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Abstract. We study continuous Anderson Hamiltonians with non-degenerate single site probabil-
ity distribution of bounded support, without any regularity condition on the single site probability
distribution. We prove the existence of a strong form of localization at the bottom of the spectrum,
which includes Anderson localization (pure point spectrum with exponentially decaying eigenfunc-
tions) with finite multiplicity of eigenvalues, dynamical localization (no spreading of wave packets
under the time evolution), decay of eigenfunctions correlations, and decay of the Fermi projec-
tions. We also prove log-Holder continuity of the integrated density of states at the bottom of the
spectrum.
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Introduction

Anderson Hamiltonians are alloy-type random Schrodinger operators on L*(R?) that
model the motion of an electron moving in a randomly disordered crystal. They are the
continuous analogue of the Anderson model, a random Schrédinger operator on £2(Z4).

In this paper we prove a strong form of localization at the bottom of the spectrum for
Anderson Hamiltonians with a non-degenerate single site probability distribution with
compact support, without any regularity condition on the single site probability distribu-
tion. This strong form of localization includes Anderson localization (pure point spectrum
with exponentially decaying eigenfunctions) with finite multiplicity of eigenvalues, dy-
namical localization (no spreading of wave packets under the time evolution), decay of
eigenfunctions correlations, and decay of the Fermi projections. We also prove log-Holder
continuity of the integrated density of states at the bottom of the spectrum.

Localization for random Schrodinger operators was first established in the celebrated
paper by Gol’dsheid, Molchanov and Pastur [GoMP] for a certain one-dimensional con-
tinuous random Schrédinger operator. Localization is by now well established for one and
quasi-one random Schrddinger operators [KuS, L, KIMP, CKM, KILS, Sto, DSS].

In the multi-dimensional case there is a wealth of results concerning localization for
the (discrete) Anderson model and the (continuous) Anderson Hamiltonian as long as the
single site probability distribution has enough regularity (absolutely continuous with a
bounded density, Holder continuous, log-Holder continuous). In this case Anderson and
dynamical localizations are well established: see, e.g., [FrS, MS1, FrMSS, DelLS, SiW,
SVW, Dr, DrK1, Sp, DrK2, AM, KIll, FK1, A, ASFH, W2, Klo4, HolM, CoHl1, Klo2,
GDB, FK2, KiSS1, KiSS2, DS, GK1, GK3, GK4, AENSS, KI2]. Localization is also
known in a random displacement model where the displacement probability distribution
has a bounded density [Klol, GhK, KIoLNS], for a class of Gaussian random potentials
[FiLM, U, LeMW], and for Poisson models where the single-site potentials are multiplied
by random variables with bounded densities [MS2, CoH1]. What all these results have
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in common is the availability of random variables with sufficiently regular probability
distributions, which can be exploited, in an averaging procedure, to produce an a priori
Wegner estimate at all scales (an estimate on the probability of energy resonances in finite
volumes); see, e.g., [We, FrS, HolM, CKM, CoHl1, Klo2, CoHM, Ki, FiLM, St, CoHN,
CoHKN, CoHK1, CoHK2].

In contrast, for the most natural random Schrddinger operators on the continuum (cf.
[LiGP, Subsection 1.1]), the Bernoulli~Anderson Hamiltonian (simplest disordered sub-
stitutional alloy) and the Poisson Hamiltonian (simplest disordered amorphous medium),
localization results in two or more dimensions were much harder to obtain. The Bernoulli
—Anderson Hamiltonian is an Anderson Hamiltonian where the single site probability dis-
tribution is the distribution of a Bernoulli random variable, and the Poisson Hamiltonian
is a random Schrodinger operator corresponding to identical impurities placed at loca-
tions given by a homogeneous Poisson point process on R?. In both cases the random
variables with regular probability distributions are not available, so there is no a priori
Wegner estimate.

Bourgain and Kenig [BoK] proved Anderson localization at the bottom of the spec-
trum for the Bernoulli-Anderson Hamiltonian. In their remarkable paper the Wegner esti-
mate is established by a multiscale analysis using “free sites” and a new quantitative ver-
sion of the unique continuation principle which gives a lower bound on eigenfunctions.
Since this Wegner estimate has weak probability estimates and the underlying random
variables are discrete, they also introduced a new method to prove Anderson localization
from estimates on the finite-volume resolvents given by a single energy multiscale anal-
ysis. The new method does not use spectral averaging as in [DelL.S, SiW, CoH1], which
requires random variables with bounded densities. It is also not an energy-interval mul-
tiscale analysis as in [FtMSS, DrK1, FK2, GK1, KI2], which requires better probability
estimates.

Germinet, Hislop and Klein [GHK1, GHK2, GHK3] established Anderson localiza-
tion at the bottom of the spectrum for the Poisson Hamiltonian, using a multiscale analysis
that exploits the probabilistic properties of Poisson point processes to control the random-
ness of the configurations, and at the same time allows the use of the new ideas introduced
by Bourgain and Kenig.

Aizenman, Germinet, Klein, and Warzel [AGKW] used a Bernoulli decomposition for
random variables to show that spectral localization (pure point spectrum with probability
one) for Anderson Hamiltonians follows from an extension of the Bourgain—Kenig results
to nonhomogeneous Bernoulli-Anderson Hamiltonians, which incorporate an additional
background potential and allow the variances of the Bernoulli terms not to be identical but
only uniformly positive. Such random Schrodinger operators are generalized Anderson
Hamiltonians as in Definition 2.2, for which we prove Anderson and dynamical local-
ization in this paper, thus providing a proof of the required extension stated in [AGKW,
Theorem 1.4].

In this article we provide a comprehensive proof of localization for Anderson Hamil-
tonians, drawing on the methods of [FrS, FrMSS, DrK1, CoHl, FK2, GK1, GK6, KI12]
and incorporating the new ideas of [BoK]. We make no assumptions on the single site
probability distribution except for compact support. (The proof can be extended to dis-
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tributions of unbounded support with appropriate assumptions on the tails of the distri-
bution.) We perform a multiscale analysis to obtain probabilistic statements about re-
strictions of the Anderson Hamiltonian to finite volumes. From the conclusions of the
multiscale analysis we extract an infinite volume characterization of localization: a prob-
abilistic statement concerning the generalized eigenfunctions of the (infinite volume) An-
derson Hamiltonian, from which we derive both Anderson and dynamical localization, as
well as other consequences of localization, such as decay of eigenfunctions correlations
(e.g., SULE, SUDEC) and decay of the Fermi projections.

This new infinite volume description of localization (given in Theorem 1.2(B)) yields
all the manifestations of localization that have been previously derived from the en-
ergy interval multiscale analysis for sufficiently regular single site probability distribution
[FrMSS, DrK1, GDB, DS, GK1, GK6, K12]. This description may also be derived from
the energy interval multiscale analysis (see Remark 1.7); it is implicit in [GK6]. One of
the main achievements of this paper is the extraction of such a clean and simple statement
of localization for Bernoulli and other singular single site probability distributions.

We give a detailed account of this single energy multiscale analysis, which uses ‘free
sites’ and the quantitative unique continuation principle as in [BoK] to obtain control of
finite volume resonances. We also explain in detail how all forms of localization can be
extracted from this single energy multiscale analysis. To put this extraction in perspective,
Frohlich and Spencer, in their seminal paper [FrS], obtained a single energy multiscale
analysis for the discrete Anderson model with good probability estimates, but were not
able to derive Anderson localization from their result. The desired localization was later
obtained from a multiscale analysis by two different methods. Spectral averaging gets
Anderson localization from a single energy multiscale analysis as in [FrS], but requires
absolutely continuous single site probability distributions with a bounded density [DelL.S,
SiW, CoH1]. Anderson localization, and later dynamical localization, can be proven from
an energy interval multiscale analysis using generalized eigenfunctions [FrMSS, DrK1,
DS, GK1, KI2]. None of these methods were available in Bourgain and Kenig’s setting.
Spectral averaging is not feasible for Bernoulli random variables, and the energy inter-
val multiscale analysis requires better probability estimates than are possible using the
quantitative unique continuation principle. In response, Bourgain and Kenig developed a
new method for obtaining Anderson localization from a single energy multiscale analysis,
using Peierl’s argument, generalized eigenfunctions, and two energy reductions [Bouk,
Section 7]. (Their method is simpler in the setting of [FrS], where the second energy re-
duction is not needed—see Remarks 6.13 and 6.14.) In this paper we combine the ideas of
[BouK, Section 7] with methods we developed in [GK1, GK6] to extract all forms of lo-
calization from a single energy multiscale analysis, giving a detailed account of all steps.

We also derive log-Holder continuity of the integrated density of states from the con-
clusions of the multiscale analysis. The multiscale analysis requires the probabilistic con-
trol of finite volume resonances subexponentially close to the given energy (and no more,
as noted in [DrK1]). In [BoK] and in this article, this control is obtained as part of the
multiscale analysis. We show that, in the presence of a multiscale analysis, log-Holder
continuity of the integrated density of states is the infinite volume trace of this probabilis-
tic control (the “Wegner estimate’).
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The integrated density of states of the discrete Anderson model is always log-Holder
continuous [CrS]. If the single site probability distribution is continuous (i.e., it has no
atoms), then the integrated density of states for both discrete Anderson models and con-
tinuous Anderson Hamiltonians has at least as much regularity as the concentration func-
tion of this probability distribution [CoHK?2]. Although for the discrete Anderson model
there is an easy proof of continuity of the integrated density of states for arbitrary sin-
gle site probability distribution [DelS], for the continuous Anderson Hamiltonian it is
not even known if the integrated density of states is always a continuous function if this
probability distribution has an atom.

Neither Anderson localization nor dynamical localization carry information about the
regularity of the integrated density of states. Roughly speaking, dynamical localization
and regularity of the integrated density of states carry complementary types of informa-
tion. This is made more precise in [GKS5], where we showed that for Anderson Hamilto-
nians with an a priori Wegner estimate, dynamical localization is necessary and sufficient
to perform a multiscale analysis. The multiscale analysis contains more information than
just localization properties: it also encodes regularity of the integrated density of states.
This fact has been overlooked, since, prior to the multiscale analysis in [BoK], all mul-
tiscale analyses for Anderson models were performed with an a priori Wegner estimate
which readily implied regularity of the integrated density of states, even without local-
ization. In view of our results in [GKS5], we may argue that, by proving both localization
and log-Holder continuity of the integrated density of states, we have extracted from the
multiscale analysis all the encoded information. This ‘philosophical’ remark would be-
come a mathematical statement if we could prove that localization combined with the
log-Holder continuity of the integrated density of states is enough to start a multiscale
analysis, extending the results of [GKS5] to the setting of this article.

The strong localization results, including Anderson localization and dynamical lo-
calization, and the log-Holder continuity of the integrated density of states, presented
in this paper for Anderson Hamiltonians, are also valid for Poisson Hamiltonians using
the probabilistic properties of Poisson point processes to control the randomness of the
configurations as in [GHK2].

It remains a challenge to prove localization for other random Schrddinger operators
with no assumptions on the single site probability distribution except for compact sup-
port (e.g., for a Bernoulli distribution). In particular, there is no proof of localization for
the multidimensional discrete Bernoulli-Anderson model, for which everything in [BoK]
and this paper is valid except for the quantitative unique continuation principle; there is no
unique continuation principle for discrete Schrodinger operators, where non-zero eigen-
functions may vanish on arbitrarily large sets [J, Theorem 2]. The same applies to random
Landau Hamiltonians [CoH2, W1, GKS1, GKS2, GKM], where, although the unique
continuation principle holds, an appropriate quantitative unique continuation principle is
missing. (There is a quantitative unique continuation principle for Landau Hamiltonians,
but it comes with the exponent 2 instead of 4/3 [Da]. The multiscale analysis requires an
exponent < (1 + +/3)/2, as discused in Remark 4.8. Note that 4/3 < (1 4+ +/3)/2 < 2.)
The same is also true for a continuous alloy-type random Schrodinger operators with
single site potentials of indefinite sign [Klo2, KloN, HK], where, although we have the
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quantitative unique continuation principle, it cannot be used to control the finite volume
resonances.
This article is organized as follows:

1. Main results: In Section |1 we define Anderson Hamiltonians and state our main re-
sults, Theorem 1.2 and Corollary 1.4.

2. Anderson Hamiltonians: In Section 2 we introduce (normalized) generalized Ander-
son Hamiltonians, finite volume operators, and prove some basic deterministic prop-
erties. We always work with generalized Anderson Hamiltonians in the following sec-
tions.

3. Preamble to the multiscale analysis: In Section 3 we introduce the machinery for
the multiscale analysis. We define ‘good boxes’, ‘free sites’, ‘suitable coverings’ of
boxes and annuli, and prove some basic lemmas.

4. The multiscale analysis with a Wegner estimate: Section 4 is devoted to the multi-
scale analysis; Theorem 4.1 states the full result at the bottom of the spectrum. Propo-
sition 4.3 gives a priori finite volume estimates at the bottom of the spectrum that yield
the starting condition for the multiscale analysis. The single energy multiscale analysis
with a Wegner estimate is performed in Proposition 4.6 on any energy interval where
we have a priori finite volume estimates.

5. Preamble to localization: In Section 5 we introduce tools for extracting localization
from the multiscale analysis. We discuss generalized eigenfunctions and the general-
ized eigenfunction expansion, and show that generalized eigenfunctions are small in
good boxes (e.g., Lemma 5.3).

6. From the multiscale analysis to localization: In Section 6 we extract localization
from the multiscale analysis. We assume that the conclusions of the multiscale anal-
ysis (i.e., of Proposition 4.6) hold for all energies in a bounded open interval (not
necessarily at the bottom of the spectrum), and derive localization in that interval.
Theorem 6.1 encapsulates all forms of localization.

7. Localization: In Section 7 we extract the usual forms of localization from Theo-
rem 6.1. Anderson localization and finite multiplicity of eigenvalues are proven in
Theorem 7.1. Eigenfunctions correlations (e.g., SUDEC, SULE) are obtained with
probability one in Theorem 7.2 and in expectation in Theorem 7.4. Dynamical local-
ization and decay of Fermi projections are proved with probability one in Corollary 7.3
and in expectation in Corollary 7.7.

8. Log-Holder continuity of the integrated density of states: In Section 8 we derive
log-Holder continuity of the integrated density of states from the multiscale analysis
with a Wegner estimate; see Theorem 8.1.

A. A quantitative unique continuation principle for Schrodinger operators: In Ap-
pendix A we rewrite Bourgain and Kenig’s quantitative unique continuation principle
for Schrodinger operators, i.e., [BoK, Lemma 3.10], in a form convenient for our pur-
poses; see Theorem A.1 and Corollary A.2. We also give an application of this quan-
titative unique continuation principle to periodic Schrodinger operators, providing an
alternative proof to Combes, Hislop and Klopp’s lower bound estimate concerning
periodic potentials and spectral projections [CoHK1, Theorem 4.1].
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1. Main results

We start by defining Anderson Hamiltonians.

Definition 1.1. An Anderson Hamiltonian is a random Schrodinger operator on L2(RY)
of the form
Hy = —A + Vper + Vo, (1.1)

where

(i) A is the d-dimensional Laplacian operator,
(ii) Vper is a bounded periodic potential with period ¢ € N,
(iii) V,, is an alloy-type random potential,

Ve (x) 1= Z wp u(x — ), (1.2)

cezd
where

(a) the single site potential u is a non-negative bounded measurable function on R¢
with compact support, uniformly bounded away from zero in a neighborhood of
the origin,

() @ = {w¢};eze is a family of independent identically distributed random vari-
ables whose common probability distribution u is non-degenerate with bounded
support.

Given an Anderson Hamiltonian H,, we set P,(B) := xpg(H,) for a Borel set
B C RY, Py(E) := Poy({E}) and PSE) := P, (]—00, E]) for E € R.

An Anderson Hamiltonian H,, is a ¢Z¢-ergodic family of random self-adjoint opera-
tors (g = 1 if Vper = 0). It follows (see [KiM1, CL, PF]) that there exist fixed subsets %,
pp» Xac and Xgc of R such that the spectrum o (Hy) of H,,, as well as its pure point, abso-
lutely continuous, and singular continuous components, are equal to these fixed sets with
probability one. We let Ejyy = inf ¥ > —o0, the bottom of the non-random spectrum;
note that there exists £1 > Ejf such that [Ej,f, E1] C X [KiM2].

We will use the following notation:

e Given x = (x1,...,Xxq) € R4, we set
x|l == max{|xi],..., lxgl} and (x):= 1+ [x]|H"2 (1.3)

e Givenv > 0andy € RY, welet T,, y be the operator on L?(R%) given by multiplication
by the function 7}, ,(x) := (x — y)". Weset (X —y) :=T|yand T, := T, 0 = (X)".
o We let
Ar(x):={y eR% |y —x| < L/2} = x +1-L/2, L/2[ (1.4)
denote the (open) box of side L centered at x € R, By a box A; we will mean a
box Ay (x) for some x € R?. We write AL = A for the closed box. Given scales
L1 < L;, we consider the (open) annulus

ALyr,(0) == AL, () \ AL, (x) ={y €RY Li/2 < [y — x| < L2/2}, (1.5

and let KLqu (x) :== Ap,,1,(x) be the closed annulus.
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e Given a set B, we write X g for its characteristic function.

e X, will denote the characteristic function of the unit box centered at x € Rd, ie.,
Xx = XAl(x)~

e The cardinality of a set A will be denoted by #A.

e Given a Borel set 2 C R?, we will denote its Lebesgue measure by | E|.

e We will use the notation U for disjoint unions: given sets A and B, writing C = AU B
means that C = AU Band AN B = .

e We let B;, denote the collection of bounded complex-valued Borel functions on R, and
set By1 := {f € Bp: sup;cgr|f ()] < 1}.

e Given an open set & C R? and n € N U {oo}, C*(Z) will denote the collection
of n-times continuously differentiable complex-valued functions on &, with C/!(E)
denoting the subset of functions with compact support.

e By a constant we will always mean a finite constant. We will use C, p,. ., C;’bw,
C(a, b, ...), etc., to denote a constant depending only on the parameters a, b, . . ..

We prove a probabilistic statement about the generalized eigenfunctions of an Ander-
son Hamiltonian, from which we will derive all the usual statements about localization.
Generalized eigenfunctions, originally used by Martinelli and Scoppola [MS1] to extract
absence of absolutely continuous from the multiscale analysis, have been an indispens-
able tool in all proofs of localization that do not use spectral averaging [FrMSS, DrK1,
GK1, KI2, BoK].

Let H, be an Anderson Hamiltonian on L2(R?) and fix v > 0. A generalized eigen-
function for a realization H,, (i.e., we fix the values of the random variables @) with gen-
eralized eigenvalue E € R is a measurable function v on RY, with 0 < || T, 'y/|| < oo,
satisfying the eigenvalue equation for E in the weak sense, i.e.,

(Hpp, ) = E{p, ) forall g € Cfo(Rd). (1.6)

We will denote by G)((: ) (E) the collection of generalized eigenfunctions for H,, with gen-
eralized eigenvalue E.

To detect localization for a realization H,, we introduce quantities that measure the
concentration of the generalized eigenfunctions with generalized eigenvalue E in certain
subsets of RY. Given x € R?, we will measure this concentration at x by

wp AV o0 k) 2,
WLE) == 4 yeo ) 1Tox ¥ (1.7)
0 otherwise,

and at an annulus around x at scale L > 1 by

w p eVl e o) 2,
Wee L (E) = {yeo® &) ITox ¥ (1.8)
0 otherwise,
where Xx L ‘= XAy 41 (x)- (For technical reasons we will need an annulus slightly

bigger than X 4,, ,(x).) We always have 0 < Wa(,‘f,)((E) < (5/4)"? < 2"/2 and 0 <
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W (E) < 2"/2L¥. We will work with a fixed v > d/2, but note that We.:(E) and

Wa()v))c ;. (E) are increasing in v.

We also prove log-Holder continuity of the integrated density of states. The inte-
grated density of states N (E) for an Anderson Hamiltonian H,,, usually defined through
the infinite volume limit of the normalized eigenvalue counting functions of appropriate
restrictions to finite volumes (e.g., [CL, PF]), equals (e.g., [DoIM])

1
N(E) = q—dIE{tr(X AP xa ) for E €R. (1.9)

The following theorem contains our main results; item (B) encapsulates localization
for Anderson Hamiltonians.

Theorem 1.2. Let H, be an Anderson Hamiltonian on Lz(Rd). For each p € 11/3,3/8]
there exists an energy Ey > Ein such that the following holds for all p € 10, p|:

(A) The integrated density of states N (E) is locally log-Hélder continuous of order pd
in the interval [ Eint, Eol, i.e., for all p € 10, p[ and compact intervals I C [Eins, Eo[
with length |I| < 1/2 we have

CN
IN(E2) = N(Ep| < ——21—— forall E,Es € 1. (1.10)
|log|E> — E1f|”

B) Letv = %p"lforsome p €11/ + p),1[ and ny € Nwith (n; + D)p™ < p — p.
There exists a constant M > 0 such that, for every fixed v > d /2, there is a finite
scale Lg such that for all L > L and xo € R there exists an event UL x, with the
following properties:

(i) UL x, depends only on the random variables {w¢}ren 101 1, (xo)» aNd
500

Py o} > 1 — L2 (1.11)

(i) If @ € Uy x,, for all E € [Eing, Eol we have
cither W) (E) < e ML oy Wo L (E) <e Mk, (1.12)

In particular, for all @ € Uy, x, we have

WL EWS [ (E) <e M for E € [Ein ol (L.13)

w,x() S X

Remark 1.3. The conclusions of Theorem 1.2 hold on any bounded open interval Z in
which we verify the starting condition (i.e., hypotheses) for the multiscale analysis of
Proposition 4.6. Theorem 1.2 is stated for an interval at the bottom of the spectrum, where
the starting condition for the multiscale analysis is derived from Lifshitz tail estimates in
Proposition 4.3. This starting condition, and hence the analogue of Theorem 1.2, can also
be proved in intervals at the edge of spectral gaps, similarly to Proposition 4.3, using the
internal Lifshitz tails estimates given in [Klo3]. This starting condition is also derived in
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Proposition 4.5 for a fixed interval at the bottom of the spectrum at high disorder, provided
w({inf supp n}) = 0, and the conclusions of Theorem 1.2 hold in this fixed interval at high
disorder if w([infsupp u, infsupp u + t]) < Ct?, with y > 0 appropriately large. Note
that Theorem 1.2 also holds if the single site potential # in Definition 1.1 is assumed to
be non-positive instead of non-negative, since in this case replacing # by —u and u by
i, where t(B) = u(—B), rewrites the random Schrddinger operator as an Anderson
Hamiltonian as in Definition 1.1.

Theorem 1.2(A) says that in the interval [Ejnf, Eg[ (more generally, in the interval
where we have a multiscale analysis) the integrated density of states N(E) is log-Holder
continuous regardless of the (lack of) regularity of p. If the single site probability distri-
bution u is continuous (i.e., u has no atoms), then it is known that the integrated density
of states has at least as much regularity as the concentration function S, of u [CoHK2]:
for all compact intervals I C R we have

IN(E2) — N(EV)| < CiSu(|[E2 — Er|) forall Ey, E; € 1, (1.14)

where S, (s) := sup,cg n([t, ¢ 4 s]) for s > 0. If  has an atom, (1.14) is still true but
useless, since inf;. S, (s) > 0. For the continuous Anderson Hamiltonian it is not even
known if N (E) is a continuous function on R if  has an atom.

Theorem 1.2(B) is a probabilistic statement about the infinite volume Anderson
Hamiltonian; there is no mention of finite volume operators. It captures all the usual forms
of localization. Anderson localization with finite multiplicity of eigenvalues will follow
from (1.11) and (1.12) by a simple application of the Borel-Cantelli Lemma. Dynamical
localization, decay of eigenfunctions correlations (e.g., SULE, SUDEC), and decay of
the Fermi projections will be consequences of (1.11) and (1.13). These and other famil-
iar localization properties are stated in Corollary 1.4. (Theorem 1.2(A) is not needed for
Corollary 1.4.)

Corollary 1.4. Let H,, be an Anderson Hamiltonian on L>(R?). Fix p € 11/3,3/8[, and
let Eo > Eins, p € 10, p[, ® > 0and M > 0 be as in Theorem 1.2. Then H,, exhibits
strong localization in the energy interval [ Eint, Eol in the following sense:

(1) The following holds with probability one:
(a) Hgy has pure point spectrum in the interval [ Einf, Eo[.
(b) Forall E € [Eif, Eol, ¥ € Ran Py(E), and v > d/2, we have

X2 < Co eI T, eI for all x € R, (1.15)

In particular, each eigenfunction  of H,, with eigenvalue E € [Eiu, Eo[ is
exponentially localized with the non-random rate of decay M > 0.
(c) The eigenvalues of Hy in [ Eins, Eol have finite multiplicity:

tr Po(E) < oo forall E € [Einf, Eol. (1.16)

(i) The following holds with probability one for all ¢ > 0 on all compact intervals
I C [Einf, Eol -
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(a) ForallE €I, x,y € RY and v > d/2, we have

_ _ (I+e)0/p _ 1 T
XXy Wl < Cotvel T, ol T, el e aMl=yIT(1.17)

forall ¢, € Ran P, (E), and

_ A+e9/F _ Lanie—yp?
X+ Po(E)I21 Xy Po(E)ll2 < Co 0,6 I, Po(E) 36l e aMIv=yIT,
(1.18)
(b) Forall E € I, there exists a “center of localization” y, E € R? for all eigen-
functions with eigenvalue E, in the sense that for all x € R? and v > d/2 we
have RPN )
1201l < Cor 10, 1T plleloel T P emaMrmsurl” — (119)

forall ¢ € Ran Py, (E), and
1Xx Po(E)l2 < Cor 1.0, T, Po(E) el 177" emsMlivorl” (1 20)
Moreover,
®,1 = tr Py = Co,lce P orL = 1. .
N (L) Po(E) < Cg.p o LUITO4/P L>1 (1.21)
Eel
Iye.£ll<L
(c) Forallx,y € R? we have

(14+e)9/p _ 1 T
sup Xy f (Ho) Po (D)Xl < Cop g eel I emaMlx—yl”, (1.22)
feBp i

(d) ForallE€landx,y € R4 we have
1y PSP Xt < Cogeel 1T em a1, (1.23)

(iii) Given b > 0, for all s €10, p/(b+1/2)[, xo € R?, and compact intervals I C
[Einf, Eol, we have

E{ sup 100" f (Ho) Po(1) X, 11} < o, (1.24)
feBy,

E{supll<X)”"e‘”H“Pw(I)xxo||i] < 00, (1.25)
teR

Esupll(X)" PSE 1] < oo (1.26)
Eel

Remark 1.5. If Theorem 1.2(B) holds on a given bounded open interval Z (instead of
the interval [Ejqf, Eo[ at the bottom of the spectrum, as discussed in Remark 1.3), then
Corollary 1.4 also holds as stated in the interval Z.

Remark 1.6. Theorem 1.2 and Corollary 1.4 also hold for Poisson Hamiltonians, with
minor modifications. Their proofs can be modified for Poisson Hamiltonians using the
methods of [GHK2, GHK3], both for positive and attractive Poisson potentials.
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Remark 1.7. It is instructive to compare Theorem 1.2 and Corollary 1.4 to the known
results for the case when the single site probability distribution p is absolutely continuous
with a bounded density (or Holder continuous), for which slightly stronger versions of
these results have been derived from an energy-interval multiscale analysis as in [FTMSS,
DrK1, FK2, GK1, GK6, KI2]. In this case the probability estimate (1.11) is much stronger,
one gets subexponential decay e L for any & € ]0, 1 for the bad probabilities [GK1], and
even exponential decay when the fractional moment method applies [AENSS]. The ‘either
or’ statement in (1.12) is stronger: either W(f,‘f;O(E) <e MLy W(E)U))CO L (E) < e ML We
also have exponential decay in (1.13) and in Corollary 1.4(ii), that is, they hold with
¥ = 1. Corollary 1.4(iii) holds for all » > 0 with s = 1. The SUDEC estimate (1.17)
and the SULE estimate (1.19) hold with exponential decay and milder than exponential
growth in x or y; moreover they are equivalent, one can be derived from the other (see
[GK1, GK6]). But in the general case (1.17) and (1.19) are not equivalent; (1.17) implies
(1.19) but the converse is not true.

Theorem 1.2 and Corollary 1.4 will be proved in the context of generalized Anderson
Hamiltonians. Theorem 1.2(A) is proven in Theorem 8.1, and Theorem 1.2(B) is con-
tained in Theorem 6.1. Corollary 1.4(i) is proven in Theorem 7.1, Corollary 1.4(ii) in
Theorem 7.2 and Corollary 7.3, and Corollary 1.4(iii) follows from Corollary 7.7.

2. Anderson Hamiltonians

2.1. Normalized Anderson Hamiltonians

Given an Anderson Hamiltonian H,, it follows from Definition 1.1 that the common
probability distribution x4 of the random variables @ = {w;}, c7a satisfies

{M_,M;} Csuppu C[M_, M;] forsome —oco < M_ < M4 < o0. 2.1
Letting

{/\per = Vper —info(—A + Vper) with Vper(x) = Vper(x) + M_ Z u(x —¢),

cezd

o~ PN . —~ —~ a)C — M_
Volx) = Z wru(x —¢) with =My —M )u and wy = ——+—, (2.2)

My —M_

cezd
ﬁa =—-A+ {/\per + V'&,
we have

Hy = Hg +info (A + Vper). 2.3)

Since ﬁa is a normalized Anderson Hamiltonian as in Definition 2.1 below, we con-
clude that every Anderson Hamiltonian equals a normalized Anderson Hamiltonian plus
a constant. Thus, without loss of generality, it suffices to study normalized Anderson
Hamiltonians as in Definition 2.1, which makes the relevant parameters explicit.
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Definition 2.1. A normalized Anderson Hamiltonian is an Anderson Hamiltonian H,,
such that:

(i) the periodic potential Vp., satisfies
info (—A + Vper) =0, 24
(ii) the single site potential u is a measurable function on R? with
U—XNs_(0) S U = U4 XAy, (0) for some constants u, §+ € ]0, ool 2.5)

(iii) w = {o} rezd is a family of independent, identically distributed random variables
with a common probability distribution u satisfying

{0, 1} C suppp C [0, 1]. (2.6)

The condition (2.4) implies that [0, E1] C o (Hp) for some E; > 0. It follows that the
non-random spectrum X of a normalized Anderson Hamitonian H,, satisfies (see [KiM2])

o(Hy) C £ C [0, oo, 2.7
o}
inf¥ =0 and [0, E;]C X forsome Eq = E1(Vpe) > 0. 2.8)
In particular, we have
X =0(=A)=1[0,00[ if Vper =0. 2.9

2.2. Generalized Anderson Hamiltonians

We will conduct our analysis of normalized Anderson Hamiltonians in a more gen-
eral context which incorporates an additional background potential, bounded and non-
negative, but otherwise arbitrary, and allows variability in the single site potentials as
long as they satisfy uniform bounds.

Definition 2.2. A generalized (normalized) Anderson Hamiltonian is a random Schro-
dinger operator on L%(R?) of the form

Hy,=Hy+V, with Hy=—A+ Vpe + U, (2.10)
where Ve, is a bounded periodic potential with period ¢ € N such that
info (—A + Vper) =0, (2.11)
U is a measurable function on RY satisfying
0<Ux)<U;s forallx e R?  for some constant Uy € [0, oof, (2.12)
and V,, is the random potential

Vo () = > g (x), (2.13)

cezd
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where the family @ = {w¢},cz¢ of random variables is as in Definition 2.1, and u =

{u;} cezd is a family of measurable functions on R such that there are constants Uy, 84 €
10, oo[ for which

U_Xns (0) Stg SUyXay, ) forall g e Z4. (2.14)

Without loss of generality, we realize the random variables {w¢ }, ¢z« as the coordinate

functions on the probability space (2, F, P), where Q = [0, I]Zd, JF denotes the o-

algebra generated by the coordinate functions, and P = uZd, the product measure of Z¢
copies of the common probability distribution u of the random variables {w¢},cz4. In

other words, (2, F,P) = ([0, 11, Bo.17, ,U,)Zd, the product measure space of 74 copies
of the measure space ([0, 1], Bjo,1], i), where Bjo,1 is the Borel o-algebra on [0, 1]. The
expectation with respect to P will be denoted by E. Note that 2 is a compact Hausdorff
space with the product topology and F is the corresponding Borel o -algebra. A setif € F
will be called an event.

A generalized Anderson Hamiltonian H,, is a measurable map from the probabil-
ity space (€2, F, P) to self-adjoint operators on the Hilbert space L2(R%). Measurability
of H, means that the maps w — f(H,,) are weakly (and hence strongly) measurable for
all bounded Borel measurable functions f on R.

A generalized Anderson Hamiltonian H,, is not, in general, a ¢Z%-ergodic family
of random self-adjoint operators for any ¢ € N, so the spectrum of H,, as well as its
pure point, absolutely continuous, and singular continuous components, need not be non-
random (i.e., equal to some fixed set with probability one). But we always have o (Hy,) C
[0, o0) for all w € L.

2.3. Finite volume Anderson Hamiltonians

Given a set & C RY, we set & = &N Z% and consider the _product measure space
(Qz, Fz,Pg) = ([0, 11, Bjo.1}, #)%; in particular, Qg = [0, 1]%. We identify Fg with
the sub-o -algebra of subsets of §2 generated by the coordinate functions wg = {w;}, 3.
in which case Pz is the restriction of P to Fg.

Given a generalized Anderson Hamiltonian H,,, we set

Ve (¥) == Y wcug(x) fore e Qand € C RY, (2.15)

ce8

and define the corresponding finite volume (generalized) Anderson Hamiltonian on a box
A = Ar(x) in R? as follows:

Hyp = Hon+ Voa onL?(A), (2.16)

with
Hop := —AA + Vper,a + Ua, (2.17)

where A, is the Laplacian on A with a Dirichlet boundary condition, and Vper, 4, Ua and
Vi, A are the restrictions of Vper, U and V,,, to A. Since we are using a Dirichlet boundary
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condition, we always have inf o (Hp o) > 0 (easy to see using quadratic forms), and hence
info (Hg,,A) = 0. The finite volume resolvent, defined for z ¢ o (Hy, o) by

Roa(2) i= (Hoa —2)7'  onL%(A), (2.18)

is a compact operator. Note that A, = Vj -V, where V is the gradient with a Dirichlet
boundary condition.

We will identify L2 (A) with x A L2 (Rd ) when convenient, and, if necessary, we will
use subscripts A and R¥ to distinguish between the norms and inner products of L2(A)
and L2 (Rd ). In particular, we use the identification Vper,A = X A Vper, Un = Xa U, and
Vo.n = XA Ve, If A C A, we will also extend operators on L2(A), such as Ry A(2), to
operators on LZ(A) by making them the zero operator on L2(A’ \ A). If n € L°(A), we
will also use 7 to denote the operator given by multiplication by 7 on L?(A).

If 2 ¢ RY, E will denote its closure, E? its interior, and 3 := & \ E? its boundary.
If2C & cRYHEE :=9E\ dZ will denote the boundary of E in E’. (3¥ E is the
boundary of E with respect to the relative topology on E’.)

Given abox A C A/, where A’ is either a box or R?, and § > 0, we set (the distance
is given by the norm in (1.3))

AN =[x € Ay Aus(x) N A’ C A} = {x € A; dist(x, 3% A) > 81,

, , (2.19)
NN = A\ AN,
If A’ = R? we generally omit it from the notation.
In general Vi, o # XAV o’ for A C A, but we always have
X AN 5402 Vo.n = X AN 542 Vo, (2.20)

In this paper we will always assume that the finite volumes A = A where we define
Hy A have L > 100(64 + 1).

2.4. Generalized eigenfunctions

Let H, be a generalized Anderson Hamiltonian, fix @ € €2, and let A be either R4 or a
box Ay. Recall that D(Hg, o) = D(Ap).

Definition 2.3. A generalized eigenfunction for H,, p with generalized eigenvalue E € R
is a measurable function ¥ on A with

0< ||Tv_11//||A < oo forsomev > 0, (2.21)

such that
(Hon9, ¥) = E{p, ) forall g € CX°(A). (2.22)



68 Francois Germinet, Abel Klein

It follows (e.g., [KIKS]) that if ¢ is a generalized eigenfunction for H, 5 with gen-
eralized eigenvalue E € R, then for all ¢ € CCZ(A) we have ¢y € D(Ap) C D(Vy)
and

(Ho,n — E)pY = WA(D) Y, (2.23)
where W (¢) is the closed densely defined operator on L?(A) given by

Wa(@) = =2(Vg) - VA — A. (2.24)

(More precisely, Wa (@) := Wy (qﬁ)aw for all 5 € CE(A) such that 5 = 1 on supp ¢.)
Eigenfunctions are always generalized eigenfunctions.

2.5. Properties of finite volume operators

We will now derive some deterministic properties of the finite volume operators corre-
sponding to a generalized Anderson Hamiltonian H,,.

Given A, either a finite box or R?, and x,y € A, 1XyRoa()XxIl € [0,00[ is
well defined for z ¢ o (H,, ). We will abuse the notation and make the extension to
z € 0(Hgy,A) by

1XyRo,a@)Xxll := limsup| Xy Ro.a(z +ie)Xx|l € [0, o0]. (2.25)

e—0

We will consider boxes A C A’ without requiring the interior box A to be at a certain
distance from the boundary of A’. For this reason we work with " A (the boundary of A
in A’) instead of 9 A.

Lemma 2.4. Consider a box A = Ay C A, where A’ is either a finite box or R%, and
let z ¢ 0 (Hy A). Then, given x € A with As,3(x) N A" C Aandy € A, we can find
x' e Tf\\/, where

TA = {x € A dist(x, 0N A) = (84 + 1)/2), (2.26)
such that
1%y R, ar(2) X x|l
S IXyX paw 1 Roa (@D Xl + Vzﬁd_IIIXwa,A/(Z)Xx/II IXx Roa @D Xxll,  (2.27)

with
Ve = Veud Vo = Ca(l + max{0, Rz — essinf Viper}) /2. (2.28)

In particular,

(1) if y € A\ A, we have

Xy R @ Xl < ¥4 Xy Ro A () X I 1 X a7 Reo, 2 (2) X (2.29)
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(i) ify € A, we have

”Xwa,A’(Z)Xx”
< Xy Ro A @Xall 4+ 72097 Xy Ro A @) X | 1X 0 Reo,a (2 X1l (2.30)
Proof. Given boxes A C A', we let T/‘\\/ be as in (2.26) and set
T =T = (x € A distr, TA) < 1/4) = { U Al/z(y’)} NA. (231

N A
Yery

There exists a constant Cy, independent of A and A’, for which we can find a function
¢ = ¢y € C*(A'), with0 < ¢ < 1, such that

p=1 on AN CrtD/2+1/4 (2.32)
d=0 onA \AN-GrtD/2-1/4 (2.33)
VoL, |[A¢] < Cq. (2.34)
Note that
supp ¢ C AW = AN CrAD/2=0/D ypg supp V¢ C T = ?j\\/ (2.35)

In particular, we have ¢ D(Ap) C D(Ap) and ¢D(Ap/) CT D(Ap/).
Suppose first that z ¢ o (Hy, A)Uo (H,, Ar). In this case we use the geometric resolvent
identity (cf. [CoH1, FK2, BoK]). In view of (2.20), if z ¢ o (Hy, o) U 0 (H,, A1) We get

Ro, A (2)9 = ¢Rw A (2) + Ro n' () WA (D) Ro A (2), (2.36)

as operators from L%(A) to L2(A’), where W (¢) is as in (2.24). Given x € A with
As,+3(x) N A C A, ie,x € AN C+FD/2+] "ywe have

Xx=¢Xx, XyX:=0 fory e YA (2.37)
It follows that for y € A’ we have

Xwa,A’(Z)Xx = Xwa,A’(Z)¢Xx
= Xy¢R(u,A(Z)Xx + Xwa,A/(Z)WA((b)Rw‘A(Z)Xx

= XyPRo A(@DXx + XyRo, A (@) X5 WA (D) R A(2) X x- (2.38)
Let ¢ be the length of the side of the box A, i.e., A = Ay. Then we can pick
Yiveeo vy € T where C404™1 < J < Cjed=" and yj, ...,y € YA\ TL', with

0<J < Cg’Zd_z (note J = 0 if 32" A = 3 A, in which case Tf\\/ = Tf\\/), such that
A(yj)) CAforj=1,...,J,
= .7 J — J, — —
Y& = {U A1/2(yj)} U {U A1/2(y]/-/) N A}, (2.39)
=1 =
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and yi, ..., Y7, ¥, --» y’J, form a minimal set with respect to these properties. It follows
that we can select disjoint open sets O; C Aj,2(y;) and (9}, C Al/z(yj/.,) N A, where
j=1,...,Jand j'=1,...,J/, such that

- 7o J
7w ={Ualv{Uol} (240)
j=1 j'=1
It follows that
Xy Ro, A" (2) X5 WA (D) Ry, A (2) X x|l
J J!
< Z”X)'Rw,A’(Z)XO_/ WA (@) Ro A (@ Xx]l + Z”Xwa,A’(Z)XOJ’_, WA (@) Ro A (@) Xxl
=1 J=1

J
<Y Xy Ro.a @ X Ay s 11X Ay 200 Wa (@) R a () Xx 1}
j=1

J/
+ 2 A R a @Ky 0l 1K a0 Wa (@) Ro A @ X} (2.41)
Jj'=1

Let Ay be either A12(y;) = Aq2(yj) N A or A]/z(yj’.,) N A for some j or j'. We
write AI’j for the corresponding A (y;) N A or Al(y]/./) N A. Using (2.24) and (2.34) we
get

XA, WA(P)Ro, A (DX x|l = 2CalI XA, VARoA@DXx]l + CallX a;Ro,a (D) Xkl (2.42)

We now use the following interior estimate (e.g., [GKS, Lemma A.2]): Let n € ( clo
with [7]lec < 1, where O C R? is an open set. Given a finite box A such that A C O,

we set npo = nX a. Then, for all @ € [0, I]Zd, z € C,and ¥ € D(A,), we have

1nAVAVI® < X suppa (Hooa — DV
+ (1 + max{0, Rz — essinf Vier} + 41 VA IZ) [ Xsuppna W17, (2:43)

(Although [GKS, Lemma A.2] is stated with somewhat different conditions on 7, the
proof applies with 7 as above. The important observation is that with the Dirichlet bound-
ary condition we have nyy = na € D(Ap) forall y € D(AR).)

Given a box A1/2(x), we fix a function 1 € C'(R?) with 0 < 5 < 1 such that p =
on A1y2(x"), suppn C A1(x’), and |Vylleo < CJ'. We have, using (2.43) and nx
(see (2.37)),

1
0

1A VA R A @ Xl < 108 VA Ro A Xl < Wite v 1X 2, Ro A @Xll, (244)

with
Voied, Vo *= €' (1 + max{0, Rz — essinf Voer D2, (2.45)
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If Ay = Aija(y), we have Xa, < Xpp = Xy If Ay = Al/z(yj’-,) N A, we have
Xy S Xap = Xy, for some y]’f, € Tf\\,. Thus, it follows from (2.41) and (2.44) that
J

Xy Ro, A" (2) X3 WA (D) R, A () X x|l
< ca(l+ Ve v 7 1 Ro 4 @ X D Ro A @ XL (246)
for some x’ € Tj\\/.
Combining (2.38) and (2.46) we conclude that
”Xwa,A’(Z)Xx I < ||Xy¢Rw,A @x«ll
+ 7l Xy Ro A @D Xl X x Roo,a (2) X (2.47)
for some x’ € T/‘Q,, where y, is as in (2.28), which yields (2.27). If y € A’ \ A, then
Xy¢ =0, and we get (2.29). If y € A, using 0 < ¢ < 1 we get (2.30).

Ifz € 0(Hy a)\0(Hgy, a), for all have € = O we have z+ie ¢ o (Hy A) U (Hy A1),
and the lemma holds for z + ie. The lemma then follows for z in view of (2.25). ]

Lemma 2.5. Consider a box A = Ay C A, where A’ is either a finite box or R%. Let
be a generalized eigenfunction of H, p with generalized eigenvalue E € R\ o (Hy, A).
Then for every x € A with As, 13(x) N A" C A, we can find x' € TI[\V such that

1 Wl < e 1 X2 Roa (E) X NI Xl (2.48)

Proof. Let¢ = ¢1‘\\/ be the function in the proof of the previous lemma (cf. (2.32)—(2.34)).
It follows from (2.23) that

®Y = Ro A(E)WA(®)Y. (2.49)

Thus, given x € A with As, 13(x) N A" C A, we have
XVl = IXxdY Il = | XxRo, aA(EYWA @)V (2.50)
Proceeding as in (2.41)—(2.46) we get (2.48). ]

3. Preamble to the multiscale analysis

We fix a generalized Anderson Hamiltonian H,,.

3.1. Good boxes and free sites

A finite box will be called ‘good’ at an energy E when the finite volume resolvent is not
too big and exhibits exponential decay. As in [Bo, BoK, GHK2], we will also require
‘free sites’. ~

Given abox A, asubset S C A, and ts = {t;};es € [0, 115, we set

Hotsn i= Hon + Vorsn onLi(A), 3.1
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where Vi, to. A = XA Viou,tg With

Vior s () 1= Vior s () + Vig () = Y o ue(x) + Y tr ug (x). (3.2)
ceA\S ces

Ry 5, (z) will denote the corresponding finite volume resolvent.

Definition 3.1. Consider a configuration w € €2, anenergy E € C, arate of decay m > 0,
0<g¢g<l1,and S C Ar. Abox Ay is said to be (w, E, m, g, S)-good if the following
holds for all £ € [0, 1]5:

1—
IRots.0, (E)| <eb* (3.3)
and

X2 Rot5.0, (E)Xyll < e forall x, y € Ay with x — y|| > L/100. (3.4)

In this case S consists of (w, E, m, ¢)-free sites for the box A . If no free sites are spec-
ified, i.e., S = @, then Ay is said to be (w, E, m, ¢)-good.

Remark 3.2. Condition (3.4) is stronger than the usual condition in the definition of a
good box (cf. [DrK1, CoH1, GK1, KI2]), where decay is postulated only from the center
of the box to its boundary. We introduce the exponential decay in ||x — y|| for arbitrary
x, y in the box, not too close to each other, in order to prove Lemma 3.10, where we will
need to consider locations x and y that may be anywhere in a box A’. In particular, we
will need to consider the case when both x and y are close to the boundary of A’. Thus,
we will need to apply Lemma 2.4 for boxes A C A’ that touch the boundary of A’ (i.e.,
dANAA’ # (). For this reason we defined Tll\\/ in (2.26) in terms of A A, the boundary
of Ain A’

Remark 3.3. It follows from (2.15) and (2.16) that for all E € C we have
{Apis (E,m, ¢, S)-good} :={w € Q; Apis(w, E,m, ¢, S)-good} € Fp,. (3.5)
Moreover, the set
{(E,op,) e Rx Q4,5 Apis(w, E, m, ¢, §)-good} 3.6)
is closed in R x €4, , and hence jointly measurable in (E, @4, ).

Definition 3.4. Consider an energy E € R, a rate of decay m > 0, and numbers 0 < ¢ <1
and p > 0. A scale L > 0is called (E, m, ¢, p)-good if for every x € RY we have

P{A(x)is (E, m, ¢)-good} > 1 — L™P4 3.7)

If a box Ay is (w, E, m, ¢)-good, then it is just as good for energies E’ such that
|E'—E| < e L, the precise statement being given in the following definition and lemma.
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Definition 3.5. Consider a configuration w € €2, an energy E € C, arate of decay m > 0,
and 0 < ¢ < 1. Abox Ay is said to be (w, E, m, ¢)-jgood (just as good) if

1—
1R A, (B < 2e-° (3.8)

and
X2 Ro.n, (E)Xyll < 2e™™ 1 forall x, y € A with |lx — y|| > L/100.  (3.9)
Lemma 3.6. Letw € @, E € C, 0 <1 < ¢ < 1. Suppose the box Ay is (@, E, m, ¢)-

good with a rate of decaym > L™". Then, if L > L -, the box Ay is (@, E',m, ¢)-jgood
for all energies E' € C such that |E' — E| < e~ "L,

Proof. By the resolvent identity,
Ro.n,(E") = Roa,(E) — (E' — E)Ro.p, (E)Ro.a, (E'). (3.10)
Thus, for |E' — E| < e 2L we get
1RwaL (BN < X' 42 el ™ | Ry o, (E))] (3.11)

Since 0 < 7 < ¢ < 1, (3.8) follows.
Similarly, using also (3.8), given x, y € A with ||x — y|| > L/100, we have

1XxRon, (ENXy |l < e m=dll 4 pe=2mLe2Li™s (3.12)

and (3.9) follows. ]

We also need the following variant of Lemma 3.6; the proof is almost identical.

Lemma3.7. Letw € Q Ec€C 0 <g¢ <1, and0 < m < m. Suppose the box Ay,
is (w, E, m, ¢)-good. Then, if L > L, given E' € C with |[E' — E| < e ™ML ywhere
my € [m, m], the box A is (w, E', my, ¢)-jgood with

my=mi(1l — Cm~'L™%). (3.13)
The following definition will be needed only for real energies.

Definition 3.8. Consider an energy E € R, a rate of decay m > 0, and numbers 0 <
¢, ¢’ <land p > 0.

(i) Given abox Ay, asubset S C A 1 is called ¢’-abundant if
#(SNAzss) = LU forall boxes Arss C Ap. (3.14)

(ii) Given a box Ar, an event C is said to be (A, E,m, g, ¢")-adapted if there exists
a ¢’-abundant subset S¢ C Ay such that C € Fanse and Ap is (w, E,m, ¢, S¢)-
good for all @ € C. In this case C will also be called (A, E, m, ¢, ¢’, S¢)-adapted.
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(iii) Givenabox Ay, anevent & iscalled (AL, E, m, ¢, ¢’)-extra good if it is the disjoint
union of a finite number of (A, E, m, g, ¢')-adapted events, i.e., there exist disjoint
(AL, E,m, ¢, ¢')-adapted events {C;};=1.....; such that

,,,,,

1
e=||a. (3.15)

(iv) A scale L > 0is called (E, m, ¢, ¢’, p)-extra good if for every x € R4 there exists
a(Ap(x), E,m, g, ¢')-extra good event £y, such that

P{Ep ) > 1— L7749, (3.16)

If ascale Lis (E, m, ¢, ¢/, p)-extra good, it is clearly also (E, m, ¢, p)-good.

3.2. Tools for the multiscale analysis

We now combine Lemmas 2.4 and 2.5 with good boxes to obtain crucial tools for the
multiscale analysis. In Lemmas 3.9 and 3.10 we will not know a priori that E ¢ o (H,, A),
and we will apply Lemma 2.4 with the notation given in (2.25).

Lemma 3.9. Fix a configuration @ € Q and an energy E € C. Let A be either RY or a
box Ap. Consider a scale £, with £ < L/6if A = A, numbers 0 <t < ¢ < 1, and
m > €77 Let ® C A be such that for all x € A\ O there exists an (w, E, m, ¢)-good
box, denoted by A(x), such that Aéx) C Awith Ag;s(x) N A C AEX). Then there exists a
constant C = Cd,Vper, E, locally bounded in E, such that setting

m' =m(l — C(log£)£*~ 1), 3.17)

the following holds:
(1) Forallx,y € A withx ¢ © we have

1%y Ro ACEY Xl < 12X s Ry, o (EDXcll 7 7500 Ry a (B) X

(3.18)
for some x1 € Tzl\\é‘”’ so in particular
£/11 < ||lx —x1|| < L. (3.19)
(ii) Letx,y € Awithx ¢ © and ||x — y|| = £. Then
y y
12y Rao. A CEYX eIl < €™ =03 Ry A (E) x| (3.20)

for some x' € A such that either x' € ® or ||x' — y|| < ¢, i.e.,

x' € ®U Axp(y). (3.21)
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(iii) Suppose E € R and v is a generalized eigenfunction of Hy a with generalized
eigenvalue E' € [E — e 2", E + e=2"]. Then for all x € A \ © we have

m

vl < e P Nyl < e X wll forsomex’ € YAy, (322)
t

and also

vl < e ™ =M || < e SO ) || for some x” € ©. (3.23)
If E' = E, then (3.22) and (3.23) hold with m substituted for m'.
Proof. (i) Since x ¢ ©, we use the existence of the good box A§x) and apply (2.27) to get

1Xy Reo, s (E) X |
< X i R, o ()Xl 4yt e =0 Ry A ()t ll (3.24)

for some x; € T;\‘m, s0 /10 — (64 + 1)/2 < |lx —x1|| <€ — (64 + 1)/2, hence (3.19)

holds, and we have (3.18) with (3.17).
(ii) Since x ¢ ® and ||x — y|| > £, we apply (3.18) repeatedly to get

1Xy Ro.a (E)Xx || < e 2= lim1=xil 30 Ry, (E) X, | (3.25)

with xg = x and x; € TA(X, Y i =1,...,n, where n € N is such that x; ¢ ® and
A

lxi —yll > £fori = 0,1,...,n — 1, and either x, € ® or ||x, — y|| < £. Since

0 = xull < 37—y llxi—1 — xill, (3.20) follows.

(iii) It follows from Lemma 3.6 that for all x ¢ ® the box Afzx) is (w, E', m, ¢)-jgood.
Thus, given x ¢ ®, we apply Lemma 2.5 with the box A?) to get (3.22). To prove (3.23),
we proceed similarly to the proof of (3.20), applying Lemma 2.5 repeatedly.

Note that in (iii) the constant C in (3.17) depends on E’. Since |[E’ — E| < 1, we can
fix a constant C = CE 4,V locally bounded in E, that works for all the conclusions of
the lemma. o

The following lemma will play an important role in the multiscale analysis. We use the
notation given in (2.19).

Lemma 3.10. Fix a configuration w € Q2 and an energy E € C. Consider abox A = A,
andletc,p,k, 71 €10,1[, £ = LP, m > £~ %, and K, K' € N, where

K¢ > Tp. (3.26)
Suppose there exist ® = Ule ®; C A satisfying the following conditions:
(1) There exist disjoint boxes Aj = ALj(yj) CAwithl¥ <L; < K'L¥,j=1,...,K,
such that

(A,L¥/10)

IR a, (E)| < ™7 (3.28)

(3.27)
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(1) Forallx € A\O there exists an (o, E, m, ¢)-good box Aéx) C A suchthat Agys5(x)N
Ac A,
Then the box A is (w, E, M, ¢)-good for L > Ly E Vy,c,K, 7.k, Where

M>m(l—CL 4 LPT x> 7T (3.29)

and C = Cg g,k k' 18 locally bounded in E.

Proof. We start by proving (3.3) for A. Since H, A has discrete spectrum, there exists

¢ > Osuchthat E' ¢ o (Hy ) if0 < |E'—E| < &. We take & < e, 50 the boxes A"
given in condition (ii) are (w, E’, m, ¢)-jgood by Lemma 3.6, and small enough such that
it follows from (3.28) that

IRo,a, (ENIl <22 forj=1,...,K. (3.30)

We will estimate || Ry A (E)|| for 0 < |E’— E| < €. Suppose either x or y is notin ©,
say x ¢ ©. In this case we apply Lemma 3.9(i). It follows from (3.18), appropriately
modified for jgood boxes, Definition 3.5, and (3.19), that

1 Ro.a (BNl < 2655 4267 /MRy (BN < 268 +2e7 5 Ry a (BN
< 2"+ LM Ry A ()] (3.31)

forlarge L. If x € ® and y ¢ © we use || X yRo A(E)Xxll = | XxRo,a(E) Xyl to get
(3.31). Suppose now x, y € O, say x € ®,. Then we apply (2.27) with the box Ay, and
use (3.30), getting

Lr1=¢)

_ k(1—¢)
1X y R A (ENV X x|l < 2e + 2y (K LY el Xy Ro a (ED Xl (3.32)

where xo € T/[\\; and y = yp41. Note that (3.27) implies dist{xg, ®} > L</11; in
particular, ||xo - vyl > L¥/11 as y € ©. We can now use Lemma 3.9(ii), with m’/2
replacing m’ in (3.20) to compensate for using jgood boxes instead of good ones, to
conclude that

11Xy Ron (BN X x|l < €™ /25055 SRy ACE ) X |
< e ™30 X Ry A (EN Xl (3.33)

where x’ satisfies (3.21), so ||xo — x'|| > L¥/11 — £ > L¥ /15 for large L. From (3.32),
(3.33), and (3.26), we conclude that, for large L, we have

Xy Roa (ENXxll < 267 4 2y (K7 Ly el ™ emant LRy, o (B
<287 L LLM R, A BN (3.34)
Combining (3.31) and (3.34) we get
k(l—=¢) _
IRw A (ENN < L2227 + L1724 Ry A (EN)1}
<202 L LR, A(EN, (3.35)
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and hence, for large L,

| Roa (BN < 202eE 7 < b7 (3.36)
We now conclude that for large L we have
. 1-
|RoA(E)| = lim [|Ro,a(EN] <&t (3.37)

To finish the proof, we need to prove (3.4) for the box A.

Sublemma 3.11. Givens € {1,2,..., K}, letx,y € Awithx € O and ||x — y| > L.
Then there exist x©) e Tl[\\; and x' € A, with x’ satisfying (3.21) and
L < Ix® —xll < Ly — LS and @ -yl = L5, (3.38)

such that O
1XyRo.a (E)X x| < e 050 Xy Ry A (E) X0, (3.39)
where
m" =m'(1 = CLTL™)  with C = Cg g,y k' locally bounded in E. (3.40)
Proof. Letx,y € A withx € Oy and ||x — y|| > L. We proceed as in (3.32) and (3.33)
(note that we are now working at energy E, so we have (3.28) and condition (ii) holds),
getting
_1 k(-9
1Xy R, A (B Xl < yE(K'L)* e Xy Ro A (E) X0 |
< yE(K/Lk)d—leL’(“*ﬁefm’Hx(OLx’H Xy Ron (E) X (3.41)
< efm//ux(O),x/l\ Xy R A CE) X,
where x© ¢ 'Y"[‘\\S, so we have (3.38), and x’ € A satisfies (3.21), so |x©@ — x/|| >
L¥/11 — £ > L*/15, and thus m” is as in (3.40). O

Now let x, y € A with |x — y| > L/100 > K'L¥. If x ¢ ©, we apply Lemma 3.9(ii),
obtaining x’ satisfying (3.21). If ||x’ — y|| < K'L*, we stop. Otherwise we then start
from x’ and apply Sublemma 3.11 repeatedly, until we get

Aw] ) .
11Xy Ro.a (E) Xl < ™ Zimt Wi =il xRy, A (E) X, I, (3.42)
where x = xp = x(()o), x] = x/, xl.(g)l and x; correspond to x® and x’ in Sublemma 3.11
for x;_1,y fori = 2,...,n,and n € N is such that ||x; — y| > K’L* (and hence
xi €©®)fori =1,...,n—1,and ||x, — y|| < K'L*. If x € ©, we start directly with

Sublemma 3.11 obtaining also (3.42) but with x = x¢, and x(()o) and x; corresponding
to x(@ and x’ in Sublemma 3.11 for xq and y.

Now let us choose distinct jo, ji, ..., jr € {0,1,..., K + 1}, where 0 <r < K + 1,
as follows:
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(a) If x ¢ ©, weset jo=0and Ag = Op = {x}. If x € ©, jy is determined by x € ®,.
Setalso Og11 = {x,}.

(b) Pick ji # jo such that for some i; € {1, ..., n} we have xl.(loil € Aj, and x;, € ©j,.

(c) Given jo, j1,..., js,thenifiy = n,r = s, so stop. If not, pick js+1 ¢ {jo, j1,-.., Js}
such that that for some ;41 € {1, ..., n} we have xl.(?jl_l €Ajandx;,, €0;

Js+1°
It then follows from (3.42) that

N .(0) .
1%y Roa (E)X || < e Zemtlimi=sislly gy (Bl (3.43)

By our construction,

ly—

r r
0 .
> iy —xi |l = Y dist{Ay_1, Ag} > [lx —x, | — KK'LS > x—y| - (KK + 1)L,
s=1

s=1

(3.44)
It follows, using also (3.37), that
1y Roa (E) || < @ (R = (KR DID LIS o o= Mllxy, (3.45)
where
M=m"(1—CLL™" +¢°L™%)), (3.46)
with a constant C = CE.d Vyer. K. K' locally bounded in E.
The lemma is proved. O

3.3. Suitable coverings of boxes and annuli
3.3.1. Suitable coverings of boxes

Definition 3.12. Given scales £ < L, a suitable £-covering of abox Ay (x) is a collection
of boxes Ay of the form

gz(\zz(x) ={Ae()}, oo (3.47)
Ap (x)
where
{4 . 3
GY) = +alZYNALK) with eeld.]n{5GtineN]l.  (348)

Lemma 3.13. Ler £ < L/6. Then every box Ay (x) has a suitable {-covering, and for
any suitable £-covering gﬁfz ) of A (x) we have

A= A, (3.49)
reG%;‘((r)

foreachy € Ap(x) thereisr € G%i(x) with Ag/s(y) N AL(x) C Ag(r), (3.50)

Ags(r)NA(r'y =0 forallr,r' € x + alZ%, r £ 71, (3.51)

L\* © L—¢ N\ _ [20\*
(f) <#Gy) ) = (7 + 1) < <7> : (3.52)
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Moreover, given y € x + alZ® and n € N, it follows that

A@natnye(y) = U Ag(r), (3.53)
re{x+alZNA ng+1ye(y)

and {Ag(r)},E{XJFand}ﬁA(ZMHM(y) is a suitable £-covering of the box Aoua+1)¢(y). In
particular,

foreachy € 7% there is r € x + alZ9 with Agys(y) C Ag(r). (3.54)
Proof. 1t suffices to note that £ < L/6 ensures [(3)/5,4/5] N {L — €/2¢n; n € N} # (,
a < 4/5 gives (3.50) and (3.54), and o > 3/5 yields (3.51). ]

To fix ideas we make the following definition.

Definition 3.14. The standard ¢-covering of a box A (x) is the unique suitable £-cover-
ing of Ay (x) with

a=op = max{[3/5, 4/51N {L — E; ne N}}. (3.55)
2¢n

We now consider standard coverings by good boxes.

Definition 3.15. Consider a configuration @ € €2, an energy E € R, a rate of decay
m>0,0 < ¢ < 1l,and n > 0. A box Ay is said to be (w, E, m, ¢, n)-pgood (for
predecessor of good) if, letting £ = L'/(#" every box A, in the standard ¢-covering of
Apis (w, E, m, ¢)-good.

Lemma 3.16. Suppose the box A is (@, E, m, ¢, n)-pgood for some € Q, E € R,
m>00<g¢<l,andn > 0, setf = LY+ andlet 0 < it < m. Then, ifL > Lc g,
given my € [m, m), the box Ay is (w, E', My, ¢)-good for all energies E' € C such that
|E' — E| <e ™% where

My =mi(1 — Cq_p 7 L mints:n/ (0, (3.56)

Proof. Let A¢ be (w, E, m, ¢)-goodand E' € C with |E' — E| < e~™¢% 1t follows from
Lemma 3.7 that Ay is (w, E’, my, ¢)-jgood if £ > Le i, with my =mi(l — Cm—le—9).

Now suppose A = Ay is (w, E,m, ¢, n)-pgood and £ > £. 7 . We proceed as in
Lemma 3.10 (but note that ® = ¢J). Proceeding as in (3.31) and (3.35), using the fact
that every box A, in the standard £-covering of Ay is (w, E’, m2, ¢)-jgood, we get, for L
sufficently large,

1- —
IRwACEN < L2 2" 4 7™ R, A(EN) (3.57)

_ .
<2L%e" + LRo A (B,

where m3 = mz(l - Cd,vper,p,,,qlk)ng), and hence

IRoA(EN| < 4Lt < el (3.58)
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Given x,y € A = A with ||x — y|| = L/100, we proceed as in the derivation of (3.45)
(with ® = ) to obtain, using (3.58),

Xy Re AENXL < e*m3(HX*)’H*@))4L21165'_§ < e~ M foy||7 (3.59)
where M is as in (3.56). ]

Lemma 3.17. Suppose the scale £ is (E,m, ¢, p)-good, where E € R, m > 0,0 <
¢ < 1,and p > 0. Then, if L = £, where 0 < n < p, we have

p=n

P{A; (x) is (@, E, m, ¢, n)-pgood) > 1 — 20 LT forall x e RY. (3.60)
Proof. Tt follows from (3.7) and (3.52) that

n pd p=n
=

P{A is not E-pgood} < {2L T} LT+ =291~ ¢, (3.61)

O

3.3.2. Suitable coverings of annuli. Given scales L| < Lo, we consider the open annulus
Aryr, () == A, () \ AL, (x) = {y e RY L1/2 < |ly — x|l < La/2}. (3.62)

We let ‘/_\LZsLl (x) := Ap,,1,(x) be the closed annulus, and set Ao 1. (x) 1= R4 \KL (x).

Definition 3.18. Given scales ¢, L1, L, with L; < Ly and £ < (L{ — L»)/2, a suitable
£-covering of an annulus Ay, 1, (x) is a collection of boxes A, of the form

€3] _

Ohtpin0 = B g0 (3.63)
where
Gﬁfim(x) ‘= {r ex +Up, ¢ +alZ% Ay(r) C Ap,1,(x)}, with (3.64)
Up,ei=1{0, L1/2, —L1/2, (L1 +€)/2, —(L1 + €)/2} \ {0, L1/2, —L,/2}*,
(3.65)
Lo— Ly —2¢

@ €[3/5.4/51N) = ——ineN. (3.66)

n

Lemma 3.19. Consider scales €, L1, L, with L1 < Ly and £ < (L, — L1)/7. Then
every annulus Ay, 1,(x) has a suitable (-covering, and for any suitable {-covering

¢
gl(\zz,Ll(x) of AL,.L,(x) we have
A=) A, (3.67)

(O]
rEGALz,L| )

giveny € Ap,.1,(x) there isr € G%)Z.le with Ag/s(y) N AL, 1,(x) C Ae(r), (3.68)

L

4G < QL2/O)™UL, ¢ < (10La /)%, (3.69)

Ap,y,Ly ()
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Definition 3.18 is similar to Definition 3.12, and Lemma 3.19 is proven similarly to
Lemma 3.13, but there are some differences. In particular, we do not have the analog
of (3.51).

As in Definition 3.14, the standard £-covering of Ay, 1, (x) corresponds to

Lr,—Li—¢
a =g, 1,,¢:=maxq[3/5,4/5]1N T; neN;t. (3.70)

4. The multiscale analysis with a Wegner estimate

We will prove the following theorem.

Theorem 4.1. Let H,, be a generalized Anderson Hamiltonian on L*(R?). Fix p €
11/3,3/8[ and ¢, ¢’ € 10, 1[. Then there exist an energy Eg > 0, a rate of decay m > 0,
and a scale Ly, all depending only ond, Vper, 8+, u+, Uy, u, p, g, ¢’, such that all scales
L > Ly are (E,m, ¢, ¢, p)-extra good for all energies E € [0, Eol. In particular, all
scales L > Lo are (E, m, ¢, p)-good for all energies E € [0, Eg].

To prove the theorem we first obtain an a priori estimate on the probability that a box A,
is good with an adequate supply of free sites for all energies in an interval at the bottom
of the spectrum (Proposition 4.3). Next, we perform a multiscale analysis to show that
if such a probabilistic estimate holds for a given energy at a sufficiently large scale, then
it holds all large scales (Proposition 4.6). Theorem 4.1 is an immediate consequence of
Propositions 4.3 and 4.6.

Remark 4.2. If 0 is not an atom for the measure w in (2.6), Proposition 4.5 provides an
alternative to Proposition 4.3, giving an a priori estimate in a fixed interval at the bottom
of the spectrum for sufficiently high disorder. If we also have ([0, t]) < Ct¥, withy > 0
appropriately large, Propositions 4.5 and 4.6 (and their proofs) yield an alternative high
disorder version of Theorem 4.1.

4.1. A priori finite volume estimates

We set ¢ = max{q, 2}, where ¢ € N is the period of the background periodic operator
Vper in (2.10).

Proposition 4.3. Let Hy, be a generalized Anderson Hamiltonian on L2(RY), and Sfix
p >0and0 < & < 1. There exists L = L(d, Vper, u—, 6, i, p, &) such that for all
scales L > L and all x € RY we have

P{He,tg.n, () = ((p+ Ddlog(L + 81 + @)~ %4 forall ts € 10,115} > 1 — L7P,
4.1
where S = Sy 1.4 = AL (x) \ G7%. In particular, setting

Ep=3((p+Ddlog(L + 8+ + )~ % and my = LJEL, 42)
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it follows that for all scales L > L, xeRY ts € [0, 115, and energies E € [0, EL], we
have, with probability > 1 — L=Pd,

|Rw,iq, 0, ) (E)Il < 1/EL, 4.3)
and, forall y,y' € Ap with ||y — y'|| > 20+/d,
_2 —v/
1X y Rots,ap o) (E)X Il < (2 E)e” 3VELI =YL (4.4)

In particular, given ¢, ¢’ € 10, 1[, there is L = Z(d, Voer» u—, 8-, i, p, 6, ¢’, &) such
that all scales L > L are (E,myg, ¢, ¢, p)-extra good for all energies E € [0, EL].

Proof. It suffices to prove (4.1), since given Hy ¢ A, (x) = 2E, forall E € [0, EL] we
get immediately (4.3), and (4.4) follows by the Combes—Thomas estimate. (We use the
precise estimate given in [GK2, Eq. (19)], which is also valid for finite volume operators
with Dirichlet boundary condition.) Moreover, in view of (2.12) and (2.14), it suffices to
prove (4.1) for the case when U = 0, and u; = u_xp, () forall ¢ € GZ% us = 0
otherwise.

So let

HY = Ho+ Vs with V&)= Y woux—10), 4.5)
regzd
where u = u_X a; (0). Note that Ha(,q) is an Anderson Hamiltonian as in Definition 2.1,
except that Z¢ was replaced by §Z¢ and the periodic potential has period §, and hence
its integrated density of states N @ (E) is well defined with the usual properties (cf. [CL,
PF]). Given a box A, we define the corresponding finite volume operator Ha(f;\ as in
(2.16). For scales L € gN we set

NI\, (E) = tr X1 o0, 1 (L), (4.6)
where
HY = Hon + VY onL*(n), 4.7)

where Hy  is as in (2.17) and f/;()ql)\ is the restriction of V.’ to A. In general \7“(?1)\ #

V). but we have (2.20).
We recall (e.g., [CL, Eq. (VI.15) on page 311]) that

®,AL

(E)) < N(E)|AL| forall L € §N. 4.8)

We now use the Lifshitz tails estimate as in [Klo3, Remark 7.1] (note that it applies
with u as in (2.6)):
log|log ND(E)| d
m— < —

< —-. (4.9)
E|0 log E 2
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It follows that there is an energy E1 = E1(d, Vper, u—, 6—, i, €) > 0 such that

_Fd/@+e)

NDE) <e for all energies E < E|. (4.10)

Combining (4.6)—(4.10), and using Chebyshev’s inequality, we find that for all scales
LegN,xe R4, and energies E < Ej,

Plo(HY), o) N0 E]1 # 0} <ENY), o (E) <e 277 Ld, @.11)
and hence
P{HY, ) = min{((p + Ddlog L)~/ E}} > 1 777, 4.12)
To get (4.1) from (4.12), given a scale L > 1 we set
Ly :=min{L € gN; L+6; <L'}. (4.13)
It follows from (2.20) that
XAL(x)va(fz)\Lq ) = Va(),qz)\L(x)' (4.14)

Since we are using a Dirichlet boundary condition for the Laplacian, we conclude that
infa(H(f)qj\L(x)) > infa(Ha()q;\L (0))- Since L + 84 < Ly < L + 84 + g, we conclude
’ g
that
P{HY), ) = min{((p+ Ddlog(L + 84 +§)~ T4 B} > 1 - L7 (4.15)
f~0r all L > 1. The desired estimate (4.1) follows for all scales L > Z, where [ =
L(ds Vper7 M—a 8—1 /J/v psg)' D

Remark 4.4. In the absence of a periodic background potential, i.e., Vper = 0, one
can prove a slightly modified form of Proposition 4.3 using ideas from [BoK] instead
of Lifshitz tails. As in the proof of Proposition 4.3, it suffices to consider the operator
H, = —A + V,, where V,, is as in (4.5). Setting K > 106_, A = Ay, It follows from
the lower bound in (2.14) that there exists a constant ¢, _ s 4 > 0 such that

_ 1
Vo, () == — Vo, (x —a)da > cy_s_aYoarXa(x), (4.16)
K< Jak o)
where :
Yon i= ?gﬁ Zv w; . 4.17)
ek /3(8)

It follows from standard estimates (e.g., [Y, Proposition 3.3.1]) that, with & and o the
mean and standard deviation of the probability measure ., we have

1
Pls X o
tehky3(8)

D=

} < e AKY (4.18)
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where

and hence

i

A = A e B S ——
wd = 3d8a2(1+ 1)2)

0, (4.19)

P{Ypa < ji/2} < L9 4K, (4.20)

It follows from (4.16) and (4.20) that with C;,,a,,d = %Cuﬂgﬂd,

P(Vay > ¢, s giixa} = 1 — L% 4K @21

$0,if Vo, > ¢, 5 4 AXA, We have

Hon=—Ar+XaVo, =€) 5 gt onL*(A). (4.22)

Thus, if ¢ € C2°(A) with ||¢|| = 1, we have

<(p7 H(O,Ago)A

where we used

= (@, Ho,a@)A + (@, (VwA - VwA)‘p>A
= C;_,S_‘d ,EL + <(p’ (VwA - VwA)¢>Rd
_ 1
>l s a9 Vo, pd — —d/ (- +a), Vo,o(-+a))da
KS Jag©)

1
K4

>y gt / (0. Vo, @) — (9(- +a), Vo, 0+ + @))]| da
Ak (0)

_ — 1/2
>, s alt =, KIVaglla = ¢, 5 i —c,K(gp, Hon))". (423)

loC+a) = gllpe = 1Y = Dellgas < lal [Velga = lal IVa@lla- (4.24)

It follows that there is K u.d > 0such that for K > K u.d We have

(9, HoA®)A = Cy_5_ 4 I[z—z (4.25)
Since this holds for all ¢ € C°(A) with [l¢|| = 1, we have
Hoa >c) 5 4i*/K* onL*(A). (4.26)
From (4.21) and (4.26) we get
P{Hoa = ¢ s 4i%/K?) > 1 — Lé% 4K, (4.27)
Given p > 0, we take K = ((”AJ%”{ log L)l/d to get
P{Hop.n, >2Cu 5 pd.p(logL)™) > 1 —L7P¢ (4.28)

for L > Z/uﬂgi

w.d,p» where Cy_ s_ ;4. p > 0 1is an appropriate constant.
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We then take n € Nand let § = Sy, = nZ N A.If n < K, we find, as in (4.16), that
for all zs € [0, 1]5 we have

_ 1
Vot (1) = / VorssG —a)da = cu s aVosada().  (429)
K% Jag©)
where |
Yo.5.A i= ?g < ; w . (4.30)
ek 3G\S

Proceeding as above, we conclude that
P{Hyp15.0, = 2Cu 5 pd.pq logL) ™2/ foralltg € [0, 115} > 1 — L7P4  (4.31)
for L > Zu_‘a_,u,d,p,qa where Cy_ 5_ ;1.4,p,q > 0 1is an appropriate constant.

If 0 is not an atom for the measure w in (2.6), i.e., if £ ({0}) = 0, we can also obtain a
high disorder a priori finite volume estimate.

Proposition 4.5. Consider the generalized Anderson Hamiltonian Hy ) = Ho + AV,
on Lz(Rd), where Hy and V,, are as in (2.10) and ). > 0. Suppose 0 is not an atom
for the measure v in (2.6). There exists an energy E = E(d, Vper,u—,8-) > 0, such
that, fixing Eg € 10, E[ and p > 0, given L > 100(64+ + 1) there exists a constant
’)t(L) = X(g Vper, u—, 8, w, p, Eo, L), non-decreasing as a function of Eo, such that
forall . > A(L) we have

P{Hprs5.0,00) = Eoforall ts €[0,115) > 1— L7  forallx e RY,  (4.32)

where S = Sy 1.4 = AL(xX)\ GZ9. Thus, for all E € [0, Eol, x € RY, tg € [0, 115, and
A > A(L), it follows, with probability > 1 — L7 that

IRw.£5.5. A, (E)ll < (Eo — E)7), (4.33)
and, fory,y' € Ar, lly —y'll > 20+/d,
2 /
1y Rort.5. 0, ) (E) Xyl < 2(Eqg — E)~le™3VEo=E =Yl (4.34)

In particular, given ¢, ¢’ €10, 1[ and 0 < E; < Eg < E, there is L=LWd, ¢ ¢ Ey— Ep)
such that for all energies E € [0, E1] a scale L > L is (E, %./Eo —E1, ¢, ¢/, p)extra
good if . > A(L).

Proof. Similarly to the proof of Theorem 4.3, in view of (2.14) it suffices to consider
the case when u; = u_xa, (¢ forall ¢ € Z4. Given t > 0, we set H(t) = Hy +
V(t), where V() = lztezd u; is a periodic potential with period one. Then E(t) =
info (H(t)) is a strictly increasing continuous function of + > 0 with E(0) = 0 (see
[Klo2, Lemma 3.1 and its proof]); we set E(co) = lim;—. E(#) > 0. Given a box
A = Ap(x) welet H, ) o and Hp(t) be the corresponding finite volume operators to
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Hg 5 and H(t). (HA(t) = Hy A with w; = 1 forall j € Z4.) Since we are using a
Dirichlet boundary condition, we have H (t) > E(¢), and hence

Hyin > E(t) if Ao >t forall j € A. (4.35)
Given Eg € 10, E(o0)[, let fp > 0 be defined by Eg = E(#p). We conclude that
P{Hgp.a = Eo} = 1 — LYu([0, t0/AD). (4.36)

Since 1 ({0}) = 0 by hypothesis, we have lim) o ([0, fo/A[)) = O, and hence there
exists A(L) = A(d, Vper, u—, 8, u, p, Eo, L) < oo such that

P{Ho .n > Eo} >1—L7P ford > A(L). (4.37)
To prove a similar estimate with free sites, we set Ha(fi = Hy + XVQ(,")

with Va(,q) as in (4.5). Proceeding as above, let H9 (1) = Hy + V@ (r), where
V@O@) = 1Y, czpaulx = ¢), set EQ@) = info(HD (1)), and let E@(c0) =

lim; 00 E@ (1) > 0. Given Eg € 10, E@ (co)[, let 1 > 0 be defined by Ey =

E(q)(t(gq)). Given abox A = Ap, weset § = KL \ c}Zd. We conclude that there is
MA(L) < oo such that for all A > A(L) we have

P{Ho.15.a > Eoforall s € [0, 115} > 1—(L/q)? u([0, 1" /3)) = 1—L7P4, (4.38)
which is (4.32). As in Proposition 4.3, if A > 'X(L), then for all E € [0, Eg[ and t5 €
[0, 115, it follows, with probability > 1 — L4 that we have (4.33) and (4.34). ]

4.2. The multiscale analysis

We now state our single energy multiscale analysis for generalized Anderson Hamiltoni-
ans.

Proposition 4.6. Let H, be a generalized Anderson Hamiltonian on L2 (Rd). Fix Eg > 0,
p€ll/3,3/8and ¢, ¢, T, p1, 2 €10, 1[witht < ¢ and p; = ,0;”, ny € N, such that

1/ +p)<pr<3d=¢) and p<jzpl—¢")—p. (4.39)

There exists a finite scale Zo = Zo(d, Voers 8+, u+, Uy, u, Eg, p, p1, 02, G, ¢’, 1) with
the following property: given an energy E € [0, E¢), a scale Lo > Lo, and a number

my > Lg°, (4.40)

ifall scales L € [Ly, L(l)/p“oz] are (E, my, ¢, ¢, p)-extra good, it follows that every scale
L>Lyis(E,mg/2, ¢, ¢, p)-extra good.

Remark 4.7. To satisfy (4.39) and (4.40), we may pick p = %—, and appropriate p; =
4_31_’ S = 0+, S‘/ = 0+’ T = O+9 P2 = 0+.
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Remark 4.8. The restriction p € ]1/3,3/8[ comes from the use of the quantitative
unique continuation principle, stated in Theorem A.1 and used in the form given in Corol-
lary A.2(i), which gives a lower bound of the form R—CR"” in (A.6). It is instructive to
see what happens if this lower bound was of the form R~C®” for some y > 0. In the
multiscale analysis, Lemma 4.11 requires 1/(1 4+ p) < p; in (4.46). The lower bound
of (A.6) is used to prove Lemma 4.14; the important estimate (4.59) is useful only if
yp1 < 1. Lemma4.16 uses p < %pl to get the probability estimate (4.113). We conclude
that the multiscale analysis requires

y<%§ and y—l<p<$, (4.41)

mp <p<y(—g and p<ip(l-g)—p. (4.42)

Since the quantitative unique continuation principle gives y = 4/3 < (1 ++/3)/2, we
can perform the multiscale analysis with p € ]1/3, 3/8[ and (4.39).

The proof of Pproposition 4.6 will require several lemmas and definitions. We fix an
energy E € [0, Eol, and let p, ¢, ¢’, p1, 02, 11, T be as in Proposition 4.6, satisfying
(4.39).

Definition 4.9. A collection £ of scales is called (E, ¢, ¢/, p, T)-extra good if for each
£ € L there is a rate of decay my, with

me >0, (4.43)

such that for each box Ay there is a (A¢, E, my, ¢, ¢’)-extra good event €, satistying
(3.16).

In the following definitions annd lemmas, given a scale L, we set £; = L"! and £, =
Zfz = LPP2 Wealsoset L, = Zf‘ forn=0,1,...,n1;note Lo = ¢ and L,,, = {5.

We start by defining an event that incorporates [BoK, property (x)]. Note that by
writing “R = {A¢(r)}rer is the standard £-covering of A;” (cf. Definitions 3.12 and
3.14), we will mean that R = QXZZ as in (3.47) with « as in (3.55); in particular, R = G%Z
as in (3.48).

Definition 4.10. Given a box Ay, let R, = {Ar,(r)},<r, be the standard L, -covering
of Ag,.Fix a number K; € N. Then:

(i) Abox Ag, issaid to be (@, E, K»)-notsobad if there is © = |J, g A3¢,(r), where
ni
R}, C Ry, with#R), < K>, such that forall x € Ay, \ © thereis an (@, E, my,, ¢)-

ni
good box Ap,(r) withr € R, forsomen € {1,...,n1} and Ag,/5(x) N Ay, C
AL,, (l’)
(ii) Anevent N is (Ag,, E, K2)-notsobad if N € Fa,, and the box Ay, is (@, E, K2)-
notsobad for all @ € .
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Lemma 4.11. Suppose {L,; n = 1,...,n1}is (E, ¢, ¢, p, T)-extra good. There exists
a constant I?z = Ez(d, P, P1, p2), and for Ko € N with K, > Il(\z a constant ?1 =
a(d, D, P1, p2, K2), such that for any box Ag, with £ > ?1 there exists a (Mg, E, K>)-
notsobad event N, with

P{Na,,} > 1 — €7 (4.44)

Proof. Given Ay, ,(r) € R,—1, we set

Ra(r) :=A{AL,(s) € Ru; AL, (s) N AL, (r) # 0}, 4.45)

Ry(r) :={s € Ry; AL, (s) € R,(r)}. .
We have Ay, ,(r) C USERn(r) Ay, (s) and, similarly to (3.52), #R,,(r) < (3Ln,1/Ln)d.
Fix a number K’, and define the event N, Ay, @S consisting of @ € €2 such that, for all
n=1,...,nand all r € R,_|, we have w € SAL”(S) for all s € R, (r), with the
possible exception of at most K’ disjoint boxes Ay, (s) with s € R, (r). We clearly have
NAzl € ]:All' Since {L,; n =1,...,n}is (E, ¢, ¢/, p, T)-extra good, the probability
of its complementary event to o ¢, can be estimated from (3.16):

ni 251 d 3L 4 K'd .
P{Q\NAQ}SZ(L 1) (—L” ) L, cr?
n— n

n=1

/ —p" TN K (o1 (pd-d)—d)+d)+d
§2d3Kdn1£101 (K'(p1(pd+d)—d)+d)+

/ —d(" Nk D=1)+1)—1
=2d3kd}’l1£1 (" (K'(p1(p+D—D+1) )§£1_5d’ (4.46)

where the last inequality holds for all large £; after choosing K’ sufficiently large using
(4.39).
Given w € NAzl ,then foreachn =1,...,nyandr € R,_| wecan find s, ..., sg~
€ R, (r) with K” < K’ — 1 such that @ € Ep,, (5) if s € Ry and s ¢ UJKZ//I Asr, (s)).
(Here we need boxes of side 3L, because we only ruled out the existence of K’ disjoint
boxes of side L,.) Since each box A3y, (s;) is contained in the union of at most C i
boxes in R,, we conclude that for each w € N, Ag, there are t1,...,tx» € R, with
K" < K> = (C"(K' — 1))™ such that, setting ® = UIIJ{Z1 Az, (tj), forallx € Ay, \ ©
wehave € €, (5) forsomen =1,...,njands € R, with Ay, ;5(x)NAg; C Ay, (s).
[m}

Definition 4.12. Fix K, K € N. Then:

(1) Anevent P is called (A, E, K1, Kp)-prepared if, with R = {Ag, (r)},<r being the
standard ¢;-covering of A = A, there exists a disjoint decomposition R = R’ LI R”
with #R” < K such that

P={Necro}n N Vool (4.47)

rer’ rer”
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where CAZI(V) isa (A, (r), E,my;, s, ¢, SCAZ ()-adapted event for each r € R/,
1

and NA% ) 18 a (Ag, (r), E, K2)-notsobad event for each r € R”. In this case we set

Sp:={seA;seAy(r) = reR ands ¢ Sa, )}
1

= U(Ser,0 U @at)vse, o))\ U aat). @as)

rer’ r'eR'\{r} rer”

(i) Anevent Qiscalled (A, E, K1, K)-ready if it is the disjoint union of a finite number
of (A, E, K1, K»)-prepared events, i.e., there exist disjoint (A, E, K1, K»)-prepared
events {P;}j=1,..s such that

.....

J
o=| |7 (4.49)
j=1

The set Sp in (4.48) is the maximal set with the required properties. It follows from
(3.51) that
L tscy,, o N Ae s} € Sp. (4.50)

rer’

and nothing would be lost if we had defined Sp by making (4.50) an equality.

Lemma 4.13. Suppose {L,; n = 0,1,...,n1}is (E, ¢, ¢/, p, ©)-extra good. For suffi-
ciently large K1, Ko € N, depending only on d, p, p1, p2, if L is taken large enough,
depending only on d, p, p1, p2, ¢', K1, K2, the following holds:

(1) IfPisa (A, E, K1, Ky)-prepared event, then Sp is a ¢'-abundant subset of A and
PeF A\Sp-
(ii) There exists a (A, E, K1, K3)-ready event Q such that

P{Q} > 1 —2L7%, (4.51)

Proof. LetPbea (A, E, K1, Ky)-prepared event, as in (4.47), and let Sp be as in (4.48).
In particular, P € Fa\s,. Since #R” < K7, it follows from (4.50), using (3.14), that for
all boxes Ay /5 C A we have, with L sufficiently large,

s 5 L d ’
#(Sp N ALs) = 6 7° M((Z s 2) - K1> >0 (452

and hence Sp is a ¢’-abundant subset of A.

We now use the hypothesis that {L,,; n =0, 1,...,n}is (E, ¢, ¢’, p, T)-extra good.
For each r € R we pick a (Ay, (r), E, my,, ¢, ¢')-extra good event 51\[1(7) as in (3.15)
with (3.16). Taking K> and L sufficiently large so we can use Lemma 4.11, foreachr € R
we also pick a (Ay, (r), E, K»)-notsobad event NA@l )y With (4.44), and set Nle(r) =
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NAzl ™\ gAfl(’)’ clearly also a (A, (r), E, Kp)-notsobad event. Given K| € N, define
the event Q by the disjoint union

Q.= |_| Q(R"), where

R'CR

#(R\R)<K, (4.53)
Q(R’)={ﬂ5ml(r)}ﬂ{ N Nfizlm}'
rer’ reR\R’

Using the probability estimates in (3.16) and (4.44), and taking K sufficiently large (in-
dependently of the scale), we get (4.51). This can be seen as follows. First, using (4.44),
we have

P(Ea,, ) YN, () = PINA, 0} > 1= L7719, (4.54)
and hence

2L\
P{m{gf\ﬁ(r) UNK(/,I(Y)}} > 1 - (K_> 1—3md

rerR 1
>1—20p=6m=Dd | _ |~ (4.55)

for large L, where we used (3.52) and (4.39). On the other hand, letting K; = C'(K'— 1),
it follows from (3.16) and (4.39) that
P{there are K’ disjoint boxes A, (r) € R with @ ¢ 51\(1 "}
< (2L/€1)dK,£fde/ < 2dK' [ —dK'(p1(p+1)—1) < L—2d7 (4.56)
if K1 > 2C'/(p1(p + 1) — 1) and L is large enough. We now take C’ = 3¢ — 1, ensuring

that the complementary event has at most Ky (not necessarily disjoint) boxes Ay, (r) € R
with @ ¢ 51\41 (- The estimate (4.51) follows from (4.55) and (4.56).

Moreover, it follows from (3.15) and (4.53) that each Q(R’) is a disjoint union of
(non-empty) events of the form

Pe={ o]0 N VM, 0} 4.57)

rer’ reR\R’

where CAzl(r) isa (Ag,(r), E,me,, 5. ¢/, SCA[ (,)-adapted event for each r € R’. Thus
1
Qisa (A, E, K1, Ky)-ready event. O

Given a box A and a number Y > 0,
Wayy i=1{w € Q; [[Rpa(E)| = Y} (4.58)

is a measurable subset of €2, i.e., an event, and moreover Wy y € Fa.
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Lemma 4.14. Given a box A = Ay, let P be a (A, E, K1, K»)-prepared event, and
consider a box Ay, C A with L1 = (2kia + 1)£1, constructed as in (3.53) from the
standard £1-covering R = {Ag,(r)}rcr of A, where k1 € N, k1 > 100K7. Then tﬁere
exist constants C1 = Cd,Vpenu,&i,ui,UJr,pu,Eo,Kl,Kz’ Cy = Cd,Vper,u,Kl,Kz,Eo’ and L =
/L\d,/w?i.Vper,U+,Eo,p1,pz,g,g/,Kl,Kz (the constants are all independent of ki), such that for
all scales L > L we have the conditional probability estimate

P{|| Rov,a,, (E) = LM 08 L | p) < ¢y 4115120 (4.59)
Proof. Let P be a (A, E, K1, K»)-prepared event as in (4.47), and let {Ap}p=1,...p be
an enumeration of the notsobad boxes {Ag, (r)}reR“ﬂALl ;note B < K. For each b =
1,...,B we let ®, C Ajp be as in Definition 4.10, so |®| < Sngﬁg. We set @ =
U#R_, ©p, and note |©] < 39K K»£5.
It follows from (3.52) and k; > 100K that #(R N Ap,) > (200K1)%, so we can pick
distinct {rp}p=1,..8 C RN A, suchthatforallb =1, ..., B we have

.....

B
46, < dist{ry, Ay} < 12K1¢, and dist[rb, U Ab/} > 40,. (4.60)
b'=1

Thus, the boxes {A¢, /5(rp)}p=1
b we have

p are disjoint, and it follows from (3.14) that for each

#(Sey, o N A/s(B) = Ny 1= [e{!=s, “.61)

We now pick distinct free sites {{;,,j}]/-vzll C S(;A{ ) b=1,...,B,and let § =
1

U (6.}, 50 § C Sp by (4.50) and we have

#S = BN, < K077, (4.62)

Given tg = {tr}res € [0, 115, we consider vatSvALl asin (3.1). Wefix w € P €
Farsp C Fays and set

Hig = Hyts = Hotgn,,  ONL*(AL). (4.63)

Since ﬁt s = 0 has compact resolvent, it has non-negative discrete spectrum. Using
the min-max principle as in [FK3, Theorem A.1], these eigenvalues (repeated according
to the finite multiplicity) are given by

E,(ts) = inf [ sup (v, A, w)] forn € N. (4.64)
" L:CD(AALI ); dim L=n vel: Hgllzl ts
Thus, 0 < E(ts) <--- < E,(ts) < E,41(ts) < ---, and each E, (¢5) is a continuous

function of ¢g, increasing in #, for each ¢ € S. In fact, we have

|En(ts) — En(t)] < Ve — Ve Il < lts — Eshu, (4.65)
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a general bound that does not take advantage of our construction. To do so, we note
that for ¢ € S, each E,(¢s) is piecewise differentiable in #; for fixed £g\(s} (cf. [K,
Section VIIL.3.5]), with

a
EEn (ts) = (Yn(ts), ucyn(ts)), (4.66)

where by ¥, (ts) we denote a corresponding normalized eigenfunction:
Hign(ts) = En(ts)yn(ts),  n(ts) € D(Ap,,) with [y (ts)| =1. (4.67)

Combining with (2.14), we get
2 9 2
U—lIXAas_ ) ¥nEs)I” = gEn(ts) < usllXas, @ ¥ @) (4.68)
¢

We set m1 = my,, and consider the intervals
L =[E—e 2% Eq4e 4] and L =[E—e ¥mU E e ¥mb)  (4.69)

If E,(ts) € I, for some tg € [0, 1], we can use Lemma 3.9(iii), namely (3.23), to
conclude from the upper bound in (4.68), using (4.62), that for all t’S € [0, 11° we have

|E(fs) — E| < e ¥ 4y, 50Kk {17l < gm2mby (4.70)
and hence E, (t’S) € 1. In particular, if 5 = Og means f; = 0 for all ¢ € §, we have
#{n € N; E,(ts) € I, for some tg € [0, 115}
< Ny :=#n € N; E,(0s) € I} = tr{xy, (Hop)}.  (471)
General estimates yield (cf. [GKS, Eq. (A.7)])
Ny < Ca vy (E + e 221 < Cyy gy LY, 4.72)

which is not good enough for our purposes. To improve the estimate, we apply Lemma
3.9¢ii). If E, (ts) € I, it follows from (3.22) and our construction that

XEO S ainlts)l e T <ol (4.73)
and hence, for large L,
d. —Lgl-t _ 1l
XA, \o¥n(ts)]l < Lie e < e tel ", (4.74)

It follows that
~ 1ypl—1
tw{Xa, \oX1 (Hog)} <€ 7% Na. (4.75)
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Recalling that ® is a union of at most K1 K boxes of side 3¢;, and using the trace estimate
given in [GKS, Lemma A.4], we obtain

1yl-1 ~
Ny < (1—e 7% ) ufxex (Hoy))
<2 3" (XXXt (Hop)} < Ca vier, £y (K1 K2) 44, (4.76)

xezZd

a huge improvement over (4.72).
In addition, if E,,(ts) € I} we conclude from (4.74) that there exists ¥’ € {1, ..., B}

such that
lgl—r

IXo, ¥n(ts)l = B~2(1 —e" 7% )2 > 2k~ (4.77)

In view of (4.60), it now follows from the quantitative unique continuation principle
([BoK, Lemma 3.10], see Theorem A.l), which we use in the form given in Corol-
lary A.2(i), that

4/3
1X s (e pYn(Es)] = e SO0 forall j=1,..., Ny, (4.78)

with a constant
C3 = Ca ko (1 + | Voerll +8%uy + Uy + Ep)*?,  where Cak, . >0. (4.79)

To exploit (4.78), we set &; = {{p,j}b=1,...,
B . B
Dbt Uy s X A5y () = Dp=1 X A5y (¢ - 1t fOllows from (4.78) that

g for j = 1,..., Ni, and let ug, =

4/3
1X a5 @) ¥n ()]l = e G708 forall j =1,..., Ny. (4.80)

Given J C{l,...,Ni}welet S; = ;e ;-

We now set t; = {t;b’j}bzl ,,,,, pfor j = 1,..., N1, and write tg = {tj}]l.vzll. Given
j'=1,..., N1, we also define e;j) = {eg.]),}bzlwg by eg.; =3y jforb=1,...,B,
j=1...N.andletef = (e} )}J’.Vzll. It follows, as in (4.66) and (4.68), that for
E,(ts) € I we have

w_llXay @p¥n@IP < 0 En(ts) < uillXay, @)¥ns)I’, (4.81)
where
1 .
0iEn(ts) = linz) ;(En(tS +s eé’)) — Ey(ts)), (4.82)
§—
s0 (4.80) yields
4/3
3 Ep(ts) > u_e 23t (ogty), (4.83)

We pick 0 < 6_ < 64 < 1 such that, letting

p-=nllw<6-) and pi=pu(o > 0.}, (4.84)
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we have p1 € ]0, 1[. (i is the probability distribution in (2.6).) Such 61 always exist
since u is non-degenerate, and we have p_ + p; < 1. Wesetf, =60, —0_ €10, 1].
We now define random variables

w; :=br111i1.>'<’ wg, ; and w; :=br{1‘1ﬂ wg, ;s j=1,..., Ny, (4.85)

and consider the events
VWW=lof <0}, VW=l 20}, Y7 =y uyl. (4.86)
It follows from (4.84) that

1 2 0
PV =Py =pt. p?=P@?)=pf PO =PO")=p® +p@
(4.87)
We now introduce Bernoulli random variables n(a) = X yf“)’ a = 0,1,2. Then

"(a) {77( )}N11 are independent, identically distributed Bernoulli random variables with
P(n\” = 1} = p©. Note that 5" = 5"’ + 5*, and

n” =0 +0? and P =119" =1}=p@/p® a=12 (@488

We consider the random index set given by J,00 = {j € {1,..., Ni}; r]](.o) = 1}. Then
#Jﬂ(O) = Z]N | 77](0) and standard large deviation estimates [Ho, Theorem 1] give
P(#J,0 < 1N p©) < e tN(P O _ =3 (E+pH N (4.89)
Suppose E,(ws), E, (@) € I are such that for some j we have w; = w’g for ¢ €
S\ ¢ and n{" (@s) = n{” (@) = 1. It then follows from (4.83) that
4/3
En (@) — Eq(ws) > u_6,e 2636 doety), (4.90)

We set i i3
I=[E—u_g,e2G0 ety gy by g e 2Gt (ogtn] (4.91)

and we will estimate (we write § = @)
Ps{En(ws) € I | n} =By, {P),{(En(ws) € I}, (4.92)
where, given J C {1, ..., N1}, we write

@J{'}3=PS1{'|77/'=1’].€J}» EJ{~}2=E5\S,{~|771'=0, J¢J (493

It follows from (4.88) that, with respect to P J 17(2) {77(2)}

identically distributed Bernoulli random variables with

jes is a family of independent

p? _ pf

Tt el (4.94)
pO = pE i pB

Py =1} =
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The configuration space of 17(]2), {0, 1}7, is partially ordered by the relation defined by
e<ée & g < 8]/- forall € J. Let us write ws = (ws\s,, @s,). For a fixed wg\s, we set

Aags, = 1P @s\5,. 05,)1 En(@s\s,. s,) € I} C {0, 1}, (4.95)

It follows from (4.90) and (4.91) that AwS\s, is an anti-chain in {0, 1}1, ie,ife, e €
Agpg s, ande < &', then & = &’. Using the probabilistic Sperner Lemma given in [AGKW,
Lemma 3.1] with (4.94), we get

) 2V2(p8 + p5)

Pi{En(s\s;. 05,) € I} =P € Aug,} < PRI & (4.96)
It follows from (4.92) and (4.96) that
Ps{En(ws) € I | n} < 2v2 : (4.97)
(p—p)K1/2 f#]y
Combining (4.89) and (4.97) we obtain
Py(Ey(ws) € 1} = e 2PN a(pp ) TBR(pE 4 pH)2N T
< e 3OS HPN L yp_p KNI
< Cpug, ]2 (4.98)

We now conclude from (4.98), (4.71), and (4.76) that

~ 4/3 ~
Po{ll(Hos — E) 7' || > 2(u_6,) " 'e?34 10ty — Py (H,e) N T # B)

L(1-¢"d

< Cut? o, (4.99)

with a constant C4 = Cq, 1, Vper, K1, K2, Eo -
Recalling P € Fp\sp, C Fa\s, it follows from (4.99) that

P{{| R, (E)| = 2u_6,) "X to2t0y o p)

= P{xp@Ps{[|Ro.n,, (B < 2(u_0,) "' toety)

< ;27 prpy, (4.100)
which yields (4.59). |

Lemma 4.15. Given a box A = Ay, let P be a (A, E, K1, K>)-prepared event. Then, if
L is large enough, depending only on d, i, 8+, Vper, Uy, p, Eo, p1, 02, G, ¢’ 1, Ky, Ko,
there exists an event Wp C P, with

P)Wp} < CoK L~ 201 1=s"1=202ppy, (4.101)
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where the constant Cy is as in (4.59), such that the event P\ Wp is (A, E,mp, ¢, ¢')-
adapted with

mp =my, (1 — Cd’vper,EO,K]Lf‘g) >L7Y,  where

B=min{(36(1—¢)""' —1)p1. 31 =30 =)' pn} > 0. (102
Proof. Let Pbea (A, E, K1, K2)-prepared event as in (4.47). We take
/{:%(l—i—%pl(] —g)fl), SO %pl(l —§)71 <k <1, (4.103)
where we used (4.39), and we have
ks —to1> (351 =) —1)pr. (4.104)

By geometrical considerations, we can find disjoint boxes {A; }J.J: J = #R" < K,
where each Aj = A L; CA is constructed as in (3.53) from the standard £{-covering
R = {A¢,(N}rer of A with L¥ < L; < K{L*, and for every r € R” there exists a
(unique) j- € {1,...,J} with Ay, () C A;f\’LK/lo). Since it follows from (4.103) that
(for L large enough)

c L3 10g L Lr(1=9
e! 8t <e : (4.105)
we conclude from Lemma 4.14 that forall j =1, ..., J, letting
Wi = {IIRoa,(E)]| = ¥y NP, (4.106)
we have . /
P{W;} < CoL™2(1U=s)=20)p(p). (4.107)

We set Wp = [J/_, W; C P. so (4.101) holds.

Since P is a (A, E, K1, Kp)-prepared event, the hypotheses of Lemma 3.10 are sat-
isfied for ® € P \ Wp, so we conclude that the box A is (w, E, m, ¢)-good for all
® € P\ Wp withm asin (4.102).

Moreover, for all j we have {[[Re,A; (E)|| = eLK(Fg)} € Fa;, so it follows from
(4.47) that W; e FAJ(, where A} = {x € A;dist(x,Aj) < £1}. Let A" = jJ:l A;..
It follows that Sp\yy, := Sp \ A’ consists of free sites for P \ Wp, i.e., the box A is
(w, E,mp, ¢, Sp\wy)-good for all @ € P\ Wp.

To conclude that P \ Wp is (A, E,my, ¢, ¢')-adapted we only need to show that
SP\wp is ¢’-abundant. This can be done as in Lemma 3.9(i). Since

I_l SCAzl(r) N Agys(r) CSp\wp. (4.108)
reR\A

it follows, using (3.14), that for all boxes Ay ;5 C A we have (for L sufficiently large)

d K\ d
a=chdf (5 L 5 K{L
#(S NA >/ -— =2 —Ki|=
(SPwp L/s) z 4 ((4 5¢1 ) 1<3 A

> (-6 (4.109)

and hence Sp\)y,, is a ¢’-abundant subset of A. O
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Lemma 4.16. Suppose {L,; n = 0,1,...,n1}is (E, g, ¢', p, T)-extra good. Then, if
L is sufficiently large, depending only on d, j1, 8+, Vper, Ut, p, Eo, p1, 02, G, ¢, 1, the
scale L is (E,mp, ¢, ¢’, p)-extra good, and

mp =me, (1 = Ca o Eg.p1.0 L P) = L7, (4.110)
where B is given in (4.102).

Proof. Since by hypothesis {L,; n = 0,1,...,n1}is (E, ¢, ¢/, p, T)-extra good, it fol-
lows from Lemma 4.13 that there exist K1, K» € Nsuch that, givenabox A = Ap,if Lis
sufficiently large there exists a (A, E, K1, K»)-ready event Q satisfying (4.51). We write
Q asin (4.49), and apply Lemma 4.15 to any (A, E, K1, K»)-prepared events P;, letting
Wp, denote the corresponding event. In particular, Wp, satisfies (4.101) and P; \ Wp,
isa (A, E,mp, ¢, ¢')-adapted event with m is as in (4.102), which yields (4.110) since
K1, K> depend only on d, p, p1, p2. It then follows that

J J
=@\ wey =2\ (Jws) @4.111)
j=1 =1
isa (AL, E,mp, ¢, ¢')-extra good event. Since it follows from (4.49) and (4.101) that
J d ’
P[U ij} < G K L3P 1=)=2mp( 0y 4.112)
j=1
we get, using (4.51) and (4.39),
P(E} > (1 — 2L"2)(1 — CoK L5 1=6"=2m)) > | _ [ =pd_ (4.113)
O

We can now finish the proof of Proposition 4.6.
Proof of Proposition 4.6. Let E € [0, Eg] and suppose that for some scale Ly we know

-1 _—1
that L is (E, mo, ¢, ¢’, p)-extragood forall L € [Lo, Lgl 2, with mg satisfying (4.40).
1 -1
)

In other words, the interval [Lo, Lgr lis (E, ¢, ¢', p, T)-extra good with my = my

-1 _—1
for L € [Lyo, Lg’ P2 ]. We also assume that L is large enough so we can use Lemma 4.16
forall L > L.

(k+1) —1

-1 -1 —k _—1 -
Let £y = [Lo, Lg‘ ” Jand £; = [L('())l = ,Lg‘ P2 Jfork =1,2,.... We set

k K -1 ok 1
m=mo [ [ (1= Cr,Ly™ 2y = Lg™ " (4.114)
kK'=1

where Cgy = Cd,Vpr,p1.p2,E, and B are as in (4.110), the inequality holding for all k by
taking L sufficiently large. We consider statements (Sg), given for k =0, 1, ... by:

(Sx) The scale interval Ly is (E, g, ¢/, p, T)-extra good with my > my for all L € L.
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We will prove that (Sk) is valid for all k = 0, 1, . .. by induction. Note that the validity
of (Sp) is our hypothesis, and (S7) follows immediately from (Sp) by Lemma 4.16. If
k=1,2,...,and (Sk—1) and (Sg) are valid, we can apply Lemma 4.16 for all L € L1,
and conclude that (Sy41) holds with

—eppHD =
mp = me(1 = CggL™P) = mpyy = L, 2 = L7, (4.115)
Since we have (S;) forall k = 0, 1, ..., we conclude that the scale interval [Lg, oo

= Ui Lris (E, g, ¢’, p, 7)-extra good, and for all L € [Lg, oo[ we have

00 _p—k -1
my = mo [ (1= CryLy™ ) = mo/2 (4.116)
k=1

for sufficiently large L¢. In particular, every scale L > Lg is (E, mo/2, ¢, ¢’, p)-extra
good, so the theorem is proved. O

5. Preamble to localization

In this section we introduce tools for extracting localization from the multiscale analysis.

Let v > d/2. (We will work with a fixed v that will be generally omitted from the
notation.) Given y € R4, we recall that Ty, = T,,, denotes the operator on the Hilbert
space H = L?(R¥) given by multiplication by the function Ty(x) =Ty y(x) == (x — y)¥
for x € R? with T := Ty. Since (y; + y2) < v/2(y1){y2), we have

1Ty, T, < 272 (1 = y2). (5.1)

The domain of T, D(T), equipped with the norm ||¢ ||+ = ||T¢|, is a Hilbert space,
denoted by H4+ = H, 4+ . The Hilbert space H_ = H, _ is defined as the completion
of H in the norm ||| = ||T~'v|. By construction, H, C H C H_, and the natural
injections 14 : Hy — H and i— : H — 7H_ are continuous with dense range. The
operators Ty : Hy — Hand T— : H — H_,definedby T = Tiy,and T_ = 1T
on D(T), are unitary. Note that it follows from (5.1) that

1T, < 22" IT~ 'yl forally e R and yr € H_. (5.2)

5.1. v-generalized eigenfunctions

Let H,, be a generalized Anderson Hamiltonian. For a fixed w € €2 we now consider only
generalized eigenfunctions ¥ € H_ = H, _, so we rewrite Definition 2.3 as follows.

Definition 5.1. A v-generalized eigenfunction for Hy, with generalized eigenvalue E is
a function ¥ € H, — such that y # 0 and

(Hop, ¥) = E{p,¢) forallg € C°(RY). (5.3)
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Given E € R we let Oy (E) = 0, ,(E) denote the collection of all v-generalized eigen-
functions for H, with generalized eigenvalue E, and set ®w(E ) = Ou,(E) U {0}. We will
drop v from the notation: ¢ will be called a generalized eigenfunction for H,, with gen-
eralized eigenvalue E if and only if € O, (E). We will also call E € R a generalized
eigenvalue for H,, if and only if @4, (E) # 0.

The generalized eigenvalues and eigenfunctions of H,, are the same as the eigenvalues
and eigenfunctions of the operator H, _: a function ¢ € H_, ¢ # 0, is a generalized
eigenfunction of H, with generalized eigenvalue E if and only if v € D(H, —) and

Hy Y = Ey,ie.,
(Hyo, ¥y = E{¢, ) forall € D(Hy,) NHy . 5.4)

This follows from the fact that (5.4) is equivalent to (5.3) since C° (R9) is a core for
the H,,.

Eigenvalues and eigenfunctions of H,, are always generalized eigenvalues and eigen-
functions. Conversely, if v € O4(E) N H, i.e.,, ¥ € H is a generalized eigenfunction
of H, with generalized eigenvalue E, then ¥ is an eigenfunction of H, with eigen-
value E.

5.2. Generalized eigenfunctions and good boxes

Givenw € , x € R? and E € R, we set

we) XA it @ (E) 20,
Wox(E) = Wi (E) = {veo,®) Ty ¥l (5.5)
0 otherwise.
Note that
Wox (E) < (5/4)V/% <22, (5.6)

Remark 5.2. By the unique continuation principle, ®4,(E) # ¢ if and only if Wy x(E)
# O forall x € R.

Lemma5.3. Let w € 2, I C R a bounded interval, E € 1,0 < ¢ < 1, and m > 0.
Suppose the box A (x) is (w, E, m, ¢)-jgood. Then, if m > Cd,v,vper,l %, we have
We y(E) < e 15k forally e Ap(x) with Ap;5(y) C Ap(x). 6.7

Proof. We can assume O (E) # (. Given ¢ € O (E), it follows from Lemma 2.5 that
forally € Ap(x) with Ap/5(y) C Ap(x) we have

Xyl < 2yeL9™'e ™ TE max xyyll < 2ppL97N (1 4+ L2 e T
YEYA; ()
(5.8)
SO 1 L
M <e BL form = Cuyvp s —om (5.9)
175y L

O
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5.3. Generalized eigenfunctions and annuli of good boxes

Givenw € ,x € RY, E € R, and a scale L, we set (cf. (1.8))

o sup VXLV ip o) 20,
Wox, L(E) = W\ 1 (E) == {ye0,E) ITx ¥ (5.10)
0 otherwise.
where Xx,L := X Ayp41 1 1(x)» and
L1 1 L _499L . '_2L+1L _ 1001 5.11)
- 5100 ~ 500 T 5100 ~ 500 ‘
In particular, we have (L > 2)
Wox.L (E) < (14 (L4 1/2)*)"/? <272, (5.12)
Note also that, using (5.1),
Wao,y(E) < 2"2(y — x)" W x L (E)
<2"L"Wy . L(E) forye Ay p(x). (5.13)

Lemma 54. Let w € 2, I C R a bounded interval, E € 1,0 < ¢ < 1,0 <m < m.

Suppose every box A 100 in the standard L/100-covering of the annulus Ap, 1_(x) is

(w, E, m, ¢)-jgood. Then, if m > C:j b Vper I IO%L, we have

We . L(E) < e 200l (5.14)

Proof. We can assume O (E) # (. Given y € KZL,L (x) there exists a box Aéy/)loo in the

standard L /100-covering of the annulus Az ;_(x) with A 500(y) C A(Ly/)IOO' Since the
box A(Ly/)loo is (w, E, m, ¢)-jgood by hypothesis, it follows from Lemma 5.3 that for all
¥ € Oy (E) we have, with £ = L/100 and m > Cy,,vper.1 225,

vl < 1T lle™ 150 < 292y — x)2 177 e 15
< 2'LV|IT 'ylle” (5.15)

It follows that
X LWl < CanL" T W lle™ 58 < |17y le™ 20, (5.16)

which yields (5.14). O
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5.4. Generalized eigenfunction expansion

A generalized Anderson Hamiltonian H, has a generalized eigenfunction expansion,
which we will now review. We follow [KIKS, Section 3], to which we refer for all the
details. (Although the results in [KIKS] are stated for classical wave operators, which in-
clude —A, they clearly hold for —A + V with V a bounded potential; in particular they
hold for generalized Anderson Hamiltonians as in Definition 2.2.)

Let H, be a generalized Anderson Hamiltonian. For all ® € 2 we have the estimate
(e.g., [GKS, Lemma A.4])

{77 (Hy + 14 | Voo DI Ty < Cav vl < O (5.17)

e

where [[d/4]] = min{n € N; n > d/4} and Voer is the negative part of Vper. We define
the spectral measure

fo(B) :=tr{T ' Po(B)T ™'} = [T~ 'Py(B))|5, B C RaBorel set. (5.18)
As a consequence of (5.17), for all Borel sets B with sup B < oo we have
Uu(B) < Cd,u,nvp;rn,supB <oo forale e Q. (5.19)

Moreover, since the constants in (5.17) and (5.19) depend on the potential only through
| Vper Il (they are independent of the background potential U > 0 and the random potential
Ve > 0), we deduce, similarly to [GK6, Eq. (2.5)], that for all @ € €2 and Borel sets B
with sup B < co we have

Hoy(B) = t{Ty  Po(BIT; ') < Cyy v aups < 00 forally eRY, - (5.20)
and hence
1y Po(B)ll2 < Cy jyysupp < 00 forall y € RY. (5.21)

Note also that ¢, and e,y are absolutely continuous with respect to each other.

Let 71(H+, H-) be the Banach space of bounded linear operators A: Hy — H_
with T:lATJr_1 trace class. Then for all @ € €2 there exists a u,-locally integrable func-
tion Py, : R — Ti(H4, H-), such that

(T P(E)TS" ) =1 for pg-ae. E, (5.22)

and, for all Borel sets B with sup B < oo,
1-Py(B)iy = / Py(E)due(E), (5.23)
B

where the integral is the Bochner integral of 7j(#, H_)-valued functions. Note that
P, (E) is jointly measurable in (@, E). (This can be seen from [KIKS, Eq. (46)].) More-
over, we have (e.g., [KIKS, Corollary 3.1])

Ho_Po(E) = EPo(E) for ue-ae. E € R, (5.24)
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where H,, _ is the closure of the operator H,, in the Hilbert space H_. It follows that
Po(E)H, C Ou(E) for pe-ae. E € R. (5.25)
If for a given Borel set B we have (H = 1_H as sets)
Py,(EYH+ CcH for uy-ae E € B, (5.26)

it follows from (5.25) that H,, has pure point spectrum in B.
Givenw € ©, x € RY, E € R, and a scale L, we set (cf. [GK6])

w if P,(E) #0,
W (E) = Pf(%-lg#o ITc " Po(E)P| (5.27)
0 otherwise,
b IIXx_,TPw(EM’II it Py(E) 0,
WeorL(E) = Pf(eE?;tdjr;éO 1Ty Po(E)ol (5.28)
0 otherwise.

We.x(E) and W, 1 (E) are measurable functions of (w, E) for each x € R4 with

W (E) < (5/4)"% <272, (5.29)
Wor L (E) < (1+(L+1/2%)"? <2"2L, (5.30)
Weoy(E) <2L'Wy . fory € Axp p(x). (5.3D

Moreover, it follows from (5.25) that
Weox(E) < Wy (E) and Wy x L (E) < W, x, 1 (E) for pey-ae. E€R.  (5.32)

Remark 5.5. There is a difference between W, ,(E) and W, » 1 (E), defined in (5.27)
and (5.28), and W, »(E) and W, » 1 (E), previously defined in (5.5) and (5.10). The
conclusions of the multiscale analysis of Proposition 4.6 will yield bounds on W,, (E)
and Wy x 1 (E) in an energy interval /. In view of (5.32), these bounds will hold for
Weox(E)and Wy, 1 (E) for pe-a.e. E € I, yielding (5.26) for uq-a.e. E € I, and hence
establishing pure point spectrum in the interval /. Note that W, ,(E) and W, , 1 (E) are
measurable functions of (w, E) for each x € R4, but we do not make such a claim for
We x(E) and W, x L (E).

5.5. Connection with point spectrum

Given E € R, we set
Po(E) := X(g}(Hy) and peu(E) = uo({E}) = [T Po(E)|3. (5.33)

In particular, P, (E) # 0 if and only if uy(E) # O.
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It follows from (5.23) that
1-Po(E)ty = Po(E)no(E). (5.34)

Thus, given x € R? and a scale L, we have

1Xx Po(E)ll2 < W e (E)NIT " Po(E) 2 = W x (E)y/ e (E), (5.35)
1Xx.L Po(E)l2 < W L(E)IT, ! Po(E)ll2 = W L(E)y/ tho.x (E). (5.36)

If H,, has pure point spectrum in an interval /, it follows from (5.23) and (5.34) that
for all bounded Borel functions f we have

f (Ho) Po(l) = / F(E)Poc(E) o (E) forallx eRY,  (5.37)
I
where
-1 .
Py o (E) i {(uw,x(E» Po(E) if Po(E) #0, 538)
0 otherwise.

6. From the multiscale analysis to localization

We will now assume that the conclusions of the multiscale analysis (i.e., of Proposi-
tion 4.6) hold for all energies in a bounded open interval Z, and prove a theorem that
encapsulates localization in the interval Z. All forms of localization will be derived from
this theorem.

We fix v > d/2, which will be generally omitted from the notation.

Theorem 6.1. Let Hy, be a generalized Anderson Hamiltonian on L2(R%). Consider a
bounded open interval T C R, m > 0, p > 0, and ¢ € 10, 1[, and assume there is a scale
L such that all scales L > L are (E, m, ¢, p)-good for all energies E € T. Set

M = M(m, p) := m/30""2  where @ =n(p):=minfneN; 2"/" —1 < p}. (6.1)
Fix p €10, pl, and pick & = B/2, where B = p"! with p > 0 and ny € N such that
A+pl<p<1l and (mi+DB<p—7, (6.2)
and set, at scale L,
Ty = {E € T: dist(E, R\ T) > e ML"}. (6.3)

Then, given a sufficiently large scale L, for each xo € R? there exists an event UL x, with
the following properties:

(i) We have ~
uL,Xo € -FAL+(x0) and HD{Z/{L,)Co} >1- L_pd- (6.4)
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(1) Ifw € Uy x, and E € 1;, whenever

W xo(E) > e ML7, 6.5)
we conclude that
Wao.xo.L(E) < e ML, (6.6)
(iii) If @ € Uy x,, we have
_Laypy
We,xo (E)We xo, L (E) < €72 forall E € Iy . 6.7)

Remark 6.2. If p € 11/3, 3/8[, as in Theorem 4.1, we have n = 3.

The proof of this theorem will require several propositions. The scale £ will always
be assumed to be sufficiently large; in particular we assume m > L£75/2. We consider
only scales L > £. We use the notation AL = ANZ for A C R.

We assume the hypotheses of Theorem 6.1 in the remainder of this section.

6.1. The first spectral reduction

Proposition 6.3. Given b > 1, there exists a constant K4 , , > 1 with the following
property: Fix K > Kg , p. Then, given a sufficiently large scale L, for each xo € R4
there is an event Qp y, with

QL € Fapry and P{Qp ) >1— L7, (6.8)
such that for w € Qy x,, given E € L such that
Wy (E) > e VK ang  dist(E, R\ T) > e "VI/K, 6.9)
where m = m(m, p) := 30M with M given in (6.1), it follows that
dist(E, 0 D (Hy a, (x) < e L. (6.10)

The proof of this proposition will rely on several lemmas.

6.1.1. A site percolation model. Given a box Aj/(xg) and a scale £ <« L', we set L” =
L'+ ¢, leta = apr g be as in (3.55), and consider the graph

G =Gy 0 :=x0+ alZ?  with edges {{r,r'} C G; |r — 7’| = at). (6.11)
Note that for r, ¥’ € G we have
lr —rll=al < r#vr and Ay(r) N Ae(r') # 0. (6.12)
The external boundary of I' C G is defined as

tr :={r e G\ T; {r,r} is an edge for some r’ € T'}. (6.13)



Localization for continuous Anderson models 105

We have #(81{r}) = 3?—1forall r € G, i.e., any site is connected by edges to 3¢ —1 other
sites. We call yo, y1, ..., yx € Gapathif{y;_ 1, yj}isanedgeof Gfor j = 1,...,k;it
is a self-avoiding path if the yo, y1, . .., v are distinct.

Given an energy E € Z, we consider the following site percolation model on the
graph G: every site r € G%) = GNALr(xg) (cf. (3.48)) is bad with probability one; a

7 (x0)

site r € G\G%i” o) is good if the box Ay (r) is (w, E, m, ¢, p)-good and bad otherwise.
0)

Welet Ap = Ap(w) = Ag y,,1/,¢(w) denote the cluster of bad sites containing G A (o)
(i.e., the connected component of the subgraph of bad sites containing G%)L” (XO)).

We now take scales £, L with ¢ <« L' and 1009¢ < L. Given an energy E € R, we
consider the event

B {Ar CApy7 3 (0) IfE€ET,
= 6.14
Yorel T g ifE ¢ 1. 19

Note that y;f)L o7 € Fayp o forall E € R, and it follows from (3.6) that y;fl o1

is jointly measurable in (E, WA, 7 ()
Lemma 6.4. Forall E € T we have

P{y)ﬁf’l,’&z} >1-— (4L//£)d—13[L/2Z]d£—cdpL/€. 6.15)

In particular, if L' = L= L/2 and £ = /L, we get
(E) o —capVE
P{yxo,L/z,ﬁ,L/z} >1— L %rVE, (6.16)
Proof. Fix E € Z, and suppose Ag ¢ A, 7_3,(x0). Then there exists a self-avoiding
path Yo, y1,...,  in G such that lyo — xol = L'/2, yi,y2,.... 3 ¢ Gy (),

| vk —Jco|| > (L' ~|—Z —34)/2, and ag Y0, Y1, .., Yk are bad sites. It follows that
(L'+L—-30)/2 <L'/)2+kat,sok > (L — 3¢)/2al > [L/2¢]. We thus conclude that if
Ap ¢ AL,+273( (x0) we can find a self-avoiding path yg, y1, ..., VL 201 of bad sites with

lyo — xoll = L'/2 and y1, y2, ..., YT 201 ¢ G%i”(xo). The number of such self-avoiding
aths is bounded by (4L'/£)?—13[L/26ld gince sites y, vy’ G¥ are independent un-

p y Apr(xo) p

less ||y — y'|| < a¥, such a self-avoiding path must contain at least [3_"[2/26]] > c:jZ/Z

independent sites, and hence its probability of having only bad sites is < £=< pdL/ ¢ Thus

Plhr ¢ Ay g (o)} < AL /0~ 13IE20d p=cipdL )t (6.17)
O
GivenI' c Gand 0 < g1 < &, we set
Ti=J A, €T = (x eRY & <dist(x, T) < &2} (6.18)
xel

Note that T is a connected subset of R¥ if T is a connected subset of G.
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Lemma 6.5. Let E € T and @ € yif)L o Then (Ap = Ap(@)):

(1) Forallr € 3T Ag we have Ay(r) C A, 7(x0) and the box Ay (r) is (w, E, m, g, p)-
good.
(i1) There exists a function ¢ = ¢ E € CC2 (]Rd), with 0 < ¢ < 1, such that

=1 onhg, (6.19)
¢=0 onRI\A, ;7 ,(x0), (6.20)
supp Vop C 3¢S Ag, 6.21)
V|, |Ap| < Cyq,  the constant Cy depending only on d, (6.22)

and for all x € R¢ with A12(x) Nsupp Vo # @ there exists r(x) € 31 Ag such that
Agys(x) C Ae(r(x)).

Proof. Since w € y;f) L We have &; C A7 _0p(x0). (i) follows from the definition

of &E To prove (ii), let ¥ be the characteristic function of the set {x € R?; dist(x, A\E)
< 6). Pick a non-negative function n € C2?(R?) with compact support in A1(0),
fRd nx)dx = 1, and |Vyn|, |An| < C;l. Then ¢ = n * i has all the desired proper-
ties.

Let x € RY with A1y2(x) Nsupp Ve # . Then, in view of (3.54), there exists
r(x) € 9T Ag with Ags5(x) C Ag(r(x)). Since x € aCNAL N Ay(r) for some r € G
implies r € 3T A, we conclude that 7 (x) € 9T Ag. O
6.1.2. The energy trap

Lemma 6.6. Given a sufficiently large scale L, for each xo € R? there exists an event
TL.x, With

Tio € Fapiptg and P{Ti ) = 1 — L rmizV/E (6.23)
such that for € Ty x, we have
Weoxo (E) dist(E, 0 (Ho a, () < ¢ 5V forall E € T. (6.24)
In particular, for @ € Ty x, and E € I,

Woxy(E) > e 0VE = dist(E, 0 (Ho.p, () < e 90VE (6.25)

Proof. Fix ascale L and xo € R¥. Since Z is a bounded interval, we can find {E iYi=1,.0
C 7 such that

J
Tc | JiE —eVE Ej+e V] and J <&V, (6.26)
j=1
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We set

J

B (E))

7-L,)C() - q yXo,L/Z,«/Z,L/Z. (627)
Jj=

The estimate (6.23) follows immediately from (6.16).

Let w € Tp x, and E € Z with ©4,(E) # @. Pick j € {1,...,J} such that we
have E € [E; — e 2"VE E; + e 2mVL] write Ag; = Ag;(@), and let ¢ = ¢, E,
be the function given in Lemma 6.5. Let ¥ € ®,(E), a generalized eigenfunction. Then
¢y € D(H,, o) and we have (2.23), where A = A (xo). It follows that, for £ sufficiently
large,

I(Ho,a — E)YpY 11> = WA@Y |I* = > 1X Ay o) WA@Y 12
xexo+%Zd
Ay2(x)Nsupp Vo#£D
_w
=Cizvee 2 X =Clrye TV Y W e
x€x0+%Zd xexo-i-%Zd
Ay /2(x)Nsupp Vo#£D Ay 2(x)Nsupp Vop#D
_w' T 2 2 /Ly -1 2
< C&,I,VperLde 1 f”w”AL,%("O) <e T f||Tx0 vl°, (6.28)

where we used (2.24) and (6.22), applied the interior estimate given in (2.43) as in the
derivation of (2.44), used Lemma 6.5 with £ = /L (r(x) € 8+AEj is given in the
lemma), applied Lemma 3.9(iii), using (3.22) with m’ as in (3.17) taking £ = VL, and
then used (3.17) to write the final estimate in terms of m. Since it follows from (6.19) that
IoV Il = 1Vl aLjpx0) = IXxo¥ NI, we conclude that

Hon —E w o ITe!
GSE . 0 (Hony o)) < L0t = BV et 1o V1 (6.29)
ol I X ¥l
The desired (6.24) now follows using (5.5), and it yields (6.25) . O
6.1.3. The energy bootstrap. We fix b > 1, letn = n(p) be as in (6.1), and set
n=n(p):= 2V < p, so nel0, 1] and (1+ n)ﬁ =2. (6.30)

We now fix a scale L, let {5 = \/Z, and set {; = 611:’17 fork=1,...,n,s0¢; =L
by (6.30). We take J € N, to be determined later, and let Lo = L, Ly = Ly—_1 +2J ¢ for
k=1,...,7n. We have

n
Li=L+2J) & <(1+2Ja)L. 6.31)
k=1

. d . (E) — -
Given xg € R* and E € Z, we consider the events yxo,Lk_l,ék,ZJEk’ k=1,...,nm,

defined similarly to the event in (6.14), but with a modified site percolation model: a
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site r is now either pgood or pbad according to whether the corresponding box Ay, is
(w, E, m, ¢, n)-pgood or not (see Definition 3.15), and the set A (®), defined similarly
to Ag(w), is now a cluster of bad sites. Requiring 2J > 1004, Lemma 6.4 still applies,
with p = p(p) := p — n/(2(1 + n)) substituted for p in view of Lemma 3.17, yielding
forall k = 1, ..., 7 the estimate

a4 — —2¢4DJ — —2¢4DJ
PO eased = 1= ALy /) 13740290 > 1 — (dLg/00)4 713740207

> 1 — (1 +2Jn)L'/?)d-137d~cap) > | _ [ ~0bd (6.32)
provided J > Cy.p.p. We fix Jgpp := [max{Cy pp, 100%/2}] + 150 if J > Jg 5 the
estimate (6.32) holds forallk =1, ...,7n.

For each k = 0,1, ...,7 — 1 the finite volume operator H 1 (0),@> which depends
only on wx 14 (x0) is a non-negative self-adjoint operator with discrete spectrum. We let

{E;k) (wa L (x0))}jeN be the enumeration of these eigenvalues given by the min-max prin-

ciple, as in (4.64). Each E;k) = E}k) (@A, (xp)) is a continuous function of wx;, (xy). We
define events '

SEFTD) ~
Zi=Za,00 = [ Ve turtrrste € Fargy  fork=1,... 7. (6.33)
jeN
Note that Z;y € Fj 1, (x0) since the event i(cf,)Lk_],Zk,z Tt is jointly measurable in

(E,®n;, 1, , (xo) and each E;k_l) is a measurable function of @,  (x)- Since general
estimates yield (cf. [GKS, Eq. (A.7)])

tr{X2(HA, (x0).0)} < Cd,VpersupzL?  forall L > 10, (6.34)
it follows from (6.14) and (6.32) that
P{Z)>1-L"" fork=1,...,7. (6.35)

Lemma 6.7. Given a sufficiently large scale L, for each xo € R? there exists an event
ZL,xo with

ZLwg € Faro) and PLZp g} = 1 =L ™ =117 (6.36)

such that for all w € Zy, »,, if E € 1L satisfies

dist(E, 0D (Hy p, (x0) <€ 0VE, 6.37)
dist(E, R\ T) > e VL, (6.38)
Woo(E) > eV, (6.39)

where m = m/SOﬁ'H = 30M (see (6.1)), it follows that

dist(E, U(I)(Hw,ALﬁ(xo))) <e i, (6.40)
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Proof. Given L and xg, we set

Zrw =) 2 (6.41)
k=1
0 (6.36) follows immediately from (6.35).
Let m = m/30. Given @ € Zp , and E € T satisfying (6.37) and Wy, ,(E) > 0,
we pick E' € G(I)(H,,,,AL(XO)) such that |[E — E'| < e VL and Y € Oy (E). We have

W € iﬁfz 01,270, SO We let ¢ = ¢, g be the function given in Lemma 6.5. Note that
Lemma 6.5 applies as stated for the modified site percolation model, the only modification
being that a box Ay, (r) withr € 8+~AE/ (@) is now (@, E’, m, ¢, n)-pgood, and hence,

using Lemma 3.16, Ay, (r) is (w, E, m, ¢)-good, where

m == Cq ;™M A0y (6.42)
Proceeding as in (6.28) and (6.29), we get (for L large)
_ ~ —1 _ —1
IHonnyc0 = EXOVI 5 1T sy, 1T 643
vl I Xx ¥l IXxo ¥l
the generalized eigenfunction ¥ being arbitrary, so we conclude that
dist(E, 0 (Ho, A, (xp))) < € 151 (Woy o (E) 7. (6.44)
Since it follows from (6.39) that
Wexy (E) > e 01, (6.45)
we get, using also (6.38),
dist(E, 0D (Ho p,, () < & 01, (6.46)
Repeating the argument 77 — 1 times we get (6.40). O

6.1.4. Completing the proof of Proposition 6.3. Given a scale L, let L be the unique
scale such that Ly = L (see (6.31)). We take J > Jy pp, 50 K =1+ 2Jn > Kapp =

1+ 2Jd,p,bﬁ, and hence > L /K. Recalling Lemmas 6.6 and 6.7, we let
Quoxo = Tiny N 2ixg € Fip o) N FA;_ o) C© Far(o)s (6.47)

SO
P{OL x> 1— [carmizV _ j-3d >1— L7, (6.48)
Letw € 9 , and E € T satisfying (6.9). It follows that
Wy (E) > e VL and  dist(E.R\T) = e VL, (6.49)
so we conclude from Lemma 6.6 that
dist(E, 0D (Hy, 4, (vg)) < e HVI, (6.50)

Since (6.50) is just (6.37) at scale i, andv (6.9) implies (6.38) and (6.39) at scale i,
Lemma 6.7 now yields (6.40) for the scale L, which is the desired (6.10). O
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6.2. The second spectral reduction

If p < 1 we need a second spectral reduction.
Given a scale L, we set L, = L*" forn = 0,1,...,n1 (note Lo = L, L,, = Lﬂ),
where p, ny, B are as in Theorem 6.1.

Definition 6.8. The reduced spectrum of the operator H,, in the box Ay (xgp), in the en-
ergy interval Z, is given by

0T (Ho,p(x0) = {E € 0P (Ho,n, (); diSUE, 0P (Ho,a, (x0) < 2677,
n=1,...,n1}, (651)

where 1 is given in (6.1).
Note that the set {(E,w); E € U(Z*rcd)(H(,), AL(xp))} is jointly measurable in
(Ev wAL(x()))-

Proposition 6.9. Letb > 1 and fix K > Kg p p, where K4 ), p is the constant of Proposi-
tion 6.3. Given a sufficiently large scale L, for each xo € R? there exists an event X, L,x0s
with

Xioxo € FaLgy and P{Xp .} > 1— L7 (6.52)

such that for all w € X, ,:

(1) If E € 1 satisfies

Wy (E) > e VK gpd  dist(E, R\ T) > e "VLI/K, (6.53)
it follows that
dist(E, 0 T (H, A, () < e ME. (6.54)
(i) We have
#0 LD (Hy ny (x0) < CaVieriZ, popoy L™HDP (6.55)

The proof will use several lemmas.

Lemma 6.10. Given a sufficiently large scale L and xo € R?, consider the event

~ g
OlL.xy = ﬂ QL,.x0 € FAL(xo)s (6.56)
n=0

where Qp , is the event given in Proposition 6.3 at scale L. Then
P(Or ) > 1 — (n) + 1)L 2P, (6.57)

Moreover, if ® € éL,xo) we have (6.54) for any E € 1 satisfying (6.53).



Localization for continuous Anderson models 111

Proof. The estimate (6.57) follows immediately from (6.56), (6.8), and (6.2). The second
part of the lemma is an immediate consequence of Proposition 6.3. O

Given scales L'’ < L with L? < (L — L')/7 and xo € R, we consider the annulus
Ap = Ap p(xp). Welet R, = {Ayr,(r)}rer, denote the standard L, -covering of the

annulus Ay, ;o forn =1, ..., ny (see Section 3.3.2). Given K € N (to be chosen later),
we set
Sa, = { | Asw, ) R, C Ry, with #R),, < Kz}. (6.58)
rer;
n

Similarly to Definition 4.10, the annulus A, ;- is said to be (@, E, K>)-notsobad if there
exists an (w, L, L', E)-singular set ® € Sp, i forall x € Appr\ © there is an
(w, E, m, ¢)-goodbox A, (r) € Rn,forsomen ef{l,....,m},withAg, ,s(x)NAL 10 C
A, (r). Anevent N is (A 1/, E, K2)-notsobad 1fN € Fa, ,, and the annulus Ay 1/
is (w, E, K7)-notsobad for all w € /\f We have the analogue of Lemma 4.11: If K, >
K2 = Kz(d p,b),and L > L= L(d p, b, K»), then for all E € 7 there exists a
(AL, E, K»)-notsobad event NI(\?L/ with

P{Ng‘?y} > 1— 154 (6.59)

(The proof of Lemma 4.11 applies since p > (1 +p)7] ) Wefix Ky = [Il(\z] +1,50(6.59)
holds for L large, and set N/(\?u = Qif E ¢ Z. The event N/ /(\?u is jointly measurable
in (E, 4, /), 50 ' "

Nao= [ MNP, eFa,. (6.60)

Ap g
EGJ(HAL/.«))

and it follows from (6.59) and (6.34) that
PNa, ) > 1= Ca v supzL ™% (6.61)

Given a box A (xp), we define the multi-spectrum of the operator H,,, in the energy
interval Z, by

ny

k

20 1= [P Hony, o) fork=0.1....n. (6.62)
n=k

A “multi-eigenvalue” E® = (E, )1 € T | will be called linked if
|Ep — Ey| < de "Eostnn) foralln,n’ € {k,k+1,...,n1}. (6.63)
The reduced multi-spectrum is then defined as

2 =BV ex) | E®islinked), k=0.1,....n. (6.64)
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Lemma 6.11. Given a (sufficiently large) scale L and xo € R?, consider the event

n1—1

NL,XO = NALO,LI(XO) N { ﬂ {NALH,L,H_I(XO) m/\[1\21,,,,1,,,+] (Xo)}}' (6.65)

n=1

Then N x, € Fa, (xy) and

— —4pta
PINL.xg} > 1= Cavperusupzni Ly 4 = 1= Cy v supzmi L1074 (6.66)

Moreover, for all @ € NL,xo we have
#0 D (Ho ny () S #ERTD = Cavi Zp o LTVPL(6.67)
Proof: We have N, € Fa,(x, by construction. Since B = p"!, the estimate (6.66)
follows immediately from (6.61).
The first inequality in (6.67) is obvious, we only need to estimate #ngf?xo for
w € N x,- We will write A, = Az (x0), Az, = A, (x0).
It follows from (6.34) that

,red
#E(Iz};,f ) = #U(I)(HW,AL,ll) = Cd,Vpe,,supI(Lm)d = Cd,vper,supZLﬁd. (6.68)

X0

Letk € {1,...,n1}.WesetLy_j = Ly_jand L, = L, = 2L, forn =k, k+1,...,n1—

I and let A, , ALn Ly (X0). We take E® = (E,}'L € ):%reg”x Since @ €

N1 x,» We have w € ﬂn e 1./\/<E”)L ,s0let ®y E, € SAZn be the corresponding

n+1 —1-Ln
(w, L,,_l, L,, E,)-singular set forn = k,k+ 1,...,ny, and set
ni
O, g0 = Aar, U U Ow,E, - (6.69)
n=k
We have
ni
7 d
Q4 gt0] < QL)Y + K2 > GLE_ )4 < 6/(ny —k +2)K>L? . (6.70)
n=k
Givenk =1,....n;and E® ¢ 3% reLd)x , we set
k=1 k—1,red
E;Iw,L),xO(E(k)) ={Ec oD (Hon, )i (E.EV)exf "} 6.71)
and note that
(k—1,red) _ k—1) k (k,red)
#Eloled o ( max  #35) (E >)>(#2H Loxo)- 6.72)

E®ex ke
w.L.xp

We now fix E® ¢ Z(k red) . Given E € Z(k 1) (E(k)) let ¥z be a normalized
eigenfunction of Hy, Lo correspondlng to the elgenvalue E. Ifx e Ay, \ @w E® s
there exist n € {k,k+ 1,...,n1}, j € {l,...,n}, and an (w, E,, m, ¢)- good box
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A@M C Ap,_,,where £, ; = (an])j > LPIHFI, such that Aﬁ,,,j/S(x) NAg,_, C A@M.
(This is ensured by our choice of the Zn.) Since |E — E,| < 4e=MLn it follows from
Lemma 3.7 that the box A/gn_j is (w, E, m/2, ¢)-jgood, and hence we get, proceeding as
in (3.22),

[y _fyp

IXavel < e Bl <o BT (6.73)
so we conclude that
Ko, o ¥el? = 1—e B A5 (6.74)
Thus,
#2 ) o (EY) < 20X 2(Ho a,_ X0, yi0) < 2Ca v 21O, oo
< CaVpr Zpopm L2 (6.75)
where we used [GKS5, Lemma A.4] (as in (4.76)) and (6.70).
In view of (6.68) and (6.72), and recalling p < 1, we get
HE G = Clhoy o P S Cly 1y LTV (6.76)
We are now ready to prove Proposition 6.9. "
Proof of Proposition 6.9. Setting
Xe v = Qrvg NNL - 6.77)
Proposition 6.9 is an immediate consequence of Lemmas 6.10 and 6.11. O

6.3. Annuli of good boxes

We are now ready to prove Theorem 6.1.

Proposition 6.12. Given a sufficiently large scale L, for each xo € R? there exists an
event Uy, x, as in (6.4) such that for all @ € Uy, x,, if E € I satisfies (6.5), then every box
Ap 100 in the standard L/100-covering of the annulus Ay 1 _(xo) is (@, E, 70m, ¢)-
Jjgood.

Proof. Given E € I, we let M(LE))CO be the event that all the boxes in the standard

L/100-covering of the annulus Ay, p = Ar, 1_(xo) are (w, E, m, ¢)-good, and set
M(LE))CO = Qif E ¢ 7. The event is jointly measurable in (E, WAL, 1 ), and, using (3.69),

PIME) } > 1 - (2002)4(100/7L~7  for E € . (6.78)
Setting
Mp = m Mgi)co < ]:AL+(XO)’ 6.79)

Eeg(Zored) (Ho,Ap (xp)
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it follows from (6.55) and (6.78) that
PM_ 5} > 1= Ca Vper.Z.p.p.m; (2002)4(100)P4 L=P4 L H+DAd

/ —(p—(m+1)p)d
= 1= Chy 1 ppm L PTOTDIRL (6.80)

We now require that K, fixed in Proposition 6.3 subject only to the condition K >
Ka,p,p, is sufficiently large to ensure that, given a scale L, if E € 7 satisfies (6.5), then
E satisfies (6.53) at scale L_:

~ [p
oML > VISR e K > 900(£2)7. (6.81)
‘We introduce the event
L{L,XO = XL,,XO N ML,XO € -FAL+(x0)7 (682)

where X7 _ y, is the event given in Proposition 6.9 with b = 1 + %(p —(n+ 1B . It
follows from (6.52), (6.80) and (6.2) that

PlUp ) > 1= L2 =)y o LD S o (683

Fix w € Uy, x,, and let E € T} satisfy (6.5), so it follows that (6.53) holds at scale L _.
Proposition 6.9 then gives (6.54) at scale L_:

dist(E, 0 T (Hy p, (r)) < e - = e 5 10, (6.84)

Thus, given a box Ap/100 in the standard L/100-covering of the annulus Az, r_(xo),

it follows from (6.79) that the box Ay 100 is (@, E, m, ¢)-good for all energies E €

U(I*red)(Hw,ALi(xO)). We conclude from (6.84) and Lemma 3.7 that the box Ay /1o is

(w, E, 70m, ¢)-jgood. O

Proof of Theorem 6.1. The theorem follows from Proposition 6.12, with I/ ,, the event
given in Proposition 6.12.

We fix w € Uy, x, and E € Z;,. Recall ¢ = /2.

If (6.5) holds, Proposition 6.12 guarantees that every box Ap /100 in the standard
L /100-covering of the annulus Az, ;_(xo) is (@, E, 70m, ¢)-jgood, so it follows from
Lemma 5.4 that o -

Wox L (E) <e 20l < gm0l = =ML (6.85)

proving (6.6).

To prove (6.7), note that either E satisfies (6.5), so we have (6.6), and hence, recalling
(5.6),

Weo,xo (E)We o1, (E) < 2"/ "ML (6.86)
or we have ,
W xo(E) < e M7 (6.87)
so using (5.12) we get
We.rg (E)We g 1 (E) < 2217 ML < g=1ML" (6.88)

The desired (6.7) follows. m]
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Remark 6.13. If p > 1, the proof of Theorem 6.1 is much simpler; it does not require
the second energy reduction of Proposition 6.9. The event M, in (6.79) is replaced by

My = N ME, € Fa, oo (6.89)
Eeo D (Hpp (xp).0)
so we have
P{Mp ) > 1 — (2002)4(100)*/ L™ Cy v, 7L = 1 — C[z,vpe,,zL’(”’”d- (6.90)
The event Uy, in (6.82) is replaced by
Z’/?L,xo - QL,X() m MVL,X() S fAL+(x0)9 (691)
where 9 y, is the event given in Proposition 6.3. It follows from (6.8) and (6.90) that
~ —2bd —(p—1)d —(p—-1d
PULxo) > 1= L7 =y L7070 > 1—cpy L7070, (6.92)

choosing b = 1 4 (p — 1)/2. The proof of Theorem 6.1 then proceeds as before, with
¥ = 1in (6.5) and (6.7).

Remark 6.14. If p > 3, we can prove a modified version of Theorem 6.1 that does
not require either Proposition 6.3 or Proposition 6.9; it suffices to use Lemma 6.6. The
conditions E € 7, and (6.5) are replaced by

EeT and Wy, (E) >e 0V, (6.93)

We replace the event M(LE))CO by M (LE))CO, the event that all the boxes in the standard ~/L-

covering of the annulus A, 1_(xo) are (@, E, m, ¢)-good, and set /T/I\(LE))CO =QifE ¢ 7.
We have

o~ —1
PME) ) > 1-200L29L78 =1 - 20'L~" 77 forE €. (6.94)
We set e e
Moo = N ME, € Far, oo (6.95)
EEU(I)(HAL(X()),&))
so we have
—_— p—1 -3
PIMy ) > 1-200L- " C y 7L > 1= C)y LT (6.96)

The event Uy, x, in (6.82) is replaced by
ZjiL,xg =TLx N M\L,xo € Far, (o) (6.97)
where Ty, is the event in Lemma 6.6. It follows from (6.23) and (6.96) that

P ) > 1 — L ~CdpmizNL _ o zLJT%d =117, (6.98)

d, Vpcr,
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The proof of Proposition 6.12 then proceeds as before, except that we use Lemma 6.6 and
boxes of side \/Z instead of L/100. We conclude, using Lemma 3.7, that if E satisfies
(6.93), then all the boxes in the standard «/Z-covering of the annulus Ay, ;_(xo) are
(@, E, m/60, ¢)-jgood. Applying Lemma 5.4, modified for boxes of side /L instead of
L /100, we obtain (cf. (6.6))

Wy (E) < e 1000VE, (6.99)
It follows that we have (cf. (6.7))
Wexo (E)Wexo L (E) < e 10VE  forall E € 7. (6.100)

This simpler result implies pure point spectrum with subexponential decay of eigenfunc-
tions, as well as dynamical localization.

7. Localization

In this section we derive all the usual forms of localization from Theorem 6.1. We will
assume only the conclusions of this theorem. More precisely, we will assume only the
existence of the events Uy, o satisfying the conclusions of Theorem 6.1 for some fixed
D, %, M. In particular, we do not assume the conclusions of the multiscale analysis, which
were the hypotheses for Theorem 6.1. We fix v > d/2, which will be generally omitted
from the notation.

7.1. Anderson localization and finite multiplicity of eigenvalues

A simple Borel-Cantelli Lemma argument based on Theorem 6.1 yields Anderson local-
ization and finite multiplicity of eigenvalues. We only need the events of Theorem 6.1 at
X0 = 0.

Theorem 7.1. Let H, be a generalized Anderson Hamiltonian on L*(R?). Let T ¢ R
be a bounded open interval, for which there is a scale Ly such that for all L > L there
exists an event Uy, o as in Theorem 6.1. Then the following holds with probability one:

(1) Hg has pure point spectrum in the interval L.
(1) If ¥ is an eigenfunction of Hy, with eigenvalue E € I, then { is exponentially
localized with rate of decay M, more precisely,

1Xx¥ )| < Co T ) e forall x € RY. (7.1)
(iii) Forall E € T we have
IXx Po(E)l2 < Cly pe ™1 forall x e RY. (7.2)
(iv) The eigenvalues of H,, in I have finite multiplicity:
tr Po(E) <oo forall E € 1. (7.3)
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Proof. Tt suffices to prove the theorem in every closed interval I C Z. We fix I, and pick
ascale Lo > Ly such that I C Z;, (see (6.3)). We introduce scales Ly = 2Ly for
k=1,..., and set Uy = Uy, 0. It follows from the Borel-Cantelli Lemma, using (6.4),
that

P{Uso} =1, where Uy = liminf . (7.4)
k— 00

Fix @ € Uyo; there exists k, € N such that w € Uy, for all k > k,. If E € I is a
generalized eigenvalue of Hy, i.e., @4 (E) # @, and hence W, o(E) > 0, we set

ko, g = min{k € N; k > k, and (6.5) holds for E and L (with xg = 0)} < oo. (7.5)
Given ¢ € B4 (E), it follows from (6.6) that
Ix0.ewll < IT~ ylle™™  forallk > ke k- (7.6)

If x € R? with x|l = Lk, ;. we can always find k > kg g such that x € 1_\Lk+1,Lk(0)’ SO

1wl < o, Wil < IT 'y lle™™Ee < |7~y |le=MIxl (7.7)

It follows that that v € H = L2(R¢) and satisfies (7.1). It now follows from (5.25) that
(5.26) holds with B = I. We conclude that H,, has pure point spectrum in /, and if ¥ is
an eigenfunction of H,, with eigenvalue E € [ it has the exponential decay given in (7.1).

The estimate (7.2) is an immediate consequence of (7.1), and implies (7.3). ]

7.2. Eigenfunctions correlations and dynamical localization

Another Borel-Cantelli Lemma argument based on Theorem 6.1 yields eigenfunctions
correlations. In particular, we obtain pure point spectrum, finite multiplicity of eigenval-
ues, SUDEC (summable uniform decay of eigenfunction correlations; see [GK6]) and
SULE (semi-uniformly localized eigenfunctions; see [DeRJLS, GK1, GK6]), and dy-
namical localization. We will need the events of Theorem 6.1 for all x € Z¢. We do not
assume or use Theorem 7.1.

Theorem 7.2. Let H, be a generalized Anderson Hamiltonian on L*(R?). Let T ¢ R
be a bounded open interval for which there is a scale L such that for all L > L5 and
x € 72 there exists an event UL x as in Theorem 6.1. Let ¢ > 0 and fix an open interval
I C I C T. The following holds with probability one:

(i) Forall E € I we have
Wex (E)Wep y(E) < Cop g cel¥IM " Te=3MIx1" gy i1y y e RY. (7.8)

(i) H, has pure point spectrum in the interval 1. Moreover, the eigenvalues of Hy, in I
have finite multiplicity.
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(iii) (SUDEC) Forall E € I and ¢, € Ran Py, (E) we have

IXxpll I Xyl
< C AT oI T e P e=aMix=yI"  foralix, y e RE. (7.9)

’
w,I,s'

In addition, for all E € I we have

1 X x Po(EDI21| Xy Po(E) |I2
<y to(E)elF i MII” gy e RE.(7.10)

(iv) (SULE) For all E € I there exists a center of localization y» g € R4 for all eigen-
functions with eigenvalue E, i.e., for all ¢ € Ran P,(E) we have

)/p 1
X2l < Ly T pllele sl P emaMiyorl” ol x e RY. (711

In addition, for all E € I we have

| X x Po(E) 2
< C A o(Eyelbe sl e iMixyo el for g x e R (7.12)
(v) We have

Nog(L)= Y trPy(E) < Core LYOUP forallL>1. (1.13)
Eel: lya£l<L

Proof. Fixe > 0.Givenk € N, we set Ly = 2% and consider the event
Tk = N Urx, (7.14)
xeZd; x|+ <t L]

where Uy, x, M, p, B are as in Theorem 6.1, and T > 0 is a constant to be chosen later. It

follows from (6.4) that
— ﬁﬁd

P{k} = 1= CameLy ™. (7.15)
Applying the Borel-Cantelli Lemma we conclude that
P{Jx} =1, where Jx = lim inf 7. (7.16)
—> 00

Thus, for @ € Ju there exists ki (w) € N such that @ € Uy, , for all k > kj(w) and
x € Z¢ with [|x||'T* < <L}.
We now fix @ € J and an open interval I C I C Z. We set

ki(w,I) =min{k e N; k > k1(w), k =2, [ C1;,}, (7.17)
where Z; is defined in (6.3). Given x € Z¢, we define k»(x) € N, k2 (x) > 2, by

2 1+ 2
rLkz(x)—l < “x” ¢ = 'L’Lk2(x), (718)
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when possible, and set k>(x) = 1 otherwise. We let k3(w, I, x) = max{k|(®, I), k2(x)};
note that k3(w, I, x) > 2. It follows from (6.7), using (5.13), that for all E € I and
y e R\ ALk;(w,Lx) (x) we have

1

Wox (E)We 4 (E) < 2"|lx — y[['e™2MIx=31" (7.19)

Ifye ALkg(w,l,x) (x), we have

W (E) Wy (E) = Wep x (E)We s (E)ezMIx=31" e=3Mllx—y1"

1 1 Iyr?
< 2VerMGLigw1x)” g= 3 MIx=yI" ~ pva2MLigw.r0-16— 3 Mlx—yIl”

(I+e)8/p _ 1 v .
2Vl ITTP g =3 Milx=yll if ks(w, I, x) = kp(x),
1 9
15729 Ll l? .
2ve2 " M@ n-1emy Mllx=yll ifks(w, I, x) = k1 (w, I),

A

(7.20)

where we used (5.6) and made an appropriate chice of the constant t. The estimate (7.8)
follows from (7.19) and (7.20). -

It follows from (7.8) that for all E € I and all ¢, ¥ € ©O4(E) we have, for all
x,y e R4,

Pl XYl < Cor eI Ty @I NT, el e sMll?
<2 Co 1 (O () IT B T 1O P sMIE—I” (7 01

Thus C:)w(E) C H forall E € I. It now follows from (5.25) that (5.26) holds with B = I,
and hence H,, has pure point spectrum in /. The estimate (7.9) follows from (7.21). The
estimate (7.10) is an immediate consequence of (7.9), and implies tr P, (E) < oo for all
Eel.

Given E € I with P,(E) # 0, we pick ¢ € Ran Py, (E), ¥ # 0, and pick y, g € z4
(not unique) such that

X yor Il = max||x ¥ (7.22)
yezd
It follows that (see [GK®6, Eq. (4.22)])
X
Wo.yo.r (E) = M >Cq>0. (7.23)
1Ty, ¥l

If P,(E) =0wetake yu E € 7% = 0. Then forall E € [ and all ¥ € Ran P,(E), (7.11)
and (7.12) follow from (7.8) (taking y = y, ) and (7.23).
To prove (7.13), note that it follows from (7.12) that for all E € I and R > 1 we have

1X R\ Asg(ye ) Po(EDI3 < > X5 Po(E) |12
x€ZN\A2r—1 Vo, E)

+e9/p _1 0
< Cole /Lw(l)ezlly“"E” e 2M(R/2)

) (+eyw/p _1 0
— C(/ulsezlbw’E” e 2M(R/2)" (7.24)
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There is a constant Dy, ; o > 1 such that forall L > 1,
R > Dy LT = ¢ 2T I MERDT <y (7.25)
Thus, given L > 1, letting Ry, := Dw,l,sL(l“'s)/;, we have
1X Ao, (o) Po(E)I3 > 1/2 whenever |lyo. £l < L. (7.26)
It follows, using also (5.21), that

Noa(L) <2 > Xtk o) PoENE 2 D X Asriny, 0 Po(E)3

Eel Eel
lyo,EIISL 1Yo, EII<L
< 20X Agpary, @ Po(DI3 < Cr(L + RL)? < Co1.e LYTOUP(7.27)

]
We can now prove dynamical localization with probability one.

Corollary 7.3. Let H, be a generalized Anderson Hamiltonian satisfying the hypotheses
of Theorem 7.2 in a bounded open interval I. Let ¢ > 0 and fix an open interval 1 C
I C I. The following holds with probability one:

(i) Forall E € I we have

15y Po(E)X il < C ;o to(E)eIXI ™ TemaMesl” o g x y e RY,
(7.28)
(ii)) We have

sup I Xy f(He) Po(I)Xx 1
feBy1

(+e)d/p _1 T
<l el e M prallx,y e RE. (7.29)

(iti) Forall b > 0 and xo € R? we have

(14+e)9/p
sup [[(X — x0)2? f (He) Po (D) X xll1 < Cop1.6.pe 017 (7.30)
feBy 1
and, in particular,
_i (14+e)d/p
sup|(X — x0)2%e Mo Py(D X xoll1 < Co1.epe!0l 777, (7.31)

teR

(iv) Forall E € I we have

X PE KL < CogzeelI TP emsMIel” - forgiix y e RY. (7.32)
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Proof. Since
1Xx Po(E)Xyll1 < IXxPo(E)lI21Xy Po(E) |2, (7.33)
(7.28) follows immediately from (7.10).
Given f € Bp,1, it follows from (5.37) and (7.28) that

Xy f(Ho)Po(DXxll1 < /Ilf(E)l Xy Po,o(E) X xll1 ditew (E)

&)/ p 1 |
< Cly p o (DI e My (7.34)

which is (7.29).

Given b > 0 and xo € R?, (7.30) and (7.31) follow from (7.29).

To prove (7.32), we proceed as in [GK6, Proof of Theorem 3]. We write I = oy, ao|,
let§ = ldist(l, R\ Z) > 0, and consider the open interval I1 = Joy — 8/2, 2 + 8/2[ C
T, CT.Wesets = 1/2(1+8/2) € 18/2, 1[and ¢’ = 1/2(1 + ¢) € ¢, 1[. We pick
an Ll-Gevrey function g of class 1/¢" on ]—1, 00[, such that 0 < g < 1, g = 1 on
]—00, a1 —§/2] and g = 0 on [ap + /2, oo[. (See [BGK, Definition 1.1]; such a function
always exists.) For all E € I we have

PE) = ¢*(Hy) + fr(Hy), where

(7.35)
FE@) = X)—00,£)(t) — &*(t) = fE(Hw)Po(1) € Bp1.
Since we proved (7.29), we have
1y fEHo)Xs Il < €y 1T 3M" forallx,y e RE (736)

The function g was chosen so that we can use [BGK, Theorem 1.4], obtaining

1Xxg(Ho) X y|l < Coe S forall x, y e RY. (1.37)
We also have, using (5.21),

+5/2 +68/2
X8 (Ho) Xy 1 < 1Xx /2 H) 21Xy /2 Ho) 12 < 1X2 P22 a1l PSP

2
= Cdy||vp7er”,012+5/2' (738)

It follows that
I1Xxg(Ho) Xy 13 < 1Xx8(Ho) Xy 1 Xxg (Ho) X yll1

—Clx—y[¢
< _
< Cailorts/2g© : (7.39)

Thus, given x, y € RY we get
X8 (Ho) Xyl < D IXxg(Hu) X2l X8 (Ha) Xy ll2
zeZ4
<c Y e 2Cel—zl g3 Gl < )= Cal—yIIf (7.40)
774
where C| = Cd,|\vp;r|\,a2+5/2,g and C», C3 depend only on d, || Vpgr||, 1,7,¢.
Since ¢ > /2, the estimate (7.32) now follows from (7.35)—(7.40). ]
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7.3. Localization in expectation

We will now derive eigenfunctions correlations estimates in expectation from Theorem
6.1, and use them to get dynamical localization in expectation, as well as pure point
spectrum, finite multiplicity of eigenvalues, etc., as in [GK6]. We do not assume or use
the results of Subections 7.1 and 7.2.

We recall that we pick v > d/2, and that W, , (E) and W, 1. (E), defined in (5.27)
and (5.28), are measurable functions of (w, E) for each x € R?, and satisfy (5.32).

Theorem 7.4. Let H, be a generalized Anderson Hamiltonian on L2 (Rd). Let7 C R
be a bounded open interval for which there is a scale L3 such that for all L > L3 and
x € R? there exists an event UL x as in Theorem 6.1. Then the following holds for all
open intervals I C I C I:

(i) Forall x,y € R? we have
E(|W o« (E)W e,y (E) L (rdu0 ()} < Clx — )77, (7.41)

with a constant C = Cy 5 9. M v.L5-
(i) For all xo € RY, L>1,ands € 10, pd/v[ we have

E{IW .10 (EYWar.10. LE) 1} o 1 gy iy} < CL™PI, (7.42)

with a constant C = Cy 5 9. M v, L35
(iii) Forall xg € R, s €10, pd/v[ and r € [0, pd — sv[ we have, for P-a.e. w,

W50 (EYW o 2kt (E)IL(1ajio(E)) < Co1,5027 7 fork=0,1,....
(7.43)
As a consequence, H,, has pure point spectrum in the interval I.

Remark 7.5. (ii) and (iii) hold for any s € ]0, 2p[, since in this case we can choose
v > d/2 such that pd — sv > 0.

We set
X =X, and WOL(E) =W, 51 (E) forkeN. (7.44)

We also set x ,(CO) = X, and W,(,g )X(E ) = W x(E) for convenience. Note that

o0
1=y x®. (7.45)
k=0

Proof of Theorem 7.4. We take L sufficiently large to ensure that / C Z; and we can
apply Theorem 6.1. We will prove (7.42); the correlation estimate (7.41) is proved in a
similar way. In this case, applying (5.32), (6.7), (5.29), (5.30), and (6.4), we have

_smML?
E{”Ww,xo(E)Ww,xo,L(E)||ioc(],d#w(E))} <e ML P{Q} + 2V L P{Q \ UL x}
< e 2MLY 4 psvpsvp—Pd < (] 4 oPdy ~(Pd=s) (7 46)
Using the bounds (5.29) and (5.30) we get (7.42) for all L > 1.
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Given r € [0, pd — sv[, it follows from (7.42) that

= Cd,u,p,s,r < 00, (747)

o0
E H 2K W o (EYWR (BN
{ ; @rxo (B W, (B) L°°<1,duw<E>>]

and (7.43) is an immediate consequence of (7.47) using the Borel-Cantelli Lemma. Given
o for which (7.43) holds and ¢ € H, it follows, using (5.27) and (5.28), that for p4-a.e.
E € I we have

1Xxo Po(E)BI 1 Pu(E)p < Y {1 Xag Po(EDPI 1 Xx.k Puo(E)p}

k=0
< Cors (1 =27 T TPL(E)P|> < 00, (748)
If Py, (E)$#0, we have || X, Po(E)@|l #0 for some xq € R?, and hence || P, (E)®||

< o0 by (7.48), so we conclude that P, (E)¢ € H = L?>(R%). Thus we have (5.26) with
B = I, and we conclude that H,, has pure point spectrum in /. O

Since H,,, as in Theorem 7.4, has pure point spectrum in the interval Z with probability
one, we might as well work with eigenfunctions, not generalized eigenfunctions. We use
the notation given in (5.38).

Corollary 7.6. Let H,, be a generalized Anderson Hamiltonian satisfying the hypotheses
of Theorem 7.4 in a bounded open interval Z. Let I C I C T be an open interval and
s €10, pd/v[. Then

(i) Forall xo € R and L > 1 we have

E{suplXag. Po(E) X} = ClE{supIXag.1 Poig ()} | = €2l =P4=,
Eel Eel

(7.49)
with Cy = Cl,d,u,uvp;,n,l,s and Cy = Cz,d,n Voorl. 7.9, M v, L3, 1,5°
(i) We have

E{sup(1 1 Po(EN3 r Po(E)) 7 < o0, (750)

and hence for P-a.e. ® the eigenvalues of Hy, in I are of finite multiplicity.
Proof. Recalling (5.35) and (5.36), we have

1 X xo.L Po(E) X xo 11 < 11X xg P (ED 1211 X xp. L P (E)DI2
=< Mw,xo(E)Ww,xo(E)Ww,xo,L(E)’ (7.51)

and (7.49) follows from (7.42) and (5.20).
In addition, we have

(10 Po(E)13(tr Pu(EN)*"? <3y Po (E) 2l XX Po(E) 2}
k=0

= X Word WE BN Hton(DF, 752)
k=0

so (7.50) follows from (7.42) and (5.20).
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Since for P-a.e. w the operator H,, has pure point spectrum in the interval I, it follows
from (7.50) that for P-a.e. @ we have

X2 Po(E) |13 tr Po(E) < 00 forall E € I, (7.53)

and hence, since X x, P, (E) # 0 for some x € RZ if P, (E) # 0, we have tr P,(E) < 00
forall E € I. O
We can now prove dynamical localization in expectation.

Corollary 7.7. Let H, be a generalized Anderson Hamiltonian satisfying the hypotheses

of Theorem 7.4 in a bounded open interval L. The following holds for all xo € R? and
open intervals I C I C I:

(1) Forall L > 1ands €10, pd/v[ we have

E{ sup 1.2/ (Ho) Po(D X 1]} = L7472, (7.54)
JeBy,
E{SHPHXXO,LP(,()E)XX()Hsl} < cL=Pd=), (1.55)
Eel

with C = Cy vy | 5.0.Mv.Cs. 15"
(ii) Givenb > 0, forall s € 10, p/(b + 1/2)[ we have

B sup (X = x0) £ (Ho) PoD X 1} = € < o, (7.56)
feBy,
Efsupll(X — x)"e™" Py(D) 1} | = € < o0, (7.57)
teR
IE{sup||<X —xo>de£E>xx0||‘i} < C < o0, (7.58)
Eel

with C = Cq vy | 5.0.M.v.C3.1b.s"
Proof. Given f € By, 1, it follows from (5.37) that

| X xo,L f (Ho) Po(I) X xyll1 < /|f(E)| 1 X x0, L Par,cg (BE) X xg 11 ditew, x ()
1
< sup |l X x, L Peo,xo (E) X xo 11 o, 0 (1) (7.59)
Eel

and hence (7.54) is an immediate consequence of (7.49).
The estimate (7.55) is proven similarly to (7.32). We introduce the decomposition
P‘f,E) = gz(H(,,) + fE(Hy) asin (7.35), and (7.55) follows from (7.35), (7.54), and (7.40).
Givenb>0and s €10, p/(b + 1/2)[, we pick v>d/2 such that s €10, p/(b + v/d)[.
Since

(e e)
X = x0)™ f (Ho) Po(D X xollt < Cap Y 24X E) f(Ho) Po(DXxyll1,  (7.60)
k=0

the estimate (7.56) follows from (7.54); (7.57) is a special case of (7.56). Similarly, (7.58)
follows from (7.55). m]
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8. Log-Holder continuity of the integrated density of states

We will now assume that the conclusions of the multiscale analysis (i.e., of Proposi-
tion 4.6) hold for all energies in a bounded open interval Z, and prove log-Holder conti-
nuity of the integrated density of states.

Given a generalized Anderson Hamiltonian H,, and xo € RY, we set

Ny (E) = Etr{x P Xy} for E € R. (8.1)

Theorem 8.1. Let Hy, be a generalized Anderson Hamiltonian on L2(R%). Consider a
bounded open interval T C R, m > 0, p > 0, and ¢ € 0, 1{, and assume there is a
scale L such that all scales L > L are (E, m, ¢, p)-good for all energies E € T. Then,
forall 0 < p < p, closed interval I C T with length |I| < 1/2, and xo € R?, we have

CA
[Nug(E2) = Nxy(ED| < -y forall By Exel.  (82)
|log|E> — E||

The proof of this theorem will use the Helffer—Sjostrand formula (see [Dav, Section 2.2]
and [HuS, Appendix B] for details). Given g € C*°(R), n € N, and a > 0, we define a
quasi-analytic extension of g of order n by

n
Bna(®) = {Z %g”ku)(iv)f}s(ﬂ), (83)
=r! (u)
where z = u + iv, () = (1 + [u/>)V/?, and & € C®(R) is such that 0 < & < 1,
Ew) = 1if |ul < 1,&w) = 0if |u| > 2. (We choose and fix £.) We set dg, ,(z) :=
(27)710:8n.4(2) du dv, with 3; = 8, + iy, and [dg, 4 (2)| == (27) 70284 (2)] du dv.
Proceeding as in the derivation of [HuS, Eq. (B.8)], we get, foralln € N, a > 0, and
s €10, n],

/R 1420 @1 1327 < Colighnsa < Cosmaxta™ @' "High,  (84)

with
n+1

f{ehnsa =) a b /R du (@) MgP @, gk = ko1 (85
r=0
In particular, if {{g}},, < oo, then for any self-adjoint operator K and a > 0 we have

g(K) = /R e (K =27, (8.6)
where the integral converges absolutely in operator norm.

Remark 8.2. In the usual Helffer—Sjostrand formula there is no parameter a in the def-
inition of the quasi-analytic extension, i.e., a = 1 in (8.3) (e.g., [Dav, HuS]). The proof
of Theorem 8.1 requires the insertion of the parameter a in (8.3), which is then chosen

. . 1-
according to the scale L—we will need a ~ el °.
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Proof of Theorem 8.1. Letn € 10, p[ and I C Z be a closed interval with length || <
1/2. Without loss of generality we assume n > ¢/(1 — ¢). We consider scales L > L
such that dist(/,R \ 7) > %e_Ll_g. Let I; C I be a closed interval of length |1y |
e~L'™° 50 it can be written as I} = [E — %e_Llfg, E + je_Llfg] with E € 1. Set

T =[E—e Ll Etel 1T Wefixh, € C°(R),0 < hy < 1, such that

supphy C Ir. hixs, =X, 1)1 < Cuelt™ forj=1,....d+2, (87

with Cy a constant independent of L.

Given xg € Rd, we let YV = )L, be the event that the box A; = Ap(xp) is
(o, E, m, ¢, n)-pgood (cf. Definition 3.15). Since all large scales L > L are (E, m, ¢, p)-
good by hypothesis, we have, using (3.60) and (5.18),

]Etr{Xxo Pa)(IL)XX()} = Etr{Xxth(H(u)Xxo}
_p=n
< B{tr{Xxohr (Ho) Xxo; VL)) + CzL™ 0, (8.8)

with a constant C7 = Cd,u,uvp;rn,supl'

Ifwe),, ALis (o, E, M1, ¢)-good by Lemma 3.16 (with M| given in (3.56)), and
hence hy (Hg, a,) = 0. Thus,

tr{Xxth(Hw)Xxo} = tr{Xxth(Hw)Xxo - Xxth(Hw,AL)Xxo} for w € yL- (89)

The right-hand-side of (8.9) may now be estimated by the Helffer—Sjostrand formula.
We apply the Helffer—Sjostrand formula to h (H,) and hp (Hy, A, ), witha > 1 in (8.3)
to be chosen later depending on L. We take ¢pg € CZ°(R) such that 0 < ¢pp < 1, ¢9 = 1
on Az ,(x0), and supp¢o C Ar 2410(xp). We have, with n € N to be chosen later (we
omit n and a from the notation),

Taf‘ = T(f’xo = Xxoh L (Hp) X xg — Xxoh (Ho, AL ) X xo

= [ ) Ut R0y = g R, )
— [ 4L Ut R0y = KR, ()

= [ R Dty Rl W ) Ry () (8.10)

where we used the geometric resolvent identity as in (2.36).

We now pick functions ¢; € C°(R),i = 1,...,2k — 1, where k € N will be chosen
later, such that 0 < ¢; < 1, ¢; = 1 on supp V¢, _1, and supp ¢; C Ar/2450,L/2—50(X0)-
Using the resolvent identity 2k — 1 times, noticing ¢; Xy, =0 fori =1,...,2k — 1, and
Writing X vy = Xsupp vep» WE get

XxgRo (D)W (0) = XxgRo (D)W (¢2x—1) Ro(2) W (P2x-2) . .. R ()W (1) Ry (2) W (d0)

= {XxgRo@HW (@2 1) Ro (D) W (P21 —2) HX vy _» Roo}
X AW (p2x—3) R (D)W (P2x—a)} . . . {X Vg, Ro (D HW (91)Ro ()W (¢0)}.  (8.11)
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Given ¢ € C°(R), it follows from (2.24) that for all @ € €2,
I(Ho+1D)"2W (@)l = W (@) (Ho+1) "2 < Cp := C1(1AGlloo+ VD lloo), (8.12)
where C| = C . Viael* Moreover, for all x € R9 we have
IXx(Hy+ 1) i, < C2 <00 with kg =[d/2]+1, (8.13)

the constant C, = Cd,llvperl\,U . being independent of x (cf. [KIKS, Egs. (130)-(136)]).
‘We have

1+ |z 14 |9z
I(Ho + DRI = 1+ — d <2+ m' |, (8.14)
13z] |Sz]
Using (8.12)—(8.14), we have
14 |Nz|
W (@) Ro ()W (di—1) | < Cy;Co_, | 2 + 5 ) (8.15)
and, for all measurable sets 2 C A, we get
14 [Nz
IXzRo(@ |k, < C2<2 + #)Ld. (8.16)

We now take k = ky as in (8.13), and note that we can choose the functions ¢;
e CPMR),i=0,1,...,2ks — 1,s0that Cy, < C3 = Cd,||vp;,|\’ a constant independent
of Ar.From (8.11), (8.15) and (8.16), we get, for all w € €2,

1 X x0 R (2) W (P0) Ro>, A1, (2) X xo 11
1+ |9z|

kg
|%|> 1390 Ro.n, D Xxoll, - (8:17)

< C4L% (2 +
with a constant C4 = (C2C32)kd = Cd,||Vper I, Uy -
We can now estimate tr Tcg‘. First, note that, with 7, = supZ < oo,
—_~ ) ~ 2 ~ I 2 2
supphy Clz=u+iviuels, ol < 2@} C T +i| —=(T0), ST |, (8.18)
a a a

and hence (recall a > 1)

14+ %z]  HZOH+1+I  Cr,
< <

24+ —— < — <
|Sz] |Sz] |3z

forall z € supp hy, (8.19)
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with Cz, = 5(1 +Z;). Combining (8.10), (8.17), (8.19), and (8.4), and using the fact
that {{g}},, in (8.5) is increasing in n, we get

w7y < / AL @] X5y Ra(2) W ($0) R, (2 X
R
2k, ~ R
< C4Cg LM / L @21 x99 R, 2 ()Xo |
R

2k,
< GO LM Yoty | max_lxwgy Ro,n, (Xl

zesupp hy,
= GG CFPLI D 2 | max_lxvonRo.a, D l} (820)
zesupp hy,
In view of (8.7) and (8.5), we have
(il < Caz TP =20, 7 O™ forallee Q. (8.21)

We are now ready to estimate the quantity in (8.9). We choose a = 2(I+)eLl_§, so it
follows from (8.18) that

l-¢

2 .
supp |z — E| <e X + (T, <2 EF (8.22)
o a

zesupphy,
Since n > ¢/(1 — ¢), we may take L large enough to ensure 2e-LF < e_le/(Hn), SO
Lemma 3.16 guarantees that, for large L, for all w € Yy the box Ay is (w, z, m/2, ¢)-
good for all z € supp iy . Thus, for large L,

_mlL
24

max_ || xveo Roa, )Xol < (L/24+11)%e™ 7% < e 10k, (8.23)

zesupp hy,

It follows from (8.9), (8.10), (8.20), and (8.23) that for all @ € Y1 we have, again taking
L large,

d 1- 1- m
tr{ X xohr (Ho) X xo} < C4Cdc%:rZL7(d+2)(2Cd,1+e(d+1)L g)(z(Lr)eL §)d+2e*mL
<e Wk, (8.24)
Combining (8.8) and (8.24), we get, for large L,

Etr{X vy Po(IL) X} < € 9% + CzL ™04 < 2071707, (8.25)

In particular, for all intervals J C I with sufficiently small length |J|, we have

_ rP—n
E tr{X x, Po(J) X x,} < 2Cz]|log|J|| =04, (8.26)

The estimate (8.2) follows. ]

Remark 8.3. The proof of Theorem 8.1 uses the pgood boxes of Definition 3.15 because
we need Lemma 3.16. It does not suffice to use good boxes.
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Appendix. A quantitative unique continuation principle for Schrodinger operators

In this appendix we rewrite Bourgain and Kenig’s quantitative unique continuation prin-
ciple for Schrodinger operators [BoK] in a convenient form for our purposes. We also give
an application of this quantitative unique continuation principle to periodic Schrodinger
operators, giving an alternative proof to Combes, Hislop and Klopp’s lower bound esti-
mate for spectral projections [CoHK1].

We use the norm |x| := (Z;l:”lez)l/z forx = (x1,...,xq) € R9; all distances
in R? will be measured with respect to this norm. Given x € RY and § > 0, we set
B(x,8) :={y € R?; |y — x| < 8} and B(x, §)* := B((x, 8) \ {x}. Given subsets A and
B of R?, and a function @ on set B, we set o4 := @X anp. In particular, given x € R4
and § > 0 we write ¢y 5 := @B(x,5/2)-

We also set

et
C1:eOII . note 2<e¥*<Cl<e<3. (A.1)

A.l. The quantitative unique continuation principle

The following theorem is our version of [BoK, Lemma 3.10].

Theorem A.l. Let G be an open subset of R. Let v € H*(G) and ¢ € L*(G) be
real-valued functions satisfying

—AY+Viy=¢ aeonG, (A2)

where V is a real measurable function on G with |V | < K < o0. Fix §, Dy, D such
that 0 < §/4 < Do < D. There exists a constant m = m(d, 8, Do) > 0 such that, given
a measurable set ® C G with diam ® < D, and x € G such that

R :=dist(x,®) > D and B(x,4CiR+2Dy) C G, (A.3)

where Cy is the constant in (A.1), we have

_ 2/3 —1\\ p4/3
(L4 K)IYe 13 + g 115 = RmAFKT Hog(Wal2lVely DR yq )2, (A4)

If the open set G is bounded, the second condition in (A.3) restricts the application of
Theorem A.1 to sites x € G sufficiently far away from the boundary of G. When G is
a box A, and (A.2) holds on A with either a Dirichlet or a periodic boundary condition,
Theorem A.1 can be extended to sites x € A near the boundary of A as in the following
corollary.

Corollary A.2. Consider the Schridinger operator Hy := —Ax + V on L2(A), where
A = Ap(x0) = x0 + 1—L/2, L/2[%, the open box of side L > 0 centered at xo € R,
A is the Laplacian with either a Dirichlet or a periodic boundary condition on A, and
V is a bounded potential on A with |V ||occ < K < 00. Let Y € D(Ap).
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(1) Fix 8, D such that 0 < §/4 < D, There exists a constant m = m(d, §, D) > 0 such
that, given a measurable set ® C A withdiam ® < D, and x € A such that

B(x,6/2) C A and R :=dist(x,®) > D, (A.5)
we have

_~ 2/3 —1y\ p4/3
(I+K) 1Y 5154+ QN (Hpy) a5 = R™MATKT Hogivalalivelly DRY) 402,
(A.6)

(ii) Let L > 2 and 0 < & < L. Then there exists a constant m = m(d, §) > 0 such that
forall x € A with B(x,8/2) C A we have

_~ 2/3\74/3
(14 K Ye sl + GO HA Y ANZ = LT 1y 13, (A.7)

We will prove Theorem A.l1 from Bourgain and Kenig’s Carleman-type inequality
estimate [BoK, Lemma 3.15], which we state in the next lemma.

Lemma A.3. Consider the function w(x) = ¢(|x|) on R4, where

o(s) = e b TG for € [0, 00l (A.8)

is a strictly increasing continuous function on [0, oo[, C* on 10, oo[. In particular,
1
C—|x| <w(x) <|x| forallx € B(0, 1), (A9)
1

where C is the constant in (A.1). Then there are positive finite constants Co and Cs,
depending only on d, such that for all « > Cj, and all real-valued functions f €
CX(B(0, 1)*) we have

a3/ w72 24y < 03/ w2 (Af)? dx. (A.10)
R4 R4

We refer to [BoK] for the proof. We shall use Lemma A.3 with a function f that is not
necessarily smooth, but f € leoc. However in our case f is compactly supported away
from zero, and thus we can use the following extension of Lemma A.3.

Lemma A4. Let f € H2(B(0, 1)) be real-valued with supp f C B(0, 1)*. Then (A.10)
holds for all o« > Cj.

Proof. This follows from Lemma A.3 by an approximation argument. Let f be as in the
lemma, pick & € C°(R) with fh(t)dt = 1,and set ;) (¢) := n’dh(t/n). Note that for n
small enough we have f, := f x h,; € CX°(B(0, 1)*). Thus, for such n’s, Lemma A.3
applies to f,. Then, as n goes to zero, fn converges to f in L%(R?) and Afy = (Af)*hy
to Af in LZ(R9). Since w~! is bounded above and below on B(0, R) \ B(0, §) for any
S > 0, the lemma follows. O

We now rewrite these lemmas as follows.
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Lemma A.5. Given ¢ > 0, there exists a function wy(x) = ¢, (|x]) on RY, where Qo is
a strictly increasing continuous real valued function on [0, oo[, C* on 10, oo, such that

1
x| S wp(x) < l|x| forall x € B(0, o), (A.11)
Cio ¢

and for all « > C and all real-valued functions f € H?(B(0, 0)) with supp f C
B(0, 0)* we have
a3/ wy 172 fdx < C3Q4f wy 2 (Af)* dx, (A.12)
R4 R4

where C1, Ca, C3 are the constants of Lemma A.3.
Proof. (A.12) follows from (A.10) by a change of variables, with w,(x) = w(x/g). O
We are ready to prove Theorem A.1 and Corollary A.2.

Proof of Theorem A.1. Without loss of generality we assume

[Yell2 = 1. (A.13)

Let xo € G satisfy (A.3) with R := dist(xg, ®), and set A := 4C; > 4. For
convenience we may assume xg = 0, in which case ® C B(0, AR), and take G =
B(0, AR + 2Dy).

Let us consider a function n € C&° (RY) given by n(x) = &(|x|), where £ is an
even C function on R such that

0<&(s)<1 foralls e R, (A.14)
£(s) =0 ifeither |s| <8/8or|s| > AR + Dy, (A.15)
E(s) =1 if8/4 <|s| < AR, (A.16)
1EV(s)| < Cqy foralls eR,j=1,2, (A.17)

where C4 = C4(d, §, Do) is a finite constant (independent of A and R). Note that [Vn| <
Ca/d and |An| < Cud.

We now apply (A.12) to the function nyr with o = 2AR. Given o > C, > 1 (without
loss of generality we take C, > 1), we get

3

o —1-2a,2,2 1 220 2
dx < — Ay dx
3C3Q4 /d wg 77 w — 3 /d U)Q ( (77 ))

< / w2 (AY)? dx + 4 / w2 VoV dx
R4 supp V)

+ f wy 2 (An)*y? dx, (A.18)
supp Vn

where supp Vi C {6/8 < |x| < §/4}U{AR < |x| < AR + Dy}.
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It follows from (A.2), recalling ||V ||oo < K, and using also the fact that w, < 1 on
supp 1, that

[ v @antar= [ iy - ot

521{2/ wg‘*%zwzdx+2/ w2t dx. (A19)
R4

Rd
‘We take
o =app?? where «p > max{(18C3K?)'/3, C»(8C; Dy)~*/3}, (A.20)
so we have
013 Ot3
= 9 >6K2. (A.21)
3C30* 3C3

Using (A.11) and (A.13), and recalling that diam ® < D < R, we have

142«
- 0
/Rd wy Pyt dx = (m) yells > A+, (A.22)

Combining (A.18), (A.19), (A.21), and (A.22), we conclude that

203
_OA1+20l E 4/ w§—2a|vn|2|vw|2dx
9C3 supp Vn

+/ wZ*Z“(An)szderz/ wy ntdx. (A23)
supp Vn supp 7
‘We have

/ wg XAV + (An*Y?) de
{AR=<|x|<AR+Do}

C]Q 2002
< cff(-) [ VPP + ) dx
AR {AR<|x|<AR+Do}

CIQ 202
< cs(—> / @+ 1+ Ky d
AR {AR—Dy<|x|<AR+2Dp}

2002
< cs(%> UIZG 12 + (1 + K)lvel)
AR

= CsQ2CD* 2(Igc 13 + (L + K)lIve3), (A.24)

where we used an interior estimate (e.g., [GKS, Lemma A.2]) and C5 = C5(d, 8, Dp) is
a constant.
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Similarly,
/ wg XAV + (An*y?) de
{8/8<Ix|<8/4)
< C3d*(887'C10)* 2 / @Vy? + y?) dx
{8/8<Ix|<8/4)
< Co(8571C10)* 2 / @+ (1 4+ K)y?) dx
{Ix1<8/2}
< C6(887'C10)** (L6 13 + (1 + K) [1Yo,5113)
= Co(1657'C1AR ™ (lI¢ 113 + (1 + K)[1¥o,5113)
= Co(6457' IR 2(lI¢g 113 + (1 + K)ll1vo.s113), (A25)
where C¢ = C¢(d, 8§, Do) is a constant.
In addition,
2 f wr 2 n e dx <2857 C10)* 26 13
supp 7
= 26487 1CIR)* 2| ¢6 113 (A.26)
Thus, if
5 Yel5(2C, = 256, = ¢, , :
or, equivalently,
wgd® = A CsCrA (1 + K) g, (A28)
we conclude that
3
,
%(4&)”2‘1 < C6(6487'CTRY**2(1 + K) 10,5113
+ ((Co +2)(6457 1 CIRY** 2 + Cs2C1H* g6 113
< C1(B187ICTRY (1L + K) Y0513 + lIEG113), (A.29)
where we used R > D > Dy, set C7 = max{Cs, C¢ + 2}, and took
B1 = max{64, 28(C; Do) '}. (A.30)
It follows that
0‘8 —2a 2 2
Csc—3(ﬂR) <A+ K)vosl; + 11EGl5, (A.31)
with a constant Cg = Cs(d, §, Dy, C;) > 0 and
B =1p187'Cr = max{165~'Cy, 2Do) '} (A.32)
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Since R > D and we require (A.20), to satisfy (A.28) it suffices to also require
4/3 _ _
420D 5 9.0 3(8C Do) CsC2 (1 + K)llvg 2, (A.33)

that is,
ao > (4C1 Do) (log4) ™ log(Co(1 + K) Y6113, (A.34)

where Cg = Co(d, §, D).
Thus we can satisfy (A.20) and (A.28) by taking

a=a R with a; = Cio(1 + K*? +log|vgll2), (A.35)

for some appropriate constant Cjgp = C1(d, §, D).
It now follows from (A.31), (A.32) and (A.35) that we can find a constant m =
m(d, §, Dy) > 0 such that

RMOHK Hloglva IR < (1 4 Ky |lyg 512 + 16613 forall R>D.  (A36)
O

Proof of Corollary A.2. Without loss of generality we take xo = 0, i.e., A = A7 (0). We
will prove the corollary for the case of a Dirichlet boundary condition, the modifications
for the (easier) case of a periodic boundary condition will be obvious.

Let A, be the Dirichlet Laplacian on A, and let V be a bounded potential on A with
[Vl < K < 00.Given ¢ € L2(A), we extend it to a function § € LIOC(Rd) by setting
@=¢on A and @ = 0on dA, and requiring that for all x € R? and j € {1,...,d} we
have

P(x) = —@(x + (L — 2xj)e;)), (A.37)
where {e;};=1,... 4 is the canonical orthonormal basis in RY, and for each t € R we define
fel—L/2,L/2]byt = kL +17 with k € Z. Note that if A’ = A;/(0) = ]—L'/2, L' /2[4,
we have

1Za13 = @n+ D% @all3  if L' = 2n + 1)L for some n € N. (A.38)

We also extend the potential V' to a potential V on RY by by setting V =V onA and
V = 0on dA, and requiring that for all x € R? and j € {1, ..., d} we have

V(x) = V(x + (L - 25)e)). (A.39)

In particular, | Voo = [|[V]loo < K.
Using the fact that for all eigenfunctions ¢ of A, (given explicitly in [RS, Eq. (113)
in Chapter XIII]) we have qb € C®(R%), we conclude that Y € D(A,) implies 1// €

loc (RY), satisfying

—AY + Vi =Hpyy ae inRe (A.40)

Now let §, D, ® be as in Corollary A.2(i), and set Dy = D. In view of (A.5) we may
assume D < R < +/d L without loss of generality. We take A1 = Ay, (0), with

= 2[[(4C + 2)Vd]] + 1)L < 29dL, (A.41)
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where [[#]] denotes the smallest integer greater than or equal to ¢, and we used (A.1). Fix
x € A satisfying (A.5), it follows that x satisfies (A.3) with G = A;. We now apply
Theorem A.1 with G = Aj. Given v € D(A,), ¥ satisfies (A.40) on A1, and hence
(A.4) yields

~ — _ 2/3 7 7 o=1 4/3 ~
(14 K) W53+ (Ha)a, |13 = RATET HloaWa 2Vl MRy oy - (A42)

with a constant m = m(d, 8, D) > 0. Taking into account (A.37), (A.38), and (A.41), we
get (A.6).

To prove Corollary A.2(ii), let L > 2,0 < § < L, and x € A with B(x,3/2) C A.
We take Ar = Ay, (0) with

Ly = 2[[6C) + )]+ DL <41L, (A.43)
where we used (A.1). We let ©, = A + 2Le™) C A,, where e ¢ {ej}j=1,...a 18

chosen such that R := dist(x, ®,) € [L,3/2L]. It follows that x satisfies (A.SQ)W;Vith
G = Ay, so we apply Theorem A.1 with G = Ay, Dg = §/2, D = L,and ® = O,.
Given ¥ € D(An), ¥ satisfies (A.40) on Ao, we have | ¥ ll2 = ¥ |2, and hence (A.4)

yields

~ — ) 2/3 4/3
(1+ K IYesl3 + ICHAY) A, 13 > BL/2) ™™ THETDCLD i 1, (A44)
with a constant m’ = m'(d, 8) > 0. Using (A.37), (A.38), and (A.43), we get (A.7) O

A.2. Application to Schrodinger operators with periodic potentials

Consider the Schrédinger operator H = —A+V on L?(R?), where A is the d-dimension-
al Laplacian operator and V is a bounded periodic potential with period g > 0, i.e., peri-
odic with respect to the group ¢gZ<. Without loss of generality we assume info (H) = 0,
ie,0eo(H) C[O0, o0l

Given 8 € 0, ], we set bs = X p(0,s/2), and consider the g-periodic bounded opera-
tor W on L?(R?) given by multiplication by the function

Ws(x) = Z bs(x — m). (A.45)

meqZ4

We also consider the corresponding finite volume operators. Given L € ¢gN, we set
H; = —-Arp+Von L2(AL, dx), where A; = Ar(0). Ay is the Laplacian with a periodic
boundary condition on A, which we identify with the torus R¢/LZ? in the usual way.
We will also write Hyo = H.

Combes, Hislop and Klopp [CoHK1, Section 4] proved that for every compact inter-
val I there exists a constant C; s = C4.v 1.5 > 0, such that for all L € gNU {oco} we have

X1(HL)Wsx1(HL) > Crsxi(HL). (A.46)
Their proof relies on the unique continuation principle for Schrédinger operators, and for
this reason does not provide much information on the constant C; s > 0. We will show
that the quantitative unique continuation principle can be used to prove a modified form
of their result with control of the constant.
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Theorem A.6. Let H = —A + V be a periodic Schridinger operator on L>(R?) as
above, with period q > 2, and let Ws be as in (A.45). Given Ey > 0, set Ko = Eo +
|V llso- There exists a constant m = m(d, §) > 0 such that, defining y > 0 by

y? = Lan g+ e, (A47)
for any closed interval I C [0, Eo] with |I| < 2y and any scale L € gN U {oo} we have

X1(H)Wsx 1 (H) = @D y*(1+ Ko) ™ x 1 (Hp). (A.48)

Proof. We will need to review Floquet Theory (see [RS, Section XIIL6]). We let Q0 =
A4(0) be the basic period cell, and Q = A25/4(0) the dual basic cell. We define the
Floquet transform

® -
F:L*RY, dx) —> /~ L2(Q, dx)dk = L?(Q, dk; L*(Q, dx)) (A.49)
0
by

dn _
(Fy)(k, x) = ( 9 > > ey —m), xeQ. ke, (A.50)

2
meqZ4

if ¥ has compact support; it extends by continuity to a unitary operator.
The g-periodic operator H is decomposable in this direct integral representation, more
precisely,

(&)
FHF* = /N Hy (k) dk, (A51)
0

where for each k € R? we set Hp(k) = —Ag(k) + V, where Ag(k) is the Laplacian
on Q with a k-quasi-periodic boundary condition, i.e., defined on functions of the form
Yx) = e ikx @(x) with ¢ a periodic function on Q. Note that Hp(0) = H,. Moreover,
if p € (27/q)Z%, then for all k € R? we have Ho(k+p) = e_ip'xHQ(k)eip"‘.

If L € gN, similar considerations apply to the operator H;,, which is g-periodic on
the torus A7 = R?/LZ?. The Floquet transform

Fr:L2(Ap, dx) > EB L%(Q, dx) (A.52)
keZz7dnQ

is a unitary operator now defined by

(Fr)k,x) = (q/L)* > e My (x —m), (A.53)

meqZinNAy

where x € Q, k € 2T”Zd N é, /S L2(A;,dx), and ¥ (x — m) is properly interpreted in
the torus A . We also have

FLHFf= @ How). (A.54)
ke 74n0
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It follows that for any bounded Borel function f we have

53}
FfH)F* = / f(HoUe)dk,  FLf(H)F; = €D  f(Hok). (AS5S)
Q kEZT”Zdr’@
Let us fix § € ]0,g] and Eg > 0. We set Ko = || Voo + Eo, 50 |V — Ellc < Ko
for all E € Iy. Given k € Q, we consider the Schrddinger operator Hg (k) on L2(Q),

and proceed similarly to the proof of Corollary A.2(ii). Since we have a k-quasi-periodic

boundary condition, we extend a function ¢ € L%(Q) to a function § € L120c (RY) by

requiring ¢ = ¢ on Q and P(x +m) = e *MG(x) forall x € R? and m € ¢qZ%. If
Y € D(Ag(k)), then ¢ € HIZOC(R‘I) and we have

AV + VY = Ho()y ae.inR% (A.56)
We apply Theorem A.1 with G = A, (0), where L, is given in (A.43) (recall L = g).
Proceeding as in the derivation of (A.44) and (A.7), using g > 2, we get
(1+ Kol (bsv) o3 + @D I (Ho () — EYp)ol} = ¢ "+ 1 1y o 3 (A5T)

for all E € [0, Eo], with a constant m = m(d, §) > 0.
We now take I = [E — ¢, E +¢] C [0, Eol. If ¥ = x;(Hg(k))y¥, we have

((Ho(k) — E)¥)oll2 < ellyoll, (A.58)
and it follows from (A.57) that

(1 + Kl bs ) oI + 2@ Iyl > g~ I+KT D0 1y o2 (A.59)
Thus, if ¢ < y, where y is given in (A.47), we get
(1+ Kol (bl = g 0K 1y 12 = @1y 2ol (A60)
that is,
X1(Ho(k)bsx 1 (Ho(k) > 41)7y*(1 4+ Ko)~' x 1 (Hg (k). (A.61)

Given an interval I, we have
@b
F{x1(H)Wsx ((H)}F* = /Q’ {X1(Hg(k))bsx (Hg(k))} dk, (A.62)

and, for L € gN,
Frdx(H)Wsx ((H)YF[ = @ {x1(Ho(k))bsx 1(Hg(k))}. (A.63)
ke 7dnQ

Thus for I = [E — ¢, E 4+ ¢] C [0, Ep], with ¢ < y, it follows from (A.61)—(A.63) that
for all L € gN U {oo} we have

X1 (HO)Wsx (HL) = 4Dy (1 + Ko) ™' x 1 (Hy), (A.64)
so we proved (A.48). O
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Remark A.7. Note that (A.48) holds for I = [0, E{] where
E? = 2(41) =g MO+ oot E?Dg*? (A.65)

Note that this equation has a solution E; > 0.
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