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Abstract. Let G be a finite group with a Sylow 2-subgroup P which is either quaternion or semi-
dihedral. Let k be an algebraically closed field of characteristic 2. We prove the existence of exotic
endotrivial kG-modules, whose restrictions to P are isomorphic to the direct sum of the known
exotic endotrivial kP -modules and some projective modules. This provides a description of the
group T (G) of endotrivial kG-modules.

1. Introduction

Suppose that G is a finite group and that k is a field of characteristic p. Endotrivial kG-
modules appear in a natural way in many areas surrounding local analysis of finite groups.
They were introduced by Dade [15] who classified them in the case whereG is an abelian
p-group. A complete classification of endotrivial modules over the modular group rings of
p-groups was completed just a few years ago [6, 11, 12, 13]. The class of all endotrivial
modules for a given group G gives rise to an abelian group T (G) (with respect to the
tensor product). This group is finitely generated and carries with it all of the information
of the classification. The group T (G) is of interest because it is an important part of the
Picard group of self-equivalences of the stable category of finitely generated kG-modules.
The so-called self-equivalences of Morita type are induced by tensoring with endotrivial
modules. For this reason, it is of interest to extend the classification beyond p-groups to
general finite groups. Some progress has been made in that direction [7, 8, 9, 10, 22].

In this paper we consider two out-lying situations where the answer to a different sort
of problem is sought. In the classification of endotrivial modules over p-groups, there
are exactly two cases in which the group T (P ) of endotrivial modules for a noncyclic p-
group P has torsion elements. The two cases occur when p = 2 and P is either quaternion
(meaning ordinary or generalized quaternion) or semi-dihedral. For a group G having
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such a P as its Sylow 2-subgroup, the question is whether the restriction map T (G) →
T (P ) is surjective. Specifically, we need to know if the torsion elements in T (P ) are in
the image of the restriction. Do these modules lift or extend in some way from P toG ? In
this paper we show that the answer is yes, the restriction map is surjective. In the course
of the investigation we are able to find much more information about the structure of
T (G) and about the modules themselves. The only other case in which T (P ) has torsion
elements occurs when P is cyclic, and this case was treated in [22].

It is somewhat surprising that the two cases require very different methods. In the
situation where the Sylow 2-subgroup P of G is quaternion and the unique involution
in P is central in G, we use a general method for finding exotic endotrivial modules as
subquotients of �2(k), the second syzygy of the the trivial module k. This method has
been used in earlier papers [6, 8]. There are two means for extending this result to general
groups with quaternion Sylow 2-subgroups. One involves invoking the Brauer–Suzuki
Theorem [5] on the structure of such groups. The more elementary method is to note that
the centralizer of the involution of P is a strongly 2-embedded subgroup of G and we
can apply a theorem of [22]. These results appear in Sections 3 and 4, after a general
introduction to endotrivial modules in Section 2. Moreover, we prove in Section 5 that
there are always torsion endotrivial modules which are uniserial.

By contrast, the key to the semi-dihedral case is the theory of Auslander–Reiten se-
quences or almost split sequences. In Section 6, we construct exotic endotrivial mod-
ules over finite groups having a semi-dihedral Sylow 2-subgroup, by using a certain
Auslander–Reiten sequence which has as middle term the heart Rad(Rk)/Soc(Rk) of the
projective cover Rk of the trivial module. The existence of this sequence is related to the
fact that the component of the stable Auslander–Reiten quiver containing �(k) has tree
class D∞. This is an important result due to K. Erdmann [20, 18, 19]. The fact that the
end terms of this Auslander–Reiten sequence are endotrivial is due to C. Bessenrodt [3].

2. Preliminaries

Throughout this paper, we let k denote an algebraically closed field of prime characteris-
tic p. From Section 3 onwards, we will assume that p = 2. In addition, we assume that
all modules are finitely generated. In this section, we briefly recap some needed basics.

Given a finite group H , we write k for the trivial kH -module, or, whenever H needs
to be clarified, we write kH instead. Unless otherwise specified, the symbol ⊗ is the
tensor product⊗k of the underlying vector spaces, and in the case of kH -modules,H acts
diagonally on the factors. If M is a kH -module, and ϕ : Q → M its projective cover,
then we let �(M) denote the kernel of ϕ. Likewise, if ϑ : M → Q is the injective hull
ofM (recall that kH is a self-injective ring soQ is also projective), then�−1(M) denotes
the cokernel of ϑ . Inductively, with �1(M) = �(M), we set �n(M) = �(�n−1(M))

and �−n(M) = �−1(�−n+1(M)) for all integers n > 1.
If G is a finite group of order divisible by p, then a kG-module M is endotrivial if

its endomorphism algebra Endk(M) is isomorphic (as a kG-module) to the direct sum
of the trivial module kG and a projective kG-module. In other words, a kG-module M is
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endotrivial if and only ifM∗⊗M ∼= k⊕(proj), whereM∗ denotes the k-dual Homk(M, k)

of M , and (proj) some projective module.

Lemma 2.1. Let G be a finite group of order divisible by p.

(1) Let M be a kG-module. If M is endotrivial, then M splits as the direct sum M� ⊕

(proj) for an indecomposable endotrivial kG-module M�, which is unique up to iso-
morphism.

(2) The relation
M ∼ N ⇔ M� ∼= N�

on the class of endotrivial kG-modules is an equivalence relation. We let T (G) be
the set of equivalence classes. Every equivalence class contains a unique indecom-
posable module up to isomorphism.

(3) The tensor product induces an abelian group structure on the set T (G) by

[M] + [N ] = [M ⊗N ].

The zero element of T (G) is the class [k] of the trivial module, consisting of all
modules of the form k⊕ (proj). The inverse of the class of a module M is the class of
the dual module M∗.

The group T (G) is called the group of endotrivial kG-modules. It is known to be a finitely
generated abelian group. In particular, the torsion subgroup T T (G) of T (G) is finite. The
torsion-free rank of T (G) can be described explicitly (see [8]).

We often use the following fact (see [11, Lemma 2.9]).

Lemma 2.2. For a kG-module M , if the restriction of M to every elementary abelian
p-subgroup of G is an endotrivial module, then M is an endotrivial module.

We use the following easy result.

Lemma 2.3. Let P be a Sylow p-subgroup ofG and letM be an endotrivial kG-module.

(1) If p is odd, then Dim(M) ≡ ±1 (mod |P |).
(2) If p = 2, then Dim(M) ≡ ±1 (mod |P |/2).

Proof. By the very definition, we have Dim(M)2 = Dim(Endk(M)) = 1 + n, where n
is the dimension of a projective module. Since a projective module is free on restriction
to P , its dimension must be a multiple of |P |. Hence

Dim(M)2 ≡ 1 (mod |P |).

Thus Dim(M) is a square root of 1 modulo |P | and the result follows. ut

When p = 2, the congruence Dim(M) ≡ |P |/2 ± 1 (mod |P |) does not happen very
often, but it does occur when P is either quaternion or semi-dihedral. We shall say that an
endotrivial kG-module M is exotic if M is indecomposable and if Dim(M) ≡ |P |/2+ 1
(mod |P |), where P is a Sylow 2-subgroup of G (and p = 2 of course).

The motivation for the present research stems from the classification of endotrivial
modules over finite p-groups. The results we need are summarized as follows.
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Theorem 2.4. Let P be a nontrivial finite p-group.

(1) If P is cyclic of order ≥ 3, then T (P ) ∼= Z/2Z. If P is cyclic of order 2, then
T (P ) = {0}.

(2) If P is generalized quaternion, then T (P ) ∼= Z/2Z⊕ Z/4Z. The summand Z/2Z is
generated by the class of an indecomposable endotrivial module U which is exotic
and self-dual. The second summand is generated by the class of the syzygy �(k) of
the trivial module, which has order 4.

(3) If P is semi-dihedral, then T (P ) ∼= Z/2Z ⊕ Z. The summand Z/2Z is generated
by the class of an indecomposable endotrivial module U which is exotic and self-
dual. The second summand is generated by the class of the syzygy �(k) of the trivial
module, which has infinite order.

(4) If P is not cyclic, generalized quaternion, or semi-dihedral, then T (P ) is torsion-free.

Statement (1) is easy (see [15]). Statement (2) is proved in [11], and also implicitly in [16].
Statement (3) is proved in [11], while (4) is one of the main results in [13].

Remark 2.5. If P is a semi-dihedral group, then the module U in statement (3) is unique
up to isomorphism, because T T (P ) ∼= Z/2Z, so U is the only nontrivial indecomposable
endotrivial module such that U ∼= U∗. Moreover,�2n(U) is again exotic for every n ∈ Z,
but not self-dual unless n = 0.

Remark 2.6. If P is a quaternion group, then there are two possible exotic generators for
the summand of T (P ) isomorphic to Z/2Z in statement (2), namely, U and �2(U). The
subgroup of elements of order 2 in T (P ) is a Klein four group Z/2Z⊕ Z/2Z, generated
by [U ] and [�2(k)]. There are three elements of order 2, one of them being [�2(k)]. The
other two are the classes of the two exotic modules U and �2(U). Note that we have
[�2(U)] = [U ] + [�2(k)] in T (P ). The modules �i(k) (for 1 ≤ i ≤ 3) have dimension
|P | ± 1, the two exotic kP -modules U and �2(U) have dimension |P |/2 + 1, and the
two remaining indecomposable endotrivial kP -modules (which are actually �(U) and
�3(U)) have dimension |P |/2− 1.

We end this section with a review of a few facts about support varieties that will be
needed, particularly in the next section.

The cohomology ring H∗(G, k) is a finitely generated, graded commutative k-algebra
and has a maximal ideal spectrum VG(k) which is a homogeneous affine variety. If M
is a finitely generated kG-module, then its cohomology ring Ext∗kG(M,M) is a finitely
generated module over H∗(G, k), and we let J (M) denote its annihilator in H∗(G, k).
The support variety of M is the set VG(M) = VG(J (M)) ⊆ VG(k) of all maximal
ideals that contain J (M). Hence, VG(M) is a closed homogeneous subvariety of VG(k).
The support varieties have some important properties. The properties were developed by
many people. Proofs and history can be found in the standard references [2, 14].

One of the most valuable tools in the theory of module varieties is the theorem of
Quillen which says that

VG(k) =
⋃
E∈EA

res∗G,E(VE(k))
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where EA is the collection of all elementary abelian p-subgroups of G. A consequence
of this theorem is the theorem of Chouinard which states that a finitely generated kG-
module M is projective if and only if it is projective on restriction to every elementary
abelian p-subgroup ofG. This result is included in the theorem that follows. This theorem
presents most of the properties of support varieties that will be needed in the paper.

Theorem 2.7. Suppose that L, M and N are kG-modules.

(1) The module M is projective if and only if VG(M) = {0}.
(2) A kG-moduleM is projective if and only if its restriction to every elementary abelian

p-subgroup of G is projective.
(3) VG(M∗) = VG(�n(M)) = VG(M) for any integer n.
(4) VG(M ⊕N) = VG(M) ∪ VG(N).
(5) VG(M ⊗N) = VG(M) ∩ VG(N).
(6) If the sequence 0→ L→ M → N → 0 is exact, then VG(M) ⊆ VG(L) ∪ VG(N).
(7) VG(M) =

⋃
E∈EA res∗G,E(VE(M)).

(8) Suppose that VG(M) = V1 ∪ V2 where V1 and V2 are closed sets such that V1 ∩ V2
= {0}. Then M ∼= M1 ⊕M2 where VG(M1) = V1 and VG(M2) = V2.

(9) Suppose that ζ ∈ Hn(G, k), and let ζ̂ : �n(k)→ k be a cocycle representing ζ . Let
Lζ denote the kernel of ζ̂ . Then VG(Lζ ) = VG(ζ ).

3. The second syzygy of the trivial module

In this section we analyze the structure of the second syzygy �2(k) of the trivial module
for a finite group G with a quaternion Sylow 2-subgroup P . We assume that the unique
involution z of P is central inG. This assumption is required by the methods that we use.
However, statements made about�2(k) or about any module in the principal block of kG
hold without the assumption on the centrality of z, because we know from the Brauer–
Suzuki Theorem [5] that the image of z is central in G/O2′(G) and O2′(G) is the kernel
of the principal block of kG. In addition, from now on, we assume that the characteristic
of k is 2.

We set G = G/〈z〉 and H = H/〈z〉 for any subgroup H of G containing z. We also
write x for the image of x ∈ G in G. For a kG-module V , let

V0 = {v ∈ V | (z− 1)v = 0}.

Note that V0 is a kG-module. Moreover, V0 contains the submodule (z− 1)V and multi-
plication by z− 1 induces an isomorphism V/V0 ∼= (z− 1)V .

Applying this to the module M = �2(k), we notice that

M↓G
〈z〉
∼= �

2(k〈z〉)⊕ R = k〈z〉 ⊕ R

where R is a projective k〈z〉-module. Since (z−1)R = R0, we deduce thatM0/(z− 1)M
is one-dimensional. Thus M = �2(k) has a filtration

{0} ⊂ (z− 1)M ⊂ M0 ⊂ M
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with the top M/M0 isomorphic to the bottom (z − 1)M and with a one-dimensional
middle module M0/(z− 1)M (which is actually the trivial module, see Proposition 3.5).

Proposition 3.1. Suppose that P is a quaternion 2-group. Let M = �2(k). Then M0 ∼=

�2(kP ) as kP -modules.

Proof. This result could be proved by exhibiting a presentation for the module �2(k)

and meticulously constructing an isomorphism. However, we prove the result using more
theoretical methods which illuminate some of the ideas in this paper.

First suppose that |P | = 8, so that P is a Klein four group. Then Dim(M) = 9
and because the restriction of M to 〈z〉 is the direct sum of a trivial module and four
copies of k〈z〉, we see that Dim(M0) = 5. Also Dim(Soc(M0)) = Dim(Soc(M)) = 2,
and M0 has no nonzero free kP -direct summand, because such a summand would lift
to a free direct summand of M as a kP -module (by Proposition 4.2 below), but M is
indecomposable. By the classification of the indecomposable modules over a Klein four
group (see [2, Theorem 4.3.3]), we know that �2(kP ) is, up to isomorphism, the only
indecomposable kP -module whose dimension is 5 and whose socle has dimension 2. So
we need only show that M0 is indecomposable.

So assume that M0 decomposes. If M0 had a 4-dimensional direct summand, it could
not be free, hence the dimension of its socle would be at least 2 and so Dim(Soc(M)) ≥ 3,
which is a contradiction. Thus M0 would be a direct sum of a module of dimension 3
(which is isomorphic to �(kP )) and a module of dimension 2. But M0 is defined over F2
and the decomposition must also exist over F2. However, every indecomposable 2-dimen-
sional F2P -module has the form F2↑

P

H
for H a subgroup of index 2 in P . In particular,

on restriction to H , this 2-dimensional module is the direct sum of two trivial modules.
Now H = 〈x〉 for some element x of order 4 in P . Since H = 〈x〉 is cyclic,

�2(kH ) ∼= kH , and therefore M↓PH is the direct sum of a trivial module and two copies
of kH . It follows that M0↓

P

H
is the direct sum of a trivial module and two copies of kH .

Therefore, we cannot have two trivial modules as direct summands and the proposed de-
composition of M0 is not possible. This completes the proof in the case where |P | = 8.

Assume now that |P | > 8. In this situation, P is a dihedral group and P has two
quaternion subgroups E1 and E2 of order 8 such that E1 and E2 are representatives of
the two conjugacy classes of maximal elementary abelian 2-subgroups of P . Let E be
either E1 or E2. The restriction of M to a kE-module has the form

M↓PE
∼= �

2(kE)⊕ F

where F is a free kE-module. Since E is quaternion of order 8, it follows from the first
part of the proof that the restriction of M0 to E has the form

M0↓
P

E
∼= �

2(kE)⊕ (z− 1)F.

Here, (z − 1)F is a free kE-module. Consequently, M0 is an endotrivial kP -module
since its restriction to every elementary abelian 2-subgroup is an endotrivial module (see
Lemma 2.2). By the classification of endotrivial modules over dihedral 2-groups [11],
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M0 ∼= �2(kP ) ⊕ Q for some projective module Q. However, the dimension of M0 is
|P |/2+ 1, which is also the dimension of �2(kP ). Hence Q = 0 and M0 ∼= �

2(kP ). ut

Continuing with the module M = �2(k) as in Proposition 3.1, we require also some
further information on the decomposition of the kP -module (z−1)M , which is a maximal
submodule of M0.

Proposition 3.2. Suppose that P is a quaternion 2-group. Let M = �2(k).

(1) The module (z − 1)M decomposes as (z − 1)M ∼= N1 ⊕ N2 with Dim(N1) =

Dim(N2) = |P |/4.
(2) N1 and N2 are indecomposable.
(3) If |P | = 8, then the support varieties VP (N1) and VP (N2) are distinct lines in

VP (k)
∼= k2.

(4) If |P | > 8, then VP (N1) and VP (N2) are lines in the two different components of
the variety VP (k). In particular, N1 is free on restriction to any element of one of
the conjugacy classes of maximal elementary abelian subgroups, and N2 is free on
restriction to any elementary abelian subgroup in the other conjugacy class.

Proof. Suppose first that |P | = 8. We follow exactly the arguments of [6]. We know
that Dim((z− 1)M) = 4 and that any direct summand of (z − 1)M must have even
dimension since it is free on restriction to 〈x〉 for any x in P . Consequently, there are
at most two summands and the variety VP ((z − 1)M) is the union of at most two lines.
However, the variety does not contain any F2-rational line since such a line corresponds
to a subgroup 〈x〉 and we know that 〈x〉 acts freely on the module. On the other hand,
(z − 1)M is defined over F2 and hence its variety is F2-rational. The only possibility
is that the variety is the zero set of a quadratic polynomial which is irreducible over F2.
Over k, such a polynomial splits into two distinct linear factors. It follows that the module
(z − 1)M is the direct sum of two submodules (by Theorem 2.7(8)), the variety of each
being the zero set of one of the factors. Hence, this case is settled.

We now suppose that the order of P is greater than 8. We consider the exact sequence

0→ (z− 1)M → M0
ζ
−→ k→ 0

where ζ is the natural quotient map. By Proposition 3.1, M0 ∼= �
2(kP ) and so ζ repre-

sents a cohomology element in

Ext2
kP
(k, k) ∼= HomkP (�

2(k), k).

Hence, by Theorem 2.7(9), VP ((z − 1)M) = VP (ζ ) is the zero locus of the cohomology
element ζ (note that (z − 1)M = Lζ in the standard notation, used for instance in [6]
and [14]).

Let x denote the central involution in the dihedral group P . Because x acts freely on
(z − 1)M , the sequence splits on restriction to 〈x〉 and it follows that the restriction of ζ
to the cyclic center 〈x〉 of P is not zero.

Now we follow the method of [6]. Because the element ζ restricts to a nonnilpotent
element of the cohomology ring of the center of P , VP (ζ ) is the union of two nonempty
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closed sets which are in different components of the variety VP (k). These components
correspond to the two conjugacy classes of maximal elementary abelian subgroups of P
and hence we get the decomposition of (z−1)M into the direct sum of two submodulesN1
and N2 having the properties stated in (4).

To prove the statement about dimensions, we note that

Dim(�2(k)) = |P | + 1 so that Dim((z− 1)M) = |P |/2.

The two modules N1 and N2 must have the same dimension because there is an outer au-
tomorphism of P of order 2 which fixes z, preserves the module �2(k), and interchanges
the two components of the variety. Hence it must interchange the modules N1 and N2. So
Dim(Ni) = |P |/4 for i = 1, 2.

Finally we prove the indecomposability of N1 and N2. Let H be a cyclic subgroup
of P of index 2. Then M↓PH ∼= �

2(k)⊕ (free) = k⊕ (free) and therefore ((z− 1)M)↓P
H

is a free kH -module of dimension |P |/2 = 2|H |. Thus ((z − 1)M)↓P
H
∼= kH ⊕ kH , a

direct sum of two indecomposable modules of dimension |P |/4. This forces N1 and N2
to be indecomposable. ut

Remark 3.3. We have chosen for simplicity to work over an algebraically closed field k,
but we note that if P is quaternion of order 8, then (z−1)M decomposes asN1⊕N2 when-
ever the base field k contains cubic roots of unity, because the two lines in VP ((z− 1)M)
are not F2-rational but they are defined over F4. In contrast, if P is quaternion of order
at least 16, then the two lines in VP ((z − 1)M) are F2-rational and the decomposition
(z− 1)M = N1 ⊕N2 holds over any field k of characteristic 2.

Now we pass from 2-groups to the general case.

Proposition 3.4. Let G be a group with a quaternion Sylow 2-subgroup P and assume
that the unique involution z of P is central in G. Let M = �2(k).

(1) The support variety VG((z−1)M) has two components V1 and V2 and the kG-module
(z−1)M decomposes as (z−1)M ∼= L1⊕L2, where VG(L1) = V1 and VG(L2) = V2.

(2) For i = 1, 2, we haveLi↓GP ∼= Ni⊕Qi , whereNi is the kP -module of Proposition 3.2
and Qi is a projective kP -module.

(3) Dim(Li) is congruent to |P |/4 modulo |P |/2.
(4) L1 and L2 are indecomposable.

Proof. We know that M↓GP ∼= �
2(kP )⊕ (proj) and consequently

((z− 1)M)↓G
P
= (z− 1)(M↓GP ) ∼= (z− 1)�2(kP )⊕ (proj)

as kP -modules. So by Proposition 3.2, the support variety of the restriction
((z− 1)M)↓G

P
is the union of two components. We first note that these components are

not conjugate under the action ofG. If |P | = 8, this is because the variety VP ((z− 1)M)
consists of two lines which cannot be conjugate under any automorphism of the quater-
nion group. Likewise, if |P | > 8, the components of VP ((z − 1)M) are not conjugate



Endotrivial modules 165

because there is no element of G which interchanges the two conjugacy classes of maxi-
mal elementary abelian subgroups of the dihedral group P . Consequently, in either case,
the support variety VG((z − 1)M) also has two components V1 and V2. Hence the kG-
module (z− 1)M must decompose as a direct sum

(z− 1)M = L1 ⊕ L2

in such a way that VG(Li) = Vi for i = 1, 2 (see Theorem 2.7(8)).

By construction, we have Li↓G
P
= Ni⊕Qi whereNi is the module of Proposition 3.2

andQi is a projective kP -module. Since Dim(Ni) = |P |/4 and Dim(Qi) is a multiple of
|P |/2, we deduce that Dim(Li) is congruent to |P |/4 modulo |P |/2.

To prove the indecomposability of L1 and L2, we assume that Li = L′i ⊕ L
′′

i . Since
Li↓

G

P
= Ni ⊕Qi and Ni is indecomposable, we get L′i↓

G

P
= Ni ⊕Q

′

i and L′′i ↓
G

P
= Q′′i ,

where Q′i and Q′′i are projective kP -modules. Therefore L′′i is projective, because P is a
Sylow 2-subgroup ofG. By a result to be proved in the next section (see Proposition 4.2),
this implies that the kG-module M also has a projective direct summand R such that
(z− 1)R ∼= L′′i . But M is indecomposable, so R = 0, hence L′′i = 0 and L′i = Li . ut

Proposition 3.4 will be sufficient for the construction of exotic endotrivial modules and
the determination of the group T (G) of endotrivial modules in Section 4. However, for
more specific information about endotrivial modules, we shall need the following result.

Proposition 3.5. LetG be a group with a quaternion Sylow 2-subgroup P . Then we have
the following.

(1) �4(k) ∼= k.
(2) �2(k) is self-dual.
(3) Assume that the unique involution z of P is central in G. Let M = �2(k). Then the

one-dimensional module M0/(z− 1)M is the trivial module.

Proof. (1) The result is well-known, but we sketch an argument. Let H = NG(P ). The
Green correspondents of �4(kG) and kG are �4(kH ) and kH respectively. So it suf-
fices to prove the result over H . If |P | > 8, then Aut(P ) is a 2-group and therefore
NG(P )/PCG(P ) = 1, that is, H = PCG(P ). Then a complement C of P in H cen-
tralizes P and H = P × C. Now C acts trivially on �4(kH ) and so this module is
inflated from �4(kP ). Finally it is well-known that for a quaternion group P , we have
�4(kP ) ∼= k (see for instance [16, Proposition 3.16]). If |P | = 8, then NG(P )/PCG(P )
has order 1 or 3. Again PCG(P ) = P × C and C is normal in H . Since C acts trivially
on �4(kH ), we are left with the group H/C which is isomorphic to either P or P o C3.
In the latter case, a direct computation (by hand as in [16] or using MAGMA [4]) shows
that �4(k) ∼= k.

(2) It follows from (1) that �2(k) ∼= �−2(k), that is, �2(k) ∼= �2(k)∗.
(3) We know thatM0/(z−1)M is one-dimensional (becauseM↓G

〈z〉
∼= k⊕(free)). Now

one-dimensional modules are detected on restriction to H = NG(P ). This follows either
from the Green correspondence or from the fact that H [G,G] = G (because H [G,G] is
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normal in G because it contains [G,G] and selfnormalizing since it contains H ). There-
fore, it suffices to prove the result for H . As in part (1), C acts trivially and it suffices to
prove the result for H/C, which is isomorphic to either P or P o C3. In the former case
any one-dimensional module is trivial, while in the latter case we conclude by a direct
computation. ut

4. Groups with quaternion Sylow 2-subgroup

LetG be a group with a quaternion Sylow 2-subgroup P . Our purpose in this section is to
determine the group T (G) of endotrivial modules for G. We continue to assume that k is
an algebraically closed field of characteristic 2. We let z be the unique involution of P and
H = CG(z). Then H is strongly 2-embedded in G and therefore we have the following
result.

Lemma 4.1. The restriction map ResGH : T (G)→ T (H) is an isomorphism. Moreover,
the Green correspondent of any indecomposable endotrivial kH -module is an indecom-
posable endotrivial kG-module.

Proof. The first statement is proved in [8, Proposition 2.8] or [22, Lemma 2.7]. The sec-
ond statement is actually implicit in the first. The thing to notice here is that H contains
the normalizer of P and if g ∈ G, g /∈ H then P ∩ gPg−1

= {1}. Hence the Mackey for-
mula tells us that ifM is an indecomposable kH -module, then (M↑GH )↓

G
H
∼= M⊕ (proj).

This is the essence of the proof of the first statement of the lemma. The statement about
Green correspondents is now obvious. ut

Thus it suffices to determine T (H). Now H has a nontrivial normal 2-subgroup 〈z〉.
Therefore, by [22, Lemma 2.6], there is an exact sequence

0→ X(H)→ T (H)
ResHP
−−−→ T (P )

where X(H) denotes the subgroup of T (H) consisting of the classes of all one-dimen-
sional kH -modules. Clearly X(H) is isomorphic to Hom(H, k∗), hence to the 2′-part of
the abelianization of H .

We are going to prove that the restriction map ResHP is surjective and we do this by
constructing exotic endotrivial modules for the group H . This is based on a construction
which was already used in [13] and [6], and which takes the following form in charac-
teristic 2. Note that, for p-groups, part (2) appears already in [11, Lemma 3.3] and [13,
Lemma 5.3].

Proposition 4.2. Let G be a group with a central involution z and let G = G/〈z〉. Let
M be a kG-module such that M↓G

〈z〉
∼= k ⊕ (proj). Assume that L is a direct summand

of (z− 1)M .

(1) There exist submodules {0} ⊆ V ⊆ U ⊆ M such that the subquotientW = U/V has
the properties that W↓G

〈z〉
∼= k ⊕ (proj) and (z− 1)W ∼= L.
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(2) If L is a projective kG-module, then W ∼= K ⊕ Q for some one-dimensional kG-
module K and some projective kG-module Q such that (z− 1)Q ∼= L. Moreover, Q
is also isomorphic to a direct summand of M (as a kG-module).

Proof. Set (z− 1)M = L⊕ L′. As in Section 3, we let M0 = {m ∈ M | (z− 1)m = 0}.
Multiplication by z − 1 induces an isomorphism from M/M0 to (z − 1)M and M has a
filtration

{0} ⊂ (z− 1)M ⊂ M0 ⊂ M

with the topM/M0 isomorphic to the bottom (z−1)M and with a one-dimensional middle
module M0/(z− 1)M (because M↓G

〈z〉
∼= k⊕ (free)). Moreover, M/M0 = N ⊕N

′, with
N ∼= L and N ′ ∼= L′ via multiplication by z− 1.

Let U be the inverse image of N in M , so that U/M0 = N and (z − 1)U = L. Let
W = U/L′. As before, let W0 = {w ∈ W | (z − 1)w = 0}. By construction we have
isomorphisms of kG-modules

(z− 1)W ∼= L and W/W0 ∼= N ∼= L.

In particular, the rank of multiplication by z − 1 on W is the dimension of L, and the
dimension of W is 2 Dim(L) + 1. It follows that W↓G

〈z〉 is the direct sum of a trivial
module and a free module (because the rank of multiplication by (z − 1) is 0 on k and is
1 on k〈z〉, and these are the only indecomposable k〈z〉-modules). This proves (1).

Assume now that L is projective, so that (z − 1)W is a projective kG-module. Then
(z− 1)W is also an injective kG-module, and the exact sequence

0→ (z− 1)W → W0 → W0/(z− 1)W → 0

splits and W0 has a one-dimensional submodule K such that W0 = (z − 1)W ⊕ K . We
claim that the kG-module Q = W/K is projective. It suffices to prove this on restriction
to a Sylow p-subgroup P of G. Notice that Q0 = (z − 1)Q = (z + 1)Q and this is
isomorphic to (z − 1)W , hence projective over kP . Moreover Q/(z + 1)Q ∼= (z + 1)Q
via multiplication by z+ 1. Now P is a p-group and (z+ 1)Q is free over kP . Therefore

|P | · Dim
((∑

x∈P

x
)
· (z+ 1)Q

)
= Dim((z+ 1)Q).

Since
∑
u∈P u = (

∑
x∈P x)(z+ 1), it follows that

|P |Dim
((∑

u∈P

u
)
·Q
)
= 2|P |Dim

((∑
x∈P

x
)
·(z+1)Q

)
= 2 Dim((z+1)Q) = Dim(Q).

This implies thatQ is a free kP -module, because P is a p-group and
∑
u∈P u annihilates

every nonprojective indecomposable kP -module.
Now the projectivity of Q implies that W ∼= K ⊕ Q. Because W is a subquotient

of M and Q is an injective module, Q must be isomorphic to a direct summand of M (as
a kG-module). ut
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Using the construction of Proposition 4.2 we now show the existence of exotic endotrivial
modules. Later in this section (in the proof of Theorem 4.5), we see that, with some
additional argument, the hypothesis on the centrality of z can be removed from the next
theorem.

Theorem 4.3. LetG be a group with a quaternion Sylow 2-subgroup P . Assume that the
unique involution z ∈ P is central in G. Then we have the following.

(1) There exist exotic endotrivial kG-modules, that is, indecomposable endotrivial kG-
modules whose dimension is congruent to |P |/2+ 1 modulo |P |.

(2) More precisely, for i = 1, 2, there exists an exotic endotrivial kG-module Wi such
that (z − 1)Wi

∼= Li (as kG-modules), where L1 and L2 are the two kG-modules
constructed in Proposition 3.4.

Proof. Let M = �2(k) and note that

M↓G
〈z〉
∼= �

2(k〈z〉)⊕ (proj) ∼= k ⊕ (proj) .

Recall that (z−1)M ∼= L1⊕L2, as in Proposition 3.4, and apply Proposition 4.2 to Li for
i = 1, 2. There exists a kG-moduleWi such thatWi↓

G
〈z〉
∼= k⊕(proj) and (z−1)Wi

∼= Li .
The restriction Wi↓

G
〈z〉 is an endotrivial module, because it is the direct sum of a trivial

module and a free module. Since 〈z〉 is the only nontrivial elementary abelian 2-subgroup
of G, it must be the case that Wi is an endotrivial module (by Lemma 2.2). If Wi had a
nontrivial projective direct summand, then (z − 1)Wi

∼= Li would have a nontrivial pro-
jective direct summand as a kG-module, hence (z− 1)M too. But then M = �2(k) itself
would have a nontrivial projective direct summand, by Proposition 4.2. This is impossible
and it follows that Wi is indecomposable. Finally, since Dim(Li) is congruent to |P |/4
modulo |P |/2 (see Proposition 3.4) and since Dim(Wi) = 2 Dim(Li) + 1, we see that
Dim(Wi) is congruent to |P |/2+ 1 modulo |P |. Hence Wi is exotic. ut

The proof provides two nonisomorphic exotic kG-modulesW1 andW2, but note that there
are many other possible exotic modules, because ifW is exotic andA is one-dimensional,
then obviously A⊗W is again exotic.

Remark 4.4. By Remark 3.3, one needs cubic roots of unity for the existence of exotic
endotrivial modules in the case where P has order 8.

The preceding discussion now implies the following theorem.

Theorem 4.5. Suppose that G is a finite group with a quaternion Sylow 2-subgroup P
and let H = CG(z), where z is the unique involution of P .

(1) The restriction map ResGP : T (G)→ T (P ) is surjective.
(2) Let X̂(G) denote the subgroup of T (G) generated by the classes of the Green cor-

respondents of the 1-dimensional kH -modules. Then we have a split short exact se-
quence

0→ X̂(G)→ T (G)
ResGP
−−−→ T (P )→ 0.

(3) X̂(G) ∼= X(H).
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Proof. First suppose that z is central in G. By Theorem 2.4, the group T (P ) is generated
by the classes of �(kP ) and of an exotic endotrivial kP -module U . Clearly, the class of
�(kG) restricts to the class of �(kP ). An exotic endotrivial kG-module W (which exists
by Theorem 4.3) restricts to an endotrivial kP -module whose dimension is congruent
to |P |/2 + 1 modulo |P |. The unique indecomposable nonprojective (and endotrivial)
summand (W↓GP )� ofW↓GP must also have dimension congruent to |P |/2+1 modulo |P |
and is therefore exotic. It follows that (W↓GP )� is isomorphic to one of the two exotic kP -
modules U or �2(U) (and actually Dim((W↓GP )�) = |P |/2 + 1 by Remark 2.6). As a
consequence, the image of the restriction map T (G)→ T (P ) includes a set of generators
of T (P ) and hence the map is surjective in this case.

For the general case, when z is not central, we provide two different proofs. Each has
its own interest and advantages. Let H = CG(z) and let W be an exotic endotrivial kH -
module. By Lemma 4.1, there is an indecomposable endotrivial kG-module V such that
V↓GH

∼= W ⊕ (proj). Then Dim(V ) is congruent to Dim(W) modulo |P |, so V is exotic.
For the other proof, we use the Brauer–Suzuki Theorem [5] which tells us thatG/O2′(G)

has a central involution. In addition, O2′(G) acts trivially on �2(k) and on every module
in the principal block. Therefore our constructions show that there is an exotic endotrivial
k[G/O2′(G)]-module, which can be viewed as a kG-module by inflation. This is still
endotrivial, as we see from the definition and the fact that the inflation of a projective
module remains projective. This proves part (1).

From (1), we have an exact sequence

0→ X(H)→ T (H)
ResHP
−−−→ T (P )→ 0

which splits because T (P ) is a 2-group (of order 8) and X(H) has odd order. Using the
isomorphism of Lemma 4.1, we obtain T (G) ∼= T (H) ∼= X̂(G) ⊕ T (P ). That is, X̂(G)
is the inverse image of X(H) under the restriction isomorphism. This proves (2) and (3).

ut

In Theorem 4.5, the splitting of the exact sequence exists and is unique. Our next goal is to
give an explicit description of this splitting, by using the additional information provided
by Proposition 3.5. The group T (P ) is generated by the classes of �(kP ) and U , where
U is an exotic kP -module. The splitting of ResHP : T (H)→ T (P )must lift each of these
two generators to an element of T (H) of the same order.

Proposition 4.6. The image of the unique splitting of ResHP : T (H) → T (P ) is gener-
ated by the classes of�(kH ) (of order 4) and one of the two modulesW1,W2 constructed
in Theorem 4.3 (of order 2, that is, self-dual). Moreover, �2(W1) ∼= W2.

Proof. It is clear that �(kP ) lifts to �(kH ), and this still has order 4 by Proposition 3.5.
Now each of the two exotic kP -modules is self-dual (that is, its class in T (P ) has or-
der 2). We know that the two exotic kH -modules W1 and W2 constructed in Theorem 4.3
restrict to the two exotic kP -modules. So we only have to prove thatW is self-dual, where
W = W1 orW = W2. If ResHP [W ] = [U ], then both [W ] and its dual [W ∗] restrict to [U ],
because U is self-dual. Since the kernel of ResHP is the group of linear characters of H ,
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there is a one-dimensional kH -module A with the property that W ∗ ∼= A⊗W . Tracking
the construction of W , we note that W has a filtration with three successive quotients

(W,K,W)

where W = (z − 1)W and the middle module K = W0/(z − 1)W is one-dimensional.
Now the construction ofW comes from the kH -moduleM = �2(kH )which has a similar
filtration. The construction of W shows that its middle module K is isomorphic to the
middle one-dimensional module M0/(z − 1)M (see the proof of Proposition 4.2). But
M0/(z − 1)M is the trivial module by Proposition 3.5, so K is the trivial module. It
follows that A⊗W has a filtration with three successive quotients

(A⊗W,A,A⊗W).

On the other hand, W ∗ has a filtration with three successive quotients

(W
∗
,K,W

∗
).

This implies that A ∼= K is the trivial module, so W ∗ ∼= A⊗W ∼= W .
To prove that �2(W1) ∼= W2, we observe that, since the order of X(H) is odd, there

are exactly three elements of order 2 in T (H), namely the classes of �2(k), W1 and
W2. This forces the equality [�2(k)] + [W1] = [W2] in T (H), that is, [�2(W1)] =

[�2(k) ⊗ W1] = [W2]. Since both kH -modules �2(W1) and W2 are indecomposable,
they must be isomorphic. ut

5. Uniserial endotrivial modules

In this section we prove the existence of uniserial endotrivial modules of dimension con-
gruent to ±1 (mod |P |/2) for any finite group G with a quaternion Sylow 2-subgroup P .
More precisely, ifW1,W2 are the two exotic modules constructed in Theorem 4.3, then ei-
therWi is uniserial or�(Wi) is uniserial (or both) for i = 1, 2. Recall thatW2 ∼= �

2(W1).
The method is a direct application of the techniques used in Proposition 3.4 and Theo-
rem 4.3, alongside an inspection of the results in [20] in the six cases where the given
basic algebra may arise as the principal block of a group algebra. We use Erdmann’s no-
tation of [20, pp. 303–305] and also the usual diagrammatic representations of modules
(see e.g. [18]). As before, if we say that a module has composition factors (A,B,C, . . . ),
we read these from head to socle of the module. Now, recall that the diagram for �2(k)

has the form

�2(k) : N1 N2

k

L1 L2

so that W1 : N1

k

L1

and W2 : N2

k

L2
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where Ni ∼= Li is uniserial for i = 1, 2. An edge is dotted to mean that there may or
may not be a nontrivial extension between the modules. This determines which of the
modules W1,W2, or their respective syzygies is uniserial. Indeed, one fact that follows
from the explicit computations is that if an exotic module is not uniserial, then its syzygy
is uniserial. We also remark that if an exotic module is uniserial, then its syzygy may also
be uniserial.

The principal 2-block of a group with quaternion Sylow 2-subgroup can have one,
two or three simple modules. We analyze these cases by subcases according to the results
of [20].

5.1. One simple module

The simple module must be the trivial module k. In particular, this situation occurs when
G = P is quaternion. In this case, the construction shows that any exotic endotrivial
module Wi is not uniserial and has composition length |P |/2 + 1, whereas its syzygy
�(Wi) is uniserial and has composition length |P |/2 − 1 for i = 1, 2. In addition, the
modules Ni are both uniserial of composition length |P |/4 for i = 1, 2.

5.2. Two simple modules

There are two possibilities. Write k and S for the two nonisomorphic simple modules.
Note that both are self-dual. According to [17, (6.8)], such an algebra occurs as principal
block of a finite group G having a subgroup isomorphic to SL2(q) of index 2. The case
(i) is when q ≡ 1 (mod 4) and (ii) when q ≡ 3 (mod 4).

(i) For the typeQ(2A), exactly one exotic moduleW is uniserial of length 3, with com-
position factors (S, k, S), and �3(W) is also uniserial. Indeed, we have N1 = S and
N2 has length 3|P |/8, with composition factors (k, S, k, k, S, k, . . . , S, k). Moreover,
there is a nontrivial extension between the socle of N2 and the head of L2, implying
that �2(W) is not uniserial. We conclude that �3(W) is uniserial with composition
factors (S, k, k, S, k, . . . , k, S, k) and length 3|P |/4− 1.

(ii) For the type Q(2B)1, no exotic module is uniserial. Both syzygies of the
exotic modules are uniserial of length 3|P |/4 − 1, with composition factors
(k, S, S, k, S, S, . . . , k, S) and (S, k, S, S, k, S, . . . , S, k). Explicitly, we find that the
modules Ni have composition length |P |/4 and 3|P |/8 with composition factors
(S, S, . . . , S) and (k, S, k, k, S, k, . . . , S, k).

5.3. Three simple modules

There are three possibilities, giving rise to the well known examples. Write k, S, T for
the three simple modules.

(i) For the type Q(3A)2, which occurs as the principal block of SL2(q) for q ≡ 1
(mod 4), both exotic modules are uniserial of length 3, with composition factors
(S, k, S) and (T , k, T ). In particular, the modules Ni are simple and all the simple
modules are self-dual.
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(ii) For the type Q(3K), which occurs as the principal block of SL2(q) for q ≡ 3
(mod 4), none of the exotic modules is uniserial. Instead, their syzygies are unis-
erial and both have length 3, with composition factors (S, k, S) and (T , k, T ). More-
over, the modules Ni have length |P |/4 and composition factors (S, T , . . . , S, T )
and (T , S, . . . , T , S). In this case S∗ ∼= T .

(iii) For the type Q(3B), which occurs as the principal block of the double cover of A7
(with |P | = 16), one exotic endotrivial module is uniserial of length 3 and compo-
sition factors (S, k, S), whereas the other exotic endotrivial module is not uniserial,
but its syzygy is and has composition factors (S, k, T , k, S, k, T ). We observe that in
this situation, each exotic module and its syzygy has composition length independent
of the size of P .

We end with a remark on the dimensions of the uniserial endotrivial modules in the
case of the groups SL2(q). It is known that the two nontrivial simple modules have di-
mension (q − 1)/2. Since each uniserial endotrivial module in (i) and (ii) has composition
series (S, k, S), where S is a nontrivial simple module, we have the following.

Proposition 5.1. Let G = SL2(q), with q an odd prime power. Write P for a Sylow
2-subgroup of G. Then there exist two nonisomorphic uniserial endotrivial modules of
dimension q and length 3. More precisely, these modules are exotic (and self-dual) if and
only if q ≡ 1 (mod 4). For q ≡ 3 (mod 4), their syzygies are the two exotic modules and
have dimension 1+ (q − 1)|P |/8.

6. Groups with semi-dihedral Sylow 2-subgroup

Suppose thatG is a finite group with a semi-dihedral Sylow 2-subgroup P . Our main aim
in this section is to show that the restriction map ResGP : T (G)→ T (P ) is split surjective.
We continue to assume that k is an algebraically closed field of characteristic 2. We first
discuss the general structure of T (G).

Proposition 6.1. LetG be a finite group with a semi-dihedral Sylow 2-subgroup P . Write
K(G) for the kernel of the restriction map ResGP : T (G)→ T (P ).

(1) K(G) is a finite group of odd order, isomorphic to a subgroup of the group X(N) of
one-dimensional representations of N , where N = NG(P ).

(2) T (G) ∼= K(G)⊕ Im(ResGP ).

Proof. By [8, Proposition 2.6], the restriction map ResGN : T (G) → T (N) is injective.
Now N has a nontrivial normal 2-subgroup and therefore, by [22, Lemma 2.6], there is
an exact sequence

0→ X(N)→ T (N)
ResNP
−−−→ T (P )

where X(N) denotes the subgroup of T (N) consisting of the classes of all one-dimen-
sional kN -modules. Clearly X(N) is isomorphic to Hom(N, k∗), and hence it is also
isomorphic to the 2′-part of the abelianization of N . It follows that K(G) is the inverse
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image under ResGN of the odd order groupX(N). Since T (P ) ∼= Z/2Z⊕Z, the map ResGP
splits and T (G) ∼= K(G)⊕ Im(ResGP ). ut

So we are left with the question of the surjectivity of ResGP : T (G) → T (P ). We use
in an essential way the stable Auslander–Reiten quiver of kG, in particular the work of
Webb [24] and Erdmann [20, 18, 19]. For any subgroup S of G, we denote by 1S the
component of the stable Auslander–Reiten quiver of kS containing the module �(kS).
An AR-sequence stands for an Auslander–Reiten sequence (or almost split sequence). We
first state the results we need.

Proposition 6.2. Let G be a group with a semi-dihedral Sylow 2-subgroup P and let
N = NG(P ).

(1) The Green correspondence induces an isomorphism 1G ∼= 1N .
(2) N ∼= P × X where X is a group of odd order. Restriction induces an isomorphism

1N ∼= 1P , with inverse induced by inflation from P ∼= N/X to N .
(3) 1P is a component of type ZD∞ and �−1(kP ) lies at the end of 1P , with one pre-

decessor.
(4) Let Rk be the projective cover of the trivial module k and let the heart of Rk be the

module Hk = Rad(Rk)/Soc(Rk). There is an AR-sequence

S : 0→ �(k)→ Hk ⊕ Rk → �−1(k)→ 0.

(5) All modules in 1G have P as a vertex.
(6) Any AR-sequence terminating in a module in 1G splits on restriction to a proper

subgroup of its vertex P .

Proof. (1) This is proved in Theorem D of [24].
(2) It is well-known that Aut(P ) is a 2-group. Actually the proof given in [21,

Lemma 7.7.2(vi)] for the automorphism group of a dihedral 2-group carries over verbatim
for a semi-dihedral 2-group. It follows that N = PCG(P ) and therefore N = P × X,
where X is a group of odd order. Thus X is in the kernel of the principal block of kN
and acts trivially on all modules in 1N . Therefore restriction induces an isomorphism
1N ∼= 1P and inflation induces the inverse isomorphism.

(3) Shifting by the Heller translate � induces an isomorphism between 1P and the
component of the stable Auslander–Reiten quiver of kP containing the trivial module k.
By [18, Lemma 7.1] or [20, Proposition II.10.1]), the latter is of type ZD∞ and k lies at
the end of the component, with one predecessor.

(4) This is well-known (e.g. [24, Section 4] or [2, Proposition 4.12.7]).
(5) This is Theorem C of [24].
(6) This is well-known (e.g. [24, Lemma 3.1] or [2, Proposition 4.12.10]). ut

The presence of a tree class D∞ is an exceptional case which only occurs in the semi-
dihedral situation. (Note that this case was missing in [24, Proposition 5.6].) Moreover,
Proposition 6.2 has the following consequence, already used in [18, (2.3)] and in [24,
Proposition 5.6].
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Corollary 6.3. Let G be a group with a semi-dihedral Sylow 2-subgroup P . Let Rk be
the projective cover of the trivial module k and let Hk = Rad(Rk)/Soc(Rk) be the heart
of Rk . Then there is an AR-sequence of the form

E : 0→ V → Hk ⊕ R→ U → 0

where V and U are indecomposable modules in1G, U is not isomorphic to �−1(k), and
R is a projective kG-module. Moreover V ∗ ∼= U .

Proof. By Webb’s theorem [24, Theorem E], the heart Hk of Rk is indecomposable. In
view of the AR-sequence S, we see that Hk is the only predecessor of �−1(k) in 1G.
Since 1G is of type ZD∞ by Proposition 6.2, Hk must appear in the middle of another
AR-sequence of the form E , where U is not isomorphic to �−1(k) and R is some projec-
tive module.

Since Hk is self-dual, the dual of E is an AR-sequence with Hk in the middle. Since
the other AR-sequence S is self-dual, the dual of E must be isomorphic to itself and hence
V ∗ ∼= U . ut

Corollary 6.3 is sufficient for our construction of exotic endotrivial modules, but we shall
see at the end that much more can be proved about the AR-sequence E . The main fact
is that the modules V and U in Corollary 6.3 are endotrivial and this was first noticed
by Bessenrodt [3]. More precisely, the use of Corollary 6.3 in the analysis of endotrivial
modules is as follows.

Theorem 6.4. Let G be a group with a semi-dihedral Sylow 2-subgroup P .

(1) The modules V and U in Corollary 6.3 are endotrivial.
(2) The endotrivial module�(U) is exotic and self-dual. In other words, its class [�(U)]

has order 2 in T (G).
(3) The restriction map ResGP : T (G)→ T (P ) is surjective and split.

Proof. Consider the AR-sequence

S : 0→ �(k)→ Hk ⊕ Rk → �−1(k)→ 0

of Proposition 6.2. LetQ be the unique maximal dihedral subgroup of P . Observe thatQ
contains all the elements of order 2 in P . As a consequence, a kG-module is projective if
and only if it is projective on restriction to Q (see Theorem 2.7(2)). By Proposition 6.2,
the above sequence S splits on restriction to Q. Since �(k)↓GQ ∼= �(kQ) ⊕ (proj) and
similarly for �−1(k), we deduce that

Hk↓
G
Q
∼= �(kQ)⊕�

−1(kQ)⊕ (proj) .

Now the other AR-sequence

E : 0→ V → Hk ⊕ R→ U → 0

of Corollary 6.3 also splits on restriction to Q, again by Proposition 6.2, using the fact
that all the modules in the AR-component 1G have vertex P . Thus we obtain a sequence

E↓GQ : 0→ V↓GQ→ �(kQ)⊕�
−1(kQ)⊕ (proj)→ U↓GQ→ 0.
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Now V↓GQ cannot be projective, otherwise V would be projective, and similarly for U↓GQ.
Consequently, U and V have the property that

U↓GQ
∼= �

ε(kQ)⊕ (proj) and V↓GQ
∼= �

−ε(kQ)⊕ (proj)

for ε = ±1 and for some projective modules. Note that, sinceQ contains all the elements
of order 2 in P , the restrictions of U and V to any elementary abelian 2-subgroup are
endotrivial modules. Therefore U and V are endotrivial modules by Lemma 2.2, prov-
ing (1).

(2) Since E is an AR-sequence, V ∼= �2(U). On the other hand V ∼= U∗ by Corol-
lary 6.3. Therefore

�(U)∗ ∼= �
−1(U∗) ∼= �

−1(V ) ∼= �
−1(�2(U)) ∼= �(U).

It follows that the class [�(U)] has order 2 in T (G) (for it cannot be of order 1 be-
cause U 6∼= �−1(k)). Since the kernel K(G) of ResGP has odd order by Proposition 6.1,
ResGP ([�(U)]) has order 2 in T (P ) ∼= Z/2Z⊕Z. Thus ResGP ([�(U)]) is the class of the
unique indecomposable endotrivial kP -module that is both self-dual and exotic. So the
dimension of �(U) is congruent to |P |/2 + 1 modulo |P |, and we conclude that �(U)
must be exotic.

(3) By (2), the summand Z/2Z of T (P ) ∼= Z/2Z⊕Z is in the image of ResGP . Clearly
ResGP [�(kG)] = [�(kP )], which generates the summand Z. Thus ResGP is surjective.
There is an obvious splitting whose image is generated by [�(kG)] and [�(U)]. ut

Corollary 6.5. Let G be a finite group with a semi-dihedral Sylow 2-subgroup P . Write
K(G) for the kernel of the restriction map ResGP : T (G)→ T (P ). Then T (G) ∼= K(G)⊕
T (P ). In particular, if P is selfnormalizing, then T (G) ∼= T (P ). �

The only difference with the quaternion case, which prevents us from concluding as
before with the identification of K(G), is that the centralizer in G of the central invo-
lution z of P is not strongly 2-embedded in general. So the restriction map ResGCG(z) :
T (G)→ T (CG(z))may not be an isomorphism (even though it is injective by [8, Propo-
sition 2.6]).

As announced before, we conclude with some additional information about the AR-
sequence E of Corollary 6.3. Most of the hard work for the proof has been done by
K. Erdmann [20, 18, 19].

Proposition 6.6. LetG be a group with a semi-dihedral Sylow 2-subgroup P . In the AR-
sequence E of Corollary 6.3, the projective module R is zero. Moreover V and U are
uniserial modules.

Proof. By [1, Proposition 4.11], an AR-sequence with a nonzero projective summand R
in the middle must be the standard AR-sequence ending in �−1(T ), where T is a simple
module. So if R 6= 0, we must have R = RT where RT is the projective cover of T and
the heartHT = Rad(RT )/Soc(RT ) is isomorphic toHk . Note that T is nontrivial because
the sequence E is not isomorphic to the sequence S.
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Now we claim that there is no nontrivial simple module T such that HT ∼= Hk . This
follows from an inspection of Erdmann’s lists in [18, 19]. By Olsson’s results [23], the
principal block of the group algebra kG has either one, two, or three simple modules.
There is nothing to prove if there is only one simple module. If there are two, then the
family V does not occur as a block of a group algebra (by [18, Lemma 8.16]) and we
see that in families I–IV the hearts of the two projective modules are not isomorphic.
Similarly, if there are three simple modules, then the family VII does not occur as a block
of a group algebra (by [19, Lemma 11.14]) and we see that in all the other families the
hearts of any two projective modules are not isomorphic.

It follows now that R = 0. The fact that V and U are uniserial follows from a direct
inspection of the hearts, for all self-dual projective modules appearing in Erdmann’s lists.

ut

Remark 6.7. As noted already in [20, 19], an algebra of semi-dihedral type with three
simple modules may occur as block algebra if it belongs to any family of type I–IV,
whereas V–VIII are known to be non-examples of blocks. In Erdmann’s paper, case IX
is left open. Following a private communication with K. Erdmann, it turns out that an
algebra in family IX is not a block algebra. Indeed, in the notation of [19], we have
n ≥ 4, and since P1 is the unique self-dual indecomposable projective module in the list,
we would have S1 = k. This would give an AR-sequence E with V and U uniserial. By
taking the dual of the sequence, we get U∗ ∼= V . So the other two simple modules S0
and S2 must be dual to each other. Counting the multiplicities of each simple in V and in
U yields the equation s = k with s = 2 and k = 2n−2, which is impossible for any n ≥ 4.
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