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Markov convexity and local rigidity of distorted metrics

Abstract. It is shown that a Banach space admits an equivalent norm whose modulus of uniform
convexity has power-type p if and only if it is Markov p-convex. Counterexamples are constructed
to natural questions related to isomorphic uniform convexity of metric spaces, showing in particular
that tree metrics fail to have the dichotomy property.
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1. Introduction

A Banach space (X, ‖·‖X) is said to be finitely representable in a Banach space (Y, ‖·‖Y )
if there exists a constant D < ∞ such that for every finite-dimensional linear subspace
F ⊆ X there is a linear operator T : F → Y satisfying ‖x‖X ≤ ‖T x‖Y ≤ D‖x‖X for
all x ∈ F . In 1976 Ribe [31] proved that if two Banach spaces X and Y are uniformly
homeomorphic, i.e., there is a bijection f : X → Y such that f and f−1 are uniformly
continuous, then X is finitely representable in Y and vice versa. This remarkable theorem
motivated what is known today as the “Ribe program”: the search for purely metric refor-
mulations of basic linear concepts and invariants from the local theory of Banach spaces.
This research program was put forth by Bourgain in 1986 [5].

Since its inception, the Ribe program attracted the work of many mathematicians,
and led to the development of several satisfactory metric theories that extend important
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concepts and results of Banach space theory; see the introduction of [24] for a historical
discussion. So far, progress on the Ribe program has come hand-in-hand with applications
to metric geometry, group theory, functional analysis, and computer science.

The present paper contains further progress in this direction: we obtain a metric char-
acterization of p-convexity in Banach spaces, derive some of its metric consequences, and
construct unexpected counterexamples which indicate that further progress on the Ribe
program can uncover nonlinear phenomena that are markedly different from their Banach
space counterparts. In doing so, we answer questions posed by Lee–Naor–Peres and Fef-
ferman, and improve a theorem of Bates, Johnson, Lindenstrauss, Preiss and Schechtman.
These results, which will be explained in detail below, were announced in [23].

For p ≥ 2, a Banach space (X, ‖ · ‖X) is said to be p-convex if there exists a norm
||| · ||| which is equivalent to ‖ · ‖X (i.e., for some a, b > 0, a‖x‖X ≤ |||x||| ≤ b‖x‖X for
all x ∈ X), and a constant K > 0 satisfying

|||x||| = |||y||| = 1 ⇒
∣∣∣∣∣∣∣∣∣∣∣∣x + y2

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 1−K|||x − y|||p. (1)

X is called superreflexive if it is p-convex for some p ≥ 2 (historically, this is not the
original definition of superreflexivity,1, but it is equivalent to it due to a deep theorem
of Pisier [29], which builds on important work of James [10] and Enflo [7]). For con-
creteness, we recall (see, e.g., [2]) that Lp is 2-convex for p ∈ (1, 2] and p-convex for
p ∈ [2,∞).

Ribe’s theorem implies that p-convexity, and hence also superreflexivity, is preserved
under uniform homeomorphisms. The first major success of the Ribe program is a famous
theorem of Bourgain [5] which gives a metrical characterization of superreflexivity:

Theorem 1.1 (Bourgain’s metrical characterization of superreflexivity [5]). Let Bn be
the complete unweighted binary tree of depth n, equipped with the natural graph-theoret-
ical metric. Then a Banach space X is superreflexive if and only if

lim
n→∞

cX(Bn) = ∞. (2)

Here, and in what follows, given two metric spaces (M , dM ), (N , dN ), the parameter
cM (N ) denotes the smallest bi-Lipschitz distortion with which N embeds into M , i.e.,
the infimum of those D > 0 such that there exists a scaling factor r > 0 and a mapping
f : N →M satisfying rdN (x, y) ≤ dM (x, y) ≤ DrdN (x, y) for all x, y ∈ N (if no
such f exists then we set cM (N ) = ∞).

Bourgain’s theorem characterizes superreflexivity of Banach spaces in terms of their
metric structure, but it leaves open the characterization of p-convexity. The notion of p-
convexity is crucial for many applications in Banach space theory and metric geometry,

1 James’ original definition of superreflexivity is that a Banach space X is superreflexive if “its
local structure forces reflexivity”, i.e., if every Banach space Y that is finitely representable in X
must be reflexive. Enflo’s renorming theorem states that superreflexivity is equivalent to having an
equivalent norm ||| · ||| that is uniformly convex, i.e., for every ε ∈ (0, 1) there exists δ > 0 such that
if |||x||| = |||y||| = 1 and |||x − y||| = ε then |||x + y||| ≤ 2− δ.
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and it turns out that the completion of the Ribe program for p-convexity requires signif-
icant additional work beyond Bourgain’s superreflexivity theorem. As a first step in this
direction, Lee, Naor and Peres [16] defined a bi-Lipschitz invariant of metric spaces called
Markov convexity, which is motivated by Ball’s notion of Markov type [1] and Bourgain’s
argument in [5].

Definition 1.2 ([16]). Let {Xt }t∈Z be a Markov chain on a state space �. Given an in-
teger k ≥ 0, we denote by {X̃t (k)}t∈Z the process which equals Xt for time t ≤ k, and
evolves independently (with respect to the same transition probabilities) for time t > k.
Fix p > 0. A metric space (X, dX) is called Markov p-convex with constant 5 if for
every Markov chain {Xt }t∈Z on a state space �, and every f : �→ X,

∞∑
k=0

∑
t∈Z

E
[
dX
(
f (Xt ), f (X̃t (t − 2k))

)p]
2kp

≤ 5p ·
∑
t∈Z

E[dX(f (Xt ), f (Xt−1))
p
]. (3)

The least constant 5 for which (3) holds for all Markov chains is called the Markov p-
convexity constant of X, and is denoted 5p(X). We shall say that (X, dX) is Markov
p-convex if 5p(X) <∞.

To gain intuition for Definition 1.2, consider the standard downward random walk
starting from the root of the binary tree Bn (with absorbing states at the leaves). For an
arbitrary mapping f from Bn to a metric space (X, dX), the triangle inequality implies
that for each k ∈ N we have∑

t∈Z

E
[
dX
(
f (Xt ), f (X̃t (t − 2k))

)p]
2kp

.p
∑
t∈Z

E[dX(f (Xt ), f (Xt−1))
p
], (4)

with asymptotic equality (up to constants depending only on p) for k ≤ (log n)/2 when
X = Bn and f is the identity mapping. On the other hand, if X is a Markov p-convex
space then the sum over k of the left-hand side of (4) is uniformly bounded by the right-
hand side of (4), and therefore Markov p-convex spaces cannot contain Bn with distortion
uniformly bounded in n.

We refer to [16] for more information on the notion of Markov p-convexity. In par-
ticular, it is shown in [16] that the Markov 2-convexity constant of an arbitrary weighted
tree T is, up to constant factors, the Euclidean distortion of T . We refer to [16] for Lp
versions of this statement and their algorithmic applications. It was also shown in [16],
via a modification of an argument of Bourgain [5], that if a Banach space X is p-convex
then it is also Markov p-convex. It was asked in [16] if the converse is also true. Here we
answer this question positively:

Theorem 1.3. A Banach space is p-convex if and only if it is Markov p-convex.

Thus Markov p-convexity is equivalent to p-convexity in Banach spaces, completing the
Ribe program in this case. Our proof of Theorem 1.3 is based on a renorming method of
Pisier [29]. It can be viewed as a nonlinear variant of Pisier’s argument, and several subtle
changes are required in order to adapt it to a nonlinear condition such as (3).
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Results similar to Theorem 1.3 have been obtained for the notions of type and cotype
of Banach spaces (see [6, 30, 1, 25, 24, 22]), and have been used to transfer some of the
linear theory to the setting of general metric spaces. This led to several applications to
problems in metric geometry. Apart from the applications of Markov p-convexity that
were obtained in [16], here we show that this invariant is preserved under Lipschitz quo-
tients. The notion of Lipschitz quotient was introduced by Gromov [8, Sec. 1.25]. Given
two metric spaces (X, dX) and (Y, dY ), a surjective mapping f : X → Y is called a
Lipschitz quotient if it is Lipschitz, and it is also “Lipschitzly open” in the sense that there
exists a constant c > 0 such that for every x ∈ X and r > 0,

f (BX(x, r)) ⊇ BY (f (x), r/c). (5)

Here we show the following result:

Theorem 1.4. If (X, dX) is Markov p-convex and (Y, dY ) is a Lipschitz quotient of X,
then Y is also Markov p-convex.

In [3] Bates, Johnson, Lindenstrauss, Preiss and Schechtman investigated in detail Lips-
chitz quotients of Banach spaces. Their results imply that if 2 ≤ p < q then Lq is not a
Lipschitz quotient of Lp. Since Lp is p-convex, it is also Markov p-convex. Hence also
all of its subsets are Markov p-convex. But Lq is not p-convex, so we deduce that Lq is
not a Lipschitz quotient of any subset of Lp. Thus our new “invariant approach” to the
above result of [3] significantly extends it. Note that the method of [3] is based on a dif-
ferentiation argument, and hence it crucially relies on the fact that the Lipschitz quotient
mapping is defined on all of Lp and not just on an arbitrary subset of Lp.

In light of Theorem 1.3 it is natural to ask if Bourgain’s characterization of super-
reflexivity holds for general metric spaces. Namely, is it true that for any metric space X,
if limn→∞ cX(Bn) = ∞ then X is Markov p-convex for some p < ∞? This question
was asked in [16], where it was shown that the answer is positive if (X, dX) is a metric
tree. Here we show that in general the answer is negative:

Theorem 1.5. There is a metric space (X, dX) which is not Markov p-convex for any
p ∈ (0,∞), yet limn→∞ cX(Bn) = ∞. In fact, (X, dX) can be a doubling metric space,
and hence cX(Bn) ≥ 2κn for some constant κ > 0.

Theorem 1.5 is in sharp contrast to the previously established metric characterizations of
the linear notions of type and cotype. Specifically, it was shown by Bourgain, Milman
and Wolfson [6] that any metric space with no nontrivial metric type must contain the
Hamming cubes ({0, 1}n, ‖·‖1)with distortion independent of n. An analogous result was
obtained in [24] for metric spaces with no nontrivial metric cotype, with the Hamming
cube replaced by the `∞ grid ({1, . . . , m}n, ‖ · ‖∞).

Our proof of Theorem 1.5 is based on an analysis of the behavior of a certain Markov
chain on the Laakso graphs, a sequence of combinatorial graphs whose definition is re-
called in Section 3. As a consequence of this analysis, we obtain the following distortion
lower bound:

Theorem 1.6. For any p ≥ 2, the Laakso graph of cardinality n incurs distortion
�((log n)1/p) in any embedding into a p-convex Banach space.
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Thus, in particular, for p > 2 the n-point Laakso graph incurs distortion �((log n)1/p)
in any embedding into Lp. The case of Lp embeddings of the Laakso graphs when 1 <
p ≤ 2 was already solved in [26, 12, 15, 14] using the uniform 2-convexity property
of Lp. But these proofs rely crucially on 2-convexity and do not extend to the case of p-
convexity when p > 2. Subsequent to the publication of our proof of Theorem 1.6 in the
announcement [23], an alternative proof of this fact was recently discovered by Johnson
and Schechtman in [11].

1.1. The nonexistence of a metric dichotomy for trees

Bourgain’s metrical characterization of superreflexivity yields the following statement:

Theorem 1.7 (Bourgain’s tree dichotomy [5]). For any Banach space (X, ‖ · ‖X) one of
the following two dichotomic possibilities must hold true: either

• for all n ∈ N we have cX(Bn) = 1, or
• there exists α = αX > 0 such that for all n ∈ N we have cX(Bn) ≥ (log n)α .

Thus, there is a gap in the possible rates of growth of the sequence {cX(Bn)}∞n=1 when X
is a Banach space; consequently, if we were told that, say, cX(Bn) = O(log log n), then
we would immediately deduce that actually cX(Bn) = 1 for all n. Additional gap results
of this type are known due to the theory of nonlinear type and cotype:

Theorem 1.8 (Bourgain–Milman–Wolfson cube dichotomy [6]). For any metric space
(X, dX) one of the following two dichotomic possibilities must hold true: either

• for all n ∈ N we have cX ({0, 1}n, ‖ · ‖1) = 1, or
• there exists α = αX > 0 such that for all n ∈ N we have cX ({0, 1}n, ‖ · ‖1) ≥ nα .

Theorem 1.8 is a metric analogue of Pisier’s characterization [28] of Banach spaces with
trivial Rademacher type. A metric analogue of the Maurey–Pisier characterization [20]
of Banach spaces with finite Rademacher cotype yields the following dichotomy result
for `∞ grids:

Theorem 1.9 (Grid dichotomy [24]). For any metric space (X, dX) one of the following
two dichotomic possibilities must hold true: either

• for all n ∈ N we have cX ({0, . . . , n}n, ‖ · ‖∞) = 1, or
• there exists α = αX > 0 such that for all n ∈ N we have cX ({0, . . . , n}n, ‖ · ‖∞) ≥ nα .

We refer to the survey article [21] for more information on the theory of metric di-
chotomies.

Note that Theorem 1.7 is stated for Banach spaces, while Theorems 1.8 and 1.9 hold
for general metric spaces. One might expect that as in the case of previous progress on the
Ribe program, a metric theory of p-convexity would result in a proof that Theorem 1.7
holds when X is a general metric space. Surprisingly, we show here that this is not true:
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Theorem 1.10. There exists a universal constant C > 0 with the following property.
Assume that {s(n)}∞n=0 ⊆ [4,∞) is a nondecreasing sequence such that {n/s(n)}∞n=0 is
also nondecreasing. Then there exists a metric space (X, dX) satisfying, for all n ≥ 2,

s

(⌊
n

40s(n)

⌋)(
1−

Cs(n) log s(n)
log n

)
≤ cX(Bn) ≤ s(n). (6)

Thus, assuming that s(n) = o
( log n

log log n

)
, there exists a subsequence {nk}∞k=1 for which

(1− o(1))s(nk) ≤ cX(Bnk ) ≤ s(nk). (7)

Theorem 1.10 shows that unlike the case of Banach spaces, for general metric spaces,
cX(Bn) can have an arbitrarily slow growth rate.

Bourgain, Milman and Wolfson also obtained in [6] the following finitary version of
Theorem 1.8:

Theorem 1.11 (Local rigidity of Hamming cubes [6]). For every ε > 0, D > 1 and
n ∈ N there exists m = m(ε,D, n) ∈ N such that

lim
n→∞

m(ε,D, n) = ∞,

and for every metric d on {0, 1}n which is bi-Lipschitz with distortion ≤ D to the `1
(Hamming) metric,

c({0,1}n,d)
(
{0, 1}m, ‖ · ‖1

)
≤ 1+ ε.

We refer to [6] (see also [30]) for bounds on m(ε,D, n). Informally, Theorem 1.11 says
that the Hamming cube ({0, 1}n, ‖·‖1) is locally rigid in the following sense: it is impossi-
ble to distort the Hamming metric on a sufficiently large hypercube without the resulting
metric space containing a hardly distorted copy of an arbitrarily large Hamming cube.
Stated in this way, Theorem 1.11 is a metric version of James’ theorem [9] that `1 is not
a distortable space. The analogue of Theorem 1.11 with the Hamming cube replaced by
the `∞ grid ({0, . . . , n}n, ‖ · ‖∞) is Matoušek’s BD-Ramsey theorem [19]; see [24] for
quantitative results of this type in the `∞ case. The following variant of Theorem 1.10
shows that a local rigidity statement as above fails to hold true for binary trees; it can
also be viewed as a negative solution of the distortion problem for the infinite binary tree
(see [27] and [4, Ch. 13, 14] for more information on the distortion problem for Banach
spaces).

Theorem 1.12. Let B∞ be the complete unweighted infinite binary tree. For everyD ≥ 4
there exists a metric d on B∞ that is D-equivalent to the original shortest-path metric
on B∞, yet for every ε ∈ (0, 1) and m ∈ N,

c(B∞,d)(Bm) ≤ D − ε ⇒ m ≤ DCD
2/ε.

The local rigidity problem for binary trees was studied by several mathematicians. In
particular, C. Fefferman asked (private communication, 2005) whether {Bn}∞n=1 have the
local rigidity property, and Theorem 1.12 answers this question negatively. Fefferman also
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proved a partial local rigidity result which is a nonquantitative variant of Theorem 1.14
below (see also Section 5). We are grateful to C. Fefferman for asking us the question
that led to the counterexamples of Theorems 1.10 and 1.12, for sharing with us his partial
positive results, and for encouraging us to work on these questions. M. Gromov also
investigated the local rigidity problem for binary trees, and proved (via different methods)
nonquantitative partial positive results in the spirit of Theorem 1.14. We thank M. Gromov
for sharing with us his unpublished work on this topic.

The results of Theorems 1.10 and 1.12 are quite unexpected. Unfortunately, their
proofs are delicate and lengthy, and as such constitute the most involved part of this
article. In order to facilitate the understanding of these constructions, we end the intro-
duction with an overview of the main geometric ideas that are used in their proofs. This is
done in Section 1.1 below—we recommend reading this section first before delving into
the technical details presented in Section 6.

Overview of the proofs of Theorems 1.10 and 1.12. For x ∈ B∞ let h(x) be its depth, i.e.,
its distance from the root. Also, for x, y ∈ B∞ let lca(x, y) denote their least common
ancestor. The tree metric on B∞ is then given by

dB∞(x, y) = h(x)+ h(y)− 2h(lca(x, y)).

The metric space X of Theorem 1.10 will be B∞ as a set, with a new metric defined as
follows. Given a sequence ε = {εn}∞n=0 ⊆ (0, 1] we define dε : B∞ × B∞→ [0,∞) by

dε(x, y) = |h(y)− h(x)| + 2εmin{h(x),h(y)}[min{h(x), h(y)} − h(lca(x, y))].

dε does not necessarily satisfy the triangle inequality, but under some simple conditions
on the sequence {εn}∞n=0 it does become a metric on B∞; see Lemma 6.1. A pictorial
description of the metric dε is contained in Figure 1. Note that when εn = 1 for all n, we
have dε = dB∞ . Below we call the metric spaces (B∞, dε) horizontally distorted trees, or
H -trees, for short.

The metric space (X, dX) of Theorem 1.10 will be (B∞, dε), where εn = 1/s(n) for
all n. The identity mapping of Bn into the top n-levels of B∞ has distortion at most s(n),

lca(x, y)

x

y

b

a

root

dε(x, y) = b + 2a · εh(x)
Fig. 1. The metric dε defined on B∞. The arrows indicate horizontal contraction by εh(x).
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and therefore cX(Bn) ≤ s(n). The challenge is to prove the lower bound on cX(Bn) in (6).
Our initial approach to lower-bounding cX(Bn) was Matoušek’s metric differentiation
proof [18] of asymptotically sharp distortion lower bounds for embeddings of Bn into
uniformly convex Banach spaces.

Following Matoušek’s terminology [18], for δ > 0 a quadruple of points (x, y, z, w)
in a metric space (X, dX) is called a δ-fork if y ∈ Mid(x, z, δ) ∩Mid(x,w, δ), where for
a, b ∈ X the set Mid(a, b, δ) ⊆ X of δ-approximate midpoints is defined as the set of all
w ∈ X satisfying max{dX(x, y), dX(y, z)} ≤ 1

2 (1+ δ) · dX(x, z). The points z,w will be
called below the prongs of the δ-fork (x, y, z, w). Matoušek starts with the observation
that ifX is a uniformly convex Banach space then in any δ-fork inX the distance between
the prongs must be much smaller (as δ → 0) than dX(x, y). Matoušek then shows that
for all D > 0, any distortion D embedding of Bn into X must map some 0-fork in Bn
to a δ-fork in X, provided n is large enough (as a function of D and δ). This reasoning
immediately implies that cX(Bn) must be large when X is a uniformly convex Banach
space, and a clever argument of Matoušek in [18] turns this qualitative argument into
sharp quantitative bounds.

Of course, we cannot hope to use the above argument of Matoušek in order to prove
Theorem 1.10, since Bourgain’s tree dichotomy theorem (Theorem 1.7) does hold true
for Banach spaces. But perhaps we can mimic this uniform convexity argument for other
target metric spaces? On the face of it, H -trees are ideally suited for this purpose, since
the horizontal contractions that we introduced shrink distances between the prongs of
canonical forks (call (x, y, z, w) ∈ B∞ a canonical fork if x is an ancestor of y and z,w
are descendants of y at depth h(x)+ 2(h(y)− h(x))). It is for this reason exactly that we
defined H -trees.

Unfortunately, the situation is not that simple. It turns out that H -trees do not behave
like uniformly convex Banach spaces in terms of the prong-contractions that they impose
of δ-forks. H -trees can even contain larger problematic configurations that have several
undistorted δ-forks; such an example is depicted in Figure 2.

Thus, in order to prove Theorem 1.10 it does not suffice to use Matoušek’s argument
that a bi-Lipschitz embedding of a large enoughBn must send some 0-fork to a δ-fork. But
it turns out that this argument applies not only to forks, but also to larger configurations.

Definition 1.13. Let (T , dT ) be a tree with root r , and let (X, dX) be a metric space. A
mapping f : T → X is called a D-vertically faithful embedding if there exists a (scaling
factor) λ > 0 satisfying, for any x, y ∈ T such that x is an ancestor of y,

λdT (x, y) ≤ dX(f (x), f (y)) ≤ DλdT (x, y). (8)

Recall that the distortion of a mapping φ : M → N between metric spaces
(M , dM ) and (N , dN ) is defined as

dist(φ) :=
(

sup
x,y∈M
x 6=y

dN (φ(x), φ(y))

dM (x, y)

)
·

(
sup

x,y∈M
x 6=y

dM (x, y)

dN (φ(x), φ(y))

)
∈ [1,∞].

With this terminology, we can state the following crucial result.
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r

h2 − h1 = δ−1

h1

h2

r

Fig. 2. The metric space on the right is the H -tree (B∞, dε), where εn = δ for all n. The picture
describes an embedding of the tree on the left (B3 minus four leaves) into (B∞, dε) with distortion
at most 6, yet all ancestor/descendant distances are distorted by at most 1+O(δ).

Theorem 1.14. There exists a universal constant c > 0 with the following property. Fix
an integer t ≥ 2, δ, ξ ∈ (0, 1), and D ≥ 2, and assume that n ∈ N satisfies

n ≥
1
ξ
Dc(t log t)/δ. (9)

Let (X, dX) be a metric space and f : Bn → X a D-vertically faithful embedding. Then
there exists a mapping φ : Bt → Bn with the following properties.

• If x, y ∈ Bt are such that x is an ancestor of y, then φ(x) is an ancestor of φ(y).
• dist(φ) ≤ 1+ ξ .
• The mapping f ◦ φ : Bt → X is a (1+ δ)-vertically faithful embedding of Bt in X.

Theorem 1.14 is essentially due to Matoušek [18]. Matoušek actually proved this state-
ment only for t = 2, since this is all that he needed in order to analyze forks. But his
proof extends in a straightforward way to any t ∈ N. Since we will use this assertion
with larger t , for the sake of completeness we reprove it, in a somewhat different way,
in Section 5. Note that Theorem 1.14 says that {Bn}∞n=1 do have a local rigidity property
with respect to vertically faithfully embeddings.

We solve the problem created by the existence of configurations as those depicted in
Figure 2 by studying (1 + δ)-vertically faithful embeddings of B4, and arguing that they
must contain a large contracted pair of points. This claim, formalized in Lemma 6.27, is
proved in Sections 6.2 and 6.3.

We begin in Section 6.2.1 by studying how the metric P2 (3-point path) can be ap-
proximately embedded in (B∞, dε). We find that there are essentially only two ways to
embed it in (B∞, dε), as depicted in Figure 3. We then proceed in Section 6.2.2 to study
δ-forks in (B∞, dε). Since forks are formed by “stitching” two approximate P2 metrics
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along a common edge (the handle), we can limit the “search space” using the results of
Section 6.2.1. We find that there are six possible types of different approximate forks in
(B∞, dε), only four of which (depicted in Figure 4) do not have highly contracted prongs.
Complete binary trees, and in particular B4, are composed of forks stitched together, han-
dle to prong. In order to study handle-to-prong stitching, we investigate in Section 6.2.3
how the metric P3 (4-point path) can be approximately embedded in (B∞, dε). This is
again done by studying how two P2 metrics can be stitched together, this time bottom
edge to top edge. We find that there are only three different approximate configurations
of P4 in (B∞, dε).

Using the machinery described above, we study in Section 6.3 how the different types
of forks can be stitched together in embeddings of B4 into (B∞, dε), reaching the conclu-
sion that a large contraction is unavoidable, and thus completing the proof of Lemma 6.27.
The proofs of Theorems 1.10 and 1.12 are concluded in Section 6.4.

2. Markov p-convexity and p-convexity coincide

In this section we prove Theorem 1.3, i.e., that for Banach spaces p-convexity and Markov
p-convexity are the same properties. We first show that p-convexity implies Markov p-
convexity, and in fact it implies a stronger inequality that is stated in Proposition 2.1
below. The slightly weaker assertion that p-convexity implies Markov p-convexity was
first proved in [16], based on an argument from [5]. Our argument here is different and
simpler.

It was proved in [29] that a Banach space X is p-convex if and only if it admits an
equivalent norm ‖ · ‖ for which there exists K > 0 such that for every a, b ∈ X,

2‖a‖p +
2
Kp
‖b‖p ≤ ‖a + b‖p + ‖a − b‖p. (10)

Proposition 2.1. Let {Xt }t∈Z be random variables taking values in a set �. For every
s ∈ Z let {X̃t (s)}t∈Z be random variables taking values in�, with the following property:

∀r ≤ s ≤ t, (Xr , Xt ) and (Xr , X̃t (s)) have the same distribution. (11)

Fix p ≥ 2 and let (X, ‖ · ‖) be a Banach space whose norm satisfies (10). Then for every
f : �→ X we have

∞∑
k=0

∑
t∈Z

E[‖f (Xt )− f (X̃t (t − 2k))‖p]
2kp

≤ (4K)p
∑
t∈Z

E[‖f (Xt )− f (Xt−1)‖
p
]. (12)

Remark 2.2. Observe that condition (11) holds when {Xt }t∈Z is a Markov chain on a
state space �, and {X̃t (s)}t∈Z is as in Definition 1.2.

We start by proving a useful inequality that is a simple consequence of (10).
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Lemma 2.3. Let X be a Banach space whose norm satisfies (10). Then for every
x, y, z, w ∈ X,

‖x − w‖p + ‖x − z‖p

2p−1 +
‖z− w‖p

4p−1Kp
≤ ‖y − w‖p + ‖z− y‖p + 2‖y − x‖p. (13)

Proof. For every x, y, z, w ∈ X, (10) implies that

‖x − w‖p

2p−1 +
2
Kp

∥∥∥∥y − x + w2

∥∥∥∥p ≤ ‖y − x‖p + ‖y − w‖p,
and

‖z− x‖p

2p−1 +
2
Kp

∥∥∥∥y − z+ x2

∥∥∥∥p ≤ ‖z− y‖p + ‖y − x‖p.
Summing these two inequalities, and applying the convexity of the map u 7→ ‖u‖p, we
see that

‖y − w‖p + ‖z− y‖p + 2‖y − x‖p

≥
‖x − w‖p + ‖z− x‖p

2p−1 +
4
Kp
·

∥∥y − x+w
2

∥∥p + ∥∥y − z+x
2

∥∥p
2

≥
‖x − w‖p + ‖z− x‖p

2p−1 +
4
Kp
·

∥∥∥∥z− w4

∥∥∥∥p,
implying (13). ut

Proof of Proposition 2.1. Using Lemma 2.3 we see that for every t ∈ Z and k ∈ N,

‖f (Xt )−f (Xt−2k )‖
p
+‖f (X̃t (t−2k−1))−f (Xt−2k )‖

p

2p−1 +
‖f (Xt )−f (X̃t (t−2k−1))‖p

4p−1Kp

≤ ‖f (Xt−2k−1)− f (Xt )‖
p
+ ‖f (Xt−2k−1)− f (X̃t (t − 2k−1))‖p

+ 2‖f (Xt−2k−1)− f (Xt−2k )‖
p.

Taking expectation, and using the assumption (11), we get

E[‖f (Xt )− f (Xt−2k )‖
p
]

2p−2 +
E[‖f (Xt )− f (X̃t (t − 2k−1))‖p]

4p−1Kp

≤ 2E[‖f (Xt−2k−1)− f (Xt )‖
p
] + 2E[‖f (Xt−2k−1)− f (Xt−2k )‖

p
].

Dividing by 2(k−1)p+2 yields

E[‖f (Xt )− f (Xt−2k )‖
p
]

2kp
+

E[‖f (Xt )− f (X̃t (t − 2k−1))‖p]

2(k+1)pKp

≤
E[‖f (Xt−2k−1)− f (Xt )‖

p
]

2(k−1)p+1 +
E[‖f (Xt−2k−1)− f (Xt−2k )‖

p
]

2(k−1)p+1 .
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Summing this inequality over k = 1, . . . , m and t ∈ Z we get

m∑
k=1

∑
t∈Z

E[‖f (Xt )− f (Xt−2k )‖
p
]

2kp
+

m∑
k=1

∑
t∈Z

[E‖f (Xt )− f (X̃t (t − 2k−1))‖p]

2(k+1)pKp

≤

m∑
k=1

∑
t∈Z

E[‖f (Xt−2k−1)− f (Xt )‖
p
]

2(k−1)p+1 +

m∑
k=1

∑
t∈Z

E[‖f (Xt−2k−1)− f (Xt−2k )‖
p
]

2(k−1)p+1

=

m−1∑
j=0

∑
s∈Z

E[‖f (Xs)− f (Xs−2j )‖
p
]

2jp
. (14)

It is only of interest to prove (12) when
∑
t∈Z E[‖f (Xt ) − f (Xt−1)‖

p
] < ∞. By

the triangle inequality, this implies that for every k ∈ N we have
∑
t∈Z E[‖f (Xt ) −

f (Xt−2k )‖
p
] < ∞. We may therefore cancel terms in (14), arriving at the following

inequality:

m∑
k=1

∑
t∈Z

E[‖f (Xt )− f (X̃t (t − 2k−1))‖p]

2(k+1)pKp

≤

∑
t∈Z

E[‖f (Xt )− f (Xt−1)‖
p
] −

∑
t∈Z

E[‖f (Xt )− f (Xt−2m)‖
p
]

2mp

≤

∑
t∈Z

E[‖f (Xt )− f (Xt−1)‖
p
].

Equivalently,

m−1∑
k=0

∑
t∈Z

E[‖f (Xt )− f (X̃t (t − 2k))‖p]
2kp

≤ (4K)p
∑
t∈Z

E[‖f (Xt )− f (Xt−1)‖
p
].

Proposition 2.1 now follows by letting m→∞. ut

We next prove the more interesting direction of the equivalence of p-convexity and Mar-
kov p-convexity: a Markov p-convex Banach space is also p-convex.

Theorem 2.4. Let (X, ‖ · ‖) be a Banach space which is Markov p-convex with con-
stant 5. Then for every ε ∈ (0, 1) there exists a norm ||| · ||| on X such that for all
x, y ∈ X,

(1− ε)‖x‖ ≤ |||x||| ≤ ‖x‖,

and ∣∣∣∣∣∣∣∣∣∣∣∣x + y2

∣∣∣∣∣∣∣∣∣∣∣∣p ≤ |||x|||p + |||y|||p2
−

1− (1− ε)p

45p(p + 1)
·

∣∣∣∣∣∣∣∣∣∣∣∣x − y2

∣∣∣∣∣∣∣∣∣∣∣∣p.
Thus the norm ||| · ||| satisfies (10) with constant K = O(5/ε1/p).
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Proof. The fact thatX is Markov p-convex with constant5 implies that for every Markov
chain {Xt }t∈Z with values in X, and for every m ∈ N, we have

m∑
k=0

2m∑
t=1

E[‖Xt − X̃t (t − 2k)‖p]
2kp

≤ 5p
2m∑
t=1

E[‖Xt −Xt−1‖
p
]. (15)

For x ∈ X we shall say that a Markov chain {Xt }2
m

t=−∞ is an m-admissible represen-
tation of x if Xt = 0 for t ≤ 0 and E[Xt ] = tx for t ∈ {1, . . . , 2m}. Fix ε ∈ (0, 1), and
denote η = 1− (1− ε)p. For every m ∈ N define

|||x|||m = inf
{(

1
2m

2m∑
t=1

E[‖Xt −Xt−1‖
p
]

−
η

5p
·

1
2m

m∑
k=0

2m∑
t=1

E[‖Xt − X̃t (t − 2k)‖p]
2kp

)1/p}
, (16)

where the infimum is taken over all m-admissible representations of x. Observe that an
m-admissible representation of x always exists, since we can define Xt = 0 for t ≤ 0 and
Xt = tx for t ∈ {1, . . . , 2m}. This example shows that |||x|||m ≤ ‖x‖. On the other hand,
if {Xt }2

m

t=−∞ is an m-admissible representation of x then

2m∑
t=1

E[‖Xt −Xt−1‖
p
] −

η

5p

m∑
k=0

2m∑
t=1

E[‖Xt − X̃t (t − 2k)‖p]
2kp

(15)
≥ (1− η)

2m∑
t=1

E[‖Xt −Xt−1‖
p
] ≥ (1− ε)p

2m∑
t=1

‖E[Xt ] − E[Xt−1]‖
p

= (1− ε)p
2m∑
t=1

‖tx − (t − 1)x‖p = 2m(1− ε)p‖x‖p,

where in the first inequality we used the convexity of the function z 7→ ‖z‖p. In conclu-
sion, we see that for all x ∈ X,

(1− ε)‖x‖ ≤ |||x|||m ≤ ‖x‖. (17)

Now take x, y ∈ X and fix δ ∈ (0, 1). Let {Xt }2
m

t=−∞ be an admissible representation
of x and {Yt }2

m

t=−∞ be an admissible representation of y which is stochastically indepen-
dent of {Xt }2

m

t=−∞, such that

2m∑
t=1

E[‖Xt −Xt−1‖
p
] −

η

5p

m∑
k=0

2m∑
t=1

E[‖Xt − X̃t (t − 2k)‖p]
2kp

≤ 2m(|||x|||pm + δ), (18)

and

2m∑
t=1

E[‖Yt − Yt−1‖
p
] −

η

5p

m∑
k=0

2m∑
t=1

E[‖Yt − Ỹt (t − 2k)‖p]
2kp

≤ 2m(|||y|||pm + δ). (19)
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Define a Markov chain {Zt }2
m+1

t=−∞ ⊆ X as follows. For t ≤ −2m set Zt = 0. With
probability 1/2 let (Z−2m+1, Z−2m+2, . . . , Z2m+1) equal

(0, . . . , 0︸ ︷︷ ︸
2m times

, X1, . . . , X2m , X2m + Y1, . . . , X2m + Y2m),

and with probability 1/2 let (Z−2m+1, Z−2m , . . . , Z2m+1) equal

(0, . . . , 0︸ ︷︷ ︸
2m times

, Y1, . . . , Y2m , X1 + Y2m , . . . , X2m + Y2m).

Hence, Zt = 0 for t ≤ 0, for t ∈ {1, . . . , 2m} we have E[Zt ] = (E[Xt ] + E[Yt ])/2 =
t(x + y)/2, and for t ∈ {2m + 1, . . . , 2m+1

} we have

E[Zt ] =
E[X2m + Yt−2m ] + E[Xt−2m + Y2m ]

2

=
2mx + (t − 2m)y + (t − 2m)x + 2my

2
= t

x + y

2
.

Thus {Zt }2
m+1

t=−∞ is an (m+1)-admissible representation of (x + y)/2. The definition (16)
implies that

2m+1
∣∣∣∣∣∣∣∣∣∣∣∣x + y2

∣∣∣∣∣∣∣∣∣∣∣∣p
m+1
≤

2m+1∑
t=1

E[‖Zt − Zt−1‖
p
] −

η

5p

m+1∑
k=0

2m+1∑
t=1

E[‖Zt − Z̃t (t − 2k)‖p]
2kp

.

(20)
Note that by definition,

2m+1∑
t=1

E[‖Zt − Zt−1‖
p
] =

2m∑
t=1

E[‖Xt −Xt−1‖
p
] +

2m∑
t=1

E[‖Yt − Yt−1‖
p
]. (21)

Moreover,

m+1∑
k=0

2m+1∑
t=1

E[‖Zt − Z̃t (t − 2k)‖p]
2kp

=
1

2(m+1)p

2m+1∑
t=1

E[‖Zt − Z̃t (t − 2m+1)‖p] +

m∑
k=0

2m+1∑
t=1

E[‖Zt − Z̃t (t − 2k)‖p]
2kp

. (22)

We bound each of the terms in (22) separately. Note that by construction we have for
every t ∈ {1, . . . , 2m},

Zt − Z̃t (t − 2m+1) = Zt − Z̃t (1− 2m+1) =


Xt − Yt with probability 1/4,
Yt −Xt with probability 1/4,
Xt − X̃t (1) with probability 1/4,
Yt − Ỹt (1) with probability 1/4.
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Thus, the first term on the right hand side of (22) can be bounded from below as
follows:

1
2(m+1)p

2m+1∑
t=1

E[‖Zt − Z̃t (t − 2m+1)‖p] ≥
1

2(m+1)p+1

2m∑
t=1

E[‖Xt − Yt‖p]

≥
1

2(m+1)p+1

2m∑
t=1

‖E[Xt ] − E[Yt ]‖p =
‖x − y‖p

2(m+1)p+1

2m∑
t=1

tp ≥
2m‖x − y‖p

2p+1(p + 1)
. (23)

We now proceed to bound from below the second term on the right hand side of (22).
Note first that for every k ∈ {0, . . . , m} and every t ∈ {2m + 1, . . . , 2m+1

} we have

Zt − Z̃t (t − 2k)

=

{
(X2m + Yt−2m)−

(
X̃2m(t − 2k)+ Ỹt−2m(t − 2m − 2k)

)
with probability 1/2,

(Y2m +Xt−2m)−
(
Ỹ2m(t − 2k)+ X̃t−2m(t − 2m − 2k)

)
with probability 1/2.

By Jensen’s inequality, if U,V are X-valued independent random variables with E[V ]
= 0, then E[‖U + V ‖p] ≥ E[‖U + E[V ]‖p] = E[‖U‖p]. Thus, since {Xt }2

m

t=−∞ and
{Yt }

2m
t=−∞ are independent,

E[‖Yt−2m − Ỹt−2m(t − 2m − 2k)+X2m − X̃2m(t − 2k)
∥∥p]

≥ E[‖Yt−2m − Ỹt−2m(t − 2m − 2k)‖p],

and

E[‖Xt−2m − X̃t−2m(t − 2m − 2k)+ Y2m − Ỹ2m(t − 2k)‖p]

≥ E[‖Xt−2m − X̃t−2m(t − 2m − 2k)‖p].

It follows that for every k ∈ {0, . . . , m} and every t ∈ {2m + 1, . . . , 2m+1
} we have

E[‖Zt − Z̃t (t − 2k)‖p] ≥ 1
2E[‖Xt−2m − X̃t−2m(t − 2m − 2k)‖p]

+
1
2E[‖Yt−2m − Ỹt−2m(t − 2m − 2k)‖p]. (24)

Hence,

m∑
k=0

2m+1∑
t=1

E[‖Zt − Z̃t (t − 2k)‖p]
2kp

(24)
≥

m∑
k=0

2m∑
t=1

1
2E[‖Xt−X̃t (t−2k)‖p]+ 1

2E[‖Yt−Ỹt (t−2k)‖p]
2kp

+

m∑
k=0

2m+1∑
t=2m+1

1
2 [E‖Xt−2m−X̃t−2m(t−2m−2k)‖p]+ 1

2E[‖Yt−2m−Ỹt−2m(t−2m−2k)‖p]
2kp

=

m∑
k=0

2m∑
t=1

E[‖Xt−X̃t (t−2k)‖p]
2kp

+

m∑
k=0

2m∑
t=1

E[‖Yt−Ỹt (t−2k)‖p]
2kp

. (25)
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Combining (18)–(23) and (25), and letting δ tend to 0, we see that

2m+1
∣∣∣∣∣∣∣∣∣∣∣∣x + y2

∣∣∣∣∣∣∣∣∣∣∣∣p
m+1
≤ 2m|||x|||pm + 2m|||y|||pm −

η

5p
·

2m‖x − y‖p

2p+1(p + 1)
,

or ∣∣∣∣∣∣∣∣∣∣∣∣x + y2

∣∣∣∣∣∣∣∣∣∣∣∣p
m+1
≤
|||x|||

p
m + |||y|||

p
m

2
−

η

45p(p + 1)
·

∥∥∥∥x − y2

∥∥∥∥p. (26)

For w ∈ X, define
|||w||| = lim sup

m→∞
|||w|||m.

Then a combination of (17) and (26) yields (1− ε)‖x‖ ≤ |||x||| ≤ ‖x‖, and∣∣∣∣∣∣∣∣∣∣∣∣x + y2

∣∣∣∣∣∣∣∣∣∣∣∣p ≤ |||x|||p + |||y|||p2
−

η

45p(p + 1)
·

∥∥∥∥x − y2

∥∥∥∥p
≤
|||x|||p + |||y|||p

2
−

η

45p(p + 1)
·

∣∣∣∣∣∣∣∣∣∣∣∣x − y2

∣∣∣∣∣∣∣∣∣∣∣∣p. (27)

Note that (27) implies that the set {x ∈ X : |||x||| ≤ 1} is convex, so that ||| · ||| is a norm
on X. This concludes the proof of Theorem 2.4. ut

3. A doubling space which is not Markov p-convex for any p ∈ (0,∞)

G1

G0

G2

G3

r

r

r

r

b

Consider the Laakso graphs [12],
{Gi}

∞

i=0, which are defined as follows.
G0 is the graph consisting of one edge
of unit length. To construct Gi , take six
copies of Gi−1 and scale their metric by
a factor of 1/4. We glue four of them
cyclically by identifying pairs of end-
points, and attach at two opposite gluing
points the remaining two copies. Note
that each edge of Gi has length 4−i ; we
denote the resulting shortest path met-
ric on Gi by dGi . As shown in [13,
Thm. 2.3], the doubling constant of the
metric space (Gi, dGi ) is at most 6.

We direct Gm as follows. Define the root of Gm to be (an arbitrarily chosen) one of
the two vertices having only one adjacent edge. In the figure this could be the leftmost
vertex r . Note that in no edge the two endpoints are at the same distance from the root. The
edges of Gm are then directed from the endpoint closer to the root to the endpoint further
away from the root. The resulting directed graph is acyclic. We now define {Xt }4

m

t=0 to be
the standard random walk on the directed graph Gm, starting from the root. This random
walk is extended to t ∈ Z by stipulating that Xt = X0 for t < 0, and Xt = X4m for
t > 4m.
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Proposition 3.1. For the random walk defined above,

2m∑
k=0

∑
t∈Z

E[dGm(Xt , X̃t (t − 2k))p]
2kp

&
m

8p
∑
t∈Z

E[dGm(Xt , Xt−1)
p
]. (28)

Proof. For every t ∈ Z we have

E[dGm(Xt , Xt−1)
p
] =

{
4−mp, t ∈ {0, . . . , 4m − 1},
0, otherwise.

Hence, ∑
t∈Z

E[dGm(Xt , Xt−1)
p
] = 4−m(p−1). (29)

Fix k ∈ {0, . . . , 2m − 2} and write h = dk/2e. View Gm as being built from A =

Gm−h, where each edge of A has been replaced by a copy of Gh. Note that for every
i ∈ {0, . . . , 4m−h−1

+ 1}, at time t = (4i + 1)4h the walk Xt is at a vertex of Gm which
has two outgoing edges, corresponding to distinct copies of Gh. To see this it suffices
to show that all vertices of Gm−h that are exactly 4i + 1 edges away from the root,
have out-degree 2. This holds since Gm−h is obtained from Gm−h−1 by replacing each
edge by a copy of G1, and each such copy of G1 contributes one vertex of out-degree 2,
corresponding to the vertex labeled b in the figure describing G1.

Consider the set of times

Tk := {0, . . . , 4m − 1} ∩
4m−h−1

+1⋃
i=0

[(4i + 1)4h + 4h−2, (4i + 1)4h + 2 · 4h−2
].

For t ∈ Tk find i ∈ {0, . . . , 4m−h−1
+ 1} such that t ∈ [(4i + 1)4h + 4h−2, (4i + 1)4h +

2 ·4h−2
]. Since, by the definition of h, we have t−2k ∈ [(4i+1)4h−4h, (4i+1)4h), the

walks {Xs}s∈Z and {X̃s(t−2k)}s∈Z started evolving independently at some vertex lying in
a copy ofGh preceding a vertex v ofGm which has two outgoing edges, corresponding to
distinct copies of Gh. Thus, with probability at least 1/2, the walks Xt and X̃t (t − 2k) lie
on two distinct copies of Gh in Gm, immediately following the vertex v, and at distance
at least 4h−2

· 4−m and at most 2 · 4h−2
· 4−m from v. Hence, with probability at least 1/2

we have dGm(Xt , X̃t (t − 2k)) ≥ 2 · 4h−2
· 4−m = 22h−3−2m, and therefore

E[d(Xt , X̃t (t − 2k))p]
2kp

≥

1
2 2(2h−3−2m)p

2kp
≥ 2−(2m+3)p−1.

We deduce that for all k ∈ {0, . . . , 2m− 2},∑
t∈Z

E[d(Xt , X̃t (t − 2k))p]
2kp

≥

∑
t∈Tk

E[d(Xt , X̃t (t − 2k))p]
2kp

≥ |Tk| · 2−(2m+3)p−1

& 4h−2
· 4m−h−1

· 2−(2m+3)p−1 &
1

8p
4−m(p−1). (30)

A combination of (29) and (30) implies (28). ut
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Proof of Theorem 1.5. As explained in [12, 13], by passing to an appropriate Gromov–
Hausdorff limit, there exists a doubling metric space (X, dX) that contains an isometric
copy of all the Laakso graphs {Gm}∞m=0. Proposition 3.1 therefore implies that X is not
Markov p-convex for any p ∈ (0,∞). ut

Proof of Theorem 1.6. Let (X, dX) be a Markov p-convex metric space, i.e,5p(X) <∞.
Assume that f : Gm→ X satisfies

x, y ∈ Gm ⇒
1
A
dGm(x, y) ≤ dX(f (x), f (y)) ≤ BdGm(x, y). (31)

Let {Xt }t∈Z be the random walk from Proposition 3.1. Then

m

8pAp
∑
t∈Z

E[dGm(Xt , Xt−1)
p
]

(28)
.

1
Ap

2m∑
k=0

∑
t∈Z

E[dGm(Xt , X̃t (t − 2k))p]
2kp

(31)
≤

2m∑
k=0

∑
t∈Z

E
[
dX
(
f (Xt ), f (X̃t (t − 2k))

)p]
2kp

(3)
≤ 5p(X)

p
∑
t∈Z

E[dX(f (Xt ), f (Xt−1))
p
]

(31)
≤ 5p(X)

pBp
∑
t∈Z

E[dGm(Xt , Xt−1)
p
].

Thus AB & m1/p & (log |Gm|)1/p. ut

4. Lipschitz quotients

Say that a metric space (Y, dY ) is aD-Lipschitz quotient of a metric space (X, dX) if there
exist a, b > 0 with ab ≤ D and a mapping f : X→ Y such that for all x ∈ X and r > 0,

BY (f (x), r/a) ⊆ f (BX(x, r)) ⊆ BY (f (x), br). (32)

Observe that the last inclusion in (32) is to equivalent to f being b-Lipschitz.
The following proposition implies Theorem 1.4.

Proposition 4.1. If (Y,DY ) is aD-Lipschitz quotient of (X, dX) then5p(Y )≤D5p(X).

Proof. Fix f : X → Y satisfying (32). Also, fix a Markov chain {Xt }t∈Z on a state
space �, and a mapping g : �→ Y .

Fix m ∈ Z and let �∗ be the set of finite sequences of elements of � starting at
time m, i.e., the set of sequences of the form (ωi)

t
i=m ∈ �

t−m+1 for all t ≥ m. It will be
convenient to consider the Markov chain {X∗t }

∞
t=m on �∗ given by

Pr[X∗t = (ωm, ωm+1, . . . , ωt )] = Pr[Xm = ωm, Xm+1 = ωm+1, . . . , Xt = ωt ].

Also, define g∗ : �∗ → Y by g∗(ω1, . . . , ωt ) = g(ωt ). By definition, {g∗(X∗t )}
∞
t=m and

{g(Xt )}
∞
t=m are identically distributed.
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We next define a mapping h∗ : �∗ → X such that f ◦ h∗ = g∗ and for all
(ωm, . . . , ωt ) ∈ �

∗,

dX(h
∗(ωm, . . . , ωt−1), h

∗(ωm, . . . , ωt )) ≤ adY (g(ωt−1), g(ωt )). (33)

For ω∗ ∈ �∗, we will define h∗(ω∗) by induction on the length of ω∗. If ω∗ =
(ωm), then we fix h∗(ω∗) to be an arbitrary element in f−1(g(ωm)). Assume that
ω∗ = (ωm, . . . , ωt−1, ωt ) and that h∗(ωm, . . . , ωt−1) has been defined. Set x =
f (h∗(ωm, . . . , ωt−1)) = g∗(ωm, . . . , ωt−1) = g(ωt−1) and r = adY (g(ωt−1), g(ωt )).
Since g(ωt ) ∈ BY (x, r/a), it follows from (32) that there exists y ∈ X such that
f (y) = g(ωt ), and dX(x, y) ≤ r . We then define h∗((ωm, . . . , ωt−1, ωt )) := y.

Write X∗t = X
∗
m for t ≤ m. By the Markov p-convexity of (X, dX), we have

∞∑
k=0

∑
t∈Z

E
[
dX
(
h∗(X∗t ), h

∗(X̃∗t (t − 2k))
)p]

2kp

≤ 5p(X)
p
∑
t∈Z

E[dX(h∗(X∗t ), h
∗(X∗t−1))

p
]. (34)

By (33), for every t ≥ m+ 1 we have

dX(h
∗(X∗t ), h

∗(X∗t−1)) ≤ adY (g(Xt ), g(Xt−1)),

while for t ≤ m we have dX(h∗(X∗t ), h
∗(X∗t−1)) = 0. Thus,∑

t∈Z
E[dX(h∗(X∗t ), h

∗(X∗t−1))
p
] ≤ ap

∑
t∈Z

E[dY (g(Xt ), g(Xt−1))
p
]. (35)

At the same time, using the fact that f is b-Lipschitz and f ◦ h∗ = g∗, we see that if
t ≥ m+ 2k ,

dX
(
h∗(X∗t ), h

∗(X̃∗t (t − 2k))
)
≥

1
b
dY
(
f (h∗(X∗t )), f (h

∗(X̃∗t (t − 2k)))
)

=
1
b
dY
(
g∗(X∗t ), g

∗(X̃∗t (t − 2k))
)
=

1
b
dY
(
g(Xt ), g(X̃t (t − 2k))

)
.

Thus,

∞∑
k=0

∑
t∈Z

E
[
dX
(
h∗(X∗t ), h

∗(X̃∗t (t − 2k))
)p]

2kp

≥
1
bp

∞∑
k=0

∞∑
t=m+2k

E
[
dY
(
g(Xt ), g(X̃t (t − 2k))

)p]
2kp

. (36)

By combining (35) and (36) with (34), and letting m tend to −∞, we get
∞∑
k=0

∑
t∈Z

E
[
dY
(
g(Xt ), g(X̃t (t − 2k))

)p]
2kp

≤ (ab5p(X))
p
∑
t∈Z

E[dY (g(Xt ), g(Xt−1))
p
].

Since this inequality holds for every Markov chain {Xt }t∈Z and every g : � → Y , and
since ab ≤ D, we have proved that 5p(Y ) ≤ D5p(X), as required. ut
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5. A dichotomy theorem for vertically faithful embeddings of trees

In this section we prove Theorem 1.14. The proof naturally breaks into two parts. The
first is the following BD Ramsey property of paths (which can be found nonquantitatively
in [19], where also the BD Ramsey terminology is explained).

A mapping φ :M → N is called a rescaled isometry if dist(φ) = 1, or equivalently
there exists λ > 0 such that dN (φ(x), φ(y)) = λdM (x, y) for all x, y ∈M . For n ∈ N
let Pn denote the n-path, i.e., the set {0, . . . , n} equipped with the metric inherited from
the real line.

Proposition 5.1. Fix δ ∈ (0, 1), D ≥ 2 and t, n ∈ N satisfying n ≥ D(4t log t)/δ . If
f : Pn → X satisfies dist(f ) ≤ D then there exists a rescaled isometry φ : Pt → Pn
such that dist(f ◦ φ) ≤ 1+ δ.

Given a metric space (X, dX) and a nonconstant mapping f : Pn→ X, define

T (X, f ) :=
dX(f (0), f (n))

nmaxi∈{1,...,n} dX(f (i − 1), f (i))
=
dX(f (0), f (n))

n‖f ‖Lip
.

If f is a constant mapping (equivalently maxi∈{1,...,n} dX(f (i − 1), f (i)) = 0) then we
set T (X, f ) = 0. Note that by the triangle inequality we always have T (X, f ) ≤ 1.

Lemma 5.2. For every m, n ∈ N and f : Pmn → X, there exist rescaled isometries
φ(n) : Pn→ Pmn and φ(m) : Pm→ Pmn such that

T (X, f ) ≤ T (X, f ◦ φ(m)) · T (X, f ◦ φ(n)).

Proof. Fix f : Pmn→ X and define φ(m) : Pm→ Pmn by φ(m)(i) = in. Then

dX(f (0), f (mn)) ≤ T (X, f ◦ φ(m))m max
i∈{1,...,m}

dX
(
f ((i − 1)n), f (in)

)
. (37)

Similarly, for every i ∈ {1, . . . , m} define φ(n)i : Pn → Pmn by φ(n)i (j) = (i − 1)n + j .
Then

dX
(
f ((i − 1)n), f (in)

)
≤ T (X, f ◦ φ

(n)
i )n max

j∈{1,...,n}
dX
(
f ((i − 1)n+ j − 1), f ((i − 1)n+ j)

)
. (38)

Letting i ∈ {1, . . . , m} be such that T (X, f ◦ φ(n)i ) is maximal, and φ(n) = φ
(n)
i , we

conclude that

dX(f (0), f (mn))
(37)∧(38)
≤ T (X, f ◦ φ(m))T (X, f ◦ φ(n))mn max

i∈{1,...,mn}
dX(f (i − 1), f (i)). ut

Lemma 5.3. For every f : Pm→ X we have dist(f ) ≥ 1/T (X, f ).
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Proof. Assuming a|i − j | ≤ dX(f (i), f (j)) ≤ b|i − j | for all i, j ∈ Pm, the claim is
bT (X, f ) ≥ a. Indeed,

am ≤ dX(f (0), f (m)) ≤ T (X, f )m max
i∈{1,...,m}

dX(f (i − 1), f (i)) ≤ T (X, f )bm. ut

Lemma 5.4. Fix f : Pm → X. If 0 < ε < 1/m and T (X, f ) ≥ 1 − ε, then dist(f ) ≤
1/(1−mε).

Proof. Denote b = maxi∈{1,...,n} dX(f (i), f (i − 1)) > 0. For every 0 ≤ i < j ≤ m we
have dX(f (i), f (j)) ≤

∑j

`=i+1 dX(f (`− 1), f (`)) ≤ b|j − i|, and

(1− ε)mb ≤ T (X, f )mb = dX(f (0), f (m))
≤ dX(f (0), f (i))+dX(f (i), f (j))+dX(f (j), f (m)) ≤ dX(f (i), f (j))+b(m+i−j).

Thus dX(f (i), f (j)) ≥ b(j − i −mε) ≥ (1−mε)b|j − i|. ut

Proof of Proposition 5.1. Set k = blogt nc and denote by I the identity mapping from Ptk

to Pn. By Lemma 5.3 we have T (X, f ◦I ) ≥ 1/D. An iterative application of Lemma 5.2
implies that there exists a rescaled isometry φ : Pt → Ptk such that

T (X, f ◦ I ◦ φ) ≥ D−1/k
≥ e−(2 logD)/logt n ≥ e−δ/(2t) ≥ 1−

δ

2t
.

By Lemma 5.4 we therefore have dist(f ◦ I ◦ φ) ≤ 1/(1− δ/2) ≤ 1+ δ. ut

The second part of the proof of Theorem 1.14 uses the following combinatorial lemma
due to Matoušek [18]. Denote by Tk,m the complete rooted tree of height m, in which
every non-leaf vertex has k children. For a rooted tree T , denote by SP(T ) the set of all
unordered pairs {x, y} of distinct vertices of T such that x is an ancestor of y.

Lemma 5.5 ([18, Lem. 5]). Let m, r, k ∈ N satisfy k ≥ r(m+1)2 . Suppose that each of
the pairs from SP(Tk,m) is colored by one of r colors. Then there exists a copy T ′ of Bm
in this Tk,m such that the color of any pair {x, y} ∈ SP(T ′) only depends on the levels of
x and y.

Proof of Lemma 1.14. Let f : Bn → X be a D-vertically faithful embedding, i.e., for
some λ > 0 it satisfies

λdBn(x, y) ≤ dX(f (x), f (y)) ≤ DλdBn(x, y) (39)

whenever x, y ∈ Bn are such that x is an ancestor of y.
Let k, ` ∈ N be auxiliary parameters to be determined later, and definem = bn/(k`)c.

We first construct a mapping g : T2k,m → Bn in a top-down manner as follows. If r is
the root of T2k,m then g(r) is defined to be the root of Bn. Having defined g(u), let
v1, . . . , v2k ∈ T2k,m be the children of u, and let w1, . . . , w2k ∈ Bn be the descendants
of g(u) at depth k below g(u). For each i ∈ {1, . . . , 2k} let g(vi) be an arbitrary descen-
dant of wi at depth h(g(u)) + `k. Note that for this construction to be possible we need
to have m`k ≤ n, which is ensured by our choice of m.
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By construction, if x, y ∈ T2k,m and x is an ancestor of y, then g(x) is an ancestor
of g(y) and dBn(g(x), g(y)) = `kdT2k ,m

(x, y). Also, if x, y ∈ T2k,m and lca(x, y) = u,
then we have h(lca(g(x), g(y))) ∈ {h(g(u)), h(g(u)) + 1, . . . , h(g(u)) + k − 1}. This
implies that

((`− 1)k + 1)dT2k ,m
(x, y) ≤ dBn(x, y) ≤ `kdT2k ,m

(x, y).

Thus, assuming ` ≥ 2, we have dist(g) ≤ 1 + 2/`. Moreover, denoting F = f ◦ g and
using (39), we see that if x, y ∈ T2k,m are such that x is an ancestor of y then

k`λdT2k ,m
(x, y) ≤ dX(F (x), F (y)) ≤ D`kλdT2k ,m

(x, y). (40)

Color every pair {x, y} ∈ SP(T2k,m) with the color

χ({x, y}) :=

⌊
log1+δ/4

(
dX(F (x), F (y))

k`λdT2k ,m
(x, y)

)⌋
∈ {1, . . . , r},

where r = dlog1+δ/4De. Assuming that

2k ≥ r(m+1)2 , (41)

by Lemma 5.5 there exists a copy T ′ of Bm in T2k,m such that the colors of pairs {x, y} ∈
SP(T ′) only depend on the levels of x and y.

Let P be a root-leaf path in T ′ (isometric to Pm). The mapping F |P : P → X has
distortion at most D by (40). Assuming

m ≥ D16(t log t)/δ, (42)

by Proposition 5.1 there are {xi}ti=0 ⊆ P such that for some a, b ∈ N with a, a + tb ∈
[0, m], for all i we have h(xi) = a + ib, and for some θ > 0, for all i, j ∈ {0, . . . , t},

θb|i − j | ≤ dX(F (xi), F (xj )) ≤ (1+ δ/4)θb|i − j |. (43)

Define a rescaled isometry ϕ : Bt → T ′ in a top-down manner as follows: ϕ(r) = x0,
and having defined ϕ(u) ∈ T ′, if v,w are the children of u in Bt and v′, w′ are the
children of ϕ(u) in T ′, the vertices ϕ(v), ϕ(w) are chosen as arbitrary descendants in T ′

of v′, w′ (respectively) at depth h(ϕ(u)) + b. Consider the mapping G : Bt → X given
byG = F ◦ϕ = f ◦ g ◦ϕ. Take x, y ∈ Bt such that x is an ancestor of y. Write h(x) = i
and h(y) = j . Thus h(ϕ(x)) = a+ ib and h(ϕ(y)) = a+jb. It follows that {ϕ(x), ϕ(y)}
is colored by the same color as {xi, xj }, i.e.,⌊

log1+δ/4

(
dX(G(x),G(y))

k`λbdBt (x, y)

)⌋
= χ({ϕ(x), ϕ(y)}) = χ({xi, xj })

=

⌊
log1+δ/4

(
dX(F (xi), F (yj ))

k`λbdBt (x, y)

)⌋
.
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Consequently, using (43) we deduce that

θb

1+ δ/4
dBt (x, y) ≤ dX(G(x),G(y)) ≤ (1+ δ/4)

2θbdBt (x, y).

Thus G is a (1+ δ/4)3 ≤ 1+ δ vertically faithful embedding of Bt into X.
It remains to determine the values of the auxiliary parameters `, k, which will lead to

the desired restriction on n given in (9). First of all, we want to have dist(g ◦ ϕ) ≤ 1+ ξ .
Since ϕ is a rescaled isometry and (for ` ≥ 2) dist(g) ≤ 1 + 2/`, we choose ` =
d2/ξe ≥ 2. We will choose k so that 4k ≤ nξ , so that n/(k`) ≥ 1. Since m = bn/(k`)c,
we havem+1 ≤ nξ/k andm ≥ nξ/(4k). Recall that r = dlog1+δ/4De ≤ 2 log1+δ/4D ≤

16D/δ. Hence the requirement (41) will be satisfied if

2k
3
≥ (16D/δ)n

2ξ2
, (44)

and the requirement (42) will be satisfied if

nξ/(4k) ≥ D16(t log t)/δ. (45)

There exists an integer k satisfying both (44) and (45) provided that

(n2ξ2 log2(16D/δ))1/3 + 1 ≤
nξ

4D16(t log t)/δ ,

which holds true provided the constant c in (9) is large enough. ut

6. Tree metrics do not have the dichotomy property

This section is devoted to the proofs of Theorems 1.10 and 1.12. These proofs were out-
lined in Section 1.1, and we will use the notation introduced there.

6.1. Horizontally contracted trees

We start with the following lemma which supplies conditions on {εn}∞n=0 ensuring that
the H -tree (B∞, dε) is a metric space.

Lemma 6.1. Assume that {εn}∞n=0 ⊆ (0, 1] is nonincreasing and {nεn}∞n=0 is nondecreas-
ing. Then dε is a metric on B∞.

Proof. Take x, y, z ∈ B∞ and without loss of generality assume that h(x) ≤ h(y). We
distinguish between the cases h(z) > h(y), h(x) ≤ h(z) ≤ h(y) and h(z) < h(x).

If h(z) > h(y) then

dε(x, z)+ dε(z, y)− dε(x, y)

= 2[h(z)−h(y)] + 2εh(x) · [h(lca(x, y))−h(lca(x, z))] + 2εh(y) · [h(y)−h(lca(z, y))]
≥ 2εh(x) · [h(lca(x, y))−h(lca(x, z))] + 2εh(y) · [h(y)−h(lca(z, y))]. (46)
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To show that (46) is nonnegative observe that this is obvious if h(lca(x, y))≥h(lca(x, z)).
So assume that h(lca(x, y)) < h(lca(x, z)). In this case necessarily h(lca(z, y)) =
h(lca(x, y)), so we can bound (46) from below as follows:

2εh(x)[h(lca(x, y))− h(lca(x, z))] + 2εh(y)[h(y)− h(lca(z, y))]

≥ 2εh(x)[h(lca(x, y))− h(x)] + 2
h(x)

h(y)
εh(x)[h(y)− h(lca(x, y))]

= 2εh(x)h(lca(x, y))(1− h(x)/h(y)) ≥ 0.

If h(z) < h(x) then

dε(x, z)+ dε(z, y) = h(x)+ h(y)− 2h(z)+ 2εh(z)[2h(z)− h(lca(x, z))− h(lca(z, y))]

≥ h(y)− h(x)+ 2εh(x)[h(x)− h(z)] + 2εh(x)[2h(z)− h(lca(x, z))− h(lca(y, z))]
= h(y)− h(x)+ 2εh(x)[h(x)+ h(z)− h(lca(x, z))− h(lca(y, z))]
≥ h(y)− h(x)+ 2εh(x)[h(x)− h(lca(x, y))] = dε(x, y),

where we used the fact that h(z) ≥ h(lca(x, z)) + h(lca(y, z)) − h(lca(x, y)), which is
true since h(lca(x, y)) ≥ min{h(lca(x, z)), h(lca(y, z))}.

It remains to deal with the case h(x) ≤ h(z) ≤ h(y). In this case

dε(x, z)+dε(z, y) = h(y)−h(x)+2εh(x)[h(x)−h(lca(x, z))]+2εh(z)[h(z)−h(lca(y, z))]

≥ h(y)− h(x)+ 2εh(x)[h(x)− h(lca(x, z))] + 2
h(x)

h(z)
εh(x)[h(z)− h(lca(y, z))]

= h(y)− h(x)+ 2εh(x)[2h(x)− h(lca(x, z))−
h(x)

h(z)
h(lca(y, z))]

≥ h(y)− h(x)+ 2εh(x)[h(x)− h(lca(x, y))]dε(x, y),

which is equivalent to the inequality

h(x) ≥ h(lca(x, z))+
h(x)

h(z)
h(lca(y, z))− h(lca(x, y)). (47)

To prove (47), note that it is true if h(lca(x, y)) ≥ h(lca(x, z)), since clearly h(lca(y, z))
≤ h(z). If, on the other hand, h(lca(x, y)) < h(lca(x, z)) then using the assumption that
h(z) ≥ h(x) it is enough to show that h(x) ≥ h(lca(x, z))+ h(lca(y, z))− h(lca(x, y)).
Necessarily h(lca(x, y)) = h(lca(y, z)), so that the required inequality follows from the
fact that h(x) ≥ h(lca(x, z)). ut

6.2. Geometry of H -trees

6.2.1. Classification of approximate midpoints. From now on we will always assume that
ε = {εn}

∞

n=0 satisfies, for all n ∈ N, εn ≥ εn+1 > 0 and (n + 1)εn+1 ≥ nεn. We recall
the important concept of approximate midpoints which is used frequently in nonlinear
functional analysis (see [4] and the references therein).
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Definition 6.2 (Approximate midpoints). Let (X, dX) be a metric space and δ ∈ (0, 1).
For x, y ∈ X the set of δ-approximate midpoints of x and z is defined as

Mid(x, z, δ) =
{
y ∈ X : max{dX(x, y), dX(y, z)} ≤

1+ δ
2

dX(x, z)

}
.

From now on, whenever we refer to the set Mid(x, z, δ), the underlying metric will
always be understood to be dε. In what follows, given η > 0 we shall say that two
sequences (u1, . . . , un) and (v1, . . . , vn) of vertices in B∞ are η-near if for every j ∈
{1, . . . , n} we have dε(uj , vj ) ≤ η. We shall also require the following terminology:

Definition 6.3. An ordered triple (x, y, z) of vertices in B∞ will be called a path-type
configuration if h(z) ≤ h(y) ≤ h(x), x is a descendant of y, and h(lca(z, y)) < h(y). The
triple (x, y, z) will be called a tent-type configuration if h(y) ≤ h(z), y is a descendant
of x, and h(lca(x, z)) < h(x). These special configurations are described in Figure 3.

x

y

z

Path-type Tent-type

x

y

z

Fig. 3. A schematic description of path-type and tent-type configurations.

The following useful theorem will be used extensively in the ensuing arguments. Its
proof will be broken down into several elementary lemmas.

Theorem 6.4. Assume that δ ∈ (0, 1/16), and the sequence ε = {εn}∞n=0 satisfies εn <
1/4 for all n ∈ N. Let x, y, z ∈ (B∞, dε) be such that y ∈ Mid(x, z, δ). Then either
(x, y, z) or (z, y, x) is 3δdε(x, z)-near a path-type or tent-type configuration.

In what follows, given a vertex v ∈ B∞ we denote the subtree rooted at v by Tv .

Lemma 6.5. Assume that εn ≤ 1/2 for all n. Fix a ∈ B∞ and let u, v ∈ B∞ be its
children. For every x, z ∈ Tu such that h(x) ≥ h(z) consider the function Dx,z : {a} ∪
Tv → [0,∞) defined by Dx,z(y) = dε(x, y) + dε(z, y). Fix an arbitrary vertex w ∈ Tv
such that h(w) = h(z). Then for every y ∈ Tv we have Dx,z(y) ≥ Dx,z(w).

Proof. By the definition of dε we have Dx,z(y) = Q(h(y)) where

Q(k) = max{h(x), k} +max{k, h(z)} −min{h(x), k} −min{k, h(z)}
+ 2εmin{h(x),k}[min{h(x), k} − h(a)] + 2εmin{k,h(z)}[min{k, h(z)} − h(a)].
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The required result will follow if we show that Q is nonincreasing on {h(a), h(a) + 1,
. . . , h(z)} and nondecreasing on {h(z), h(z)+1, . . .}. If k ∈ {h(a), h(a)+1, . . . , h(z)−1}
then

Q(k + 1)−Q(k) = −2+ 4εk+1[k + 1− h(a)] − 4εk[k − h(a)]
≤ −2+ 4εk[k + 1− h(a)] − 4εk[k − h(a)] = −2(1− 2εk) ≤ 0.

If k ∈ {h(x), h(x)+ 1, . . .} then Q(k + 1)−Q(k) = 2, and if k ∈ {h(z), . . . , h(x)− 1}
then

Q(k + 1)−Q(k) = 2[(k + 1)εk+1 − kεk] + 2h(a)[εk − εk+1] ≥ 0.

This completes the proof of Lemma 6.5. ut

Lemma 6.6. Assume that εn < 1/2 for all n ∈ N. Fix δ ∈ (0, 1/3) and x, y, z ∈ B∞
such that h(x) ≥ h(z), y ∈ Mid(x, z, δ) and h(lca(x, z)) > h(lca(x, y)). Then

h(z)+
1− 3δ

2
dε(x, z) ≤ h(y) < h(x) ≤ h(y)+

1+ 3δ
1− 3δ

[h(y)− h(z)].

Moreover, if y′ ∈ B∞ is the point on the segment joining x and lca(x, y) such that h(y′) =
h(y) then dε(y, y′) ≤ δdε(x, z). Thus (x, y′, z) is a path-type configuration which is
δdε(x, z)-near (x, y, z)

Proof. Write a = lca(x, y). If u, v are the two children of a, then without loss of gener-
ality x, z ∈ Tu and y ∈ Tv . Let w ∈ Tv be such that h(w) = h(z).

y

z

a

x

w

y′

u v

By Lemma 6.5,

dε(x, y)+ dε(z, y) ≥ dε(x,w)+ dε(z, w)

= h(x)− h(z)+ 4εh(z)[h(z)− h(a)]
≥ 2dε(x, z)− [h(x)− h(z)]. (48)

On the other hand, since y ∈ Mid(x, z, δ), we have

dε(x, y)+ dε(z, y) ≤ (1+ δ)dε(x, z).

Additionally, by the definition of dε we know that if h(y) ≤ h(z)
then

1+ δ
2

dε(x, z) ≥ dε(x, y) ≥ h(x)− h(y) ≥ h(x)− h(z).

Combining these observations with (48) we get

(1+ δ)dε(x, z) ≥ 2dε(x, z)−
1+ δ

2
dε(x, z), (49)

which is a contradiction since δ < 1/3. Therefore h(y) > h(z). If h(y) ≥ h(x) then

1+ δ
2

dε(x, z) ≥ dε(z, y) ≥ h(y)− h(z) ≥ h(x)− h(z),
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so that we arrive at a contradiction as in (49). We have thus shown that h(z) < h(y)

< h(x).
Now, since y ∈ Mid(x, z, δ),

h(x)− h(z)+ 2εh(y)[h(y)− h(a)] + 2εh(z)[h(z)− h(a)] = dε(x, y)+ dε(z, y)
≤ (1+ δ)dε(x, z) = (1+ δ)(h(x)− h(z)+ 2εh(z)[h(z)− h(a)]).

Thus, letting y′ be the point on the segment joining x and a such that h(y′) = h(y), we
see that

dε(y, y
′) = 2εh(y)[h(y)− h(a)] ≤ δ

(
h(x)− h(z)+ 2εh(z)[h(z)− h(a)]

)
= δdε(x, z).

Moreover

1− δ
2

dε(x, z) ≤ dε(y, z) = h(y)− h(z)+ 2εh(z)h(z)− 2εh(z)h(a)

≤ h(y)− h(z)+ 2εh(y)h(y)− 2εh(y)h(a) ≤ h(y)− h(z)+ δdε(x, z).

Thus

h(y)− h(z) ≥
1− 3δ

2
dε(x, z). (50)

Hence,

2
1− 3δ

[h(y)− h(z)]
(50)
≥ dε(x, z) = [h(x)− h(y)] + [h(y)− h(z)].

It follows that
h(x)− h(y) ≤

1+ 3δ
1− 3δ

[h(y)− h(z)]. ut

Lemma 6.7. Assume that εn < 1/4 for all n ∈ N. Fix δ ∈ (0, 1/16) and assume that
x, y, z ∈ B∞ are distinct vertices such that lca(x, y) = lca(x, z), and y ∈ Mid(x, z, δ).
Then either (x, y, z) or (z, y, x) is 3δdε(x, z)-near a path-type or tent-type configuration.

Proof. Denote a = lca(x, y). Our assumption implies that h(lca(z, y)) ≥ h(a). We per-
form a case analysis on the relative heights of x, y, z. Assume first that h(x) ≤ h(y).

y

z

y′

a

lca(y, z)

x

If h(x) ≤ h(y) ≤ h(z) then

(1+ δ)dε(x, z) ≥ dε(x, y)+ dε(y, z)

= h(y)− h(x)+ 2εh(x)[h(x)− h(a)]
+ h(z)− h(y)+ 2εh(y)[h(y)− h(lca(z, y))]
= dε(x, z)+ 2εh(y)[h(y)− h(lca(z, y))]. (51)

Let y′ be the point on the path from lca(y, z) to z such that
h(y′) = h(y). Then (51) implies that

dε(y, y
′) = 2εh(y)[h(y)− h(lca(z, y))] ≤ δdε(x, z).
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a

lca(y, z)

x

y
z

Thus the triple (z, y′, x) is a configuration of path-type which is
δdε(x, z)-near (z, y, x).

If h(x) ≤ h(z) ≤ h(y) then since
1+ δ

2
dε(x, z) ≥ dε(x, y) = h(y)− h(x)+ 2εh(x)[h(x)− h(a)]

and dε(x, z) = h(z)− h(x)+ 2εh(x)[h(x)− h(a)] we deduce that

−
1− δ

2
dε(x, z) ≥ dε(x, y)− dε(x, z) = h(y)− h(z) ≥ 0.

It follows that x = z, contrary to our assumption.
a

lca(y, z)

x

y

z z′

y′

If h(z) < h(x) then let z′ be the point on the segment joining a
and y such that h(z′) = h(z). We thus have

dε(z, z
′) = 2εh(z)[h(z)− h(lca(y, z))] = dε(z, y)− [h(y)− h(z)].

Moreover,

2εh(z)[h(lca(z, y))− h(a)]

= dε(x, z)− [h(x)− h(z)] − 2εh(z)[h(z)− h(lca(z, y))]

≥
2

1+ δ
dε(z, y)− [h(x)− h(z)] − 2εh(z)[h(z)− h(lca(z, y))]

=
2

1+ δ

(
h(y)− h(z)+ 2εh(z)[h(z)− h(lca(y, z))]

)
−
(
h(y)− h(z)+ 2εh(z)[h(z)− h(lca(y, z))]

)
+ [h(y)− h(x)]

=
1− δ
1+ δ

dε(y, z)+ [h(y)− h(x)] ≥
1− δ
1+ δ

·
1− δ

2
dε(x, z)+ [h(y)− h(x)]

≥

(
1− δ
1+ δ

)2

dε(x, y)+ [h(y)− h(x)]

= dε(x, y)+ [h(y)− h(x)] −
4δ

(1+ δ)2
dε(x, y)

= 2[h(y)− h(x)] + 2εh(x)[h(x)− h(a)] −
4δ

(1+ δ)2
dε(x, y)

≥ 2[h(y)− h(x)] + 2εh(z)h(z)− 2εh(z)h(a)−
2δ

1+ δ
dε(x, z).

Thus
2δ

1+ δ
dε(x, z) ≥ 2[h(y)− h(x)] + 2εh(z)[h(z)− h(lca(y, z))]

= 2[h(y)− h(x)] + dε(z, z′). (52)

Let y′ be the point on the path from a to y such that h(y′) = h(x). It follows from (52)
that the triple (z′, y′, x) is a configuration of tent-type which is 2δdε(x, z)-near (z, y, x).

This completes the proof of Lemma 6.7 when h(x) ≤ h(y). The case h(x) > h(y) is
proved analogously. Here are the details.
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a

lca(y, z)

x

y

z

y′x′

Assume first of all that h(z) ≥ h(x) > h(y). Then

dε(x, z) ≥
2

1+ δ
dε(z, y) = 2dε(z, y)−

2δ
1+ δ

dε(z, y)

= 2(h(z)− h(y)+ 2εh(y)[h(y)− h(lca(z, y))])

−
2δ

1+ δ
dε(z, y)

≥ 2(h(z)− h(y)+ 2εh(y)[h(y)− h(lca(z, y))])
− δdε(x, z). (53)

On the other hand, since h(x) > h(y),

dε(x, z) = h(z)− h(x)+ 2εh(x)[h(x)− h(a)]
≤ h(z)− h(x)+ 2εh(y)[h(x)− h(a)]
= (h(x)− h(y)+ 2εh(y)[h(y)− h(a)])+ h(y)+ h(z)− 2h(x)
+ 2εh(y)[h(x)− h(y)]
= dε(x, y)+ h(y)+ h(z)− 2h(x)+ 2εh(y)[h(x)− h(y)]

≤
1+ δ
1− δ

dε(y, z)+ h(y)+ h(z)− 2h(x)+ 2εh(y)[h(x)− h(y)]

=
(
h(z)− h(y)+ 2εh(y)[h(y)− h(lca(z, y))]

)
+

2δ
1− δ

dε(y, z)

+ h(y)+ h(z)− 2h(x)+ 2εh(y)[h(x)− h(y)]

≤ 2[h(z)− h(x)] + 2εh(y)[h(x)− h(lca(z, y))] +
1+ δ
1− δ

δdε(x, z).

Combining this bound with (53), and canceling terms, gives

2δ
1− δ

dε(x, z) ≥ 2[h(x)− h(y)] − 4εh(y)[h(x)− h(y)] + 2εh(y)[h(x)− h(lca(z, y))]

≥ 2(1− 2εh(y))[h(x)− h(y)] + 2εh(y)[h(x)− h(lca(z, y))]
> [h(x)− h(y)] + 2εh(y)[h(x)− h(lca(z, y))], (54)

where we used the fact that εh(y) < 1/4. Let x′ be the point on the path from x to a such
that h(x′) = h(y), and let y′ be the point on the path from a to z such that h(y′) = h(y).
Then by (54) dε(x, x′) = h(x)− h(y) ≤ 3δdε(x, z) and

dε(y, y
′) = 2εh(y)[h(y)− h(lca(z, y))] ≤ 2εh(y)[h(x)− h(lca(z, y))] ≤ 3δdε(x, z).

Thus the triple (z, y′, x′) is a configuration of path-type which is 3δdε(x, z)-near (z, y, x).
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x

a

lca(y, z)

y

z

If h(x) > h(z) ≥ h(y) then

h(z)− h(y)+ 2εh(y)[h(y)− h(lca(z, y))]

= dε(z, y) ≥
1− δ
1+ δ

dε(x, y)

= dε(x, y)−
2δ

1+ δ
dε(x, y)

= h(x)− h(y)+ 2εh(y)[h(y)− h(a)] −
2δ

1+ δ
dε(x, y).

Canceling terms we see that

2δ
1+δ

dε(x, y) ≥ h(x)−h(z)+2εh(y)[h(lca(z, y))−h(a)]

= h(x)−h(z)+2εh(y)[h(z)−h(a)]−2εh(y)[h(z)−h(lca(z, y))]
≥ h(x)−h(z)+2εh(z)[h(z)−h(a)]−2εh(y)[h(z)−h(lca(z, y))]
= dε(x, z)−2εh(y)[h(z)−h(lca(z, y))]

≥ 2dε(z, y)−
2δ

1+δ
dε(x, z)−2εh(y)[h(z)−h(lca(z, y))]

= 2(h(z)−h(y)+2εh(y)[h(y)−h(lca(z, y))])−
2δ

1+δ
dε(x, z)

−2εh(y)[h(z)−h(lca(z, y))]

= 2(1−2εh(y))[h(z)−h(y)]+2εh(y)[h(z)−h(lca(z, y))]−
2δ

1+δ
dε(x, z)

≥ [h(z)−h(y)]+2εh(y)[h(z)−h(lca(z, y))]−
2δ

1+δ
dε(x, z)

= dε(z, y)−
2δ

1+δ
dε(x, z)

≥

(
1−δ

2
−

2δ
1+δ

)
dε(x, z),

which is a contradiction since δ < 1/16.

y

z

a

lca(y, z)

x

z′

The only remaining case is when h(x) > h(y) > h(z). In
this case we proceed as follows:

dε(x, z) = h(x)−h(z)+2εh(z)[h(z)−h(a)]
= dε(y, z)+[h(x)−h(y)]+2εh(z)[h(lca(y, z))−h(a)]

≥ dε(x, y)−
2δ

1+δ
dε(x, y)+[h(x)−h(y)]

+2εh(z)[h(lca(y, z))−h(a)]
≥ h(x)−h(y)+2εh(y)[h(y)−h(a)]−δdε(x, z)
+[h(x)−h(y)]+2εh(z)[h(lca(y, z))−h(a)]
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≥ 2[h(x)−h(y)]+2εh(z)[h(z)−h(a)]+2εh(z)[h(lca(y, z))−h(a)]−δdε(x, z)
= 2[h(x)−h(y)]+4εh(z)[h(z)−h(a)]−2εh(z)[h(z)−h(lca(y, z))]−δdε(x, z)
= 2dε(x, z)−2dε(z, y)+2εh(z)[h(z)−h(lca(y, z))]−δdε(x, z)
≥ (1−2δ)dε(x, z)+2εh(z)[h(z)−h(lca(y, z))]. (55)

Let z′ be the point on the path from a to y such that h(z′) = h(z). Then

dε(z, z
′) = 2εh(z)[h(z)−h(lca(y, z))]

(55)
≤ 2δdε(x, z).

Therefore the triple (z′, y, x) is of tent-type and is 2δdε(x, z)-near (z, y, x). ut

Proof of Theorem 6.4. It remains to check that for every x, y, z ∈ B∞ such that y ∈
Mid(x, z, δ), at least one of the triples (x, y, z) or (z, y, x) satisfies the conditions of
Lemma 6.6 or Lemma 6.7.

Indeed, if h(lca(x, y)) = h(lca(x, z)) then lca(x, y) = lca(x, z), so Lemma 6.7 ap-
plies. If h(lca(x, y)) < h(lca(x, z)) then lca(z, y) = lca(x, z), so Lemma 6.7 applies
to the triple (z, y, x). If h(lca(x, y)) < h(lca(x, z)) then lca(x, y) = lca(z, y), and so
h(lca(x, z)) > h(lca(z, y)). Hence Lemma 6.6 applies to either the triple (x, y, z) or the
triple (z, y, x). ut

We end this subsection with a short discussion on the distance between tent-type and path-
type configurations. It turns out that when εh � δ, a δ-midpoint configuration (x, y, z)
can be close to a path-type configuration, and at the same time the reverse triple (z, y, x)
close to a tent-type configuration (or vice versa). However, it is easy to see that this is the
only “closeness” possible.

Lemma 6.8. Fix x, y, z ∈ B∞ with x 6= y. Then the following statements are impossible:

1. (x, y, z) is 1
5dε(x, y)-near a path-type configuration and a tent-type configuration.

2. (x, y, z) is 1
11dε(x, y)-near a path-type configuration and (z, y, x) is 1

11dε(x, y)-near
a path-type configuration.

3. (x, y, z) is 1
11dε(x, y)-near a tent-type configuration and (z, y, x) is 1

11dε(x, y)-near
a tent-type configuration.

Proof. For case 1, assume for contradiction that (x, y, z) is 1
5dε(x, y)-near a path-type

configuration (a1, b1, c1), and also 1
5dε(x, y)-near a tent-type configuration (α1, β1, γ1).

By the definitions of path-type and tent-type configurations, a1 is a descendant of b1, and
β1 is a descendant of α1. Hence,

h(a1)− h(b1) = dε(a1, b1) ≥ dε(x, y)− dε(x, a1)− dε(y, b1) ≥
3
5dε(x, y), (56)

h(β1)− h(α1) = dε(α1, β1) ≥ dε(x, y)− dε(x, α1)− dε(y, β1) ≥
3
5dε(x, y). (57)

By summing (56) and (57) we see that
4
5dε(x, y) ≥ dε(a1, x)+ dε(x, α1)+ dε(b1, y)+ dε(y, β1) ≥ dε(a1, α1)+ dε(b1, β1)

≥ h(a1)− h(α1)+ h(β1)− h(b1)
(56)∧(57)
≥

6
5dε(x, y),

a contradiction.
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For case 2, assume for contradiction that (x, y, z) is 1
11dε(x, y)-near a path-type

configuration (a2, b2, c2), and also (z, y, x) is 1
11dε(x, y)-near a path-type configuration

(α2, β2, γ2). By the definitions of path-type and tent-type configurations, a2 is a descen-
dant of b2 and h(β2) > h(γ2). Hence,

h(a2)− h(b2) = dε(a2, b2) ≥ dε(x, y)− dε(x, a2)− dε(y, b2) ≥
9

11dε(x, y), (58)

and

h(β2)− h(γ2)+ 2εh(γ2)[h(γ2)− h(lca(β2, γ2))] = dε(β2, γ2)

≥ dε(x, y)− dε(x, γ2)− dε(y, β2) ≥
9

11dε(x, y). (59)

By summing (58) and (59) we see that
17
11dε(x, y) ≥ dε(a2, x)+ dε(x, γ2)+ dε(b2, y)+ dε(y, β2)+ dε(β2, y)

+ dε(x, y)+ dε(x, γ2)

≥ dε(a2, γ2)+ dε(b2, β2)+ dε(β2, γ2)

≥ (h(a2)−h(γ2))+ (h(β2)−h(b2))+ 2εh(γ2)[h(γ2)−h(lca(β2, γ2))]

(58)∧(59)
≥

18
11dε(x, y),

a contradiction.
For case 3, assume for contradiction that (x, y, z) is 1

11dε(x, y)-near a tent-type
configuration (a3, b3, c3), and also (z, y, x) is 1

11dε(x, y)-near a tent-type configuration
(α3, β3, γ3). Then b3 is a descendant of a3 and h(γ3) > h(β3). Hence,

h(b3)− h(a3) = dε(a3, b3) ≥ dε(x, y)− dε(x, a3)− dε(y, b3) ≥
9

11dε(x, y), (60)

and

h(γ3)− h(β3)+ 2εh(β3)[h(β3)− h(lca(β3, γ3))] = dε(β3, γ3)

≥ dε(x, y)− dε(x, γ3)− dε(y, β3) ≥
9

11
dε(x, y). (61)

Hence,
17
11dε(x, y) ≥ dε(b3, y)+ dε(y, β3)+ dε(x, α3)+ dε(x, γ3)+ dε(β3, y)+ dε(x, y)

+ dε(x, γ3)

≥ dε(b3, β3)+ dε(a3, γ3)+ dε(β3, γ3)

≥ (h(b3)−h(β3))+ (h(γ3)−h(a3))+ 2εh(β3)[h(β3)−h(lca(β3, γ3))]

(60)∧(61)
≥

18
11dε(x, y),

a contradiction. ut

6.2.2. Classification of approximate forks. We begin with three “stitching lemmas” that
roughly say that given three points x, x′, y ∈ (B∞, dε) such that x′ is near x, there exists
y′ near y such that dε(x′, y′) is close to dε(x, y), and y′ relates to x′ in B∞ “in the same
way” that y relates to x in B∞.
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Lemma 6.9. Let x, x′, y, y′ ∈ B∞ be such that y is an ancestor of x, and y′ is an
ancestor of x′ satisfying h(x)− h(y) = h(x′)− h(y′). Then dε(y, y′) ≤ dε(x, x′).

Proof. Assume without loss of generality that h(x) ≥ h(x′). So,

dε(x, x
′) = h(x)− h(x′)+ 2εh(x′)[h(x′)− h(lca(x, x′))].

Note that h(lca(y, y′)) = min{h(y′), h(lca(x, x′))}. Hence,

dε(y, y
′) = h(y)− h(y′)+ 2εh(y′)[h(y′)− h(lca(y, y′))]
= h(x)− h(x′)+ 2εh(y′)[h(y′)−min{h(y′), h(lca(x, x′))}]
= h(x)− h(x′)+ 2εh(y′) max{0, h(y′)− h(lca(x, x′))}. (62)

If the maximum in (62) is 0, then

dε(y, y
′) = h(x)− h(x′) ≤ dε(x, x

′).

If the maximum in (62) equals h(y′)− h(lca(x, x′)), then

dε(y, y
′) = h(x)− h(x′)+ 2εh(y′)[h(y′)− h(lca(x, x′))]
≤ h(x)− h(x′)+ 2εh(x′)[h(x′)− h(lca(x, x′))] = dε(x, x′),

where we used the fact that the sequence {εn(n− a)}∞n=0 is nondecreasing for all a ≥ 0.
ut

Lemma 6.10. Let x, x′, y ∈ B∞ be such that h(y) ≤ h(x). Then there exists y′ ∈ B∞
which satisfies h(y′)− h(x′) = h(y)− h(x) and

dε(y, y
′) ≤ dε(x, x

′), (63)
dε(x, y)− 2dε(x, x′) ≤ dε(y′, x′) ≤ dε(x, y)+ 2dε(x, x′). (64)

Proof. Note that (64) follows from (63) by the triangle inequality. Assume first that
h(x) ≥ h(x′). In this case choose y′ to be an ancestor of y satisfying h(y) − h(y′) =
h(x)− h(x′). Then

dε(y, y
′) = h(y)− h(y′) = h(x)− h(x′) ≤ dε(x, x

′).

We next assume that h(x) < h(x′). If h(lca(x, x′)) 6= h(lca(x, y)) then choose y′ to
be an arbitrary descendant of y such that h(y′) − h(y) = h(x′) − h(x). As before, we
conclude that dε(y, y′) = h(y′)− h(y) = h(x′)− h(x) ≤ dε(x, x′).

It remains to deal with the case h(x′) > h(x) and h(lca(x, y)) = h(lca(x′, x)), which
also implies that h(lca(x′, y)) > h(lca(x, y)). In this case, we choose y′ to be an arbitrary
point on a branch containing both lca(x, y) and x such that h(y′)− h(y) = h(x′)− h(x).
Then lca(y′, y) = lca(x, x′), and therefore

dε(y, y
′) = h(y′)− h(y)+ 2εh(y)[h(y)− h(lca(y, y′)]
= h(x′)− h(x)+ 2εh(y)[h(y)− h(lca(x, x′))]
≤ h(x′)− h(x)+ 2εh(x)[h(x)− h(lca(x, x′))] = dε(x, x′),

proving (63) in the last remaining case. ut
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Lemma 6.11. Let x, x′, y ∈ B∞ be such that y is a descendant of x. Then for any
y′ ∈ B∞ which is a descendant of x′ and satisfies h(y′) − h(x′) = h(y) − h(x), we
have

dε(y, y
′) ≤ dε(x, x

′)+ 2εmin{h(y′),h(y)}[h(y)− h(x)]

≤ dε(x, x
′)+ 2εh(y)[h(y)− h(x)+ dε(x, x′)].

Proof. Note that h(lca(y, y′)) ≥ h(lca(x, x′)). Assume first that h(x′) ≥ h(x). Then

dε(y, y
′) = h(y′)− h(y)+ 2εh(y)[h(y)− h(lca(y, y′))]
= h(x′)− h(x)+ 2εh(y)[h(x)− h(lca(y, y′))] + 2εh(y)[h(y)− h(x)]
≤ h(x′)− h(x)+ 2εh(y)[h(x)− h(lca(x, x′)] + 2εh(y)[h(y)− h(x)]
≤ dε(x, x

′)+ 2εh(y)[h(y)− h(x)].

When h(x′) < h(x), we similarly obtain the bound

dε(y, y
′) = h(y)− h(y′)+ 2εh(y′)[h(y′)− h(lca(y, y′))]
= h(x)− h(x′)+ 2εh(y′)[h(x′)− h(lca(y, y′))] + 2εh(y′)[h(y′)− h(x′)]
≤ dε(x, x

′)+ 2εh(y′)[h(y)− h(x)].

The last inequality in the statement of Lemma 6.11 is proved by observing that when
h(y′) < h(y),

εh(y′)[h(y)− h(x)] = εh(y′)[h(y
′)− h(x′)] ≤ εh(y)[h(y)− h(x

′)]

≤ εh(y)[h(y)− h(x)+ dε(x, x
′)]. ut

Definition 6.12. For δ ∈ (0, 1) and x, y, z, w ∈ B∞, the quadruple (x, y, z, w) is called
a δ-fork if

y ∈ Mid(x, z, δ) ∩Mid(x,w, δ).

δ-forks in H-trees can be approximately classified using the approximate classification
of midpoint configurations of Section 6.2.1. We have four types of midpoint configura-
tions (recall Figure 3):

• path-type, denoted (P) in what follows,
• reverse path-type, denoted (p); (x, y, z) is of type (p) iff (z, y, x) is of type (P),
• tent-type, denoted (T),
• reverse tent-type, denoted (t); (x, y, z) is of type (t) iff (z, y, x) is of type (T).

Thus, there are
(5

2

)
= 10 possible δ-fork configurations in (B∞, dε) (choose two out

of the five symbols “P”,“p”,“T”,“t”,“X”, where “X” means “the same”). As we shall see,
four of these possible configurations are impossible, two of them have large contraction
of the prongs of the forks, i.e., dε(z, w) � dε(x, y), which immediately implies large
distortion, and the rest of the configurations are problematic in the sense that they are
not much distorted from the star K1,3 (the metric d on four points p, q, r, s given by
d(p, q) = d(q, r) = d(q, s) = 1 and d(p, s) = d(p, r) = d(r, s) = 2). The ten possible
δ-fork configurations are summarized in Table 1.
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Table 1. The ten possible fork configurations.

Midpoint configuration Type

(T‖T) Type I
(P‖P) Type II
(p‖T) Type III
(p‖t) Type IV
(p‖p) prongs contracted
(t‖t) prongs contracted
(P‖p) impossible
(P‖t) possible only as approximate type II
(P‖T) impossible
(t‖T) impossible

For future reference, we give names to the four problematic configurations:

Definition 6.13. For η, δ ∈ (0, 1), a δ-fork (x, y, z, w) of (B∞, dε) is called

• η-near Type I (configuration (T‖T)) in Table 1) if both (x, y, z) and (x, y,w) are η-near
tent-type configurations;
• η-near Type II (configuration (P‖P) in Table 1) if both (x, y, z) and (x, y,w) are η-near

path-type configurations;
• η-near Type III (configuration (p‖T) in Table 1) if (z, y, x) is η-near a path-type con-

figuration and (x, y,w) is η-near a tent-type configuration, or vice versa;
• η-near Type IV (configuration (p‖t) in Table 1) if (z, y, x) is η-near a path-type config-

uration and (w, y, x) is η-near a tent-type configuration, or vice versa.

A schematic description of the four problematic configurations is contained in Figure 4.
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Type I Type II Type III Type IV
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w

x

Type I Type II Type III Type IV

Fig. 4. The four “problematic” types of δ-forks.

The following lemma is the main result of this section.

Lemma 6.14. Fix δ ∈ (0, 1/70) and assume that εn < 1/4 for all n ∈ N. If (x, y, z, w)
is a δ-fork of (B∞, dε) then either it is 35δdε(x, y)-near one of the types I, II, III, IV, or
dε(z, w) ≤ 2(35δ + εh0)dε(x, y), where h0 = min{h(x), h(y), h(z), h(w)}.
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Remark 6.15. One can strengthen the statement of Lemma 6.14 so that in the first case
the fork (x, y, z, w) is O(δdε(x, y)) near another fork (x′, y′, z′, w′) which is of (i.e. 0-
near) one of the types I–IV. This statement is more complicated to prove, and since we do
not actually need it in what follows, we opted to use a weaker property which suffices for
our purposes, yet simplifies (the already quite involved) proof.

The proof of Lemma 6.14 proceeds by checking that the cases marked in Table 1 as
“impossible” or “prongs contracted” are indeed so—see Figure 5 for a schematic descrip-
tion of the latter case.

x

y

z
w

z

y

w

x

Fig. 5. The two configurations of δ-forks with large contraction of the prongs.

We begin with the (p‖p) configuration.

Lemma 6.16. Let (x, y, z, w) be a δ-fork of (B∞, dε) and assume that both (z, y, x) and
(w, y, x) are ηdε(x, y)-near path-type configurations. Then, assuming that max{δ, η} <
1/8 and εn < 1/4 for all n, we have

dε(z, w) ≤ (9η + 6δ + 2εh(y))dε(x, y).
Proof. Let (z′, y′, x′) be a path-type configuration that is ηdε(x, y)-near (z, y, x), and let
(w′′, y′′, x′′) be a path-type configuration that is ηdε(x, y)-near (w, y, x). Without loss of
generality assume that h(y′′) ≥ h(y′). Let w′ be the descendant of y′ satisfying h(w′)−
h(y′) = h(w′′)−h(y′′) such that w′ is either an ancestor or an arbitrary descendant of z′.
Note that h(w′) ≥ h(y). Indeed,

h(w′) = h(y′)+ h(w′′)− h(y′′) = h(y′)+ dε(w
′′, y′′)

≥ h(y)− |h(y)− h(y′)| + dε(w, y)− 2ηdε(x, y)

≥ h(y)− dε(y, y
′)+

1− δ
1+ δ

dε(x, y)− 2ηdε(x, y)

≥ h(y)+

(
1− δ
1+ δ

− 3η
)
dε(x, y) ≥ h(y).

By Lemma 6.11,

dε(w
′, w′′) ≤ dε(y

′, y′′)+ 2εh(w′)[h(w′′)− h(y′′)] ≤ dε(y′, y′′)+ 2εh(w′)dε(y′′, w′′)

≤ 2ηdε(x, y)+ 2εh(y)

(
2η +

1+ δ
1− δ

)
dε(x, y). (65)
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Observe that(
1− δ
1+ δ

− 2η
)
dε(x, y) ≤ dε(z, y)− 2ηdε(x, y) ≤ dε(z′, y′)

≤ dε(z, y)+ 2ηdε(x, y) ≤
(

1+ δ
1− δ

+ 2η
)
dε(x, y), (66)

Since dε(w′, y′) = dε(w′′, y′′), we obtain similarly the bounds:(
1− δ
1+ δ

− 2η
)
dε(x, y) ≤ dε(w

′, y′) ≤ dε(z, y)+ 2ηdε(x, y)

≤

(
1+ δ
1− δ

+ 2η
)
dε(x, y). (67)

Hence

dε(z
′, w′) = |dε(y

′, z′)− dε(y
′, w′)|

(66)∧(67)
≤

(
4δ

1− δ2 + 4η
)
dε(x, y). (68)

So, in conclusion,

dε(z, w) ≤ dε(z, z
′)+ dε(w,w

′′)+ dε(w
′′, w′)+ dε(z

′, w′)

(65)∧(68)
≤

(
8η +

4δ
1− δ2 + 2

(
2η +

1+ δ
1− δ

)
εh(y)

)
dε(x, y)

≤ (9η + 6δ + 2εh(y))dε(x, y). ut

We next consider the (t‖t) configuration.

Lemma 6.17. Let (x, y, z, w) be a δ-fork of (B∞, dε). Assume that both (z, y, x) and
(w, y, x) are ηdε(x, y)-near tent-type configurations. Then, assuming that max{δ, η} <
1/4, we have

dε(z, w) ≤ (8η + 5δ)dε(x, y).

Proof. Let (z′, y′, x′) be a tent-type configuration that is ηdε(x, y)-near (z, y, x), and let
(w′′, y′′, x′′) be a tent-type configuration that is ηdε(x, y)-near (w, y, x). Assume without
loss of generality that h(y′′)−h(w′′) ≥ h(y′)−h(z′). Let w̃ be a point on the path between
w′′ and y′′ such that h(y′′)− h(w̃) = h(y′)− h(z′). Then

dε(w
′′, w̃) = h(y′′)− h(w′′)− (h(y′)− h(z′)) = dε(y

′′, w′′)− dε(y
′, z′)

≤ dε(y,w)− dε(y, z)+ 4ηdε(x, y)

≤

(
1+ δ
1− δ

−
1− δ
1+ δ

+ 4η
)
dε(x, y). (69)

By Lemma 6.9 we have dε(w̃, z′) ≤ dε(y′, y′′) ≤ 2ηdε(x, y). Hence we conclude that

dε(y, z) ≤ dε(z, z
′)+ dε(w̃, z

′)+ dε(w̃, w
′′)+ dε(w

′′, w)
(69)
≤

(
4δ

1− δ2 + 8η
)
dε(x, y).

ut
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Lemma 6.18. Let (x, y, z, w) be a δ-fork of B∞. Assume that (x, y, z) is ηdε(x, y)-near
a path-type configuration. Assume also that δ < 1/30, η < 1/10, and εn < 1/4 for all n.
Then (x, y,w) is (2η + 21δ)dε(x, y)-near a path-type configuration, i.e., (x, y, z, w) is
(2η + 21δ)dε(x, y)-near a type II configuration.

Proof. Let (x′, y′, z′) be a path-type configuration which is ηdε(x, y)-near (x, y, z).
By Theorem 6.4, either (x, y,w) or (w, y, x) must be 3δdε(x, z) ≤ 6

1−δ dε(x, y) ≤

7δdε(x, y)-near either a path-type configuration or a tent-type configuration.
Suppose first that (x, y,w) is 7δdε(x, y)-near a tent-type configuration (x′′, y′′, w′′).

In this case, x′′ is an ancestor of y′′ and h(y′′)−h(x′′) = dε(x′′, y′′) ≥ (1−14δ)dε(x, y).
At the same time, y′ is an ancestor of x′ and h(x′)−h(y′) = dε(x′, y′) ≥ (1−2η)dε(x, y).
So,

2(η + 7δ)dε(x, y) ≥ dε(y′′, y′)+ dε(x′, x′′) ≥ h(y′′)− h(x′′)+ h(x′)− h(y′)
≥ 2(1− η − 7δ)dε(x, y),

which is a contradiction since η + 7δ < 1/2.
Next suppose that (w, y, x) is 7δdε(x, y)-near a path-type configuration (w′′, y′′, x′′).

Then |h(x′)− h(x′′)| ≤ dε(x′, x′′) ≤ (η + 7δ)dε(x, y). So,

(η + 7δ)dε(x, y) ≥ dε(y′, y′′) ≥ h(y′′)− h(y′)
= (h(y′′)− h(x′′))+ (h(x′′)− h(x′))+ h(x′)− h(y′)

> 0− (η + 7δ)dε(x, y)+ (1− 2η)dε(x, y),

which is a contradiction.
Lastly, suppose that (w, y, x) is 7δdε(x, y)-near a tent-type configuration

(w′′, y′′, x′′). Note that |h(y′) − h(y′′)| ≤ dε(y
′, y′′) ≤ (η + 7δ)dε(x, y). So, h(y′) ≥

h(y′′)− (η + 7δ)dε(x, y). Also,

h(y′′)− h(w′′) = dε(y
′′, w′′) ≥ dε(y,w)− 14δdε(x, y) ≥

(
1− δ
1+ δ

− 14δ
)
dε(x, y)

≥ (η + 7δ)dε(x, y).

Consider the point w̄ defined as the ancestor of y′ at distance h(y′′) − h(w′′) −

(η + 7δ)dε(x, y) from y′. Let also w′′′ be the ancestor of y′′ at distance h(y′′) −
h(w′′) − (η + 7δ)dε(x, y) from y′′. By Lemma 6.9, we have dε(w̄, w′′′) ≤ dε(y′, y′′) ≤
(η + 7δ)dε(x, y). Therefore,

dε(w̄, w) ≤ dε(w̄, w
′′′)+ dε(w

′′′, w′′)+ dε(w
′′, w) ≤ (2η + 21δ)dε(x, y).

Hence (x, y,w) is (2η + 21δ)dε(x, y)-near the path-type configuration (x′, y′, w̄). ut

Lemma 6.19. Let (x, y, z, w) be a δ-fork of B∞. Assume that (x, y, z) is ηdε(x, y)-near
a tent-type configuration. Assume also that η < 1/10 and εn < 1/4 for all n. Then
(w, y, x) cannot be ηdε(x, y)-near a tent-type configuration.
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Proof. Let (x′, y′, z′) be a tent type configuration that is ηdε(x, y)-near (x, y, z). Sup-
pose for contradiction that there exists a tent type configuration (w′′, y′′, x′′) that is
ηdε(x, y)-near (w, y, x). Note that h(y′′) ≥ h(y′) − dε(y

′, y′′) ≥ h(y′) − 2ηdε(x, y)
and h(y′) − h(x′) ≥ (1 − 2η)dε(x, y) > 2ηdε(x, y). Let x∗ be the ancestor of y′ at
distance h(y′) − h(x′) − 2ηdε(x, y) from y′, and let x̃ be the ancestor of y′′ at distance
h(y′) − h(x′) − 2ηdε(x, y) from y′′. An application of Lemma 6.9 yields the estimate
dε(x̃, x

∗) ≤ dε(y
′, y′′) ≤ 2ηdε(x, y). But, since h(x′′) ≥ h(y′′), we also know that

dε(x̃, x
′′) ≥ h(y′′)− h(x̃) = dε(y

′, x′)− 2ηdε(x, y). Hence,

2ηdε(x, y) ≥ dε(x̃, x∗) ≥ dε(x̃, x′′)− dε(x∗, x′)− dε(x′, x′′) ≥ dε(x′, y′)− 6ηdε(x, y)
≥ (1− 8η)dε(x, y),

which is a contradiction, since η < 1/10. ut

Proof of Lemma 6.14. Since (x, y, z, w) is a δ-fork, by Theorem 6.4 both (x, y, z) and
(x, y,w) are 7δdε(x, y)-near a tent-type configuration, a path-type configuration, or the
corresponding reverse configurations. We have ten possible combinations of these pairs,
as appearing in Table 1. By applying Lemmas 6.18 and 6.19 with η = 7δ, we rule out three
of these configurations, and a fourth configuration is possible but only as 35δdε(x, y)-near
a type II configuration.

We are left with six possible configurations. By applying Lemmas 6.16 and 6.17
with η = 7δ we conclude that in two of those configurations we have dε(w, z) ≤
(69δ + 2εh0)dε(x, y), and the rest are configurations that are 7δdε(x, y)-near one of the
types I–IV. ut

6.2.3. Classification of approximate 3-paths. We start with the following natural notion:

Definition 6.20. For x0, x1, x2, x3 ∈ B∞ the quadruple (x0, x1, x2, x3) is called a (1+δ)-
approximate P3 if there exists L > 0 such that for every 0 ≤ i ≤ j ≤ 3 we have

(j − i)L ≤ dε(xi, xj ) ≤ (1+ δ)(j − i)L.

Note that in this case x1 ∈ Mid(x0, x2, δ) and x2 ∈ Mid(x1, x3, δ).

As in the case of δ-forks, there are ten possible concatenations of two midpoints con-
figurations (path-type or tent-type): P-P, P-p, P-T, P-t, p-P, p-T, p-t, T-T, T-t, t-T (the
midpoint configurations p-p, P-p, t-p, T-p, p-P, t-P, T-P, t-t, T-t, t-T are respectively such
concatenations with the order of x0, x1, x2, x3 reversed). We will rule out some of these
possibilities, and obtain some stronger properties for the rest. See Table 2.

As in the case of δ-forks, it will be beneficial to give names to three special types of
approximate 3-paths:

Definition 6.21. For x0, x1, x2, x3 ∈ B∞ and η > 0, a quadruple (x0, x1, x2, x3) is
called:

• η-near a type A configuration if both (x0, x1, x2) and (x1, x2, x3) are η-near path-type
configurations,
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Table 2. The possible configurations of 3-paths.

Midpoint configuration Reverse configuration Type

(P-P) (p-p) type A
(P-p) (P-p) impossible
(P-T) (t-p) impossible
(P-t) (T-p) type B
(p-P) (p-P) impossible
(p-T) (t-P) type C
(p-t) (T-P) impossible
(T-T) (t-t) possible only as type C
(T-t) (T-t) impossible
(t-T) (t-T) impossible

• η-near a type B configuration if (x0, x1, x2) is η-near a path-type configuration, and
(x3, x2, x1) is η-near tent-type configuration,
• η near type C configuration if (x2, x1, x0) is η-near a path-type configuration, and
(x1, x2, x3) is η-near a tent-type configuration.

See also Figure 6.

Type CType B
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x1 x2

x3

x0

x1

x2

x3
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x1

x2
x3

x0

Type A Type B Type C

Fig. 6. The three possible types of approximate 3-paths.

The following lemma is the main result of this subsection.

Lemma 6.22. Assume that εn < 1/4 for all n and fix δ < 1/200. Assume that
(x0, x1, x2, x3) is a (1+δ)-approximate P3. Then either (x0, x1, x2, x3) or (x3, x2, x1, x0)

is 35δdε(x0, x1)-near a configuration of type A, B or C.

The proof of Lemma 6.22 is again a case analysis that examines all ten possible ways (up
to symmetry) to concatenate two midpoint configurations. The proof is divided into a few
lemmas according to the cases, and is completed at the end of this subsection.

Lemma 6.23. Assume that εn < 1/4 for all n and that (x0, x1, x2, x3) is a (1 + δ)-
approximate P3 such that (x0, x1, x2) is ηdε(x0, x1)-near a path-type configuration. If
max{δ, η} < 1/200 then either (x1, x2, x3) is 7δdε(x0, x1)-near a path-type configuration
(type A), or (x3, x2, x1) is 7δdε(x0, x1)-near a tent-type configuration (type B).
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Proof. Due to Theorem 6.4 we only need to rule out the possibility that (x3, x2, x1) is
7δdε(x1, x2)-near a path-type configuration, or that (x1, x2, x3) is 7δdε(x1, x2)-near a
tent-type configuration. Let (x′0, x

′

1, x
′

2) be a path-type configuration that is ηdε(x0, x1)-
near (x0, x1, x2).

Suppose first that (x3, x2, x1) is 7δdε(x1, x2)-near the path-type configuration
(x′′3 , x

′′

2 , x
′′

1 ). Since h(x′1) ≥ h(x
′

2) and h(x′′2 ) ≥ h(x
′′

1 ) we have

|h(x1)− h(x2)| ≤ |h(x1)− h(x
′

1)| + (h(x
′

1)− h(x
′

2))+ |h(x
′

2)− h(x2)|

≤ dε(x1, x
′

1)+ (h(x
′

1)− h(x
′

2))+ dε(x
′

2, x2)

≤ 2ηdε(x0, x1)+ (h(x
′

1)− h(x
′

2)), (70)

and similarly,

|h(x1)− h(x2)| ≤ |h(x1)− h(x
′′

1 )| + (h(x
′′

2 )− h(x
′′

1 ))+ |h(x
′′

2 )− h(x2)|

≤ dε(x1, x
′′

1 )+ (h(x
′′

2 )− h(x
′′

1 ))+ dε(x
′

2, x2)

≤ 14δdε(x0, x1)+ (h(x
′′

2 )− h(x
′′

1 )). (71)

By summing (70) and (71) we obtain the bound

2|h(x1)−h(x2)| ≤ (2η+14δ)dε(x0, x1)+dε(x
′

1, x
′′

1 )+dε(x
′

2, x
′′

2 ) ≤ (4η+28δ)dε(x0, x1).

Thus
|h(x1)− h(x2)| ≤ (2η + 14δ)dε(x0, x1). (72)

Since x′0 is a descendant of x′1,

|h(x0)− h(x1)− dε(x0, x1)| ≤ |h(x
′

0)− h(x
′

1)− dε(x0, x1)| + 2ηdε(x0, x1)

= |dε(x
′

0, x
′

1)− dε(x0, x1)| + 2δdε(x0, x1) ≤ 4ηdε(x0, x1). (73)

Similarly, since x′′3 is a descendant of x′′2 ,

|h(x3)− h(x2)− dε(x0, x1)| ≤ |h(x
′′

3 )− h(x
′′

2 )− dε(x0, x1)| + 14δdε(x1, x2)

= |dε(x
′′

3 , x
′′

2 )− dε(x0, x1)| + 14δdε(x0, x1) ≤ 28δdε(x0, x1). (74)

Hence,

|h(x′′3 )− h(x
′

0)| ≤ |h(x
′′

3 )− h(x3)| + |h(x3)− h(x2)− dε(x0, x1)| + |h(x2)− h(x1)|

+ |h(x0)− h(x1)− dε(x0, x1)| + |h(x0)− h(x
′

0)|

(72)∧(73)∧(74)
≤ dε(x

′′

3 , x3)+ 28δdε(x0, x1)+ (2η + 14δ)dε(x0, x1)+ 4ηdε(x0, x1)

+ dε(x0, x
′

0)

≤ (49δ + 7η)dε(x0, x1). (75)
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We record for future reference the following consequence of (72) and (75):

min{h(x′0), h(x
′′

3 )} −min{h(x′1), h(x
′′

2 )} ≤ max{h(x′0)− h(x
′

1), h(x
′

0)− h(x
′′

2 )}

(75)
≤ max{dε(x′0, x

′

1), h(x
′′

3 )− h(x
′′

2 )+ (49δ + 7η)dε(x0, x1)}

≤ max{(1+ 2η)dε(x0, x1), dε(x
′′

3 , x
′′

2 )+ (49δ + 7η)dε(x0, x1)}

≤ (1+ 64δ + 7η)dε(x0, x1). (76)

We next claim that
lca(x′0, x

′′

3 ) = lca(x′1, x
′′

2 ). (77)

Indeed, since x′1 is an ancestor of x′0 and x′′2 is an ancestor of x′′3 , if lca(x′0, x
′′

3 ) 6=

lca(x′1, x
′′

2 ) then either x′1 is a descendant of x′′2 , or x′′2 is a descendant of x′1. If x′1 is a
descendant of x′′2 then

(η + 7δ)dε(x0, x1) ≥ dε(x
′

1, x
′′

1 ) ≥ dε(x
′′

2 , x
′

1) ≥ dε(x2, x1)− (η + 7δ)dε(x0, x1)

≥
1

1+ δ
dε(x0, x1)− (η + 7δ)dε(x0, x1),

which is a contradiction since δ, η < 1/200. Similarly, if x′′2 is a descendant of x′1 then

(η + 7δ)dε(x0, x1) ≥ dε(x
′

2, x
′′

2 ) ≥ dε(x
′′

2 , x
′

1) ≥
1

1+ δ
dε(x0, x1)− (η + 7δ)dε(x0, x1),

leading once more a contradiction. This proves (77).
Now,

3
1+ δ

dε(x0, x1) ≤ dε(x0, x3)

≤ dε(x
′′

3 , x
′

0)+ (η + 7δ)dε(x0, x1)

(75)
≤ 2εmin{h(x′0),h(x

′′

3 )}
[min{h(x′0), h(x

′′

3 )} − h(lca(x
′

0, x
′′

3 ))] + (8η + 56δ)dε(x0, x1)

(77)
= 2εmin{h(x′0),h(x

′′

3 )}
[min{h(x′1), h(x

′′

2 )} − h(lca(x
′

1, x
′′

2 ))] + (8η + 56δ)dε(x0, x1)

+ 2εmin{h(x′0),h(x
′′

3 )}
[min{h(x′0), h(x

′′

3 )} −min{h(x′1), h(x
′′

2 )}]

(76)
≤ 2εmin{h(x′1),h(x

′′

2 )}
[min{h(x′1), h(x

′′

2 )} − h(lca(x
′

1, x
′′

2 ))]

+

(
8η + 56δ +

1+ 64δ + 7η
2

)
dε(x0, x1) (78)

≤ dε(x
′

1, x
′′

2 )+ (1/2+ 88δ + 12η)dε(x0, x1)

≤ (3/2+ 96δ + 13η)dε(x0, x1), (79)

where in (78) we used min{h(x′0), h(x
′′

3 )}≥min{h(x′1), h(x
′′

2 )} and εmin{h(x′0),h(x
′′

3 )}
<1/4.

Since max{η, δ} < 1/200, the bound (79) is a contradiction.
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Next suppose (x1, x2, x3) is 7δdε(x0, x1)-near a tent-type configuration (x′′1 , x
′′

2 , x
′′

3 ).
Since h(x′2) ≤ h(x

′

1) and h(x′′2 ) ≥ h(x
′′

1 ), we have

|h(x1)− h(x2)| ≤ |h(x1)− h(x
′

1)| + (h(x
′

1)− h(x
′

2))+ |h(x
′

2)− h(x2)|

≤ dε(x1, x
′

1)+ (h(x
′

1)− h(x
′

2))+ (h(x
′′

2 )− h(x
′′

1 ))+ dε(x
′

2, x2)

≤ dε(x1, x
′

1)+ dε(x
′

1, x
′′

1 )+ dε(x
′

2, x
′′

2 )+ dε(x
′

2, x2)

≤ (4η + 14δ)dε(x0, x1). (80)

On the other hand, x′′1 is an ancestor of x′′2 , and therefore(
1

1+ δ
− 14δ

)
dε(x0, x1) ≤ dε(x

′′

1 , x
′′

2 ) = h(x
′′

2 )− h(x
′′

1 )

≤ |h(x1)− h(x2)| + 14δdε(x0, x1)
(80)
≤ (4η + 28δ)dε(x0, x1), (81)

which is a contradiction since max{η, δ} < 1/200. ut

Lemma 6.24. Assume that εn < 1/4 for all n and that (x0, x1, x2, x3) is a (1 + δ)-
approximate P3 such that (x2, x1, x0) is ηdε(x0, x1)-near a path-type configuration. If
max{δ, η} < 1/200 then either (x3, x2, x1) is 7δdε(x0, x1)-near a path-type configuration
(reverse type A), or (x1, x2, x3) is 7δdε(x0, x1)-near a tent-type configuration (type C).

Proof. Let (x′2, x
′

1, x
′

0) be a path-type configuration that is ηdε(x0, x1)-near (x2, x1, x0).
First, assume for contradiction that (x3, x2, x1) is 7δdε(x1, x2)-near a tent-type configu-
ration (x′′3 , x

′′

2 , x
′′

1 ). Then h(x′′1 ) ≥ h(x
′′

2 ), whereas h(x′2) − h(x
′

1) = dε(x
′

2, x
′

1). Arguing
as in (80), it follows that |h(x1) − h(x2)| ≤ (2η + 28δ)dε(x0, x1), and we arrive at a
contradiction by arguing similarly to (81).

Next, assume for contradiction that (x1, x2, x3) is 7δdε(x1, x2)-near a path-type con-
figuration (x′′1 , x

′′

2 , x
′′

3 ). Then h(x′′1 ) − h(x
′′

2 ) = dε(x
′′

1 , x
′′

2 ), whereas h(x′2) − h(x
′

1) =

dε(x
′

1, x
′

2). By summing these two identities, we arrive at a contradiction as follows:(
2

1+ δ
− 2η − 14δ

)
dε(x0, x1) ≤ dε(x

′

1, x
′

2)+ dε(x
′′

1 , x
′′

2 )

= (h(x′2)− h(x
′′

2 ))+ (h(x
′′

1 )− h(x
′

1)) ≤ dε(x
′

2, x
′′

2 )+ dε(x
′

1, x
′′

1 )

≤ (2η + 14δ)dε(x0, x1). ut

Lemma 6.25. Assume that εn < 1/4 for all n and that (x0, x1, x2, x3) is a (1 + δ)-
approximate P3 such that (x0, x1, x2) is ηdε(x0, x1)-near a tent-type configuration. If
max{δ, η} < 1/200 then either (x2, x1, x0) is (14δ + 3η)dε(x0, x1)-near a path-type
configuration and (x1, x2, x3) is 7δdε(x1, x2)-near a tent-type configuration (type C), or
(x3, x2, x1) is 7δdε(x0, x1)-near a path-type configuration (reverse type B).

Proof. Let (x′0, x
′

1, x
′

2) be a tent-type configuration that is ηdε(x0, x1)-near (x0, x1, x2).
First, suppose that (x1, x2, x3) is 7δdε(x1, x2)-near a tent-type configuration (x′′1 , x

′′

2 , x
′′

3 ).
Note that |h(x′1) − h(x

′′

1 )| ≤ dε(x
′

1, x
′′

1 ) ≤ (η + 7δ)dε(x0, x1). So, let x′′0 be an ancestor
of x′′1 at distance h(x′1) − h(x

′

0) − (η + 7δ)dε(x0, x1) ∈ [0, h(x′′1 )] from x′′1 , and let
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x∗0 be an ancestor of x′1 at distance h(x′1) − h(x
′

0) − (η + 7δ)dε(x0, x1) from x′1. Then
h(x′1)− h(x

∗

0 ) = h(x
′′

1 )− h(x
′′

0 ) and dε(x∗0 , x
′

0) ≤ (η + 7δ)dε(x0, x1). By Lemma 6.9,

dε(x0, x
′′

0 )− (2η + 7δ)dε(x0, x1 ≤ dε(x0, x
′′

0 )− dε(x
∗

0 , x
′

0)− dε(x
′

0, x0) ≤ dε(x
∗

0 , x
′′

0 )

≤ dε(x
′

1, x
′′

1 ) ≤ (η + 7δ)dε(x0, x1).

Hence (x′′2 , x
′′

1 , x
′′

0 ) is a path-type configuration that is (14δ + 3η)dε(x0, x1)-near
(x2, x1, x0).

Next assume for contradiction that (x3, x2, x1) is 7δdε(x1, x2) near a tent-type con-
figuration (x′′3 , x

′′

2 , x
′′

1 ). Then

(1− 15δ)dε(x0, x1) ≤

(
1

1+ δ
− 14δ

)
dε(x0, x1) ≤ h(x

′′

2 )− h(x
′′

3 )

≤ (1+ 15δ)dε(x0, x1), (82)

and

(1− δ − 2η)dε(x0, x1) ≤

(
1

1+ δ
− 2η

)
dε(x0, x1) ≤ h(x

′

1)− h(x
′

0)

≤ (1+ δ + 2η)dε(x0, x1). (83)

So, let x##
3 be an ancestor of x′′2 at distance h(x′′2 ) − h(x

′′

3 ) − (16δ + 2η)dε(x0, x1) ∈

[0, h(x′′2 )] from x′′2 , and let x#
0 be an ancestor of x′1 at distance h(x′′2 ) − h(x′′3 ) −

(16δ + 2η)dε(x0, x1) ∈ [0, h(x′1)] from x′1. Then

dε(x
′′

3 , x
##
3 ) ≤ (16δ + 2η)dε(x0, x1), (84)

and

dε(x
′

0, x
#
0) = |h(x

′

0)−h(x
#
0)| = |h(x

′

0)−(h(x
′

1)−h(x
′′

2 )+h(x
′′

3 )+(16δ+2η)dε(x0, x1))|

(82)∧(83)
≤ 2(16δ + 2η)dε(x0, x1). (85)

Moreover, h(x1)− h(x
#
0) = h(x

′′

2 )− h(x
##
3 ), so by Lemma 6.9 we have(

3
1+ δ

− 55δ− 7η
)
dε(x0, x1) ≤ dε(x0, x3)− (55δ+ 7η)dε(x0, x1)

(84)∧(85)
≤ dε(x

#
0 , x

##
3 )

≤ dε(x
′

1, x
′′

2 ) ≤ (1+ 8δ+ η)dε(x0, x1),

which is a contradiction since max{δ, η} < 1/200.
Lastly, assume for contradiction that (x1, x2, x3) is 7δdε(x1, x2)-near a path-type con-

figuration (x′′1 , x
′′

2 , x
′′

3 ). Then since h(x′1) ≤ h(x
′

2) we have(
1

1+ δ
− 14δ

)
dε(x0, x1) ≤ dε(x

′′

1 , x
′′

2 ) = h(x
′′

1 )− h(x
′′

2 )

≤ (h(x′′1 )− h(x
′′

2 ))+ (h(x
′

2)− h(x
′

1))

≤ dε(x
′′

1 , x
′

1)+ dε(x
′′

2 , x
′

2) ≤ (14δ + 2η)dε(x0, x1),

a contradiction. ut
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Lemma 6.26. Assume that εn < 1/4 for all n and that (x0, x1, x2, x3) is a (1 + δ)-
approximate P3 such that (x2, x1, x0) is ηdε(x0, x1)-near a tent-type configuration. If
max{δ, η} < 1/200 then (x1, x2, x3) cannot be 7δdε(x0, x1) near a tent-type configura-
tion.

Proof. Let (x′2, x
′

1, x
′

0) be a tent-type configuration that is ηdε(x0, x1)-near (x2, x1, x0).
Suppose for contradiction that (x1, x2, x3) is 7δdε(x0, x1)-near a tent-type configuration
(x′′1 , x

′′

2 , x
′′

3 ). Then h(x′1) − h(x
′

2) = dε(x
′

1, x
′

2), whereas h(x′′2 ) − h(x
′′

1 ) = dε(x
′′

1 , x
′′

2 ).
Taking the sum of these two inequalities we conclude that

dε(x
′′

1 , x
′′

2 )+ dε(x
′

1, x
′

2) ≤ dε(x
′

1, x
′′

1 )+ dε(x
′

2, x
′′

2 ) ≤ (2η + 14δ)dε(x0, x1).

At the same time,
( 2

1+δ − 2η− 14δ
)
dε(x0, x1) ≤ dε(x

′′

1 , x
′′

2 )+ dε(x
′

1, x
′

2), which leads to
the desired contradiction. ut

Proof of Lemma 6.22. Since (x0, x1, x2, x3) is a (1 + δ)-approximate P3, we have x1 ∈

Mid(x0, x2, δ), and x2 ∈ Mid(x1, x3, δ). Since the assumptions of Theorem 6.4 hold,
we can apply Lemmas 6.23–6.26 with η = 7δ to conclude that either (x0, x1, x2, x3) or
(x3, x2, x1, x0) must be 35δdε(x0, x1)-near a configuration of type A, B or C. ut

6.3. Nonembeddability of vertically faithful B4

In what follows we need some standard notation on trees. As before, Bn is the complete
binary tree of height n; the root of Bn is denoted by r . Denote by I (Bn) the set of internal
vertices of Bn, i.e., vertices of Bn which are not the root or a leaf. For a vertex v in
{r}∪I (Bn)we denote by v0 and v1 its children. For α ∈ {0, 1}∗ (the set of finite sequences
of ‘0’ and ‘1’) and a ∈ {0, 1} we denote vαa = (vα)a .

The aim of the current section is to prove the following lemma.

Lemma 6.27. Fix 0 < δ < 1/400 and let f : B4 → (B∞, dε) be a (1 + δ)-vertically
faithful embedding. Then the distortion of f satisfies

dist(f ) ≥
1

500δ + εh0

,

where h0 = minx∈B4 h(f (x)).

The proof of Lemma 6.27 is by a contradiction. By Lemma 6.14, assuming the distortion
of f is small, all the δ-forks in the (1+ δ)-vertically faithful embedding must be of types
I–IV. By exploring the constraints implied by Lemma 6.22 on how those δ-forks can
be “stitched” together, we reach the conclusion that they are sufficiently severe to force
any vertically faithful embedding of B4 to have a large contraction, and therefore high
distortion.

Fix f : B4 → (B∞, dε). For u ∈ I (B4) we denote by F(u) the fork in which u is the
center point, i.e., if v is the parent of u in B4, then

F(u) := (f (v), f (u), f (u0), f (u1)).

We shall assume from now on that f satisfies the assumptions of Lemma 6.27, i.e., f
satisfies (8) with D = 1+ δ for some δ < 1/400 and λ > 0.
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Lemma 6.28. Fix u ∈ B4 with h(u) ∈ {1, 2}. If the fork F(u) is 37δλ-near a type I or
type III configuration, then there exists w ∈ I (B4) satisfying

dε(f (w0), f (w1)) ≤ (170δ + εh0) · 2λ. (86)

Proof. Let v be the parent of u. Hence, (f (v), f (u), f (u0), f (u1)) is 35δ(1 + δ)λ-near
a type I or a type III configuration. Assume first that (f (v), f (u), f (u0), f (u1)) is 37δλ-
near a type I configuration. If both (f (u0), f (u), f (v)) and (f (u1), f (u), f (v)) were
37δλ-near a path type configuration then by Lemma 6.16 (with η = 37δ) we would have

dε(f (u0), f (u1)) ≤ (339δ + 2εh0)(1+ δ)λ ≤ (170δ + εh0) · 2λ, (87)

proving (86) with w = u. The same conclusion holds when (f (v), f (u), f (u0), f (u1))

is 37δλ-near a type III configuration: in this case without loss of generality
(f (v), f (u), f (u0)) is 37δλ-near a tent-type configuration and (f (u1), f (u), f (v)) is
37δλ-near a path-type configuration. Using Lemma 6.16 as above we would arrive at
the conclusion (87) if (f (u0), f (u), f (v)) were 37δλ-near a path-type type configura-
tion. Thus, in both the type I and type III cases of Lemma 6.28 we may assume that
(f (v), f (u), f (u0)) is 37δλ-near a tent-type configuration, and that, by Lemma 6.8,
(f (v), f (u), f (u0)) is not 37δλ-near a path-type configuration, and (f (u0), f (u), f (v))

is not 37δλ-near a path-type configuration or a tent-type configuration.
By Lemma 6.22 (and Table 2) (f (u0c), f (u0), f (u), f (v))must be 35δ(1+ δ)λ-near

a type B configuration for both c ∈ {0, 1}. This means that (f (u0c), f (u0), f (u)) are both
35δ(1+δ)λ-near a path-type configuration, and so by Lemma 6.16 (with η = 35δ(1+δ))
we deduce that dε(f (u00), f (u01)) ≤ (170δ + εh0) · 2λ. ut

Lemma 6.29. Fix u ∈ B4 with h(u) ∈ {1, 2}. If F(u) is 37δλ-near a type II config-
uration then for both b ∈ {0, 1} either F(ub) is 99δλ-near a type II configuration, or
dε(f (ub0), f (ub1)) ≤ 400δλ.

Proof. Let v be the parent of u. For both c ∈ {0, 1} we know that (f (v), f (u), f (u0),

f (u0c)) is a (1 + δ)-approximate P3, and therefore by Lemma 6.22 either (f (v), f (u),
f (u0), f (u0c)) or (f (u0c), f (u0), f (u), f (v)) is 35δ(1+δ)λ-near a configuration of type
A, B or C. Note that since (f (v), f (u), f (u0)) is assumed to be 37δλ-near a path-type
configuration, we rule out the possibility that (f (v), f (u), f (u0), f (u0c)) is 35δ(1+δ)λ-
near a configuration of type C, since otherwise both (f (v), f (u), f (u0)) and (f (u0),

f (u), f (v)) would be 37δλ-near path-type configurations, contradicting Lemma 6.8.
For the same reason we rule out the possibility that (f (u0c), f (u0), f (u), f (v)) is
35δ(1 + δ)λ-near a configuration of type A or type B. An inspection of the three re-
maining possibilities shows that either (f (u), f (u0), f (u0c)) is 37δλ-near a path-type
configuration, or (f (u0c), f (u0), f (u)) is 37δλ-near a tent-type configuration.

Now,

• If for both c ∈ {0, 1} the triple (f (u), f (u0), f (u0c)) is 37δλ-near a path-type config-
uration, then F(u0) is 37δλ-near a type II configuration.
• If for both c ∈ {0, 1} the triple (f (u0c), f (u0), f (u)) is 37δλ-near a tent-type configu-

ration, then by Lemma 6.17 we have dε(f (u01), f (u00)) ≤ 400δ.
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• By Lemma 6.18, the only way that (f (u), f (u0), f (u00)) could be 37δλ-near a path
type configuration while at the same time (f (u01), f (u0), f (u)) is 37δλ-near a tent-
type configuration (or vice versa), is that F(u0) is 99δλ-near a type II configuration.

ut

Lemma 6.30. Fix u ∈ B4 with h(u) ∈ {1, 2}. If F(u) is 35δ(1 + δ)λ-near a type IV
configuration, then there exists b ∈ {0, 1} such that F(ub) is 37δλ-near a type II config-
uration.

Proof. Let v be the parent of u. Without loss of generality (f (u0), f (u), f (v)) is
35δ(1 + δ)λ-near a tent-type configuration. By Lemma 6.22 (using Lemma 6.8 to rule
out the remaining possibilities), this means that for both c ∈ {0, 1} the quadruple
(f (u0c), f (u0), f (u), f (v)) is 35δ(1 + δ)2λ-near a type C configuration, and therefore
F(u0) is 35δ(1+ δ)2λ near a type II configuration. ut

Lemma 6.31. Fix u ∈ B4 with h(u) ∈ {0, 1, 2}. If F(u0) and F(u1) are both 99δλ-near
a type II configuration then dε(f (u0), f (u1)) ≤ 1000δλ.

Proof. By our assumptions, (f (u), f (u0), f (u00)) is 99δλ-near a path type config-
uration (u′, u′0, u

′

00) and (f (u), f (u1), f (u10)) is 99δλ-near a path-type configura-
tion (u′′, u′′1, u

′′

10). We may assume without loss of generality that h(u′′) − h(u′1) ≤
h(u′)−h(u′0). We may therefore consider the ancestor u∗1 of u′ such that h(u′)−h(u∗1) =
h(u′′) − h(u′′1), implying in particular that h(u∗1) ≥ h(u

′

0) (recall that u′0 is an ancestor
of u′, and u′′1 is ancestor of u′′). By Lemma 6.9 we have

dε(u
∗

1, u
′′

1) ≤ dε(u
′, u′′) ≤ 198δλ. (88)

Hence,

h(u′)− h(u∗1) = dε(u
′, u∗1)

(88)
≥ dε(u

′, u′′1)− 198δλ ≥ dε(f (u), f (u1))− 394δλ
≥ (1− 394δ)λ. (89)

But we also know that

h(u′)− h(u′0) = dε(u
′, u′0) ≤ dε(f (u), f (u0))+ 198δλ ≤ (1+ 200δ)λ. (90)

It follows from (89) and (90) that dε(u′0, u
∗

1) = h(u
∗

1)− h(u
′

0) ≤ 601δλ. Therefore,

dε(f (u1), f (u0)) ≤ dε(f (u0), u
′

0)+dε(u
′

0, u
∗

1)+dε(u
∗

1, u
′′

1)+dε(u
′′

1, f (u1)) = 1000δλ.
ut

Proof of Lemma 6.27. We may assume that for all u ∈ I (B4) the fork F(u) is 35δ(1+δ)λ-
near a configuration of type I, II, III, or IV. Indeed, otherwise the proof is complete by
Lemma 6.14. If F(r0) is 35δ(1 + δ)λ-near a type I or type III configuration, then by
Lemma 6.28 the proof is complete. If F(r0) is 35δ(1+ δ)λ-near a type IV configuration
then by Lemma 6.30 there exists b ∈ {0, 1} such that F(r0b) is 37δλ-near a type II
configuration. It therefore remains to deal with the case in which for some u ∈ {r0, r0b}
the fork F(u) is 37δλ-near a type II configuration. Applying Lemma 6.29, either we
are done, or both F(u0) and F(u1) are 99δλ-near a type II configuration, but then by
Lemma 6.31 the proof of Lemma 6.27 is complete. ut



334 Manor Mendel, Assaf Naor

6.4. Nonembeddability of binary trees

We are now in a position to complete the proof of Theorem 1.10.

Proof of Theorem 1.10. Write εn = 1/s(n) and ε = {εn}∞n=0. Thus {εn}∞n=0 is nonincreas-
ing, {nεn}∞n=0 is nondecreasing, and εn ≤ 1/4. We can therefore choose the metric space
(X, dX) = (B∞, dε). The identity embedding of Bn into the top n-levels of B∞ shows
that cX(Bn) ≤ s(n). It remains to prove the lower bound on cX(Bn). To this end take an
arbitrary injection f : Bn→ X satisfying dist(f ) ≤ s(n), and we will now prove that

dist(f ) ≥ s
(⌊

n

40s(n)

⌋)(
1−

Cs(n) log s(n)
log n

)
. (91)

By adjusting the constant C in (91), we may assume below that n is large enough, say,
n ≥ 100. Write h0 = bn/(40s(n))c and defineX>h0 = {x ∈ B∞ : h(x) > h0}. We claim
that there exists a complete binary subtree T ⊆ Bn of height at least dn/3e such that we
have f (T ) ⊆ X>h0 . Indeed, let hmin = min{h(x) : x ∈ f (Bn)} and hmax = max{h(x) :
x ∈ f (Bn)}. If hmin > h0 then f (Bn) ⊆ X>h0 , and we can take T = Bn. So assume that
hmin < h0. Since f is an injection it must satisfy hmax ≥ n. Hence ‖f ‖Lip ≥

hmax−hmin
2n ≥

n−h0
2n ≥

1
4 . Since dist(f ) ≤ s(n) we conclude that ‖f−1

‖Lip ≤ 4s(n). It follows that,
since diam(X r X>h0) ≤ 2h0, we have diam(f−1(X r X>h0)) ≤ 8h0s(n) ≤ n/5. If
the top dn/3e levels of Bn are mapped into X>h0 then we are done, so assume that there
exists u ∈ f−1(X rX>h0) of depth at most ≤ dn/3e. In this case f−1(X rX>h0) must
be contained in the first dn/3e+n/5 < 2n/3−1 levels of Bn, so we can take T to be any
subtree of Bn contained in the last dn/3e levels of Bn.

Fix δ ∈ (0, 1). By Theorem 1.14 (with t = 4, D = s(n) and ξ = δ), there exists a
universal constant κ > 0 such that if n ≥ s(n)κ/δ then there is a mapping φ : B4 → Bn
with dist(φ) ≤ 1 + δ such that f ◦ φ is a (1 + δ)-vertically faithful embedding of B4
into X>h0 . Choosing δ = κ(log s(n))/log n, by increasing C in (91) if necessary, we may
assume that δ < 1/400. Lemma 6.27 then implies

(1+ δ) dist(f ) ≥ dist(f ◦ φ) ≥
1

500δ + εh0

=
1

500κ log s(n)
log n +

1
s(bn/(40s(n))c)

.

The deduction of (7) from (6) is a simple exercise: if s(n) = o((log n)/log log n) then
we have (s(n) log s(n))/log n = o(1). The desired claim will then follow once we check
that

lim sup
n→∞

s(bn/(40s(n))c)
s(n)

= 1. (92)

Indeed, if (92) failed then there would exist ε0 ∈ (0, 1) and n0 ∈ N such that for all
n ≥ n0,

s(bn/ log nc) ≤ s(bn/(40s(n))c) ≤ (1− ε0)s(n). (93)

Iterating (93), it would follow that s(nj ) ≥ n
�(1)
j for some subsequence {nj }∞j=1, a con-

tradiction. ut
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Proof of Theorem 1.12. The proof is identical to the above argument: all one has to notice
is that when s(n) = D for all n ∈ N, the resulting metric dε on B∞ isD-equivalent to the
original shortest path metric on B∞. In this case, if cX(Bn) ≤ D − ε then the bound (91)
implies that n ≤ DCD

2/ε. ut

7. Discussion and open problems

A very interesting problem that arises naturally from Theorem 1.3 and is also a part of
the Ribe program, is to find a metric characterization of q-smoothness. A Banach space
(X, ‖ · ‖X) is called q-smooth if it admits an equivalent norm ||| · ||| such that there is a
constant S > 0 satisfying

|||x||| = 1 ∧ y ∈ X ⇒
|||x + y||| + |||x − y|||

2
≤ 1+ S|||y|||q .

A Banach space X is p-convex if and only if its dual space X∗ is q-smooth, where 1/p+
1/q = 1 [17]. It is known that a Banach space X is p-convex for some p < ∞ (i.e.,
superreflexive) if and only if it is q-smooth for some q > 1 (this follows from [10, 29]).
Hence Bourgain’s metric characterization of superreflexivity can be viewed as a statement
about uniform smoothness as well. However, we still lack a metric characterization of
the more useful notion of q-smoothness. Trees are natural candidates for finite metric
obstructions to p-convexity, but it is unclear what would be the possible finite metric
witnesses to the “non-q-smoothness” of a metric space.

H -trees are geometric objects that are quite simple combinatorially, yet as we have
seen, they have interesting bi-Lipschitz properties. It would therefore be of interest to
investigate the geometry ofH -trees in its own right. In particular, what is theL1 distortion
of an H -tree? How close can an H -tree be to a metric of negative type?
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