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Abstract. We consider functions u ∈ Wm,1
0 (�), where � ⊂ RN is a smooth bounded domain,

and m ≥ 2 is an integer. For all j ≥ 0 and 1 ≤ k ≤ m− 1 such that 1 ≤ j + k ≤ m, we prove that
∂ju(x)/d(x)m−j−k ∈ W

k,1
0 (�) with∥∥∥∥∂k( ∂ju(x)

d(x)m−j−k

)∥∥∥∥
L1(�)

≤ C‖u‖Wm,1(�),

where d is a smooth positive function which coincides with dist(x, ∂�) near ∂�, and ∂ l denotes
any partial derivative of order l.

Keywords. Hardy inequality, Sobolev spaces

1. Introduction

In [4, Theorem 1.2], the following one-dimensional Hardy type inequality was proven:
Suppose that u ∈ W 2,1(0, 1) satisfies u(0) = u′(0) = 0. Then u(x)/x ∈ W 1,1(0, 1) with
u(x)/x|0 = 0 and ∥∥∥∥(u(x)x

)′∥∥∥∥
L1(0,1)

≤ ‖u′′‖L1(0,1). (1)

As explained in [4], this inequality is somehow unexpected because one can con-
struct a function u ∈ W 2,1(0, 1) such that u(0) = u′(0) = 0 and neither u′(x)/x
nor u(x)/x2 belongs to L1(0, 1); however, as (1) shows, for such a u, the difference
u′(x)/x − u(x)/x2

= (u(x)/x)′ is in fact an L1 function, reflecting a “magical” cancela-
tion of the non-integrable terms.
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With estimate (1) already proven, it was natural to raise the following question: As-
sume � is a smooth bounded domain in RN with N ≥ 2 and let u be in W 2,1

0 (�). For
x ∈ �, denote by δ(x) = d(x, ∂�) the distance from x to the boundary of �, and let
d : � → (0,∞) be a smooth function such that d(x) = δ(x) near ∂�. Is it true that
u/d ∈ W

1,1
0 (�)? If so, can one obtain the corresponding Hardy-type estimate∫

�

∣∣∣∣∇(u(x)d(x)

)∣∣∣∣ dx ≤ C‖∇2u‖L1(�),

for some constant C?
The purpose of this work is to give a positive answer to the above question. In fact,

this is a special case of the following:

Theorem 1. Let� be a bounded domain in RN with smooth boundary ∂�. Given x ∈ �,
we denote by δ(x) the distance from x to the boundary ∂�. Let d : � → (0,∞) be a
smooth function such that d(x) = δ(x) near ∂�. Suppose m ≥ 2 and let j, k be non-
negative integers such that 1 ≤ k ≤ m − 1 and 1 ≤ j + k ≤ m. Then for every
u ∈ W

m,1
0 (�), we have ∂ju(x)/d(x)m−j−k ∈ W k,1

0 (�) with∥∥∥∥∂k( ∂ju(x)

d(x)m−j−k

)∥∥∥∥
L1(�)

≤ C‖u‖Wm,1(�), (2)

where ∂ l denotes any partial derivative of order l, and C > 0 is a constant depending
only on � and m.

The rest of this paper is organized into three sections. In Section 2 we introduce the
notation and give some preliminary results. In order to present the main ideas used to
prove Theorem 1, we begin in Section 3 with the proof for the special case m = 2; then
in Section 4 we provide the proof for the general case m ≥ 2.

2. Notation and preliminaries

Throughout, we denote by RN+ := {(y1, . . . , yN−1, yN ) ∈ RN : yN > 0} the upper
half-space, and BNr (x0) := {x ∈ RN : |x − x0| < r}; also, when x0 = 0, we write
BNr := B

N
r (0).

Let � be a bounded domain in RN with smooth boundary ∂�. Given x ∈ �, we
denote by δ(x) the distance from x to the boundary ∂�, that is,

δ(x) := dist(x, ∂�) = inf{|x − y| : y ∈ ∂�}.

For ε > 0, the tubular neighborhood of ∂� in � is the set

�ε := {x ∈ � : δ(x) < ε}.

The following well known result (see e.g. Lemma 14.16 in [5]) shows that δ is smooth in
some neighborhood of ∂�.
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Lemma 2.1. Let � and δ : � → (0,∞) be as above. Then there exists ε0 > 0, only
depending on �, such that δ|�ε0 : �ε0 → (0,∞) is smooth. Moreover, for every x ∈ �ε0

there exists a unique yx ∈ ∂� so that

x = yx + δ(x)ν∂�(yx),

where ν∂� denotes the unit inward normal vector field on ∂�.

Since ∂� is smooth, for fixed x̃0 ∈ ∂�, there exists a neighborhood V(x̃0) ⊂ ∂�, a radius
r > 0 and a map

8̃ : BN−1
r → V(x̃0) (3)

which defines a smooth diffeomorphism. Define

N+(x̃0) := {x ∈ �ε0 : yx ∈ V(x̃0)}, (4)

where ε0 and yx are as in Lemma 2.1. We denote by 8 : BN−1
r × (−ε0, ε0) → RN the

map defined by

8(ỹ, t) := 8̃(ỹ)+ yN · ν∂�(8̃(ỹ)), (5)

where ỹ = (y1, . . . , yN−1), and we write

N (x̃0) := 8(B
N−1
r × (−ε0, ε0)). (6)

Lemma 2.2. The map 8|
BN−1
r ×(0,ε0)

is a diffeomorphism and

N+(x̃0) = 8(B
N−1
r × (0, ε0)).

Proof. This is a direct corollary of the definition and Lemma 2.1. ut

Remark 2.1. The map 8|
BN−1
r ×(0,ε0)

gives a local coordinate chart which straightens the
boundary near x̃0. This type of coordinates are sometimes called flow coordinates (see e.g.
[3] and [6]).

From now on, C > 0 will always denote a constant only depending on� and possibly
the integer m ≥ 2. The following is a direct, but very useful, corollary.

Corollary 2.1. Let f ∈ L1(N+(x̃0)) and 8 be given by (5). Then

1
C

∫
BN−1
r

∫ ε0

0
|f (8(ỹ, yN ))| dyN dỹ ≤

∫
N+(x̃0)

|f (x)| dx

≤ C

∫
BN−1
r

∫ ε0

0
|f (8(ỹ, yN ))| dyN dỹ.
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Proof. Since 8|
BN−1
r ×(0,ε0)

is a diffeomorphism, we know that for all (ỹ, yN ) ∈ BN−1
r ×

(0, ε0) we have
1/C ≤ |detD8(ỹ, yN )| ≤ C.

The result then follows from the change of variables formula. ut

The following lemma provides us with a partition of unity in RN , constructed from the
neighborhoods N (x̃0). Consider the open cover of ∂� given by {V(x̃) : x̃ ∈ ∂�}, where
V(x̃) ⊂ ∂� is defined in (3). By the compactness of ∂�, there exist {x̃1, . . . , x̃M} ⊂ ∂�

so that ∂� =
⋃M
l=1 V(x̃l). Notice that by the definition of N (x̃0) in (6),

⋃M
l=1 N (x̃l) is

also an open cover of ∂� in RN . The following is a classical result (see e.g. [2, Lemma
9.3] and [1, Theorem 3.15]).

Lemma 2.3 (partition of unity). There exist functions ρ0, ρ1, . . . , ρM ∈ C
∞(RN ) such

that

(i) 0 ≤ ρl ≤ 1 for all l = 0, 1, . . . ,M and
∑M
l=0 ρi(x) = 1 for all x ∈ RN ,

(ii) suppρl ⊂ N (x̃l) for all l = 1, . . . ,M ,
(iii) ρ0|� ∈ C

∞

0 (�).

In order to simplify notation, we will denote by ∂ l any partial differential operator of order
l where l is a positive integer.1 Also, ∂i will denote the partial derivative with respect to
the i-th variable, and ∂2

ij = ∂i ◦ ∂j .

Remark 2.2. We conclude this section by showing that, to prove Theorem 1, it is enough
to prove estimate (2) for smooth functions with compact support. Suppose u ∈ Wm,1

0 (�).
Then there exists a sequence {un} ⊂ C∞0 (�) so that ‖u − un‖Wm,1(�) → 0 as n → ∞.
In particular, after maybe extracting a subsequence, one can assume that

∂ lun→ ∂ lu a.e. in � for all 0 ≤ l ≤ m.

Since d is smooth, the above implies that for a.e. x ∈ � and all j ≥ 0 and 1 ≤ k ≤ m− 1
with 1 ≤ j + k ≤ m,

∂k
(

∂ju(x)

d(x)m−j−k

)
=

∂j+ku(x)

d(x)m−j−k
+ ∂ju(x)∂k

(
1

d(x)m−j−k

)
= lim
n→∞

∂j+kun(x)

d(x)m−j−k
+ ∂jun(x)∂

k

(
1

d(x)m−j−k

)
= lim
n→∞

∂k
(
∂jun(x)

d(x)m−j−k

)
.

Therefore, Fatou’s Lemma applies and we obtain∥∥∥∥∂k( ∂ju(x)

d(x)m−j−k

)∥∥∥∥
L1(�)

≤ lim inf
n→∞

∥∥∥∥∂k( ∂jun(x)

d(x)m−j−k

)∥∥∥∥
L1(�)

.

1 In general, one would say: “For a given multi-index α = (α1, . . . , αN ), we denote by ∂α the
partial derivative of order l = |α| = α1 + · · · + αN ”. Since we only care about the order of the
operator, it makes sense to abuse the notation and identify α with its order |α| = l.
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Once (2) has been proven for un ∈ C∞0 (�), we get∥∥∥∥∂k( ∂jun(x)

d(x)m−j−k

)∥∥∥∥
L1(�)

≤ C‖un‖Wm,1(�),

and thus we can conclude that∥∥∥∥∂k( ∂ju(x)

d(x)m−j−k

)∥∥∥∥
L1(�)

≤ C lim inf
n→∞

‖un‖Wm,1(�) = C‖u‖Wm,1(�).

Finally estimate (2) together with the fact that ∂jun(x)/d(x)m−j−k ∈ C∞0 (�) and

C∞0 (�)
W k,1(�)

= W
k,1
0 (�) implies that ∂ju(x)/d(x)m−j−k ∈ W k,1

0 (�).

3. The case m = 2

We begin this section by proving estimate (2) in Theorem 1 for � = RN+ , m = 2, j = 0
and k = 1.

Lemma 3.1. Suppose that u ∈ C∞0 (R
N
+). Then for all i = 1, . . . , N ,∥∥∥∥∂i(u(y)yN

)∥∥∥∥
L1(RN+ )

≤ 2‖u‖W 2,1(RN+ )
.

Proof. Consider first the case i = N . This is similar to (1), but for completeness, we
provide the proof. Notice that we can write

∂

∂yN

(
u(ỹ, yN )

yN

)
=

1
y2
N

∫ yN

0

∂2

∂y2
N

u(ỹ, t)t dt,

hence by integrating we obtain∫
RN−1

∫
∞

0

∣∣∣∣ ∂∂yN
(
u(ỹ, yN )

yN

)∣∣∣∣ dyN dỹ ≤ ∫
RN−1

∫
∞

0

1
y2
N

∫ yN

0

∣∣∣∣ ∂2

∂y2
N

u(ỹ, t)

∣∣∣∣t dt dyN dỹ
=

∫
RN−1

∫
∞

0

∣∣∣∣ ∂2

∂y2
N

u(ỹ, t)

∣∣∣∣t ∫ ∞
t

1
y2
N

dyN dt dỹ

=

∫
RN−1

∫
∞

0

∣∣∣∣ ∂2

∂y2
N

u(ỹ, t)

∣∣∣∣t ∫ ∞
t

1
y2
N

dyN dt dỹ

=

∫
RN−1

∫
∞

0

∣∣∣∣ ∂2

∂y2
N

u(ỹ, t)

∣∣∣∣ dt dỹ,
hence ∫

RN+

∣∣∣∣ ∂∂yN
(
u(y)

yN

)∣∣∣∣ dy ≤ ∫
RN+

∣∣∣∣∂2u(y)

∂y2
N

∣∣∣∣ dy. (7)
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When 1 ≤ i ≤ N − 1, we need to estimate
∫
RN+

1
yN

∣∣ ∂u
∂yi
(y)
∣∣ dy. To do so, consider the

change of variables y = 9(x), where

9(x1, . . . , xi, . . . , xN ) = (x1, . . . , xi + xN , . . . , xN ). (8)

Notice that detD9(x) = 1, hence∫
RN+

1
yN

∣∣∣∣∂u(y)∂yi

∣∣∣∣ dy = ∫
RN+

1
xN

∣∣∣∣ ∂u∂yi (9(x))
∣∣∣∣ dx.

Observe that if we let v(x) = u(9(x)), we can write

1
xN

∂u

∂yi
(9(x)) =

∂

∂xN

(
v(x)

xN

)
−

∂

∂yN

(
u(y)

yN

)∣∣∣∣
y=9(x)

. (9)

Applying estimate (7) to u and v yields∫
RN+

1
xN

∣∣∣∣ ∂u∂yi (9(x))
∣∣∣∣ dx ≤ ∫

RN+

∣∣∣∣ ∂∂xN
(
v(x)

xN

)∣∣∣∣ dx + ∫
RN+

∣∣∣∣ ∂∂yN
(
u(y)

yN

)∣∣∣∣
y=9(x)

∣∣∣∣ dx
=

∫
RN+

∣∣∣∣ ∂∂xN
(
v(x)

xN

)∣∣∣∣ dx + ∫
RN+

∣∣∣∣ ∂∂yN
(
u(y)

yN

)∣∣∣∣ dy
≤

∫
RN+

∣∣∣∣∂2v(x)

∂x2
N

∣∣∣∣ dx + ∫
RN+

∣∣∣∣∂2u(y)

∂y2
N

∣∣∣∣dy.
Finally, notice that

∂2v(x)

∂x2
N

=
∂2u(y)

∂y2
N

∣∣∣∣
y=9(x)

+ 2
∂2u(y)

∂yi∂yN

∣∣∣∣
y=9(x)

+
∂2u(y)

∂y2
i

∣∣∣∣
y=9(x)

. (10)

Thus, after reversing the change of variables when needed, we obtain∫
RN+

1
yN

∣∣∣∣∂u(y)∂yi

∣∣∣∣ dy = ∫
RN+

1
xN

∣∣∣∣ ∂u∂yi (9(x))
∣∣∣∣ dx

≤ 2
∫
RN+

∣∣∣∣∂2u(y)

∂y2
N

∣∣∣∣ dy + 2
∫
RN+

∣∣∣∣ ∂2u(y)

∂yi∂yN

∣∣∣∣ dy + ∫
RN+

∣∣∣∣∂2u(y)

∂y2
i

∣∣∣∣ dy
≤ 2‖u‖W 2,1(RN+ )

. ut

Recall (see Section 2) that for every x̃0 ∈ ∂�, we have the neighborhood N+(x̃0) ⊂ �

given by (4) and the diffeomorphism 8 : BN−1
r × (0, ε0) → N+(x̃0) given by (5).

Moreover, we know that δ(x) is smooth over N+(x̃0).

Lemma 3.2. Let x̃0 ∈ ∂� and N+(x̃0) be given by (4), and suppose u ∈ C∞0 (N+(x̃0)).
Then for all i = 1, . . . , N ,∥∥∥∥∂i(u(x)δ(x)

)∥∥∥∥
L1(N+(x̃0))

≤ C‖u‖W 2,1(N+(x̃0))
.
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Proof. We first use Corollary 2.1 to obtain∫
N+(x̃0)

∣∣∣∣∂i(u(x)δ(x)

)∣∣∣∣ dx ≤ C ∫
BN−1
r

∫ ε0

0

∣∣∣∣∂i(u(x)δ(x)

)∣∣∣∣
x=8(ỹ,yN )

∣∣∣∣ dyN dỹ.
Let v(ỹ, yN ) = u(8(ỹ, yN )). We claim that∫

BN−1
r

∫ ε0

0

∣∣∣∣∂i(u(x)δ(x)

)∣∣∣∣
x=8(ỹ,yN )

∣∣∣∣ dyN dỹ
≤ C

N∑
j=1

∫
BN−1
r

∫ ε0

0

∣∣∣∣∂j(v(ỹ, yN )yN

)∣∣∣∣ dyN dỹ. (11)

We will prove (11) at the end, so that we can conclude the argument. Since v ∈
C∞0 (B

N−1
r × (0, ε0)) ⊂ C

∞

0 (R
N
+), we can apply Lemma 3.1 to obtain∫

BN−1
r

∫ ε0

0

∣∣∣∣∂j(v(ỹ, yN )yN

)∣∣∣∣ dyN dỹ ≤ C‖v‖W 2,1(BN−1
r ×(0,ε0))

.

Notice that the chain rule and the fact that 8 is a diffeomorphism imply that for all
1 ≤ i, j ≤ N ,

|∂2
ijv(ỹ, yN )| ≤ C

( N∑
p,q=1

|∂2
pqu(x)|x=8(ỹ,yN )| +

N∑
p=1

|∂pu(x)|x=8(ỹ,yN )|
)
,

so with the aid of Corollary 2.1, we can write

‖v‖
W 2,1(BN−1

r ×(0,ε0))

≤ C

∫
BN−1
r

∫ ε0

0

(∑
p,q

|∂2
pqu|x=8(ỹ,yN )| +

∑
p

|∂pu|x=8(ỹ,yN )|
)
dyN dỹ

≤ C

∫
N+(x̃0)

(∑
p,q

|∂2
pqu(x)| +

∑
p

|∂pu(x)|
)
dx ≤ C‖u‖W 2,1(N+(x̃0))

.

To conclude, we need to prove (11). To do so, notice that u(x) = v(8−1(x)), and
δ(x) = c(8−1(x)), where c(ỹ, yN ) = yN . Thus, by using the chain rule we obtain

∂i

(
u(x)

δ(x)

)∣∣∣∣
x=8(ỹ,yN )

=

N∑
j=1

∂j

(
v(y)

c(y)

)∣∣∣∣
y=(ỹ,yN )

· ∂i(8
−1)j (8(ỹ, yN )),

and since 8 is a diffeomorphism, we obtain∣∣∣∣∂i(u(x)δ(x)

)∣∣∣∣
x=8(ỹ,yN )

∣∣∣∣ ≤ C N∑
j=1

∣∣∣∣∂j(v(y)c(y)

)∣∣∣∣
y=(ỹ,yN )

∣∣∣∣.
Estimate (11) then follows by integrating the above inequality. ut
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We end this section with the proof of the main result when m = 2.

Proof of Theorem 1 when m = 2. When j = 1 and k = 1 the estimate (2) is trivial.
Taking into account Remark 2.2, we only need to prove∥∥∥∥∂i(u(x)d(x)

)∥∥∥∥
L1(�)

≤ C‖u‖W 2,1(�) (12)

for u ∈ C∞0 (�) and i = 1, . . . , N . To do so, we use the partition of unity given by Lemma
2.3 to write u(x) =

∑M
l=0 ul(x) on � where ul(x) := ρl(x)u(x), l = 0, 1, . . . ,M . Now,

without loss of generality, we can assume that d(x) = δ(x) for all x ∈ �ε0 , and that
d(x) ≥ C > 0 for all x ∈ suppρ0 ∩�. Notice that in suppρ0 ∩�, we have

u0/d ∈ C
∞(suppρ0 ∩�) with ‖u0/d‖W 1,1(suppρ0∩�)

≤ C‖u0‖W 1,1(sup ρ0∩�)
.

To take care of the boundary part, notice that ul ∈ C∞0 (N+(x̃l)) for l = 1, . . . ,M , so
Lemma 3.2 applies and we obtain∥∥∥∥∂i(ul(x)δ(x)

)∥∥∥∥
L1(N+(x̃l))

≤ C‖ul‖W 2,1(N+(x̃l)) for all l = 1, . . . ,M.

To conclude, notice that ∂i(u(x)/d(x)) =
∑M
l=1 ∂i(ul(x)/δ(x)) + ∂i(u0(x)/d(x)) on �

and that |ρl(x)|, |∂iρl(x)| and |∂2
ijρl(x)| are uniformly bounded for all l = 0, 1, . . . ,M ,

therefore∥∥∥∥∂i(u(x)d(x)

)∥∥∥∥
L1(�)

≤

M∑
l=1

∥∥∥∥∂i(ul(x)δ(x)

)∥∥∥∥
L1(N+(x̃l))

+

∥∥∥∥∂i(u0(x)

d(x)

)∥∥∥∥
L1(suppρ0∩�)

≤ C
( M∑
l=1

‖ul‖W 2,1(N+(x̃l)) + ‖u0‖W 1,1(suppρ0∩�)

)
≤ C

( M∑
l=1

‖u‖W 2,1(N+(x̃l)) + ‖u‖W 1,1(suppρ0∩�)

)
≤ C‖u‖W 2,1(�),

thus completing the proof. ut

4. The general case m ≥ 2

To prove the general case, we need to generalize Lemma 3.1 in the following way

Lemma 4.1. Suppose u ∈ C∞0 (R
N
+). Then for all m ≥ 1 and i = 1, . . . , N we have∥∥∥∥∂i( u(y)

ym−1
N

)∥∥∥∥
L1(RN+ )

≤ C‖u‖Wm,1(RN+ )
.

Proof. The case m = 1 is a trivial statement, whereas m = 2 is exactly what we proved
in Lemma 3.1. So from now on we suppose m ≥ 3. We first notice that when i = N , the
result follows from the proof of [4, Theorem 1.2] when j = 0 and k = 1. We refer the
reader to [4] for the details.
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When 1 ≤ i ≤ N − 1, we can proceed as in the proof of Lemma 3.1. Define v(x) =
u(9(x)) where 9 is given by (8). Notice that when m ≥ 3, instead of equation (9) we
have

1

xm−1
N

∂u

∂yi
(9(x)) =

∂

∂xN

(
v(x)

xm−1
N

)
−

∂

∂yN

(
u(y)

ym−1
N

)∣∣∣∣
y=9(x)

,

and instead of (10) we have

∂mv(x)

∂xmN
=

m∑
l=0

(
m

l

)
∂mu(y)

∂ym−li ∂ylN

∣∣∣∣
y=9(x)

.

Hence the estimate is reduced to the already proven result for i = N . We omit the details.
ut

We also have the analog of Lemma 3.2.

Lemma 4.2. Let x̃0 ∈ ∂� and N+(x̃0) as in Lemma 3.2. Let u ∈ C∞0 (N+(x̃0)). Then for
all m ≥ 1 and i = 1, . . . , N we have∥∥∥∥∂i( u(x)

δ(x)m−1

)∥∥∥∥
L1(N+(x̃0))

≤ C‖u‖Wm,1(N+(x̃0))
.

Proof. The proof involves only minor modifications from the proof of Lemma 3.2, which
we provide in the next few lines. Corollary 2.1 gives∫

N+(x̃0)

∣∣∣∣∂i( u(x)

δ(x)m−1

)∣∣∣∣ dx ≤ C ∫
BN−1
r

∫ ε0

0

∣∣∣∣∂i( u(x)

δ(x)m−1

)∣∣∣∣
x=8(ỹ,yN )

∣∣∣∣ dyN dỹ.
If v(ỹ, yN ) = u(8(ỹ, yN )), then∫

BN−1
r

∫ ε0

0

∣∣∣∣∂i( u(x)

δ(x)m−1

)∣∣∣∣
x=8(ỹ,yN )

∣∣∣∣ dyN dỹ
≤ C

N∑
j=1

∫
BN−1
r

∫ ε0

0

∣∣∣∣∂j(v(ỹ, yN )
ym−1
N

)∣∣∣∣ dyN dỹ. (13)

Just as for (11), estimate (13) follows from the fact that 8 is a smooth diffeomorphism.
Since v ∈ C∞0 (B

N−1
r × (0, ε0)) ⊂ C

∞

0 (R
N
+), we can apply Lemma 4.1 and obtain∫

BN−1
r

∫ ε0

0

∣∣∣∣∂j(v(ỹ, yN )
ym−1
N

)∣∣∣∣ dyN dỹ ≤ C‖v‖Wm,1(BN−1
r ×(0,ε0))

.

Notice that by the chain rule and the fact that 8 is a smooth diffeomorphism, we get

|∂mv(ỹ, yN )| ≤ C
∑
l≤m

|∂ lu(x)|x=8(ỹ,yN )|,
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where the left hand side is a fixed m-th order partial derivative, and on the right hand side
the summation contains all partial derivatives operators of order l ≤ m. Again with the
aid of Corollary 2.1, we can write

‖v‖
Wm,1(BN−1

r ×(0,ε0))
≤ C

∑
l≤m

∫
BN−1
r

∫ ε0

0
(|∂ lu|x=8(ỹ,yN )|) dyN dỹ

≤ C
∑
l≤m

∫
N+(x̃0)

|∂ lu(x)| dx ≤ C‖u‖Wm,1(N+(x̃0))
. ut

And of course we have

Lemma 4.3. Suppose u ∈ C∞0 (�). Then for all m ≥ 1 and i = 1, . . . , N we have∥∥∥∥∂i( u(x)

δ(x)m−1

)∥∥∥∥
L1(�)

≤ C‖u‖Wm,1(�).

We omit the proof, because it is almost a line by line copy of the proof of the estimate
(12) in Section 3 using the partition of unity. We are now ready to prove Theorem 1.

Proof Theorem 1. For any fixed integer m ≥ 3, just as in the case m = 2, it is enough to
prove the estimate (2) for u ∈ C∞0 (�). Notice that since

‖∂ju‖Wm−j,1(�) ≤ ‖u‖Wm,1(�) for all 0 ≤ j ≤ m,

it is enough to show ∥∥∥∥∂k( u(x)

d(x)m−k

)∥∥∥∥
L1(�)

≤ C‖u‖Wm,1(�) (14)

for u ∈ C∞0 (�) and 1 ≤ k ≤ m− 1. We proceed by induction on k. The case k = 1 cor-
responds exactly to Lemma 4.3. If one assumes the result for k, then we have to estimate,
for i = 1, . . . , N ,

∂i∂
k

(
u(x)

d(x)m−k−1

)
= ∂k

(
∂iu(x)

d(x)m−k−1

)
− (m− k − 1)∂k

(
u(x)∂id(x)

d(x)m−k

)
.

Using the induction hypothesis for m̃ = m− 1 yields∥∥∥∥∂k( ∂iu(x)

d(x)(m−1)−k

)∥∥∥∥
L1(�)

≤ C‖∂iu‖Wm−1,1(�) ≤ C‖u‖Wm,1(�);

on the other hand, by using the induction hypothesis and the fact that d is smooth in �,
we obtain ∥∥∥∥∂k(u(x)∂id(x)d(x)m−k

)∥∥∥∥
L1(�)

≤ C‖u∂id‖Wm,1(�) ≤ C‖u‖Wm,1(�).
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Therefore ∥∥∥∥∂i∂k( u(x)

d(x)m−k−1

)∥∥∥∥
L1(�)

≤ C‖u‖Wm,1(�),

thus concluding the proof. ut
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