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Abstract. Our first main result is a construction of a simple formal normal form for holomorphic
diffeomorphisms in Cn whose differentials have a one-dimensional family of resonances in the first
m eigenvalues, m ≤ n (but more resonances are allowed for other eigenvalues). Next, we provide
invariants and give conditions for the existence of basins of attraction. Finally, we give applications
and examples demonstrating the sharpness of our conditions.
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1. Introduction

Let F be a germ of holomorphic diffeomorphism of Cn fixing the origin 0 with diagonal-
izable differential. The dynamical behavior of the sequence of iterates {F ◦q}q∈N of F in a
neighborhood of 0 is determined at the first order by the dynamics of its differential dF0.
In fact, depending on the eigenvalues λ1, . . . , λn of dF0, in some cases both dynamics
are the same.

In the hyperbolic case (namely when none of the eigenvalues is of modulus 1) the
map is topologically conjugate to its differential (by the Hartman–Grobman theorem [19],
[13], [14]) and the dynamics is clear. Moreover, if the eigenvalues have modulus either
all strictly smaller than one or all strictly greater than one, then the origin is an attracting
or respectively repelling fixed point for an open neighborhood of 0. Also, by the sta-
ble/unstable manifold theorem, there exists a holomorphic (germ of) manifold invariant
under F and tangent to the sum of the eigenspaces of those λj ’s such that |λj | < 1 (resp.
|λj | > 1) which is attracted to (resp. repelled from) 0. However, already in the case when
all eigenvalues have modulus different from 1, holomorphic linearization is not always
possible due to the presence of resonances among the eigenvalues (see, for instance, [4,
Chapter IV]).

The case where some eigenvalue has modulus 1 is the most “chaotic” and interesting,
since it presents a plethora of possible scenarios. For instance, if those eigenvalues of
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modulus 1 are not roots of unity and satisfy some Bryuno-type conditions, then there exist
Siegel-type invariant submanifolds (see [21], [32]) on which the map is (holomorphically)
linearizable. If the map is tangent to the identity, it has been proved by Écalle [11] and
Hakim [18] that generically there exist “petals”, also called “parabolic curves”, namely,
one-dimensional F -invariant analytic discs having the origin in their boundary and on
which the dynamics is of parabolic type. Later, Abate [1] (see also [3]) proved that such
petals always exist in dimension two.

On the other hand, Hakim [17] (basing on the previous work by Fatou [12] and Ueda
[29], [30] in C2, see also Takano [27]) studied the so-called semi-attractive case, with one
eigenvalue equal to 1 and the others of modulus less than 1. She proved that either there
exists a curve of fixed points, or there exist attracting open petals. That result was later
generalized by Rivi [23].

The quasi-parabolic case of a germ in C2, i.e. having one eigenvalue 1 and the other
of modulus 1, but not a root of unity, has been studied in [7] and it has been proved
that, under a certain generic hypothesis called “dynamical separation”, there exist petals
tangent to the eigenspace of 1. That result has been generalized to higher dimensions by
Rong [24], [25]. We refer the reader to the survey papers [2] and [5] for a more detailed
review of existing results.

In the case of diffeomorphisms with unipotent linear part, it was shown by Takens [28]
(see also [16, Chapter 1]) that such a diffeomorphism can be embedded in the flow of a
formal vector field. Therefore, in this case the dynamics of the diffeomorphism, at least at
the formal level, is related to that of a (formal) associated vector field. For instance, using
the Camacho–Sad theorem on the existence of separatrices for vector fields [9], Brochero,
Cano and Hernanz [8] gave another proof of Abate’s theorem. On the other hand, when
the linear part of the diffeomorphism is not unipotent, the authors are not aware of any
general result about embedding such a diffeomorphism into the flow of a formal vector
field. In fact, one encounters somewhat unexpected differences between the dynamics of
diffeomorphisms and that of vector fields (see Raissy [22]).

The aim of the present paper is to study the normal forms and the dynamics of
germs of holomorphic diffeomorphisms having a one-dimensional family of resonances
among only certain eigenvalues (that we call here partially one-resonant diffeomor-
phisms). It should be mentioned that (fully) one-resonant vector fields have been studied
by Stolovitch [26], who also obtained a normal form for vector fields up to multiplication
by a unit. In the case of diffeomorphisms considered here, there is no natural analogue of
multiplying by a unit and thus we are led to seek a normal form for the original diffeo-
morphism only under conjugations.

More precisely, let λ1, . . . , λn be the eigenvalues of the linear part of a biholomorphic
diffeomorphism germ F at 0. We say that F is one-resonant with respect to the first
m eigenvalues {λ1, . . . , λm} (1 ≤ m ≤ n) (or partially one-resonant) if there exists
a fixed multi-index α = (α1, . . . , αm, 0, . . . , 0) 6= 0 ∈ Nn such that for s ≤ m, the
resonances λs =

∏n
j=1 λ

βj
j are precisely of the form λs = λs

∏m
j=1 λ

kαj
j , where k ≥ 1 ∈ N

is arbitrary. We stress that, since arbitrary resonances are allowed for s > m, such a
condition is much weaker (see Example 2.4) than the one-resonance condition normally
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found in the literature corresponding here to the case m = n (see e.g. [15, 26]). The main
advantage of the new notion of partial one-resonance is that it can be applied to the subset
of all eigenvalues of modulus 1; it is natural to treat it differently from the rest of the
eigenvalues.

In the case of partial one-resonance, the classical Poincaré–Dulac theory implies that,
whenever F is not formally linearizable in the first m components, it is formally con-
jugate to a map whose first m components are of the form λjzj + ajz

αkzj + Rj (z),
j = 1, . . . , m, where, the number k ∈ N is an invariant, called the order of F with
respect to {λ1, . . . , λm}, the vector (a1, . . . , am) 6= 0 is invariant up to a scalar multiple
and the Rj ’s contain only resonant terms of higher degree. The number

3 = 3(F) :=

m∑
j=1

ajαj

λj

is an invariant up to a scalar multiple, and the map F is said to be non-degenerate provided
3 6= 0.

We show that (partially) one-resonant non-degenerate diffeomorphisms have a simple
formal normal form (see Theorem 3.6) in which the first m components are of the form

λjzj + ajz
kαzj + µαjλ

−1
j z2kαzj , j = 1, . . . , m.

Although none of the eigenvalues λj , j = 1, . . . , m, can be a root of unity, such a normal
form is the exact analogue of the formal normal form for parabolic germs in C. In fact, a
one-resonant germ acts as a parabolic germ on the space of leaves of the formal invariant
foliation {zα = const} and that is the reason for this parabolic-like behavior.

Let F be a one-resonant non-degenerate diffeomorphism with respect to the eigenval-
ues {λ1, . . . , λm}. We say that F is parabolically attracting with respect to {λ1, . . . , λm}

if
|λj | = 1, Re(ajλj

−13−1) > 0, j = 1, . . . , m.

Again, such a condition is invariant, and its inequality part is vacuous in dimension 1 or
whenever m = 1 and |λ1| = 1 since in that case α = (α1, 0, . . . , 0) with α1 > 0. Our
main result is the following:

Theorem 1.1. Let F be a holomorphic diffeomorphism germ at 0 that is one-resonant,
non-degenerate and parabolically attracting with respect to {λ1, . . . , λm}. Suppose that
|λj | < 1 for j > m. Let k ∈ N be the order of F with respect to {λ1, . . . , λm}. Then F
has k disjoint basins of attraction having 0 on the boundary.

The different basins of attraction for F (that may or may not be connected) project via
the map z 7→ u = zα onto different petals of the germ u 7→ u+3(F)uk+1

+ o(|u|k+1).
Theorem 1.1 has many consequences. For instance, we recover a result of Hakim

(see Corollary 6.1) since non-formally linearizable semi-attractive germs are always one-
resonant, non-degenerate and parabolically attracting. Also, we apply our machinery to
the case of quasi-parabolic germs, providing “fat petals” in the quasi-parabolic dynam-
ically separating and attracting cases (see Subsection 6.2). Another area of application
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of Theorem 1.1 concerns elliptic germs which, in dimension greater than 1, might ex-
hibit some, maybe unexpected, parabolic-like behavior (see Subsection 6.3). Finally, we
present examples of one-resonant degenerate as well as non-degenerate but not paraboli-
cally attracting germs which have no basins of attraction at 0, demonstrating sharpness of
the assumptions of Theorem 1.1 (see Subsections 6.4 and 6.5).

The outline of the paper is as follows. In Section 2 we briefly recall the one-dimen-
sional theory of parabolic germs and define one-resonant germs in higher dimensions. In
Section 3 we construct a formal normal form for non-degenerate partially one-resonant
germs. In Section 4 we study the dynamics of normal forms, as a motivation for the
subsequent Section 5, where we give the proof of Theorem 1.1. Finally, in Section 6 we
apply our theory to the semi-attractive case, quasi-parabolic case, elliptic case and provide
examples of diffeomorphisms with no basins of attraction.

2. One-resonant diffeomorphisms

2.1. Preliminaries on germs tangent to the identity in C

For the material of this subsection, see e.g. [10]. Let

h(u) := u+ Auk+1
+O(|u|k+2) (2.1)

for some A 6= 0 and k ≥ 1, be a germ at 0 of a holomorphic self-mapping of C.
The attracting directions {v1, . . . , vk} for h are given by the k-th roots of −|A|/A.

These are precisely the directions v such that the vector Avk+1 points in the direction
opposite to v. An attracting petal P for h is a simply-connected domain such that 0 ∈ ∂P ,
h(P ) ⊆ P and limm→∞ h

◦m(z) = 0 for all z ∈ P , where h◦m denotes the mth iterate
of h.

We state here (a part of) the Leau–Fatou flower theorem. We write a ∼ b whenever
there exist constants 0 < c < C such that ca ≤ b ≤ Ca.

Theorem 2.1 (Leau–Fatou). Let h(u) be as in (2.1) and v an attracting direction for h
at 0. Then there exists an attracting petal P for h (said to be centered at v) such that for
each z ∈ P the following hold:

(1) h◦m(z) 6= 0 for all m and limm→∞ h
◦m(z)/|h◦m(z)| = v,

(2) |h◦m(z)|k ∼ 1/m.

Moreover, the petals centered at the attracting direction v can be chosen to be connected
components of the set

{z ∈ C : |Azk + δ| < δ},

where 0 < δ � 1.

By property (1), petals centered at different attracting directions must be disjoint.
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Remark 2.2. Property (1) of Theorem 2.1 is a part of the standard statement of the Leau–
Fatou theorem (see, e.g., [2] or [6]). Property (2) follows from the construction of the
so-called Leau–Fatou coordinate. We sketch it briefly here for the reader’s convenience.
Up to a dilation one can assume A = −1/k and v = 1. Let H := {w ∈ C : Rew >

0, |w| > C} and 9(w) := w−1/k for w ∈ H with the k-th root chosen so that 11/k
= 1.

By the Leau–Fatou construction (see, e.g., [6, pp. 19–22]), if C > 0 is sufficiently large
then the set P := 9(H) is h-invariant and the map ϕ := 9−1

◦ h ◦9 : H → H satisfies

ϕ(w) = w + 1+O(|w|−1), w ∈ H.

From this both (1) and (2) follow easily.

2.2. Partially one-resonant germs

Let Diff(Cn; 0) denote the space of germs of holomorphic diffeomorphisms of Cn fix-
ing 0. Write N = {0, 1, . . .}. Given a set {λ1, . . . , λn} of complex numbers, recall that a
resonance is a pair (j, l), where j ∈ {1, . . . , n} and l = (l1, . . . , ln) ∈ Nn is a multi-index
with |l| ≥ 2 such that λj = λl (where λl := λl11 · · · λ

ln
n ).

In all the rest of the paper, and without mentioning it explicitly, we shall consider only
germs of diffeomorphisms whose differential is diagonal.

Definition 2.3. For F ∈ Diff(Cn; 0), assume that the differential dF0 has eigenval-
ues λ1, . . . , λn. We say that F is one-resonant with respect to the first m eigenvalues
{λ1, . . . , λm} (1 ≤ m ≤ n) if there exists a fixed multi-index α = (α1, . . . , αm, 0, . . . , 0)
6= 0 ∈ Nn such that the resonances (j, l) with j ∈ {1, . . . , m} are precisely of the form
(j, αk+ ej ), where ej ∈ Nn is the unit vector with 1 at the j th place and 0 elsewhere and
where k ∈ N \ {0} is arbitrary. (In particular, it follows that the relation λα1

1 · · · λ
αm
m = 1

holds and generates all other relations λβ1
1 · · · λ

βn
n = 1 with βs ≥ 0 for all s.) The multi-

index α is called the index of resonance. If F is one-resonant with respect to {λ1, . . . , λn}

(i.e. m = n) we simply say that F is one-resonant.

The notion of one-resonance for m = n has been known in the literature (see e.g. [15,
26]). However, its generalization for m < n given here seems to be new. The following
class of examples illustrates the difference.

Example 2.4. Let F ∈ Diff(C3
; 0) be any diffeomorphism with eigenvalues λ,µ, ν of

dF0 such that λ is a root of unity, |µ| < 1 and ν = µs for some natural number s ≥ 1.
Then F is one-resonant with respect to λ but has resonances of the form (3, se2), showing
that it is not one-resonant with respect to all the eigenvalues.

Remark 2.5. It follows directly from the definition that, if F is one-resonant with respect
to {λ1, . . . , λm}, then λj 6= λs for any j ∈ {1, . . . , m} and s ∈ {1, . . . , n} with j 6= s.
Indeed, otherwise one would have resonances of type (j, kα + es), which are not of the
required form (j, kα + ej ).
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Example 2.6. The same diffeomorphism can be considered one-resonant with respect
to different groups of eigenvalues. For instance, consider F(z,w) = (z + z3, e2πiθw +

zw), where θ is irrational. Then F is one-resonant with respect to λ1 = 1 with index of
resonance (1, 0). But F is also one-resonant (with respect to {λ1, λ2} = {1, e2πiθ

} with
the same index of resonance (1, 0)). (Note that the higher order terms of F play no role
here but will be used later in Example 3.4.)

As the previous example shows, there may exist “non-maximal” sets of “one-resonant
eigenvalues”. However, it is easy to see from the definition that any set of “one-resonant
eigenvalues” is contained in the unique maximal set and contains the unique minimal set.
Namely, let F be one-resonant with respect to {λ1, . . . , λm} and assume that the index of
resonance is α = (α1, . . . , αm, 0, . . . , 0). Since the relation λα1

1 · · · λ
αm
m = 1 holds and

generates all other relations λβ1
1 · · · λ

βn
n = 1 with βs ≥ 0 for all s, it follows that any other

resonant set of eigenvalues corresponds to the same index α. Then it follows directly from
the definition that every set of one-resonant eigenvalues contains the minimal set L of all
λj with αj 6= 0 and the set L itself is one-resonant. On the other hand, let L̃ be the set of
all λj such that any resonance (j, l) is of the required form (j, kα + ej ). Then L̃ is the
maximal one-resonant set that contains any other one-resonant set of eigenvalues.

The choice of the set of eigenvalues with respect to which the map is considered one-
resonant depends on the problem one is facing; in our main result Theorem 1.1 it is natural
to consider one-resonance with respect to the set of all eigenvalues of modulus 1.

3. Normal form for non-degenerate one-resonant diffeomorphisms

Let F ∈ Diff(Cn; 0) be one-resonant with respect to {λ1, . . . , λm}with index of resonance
α. Using Poincaré–Dulac theory (see, e.g., [4, Chapter IV]), one can formally conjugate
F to a germ G = (G1, . . . ,Gn) such that

Gj (z) = λjzj + ajz
αkzj + Rj (z), j = 1, . . . , m, (3.1)

where either a = (a1, . . . , am) 6= 0 andRj (z) contains only resonant monomials ajszαszj
with s > k, or aj = 0 and Rj ≡ 0 for all j = 1, . . . , m. Note that the second case occurs
precisely when F is formally linearizable in the first m variables.

Definition 3.1. Let F ∈ Diff(Cn; 0) be one-resonant with respect to {λ1, . . . , λm} such
that

Fj (z) = λjzj + ajz
αkzj +O(|z|

|α|k+2), j = 1, . . . , m, (3.2)

with k ≥ 1 and a = (a1, . . . , am) 6= 0, where α is the index of resonance. Set

3 = 3(F) :=

m∑
j=1

ajαj

λj
. (3.3)

We say that F is non-degenerate if 3 6= 0.
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Remark 3.2. The integer k in (3.2) is invariant under conjugations preserving the form
(3.2), and the vector a = (a1, . . . , am) is invariant up to multiplication by a scalar. In
particular, the non-degeneracy condition given by Definition 3.1 is invariant. Indeed, if
conjugation with a map ψ = (ψ1, . . . , ψn) ∈ Diff(Cn; 0) preserves the form (3.2) (pos-
sibly changing a), then ψj (z) = bjzj + O(|z|

2), bj ∈ C∗, for any j = 1, . . . , m, in
view of Remark 2.5. Conjugating with the linear part of ψ , we see that for any such j ,
aj is replaced by ajbαk . Assume now that ψ(z) = z +O(|z|2). Then by Poincaré–Dulac
theory, since ψ preserves (3.2), all terms of order less than |α|k + 2 that ψ has in its first
m components must be resonant, and therefore a is invariant.

Definition 3.3. We call the invariant number k the order of F with respect to λ1, . . . , λm.

Example 3.4. Let F be the germ in Example 2.6. Then F is non-degenerate when re-
garded as a one-resonant germ with respect to the eigenvalue 1 (with k = 2 and a =
a1 = 1). But it becomes degenerate when regarded as a one-resonant germ (with respect
to both eigenvalues {1, e2πiθ

}), because in that case a = (a1, a2) = (0, 1) and the index
of resonance is (1, 0), thus 3(F) = 0. The main reason here is the change of the order k.

Note that, more generally, for a germ of the form (z + · · · , e2πiθw + · · · ) with θ
irrational, the condition of being non-degenerate with respect to {1, e2πiθ

} is equivalent
to F being dynamically separating in the terminology of [7] (see Subsection 6.2).

As illustrated by the latter example, if one passes from a smaller set of one-resonant
eigenvalues to a larger one, the order k may drop, in which case the corresponding non-
degeneracy conditions are not related, i.e. F can be non-degenerate with respect to the
smaller set but not the larger one or vice versa. On the other hand, if the order k is the same
for both sets, since both sets contain the set of all λj with αj 6= 0, the (non-)degeneracies
with respect to the smaller and larger sets are clearly equivalent.

Remark 3.5. If F is one-resonant with respect to {λ1}, then λ1 is a root of unity. More-
over, in this case F is non-degenerate if and only if it is not formally linearizable in the
first component.

We have the following normal form for non-degenerate partially one-resonant diffeo-
morphisms.

Theorem 3.6. Let ∈ Diff(Cn; 0) be one-resonant and non-degenerate with respect to
λ1, . . . , λm with index of resonance α. Then there exist k ∈ N and numbers µ, a1, . . . , am
∈ C such that F is formally conjugate to the map F̂ (z) = (F̂1(z), . . . , F̂n(z)), where

F̂j (z) = λjzj + ajz
kαzj + µαjλ

−1
j z2kαzj , j = 1, . . . , m, (3.4)

and the components F̂j (z) for j = m+ 1, . . . , n contain only resonant monomials.

Proof. By Poincaré–Dulac theory, we may assume that Fj (z) for j = m + 1, . . . , n
contain only resonant monomials and

Fj (z) = λjzj + ajz
kαzj +

∑
l≥1

aj lz
(l+k)αzj , j = 1, . . . , m. (3.5)
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With the notation F ′ := (F1, . . . , Fm), λ′ := diag(λ1, . . . , λm), z′ := (z1, . . . , zm), we
can rewrite (3.5) in the more compact form

F ′(z) = λ′z′ + zkα
∑
j

ajzj ej +
∑
k′>k

zk
′α
∑
j

ak′jzj ej , (3.6)

where the summation over j is from 1 to m and ej is the standard unit vector.
We now study the conjugation F̃ = 2 ◦ F ◦2−1 under the map

2(z) = z+ θ(z), θ(z) =
(
zlα
∑
j

bjzj ej , 0
)
= (b1z

lαz1, . . . , bmz
lαzm, 0, . . . , 0),

(3.7)

for an integer l ≥ 1 and a vector b = (b1, . . . , bm) ∈ Cm. We also use the notation

F(z) = λz+ f (z), F̃ (z) = λz+ f̃ (z), f, f̃ = O(|z|2),

and the Taylor expansions

f̃ (z+ h) = f̃ (z)+
∑
r≥1

1
r!
f̃ (r)(z)(h), θ(z+ h) = θ(z)+

∑
r≥1

1
r!
θ (r)(z)(h), (3.8)

where the derivatives f̃ (r)(z)(h) and θ (r)(z)(h) are regarded as n-tuples of homogeneous
polynomials of degree r in h. We use (3.8) to rewrite the identity

F̃ (2(z)) = 2(F(z)) (3.9)

as

f̃ (z)+ λθ(z)+
∑
r≥1

1
r!
f̃ (r)(z)(θ(z)) = θ(λz)+ f (z)+

∑
r≥1

1
r!
θ (r)(λz)(f (z)). (3.10)

In view of the resonance relations, we have λθ(z) = θ(λz) and hence (3.10) is equivalent
to

f̃ (z)− f (z) =
∑
r≥1

1
r!

(
θ (r)(λz)(f (z))− f̃ (r)(z)(θ(z))

)
. (3.11)

Now identifying terms of order up to k|α| + 1 in (3.11), we conclude by induction on
the order that

f̃ ′(z) = f ′(z)+O(|z|k|α|+2) = zkα
∑
j

ajzj ej +O(|z|
k|α|+2), (3.12)

where f̃ ′ = (f̃1, . . . , f̃m). Next, identifying terms of order up to (k+ l)|α|+1, we obtain

f̃ ′(z)− f ′(z) = θ ′(1)(λz)(f (z))− f̃ ′(1)(z)(θ(z))+O(|z|(k+l)|α|+2).
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Substituting f ′, f̃ ′ from (3.12) and θ from (3.7), we find

f̃ ′(z)− f ′(z) = z(k+l)α
∑
j,s

ajbs
(
(lαjλ

lα−ej+es + δjsλ
lα)zses − (kαs + δjs)zj ej

)
+O(|z|(k+l)|α|+2). (3.13)

By the resonance conditions, λlα = 1. In particular, the terms with δjs cancel each other
and we obtain

f̃ ′(z)− f ′(z) = z(k+l)α
∑
j,s

ajbs(lαjλ
es−ej zses − kαszj ej )+O(|z|

(k+l)|α|+2)

= z(k+l)αbAZ +O(|z|(k+l)|α|+2), (3.14)

where b = (b1, . . . , bm), Z is the diagonal matrix with entries z1, . . . , zm, and A is the
m×m matrix given by

A = l(aL−1αt )L− kαta.

Here αt is the transpose of α and L is the diagonal matrix with entries λ1, . . . , λm. Note
that the expression in parentheses is a scalar. Then

A = CL, C = l(aL−1αt ) id− kαtaL−1.

Since the matrix kαtaL−1 is of rank one, it has at most one non-zero eigenvalue equal
to its trace kaL−1αt . By our non-degeneracy assumption, this trace is actually different
from zero. The first matrix in the expression of C is scalar with all its diagonal entries
equal to laL−1αt . Since aL−1αt 6= 0, we conclude that C is invertible if and only if
l 6= k. Since f has the form (3.5), given any l 6= k, it follows from (3.14) that there exists
a (unique) vector b such that f̃ ′ = f ′ + O(|z|(k+l)|α|+1) and the terms of f̃ ′ of order
(k + l)|α| + 1 all vanish.

On the other hand, in case l = k, C has rank m− 1. In this case we use the identity

bCαt = kb(aL−1αt )αt − kb(αtaL−1)αt = k(aL−1αt )bαt − kbαt (aL−1αt ) = 0,

where we have used that both b and bαt commute with the scalar aL−1αt . Hence αt

annihilates the image of the map b 7→ bC. Since C has rank m− 1, its image is precisely
the orthogonal complement of α (with respect to the standard hermitian scalar product on
Cm, note that α = α). Then the image of the map b 7→ bA is precisely the orthogonal
complement of αL

−1
= (α1λ

−1
1 , . . . , αmλ

−1
m ). It now follows from (3.14) that, choosing

a suitable b, we can arrange that the term of f̃ ′ of order 2k|α| + 1 equals

z2kαµαL
−1
Z = z2kαµ

∑
j

αjλ
−1
j zj ej (3.15)

for some µ ∈ C.
We now apply inductively the above procedure for each l ≥ 1, either to eliminate the

corresponding term in (3.5) or normalize it as in (3.15), by conjugating with a suitable
map (3.7) for that l. At each step we may create non-resonant terms whose order must
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be greater than l|α| + 1 in view of (3.10). Those terms can be eliminated inductively
according to Poincaré–Dulac theory by conjugation with further maps 2(z) = z + θ(z)
with θ(z) being suitable monomials of order greater than l|α| + 1. Again using (3.10) we
see that those additional conjugations do not affect the normalized terms of order l|α|+1.
Thus by induction on l, we obtain the desired normalization (3.4). ut

Remark 3.7. It is clear from the proof of Theorem 3.6 that for any given t ∈ N there
exists a holomorphic (polynomial) change of coordinates which transforms F into F̂ +
O(t), where F̂ satisfies (3.4) and O(t) denotes a function vanishing of order ≥ t at 0.

4. Dynamics of normal forms

Motivated by Theorem 3.6, we shall first study the dynamics of a one-resonant diffeo-
morphism G ∈ Diff(Cn; 0) of the form G(z) = (G1(z), . . . ,Gn(z)) with

Gj (z) = λjzj + ajz
kαzj + bjz

2kαzj , j = 1, . . . , n, (4.1)

and 3 = 3(G) 6= 0, where 3(G) is as in Definition 3.1. We consider the singular
foliation F of Cn given by {zα = const}.

Lemma 4.1. The foliation F is G-invariant.

Proof. Let π(z) = zα . Then

π(G(z)) = zα
n∏
j=1

(λj + ajz
kα
+ bjz

2kα)αj ,

where the right-hand side is clearly a holomorphic function of zα . Hence G maps leaves
of F into (possibly different) leaves of F and the desired conclusion follows. ut

Let L denote the space of leaves of F . Let π : Cn → L be the projection given by
(z1, . . . , zn) 7→ zα . Clearly, L ' C. Let u = zα = π(z). The action of G on L is given
by

8(u) := G1(z)
α1 · · ·Gn(z)

αn = u+3(G)uk+1
+O(|u|k+2), (4.2)

where we have used that λα = 1. Note that8 : (C, 0)→ (C, 0) is locally biholomorphic.
Let v1, . . . , vk be the attracting directions for 8, and Pj ⊂ C, j = 1, . . . , k, attracting
petals centered at vj (see Section 2.1). Set

Uj := π
−1(Pj ) ⊂ Cn.

Since F is G-invariant, the domains Uj are also G-invariant.
Let z ∈ Uj . Then 8◦m(π(z))→ 0 as m→ ∞. In order to understand the dynamics

of G, it is then sufficient to understand the “motion” along the leaves of F . As a matter
of notation, let pj (z1, . . . , zn) = zj .



One-resonant biholomorphisms 189

Proposition 4.2. Let G ∈ Diff(Cn; 0) be in the normal form (4.1) with 3 = 3(G) 6= 0.
Fix 1 ≤ j ≤ n and 1 ≤ t ≤ k.
(1) If |λj | < 1, then limm→∞ pj ◦G

◦m(z) = 0 for all z ∈ Ut .
(2) If |λj | > 1, then limm→∞ pj ◦G

◦m(z) = ∞ for all z ∈ Ut with zj 6= 0.
(3) If |λj | = 1 and Re(ajλ

−1
j 3−1) > 0, then limm→∞ pj ◦G

◦m(z) = 0 for all z ∈ Ut .
(4) If |λj | = 1 and Re(ajλj

−13−1) < 0, then limm→∞ pj ◦G
◦m(z) = ∞ for all z ∈ Ut

with zj 6= 0.
Proof. Note that by construction 8(π(z)) = π(G(z)). We can write, for j = 1, . . . , n,

Gj (z) = (λj + aju
k
+ bju

2k)zj

and, letting ul := 8◦l(u) = π(G◦l(z)),

pj ◦G
◦m(z) = λmj

m∏
l=1

(
1+

aj

λj
ukl +

bj

λj
u2k
l

)
zj .

We examine the asymptotical behavior of the infinite product
∞∏
l=1

(
1+

aj

λj
ukl +

bj

λj
u2k
l

)
. (4.3)

Let z ∈ Ut , therefore u = π(z) ∈ Pt . By Theorem 2.1(2), it follows that |ukl | = |ul |
k
∼

1/l.
LetAl := (aj/λj )ukl +(bj/λj )u

2k
l . We examine the behavior of

∏m
l=1 |1+Al |. Taking

the logarithm we have

log
( m∏
l=1

|1+ Al |
)
=

1
2

m∑
l=1

log(1+ |Al |2 + 2 ReAl).

For l � 1,
∣∣|Al |2 + 2 ReAl

∣∣ ∼ l−c for some c ∈ N∗. Hence, log(1+ |Al |2 + 2 ReAl) ∼

|Al |
2
+ 2 ReAl since for l � 1,

1
2

∞∑
l=1

|log(1+ |Al |2 + 2 ReAl)| ∼
1
2

∞∑
l=1

l−c.

It follows that the infinite product (4.3) either converges or diverges much slower than
|λj |

m in case |λj | 6= 1. Thus (1) and (2) follow.
As for (3) and (4), we need a better estimate. By Theorem 2.1(1), it follows that

ukl /|ul |
k
→ vkt = −|3|3

−1 as l→∞. Hence

lim
l→∞

Re

(
aj

λj

ukl

|ul |k

)
= Re

(
aj

λj
vkt

)
= −Re

(
aj

λj

|3|

3

)
.

Therefore in case (3), for l large, |Al |2 + 2 ReAl ∼ −l
−1. Hence

log
( ∞∏
l=1

|1+ Al |
)
=

1
2

∞∑
l=1

log(1+ |Al |2 + 2 ReAl) ∼
1
2

m∑
l=1

−1
l
= −∞,

and thus (3) follows. Statement (4) is similar. ut
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5. Dynamics of non-degenerate one-resonant maps

Definition 5.1. Let F ∈ Diff(Cn; 0) be one-resonant and non-degenerate with respect
to {λ1, . . . , λm}. Let k ∈ N be the order of F with respect to {λ1, . . . , λm} (see Def-
inition 3.3). Choose coordinates such that (3.2) holds. We say that F is parabolically
attracting with respect to {λ1, . . . , λm} if

|λj | = 1, Re(ajλ
−1
j 3−1) > 0, j = 1, . . . , m, (5.1)

where 3 = 3(F) is given by (3.3).

Remark 5.2. The condition of being parabolically attracting is independent of the co-
ordinates chosen. To see this, let ψ be a transformation which preserves (3.2), and let
F̃ := ψ ◦ F ◦ ψ−1. In view of Remark 3.2, it suffices to check the invariance of (5.1)
for ψ linear with ψj (z) = bjzj , bj ∈ C∗, for any j = 1, . . . , m. Then, aj is replaced by
ãj := ajb

αk and 3(F̃ ) = 3(F)bαk , from which the claim follows.

Remark 5.3. If F is one-resonant and non-degenerate with respect to {λ1} (with |λ1|

= 1), then it is always parabolically attracting. Indeed, in that case, 3 = a1α1λ1
−1 and

Re(a1λ
−1
1 3−1) = α−1

1 > 0.

Definition 5.4. Let F ∈ Diff(Cn; 0). A basin of attraction for F at 0 is a non-empty (not
necessarily connected) open set U ⊂ Cn with 0 ∈ U for which there exists a neighbor-
hood basis {�j } of 0 such that F(U ∩ �j ) ⊂ U ∩ �j and F ◦m(z) → 0 as m → ∞
whenever z ∈ U ∩�j for some j .

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Denote u := zα . In view of Theorem 3.6, up to biholomorphic
conjugation we can assume that F(z) = (F1(z), . . . , Fn(z)) with

Fj (z) =

{
(λj + aju

k
+ µλjαju

2k)zj +O(|z|
l), j = 1, . . . , m,

λjzj +O(|z|
2), j = m+ 1, . . . , n,

(5.2)

for any fixed l to be chosen later. Also, acting with a dilation (cf. Remark 3.2) we can
assume that 3 = 3(F) = −1/k. Then, since F is parabolically attracting, we have

Re(ajλ
−1
j ) < 0, j = 1, . . . , m. (5.3)

Let R > 0 be a number we will suitably choose later. Let

1R :=

{
u ∈ C :

∣∣∣∣uk − 1
2R

∣∣∣∣ < 1
2R

}
.

Note that 1R has exactly k connected components corresponding to different branches
of the k-th root. The desired basins of attraction will be constructed by means of the
projection z 7→ zα over sectors contained in such connected components.
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We first construct a basin of attraction based on a sector centered at the direction 1,
namely,

SR(ε) := {u ∈ 1R : |Arg u| < ε}, (5.4)

for some small ε > 0 to be chosen later.
Let β > 0 be such that β|α| < 1 and let

B := {z = (z1, . . . , zn) ∈ Cn : |zj | < |u|β , j = 1, . . . , m,

|(zm+1, . . . , zn)| < |u|
β , u := zα ∈ SR(ε)}.

First of all, B 6= ∅ and 0 ∈ ∂B. Indeed, it is easy to see that zr = (r, . . . , r) ∈ B for r > 0
sufficiently small. Moreover, since the map z 7→ zα is open and 0 is not in the interior of
SR(ε), it follows that 0 /∈ B, i.e. 0 ∈ ∂B. Finally, the set B is obviously open.

Next, we prove that B is F -invariant. Let z ∈ B and let u := zα . Let

8(u, z) := F
α1
1 (z) · · ·F αmm (z) = u−

1
k
uk+1
+ h1(u)+ h2(z),

where we consider 8 as a function of the variables z, u = zα and where h1(u) =

O(|u|k+2) and h2(z) = O(|z|
l). We make the change of coordinates U = u−k and write

8̃(U, z) := 8(U−1/k, z)−k

for the map 8 in the new coordinates. Note that u ∈ SR(ε) if and only if U ∈ HR(ε),
where

HR(ε) := {w ∈ C : Rew > R, |Argw| < kε}.

Since Re(ajλ
−1
j ) < 0, it is easy to see that, choosingR sufficiently large and ε sufficiently

small, we obtain ∣∣∣∣1+ ajλj 1
w
+ µαj

1
w2

∣∣∣∣ < 1−
c

|w|
(5.5)

for some c > 0 and for all w ∈ HR(ε).
Now fix 0 < δ < 1/2 such that

HR(ε)+ 1+ τ ⊂ HR(ε) whenever |τ | < δ, (5.6)

Note that δ depends on ε but not on R. Fix 0 < c′ < c. By choosing β < 1/2
sufficiently small, we can assume that

β(δ + 1)− c′k < 0 (5.7)

and choose l > 1 such that
βl > k + 1. (5.8)

After a direct computation we find

8̃(U, z) = U

(
1

1− 1
kU
+ U1/kh1(U−1/k)+ U1/kh2(z)

)k
. (5.9)
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Since |z| < n|u|β in B, there exists K > 0 such that

|U |1/k|h1(U
−1/k)| ≤ K|U |1/k|U |−(k+2)/k

= K|U |−1−1/k

and
|U |1/k|h2(z)| ≤ K|U |

1/k
|u|βl = K|U |(1−βl)/k.

Therefore, if R is sufficiently large and z ∈ B (hence U ∈ HR(ε)), we have

8̃(U, z) = U + 1+ ν(U, z) with |ν(U, z)| < δ, (5.10)

where we have used (5.8). In particular, U1 := 8̃(U, z) ∈ HR(ε) in view of (5.6) and
ReU1 ≥ ReU + 1/2. Therefore we have proved that

z ∈ B ⇒ u1 := 8(u, z) ∈ SR(ε). (5.11)

Moreover, by the same token, setting by induction um+1 := 8(um, F
◦m(z)), it follows

that
lim
m→∞

um = 0. (5.12)

Now we examine the components Fj for j = m + 1, . . . , n. Set x := (z1, . . . , zm)

and y := (zm+1, . . . , zn). Then

y1 = My + h(z)z,

where M is the (n − m) × (n − m) diagonal matrix with entries λj (j = m + 1, . . . , n)
and h is a holomorphic (n−m)× n matrix valued function in a neighborhood of 0 such
that h(0) = 0. If z ∈ B, then |y| < |u|β . Moreover, since |λj | < 1 for j = m+ 1, . . . , n,
it follows that there exists a < 1 such that |My| < a|y| < a|u|β . Also, let 0 < b < 1−a.
Then, for R sufficiently large, it follows that |h(z)| ≤ b/n if z ∈ B. Hence, letting
p = a + b < 1, we obtain

|y1| ≤ |My| + |h(z)| |z| < a|u|β +
b

n
n|u|β = (a + b)|u|β = p|u|β . (5.13)

Now, we claim that for R sufficiently large,

|u| ≤
1

p1/β |u1|, (5.14)

where u1 = 8(u, z). Indeed, (5.14) is equivalent to |U1| ≤ p
−k/β
|U | and hence to

|U + 1+ ν(U, z)|
|U |

≤ p−k/β .

But the limit as |U | → ∞ of the left-hand side is 1 and the right-hand side is > 1, thus
(5.14) holds for R sufficiently large.

Hence, by (5.13) and (5.14) we obtain

|y1| ≤ |u1|
β . (5.15)
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Now we examine the components Fj for j = 1, . . . , m. Let z ∈ B and, as before, let
U = u−k ∈ HR(ε). By (5.2) and by (5.3) we have

Fj (z) = λj

(
1+

aj

λj

1
U
+ µαj

1
U2

)
zj + Rl(z) (5.16)

with Rl(z) = O(|z|l). If z ∈ B and R is sufficiently large, one has

|Rl(z)| < |z|
l−1 < (n|u|β)l−1. (5.17)

From (5.16), and since U ∈ HR(ε), we now obtain, using (5.5) and (5.17),

|Fj (z)| ≤

(
1−

c

|U |
+ nl−1

|u|β(l−2)
)
|u|β =

(
1−

c

|U |
+

nl−1

|U |β(l−2)/k

)
|u|β .

Then β(l − 2) > k + 1 − 2β > k by (5.8) and thus β(l − 2)/k > 1. Hence, if R is
sufficiently large,

p(u) := 1−
c

|U |
+

nl−1

|U |β(l−2)/k < 1. (5.18)

Hence
|Fj (z)| ≤ p(u)|u|

β . (5.19)

Now we claim that, setting u1 := 8(u, z), we obtain

|u| ≤
1

|p(u)|1/β
|u1|. (5.20)

Indeed, (5.20) is equivalent to |U1| ≤ p(u)
−k/β
|U | and hence, in view of (5.10), to

|U + 1+ ν(U, z)|
|U |

≤ p(u)−k/β . (5.21)

Note that, since 0 < c′ < c (recall that c′ is chosen before (5.7)), taking R sufficiently
large, (1 − c′/|U |)−k/β ≤ p(u)−k/β . Also, by (5.10) we have |U + 1+ ν(U, z)|/|U | ≤
1+ (1+ δ)/|U |, hence (5.21) holds if we can show that

1+
1+ δ
|U |
≤

(
1−

c′

|U |

)−k/β
. (5.22)

But (
1−

c′

|U |

)−k/β
= 1+

k

β

c′

|U |
+ o

(
1
|U |

)
,

and thus (5.22) holds whenever δ + 1 − c′k/β < 0 (which is ensured by (5.7)) and R is
sufficiently large. Hence, (5.20) holds. Putting together (5.19) and (5.20) we have

|Fj (z)| ≤ |u1|
β , j = 1, . . . , m. (5.23)
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Inequalities (5.15) and (5.23) imply that F(B) ⊆ B. Moreover, by induction, for all
z ∈ B, denoting by ρj (z) := zj the projection on the j -th component, we have

|ρj ◦ F
◦m(z)| ≤ |um|

β ,

hence F ◦m(z)→ 0 as m→∞ by (5.12). Therefore B is a basin of attraction for F at 0.
To end the proof, we note that the previous argument can be repeated by considering

in (5.4) the sectors SjR(ε), j = 1, . . . , k, of the form

S
j
R(ε) := {u ∈ 1R : |Arg u− 2π(j − 1)/k| < ε}.

Let Bj be the basin of attraction constructed over SjR(ε), namely

Bj := {z = (z1, . . . , zn) ∈ Cn : |zj | < |u|β , j = 1, . . . , m,

|(zm+1, . . . , zn)| < |u|
β , u := zα ∈ S

j
R(ε)}.

Then clearly B1, . . . , Bk are disjoint and the proof is complete. ut

Remark 5.5. Let F be as in Theorem 1.1 and let B1, . . . , Bk be its basins of attraction
at 0 constructed in the proof. If S1, . . . , Sk denote the k petals for the induced germ u 7→

u+3uk+1
+O(|u|k+2) (see (4.2)) then, up to relabeling, π(Bj ) ⊂ Sj for j = 1, . . . , k,

where π : Cn 3 z 7→ zα ∈ C. In particular, if α = (q, 0, . . . , 0) for some q ≥ 1, then
each Bk has q connected components.

6. Applications and examples

6.1. Semi-attractive case

One-resonant diffeomorphisms with respect to one eigenvalue (which is necessarily a
root of unity) are either formally linearizable in the associated eigendirection, or non-
degenerate and parabolically attracting (see Remark 5.3). Thus, in particular, we recover
Hakim’s theorem on semi-attractive germs (cf. [17, Thm. 1.1] for q = 1):

Corollary 6.1. Let F ∈ Diff(Cn; 0). Let {λ1, . . . , λn} be the eigenvalues of dF0. Suppose
that λq1 = 1 for some q ∈ N \ {0} and λl1 6= 1 for l = 1, . . . , q − 1, and that |λj | < 1 for
j = 2, . . . , m. In particular, F is one-resonant with respect to {λ1}. Let k be the order of
F with respect to λ1. Then either

(1) k < ∞ and there exist k basins of attraction for F at 0, each having q connected
components which are cyclically permuted by F , or

(2) k = ∞ and F is formally linearizable in the first component. This is the case if and
only if there exists a holomorphic germ of a non-singular curve of fixed points of F ◦q

passing through 0.
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Proof. (1) If k < ∞ then F is non-degenerate with respect to {λ1} and with index of
resonance (q, 0, . . . , 0) (see Remark 3.5). By Remark 5.3, F is parabolically attracting
with respect to {λ1} and hence Theorem 1.1 applies, yielding k basins of attraction. Let
B1, . . . , Bk be the basins of attraction constructed in the course of proof of Theorem 1.1.
By Remark 5.5, each Bj has q connected components.

Fix one such basin of attraction B = Bj and let D0, . . . , Dq−1 be its connected
components. By Remark 5.5, the image of B in C via the map Cn 3 z 7→ z

q

1 belongs
to a petal S of u 7→ u + 3(F)uk+1. Let w ∈ C be such that wq ∈ S. In view of
the construction in the proof of Theorem 1.1, assuming w is sufficiently small, we have
Qp := (λ

p

1w, 0, . . . , 0) ∈ B for p = 0, . . . , q−1. Moreover, theQp’s belong to different
connected components of B. We can assume Qp ∈ Dp for p = 0, . . . , q − 1. Now
F1(Qp) = λ

p+1
1 w + o(|w|) and hence F(Qp) belongs to Dp+1 (where Dq = D0),

proving the statement.
(2) We note that by Definition 3.3, the orders of F and of F ◦q with respect to λ1 coin-

cide. Furthermore, k = ∞ if and only if F is formally linearizable in the first component,
and hence if and only if F ◦q is formally linearizable in the first component. Therefore we
can assume q = 1. One direction being clear, we only show that if k = ∞ then F has a
holomorphic non-singular curve of fixed points through 0. Write z = (z, z′) ∈ C×Cn−1,
λ′ = (λ2, . . . , λn) and

F(z, z′) = (f (z, z′), λ′z′ + g(z, z′)) ∈ C× Cn−1,

where f (z, z′) = z+ o(|(z, z′)|) and g(z, z′) = o(|(z, z′)|). We look for a curve given by
ψ : ζ 7→ (ζ, v(ζ )) where v : U → Cn−1 is a germ at 0 of holomorphic map defined in
some open set U ⊂ C such that v(0) = 0 and such that F(ψ(ζ )) = ψ(ζ ) for all ζ ∈ U .
We decouple the latter condition as

f (ζ, v(ζ )) = ζ, (6.1)
λ′v(ζ )+ g(ζ, v(ζ )) = v(ζ ). (6.2)

Since k = +∞, Poincaré–Dulac theory shows that F is formally conjugate to a map of
the type F̂ (z, z′) = (z, λ′z′+h(z, z′)), where each monomial in the expansion of h(z, z′)
is divisible by zj for some j = 2, . . . , n. Clearly F̂ has a unique curve of fixed points
tangent to e1, namely z′ = 0. Hence, F has a unique formal solution to (6.1) and (6.2).
It is enough to show that such a solution is actually holomorphic. To this end, we let
G(x, y) := (λ′ − id)y + g(x, y) with x ∈ C and y ∈ Cn−1. Since the Jacobian matrix{ ∂Gj (x,y)

∂yk

∣∣
0

}n−1
j,k=1 = λ′ − id has maximal rank, by the (holomorphic) implicit function

theorem there exists a unique function v(x) defined and holomorphic near x = 0 such
that G(x, v(x)) ≡ 0, and the proof is complete. ut

6.2. Quasi-parabolic germs

A germ of holomorphic diffeomorphism of C2 at 0 of the form F(z,w) = (z + · · · ,

e2πiθw+ · · · ) with θ ∈ R is called quasi-parabolic. In particular, if θ ∈ R \Q, then F is
one-resonant. We shall restrict to this case here.
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Using Poincaré–Dulac theory, since all resonances are of the type (1, (m, 0)),
(2, (m, 1)), the map F is formally conjugate to a map of the form

F̂ (z, w) =
(
z+

∞∑
j=ν

ajz
j , e2πiθw +

∞∑
j=µ

bjz
jw
)
, (6.3)

where we assume that either aν 6= 0 or ν = ∞ if aj = 0 for all j . Similarly for bµ.
As proved in [7], the number ν(F ) := ν is a formal invariant of F . Moreover, it is

proved that, in case ν < ∞, the sign of 2(F) := ν − µ − 1 is a formal invariant. The
map F is called dynamically separating if ν <∞ and 2(F) ≤ 0.

An argument similar to that in the proof of Corollary 6.1(2) yields:

Proposition 6.2. Let F be a quasi-parabolic germ of diffeomorphism of C2 at 0. Then
ν(F ) = +∞ if and only if there exists a germ of (holomorphic) curve through 0 that
consists of fixed points of F .

In case ν(F ) < ∞, we note that the index α is (1, 0) and therefore 3(F) equals either
aν(F ) or 0, depending on whether ν ≤ µ + 1 or ν > µ + 1. Hence F is dynamically
separating if and only if it is non-degenerate with respect to {1, e2πiθ

}. In case F is non-
degenerate, k := ν(F )− 1 is the order of F with respect to {1, e2πiθ

}.
In [7] it is proven that if F is a quasi-parabolic dynamically separating germ of dif-

feomorphism at 0 then there exist ν(F )− 1 petals for F at 0. A direct computation shows
that if F is dynamically separating, then it is parabolically attracting if and only if

Re

(
bν−1

e2πiθaν

)
> 0. (6.4)

Then as a consequence of Theorem 1.1 and Remark 5.5 we have:

Corollary 6.3. Let F be a dynamically separating quasi-parabolic germ, formally con-
jugate to (6.3). If (6.4) holds, then there exist ν(F ) − 1 disjoint connected basins of
attraction for F at 0.

6.3. An example of an elliptic germ with parabolic dynamics

Let λ = e2πiθ for some θ ∈ R \Q. Let

F(z,w) = (λz+ az2w + · · · , λ−1w + bzw2
+ · · · )

with |a| = |b| = 1. Then F is one-resonant with index of resonance (1, 1) and for each
choice of (a, b) such that the germ is non-degenerate (i.e. aλ−1

+ bλ 6= 0), there exists a
basin of attraction for F at 0. Indeed, it can be checked that the non-degeneracy condition
implies that F is parabolically attracting with respect to {λ, λ−1

} and hence Theorem 1.1
applies.

A similar argument can be applied to F−1, producing a basin of repulsion for F at 0.
Hence we have a parabolic type dynamics for F .
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On the other hand, suppose further that there exist c > 0 and N ∈ N such that
|e2πqiθ

− 1| ≥ cq−N for all q ∈ N \ {0} (this holds for θ in a full measure subset
of the unit circle). Since λq 6= λ for all q ∈ N, it follows from [21, Theorem 1] that
there exist two analytic discs through 0, tangent at the origin to the z-axis and to the w-
axis respectively, which are F -invariant and such that the restriction of F to each disc
is conjugate to ζ 7→ λζ or ζ 7→ λ−1ζ respectively. Thus, in that case, the elliptic and
parabolic dynamics mix, although the spectrum of dF0 is only of elliptic type.

6.4. Examples of one-resonant degenerate germs with no basins of attraction

Set

F(z,w) =

(
λz

(
1−

zw

λ

)−1

,
w

λ

(
1−

zw

λ

))
, (6.5)

with |λ| = 1 and λ not a root of unity. Then F is one-resonant with index of resonance
α = (1, 1) but it is degenerate because

3(F) =
1
λ
−

1
λ2 · λ = 0.

Note also that the order of F is k = 1. Set u = zw and

8(u) = F1(z, w) · F2(z, w) = u.

We claim that F has no basins of attraction at 0. Indeed, suppose F ◦n(z, w) → 0 as
n → ∞ for some (z, w). Then it follows that 8◦n(zw) → 0 as n → ∞, which implies
that zw = 0. The latter cannot hold on a non-empty open set.

A less trivial example demonstrating this phenomenon is the following. Set

F(z,w) =

(
λz+ z2w,

1
λ
w −

1
λ2 zw

2
)
, (6.6)

where |λ| = 1 and λ is not a root of unity. As before, F is one-resonant with index of
resonance (1, 1) and 3(F) = 0. The order of F is 1 and for u = zw we obtain

8(u) = F1(z, w) · F2(z, w) = u−
1
λ2 u

3.

The order of 8 at u = 0 is 2. Now the attracting directions of 8 at 0 are v = ±λ. The
map8 is a polynomial, with two attracting maximal petals P(λ) and P(−λ) at the origin.
The maximal petals P(λ) and P(−λ) are disjoint and obtained as unions of all preimages
under F ◦n, n = 1, 2, . . . , of two fixed local petals.

Let J be the Julia set of 8. Set Ĵ := {(z, w) : zw ∈ J }. Then Ĵ has empty interior
since J does (see e.g. [10]). We claim that if (z, w) /∈ Ĵ , then F ◦n(z, w)9 0 as n→∞.

It is well-known that, if u0 /∈ J and 8◦n(u0) → 0 as n → ∞, then u0 ∈ P(λ) ∪

P(−λ). Therefore if (z, w) 6∈ Ĵ is such that zw 6∈ P(λ)∪P(−λ) then {8◦n(zw)} cannot
converge to 0 and therefore F ◦n(z, w)9 0.
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Now, let (z, w) 6∈ Ĵ be such that zw ∈ P(λ) ∪ P(−λ). Then, setting ul = 8◦l(zw),
we have

F ◦m(z, w) =

(
λmz

m∏
l=1

(
1+

ul

λ

)
,
w

λm

m∏
l=1

(
1−

ul

λ

))
,

so that the behavior of F ◦m(z, w) depends only on the behavior of the infinite products∏m
l=1(1± ul/λ).

The sequence {ul} tends to 0 with speed

|ul |
2
∼ 1/l, (6.7)

while ul/|ul | → ±λ depending on whether zw ∈ P(±λ). But∣∣∣∣1± ulλ
∣∣∣∣ = √1+ |ul |2 ± 2|ul |Re

ul

λ|ul |
∼ 1±

1
√
l

Re
v

λ
,

where v = ±λ. Therefore, if zw ∈ P(λ), i.e. v = λ, then the behavior of p1 ◦ F
◦m(z, w)

(here p1(z, w) = z) depends on the infinite product∏(
1+

1
√
l

)
,

which diverges to∞, while the behavior of p2 ◦F
◦m(z, w) (here p2(z, w) = w) depends

on the infinite product ∏(
1−

1
√
l

)
,

which converges to 0. If zw ∈ P(−λ) the situation is reversed. In both cases F ◦n(z, w)
9 0. Hence F has no basin of attraction at 0.

6.5. Example of a one-resonant non-degenerate (but not parabolically attracting) germ
with no basins of attraction

Consider the germ given by

F(z,w) = (z− z2, λw + λzw),

where |λ| = 1 and λ is not a root of unity. Then F is one-resonant with index of resonance
(1, 0). Furthermore 3 = −1, hence F is non-degenerate. On the other hand, F is not
parabolically attracting, in fact Re(a2λ

−1
2 3−1) = −1 < 0. Thus Theorem 1.1 does not

apply and, in fact, F has no basin of attraction.
Indeed, if F ◦n(z0, w0)→ 0 as n→∞, then z0 must belong to the maximal petal of

the map ϕ(z) = z− z2. Setting zn := ϕ◦n(z0), we have

F ◦n(z0, w0) =
(
zn, λ

nw

n∏
l=1

(1+ zl)
)
.
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In view of Theorem 2.1, ∣∣∣ n∏
l=1

(1+ zl)
∣∣∣ ≥ n∏

l=1

(
1+

ε

l

)
= +∞

for suitable ε > 0. Hence the only possibility for F ◦n(z0, w0)→ 0 is whenw0 = 0. Thus
we cannot have an (open) basin of attraction.
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