the property that the associated graded
map coincides with gr ∂. Then for every σ ∈ Hk, there exists a unique element s ∈ Ker ∂∗

with the following properties:

(1) 5k(s) = σ,
(2) Ek(s) ∈ Ker ∂∗.

Moreover, the mapping Lk defined by σ 7→ Lk(σ ) := s is given by a differential operator.
The corresponding operator Dk is then defined by

Dk := 5k+1 ◦ Ek ◦ Lk : Hk → Hk+1.

Suppose that we change the operator Ek to Ẽk = Ek + 8k, where 8k : Ek(V ) →
Ek+1(V ) is a differential operator with values in Im ∂∗ and preserving the filtration, with
the property that the associated graded map is trivial. Then the construction does not
change the splitting operator Lk and the operator Dk.

Proof. The first part of the proof follows the standard line of argument. The operator
∂∗ ◦ Ek acts on Ek(V ) and it preserves Im ∂∗. It preserves the filtration and its graded
version is, by assumption, given by gr(∂∗)◦gr(∂),which is invertible on Im ∂∗.Hence also
∂∗ ◦ Ek is invertible on Im ∂∗ and it is possible to show that its inverse Q is a differential
operator.

We can then define a differential operator L̂k := Id − Q ◦ ∂∗ ◦ Ek, which restricts
to zero on Im ∂∗. Hence it induces a well-defined differential operator Lk from Hk to
Ker ∂∗ ⊂ Ek(V ). It is easy to check that the operator Lk has the properties

ImLk ⊂ Ker ∂∗, 5k ◦ Lk = Id, ∂∗ ◦ Ek ◦ Lk = 0.

To show that Lk is uniquely characterized by these properties, let us consider s1, s2 ∈
Ker ∂∗ such that Ek(si) ∈ Ker ∂∗, i = 1, 2, and 5k(s1) = 5k(s2). Then the difference
s = s1 − s2 belongs to Im ∂∗. By definition of L̂k, the relation ∂∗ ◦ Ek(s) = 0 implies
L̂k(s) = s. On the other hand, L̂k is trivial on Im ∂∗. Hence L̂k(s) = 0.

To prove the last statement of the theorem, we shall consider a section s of Ek(V ). The
new operator Ẽk preserves the filtration and the induced graded map is still gr ∂. Since
(Ẽk − Ek)s belongs to Im ∂∗V , one has Ẽk(s) ∈ Ker ∂∗V iff Ek(s) ∈ Ker ∂∗V , which shows
that L̃k = Lk . Thus, for σ ∈ Hk , one has (ẼkL̃k − EkLk)σ ∈ Im ∂∗V , but this lies in the
kernel of the projection 5k+1 : Ker ∂∗→ Hk+1. ut

Now we want to discuss the relation between KerEk and KerDk. For that, we have to
consider two consecutive operators Ek and Ek+1 at the same time. They define two split-
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ting operators Lk and Lk+1. We get in this way the diagram

Ek(V ) Ek // Ek+1(V )

Hk

Lk

OO

Dk // Hk+1

Lk+1

OO
(4)

which, in general, does not commute but there is a convenient criterion for its commuta-
tivity.

Theorem 3.2. The diagram (4) commutes if and only if ∂∗ ◦ Ek+1 ◦ Ek(s) = 0 for all
sections s ∈ ImLk ⊂ Ek(V ).
Proof. The values ofLk are uniquely characterized by the conditionsLk(σ ) ∈ Ker ∂∗ and
Ek◦Lk(σ ) ∈ Ker ∂∗. Similarly, the values ofLk+1 are characterized byLk+1(τ ) ∈ Ker ∂∗

andEk+1◦Lk+1(τ ) ∈ Ker ∂∗.HenceEk ◦Lk(σ ) = Lk+1◦Dk(σ ) iffEk+1◦Ek ◦Lk(σ ) ∈

Ker ∂∗ for all σ ∈ Hk. ut

If the diagram above is commutative, we immediately get a one-to-one correspondence
between KerEk ∩ Ker ∂∗ and KerDk.

Theorem 3.3. Suppose that the diagram (4) commutes. Then 5k and Lk restrict to in-
verse isomorphisms between KerEk ∩ Ker ∂∗ and KerDk .

Proof. Let s be in KerEk∩Ker ∂∗. Then s = Lk(5k(s)) by definition ofLk, and5k(s) ∈
KerDk by definition of Dk.

On the other hand, ifDk(σ ) = 0, then commutativity of the diagram implies that also

Lk+1 ◦Dk(σ ) = Ek ◦ Lk(σ ) = 0,

hence Lk(σ ) ∈ KerEk ∩ Ker ∂∗.
And by definition of Lk, we have 5k ◦ Lk = Id . ut

Now we can return to the properties of the prolongation covariant derivative ∇ on V.
Using the above claims in the special case of the first square and the operators E0 = ∇

and E1 = d∇ , we see immediately that E1 ◦ E0 = R∇ . Hence we get the following
corollary.

Corollary 3.1. Consider a tractor bundle V and the corresponding prolongation covari-
ant derivative ∇. Set E0 = ∇ and E1 = d∇ . Then the square constructed using these
two operators commutes and the covariant derivative ∇ gives a prolongation of the first
BGG operator D0. In particular, the splitting operator L0 induces a one-to-one corre-
spondence between the space of parallel sections of V with respect to ∇ and the kernel
of the first BGG operator D0.

Remark. In the case of a 1-graded geometry, it was shown in [4] that the map L0 :
H0 → V induces an isomorphism of J kH0 with V≤k for every k such that the homol-
ogy of H1(g−,V) sits in homogeneity > k. Thus, for every operator D̃0 : H0 → H1
which differs from the standard BGG operator D0 by a linear differential operator of
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order ≤ k, there is a map 9 ∈ E1(EndV ) with values in Ker ∂∗V whose induced first
BGG operator coincides with D̃0. The mapping 9 is unique up to maps in E1(EndV )
with values in Im ∂∗V , and it is thus easy to see that the resulting normalized connection
∇̃ = ∇ +9 +8 does not depend on the choice of 9. Thus, natural deformations of D0
of low enough order can be prolonged naturally as well. We remark that a similar proce-
dure works in the case of general graded parabolic geometries, where one has to use the
filtration of the manifold for a suitable version of jet bundles (cf. [27, 28]).

4. Prolongation covariant derivatives for the whole BGG sequence

In this section we shall treat the problem considered above in the case of other squares
of the BGG sequence. We want to deform the exterior covariant derivative d∇ on k-
forms in such a way that all squares in the generalized BGG construction will commute,
and, at the same time, the BGG operators Dk will not change. In fact, we shall succeed
in keeping both the BGG operators Dk and the splitting operators Lk unchanged. The
deformation of d∇ on Ek(V ) will have, however, a different character. It will be of the
form Ek := d∇ + 8k, where 8k is a linear differential operator mapping Ek(V ) to
Ek+1(V ). Hence the deformation 8k will not, in general, be algebraic. Necessary tools
were already prepared in the previous section (Theorems 3.1–3.3). Methods described in
this section can also be applied to the first square but they give a different answer (and
also in this case the deformation 80 will not be algebraic in general).

To describe allowed deformations of the exterior derivative d∇ , we shall intro-
duce the following notation. There are two different filtrations on the space A :=
Hom(Ek(V ), Ek+1(V )). The diagonal filtration Aj is induced by the standard filtration
on Ek(V ), which is defined by the condition 8(s) ∈ Ek+1(V )a+j for all s ∈ Ek(V )a .
The other (vertical) filtration Aa is defined by the condition 8(s) ∈ Ek+1(V )a for all
s ∈ Ek(V ). In this section, we shall use the symbols ∂ and ∂∗ for the Kostant differentials
associated to the spaces Ek(V ). Recall that the class C of admissible covariant derivatives
on V was defined by

C = {∇ = ∇ω +8 | 8 ∈ Im(∂∗V ⊗ IdV ∗), 8 ∈ E1(EndV )1}.

We shall consider the following spaces Ck of deformations.

Definition 4.1. The space of allowed deformations will be defined by

Ck := {Ek ∈ Hom(Ek(V ), Ek+1(V )) | Ek = d
∇
+8, 8 ∈ A1, Im8 ⊂ Im ∂∗}.

Theorem 4.2. (1) Let ∇ be any covariant derivative from C. Let us consider the BGG
sequence with the splitting operators Lk and the BGG operators Dk induced (via
Theorem 3.1) by the operators Ek = d∇ ,

Ek(V ) d∇ // Ek+1(V )

Hk

Lk

OO

Dk // Hk+1

Lk+1

OO
(5)
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Then there exists a collection of differential operators 8k ∈ Ck such that ∂∗ ◦ d∇ ◦
(d∇ +8k) = 0. Moreover, the collection 8k with these properties is unique.

(2) As a consequence, the diagrams

Ek(V ) d
∇
+8k// Ek+1(V )

Hk(V )

Lk

OO

Dk // Hk+1(V )

Lk+1

OO
(6)

commute for all k = 0, 1, . . . , n − 1. Moreover, if ∇ depends only on data of the
chosen parabolic geometry, the same is true for the operators Ek = d∇ +8k.

Proof. Let us choose k = 0, . . . , n−1 and consider the square (6) in the generalized BGG
sequence constructed using operators d∇ ,where ∇ is any covariant derivative from C.We
shall first prove the first assertion of the theorem.

The spaces {A1
∩ Aa}ra=0 form a decreasing filtration of the space A1 with a =

0, . . . , r. The filtration is preserved by the maps ∂V and ∂∗V , hence they induce maps on
the associated graded bundle (we denote them for simplicity by the same symbols as
for the full filtration of A). We can consider the Kostant Laplacian � = gr ∂∗V gr ∂V +
gr ∂V gr ∂∗V . The standard Kostant decomposition says that Ker�, Im gr ∂∗V and Im gr ∂V
are complementary subspaces of the graded bundle gr E i(V )1. In particular, � is invertible
on Im gr ∂∗V .

Let us consider two consecutive squares with operators Ek = d∇ and Ek+1 = d∇ .
We know that the operator G := ∂∗ ◦Ek+1 ◦Ek belongs to A1 and that the k-th square is
commutative iff G = 0. If it is not the case, we shall consider the maximal index a = 0
with the property that G ∈ Aa .

The map8(1) = −�−1 gr(G) can be lifted to a linear algebraic map8(1) : Ek(V )→
Ek+1(V ) (e.g., by choosing a Weyl structure) and we shall define the first iteration E(1)k =
d∇ + 8(1). Note that the lowest homogeneous component of E(1)k remains to be ∂V and
that the image of E(1)k is a subset of Im ∂∗.

Since

Ek+1 ◦ E
(1)
k − Ek+1 ◦ Ek = d

∇
◦8(1),

we get

gra(∂
∗
◦ Ek+1 ◦ E

(1)
k )) = gra(G+ ∂

∗
◦ d∇ ◦8(1))

= gra(G)− (gr ∂∗)(gr ∂V )(�−1(gra(G))) = 0.

Hence the first order differential operator G(1) := ∂∗ ◦ Ek+1 ◦ E
(1)
k belongs to Aa+1.

The same procedure will be repeated inductively. If we define

8(2) = −(gr ∂∗)�−1 gra+1(G
(1))
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we can again lift this first order differential operator to a first order differential operator
8(2) : Ek(V )→ Ek+1(V ) and we can define the next iteration by

E
(2)
k := E(1)k +8

(2).

Then we get

gra(∂
∗

V ◦ d
∇
◦ E

(2)
k )) = gra(G

(1)
+ ∂∗V ◦ d

∇
◦8(2))

= gra(G
(1))− (gr ∂∗V )(gr ∂V )(�−1(gra(G

(1)))) = 0.

Hence the first order differential operator G(2) := ∂∗V ◦ d
∇
◦ E

(2)
k belongs to Aa+2.

It is clear that after a finite number of iterations, we shall get the existence part of the
theorem.

The proof of the uniqueness part is similar to the procedure employed in Lemma 2.5.
Suppose that we have two differential operators 8′k and 8′′k satisfying the conditions of
the theorem. Their difference 8 = 8′k − 8

′′

k satisfies ∂∗V (d
∇
◦ 8) = 0. To show that

8 = 0, suppose that 8 is nontrivial and consider the largest a such that 8a is nontrivial.
Then we know that gra(d

∇
◦ 8) = (gr ∂V )(gra 8), hence (gr ∂V )(gra 8) is at the same

time in Im gr ∂V and Ker gr ∂∗V , so it is 0. By definition, gra 8 also belongs to Im ∂∗V ,

hence gra 8 is trivial and we have a contradiction.
As for the second part of the theorem, let us consider two consecutive squares in

the BGG construction induced by Ek = d∇ , containing the operators Dk and Dk+1. If
8k is the deformation constructed above, then the replacement of Ek = d∇ by Ẽk =
d∇ + 8k leads to the same splitting operator Lk. Hence by the first part of the theorem,
the k-th diagram commutes. Note that changing the next operator Ek+1 will not change
the splitting operator Lk+1, hence the commutativity of the k-th diagram is preserved.

Finally, during the construction there were several choices made but due to the unique-
ness of the result, the construction depends only on the data of the chosen parabolic ge-
ometry. The same is true for the covariant derivative ∇. ut

5. Examples

In this section we want to illustrate the general results presented above by explicit ex-
amples showing the form of the prolongation covariant derivative in some simple situa-
tions. A more comprehensive set of examples is given in [24].

To calculate the prolongation covariant derivative of the first BGG operator D0 for
some tractor bundle V = G×P V,we employ the theory of Weyl structures [7], [8]. All of
our examples below will be |1|-graded parabolic geometries, g = g−1⊕g0⊕g1. Modding
out P+ ∼= g1 of the parabolic structure bundle G, one obtains G0 := G/P+, which is a
G0-principal bundle overM . A splitting σ : G0 → G of the canonical projection G → G0
is called a Weyl structure, and for our geometric structures below this can be identified
with the choice of a Weyl connection, which is a linear connection D compatible with the
geometry. Under such a choice, all P -associated bundles reduce toG0-associated bundles,
and in particular one gets a decomposition of every tractor bundle V which depends on
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the choice of the Weyl structure [8]. In particular, the adjoint tractor bundle AM = G×P g
decomposes into A−M ⊕A0M ⊕A1M , with A−M ∼= TM and A+M ∼= T ∗M . The Lie
algebraic action of g on V gives rise to an action • of AM on V , which we can restrict to
TM and T ∗M . The tractor covariant derivative ∇ω can be written as ∇ω = ∂ +D + P•:
the map ∂ : V → �1(M, V ) is obtained by the action of TM ↪→ AM on V , and
P• : V → �1(M, V ) is induced by the action of the second slot of the (generalized)
Schouten tensor P ∈ Eab ofD, which will be symmetric for our choices ofD. Recall that
this decomposition of ∇ω depends on the choice of the Weyl structure σ : G0 → G resp.
Weyl connection D.

In our explicit formulas, we employ abstract index notation [29]: Ea = �1(M),
Ea = X(M), and multiple indices indicate tensor products. Round brackets denote sym-
metrizations of the indices enclosed, and square brackets denote skew symmetrizations.
A subscript zero indicates taking the trace-free part.

We now prolong an interesting equation in projective geometry which has already
been treated in [17] by different methods. Next we consider three well known overde-
termined equations in conformal geometry, which govern Einstein rescalings, conformal
Killing forms and twistor spinors. Finally we analyse an equation for Grassmannian struc-
tures of type (2, q), q > 2. For a more detailed exposition of explicit calculations cf.
[22]–[24].

5.1. An example in projective geometry

Let M be an orientable manifold of dimension n endowed with a projective class of
linear, torsion-free connections [D]; here D and D′ are projectively equivalent if there is
a ϒ ∈ E1 such that

D′aωb = Daω − ϒaωb − ϒbωa

(see e.g. [14]). For simplicity, we will assume that our chosen representatives D ∈ [D]
preserve a volume form on TM .

To define projectively invariant operators we need to employ densities, which are
sections of line bundles E[w], w ∈ R, associated to the full GL(n)-frame bundle of TM
via the 1-dimensional representation

C ∈ GL(n) 7→ |detC|w(n+1)/n
∈ R+.

With this parametrization, sections of the bundles E[w] are often called projective densi-
ties. Assume n ≥ 2. We are going to prolong the following projectively invariant operator,
which is written down with respect to a D ∈ [D], but does not depend on this choice:

D0 : E (ab)[−2]→ E (ab)c 0[−2], σ ab 7→ Dcσ
ab
−

1
n+ 1

δ(ac Dpσ
b)p. (7)

D0 projects the Levi-Civita derivative of a symmetric two-tensor σ to its trace-free part.
This operator was discussed in [17], where M. Eastwood and V. Matveev showed that this
equation governs the metrizability of a projective class of covariant derivatives.
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5.1.1. The projective structure as a parabolic geometry. It is a classical result that
(M, [D]) is equivalent to a unique Cartan geometry (0, ω) of type (G, P ) =

(SL(n+ 1), P ) with P the stabilizer of a ray in Rn+1 (cf. [11, 31, 8]).
The Lie algebra g = sl(n+ 1) is 1-graded, g = g−1⊕ g0⊕ g1 = Rn⊕ gl(n)⊕ (Rn)∗,

where an element X⊕ (α id+A)⊕ϕ ∈ g for α ∈ R, A ∈ sl(n) corresponds to the matrix(
−α n

n+1 −ϕ

X 1
n+1αIn + A

)
.

The actions of g0 = gl(n) ⊂ g on g−1 = Rn and g1 = (Rn)∗ are the standard representa-
tion and its dual.

The curvature of the Cartan connection form ω can be regarded as an element of
E2(AM), with AM = 0 ×P g the adjoint tractor bundle, and is written

K =

(
0 −Aac1c2

0 Cc1c2
a
b

)
with A the Cotton–York tensor and C the (projectively invariant) Weyl curvature
(cf. [14]).

1-forms and vector fields include into AM as

ηa ∈ T
∗M 7→

(
0 −ηa
0 0

)
∈ AM, ξa ∈ TM 7→

(
0 0
ξ 0

)
∈ AM.

5.1.2. The operatorD0 as the first BGG operator. Let V := 0×P S2Rn+1. With respect
to a choice of a Weyl connection D ∈ [D], a section s of V can be written

[s]D =

 ρ

µa

σ ab

 ∈
V2
V1
V0

 :=

 E[−2]
Ea[−2]
E (ab)[−2]

 . (8)

We will need that on the first chain spaces the Lie algebra differentials ∂ and ∂∗ are
explicitly given by

∂

 ρ

µa

σ ab.

 =
 0
ρδc

a

δc
(aµb)

 , ∂

 ρc
µc

a

σc
ab.

 =
 0

2δ[c1
aρc2]

2δ[c1
(a1µc2]

a2)

 ,
∂∗

 ρc
µc

a

σc
ab.

 =
−2µpp

−2σppa

0

 , ∂∗

 ρc1c2

µc1c2
a

σc1c2
ab.

 =
2µcpp

2σcppa

0

 .
As bundles with structure group G0, V2, V1 and T ∗M ⊗ V2 are irreducible and are con-
tained in the image of ∂∗; T ∗M⊗V1 decomposes into the trace-free part Im ∂∗∩T ∗M⊗V1
and the trace part, which lies in the image of ∂ . The Kostant Laplacian � acts by

�

 ρc1c2

µc1c2
a

σc1c2
ab

 =
 −2nρc1c2

−(n+ 1)µc1c2
a

0
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on V , by multiplication with −2(n− 1) on T ∗M ⊗ V2 and by multiplication with −n on
the trace-free part of T ∗M⊗V1. This is all the algebraic information we need to calculate
the splitting operators and the prolongation.

The tractor covariant derivative ∇ω on V is easily calculated with the above actions
of Ea and Ea on V together with the formula ∇ω = ∂ +D + P•:

∇
ω

 ρ

µa

σ ab

 =
 Dcρ − 2Pcaµa

Dcµ
a
− 2Pcbσ ab + ρδca

Dcσ
ab
+ δc

(aµb)

 .
One calculates that the first splitting operator L0 : 0(H0)→ 0(V ) is given by

σ (ab) 7→

 1
n(n+1)DpDqσ

pq
+

1
2nPpqσ

pq

−
1
n+1Dpσ

pa

σ ab

 ,
and the composition of ∇ω ◦ L0 with the projection to the lowest slot is seen to yield the
operator D0 of (7).

5.1.3. Prolongation of D0. We calculate the action of the curvature K ∈ �2(M,AM):

Kc1c2 •

 0
0
σ ab

 =
 −2Apc1c2µ

p

−2Apc1c2σ
pa
+ C a

c1c2 pµ
p

2C (a1
c1c2 pσ

a2)p

 . (9)

Therefore we define

81

 0
0
σ ab

 :=

 0
8̄1σ

0

 := −�−1

∂∗
K •

 0
0
σ ab

 =
 0

2
n
C a
cp qσ

pq

0

 .
Now the curvature of the modified connection ∇ω + 81 is R = K• + d∇81 since
(81 ∧81)(ξ, η) vanishes. For ξ1, ξ2 ∈ X(M) and s ∈ V ,

(d∇81)s(ξ1, ξ2) = ∇ξ1(81(ξ2)s)−81(ξ2)(∇ξ1s)−∇ξ2(81(ξ1)s)+81(ξ1)(∇ξ2s)

−81([ξ1, ξ2])s. (10)

We may expand (10) and write (d∇81)s as
∗Dξ1(8̄1(ξ2)σ )− 8̄1(ξ2)(Dξ1σ)−Dξ2(8̄1(ξ1)σ )+ 8̄1(ξ1)(Dξ2σ)

−8̄1([ξ1, ξ2])σ
−8̄1(ξ2)∂ξ1ϕ + 8̄1(ξ1)∂ξ2ϕ − 8̄1(ξ2)∂ξ1µ+ 8̄1(ξ1)∂ξ2µ


∂ξ18̄1(ξ2)σ − ∂ξ28̄1(ξ1)σ

 , (11)

where we do not take care about the top component since it will vanish after an application
of ∂∗. The lowest component is simply ∂(8̄1σ) = −∂�−1∂∗(K • σ). Thus ∂∗(Rs) lies
in the top slot (i.e., in homogeneity 1). So our first adjustment had the effect of moving
the expression ∂∗(Rs) one slot up.
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The new connection ∇ω + 81 has the following terms in the middle slot of the cur-
vature R81 : From (11) we obtain the terms 2D[c181c2] and (via an application of the
algebraic Bianchi identity for C), C a

c1c2 p
µp. By (9), the contribution of K • s to the

middle slot is −2Apc1c2σ
pa
+C a

c1c2 p
µp. In total, we find that the action of the curvature

R81 is  ρ

µa

σ ab

 7→
 ∗

2
n
(D[c1C

a
c2]p q)σ

pq
− 2Apc1c2σ

pa
+ 2C a

c1c2 pµ
p

∗

 .
The entries (∗) are irrelevant: the lowest slot is by construction already in the kernel of
∂∗ and the highest slot always lies in Ker ∂∗. Now define

82

 ρ

µa

σ ab

 := −�−1∂∗

R81

 ρ

µa

σ ab

 .
Using DpC

p
c1c2 a = (n− 2)Aac1c2 and trace-freeness of C, we calculate

82

 ρ

µa

σ ab

 =
− 4

n
Apcqσ

pq

0
0


and find that 8 := 81 +82 ∈ 0(T

∗M ⊗ End(V )) is ρ

µa

σ ab

 7→ 2
n

−2Apcqσpq

C a
cp qσ

pq

0

 . (12)

Now, with R8 the curvature of ∇̃ = ∇ω +8, one has by construction ∂∗ ◦R8 = 0. Thus
∇̃ is the prolongation covariant derivative for (Dcσ ab)0 = 0.

5.2. Examples in conformal geometry

Let M be an n-manifold endowed with a conformal class [g] of (pseudo-)Riemannian
signature (p, q) metrics. The conformal structure (M, [g]) is equivalent to a reduction of
the structure group of the full frame bundle of TM to a CO(p, q) = R+×O(p, q)-bundle
G0 → M . To write down conformally invariant differential operators we will employ
conformal density bundles E[w], which are associated to the 1-dimensional CO(p, q)-
representation (α, C) ∈ CO(p, q) 7→ αw ∈ R+.

The conformal structure can be equivalently encoded as a parabolic geometry (G, ω)
of type (SO(p + 1, q + 1), P ), with P ⊂ SO(p + 1, q + 1) the stabilizer of an isotropic
ray in Rp+1,q+1 (cf. [10, 8]); the curvature of ω is an element κ ∈ E2(AM), with AM =
G×P so(p+ 1, q+ 1), and has to satisfy the normalization condition ∂∗κ = 0. Choosing
a metric g ∈ [g] yields its Levi-Civita connection D on TM , which serves as a Weyl
connection, and we make use of this to get explicit formulas for BGG operators in the
following.
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Since the necessary explicit tractor calculations for the next three equations are avail-
able in [23], and in the case of the conformal Killing form equations rather long, we just
summarize the important properties here and relate the results to our general theory.

5.2.1. Almost Einstein scales. Let now T := G ×P Rp+1,q+1 be the standard tractor
bundle of the conformal structure, which is endowed with its normal tractor covariant
derivative ∇ω. It was already observed in [1] that parallel sections of ∇ω are in one-to-
one correspondence with solutions of D0,

D0 : E[1]→ E(ab)0 [1], σ 7→ tf(DaDbσ + Pabσ), (13)

where tf takes the trace-free part. This is a conformally invariant 2nd order PDE, and
its solutions σ are Einstein rescalings or almost Einstein scales, [18]: σ is nonvanishing
on an open dense subset, and σ−2g is Einstein there. In particular, ∇ω is already the
prolongation covariant derivative of this problem: it is also easy to see directly that its
curvature R∇

ω
satisfies ∂∗V (R

∇
ω
) = 0 [23].

5.2.2. Conformal Killing forms. Let now V := 3k+1T be an exterior power of the con-
formal standard tractor bundle, which is again endowed with the normal tractor connec-
tion ∇ω. An explicit tractor computation yields

D0 : E[a1···ak][k + 1]→ Ec[a1···ak][k + 1],

σ 7→ Dcσa1···ak −D[a0σa1···ak] −
k

n− k + 1
gc[a1g

pqD|pσq|a2···ak],

which is the projection of Dσ to the highest weight component in Ec[a1···ak][k + 1]. So-
lutions of D0σ = 0 are the conformal Killing forms on M . The equations governing
conformal Killing forms were first prolonged by U. Semmelmann [30]. In [19] an invari-
ant prolongation was calculated directly. The prolongation covariant derivative ∇ for this
equation is already fairly complicated to compute explicitly, and we refer to [23, 22] for
this.

5.2.3. Twistor spinors. In the case where one has a reduction of the CO(p, q)-bundle of
(M, [g]) to a CSpin(p, q) = R+ × Spin(p, q)-bundle G0 one knows that (M, [g]) is a
conformal spin structure. This structure is then equivalently described as a Cartan geome-
try of type (Spin(p+1, q+1), P ), with P ⊂ Spin(p+1, q+1) again the stabilizer of an
isotropic ray in Rp+1,q+1. Let 1p+1,q+1 be the Spin(p+ 1, q + 1) representation, which
is decomposable in the case where p + q is even. The corresponding associated tractor
bundle is S = G ×P 1p+1,q+1. Now let 1p,q be the spin representation of Spin(p, q),
which we extend trivially to CSpin(p, q), and define S := G0 ×CSpin(p,q) 1

p,q . Then the
first BGG operator of S is

D0 : 0(S[1/2])→ 0(Ec ⊗ S[1/2]), σ → proj(Dcσ).

This is the twistor operator: it is the composition of D : 0(S) → Ec(S) with proj, the
projection to the kernel of Clifford multiplication. It is again well known [2, 3, 23] that
solutions of D0 are already in one-to-one correspondence with parallel sections of the
normal tractor covariant derivative ∇ω on the spin tractor bundle S.
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5.3. An example in Grassmannian geometry

Let q ∈ N, q > 2, and M be an oriented 2q-dimensional manifold together with a rank 2
bundle Eα and a rank q bundle Eα′ . Assume there is an isomorphism of TM with Eα⊗Eβ

′

,
which will be fixed. We say thatM together with the identification TM = Eβ

′

α is a Grass-
mannian geometry of type (2, q) if there exists a torsion-free linear connectionD on TM
which is the product of linear connections (again denoted by D) on Eα and Eβ ′ (see [20],
[8]). The class of all such connections are the Weyl connections of (M, TM ∼= Eβ

′

α ).
We are going to prolong the operator

D0 : E [α′β ′]
→ (Eγ [α′β ′]

γ ′
)0, uα

′β ′
7→ D

γ

γ ′
uα
′β ′
+

2
1− q

δ
[α′
γ ′
D
|γ

τ ′
uτ
′
|β ′]. (14)

Thus, D0(u) is the projection of Du to its trace-free part.

5.3.1. Grassmannian structures as parabolic geometries. Let G = SL(n), n = 2 + q,
and define P as the stabilizer of a two-plane in (Rn)∗. Regular, normal and torsion-free
parabolic geometries (G, ω) of type (G, P ) are Grassmannian structures. In the Cartan
picture, Eα and Eα′ are associated to the P -representations (Rp)∗, resp. Rq .

Let S be the standard tractor bundle of (G, ω), i.e., the associated bundle to the stan-
dard representation of SL(n). Via any Weyl structure D, S decomposes into Eα ⊕ Eα′ .

The curvature K ∈ E2(AM) = E2(S) of the Cartan connection is of the form

K =

(
C

ϕ
c1c2η −Apc1c2

0 C′
ϕ′

c1c2η′

)
;

this employs the (generalized) Weyl curvature components C ∈ �2(M, sl(Eα)) and C′ ∈
E2(sl(Eα′)) and the generalized Cotton–York tensor A ∈ E2(E1) (cf. [20]). Normality of
the geometry and torsion-freeness imply that any possible trace of Cγ1γ2ϕ

γ ′1γ
′

2η
, C′γ1γ2ϕ

′

γ ′1γ
′

2η
′ and

A
ϕγ1γ2
ϕ′γ ′1γ

′

2
vanishes.

5.3.2. Description of D0 as the first BGG operator. We consider the tractor bundle
V = 32S, which under a choice of a Weyl connection D decomposes according to

[V ]D = 32(Eα ⊕ Eα′) =

 E [αβ]

Eαβ ′

E [α′β ′]

 .
On the first chain spaces the Lie algebra differentials ∂ and ∂∗ are given as follows (indices
within vertical bars are not included in the skew symmetrization):

∂

 vαβwαβ
′

uα
′β ′

 =
 0
−δ

β ′

α′
vαβ

2δ
[β ′1
α′
w|α|β

′

2]

 , ∂


v
γαβ

γ ′

w
γαβ ′

γ ′

u
γα′β ′

γ ′

 =


0
2δβ

′

γ ′2
v
γ1γ2β

γ ′1
− 2δβ

′

γ ′1
v
γ2γ1β

γ ′2

2δ
[β ′1
γ ′1
w
|γ2γ1|β

′

2]
γ ′2

− 2δ
[β ′1
γ ′2
w
|γ1γ2|β

′

2]
γ ′1
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∂∗


v
γαβ

γ ′

w
γαβ ′

γ ′

u
γα′β ′

γ ′

 =
−2w[α1α2]τ ′

τ ′

u
ατ ′β ′

τ ′

0

 , ∂∗


v
γ1γ2αβ

γ ′1γ
′

2

w
γ1γ2αβ

′

γ ′1γ
′

2

u
γ1γ2α

′β ′

γ ′1γ
′

2

 =


2wγ1[αβ]τ ′

γ ′1τ
′

−u
γ1ατ

′β ′

γ ′1τ
′

0

 .
The Kostant Laplacian � = ∂ ◦ ∂∗ + ∂∗ ◦ ∂ acts on [V ]D via

�

 vαβwαβ
′

uα
′β ′

 =
 (2q)vαβ

(q − 1)wαβ
′

0

 .
The top slot of E1(V ) is E [αβ]

c = Eγ [αβ]
γ ′

and coincides with the image of ∂∗. It is ir-
reducible and the Kostant Laplacian acts by multiplication with 2(2q − 1). The middle
slot of E1(V ), which is Eαβ

′

c , decomposes into Im ∂ , which are traces, and the trace-free
part Im ∂∗ = E0

αβ ′

c . One finds that E0
γαβ ′

γ ′
= E0

[γα]β ′

γ ′
⊕ E0

(γ α)β ′

γ ′
and � acts by q on the

alternating part and by q − 2 on the symmetric part.
The tractor covariant derivative on V is

(∇ω)
γ

γ ′

 vαβwαβ
′

uα
′β ′

 =


D
γ

γ ′
vαβ + 2Pγ [α

γ ′τ ′
wβ]τ ′

D
γ

γ ′
wαβ

′

− δα
γ ′
vγβ

′

+ P
γα

γ ′τ ′
uβ
′τ ′

D
γ

γ ′
uα
′β ′
+ 2δ[α′

γ ′
w|γ |β

′]

 .
The first BGG splitting operator L0 : E (α′β ′)→ 0(V ) is computed to be

L0(u
α′β ′) =


1

2qP
αβ

τ ′1τ
′

2
uτ
′

1τ
′

2 −
1

1−qD
[α
τ ′1
D
β]
τ ′2
uτ
′

1τ
′

2

1
1−qD

α
τ ′
uτ
′β ′

uα
′β ′

 ,
and the composition of ∇ω ◦ L0 with the projection to the lowest slot is seen to yield our
operator (14).

5.3.3. Prolongation ofD0. For a section s of V one first computesK •s ∈ E2(V ), which
is then mapped by ∂∗ into E1(V ),

∂∗

K •
 vαβwαβ

′

uα
′β ′

 =


2Cγ1[αβ]
γ ′1ϕ
′η
wηϕ

′

+ 2A[α|γ1|β]
η′ϕ′

uη
′ϕ′

−2C′γ1αβ
′

γ ′1ϕ
′η′
uϕ
′η′

0

 . (15)

The first deformation map 81 is defined by 81 = −�−1
◦ ∂∗ ◦K•,

81

 0
0

uα
′β ′

 =
 0

2
q
C′

[γ1α]β ′

γ ′1ϕ
′η′
uϕ
′η′
+

2
q−2C

′(γ1α)β
′

γ ′1ph
′η′
uϕ
′η′

0

 .
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Now we need to calculate ∂∗ of the change in curvature resulting from 81, which is just
∂∗ ◦ d∇81, since one quickly sees that ∂∗ ◦ 81[c1∂c2] = 0. Both indices of a section
wαβ

′

are contracted into C and the trace taken by ∂∗ vanishes by trace-freeness of C, C′.
Therefore we are only interested in the differential components of d∇81 given by

0
2
( 1
q
+

1
q−2

)
D
γ1
γ ′1
C′
γ2αβ

′

γ ′2ϕ
′η′
uϕ
′η′
− 2

( 1
q
−

1
q−2

)
D
γ1
γ ′1
C′
αγ2β

′

γ ′2ϕ
′η′
uϕ
′η′

− 2
( 1
q
+

1
q−2

)
D
γ2
γ ′2
C′
γ1αβ

′

γ ′1ϕ
′η′
uϕ
′η′
+ 2

( 1
q
−

1
q−2

)
D
γ2
γ ′2
C
αγ1β

′

γ ′1ϕ
′η′
uϕ
′η′

0

 .
Applying ∂∗ we obtain the top slot contribution

−4
(

1
q
+

1
q − 2

)
D

[α
τ ′
C′
|γ1|β]τ ′

γ ′1ϕ
′η′
uϕ
′η′
+ 4

(
1
q
−

1
q − 2

)
D

[α
τ ′
C
β]γ1τ

′

γ ′1ϕ
′η′
uϕ
′η′ . (16)

Adding the contributions of the top slot of (15) and (16) (after multiplication by− 1
2(2q−1) )

to the modification map 81, we obtain the full modification map

8

 vαβwαβ
′

uα
′β ′

 =


1
2q−1

(
2
( 1
q
+

1
q−2

)
D

[α
τ ′
C′
|γ1|β]τ ′

γ ′1ϕ
′η′
uϕ
′η′
− 2

( 1
q
−

1
q−2

)
D

[α
τ ′
C
β]γ1τ

′

γ ′1ϕ
′η′
uϕ
′η′

− C
γ1[αβ]
γ ′1ϕ
′η
wηϕ

′

+ A
[α|γ1|β]
η′ϕ′

uη
′ϕ′
)

2
q
C′

[γ1α]β ′

γ ′1ϕ
′η′
uϕ
′η′
+

2
q−2C

′(γ1α)β
′

γ ′1ϕ
′η′
uϕ
′η′

0

.

∇̃ = ∇
ω
+8 is then the prolongation covariant derivative of the system (D

γ

γ ′
uα
′β ′)0 = 0.

5.4. The case of infinitesimal automorphisms

Let AM be the adjoint tractor bundle of a regular parabolic geometry (G, ω) over M
and ∇ω the adjoint tractor covariant derivative. In [6] it was shown that parallel sections
of the connection

∇̃s = ∇ωs + κ(5(s), ·) (17)

are in one-to-one correspondence with infinitesimal automorphisms of (G, ω), where 5
is the natural projection 5 : AM → TM . This shows that it is of interest to consider
the first BGG operator D̃0 obtained from ∇̃. If the parabolic geometry (G, ω) is normal,
the curvature of ∇̃ lies in the kernel of ∂∗AM . Therefore, exactly as in Corollary 3.1, one
sees that 50 : AM → H0 and L̃0 : H0 → AM are inverse isomorphisms between the
space of parallel sections of ∇̃ and the kernel of D̃0. Thus, the operator D̃0 describes the
infinitesimal automorphisms of (G, ω) and is automatically prolonged by ∇̃.

It is shown that if the parabolic geometry is also torsion-free or 1-graded, one has
∂∗AMκ = 0, i.e., for every s ∈ AM one has ∂∗AMκ(5(s), ·) = 0. But in the torsion-
free case, the map ξ 7→ κ(5(s), ξ) is evidently homogeneous of degree ≥ 1. Therefore,
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if we know that H1(g−, g) sits in homogeneity ≤ 0, we see that ξ 7→ κ(5(s), ξ) lies
in Im ∂∗AM .

Thus we have:

Theorem 5.1. Let (G → M,ω) be a torsion-free, normal parabolic geometry with
H1(g−, g) concentrated in homogeneity ≤ 0. Then ∇̃ from (17) coincides with the pro-
longation covariant derivative on AM . In particular, the usual first BGG operator D0
coincides with D̃0 and thus describes infinitesimal automorphisms.

We note that the homogeneity condition onH1(g−, g) is satisfied for all parabolic geome-
tries of type (G, P ) with g simple and (G, P ) not corresponding to projective structures
or contact projective structures.

Acknowledgments. The results presented in the paper are inspired very much by a construction
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[7] Čap, A., Slovák, J.: Weyl structures for parabolic geometries. Math. Scand. 93, 53–90 (2003)
Zbl 1076.53029 MR 1997873
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[10] Cartan, É.: Les espaces à connexion conforme. Ann. Soc. Polon. Math. 2, 171–221 (1923)
JFM 50.0493.01
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