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Abstract. We give the first transcendence results for the Rosen continued fractions. Introduced
over half a century ago, these fractions expand real numbers in terms of certain algebraic numbers.
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1. Introduction

In 1954, D. Rosen defined an infinite family of continued fraction algorithms [21]. In-
troduced to aid in the study of certain Fuchsian groups, these continued fractions were
applied some thirty years later by J. Lehner [15] in the study of Diophantine approxima-
tion by orbits of these groups.

The Rosen continued fractions and variants have been of recent interest. For studies
of their dynamical and arithmetical properties, see [8, 19, 12]. For their applications to
the study of geodesics on related hyperbolic surfaces, see [24, 7, 18]. For applications to
Teichmüller geodesics arising from (Veech) translation surfaces, see [28, 5, 27, 6]. Sev-
eral basic questions remain open, including that of arithmetically characterizing the real
numbers having a finite Rosen continued fraction expansion; see [16, 14, 6]. Background
on Rosen continued fractions is given in the next section.

The first transcendence criteria for regular continued fractions were proved by
E. Maillet, H. Davenport and K. F. Roth, A. Baker, and recently improved by B. Adam-
czewski and Y. Bugeaud; see [1, 2, 10] and the references given there. In particular, The-
orem 4.1 of [2] asserts that if ξ is an algebraic irrational number with sequence of conver-
gents (pn/qn)n≥1, then the sequence (qn)n≥1 cannot increase too rapidly. It is natural to
ask whether similar transcendence results can be proven using Rosen continued fractions.
We give the first such results.
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Theorem 1.1. Fix λ = 2 cos(π/m) for an integer m > 3 , and denote the field extension
degree [Q(λ) : Q] by D. If a real number ξ /∈ Q(λ) has an infinite expansion in Rosen
continued fraction over Q(λ) of convergents pn/qn satisfying

lim sup
n→∞

log log qn
n

> log(2D − 1),

then ξ is transcendental.

To state our second result, we associate to the Rosen continued fraction expansion

[ε1(x) : r1(x), ε2(x) : r2(x), . . . , εn(x) : rn(x), . . .] :=
ε1

r1λ+
ε2

r2λ+ · · ·

of a real number x in [−λ/2, λ/2) the sequence of pairs of integers (εi, ri)i≥1, which we
call the partial quotients, and thus consider A = {±1} × N as the alphabet of the Rosen
continued fraction expansions.

As usual, we denote the length of a finite word U = u1 · · · uk as |U | = k. For any
positive integer s, we writeU s for the wordU · · ·U (s-fold concatenation of the wordU ).
More generally, for any positive real number s, we denote by U s the word U bscU ′, where
U ′ is the prefix of U of length d(s − bsc)|U |e.

Just as Adamczewski and Bugeaud [1, 10] showed for regular continued fraction
expansions, a real number whose Rosen continued fraction expansion is appropriately
“stammering” must be transcendental.

Theorem 1.2. Fix λ = 2 cos(π/m) for an integer m > 3, and denote the field extension
degree [Q(λ) : Q] by D. Let ξ be an infinite Rosen continued fraction with convergents
(pn/qn)n≥1 such that

B := lim sup
n

q
1/n
n <∞.

Write
b := lim inf

n
q

1/n
n .

Assume that there are two infinite sequences (Un)n≥1 and (Vn)n≥1 of finite words over
the alphabet A and an infinite sequence (wn)n≥1 of real numbers greater than 1 such
that, for n ≥ 1, the word UnV

wn
n is a prefix of the infinite word composed of the partial

quotients of ξ . If

lim sup
n→∞

|Un| + wn|Vn|

2|Un| + |Vn|
>

3D
2
·

logB
log b

, (1)

then ξ is either (at most) quadratic over Q(λ), or transcendental.

Lemma 2.1 implies that log b is positive.
The key to our proofs is that both the numerator and denominator of a Rosen con-

vergent dominate their respective conjugates in an appropriate fashion; see Lemma 3.1.
From this one can bound the height of a Rosen convergent in terms of its denominator;
see Lemma 3.3. Then, exactly as in the case of regular continued fractions, we apply tools
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from Diophantine approximation, namely an extension to number fields of the Roth the-
orem for the proof of Theorem 1.1, and the Schmidt Subspace Theorem for the proof of
Theorem 1.2.

Both theorems are weaker than their analogues for regular continued fractions, since
we must work in a number field of degree D rather than in the field Q. However, for
m = 4 and m = 6, that is, for λ4 =

√
2 and λ6 =

√
3, our results can be considerably

strengthened and we can get, essentially, the exact analogues of the results established
for regular continued fractions. The key point is that, in both cases, for every convergent
pn/qn, exactly one of pn, qn is in Z, the other being in λZ ; see Remark 2 below.

2. Background

2.1. Rosen fractions

We set λ = λm = 2 cos(π/m) and Im = [−λ/2, λ/2 ) for m ≥ 3. For a fixed integer
m ≥ 3, the Rosen continued fraction map is defined by

T (x) =


∣∣∣∣ 1x
∣∣∣∣− λ⌊∣∣∣∣ 1

λx

∣∣∣∣+ 1
2

⌋
, x 6= 0,

0, x = 0,

for x ∈ Im; here and below, we omit the index m whenever it is clear from context. For
n ≥ 1, we define

εn(x) = ε(T
n−1x) and rn(x) = r(T

n−1x)

with

ε(y) = sgn(y) and r(y) =

⌊∣∣∣∣ 1
λy

∣∣∣∣+ 1
2

⌋
.

Then, as Rosen showed in [21], the Rosen continued fraction expansion of x is given by

[ ε1(x) : r1(x), ε2(x) : r2(x), . . . , εn(x) : rn(x), . . .] :=
ε1

r1λ+
ε2

r2λ+ · · ·

.

As usual we define the convergents pn/qn of x ∈ Im by(
p−1 p0
q−1 q0

)
=

(
1 0
0 1

)
and (

pn−1 pn
qn−1 qn

)
=

(
0 ε1
1 λr1

)(
0 ε2
1 λr2

)
· · ·

(
0 εn
1 λrn

)
for n ≥ 1. From this definition it is immediate that |pn−1qn − qn−1pn| = 1, and that the
well-known recurrence relations

p−1 = 1, p0 = 0, pn = λrnpn−1 + εnpn−2, n ≥ 1,
q−1 = 0, q0 = 1, qn = λrnqn−1 + εnqn−2, n ≥ 1,
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hold. It also follows that
pn

qn
= [ε1 : r1, ε2 : r2, . . . , εn : rn] (2)

and
qn−1

qn
= [1 : rn, εn : rn−1, . . . , ε2 : r1] . (3)

We define

Mn =

(
pn−1 pn
qn−1 qn

)
, and find that x = Mn · T

n(x), (4)

where · denotes the usual fractional linear operation, namely

x =
pn−1T

n(x)+ pn

qn−1T n(x)+ qn
.

2.2. Approximation with Rosen fractions

We briefly discuss the convergence of the “convergents” to x. One can rephrase some of
Rosen’s original arguments in terms of the (standard number-theoretic) natural extension
map T (x, y) =

(
T (x), 1

rλ+εy

)
where r = r1(x) and ε = ε1(x). The “mirror formula”

(3) shows that T n(x, 0) = (T n(x), qn−1/qn). Extending earlier work of H. Nakada, it
is shown in [8] that T (x, y) has planar domain � with y-coordinates between 0 and
R = R(λ), where R = 1 if the index m is even, and otherwise R is the positive root of
R2
+ (2 − λ)R − 1 = 0, in which case we have 1 > R > λ/2 (see Lemma 3.3 of [8]).

Therefore, the sequence (qn)n≥1 is strictly increasing. But, as Rosen mentions, if x has
infinite expansion, then either εn = 1 or rn > 1 occurs infinitely often; from this one
finds that qn ≥ 1 for all n and that the limit of qn as n→∞ is infinite.

One easily adapts Rosen’s arguments to deduce the following.

Lemma 2.1. For every x ∈ Im of infinite expansion, we have

lim inf
n

q
1/n
n > 1.

Proof. We know that the sequence (qn)n≥1 increases and that, if either εn = 1 or rn > 1,
then qn > λqn−1. Furthermore, there are no more than h consecutive indices i with
(εi, ri) = (−1, 1), with h = m/2 or (m − 3)/2 depending on the parity of m; see [21]
or [8]. Consequently, for any n, there is some i = 1, . . . , h+1 such that qn+i > λqn+i−1,
giving

qn+h+1 ≥ qn+i > λqn+i−1 ≥ λqn.

As q1 ≥ λ, letting s(n) = 1 +
⌊
n−1
h+1

⌋
, we have qn ≥ λs(n). Since λ > 1, this proves the

lemma. ut

Remark 2.2. In fact, H. Nakada [20] shows that for almost all such x, limn→∞
1
n

log qn
exists, being equal to half the entropy of T . He also shows that the entropy equals
C · (m − 2)π2/(2m) where C = 1/log(1 + R) when m is odd, and equals
1/log[(1 + cos(π/m))/sin(π/m)] when m is even. This C is the normalizing constant
of the invariant measure with density (1 + xy)−2 on the domain � of the planar natural
extension T ; see [8].
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Rosen also gave bounds on |x − pn/qn|. Using (4), one can get∣∣∣∣x − pnqn
∣∣∣∣ = 1

q2
n

1
|qn+1/qn + T n+1x|

,

from which Nakada (see [20, Lemma 4]) finds

1
qn(qn+1 + qn)

≤

∣∣∣∣x − pnqn
∣∣∣∣ ≤ c1

q2
n

,

with c1 = c1(λ) = R/(1− Rλ/2). (The lower bound is in [21].)
Now, from (4) one also finds∣∣∣∣x − pnqn

∣∣∣∣ = 1
qnqn+1

1∣∣1+ qn
qn+1

T n+1x
∣∣ .

Since the closed, compact planar region� is of finite measure with respect to the measure
with density (1+ xy)−2, it follows that T n+1(x, 0) remains a bounded distance from the
curve y = −1/x. Thus, there is some c2 such that∣∣∣∣x − pnqn

∣∣∣∣ < c2

qnqn+1
. (5)

Rosen, arguing differently, gave c2 = 1/(1 − λ/2); in particular, convergence of the
approximation sequence follows. Rosen’s value is not optimal. To see this, one combines
Proposition 4.1 of [8] with the approach of Theorems 4.4 and 4.5 there (depending on
parity of m).

2.3. Traces in Hecke groups

Rosen introduced his continued fractions to study Hecke groups. The Hecke (triangle
Fuchsian) group Gm with m ∈ {3, 4, 5, . . . } is the group generated by(

1 λm
0 1

)
and

(
0 −1
1 0

)
,

with λm as above. The Rosen expansion of a real number terminates at a finite term if and
only if x is a parabolic fixed point of Gm; see [21]. These points are clearly contained in
Q(λm) but in general there are elements of this field that have infinite Rosen expansion;
see [16, 14, 6].

Remark 2.3. The values of finite Rosen expansions form the setGm ·∞, which is in fact
a subset of λQ(λ2)∪{∞}. To see this, one uses induction on word length in the generators
displayed above—an ordered pair (a, c) giving a column of any element of Gm must be
such that exactly one element of the pair is in Z[λ2

], and the other is in λZ[λ2
]. Note that

this also applies to convergents pn/qn: exactly one of pn, qn is in Z[λ2
], the other being

in λZ[λ2
].
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When m = 3, we have G3 = PSL(2,Z). In general each Gm is isomorphic to the
free product of a cyclic group of order two and a cyclic group of order m. Recall that a
Fuchsian triangle group is generated by even words in the reflections about the sides of
some hyperbolic triangle. Thus any Fuchsian triangle group is of index two in the group
generated by these reflections; for each Gm, we denote this larger group by 1m.

Since λm is the sum of the root of unity ζ2m := exp 2πi/(2m) with its complex
conjugate, Q(λm) is a number field of degree d := φ(2m)/2 over the rationals, where φ
denotes the Euler totient function.

The following key phenomenon property of Hecke groups can be shown in various
manners. The result holds for a larger class of groups, from Corollary 5 of [26], due to [11]
(extending the arguments from Gm to 1m is straightforward). Independent of this earlier
work, Bogomolny–Schmit [7] gave a clever proof of the result specifically for 1m. See
the next remark for another perspective.

Theorem 2.4. Fix m as above, and let 1m be the full reflection group in which Gm has
index two. Then for anyM ∈ 1m whose trace is of absolute value greater than 2, we have

|tr(M)| ≥ |σ(tr(M))|,

where σ is any field embedding of Q(λm).

Remark 2.5. This result can be proven “geometrically”. Up to conjugacy, each of the
Hecke groups appears as the Veech group of some translation surface; see [28]. Those el-
ements of trace greater than 2 in absolute value are the “derivatives” of the affine pseudo-
Anosov diffeomorphisms of the surface. The dilatation of a pseudo-Anosov φ is the dom-
inant eigenvalue λ of the action of φ on the integral homology of the underlying surface.
(The other eigenvalues are hence conjugates of λ.) The corresponding element of the
Veech group has trace of absolute value λ + λ−1 from which it follows that this trace
dominates its conjugates.

2.4. Approximation by algebraic numbers

The following result was announced by Roth [23] and proven by LeVeque; see Chapter 4
of [17]. (The version below is Theorem 2.5 of [9].) Recall that given an algebraic num-
ber α, its naive height, denoted by H(α), is the largest absolute value of the coefficients
of its minimal polynomial over Z.

Theorem 2.6 (Roth–LeVeque). LetK be a number field, and ξ a real algebraic number
not in K . Then, for any ε > 0, there exists a positive constant c(ξ,K, ε) such that

|ξ − α| >
c(ξ,K, ε)

H(α)2+ε
for every α in K .

The logarithmic Weil height of α lying in a number fieldK of degreeD over Q is h(α) =
D−1∑

ν log+maxν∈MK
‖α‖ν , where log+ t equals 0 if t ≤ 1 and MK denotes the places

(finite and infinite “primes”) of the field, and ‖ · ‖ν is the ν-absolute value. This definition
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is independent of the field K containing α. Recall that the product formula states that the
product over ν ∈ MK of the ‖α‖ν equals 1. Using this, for α, β ∈ K with β 6= 0 one has

h(α/β) ≤
∑
σ

1
D

log max{|σ(α)|, |σ(β)|}, (6)

where the sum is taken over the field embeddings σ of K into the complex numbers, and
| · | denotes the usual complex norm.

The two heights are related by

logH(α) ≤ deg(α)h(α)+ log 2 (7)

for any non-zero algebraic number α; see Lemma 3.11 from [29].
We recall a consequence of the W. Schmidt Subspace Theorem; see Theorem 9A

of [25].

Theorem 2.7. Let d be a positive integer and ξ be a real algebraic number of degree
greater than d . Then, for every positive ε, there exist only finitely many algebraic numbers
α of degree at most d such that

|ξ − α| < H(α)−d−1−ε.

Note that the Roth theorem is exactly the case d = 1 of Theorem 2.7.
In the proof of Theorem 1.2, we could apply Theorem 2.7, but the algebraic numbers

α which we use to approximate ξ are of degree at most 2 over a fixed number field. In
this situation, the next theorem, kindly communicated to us by J.-H. Evertse [13], yields
a stronger result than the previous one.

Theorem 2.8 (Evertse). Let K be a real algebraic number field of degree d. Let t be a
positive integer and ξ be a real algebraic number of degree greater than t over K . Then,
for every positive ε, there exist only finitely many algebraic numbers α of degree t overK
and δ over Q such that

|ξ − α| < H(α)−dt (t+1+ε)/δ.

Note that Theorem 2.8 extends Theorem 2.6.

2.5. Sturmian sequences: towards an application of Theorem 1.2

To give an explicit family of Rosen expansions satisfying the hypotheses of Theorem 1.2,
we recall a result of [3] on Sturmian sequences.

Let a and b be letters in some alphabet. The complexity function of a sequence u =
u1u2 · · · with values in {a, b} is given by letting p(n,u) be the number of distinct words
of length n that occur in u. A sequence u is called Sturmian if its complexity satisfies
p(n,u) = n + 1 for all n. As Arnoux [4] writes, one can obtain any such sequence by
taking a ray with irrational slope in the real plane and intersecting it with an integral grid,
assigning a when the ray intersects a horizontal grid line and b when it meets a vertical
grid line. Indeed, the slope of a Sturmian sequence is the density of a in the sequence (one
shows that the limit as n tends to infinity of the average of the number of occurrences a
in u1 · · · un exists; see [4, Proposition 6.1.10]).
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Lemma 2.9. Let u be a Sturmian sequence whose slope has an unbounded regular con-
tinued fraction expansion. Then, for every positive integer n, there are finite words U , V
and a positive real number s such that UV s is a prefix of u and |UV s | ≥ n|UV |.

Proof. This follows from the proof of Proposition 11.1 from [3]. ut

Remark 2.10. We apply the above lemma to Sturmian sequences where both a, b are of
the form (ε, r), with ε = ±1 and r ∈ N. In particular, we use this in the context of Rosen
expansions to prove Corollary 4.1.

3. Bounding the height of convergents

In what follows, we fix λ = λm for some m > 3, and suppose that ξ ∈ (0, λ/2) is a real
algebraic number having an infinite Rosen continued fraction expansion over Q(λ). Our
goal is to estimate the naive height H(pn/qn) of the nth convergent pn/qn. In light of
Theorem 2.4, we let n0 be the least value of n such that qn > 2.

Lemma 3.1. Let c3 = c3(λ) be defined by c3 = minσ |σ(λ)|/λ, where the minimum is
taken over all field embeddings of Q(λ) into R. Then for all n ≥ n0, and any such σ ,

qn ≥ c3|σ(qn)| and pn ≥ c3 |σ(pn)|.

Proof. For any n ≥ n0, recall that Mn =

(
pn−1 pn
qn−1 qn

)
; this is clearly an element of 1m.

By Theorem 2.4 we have qn + pn−1 ≥ |σ(qn + pn−1)|.
Now let j ∈ N and set

Mn,j =

(
pn−1 pn
qn−1 qn

)(
1 jλ

0 1

)
=

(
pn−1 pn + jλpn−1
qn−1 qn + jλqn−1

)
.

This is also an element of 1m of trace greater than 2, and hence

|pn−1 + qn + jλqn−1| ≥ |σ(pn−1 + qn)+ jσ (λqn−1)|.

Since this holds for all positive j , we must have λqn−1 ≥ |σ(λqn−1)|. That is,

qn−1 ≥
|σ(λ)|

λ
|σ(qn−1)| ≥

(
min
σ

|σ(λ)|

λ

)
|σ(qn−1)|.

Similarly, using

Nn,j =

(
pn−1 pn
qn−1 qn

)(
1 0
jλ 1

)
=

(
pn−1 + jλpn pn
qn−1 + jλqn qn

)
,

we find

pn ≥
|σ(λ)|

λ
|σ(pn)| ≥

(
min
σ

|σ(λ)|

λ

)
|σ(pn)|. ut
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Remark 3.2. We conjecture that in fact qn is always greater than or equal to its conju-
gates, thus in the above one can replace c3 by 1.

Lemma 3.3. Let D denote the field extension degree [Q(λ) : Q]. There exists a constant
c4 = c4(λ) such that for all n ≥ n0,

H(pn/qn) ≤ c4q
D
n .

Proof. Since pn and qn are algebraic integers of degree at most D, it follows from
Lemma 3.1 and (6) that

h(pn/qn) ≤
∑
σ

1
D

log max{|σ(pn)|, |σ(qn)|}

where σ runs through the complex embeddings. We thus have

h(pn/qn) ≤ c
′

4 + log qn

for a suitable positive constant c′4. Using (7), we get the asserted estimate. ut

Lemma 3.4. Let α be a real number in [−λ/2, λ/2) with an ultimately periodic expan-
sion in a Rosen continued fraction. Denote by (pn/qn)n≥1 the sequence of its convergents.
Denote by µ the length of the preperiod and by ν the length of the period, with the con-
vention that µ = 0 if the expansion is purely periodic. Then α is of degree at most 2
over Q(λ), and there exists c5 = c5(λ, α) such that

H(α) ≤ c5(qµqµ+ν)
D.

Proof. In the notation of (4), α is fixed by M = M−1
µ Mµ+ν . It thus satisfies a quadratic

equation with entries in Z[λ], and hence is of degree at most 2 over Q(λ). Indeed, α is a
root of f (x) = cx2

+ (d − a)x − b with a, b, c, d denoting the entries of M . Each entry
is a Z-linear combination of monomials of the form rs with r an entry of Mµ and s an
entry of Mµ+ν .

Now, α is also a root of f̃ (x) =
∏
σ σ(f )(x) ∈ Z[x], where σ(f ) denotes the result

of applying σ to the coefficients of f (x). By Lemma 3.1, all of the conjugates of each
of pµ, pµ−1, qµ−1, qµ can be bounded by the product of qµ with a constant depending
upon α and λ. Similarly for the entries of Mµ+ν . After some computation, we conclude
that the height of α is� qDµ q

D
µ+ν . (One checks that the case of µ = 0 is subsumed by the

above.) ut

Remark 3.5. Whereas a real number whose regular continued fraction expansion is ulti-
mately periodic is exactly of degree two over the field of rational numbers, in the previous
lemma the words “at most” are necessary. Indeed, x = 1 has an ultimately periodic Rosen
expansion with respect to any λm with m even; see [21]. Further examples of elements
of Q(λm) with periodic expansions are easily given when m ∈ {4, 6}; see Corollary 1
of [24]. Further examples, including cases with m ∈ {7, 9}, are given in [22, 14].
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4. Transcendence results

As usual,� and� denote inequalities with an implied constant.

4.1. Applying Roth–LeVeque: the proof of Theorem 1.1

We now show that the sequence of denominators of convergents to an algebraic number
cannot grow too quickly. Theorem 1.1 then follows.

Let ε be a positive real number. Let ζ be an algebraic number having an infinite Rosen
expansion with convergents rn/sn.

By the Roth–LeVeque Theorem 2.6, we have

|ζ − rn/sn| � H(rn/sn)
−2−ε for n ≥ 1.

Hence by Lemma 3.3, for n ≥ n0 = n0(ζ ), we have |ζ − rn/sn| � s−2D−Dε
n . Inequal-

ity (5) then gives that there exists a constant c6 (independent of n ≥ n0) such that

sn+1 < c6s
2D−1+Dε
n .

Set a = 2D − 1 + Dε. For j < n0, choose j̀ such that sj < j̀ s
a
j−1. We set c7 =

max{1, c6, `1, . . . , `n0−1} and find that for any n > 1,

sn+1 < c7s
a
n < c7(c7s

a
n−1)

a
≤ (c7sn−1)

a2
;

continuing in this manner, we have sn+1 < (c7s1)
an . Since sn+1 > sn, letting c8 = c7s1

gives log sn < an log c8. From this it follows that

lim sup
n→∞

log log sn
n

< log(D(2+ ε)− 1).

Letting ε go to zero, we see that every algebraic number satisfies

lim sup
n→∞

log log sn
n

≤ log(2D − 1),

as asserted. ut

4.2. Proof of Theorem 1.2 and an application

With λ = 2 cos(π/m) fixed, given ξ with infinite Rosen continued fraction with con-
vergents (pn/qn)n≥1, we let b = lim infn q

1/n
n and B = lim supn q

1/n
n , and assume that

B <∞. Let η be a positive real number with b− 1 < η < b. Since there are only finitely
many n with either q1/n

n < b − η or q1/n
n > B + η, we have both qn � (b − η)n and

qn � (B + η)n.
Suppose that w is a positive real number and U , V are finite words in {±1} ×N such

that UV w is a prefix of the infinite word composed of the partial quotients of ξ . Denote
by α the real number of degree at most two over Q(λ) whose Rosen continued fraction is
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given by the word UV∞, where V∞ means the concatenation of infinitely many copies
of V . Set |U | = u and |V | = v. Since ξ and α have their first bu+ vwc partial quotients
in common, we have

|ξ − α| < c1q
−2
bu+vwc � (b − η)−2(u+vw).

Furthermore, it follows from Lemma 3.4 that

H(α)� (ququ+v)
D
� (B + η)D(2u+v).

Combined with the previous inequality, this gives

|ξ − α| � H(α)−2(u+vw) log(b−η)/(D(2u+v) log(B+η)).

Now suppose that ξ is algebraic of degree greater than two over Q(λ). Then, for every
ε > 0, there exists a positive constant C(ε) such that every real algebraic number β of
degree at most 2 over Q(λ) satisfies

|ξ − β| > C(ε)H(β)−3−ε.

This follows from Theorem 2.6 if β is in Q(λ), and otherwise by applying Theorem 2.8
with t = 2 and dt = δ to each subfield K of Q(λ).

This proves that ξ must be transcendental if there are u, v,w such that u + vw is
arbitrarily large and

2(u+ vw) log b
D(2u+ v) logB

> 3,

as asserted. ut

Corollary 4.1. A Rosen continued fraction in λ whose sequence of partial quotients is
Sturmian with slope of unbounded regular continued fraction partial quotients represents
a number that is transcendental or at most quadratic over Q(λ).

Proof. Combine Lemma 2.9 with Theorem 1.2. ut

Remark 4.2. Using the Subspace Theorem as in [1, 10] does not yield in general an
improvement of Theorem 1.2. In case u = 0, b = B, inequality (1) reduces tow > 3D/2,
while, proceeding as in [1, 10], we would get w > 2D−1. However, if b is much smaller
than B, and D is small, then the approach of [1, 10] presumably gives a slightly better
result than Theorem 1.2.
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