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Abstract. We prove the existence of quasi-periodic solutions for Schrödinger equations with a
multiplicative potential on Td , d ≥ 1, finitely differentiable nonlinearities, and tangential frequen-
cies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in
time and space. If the nonlinearity and the potential are C∞ then the solutions are C∞. The proofs
are based on an improved Nash–Moser iterative scheme, which assumes the weakest tame esti-
mates for the inverse linearized operators (“Green functions”) along scales of Sobolev spaces. The
key off-diagonal decay estimates of the Green functions are proved via a new multiscale inductive
analysis. The main novelty concerns the measure and “complexity” estimates.

Keywords. Nonlinear Schrödinger equation, Nash–Moser theory, KAM for PDE, quasi-periodic
solutions, small divisors, infinite-dimensional Hamiltonian systems

1. Introduction

The first existence results for quasi-periodic solutions of Hamiltonian PDEs were proved
by Kuksin [28] and Wayne [38] for one-dimensional, analytic, nonlinear perturbations
of linear wave and Schrödinger equations. The main difficulty, namely the presence of
arbitrarily “small divisors” in the expansion series of the solutions, is handled via KAM
theory. These pioneering results were limited to Dirichlet boundary conditions because
the eigenvalues of the Laplacian had to be simple. In this case one can impose the so-
called “second order Melnikov” nonresonance conditions to solve the linear homological
equations which arise at each KAM step (see also Pöschel [35]). Such equations are
linear PDEs with constant coefficients and can be solved using Fourier series. Already
for periodic boundary conditions, where two consecutive eigenvalues are possibly equal,
the second order Melnikov nonresonance conditions are violated.

Later, another more direct bifurcation approach was proposed by Craig and Wayne
[17], who introduced the Lyapunov–Schmidt decomposition method for PDEs and solved
the small divisors problem, for periodic solutions, with an analytic Newton iterative
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scheme. The advantage of this approach is to require only the “first order Melnikov”
nonresonance conditions, which are essentially the minimal assumptions. On the other
hand, the main difficulty of this strategy lies in the inversion of the linearized operators
obtained at each step of the iteration, and in achieving suitable estimates for their inverses
in high (analytic) norms. Indeed these operators come from linear PDEs with noncon-
stant coefficients and are small perturbations of a diagonal operator having arbitrarily
small eigenvalues.

In order to get estimates in analytic norms for the inverses, called Green functions by
the analogy with Anderson localization theory, Craig and Wayne developed a coupling
technique inspired by the methods of Fröhlich–Spencer [24]. The key properties are:

(i) “separations” between singular sites, namely the Fourier indices of the small divisors,
(ii) “localization” of the eigenfunctions of−∂xx+V (x) with respect to the exponentials.

Property (ii) implies that the matrix which represents, in the eigenfunction basis, the mul-
tiplication operator by an analytic function has an exponentially fast decay off the diag-
onal. Then the “separation properties” (i) imply a very “weak interaction” between the
singular sites. Property (ii) holds in dimension 1, i.e. x ∈ T1, but, for x ∈ Td , d ≥ 2,
some counterexamples are known (see [23]).

The “separation properties” (i) are quite different for periodic or quasi-periodic solu-
tions. In the first case the singular sites are “separated at infinity”, namely the distance
between distinct singular sites increases when the Fourier indices tend to infinity. This
property is exploited in [17]. By contrast, it never holds for quasi-periodic solutions, even
for finite-dimensional systems. For example, in the ODE case where the small divisors are
ω·k, k ∈ Zν , if the frequency vector ω ∈ Rν is diophantine, then the singular sites k where
|ω · k| ≤ ρ are “uniformly distributed” in a neighborhood of the hyperplane ω · k = 0,
with nearby indices at distance O(ρ−α) for some α > 0.

This difficulty has been overcome by Bourgain [6], who extended the approach of
Craig–Wayne [17] via a multiscale inductive argument, proving the existence of quasi-
periodic solutions of 1-dimensional wave and Schrödinger equations with polynomial
nonlinearities. In order to get estimates of the Green functions, Bourgain imposed lower
bounds for the determinants of most “singular submatrices” along the diagonal. This im-
plies, by a repeated use of the “resolvent identity” (see [24], [10]), a subexponentially
fast decay of the Green functions. As a consequence, at the end of the iteration, the quasi-
periodic solutions are Gevrey regular.

At present, KAM theory for 1-dimensional semilinear PDEs is fairly well understood
(see e.g. [29], [30], [16]), but much work remains to be done for PDEs in higher space
dimensions, due to the more complex properties of the eigenfunctions and eigenvalues of

(−1+ V (x))ψj (x) = µjψj (x).

The main difficulties for PDEs in higher dimensions are:

1. The eigenvalues µj appear in clusters of unbounded sizes.
2. The eigenfunctions ψj (x) are (in general) “not localized” with respect to the exponen-

tials.
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Problem 2 has often been bypassed by considering pseudo-differential PDEs, substituting
the multiplicative potential V (x) by a “convolution potential”

V ∗ (eij ·x) = mj e
ij ·x, mj ∈ R, j ∈ Zd ,

which, by definition, is diagonal on the exponentials. The scalars mj are called Fourier
multipliers.

Concerning problem 1, since the approach of Craig–Wayne and Bourgain requires
only the first order Melnikov nonresonance conditions, it works well, in principle, in the
case of multiple eigenvalues, in particular for PDEs in higher spatial dimensions.

Actually the first existence results for periodic solutions of NLW and NLS on Td ,
d ≥ 2, have been established by Bourgain in [7]–[10]. Here the singular sites form huge
clusters (not only points as in d = 1) but are still “separated at infinity”. The nonlinearities
are polynomial and the solutions have Gevrey regularity in space and time.

Recently these results were extended in [2]–[5] to prove the existence of periodic
solutions, with only Sobolev regularity, for NLS and NLW in any dimension and with
finitely differentiable nonlinearities. Actually in [4], [5] the PDEs are defined not only
on tori, but on any compact Zoll manifold, Lie group or homogeneous space. These re-
sults are proved via an abstract Nash–Moser implicit function theorem (a simple Newton
method is not sufficient). Clearly, a difficulty when working with functions having only
Sobolev regularity is that the Green functions will exhibit only a polynomial decay off
the diagonal, and not exponential (or subexponential). A key concept one must exploit is
the interpolation/tame estimates. For PDEs on Lie groups only weak properties of “lo-
calization” (ii) of the eigenfunctions hold (see [5]). Nevertheless these properties imply
block diagonal decay for the matrix which represents the multiplication operator in the
eigenfunctions basis, sufficient to achieve the tame estimates.

We also mention that existence of periodic solutions for NLS on Td has been proved,
for analytic nonlinearities, by Gentile–Procesi [26] via Lindstedt series techniques, and,
in the differentiable case, by Delort [18] using paradifferential calculus.

Regarding quasi-periodic solutions, Bourgain [10] was the first to prove their exis-
tence for PDEs in higher dimensions, actually for nonlinear Schrödinger equations with
Fourier multipliers and polynomial nonlinearities on Td with d = 2. The Fourier multi-
pliers, in number equal to the tangential frequencies of the quasi-periodic solution, play
the role of external parameters. The main difficulty arises in the multiscale argument to
estimate the decay of the Green functions. Due to the degeneracy of the eigenvalues of
the Laplacian, the singular submatrices that one has to control are huge. If d = 2, careful
estimates on the number of integer vectors on a sphere allowed anyway Bourgain to show
that the required nonresonance conditions are fulfilled for “most” Fourier multipliers.

More recently Bourgain [13] improved the techniques of [10] by proving the ex-
istence of quasi-periodic solutions for nonlinear wave and Schrödinger equations with
Fourier multipliers on any Td , d > 2, still for polynomial nonlinearities. The improve-
ment in [13] comes from the use of sophisticated techniques developed in the context of
Anderson localization theory in Bourgain–Goldstein–Schlag [14] and Bourgain [11] (see
also Bourgain–Wang [15]). These techniques (subharmonic functions, Cartan theorem,
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semialgebraic sets) mainly concern fine properties of rational and analytic functions, es-
pecially measure estimates of sublevels. Actually the nonlinearities in [13] are taken to
be polynomials in order to admit semialgebraic techniques. Very recently, Wang [37] has
generalized the results in [13] to NLS with no Fourier multipliers and with supercriti-
cal nonlinearities. The main step is a Lyapunov–Schmidt reduction in order to introduce
parameters and then be able to apply the results of [13].

We also remark that, in the last years, the KAM approach has been extended by
Eliasson–Kuksin [21] to nonlinear Schrödinger equations on Td with a convolution po-
tential and analytic nonlinearities. The potential plays the role of “external parameters”.
The quasi-periodic solutions areC∞ in space. Clearly an advantage of the KAM approach
is to provide also a stability result: the linearized equations on the perturbed invariant tori
are reducible to constant coefficients (see also [22]).

For the cubic NLS in d = 2 the existence of quasi-periodic solutions has been recently
proved by Geng–Xu–You [25] via a Birkhoff normal form and a modification of the KAM
approach in [21] (see also Procesi–Procesi [36]), valid in any dimension.

In the present paper we prove (Theorem 1.1) the existence of quasi-periodic solutions
for nonlinear Schrödinger equations on Td , d ≥ 1, with:

1. finitely differentiable nonlinearities (see (1.2)),
2. a multiplicative (finitely differentiable) potential V (x) (see (1.3)),
3. a pre-assigned (diophantine) direction of the tangential frequencies (see (1.4)–(1.5)).

The quasi-periodic solutions in Theorem 1.1 have the same Sobolev regularity both in
time and space (Remark 5.3). Moreover, we prove that, if the potential and the nonlinear-
ity are of class C∞, then the quasi-periodic solutions are C∞ functions of (t, x).

Let us make some comments on the results.
1. Theorem 1.1 confirms the natural conjecture about the persistence of quasi-periodic

solutions for Hamiltonian PDEs into a setting of finitely many derivatives (as in the clas-
sical KAM theory [33], [34], [39]), stated for example by Bourgain [9, p. 97]. The nonlin-
earities in Theorem 1.1, as well as the potential, are sufficiently many times differentiable,
depending on the dimension and the number of the frequencies. Of course we cannot ex-
pect the existence of quasi-periodic solutions of the Schrödinger equation under too weak
regularity assumptions on the nonlinearities. Actually, for finite-dimensional Hamiltonian
systems, it has been rigorously proved that, if the vector field is not sufficiently smooth,
then all the invariant tori could be destroyed and only discontinuous Aubry–Mather in-
variant sets survive (see e.g. [27]). We have not tried to estimate the minimal smoothness
exponents (see however Remark 1.2). This could be interesting for comparing Theorem
1.1 with the well posedness results for the Cauchy problem.

2. Theorem 1.1 is the first existence result of quasi-periodic solutions with a multi-
plicative potential V (x) on Td , d ≥ 2. We never exploit properties of “localizations” of
the eigenfunctions of −1+ V (x) with respect to the exponentials, which actually might
not be true (see [23]). Along the multiscale analysis we use the exponential basis which
diagonalizes −1 + m where m is the average of V (x) (see (2.5)), and not the eigen-
functions of −1 + V (x). In [10] Bourgain considered analytic multiplicative periodic
potentials of the special form V1(x1) + · · · + Vd(xd) to ensure localization properties of
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the eigenfunctions, leaving open the natural problem for a general multiplicative poten-
tial V (x).

We also underline that Theorem 1.1 holds for any fixed potential V (x): we do not
extract parameters from V , the role of external parameters being played by the frequency
ω = λω̄.

3. For finite-dimensional systems, the existence of quasi-periodic solutions with tan-
gential frequencies constrained along a fixed direction has been proved by Eliasson [19]
(with KAM theory) and Bourgain [8] (with a multiscale approach). The main difficulty
clearly lies in satisfying the Melnikov nonresonance conditions, required at each step of
the iterative process, using only one parameter. Bourgain [8] raised the question if a sim-
ilar result holds true also for infinite-dimensional Hamiltonian systems. This has been
recently proved in [1] for 1-dimensional PDEs satisfying the second order Melnikov non-
resonance conditions of KAM theory. Theorem 1.1 (and its method of proof) answers
positively Bourgain’s conjecture also for PDEs in higher space dimension. The nonreso-
nance conditions that we have to fulfill are of first order Melnikov type (see the end of
Section 1.2).

The proof of Theorem 1.1 is based on a Nash–Moser iterative scheme and a multiscale
analysis of the linearized operators as in [13]. However, our approach presents many
differences with respect to Bourgain’s [13], as regards:

1. the iterative scheme,
2. the multiscale proof of the Green functions polynomial decay estimates.

Referring to Section 1.2 for a detailed exposition of our approach, we outline here the
main differences.

1. Since we deal with finitely differentiable nonlinearities we need all the power of
the Nash–Moser theory in scales of Sobolev function spaces. A Newton method valid in
analytic Banach scales is not sufficient. This means that the superexponential smallness of
the error terms due to finite-dimensional truncations (see (7.60)), cannot be obtained, in
Sobolev scales, by decreasing the analyticity strips, but using the structure of the iteration
and the interpolation estimates of the Green functions (see Lemmas 7.8, 7.9, 7.12). This
is a key idea when dealing with matrices with a merely polynomial off-diagonal decay.

Actually, the Nash–Moser scheme developed in Section 7 also improves the one in
[2]–[4], requiring the minimal tame properties (7.62) for the inverse linearized operators
(see comments after (1.14)).

Another comment is in order: we do not follow the “analytic smoothing technique”
suggested by Moser in [33] of approximating the differentiable Hamiltonian PDE by an-
alytic ones. This technique is very efficient for finite-dimensional Hamiltonian systems
(see [34], [39]), but it seems quite delicate for PDEs (especially in dimensions d ≥ 2)
because of the presence of large clusters of small divisors. So we prefer a more direct
Nash–Moser iterative procedure more similar, in spirit, to [32].

2. The main difference between our multiscale approach, which is developed to prove
the Green function estimates (7.62), and the one in [13], [14], [11], [15], concerns the



234 Massimiliano Berti, Philippe Bolle

way we prove inductively the existence of “large sets” of Nn-good parameters (see Def-
inition 5.2). Quoting Bourgain [12]: “. . . the results in [13] make essential use of the
general perturbative technology (based on subharmonicity and semi-algebraic set the-
ory) [. . . ]. This technique enables us to deal with large sets of ‘singular sites’ [. . . ], some-
thing difficult to achieve with conventional eigenvalue methods.” Actually, exploiting that
−1+V (x) is positive definite, we are able to prove the necessary measure and “complex-
ity” estimates by using only elementary eigenvalue variation arguments (see Section 6).

Another deep difference is required for dealing with a multiplicative potential V (x):
we define “very regular” sites (see Definition 4.2) depending on the potential V .

We hope that this novel approach will be useful also for extending the results of [11],
[13], [14], [15].

We tried to present the steps of proof in an abstract setting (as much as possible)
in order to develop a systematic procedure, alternative to KAM theory, for the search of
quasi-periodic solutions of PDEs. The proof of Theorem 1.1 is completely self-contained.
All the techniques employed are elementary and based on abstract arguments valid for
many PDEs. Only the “separation properties” of the bad sites (Section 5) will change, of
course, for different PDEs.

Since the aim of the present paper is to focus on the small divisors problem for quasi-
periodic solutions with Sobolev regularity of NLS with a multiplicative potential on Td
and differentiable nonlinearities, we have considered, among many possible variations,
quasi-periodically forced nonlinear perturbations of linear Schrödinger equations. In this
way, we avoid the Lyapunov–Schmidt decomposition. Clearly the small divisors difficulty
for quasi-periodically forced NLS is the same as for autonomous NLS.

We now state precisely our results.

1.1. Main result

We consider d-dimensional nonlinear Schrödinger equations with a potential V , like

iut −1u+ V (x)u = εf (ωt, x, |u|2)u+ εg(ωt, x), x ∈ Td , (1.1)

where V ∈ Cq(Td;R) for some q large enough, ε > 0 is a small parameter, the frequency
vector ω ∈ Rν is nonresonant (see (1.5)), the nonlinearity is quasi-periodic in time and
only finitely many times differentiable, more precisely

f ∈ Cq(Tν × Td × R;R), g ∈ Cq(Tν × Td;C) (1.2)

for some q ∈ N large enough. Moreover we suppose

−1+ V (x) ≥ β0I, β0 > 0. (1.3)

Remark 1.1. Condition (1.3) is used for the measure estimates of Section 6. Actually for
autonomous NLS it can be always verified after a gauge transformation u 7→ e−iσ tu for
σ large enough.
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We assume that the frequency vector ω is a small dilatation of a fixed diophantine
vector ω̄ ∈ Rν , namely

ω = λω̄, λ ∈ 3 := [1/2, 3/2], |ω̄| ≤ 1, (1.4)

where, for some γ0 ∈ (0, 1) and τ0 > ν − 1,

|ω̄ · l| ≥ 2γ0/|l|
τ0 , ∀l ∈ Zν \ {0}, (1.5)

and |l| := max{|l1|, . . . , |lν |}. For definiteness we fix τ0 := ν.
If g(ωt, x) 6≡ 0 then u = 0 is not a solution of (1.1) for ε 6= 0.

• Question: do there exist quasi-periodic solutions of (1.1) for sets of parameters (ε, λ)
of positive measure?

This means looking for (2π)ν+d -periodic solutions u(ϕ, x) of

iω · ∂ϕu−1u+ V (x)u = εf (ϕ, x, |u|2)u+ εg(ϕ, x). (1.6)

These solutions will be, for some (ν + d)/2 < s ≤ q, in the Sobolev space

H s
:= H s(Tν × Td;C) :=

{
u(ϕ, x) =

∑
(l,j)∈Zν×Zd

ul,j e
i(l·ϕ+j ·x)

such that ‖u‖2s := K0
∑
i∈Zν+d

|ui |
2
〈i〉2s <∞

}
, (1.7)

where
i := (l, j), 〈i〉 := max(|l|, |j |, 1), |j | := max{|j1|, . . . , |jd |}.

In what follows, we fix s0 > (d + ν)/2 so that there is a continuous embedding

H s(Tν+d) ↪→ L∞(Tν+d), ∀s ≥ s0, (1.8)

and H s is a Banach algebra with respect to multiplication of functions. The constant
K0 > 0 in the definition (1.7) of the Sobolev norm ‖ ‖s is independent of s. The value of
K0 is fixed (large enough) so that |u|L∞ ≤ ‖u‖s0 , and the interpolation inequality

‖u1u2‖s ≤
1
2
‖u1‖s0‖u2‖s +

C(s)

2
‖u1‖s‖u2‖s0 , ∀s ≥ s0, u1, u2 ∈ H

s, (1.9)

holds with C(s) ≥ 1 and C(s) = 1 for s ∈ [s0, s1]; the constant s1 is defined in (7.16) and
depends only on d, ν, τ0 := ν. With respect to the standard Moser–Nirenberg interpola-
tion estimate in Sobolev spaces (see e.g. [31]), the additional property in (1.9) is that one
of the constants is independent of s. The proof of (1.9) is given for example in Appendix
of [4] (see also [31]).
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The main result of this paper is:

Theorem 1.1. Assume (1.5). There are s := s(d, ν) and q := q(d, ν) ∈ N such that for
all V ∈ Cq satisfying (1.3) and all f, g ∈ Cq , there exist ε0 > 0, a map

u ∈ C1([0, ε0] ×3;H
s) with u(0, λ) = 0,

and a Cantor-like set C∞ ⊂ [0, ε0] ×3 of asymptotically full Lebesgue measure, i.e.

|C∞|/ε0 → 1 as ε0 → 0, (1.10)

such that, for all (ε, λ) ∈ C∞, u(ε, λ) is a solution of (1.6) with ω = λω̄. Moreover, if
V, f, g are of class C∞ then u(ε, λ) ∈ C∞(Td × Tν;C).

We have not tried to optimize the estimates for q := q(d, ν) and s := s(d, ν).

Remark 1.2. In [2] we proved the existence of periodic solutions in H s
t (T;H 1

x (Td))
with s > 1/2, for one-dimensional NLW equations with nonlinearities of class C6 (see
the bounds (1.9), (4.28) in [2]).

1.2. Ideas of the proof

Vector NLS. We prove Theorem 1.1 by finding solutions of the “vector” NLS equation{
iω · ∂ϕu+ −1u+ + V (x)u+ = εf (ϕ, x, u−u+)u+ + εg(ϕ, x),
−iω · ∂ϕu− −1u− + V (x)u− = εf (ϕ, x, u−u+)u− + εḡ(ϕ, x),

(1.11)

where1

u := (u+, u−) ∈ Hs
:= H s

×H s (1.12)

(the second equation is obtained by formal complex conjugation of the first one). In the
system (1.11) the variables u+, u− are independent. However, note that (1.11) reduces to
the scalar NLS equation (1.1) in the set

U := {u := (u+, u−) : u+ = u−} (1.13)

in which u− is the complex conjugate of u+ (and vice versa).

Linearized equations. We look for solutions of the vector NLS equation (1.11) in Hs
∩U

by a Nash–Moser iterative scheme. The main step concerns the invertibility of (any finite-
dimensional restriction of) the linearized operators at any u ∈ Hs

∩ U , namely

L(u) := Lω − εT1 = Dω + T

described in (2.1)–(2.8), with suitable estimates of the inverse in high Sobolev norm.

1 In order to give a meaning to (1.11) we need to define a smooth extension of f (ϕ, x, ·) to C,
although f (ϕ, x, ·) was not assumed real analytic. Since we look for solutions satisfying u+ = u−
we only need to linearize (1.11) at u ∈ U , and we require that the differential of (the extended)
f (ϕ, x, ·) at any s ∈ R is C-linear. For instance we can choose, for z ∈ C \ R,

f (ϕ, x, z) := (1− i)f (ϕ, x,Re(z))+ if (ϕ, x,Re(z)+ Im(z)).
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An advantage of the vector NLS formulation, with respect to the scalar NLS equation
(1.6), is that the operators L(u) are C-linear and self-adjoint. This is convenient for prov-
ing the measure estimates via eigenvalue variation arguments. Moreover the matrix T is
Toeplitz (see (2.13)), and its entries on the lines parallel to the diagonal decay to zero at a
polynomial rate.

Matrices with off-diagonal decay. In Section 3 we develop an abstract setting for dealing
with matrices with polynomial off-diagonal decay. In Definition 3.2 we introduce the s-
norm of a matrix and we prove the algebra and interpolation properties (3.16), (3.15). The
s-norms are intended to mimic the behavior of matrices representing the multiplication
operator by a function ofH s . This intrinsic setting is very convenient (in particular for the
multiscale Proposition 4.1) to estimate the decay of inverse matrices via Neumann series,
because products, and then powers, of matrices with finite s-norm will exhibit the same
off-diagonal decay.

Improved Nash–Moser iteration. We construct inductively better and better approximate
solutions un of the NLS equation (1.11) by a Nash–Moser iterative scheme (see the “trun-
cated” equations (Pn) in Theorem 7.1). The un ∈ Hn (see (7.1)) are trigonometric poly-
nomials with a superexponential number Nn of harmonics (see (7.2)).

At each step we impose that, for “most” parameters (ε, λ) ∈ [0, ε0) × [1/2, 3/2],
the eigenvalues of the restricted linearized operators Ln := PnL(un)|Hn are in modulus
bounded from below by O(N−τn ) (see Lemma 6.7). The proof exploits that −1 + V
is positive definite (see (1.3) and Remark 1.1). Then the L2-norm of the inverse satis-
fies ‖L−1

n ‖0 = O(N
τ
n ). By Lemma 3.6 this implies that the s-norm (see Definition 3.2)

satisfies
||L−1
n ||s ≤ N

s+d+ν
n ‖L−1

n ‖0 = O(N
s+d+ν+τ
n ), ∀s > 0.

Such an estimate is not sufficient for the convergence of the Nash–Moser scheme. We
need sharper estimates for the Green functions (sublinear decay), of the form

||L−1
n ||s = O(N

τ ′+δs
n ), δ ∈ (0, 1), τ ′ > 0, ∀s > 0, (1.14)

which imply an off-diagonal decay of the inverse matrix coefficients like

|(L−1
n )ii′ | ≤ C

N τ ′+δs
n

〈i − i′〉s
, |i|, |i′| ≤ Nn

(see (3.10)). Actually the conditions (1.14) are optimal for the convergence of the Nash–
Moser iterative scheme, as a famous counter-example of Łojasiewicz–Zehnder [32]
shows: if δ = 1 the scheme does not converge. By Lemma 3.5 the bound (1.14) implies
the interpolation estimate in Sobolev norms

‖L−1
n h‖s ≤ C(s)(N

τ ′+δs
n ‖h‖s1 +N

τ ′+δs1
n ‖h‖s), ∀s ≥ s1,

which is sufficient for the Nash–Moser convergence. Note that the exponent τ ′ + δs in
(1.14) grows with s, unlike the usual Nash–Moser theory (see e.g. [39], where the “tame”
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exponents are s-independent). Actually it is easier to prove these weaker tame estimates
(see, in particular, Step II of Lemma 4.3).

In order to prove (1.14) we have to exploit (mild) “separation properties” of the small
divisors: several eigenvalues of Ln are actually much larger (in modulus) than N−τn .

Estimates of Green functions. The core of the paper is to establish the Green function
estimates (1.14) at each step of the iteration (see Lemma 7.7). These follow by an induc-
tive application of the multiscale Proposition 4.1, once the “separation property” (H3) is
verified (see Lemma 7.5).

The “separation properties” of the Nn-bad and singular sites are obtained in Proposi-
tion 5.1 for all the parameters (ε, λ) which are Nn-good (see Definition 5.2 and assump-
tion (i)). We first use the covariance property (2.20) and the “complexity” information
(5.3) on the set BN (j0; ε, λ) in (5.2) (the set of “bad” θ ) to bound the number of “bad”
time Fourier components (see Lemma 5.1; this idea goes back to [20]). Next we also use
the information that the sites are “singular” to bound the length of a “chain” of Nn-bad
and singular sites (with ideas similar to [13]; see Lemma 5.2).

In order to conclude the inductive proof we have to verify that “most” parameters
(ε, λ) are Nn-good. For this, we do not invoke subharmonic function theory or the Cartan
theorem as in [13], [14], [11].

Measure and “complexity” estimates. Using Proposition 6.1 we prove first that most pa-
rameters (ε, λ) are Nn-good in a weak sense. The proof of Proposition 6.1 is based on
simple eigenvalue variation arguments and Fubini theorem. The main novelty is to use
that −1+ V (x) is positive definite (see (1.3) and Remark 1.1), and to perform the mea-
sure estimates in the new set of variables (6.19). In this way we prove that for “most”
parameters (ε, λ) the set B0

N (j0; ε, λ) in (6.1) (of “strongly” bad θ ) has a small measure.
This fact and the Lipschitz dependence of the eigenvalues on parameters imply also the
complexity bound (6.3) (see Lemma 6.3). Finally, using again the multiscale Proposi-
tion 4.1 and the separation Proposition 5.1 we conclude inductively that most of these
parameters (ε, λ) are actually Nn-good (in the strong sense) (see Lemma 7.6).

Definition of regular sites. In order to deal with a multiplicative potential the key idea is
to define “very regular” sites, i.e. in Definition 4.2 the constant2 will be taken large with
respect to the potential V , so that the diagonal terms (2.21) also dominate the off-diagonal
part V0(x) of the potential (see Lemma 4.1). Taking a large value for the constant 2 does
not affect the qualitative properties of the chains of singular sites proved in Lemma 5.2.
Then we achieve in Section 5 the separation properties for the clusters of small divisors,
and the multiscale Proposition 4.1 applies. We also refer to Lemmas 7.3 and 7.4 for a
similar construction at the initial step of the iteration.

Melnikov nonresonance conditions. An advantage of the Nash–Moser iterative scheme
is to require weaker nonresonance conditions than in the KAM approach. For clarity we
collect all the nonresonance conditions that we make along the paper below:

• ω = λω̄ is diophantine (see (1.5), (5.6)). This is used only in Lemma 5.1 to get separa-
tion properties of the bad sites in the time Fourier components.
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• ω = λω̄ satisfies the nonresonance condition (7.19) of first order Melnikov type. Phys-
ically, this assumption means that the forcing frequencies ω do not enter in resonance
with the first N0 normal mode frequencies of the linearized Schrödinger equation at
the origin. This is used for the initialization of the Nash–Moser scheme (see SubSec-
tion 7.1).
• (λω̄, ε) satisfy the “first order Melnikov” nonresonance conditions at each step of the

Nash–Moser iteration: the eigenvalues of ANn(λω̄, ε) have to be ≥ 2N−τn (see also
Lemma 6.7).
• We also verify that most frequencies are N -good (see Definition 5.2) imposing condi-

tions on the eigenvalues of the matrices AN,j0(λω̄, ε, θ) as in Lemma 6.6. These re-
quirements can then be seen as other “first order Melnikov” nonresonance conditions.

Sobolev regularities. Along the proof we make use of three different Sobolev regularity
thresholds s0 < s1 < S. The scale s0 > (d + ν)/2 is simply required to establish the
algebra and interpolation estimates (see e.g. (1.9)). The Sobolev index s1 is large enough
to have a sufficiently strong decay when proving the multiscale Proposition 4.1 (see (4.5)).
Finally the Sobolev regularity S is large enough (see (7.16)) to prove the convergence of
the Nash–Moser iterative scheme in Section 7.

2. The linearized equation

We look for solutions of the vector NLS equation (1.11) in Hs
∩ U (see (1.13)) by using

a Nash–Moser iterative scheme. The main step concerns the invertibility of (any finite-
dimensional restriction of) the family of linearized operators

L(u) := L(ω, ε,u) := Lω − εT1 (2.1)

acting on Hs , where u = (u+, u−) ∈ C1([0, ε0] ×3;Hs
∩ U),

Lω :=

(
iω · ∂ϕ −1+ V (x) 0

0 −iω · ∂ϕ −1+ V (x)

)
(2.2)

and

T1 :=

(
p(ϕ, x) q(ϕ, x)

q̄(ϕ, x) p(ϕ, x)

)
(2.3)

with

p(ϕ, x) := f (ϕ, x, |u+|2)+ f ′(ϕ, x, |u+|2)|u+|2, q(ϕ, x) := f ′(ϕ, x, |u+|2)(u+)2.

(2.4)

Above, f ′ denotes the derivative of f (ϕ, x, s) with respect to s. The functions p, q de-
pend also on ε, λ through u. Note that u+u− = |u+|2 ∈ R since u ∈ U (see (1.13)).

Decomposing the multiplicative potential as

V (x) = m+ V0(x) (2.5)
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where m is the average of V (x) and V0(x) has zero mean value, we also write

Lω = Dω + T2 (2.6)

where Dω is the constant coefficient differential operator

Dω :=

(
iω · ∂ϕ −1+m 0

0 −iω · ∂ϕ −1+m

)
and T2 :=

(
V0(x) 0

0 V0(x)

)
.

(2.7)
Hence the operator L(u) in (2.1) can also be written as

L(u) = Dω + T , T := T2 − εT1. (2.8)

Lemma 2.1. L(u) is symmetric in H0, i.e. (L(u)h, k)L2 = (h,L(u)k)L2 for all h, k in
the domain of L(u).

Proof. The operatorLω is symmetric with respect to theL2-scalar product in H0, because
each ±iω · ∂ϕ − 1 + V (x) is symmetric in H 0(Tν × Td;C). Moreover T2, T1 are self-
adjoint in H0 because V (x) and p(ϕ, x) are real valued, as |u+|2 ∈ R and f is real by
(1.2) (see [5]). ut

The Fourier basis diagonalizes the differential operator Dω. In what follows we some-
times identify an operator with the associated (infinite-dimensional) matrix in the Fourier
basis. The operator L(ω, ε,u) is represented by the infinite-dimensional Hermitian matrix

A(ω) := A(ω, ε,u) := Dω + T , (2.9)

where

Dω := diagi∈Zb
(
−ω · l + ‖j‖2 +m 0

0 ω · l + ‖j‖2 +m

)
, (2.10)

i := (l, j) ∈ Zb := Zν × Zd , ‖j‖2 := j2
1 + · · · + j

2
d , (2.11)

T := (T i
′

i )i∈Zb,i′∈Zb , T
i′

i := −ε(T1)
i′

i + (T2)
i′

i , (2.12)

(T1)
i′

i =

(
pi−i′ qi−i′

(q)i−i′ pi−i′

)
, (T2)

i′

i =

(
(V0)j−j ′ 0

0 (V0)j−j ′

)
, (2.13)

where pi, qi, (V0)j denote the Fourier coefficients of p(ϕ, x), q(ϕ, x), V0(x).
Note that (T i

′

i )
†
= T i

i′
(where † denotes the conjugate transpose) because qi−i′ =

qi′−i and pi = p−i , since p is real valued. The matrix T is Toeplitz, that is, T i
′

i depends
only on i − i′. Moreover, since the functions p, q in (2.4), as well as the potential V , are
in H s , we have T i

′

i → 0 as |i − i′| → ∞ at a polynomial rate. In the next section we
introduce precise norms to measure such off-diagonal decay.

Moreover we shall introduce a further index a ∈ {0, 1} to distinguish the two eigen-
values±ω · l+‖j‖2+m (see (2.21)) and the four elements of each of these 2×2 matrices
(see Definition 3.1 and (3.2)).
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We introduce the one-parameter family of infinite-dimensional matrices

A(ω, θ) := A(ω)+ θY := Dω + T + θ Y (2.14)

where

Y := diagi∈Zb
(
−1 0
0 1

)
. (2.15)

The reason for adding θY is that, translating the time Fourier indices

(l, j) 7→ (l + l0, j)

inA(ω) givesA(ω, θ)with θ = ω · l0 (see (2.20)): the matrix T remains unchanged under
translation because it is Toeplitz.

Remark 2.1. The covariance property (2.20) will be exploited in Section 5 to prove the
“separation properties” of “singular sites”.

We shall study properties of the linearized systems A(ω, ε,u)v = h in Sections 3–6.
To apply the results of these sections to the Nash–Moser scheme of Section 7, we have to
keep in mind that u itself depends on the parameters (ω, ε) (in aC1 way, with some bound
on ‖u‖s1 + ‖∂(ω,ε)u‖s1 ). Therefore the framework of Sections 3–6 will be the following:
we study parametrized families of (infinite-dimensional) matrices

A(ε, λ, θ) = D(λ)+ T (ε, λ)+ θY, (2.16)

where D(λ) is defined by (2.10) with ω = λω̄, and T is a Toeplitz matrix such that
||T ||s1 + ||∂(λ,ε)T ||s1 ≤ C (C depending on V ).

The main goal of the following sections is to prove polynomial off-diagonal decay for
the inverse of the 2(2N + 1)b-dimensional submatrices of A(ε, λ, θ) centered at (l0, j0),
denoted by

AN,l0,j0(ε, λ, θ) := A|l−l0|≤N,|j−j0|≤N (ε, λ, θ), (2.17)

where

|l| := max{|l1|, . . . , |lν |}, |j | := max{|j1|, . . . , |jd |}, |j | ≤ ‖j‖ ≤
√
d |j |. (2.18)

If l0 = 0 we use the simpler notation

AN,j0(ε, λ, θ) := AN,0,j0(ε, λ, θ). (2.19)

If also j0 = 0, we simply write

AN (ε, λ, θ) := AN,0(ε, λ, θ),

and for θ = 0 we denote

AN,j0(ε, λ) := AN,j0(ε, λ, 0).
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We have the following crucial covariance property:

AN,l1,j1(ε, λ, θ) = AN,j1(ε, λ, θ + λω̄ · l1), (2.20)

which will be exploited in Lemma 5.1.
A major role is played by the eigenvalues of D(λ)+ θY ,

d±i := d
±

i (λ, θ) := ±λω̄ · l + ‖j‖
2
+m± θ.

In order to distinguish between the ± sites we introduce an index a ∈ {0, 1} and we
denote

di,a(λ, θ) =

{
λω̄ · l + ‖j‖2 +m+ θ if a = 0,
−λω̄ · l + ‖j‖2 +m− θ if a = 1.

(2.21)

3. Matrices with off-diagonal decay

Let us consider the basis of the vector space Hs
:= H s

×H s consisting of

ei,0 := (e
i(l·ϕ+j ·x), 0), ei,1 := (0, ei(l·ϕ+j ·x)), i := (l, j) ∈ Zb := Zν×Zd . (3.1)

Then we write any u = (u+, u−) ∈ H s
×H s as

u =
∑

k∈Zb×{0,1}
ukek, k := (i, a) ∈ Zb × {0, 1},

where ul,j,0 := u+l,j , resp. ul,j,1 := u−l,j , denote the Fourier indices of u+, resp. u− (see
(1.7)).

For B ⊂ Zb × {0, 1}, we introduce the subspace

Hs
B := {u ∈ H

s
×H s

: uk = 0 if k /∈ B}.

When B is finite, the space Hs
B does not depend on s and will be denoted HB . We denote

by 5B : Hs
→ HB the L2-orthogonal projector onto HB .

In what follows B,C,D,E are finite subsets of Zb × {0, 1}.
We identify the space LBC of linear maps L : HB → HC with the space of matrices

MB
C := {M = (M

k′

k )k′∈B,k∈C : M
k′

k ∈ C}

according to the following usual definition.

Definition 3.1. The matrix M ∈MB
C represents the linear operator L ∈ LBC if

∀k′ = (i′, a′) ∈ B, k = (i, a) ∈ C, 5kLek′ = M
k′

k ek,

where ei,0, ei,1 are defined in (3.1) and Mk′

k ∈ C.
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For example, with the above notation, the matrix elements of the matrix (T1)
i′

i in
(2.13) are

(T1)
i′,0
i,0 = pi−i′ , (T1)

i′,1
i,0 = qi−i′ , (T1)

i′,0
i,1 = qi−i′ = qi′−i, (T1)

i′,1
i,1 = pi−i′ . (3.2)

Notation. For any subset B of Zb × {0, 1}, we denote by

B := projZb B (3.3)

the projection of B in Zb.
Given B ⊂ B ′, C ⊂ C′ ⊂ Zb × {0, 1} and M ∈MB ′

C′
we can introduce the restricted

matrices
MB
C := 5CM|HB

, MC := 5CM, MB
:= M|HB

. (3.4)

If D ⊂ projZb B
′, E ⊂ projZb C

′, then we define

MD
E := M

B
C where B := (D × {0, 1}) ∩ B ′, C := (E × {0, 1}) ∩ C′. (3.5)

In the particular case D = {i′}, E := {i}, i, i′ ∈ Zb, we use the simpler notations

Mi := M{i} (it is either a line or a group of two lines of M), (3.6)

M i′
:= M{i

′
} (it is either a column or a group of two columns of M), (3.7)

and
M i′

i := M
{i′}
{i} , (3.8)

which is anm×m′ complex matrix, wherem ∈ {1, 2} (resp.m′ ∈ {1, 2}) is the cardinality
of C (resp. of B) defined in (3.5) with E := {i} (resp. D = {i′}).

We endow the vector space of 2× 2 (resp. 2× 1, 1× 2, 1× 1) complex matrices with
a norm | | such that

|UW | ≤ |U | |W |,

whenever the dimensions of the matrices make their multiplication possible, and |U |≤|V |
if U is a submatrix of V .

Remark 3.1. The notations in (3.5), (3.6), (3.7), (3.8) may not be very specific, but this
is deliberate: it is convenient not to distinguish the index a ∈ {0, 1}, which is irrelevant in
the definition of the s-norms, in Definition 3.2.

We also consider the L2-operator norm

‖MB
C ‖0 := sup

h∈HB , h6=0

‖MB
C h‖0

‖h‖0
, (3.9)

where ‖ ‖0 := ‖ ‖L2 .
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Definition 3.2 (s-norm). The s-norm of a matrix M ∈MB
C is defined by

||M||2s := K0
∑
n∈Zb
[M(n)]2〈n〉2s (3.10)

where 〈n〉 := max(|n|, 1) ,

[M(n)] :=

 max
i−i′=n, i∈C, i′∈B

|M i′

i | if n ∈ C − B,

0 if n /∈ C − B,
(3.11)

with B := projZb B, C := projZb C (see (3.3)), and the constant K0 > 0 is introduced in
(1.7).

It is easy to check that || ||s is a norm on MB
C . It satisfies || ||s ≤ || ||s′ for s ≤ s′, and

∀M ∈MB
C, ∀B

′
⊆ B, C′ ⊆ C, ||MB ′

C′ ||s ≤ ||M||s .

The s-norm is designed to estimate the off-diagonal decay of matrices like T in (2.12)
with p, q, V ∈ H s .

Lemma 3.1. The matrices T1, T2 in (2.3), (2.7) with p, q, V ∈ H s , satisfy

||T1||s ≤ K‖(p, q)‖s, ||T2||s ≤ K‖V ‖s . (3.12)

Proof. By (3.11) and (2.13) we get

[T1(n)] := max
i−i′=n

∣∣∣∣(pi−i′ qi−i′

qi−i′ pi−i′

)∣∣∣∣ ≤ K(|pn| + |qn|).
Hence, the definition in (3.10) implies

||T1||
2
s = K0

∑
n∈Zb
[T1(n)]

2
〈n〉2s ≤ K1

∑
n∈Zb

(|pn| + |qn|)
2
〈n〉2s ≤ K2‖(p, q)‖

2
s .

The estimate for ||T2||s is similar. ut

In order to prove that matrices with finite s-norm satisfy the interpolation inequalities
(3.15), and then the algebra property (3.16), the guiding principle is the analogy between
these matrices and operators of the form (2.3), i.e. multiplication operators for functions.
We introduce the subset H+ of

⋂
s≥0H

s formed by the trigonometric polynomials with
positive Fourier coefficients,

H+ :=
{
h =

∑
hl,j e

i(l·ϕ+j ·x) with hl,j 6= 0

for a finite number of (l, j) only and hl,j ∈ R+
}
.

Note that the sum and the product of two functions in H+ remain in H+.
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Definition 3.3. Given M ∈ MB
C , h ∈ H+, we say that M is dominated by h, and we

write M ≺ h, if
[M(n)] ≤ hn, ∀n ∈ Zb, (3.13)

in other words, |M i′

i | ≤ hi−i′ for all i′ ∈ projZb B and i ∈ projZb C.

It is easy to check (B and C being finite) that

||M||s = min{‖h‖s : h ∈ H+, M ≺ h} and ∃h ∈ H+, ∀s ≥ 0, ||M||s = ‖h‖s . (3.14)

Lemma 3.2. For M1 ∈MC
D , M2 ∈MB

C , M3 ∈MC
D , we have

M1 ≺ h1, M2 ≺ h2, M3 ≺ h3 ⇒ M1 +M3 ≺ h1 + h3 and M1M2 ≺ h1h2.

Proof. The property M1 + M3 ≺ h1 + h3 is straightforward. For i ∈ projZb D and
i′ ∈ projZb B, we have

|(M1M2)
i′

i | =

∣∣∣ ∑
q∈C:=projZb C

(M1)
q
i (M2)

i′

q

∣∣∣ ≤∑
q∈C

|(M1)
q
i | |(M2)

i′

q | ≤

∑
q∈C

(h1)i−q(h2)q−i′

≤

∑
q∈Zb

(h1)i−q(h2)q−i′ = (h1h2)i−i′ ,

implying M1M2 ≺ h1h2 by Definition 3.3. ut

We immediately deduce from (1.9) and (3.14) the following interpolation estimates.

Lemma 3.3 (Interpolation). For all s ≥ s0 > (d + ν)/2 there is C(s) ≥ 1, with
C(s0) = 1, such that, for any finite subsets B,C,D ⊂ Zb × {0, 1}, and all M1 ∈ MC

D

and M2 ∈MB
C ,

||M1M2||s ≤ (1/2)||M1||s0 ||M2||s + (C(s)/2)||M1||s ||M2||s0 , (3.15)

in particular,
||M1M2||s ≤ C(s)||M1||s ||M2||s . (3.16)

Note that the constant C(s) in Lemma 3.3 is independent of B, C, D. By (3.16) with
s = s0, we get (recall that C(s0) = 1)

Lemma 3.4. For any finite subsets B,C,D ⊂ Zb × {0, 1}, and all M1 ∈ MC
D and

M2 ∈MB
C , we have

||M1M2||s0 ≤ ||M1||s0 ||M2||s0 , (3.17)

and for all M ∈MB
B and n ≥ 1,

||Mn
||s0 ≤ ||M||

n
s0

and ||Mn
||s ≤ C(s)||M||

n−1
s0
||M||s, ∀s ≥ s0. (3.18)

Proof. The second estimate in (3.18) is obtained from (3.15), using C(s) ≥ 1. ut
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The s-norm of a matrixM ∈MB
C also controls the SobolevH s-norm. Indeed, we identify

HB with the space M{0}
B of column matrices and the Sobolev norm ‖ ‖s is equal to the

s-norm || ||s , i.e.
∀w ∈ HB , ‖w‖s = ||w||s, ∀s ≥ 0. (3.19)

Then Mw ∈ HC and the next lemma is a particular case of Lemma 3.3.

Lemma 3.5 (Sobolev norm). For all s ≥ s0 there is C(s) ≥ 1 such that, for any finite
subsets B,C ⊂ Zb × {0, 1},

‖Mw‖s ≤ (1/2)||M||s0‖w‖s + (C(s)/2)||M||s‖w‖s0 , ∀M ∈MB
C, w ∈ HB . (3.20)

The following lemma is the analogue of the smoothing properties (7.4)–(7.5) of projection
operators.

Lemma 3.6 (Smoothing). Let M ∈MB
C . Then, for all s′ ≥ s ≥ 0,

M i′

i = 0, ∀|i − i′| < N ⇒ ||M||s ≤ N
−(s′−s)

||M||s′ , (3.21)

and for N ≥ N(K0),

M i′

i = 0, ∀|i − i′| > N ⇒

{
||M||s′ ≤ N

s′−s
||M||s,

||M||s ≤ N
s+b
‖M‖0.

(3.22)

Proof. Estimate (3.21) and the first bound of (3.22) follow from the definition of the
norms || ||s . The second bound of (3.22) follows from the first bound in (3.22), noting that
|M i′

i | ≤ ‖M‖0 for all i, i′:

||M||s ≤ N
s
||M||0 ≤ K

1/2
0 N s

√
(2N + 1)b ‖M‖0 ≤ N s+b

‖M‖0

for N ≥ N(K0). ut

In the next lemma we bound the s-norm of a matrix in terms of the (s + b)-norms of its
lines.

Lemma 3.7 (Decay along lines). Let M ∈MB
C . Then, for all s ≥ 0,

||M||s ≤ K1 max
i∈projZb C

||M{i}||s+b (3.23)

(we could replace the index b with any α > b/2).

Proof. For all i ∈ C := projZb C and i′ ∈ B := projZb B, and each s ≥ 0,

|M i′

i | ≤
||M{i}||s+b

〈i − i′〉s+b
≤

m(s + b)

〈i − i′〉s+b

where m(s + b) := maxi∈C ||M{i}||s+b. As a consequence ,

||M||s =
( ∑
n∈C−B

(M[n])2〈n〉2s
)1/2
≤ m(s + b)

( ∑
n∈Zb
〈n〉−2b

)1/2
= m(s + b)K(b),

implying (3.23). ut



Quasi-periodic solutions of NLS on Td 247

The L2-norm and s0-norm of a matrix are related:

Lemma 3.8. Let M ∈MC
B . Then, for s0 > (d + ν)/2,

‖M‖0 ≤ ||M||s0 . (3.24)

Proof. Let m ∈ H+ be such that M ≺ m and ||M||s = ‖m‖s for all s ≥ 0 (see (3.14)).
Also for H ∈M{0}

C , there is h ∈ H+ such that H ≺ h and ||H ||s = ‖h‖s , for all s ≥ 0.
Lemma 3.2 implies that MH ≺ mh and so

||MH ||0 ≤ ‖mh‖0 ≤ |m|L∞‖h‖0
(1.8)
≤ ‖m‖s0‖h‖0 = ||M||s0 ||H ||0, ∀H ∈M{0}

C .

Then (3.24) follows (recall (3.19)). ut

It will be convenient to use the notion of left invertible operators.

Definition 3.4 (Left inverse). A matrix M ∈ MB
C is left invertible if there exists N ∈

MC
B such that NM = IB . Then N is called a left inverse of M .

Note thatM is left invertible if and only ifM (considered as a linear map) is injective
(then dim HC ≥ dim HB ). The left inverses of M are not unique if dim HC > dim HB :
they are uniquely defined only on the range of M .

We shall often use the following perturbation lemma for left invertible operators. Note
that the bound (3.25) for the perturbation in s0-norm only, allows one to estimate the
inverse (3.28) also in s ≥ s0 norm.

Lemma 3.9 (Perturbation of left invertible matrices). If M ∈ MB
C has a left inverse

N ∈MC
B , then for all P ∈MB

C with

||N ||s0 ||P ||s0 ≤ 1/2, (3.25)

the matrix M + P has a left inverse NP that satisfies

||NP ||s0 ≤ 2||N ||s0 , (3.26)

and for all s ≥ s0,

||NP ||s ≤ (1+ C(s)||N ||s0 ||P ||s0)||N ||s + C(s)||N ||
2
s0
||P ||s (3.27)

≤ C(s)(||N ||s + ||N ||
2
s0
||P ||s). (3.28)

Moreover, for all P ∈MB
C with

‖N‖0‖P ‖0 ≤ 1/2, (3.29)

the matrix M + P has a left inverse NP that satisfies

‖NP ‖0 ≤ 2‖N‖0. (3.30)
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Proof. For simplicity we denote by C(s) any constant that depends on s only.

Step I. Proof of (3.26). The matrix NP = AN with A ∈MB
B is a left inverse ofM +P

if and only if
IB = AN(M + P) = A(IB +NP),

i.e. if and only if A is the inverse of IB + NP ∈MB
B . By (3.25), ||NP ||s0 ≤ 1/2, hence

the matrix IB +NP is invertible and

NP = AN = (IB +NP)
−1N =

∞∑
p=0

(−1)p(NP )pN (3.31)

is a left inverse of M + P . Estimate (3.26) is an immediate consequence of (3.31), (3.17)
and (3.25).

Step II. Proof of (3.27). For all s ≥ s0 we have

∀p ≥ 1, ||(NP )pN ||s
(3.15)
≤ C(s)||N ||s0 ||(NP )

p
||s + C(s)||N ||s ||(NP )

p
||s0

(3.18)
≤ C(s)||N ||s0 ||NP ||

p−1
s0 ||NP ||s + C(s)||N ||s ||NP ||

p
s0

(3.25),(3.15)
≤ C(s)2−p(||N ||s0 ||P ||s0 ||N ||s + ||N ||

2
s0
||P ||s). (3.32)

We derive (3.27) from

||NP ||s
(3.31)
≤ ||N ||s +

∞∑
p=1

||(NP )pN ||s
(3.32)
≤ ||N ||s + C(s)(||N ||s0 ||P ||s0 ||N ||s + ||N ||

2
s0
||P ||s).

Finally (3.30) follows from (3.29) as in Step I because the operator L2-norm (see (3.9))
has the algebra property as the s0-norm in (3.17). ut

4. The multiscale analysis: estimates of Green functions

The main result of this section is the multiscale Proposition 4.1. In the whole section
δ ∈ (0, 1) is fixed and τ ′ > 0,2 ≥ 1 are real parameters, on which we shall impose some
condition in Proposition 4.1.

Given �,�′ ⊂ E ⊂ Zb × {0, 1} we define

diam(E) := sup
k,k′∈E

|k − k′|, d(�,�′) := inf
k∈�, k′∈�′

|k − k′|,

where, for k = (i, a), k′ := (i′, a′) we set

|k − k′| := max{|i − i′|, |a − a′|}.
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Definition 4.1 (N -good/bad matrix). The matrix A ∈ ME
E with E ⊂ Zb × {0, 1} and

diam(E) ≤ 4N is N -good if A is invertible and

∀s ∈ [s0, s1], ||A−1
||s ≤ N

τ ′+δs . (4.1)

Otherwise A is N -bad.

We first define the regular and singular sites of a matrix.

Definition 4.2 (Regular/singular sites). The index k := (i, a) ∈ Zb × {0, 1} is regular
for A if |Akk| ≥ 2. Otherwise k is singular.

Now we need a more precise notion adapted to the induction process.

Definition 4.3 ((A,N)-good/bad site). For A ∈ME
E , we say that k ∈ E ⊂ Zb × {0, 1}

is

• (A,N)-regular if there is F ⊂ E such that diam(F ) ≤ 4N , d(k, E \ F) ≥ N and AFF
is N -good.
• (A,N)-good if it is regular forA or (A,N)-regular. Otherwise we say that k is (A,N)-

bad.

Let us consider the new larger scale

N ′ = Nχ (4.2)

with χ > 1.
For a matrix A ∈ME

E we define Diag(A) := (δkk′Ak
′

k )k,k′∈E .

Proposition 4.1 (Multiscale step). Assume

δ ∈ (0, 1/2), τ ′ > 2τ + b + 1, C1 ≥ 2, (4.3)

and, setting κ := τ ′ + b + s0,

χ(τ ′ − 2τ − b) > 3(κ + (s0 + b)C1), χδ > C1, (4.4)
S ≥ s1 > 3κ + χ(τ + b)+ C1s0. (4.5)

For any given ϒ > 0, there exist 2 := 2(ϒ, s1) > 0 large enough (appearing in
Definition 4.2) and N0(ϒ,2, S) ∈ N such that: for all N ≥ N0(ϒ,2, S) and E ⊂
Zb × {0, 1} with diam(E) ≤ 4N ′ = 4Nχ (see (4.2)), if A ∈ME

E satisfies

(H1) ||A− Diag(A)||s1 ≤ ϒ ,
(H2) ‖A−1

‖0 ≤ (N
′)τ ,

(H3) there is a partition of the (A,N)-bad sites, B =
⋃
α �α , with

diam(�α) ≤ NC1 , d(�α, �β) ≥ N2, ∀α 6= β, (4.6)

then A is N ′-good. More precisely

∀s ∈ [s0, S], ||A−1
||s ≤

1
4 (N

′)τ
′

((N ′)δs + ||A− Diag(A)||s). (4.7)
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The above proposition says, roughly, the following. If A has a sufficient off-diagonal
decay (assumption (H1) and (4.5)), and if the sites that cannot be inserted in good “small”
submatrices (of sizeO(N)) along the diagonal ofA are sufficiently separated (assumption
(H3)), then theL2-bound (H2) forA−1 implies that the “large” matrixA (of sizeN ′ = Nχ

with χ as in (4.4)) is good, and A−1 also satisfies the bounds (4.7) in s-norm for s > s1.
It is remarkable that the bounds for s > s1 follow only by information on the N -good
submatrices in s1-norm (see Definition 4.1) plus, of course, the s-decay of A.

According to (4.4) the exponent χ , which measures the new scale N ′ � N , is large
with respect to the size of the bad clusters�α , i.e. with respect to C1. The intuitive mean-
ing is that, for χ large enough, the “resonance effects” due to the bad clusters are “negli-
gible” at the new larger scale.

The constant 2 ≥ 1 which defines the regular sites (see Definition 4.2) must be large
enough with respect to ϒ , i.e. with respect to the off-diagonal part T := A − Diag(A)
(see (H1) and Lemma 4.1). In the application to matrices like A in (2.9) the constant ϒ is
proportional to ‖V ‖s1 + ε‖(p, q)‖s1 .

The exponent τ ≥ τ(b)will be taken large in order to satisfy condition (H2), imposing
lower bounds on the modulus of the eigenvalues of A. Note that χ in (4.4) can be taken
large independently of τ , by choosing, for example, τ ′ := 3τ + 2b (see Remark 7.2).

Finally, the Sobolev index s1 has to be large with respect to χ and τ , according to
(4.5). This is also natural: if the decay is sufficiently strong, then the “interaction” between
different clusters of N -bad sites is weak enough.

Remark 4.1. In (4.6) we have fixed the separation N2 between the bad clusters just for
definiteness: any separationNµ, µ > 0, would be sufficient. Of course, the smaller µ > 0
is, the larger the Sobolev exponent s1 has to be. See Remark 5.2 for other comments on
assumption (H3).

Remark 4.2. An advantage of the multiscale Proposition 4.1 with respect to analogous
lemmas in [13] (see for example [13, Lemma 14.31]) is to require only an L2-bound for
the inverse of A, and not for submatrices. For this we use the notion of left inverse matrix
in the proof.

The proof of Proposition 4.1 is divided into several lemmas. In each of them we shall
assume that the hypotheses of Proposition 4.1 are satisfied. We set

T := A− Diag(A), ||T ||s1
(H1)
≤ ϒ. (4.8)

Denote by G (resp. B) the set of (A,N)-good (resp. bad) sites. The partition E = B ∪G
induces the orthogonal decomposition HE = HB ⊕HG and we write

u = uB + uG where uB := 5Bu, uG := 5Gu.

The next Lemmas 4.1 and 4.2 say that the Cramer system Au = h can be nicely reduced
along the good sites G, giving rise to a (nonsquare) system A′uB = Zh, with a good
control of the s-norms of the matrices A′ and Z. Moreover A−1 is a left inverse of A′.
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Lemma 4.1 (Semi-reduction on the good sites). Let 2−1ϒ ≤ c0(s1) be small enough.
There exist M ∈ME

G and N ∈MB
G satisfying, if N ≥ N1(ϒ) is large enough,

||M||s0 ≤ cN
κ , ||N ||s0 ≤ c 2

−1ϒ, (4.9)

for some c := c(s1) > 0, and for all s ≥ s0,

||M||s ≤ C(s)N2κ(N s−s0 +N−b||T ||s+b), ||N ||s ≤ C(s)Nκ(N s−s0 +N−b||T ||s+b),
(4.10)

such that
Au = h ⇒ uG = NuB +Mh.

Moreover
uG = NuB +Mh ⇒ ∀k regular, (Au)k = hk. (4.11)

Proof. It is based on “resolvent identity” arguments as in [13]. The use of the s-norms
introduced in Section 3 makes the proof very neat.

Step I. There exist 0,L ∈ME
G satisfying

||0||s0 ≤ C0(s1)2
−1ϒ, ||L||s0 ≤ N

κ , (4.12)

and for all s ≥ s0,

||0||s ≤ C(s)N
κ(N s−s0 +N−b||T ||s+b), ||L||s ≤ C(s)N

κ+s−s0 , (4.13)

such that
Au = h ⇒ uG + 0u = Lh. (4.14)

Fix any k ∈ G (see Definition 4.3). If k is regular, let F := {k}, and, if k is not regular
but (A,N)-regular, let F ⊂ E be such that d(k, E \ F) ≥ N , diam(F ) ≤ 4N , and AFF is
N -good. We have

Au = h ⇒ AFFuF + A
E\F
F uE\F = hF ⇒ uF +QuE\F = (A

F
F )
−1hF (4.15)

where
Q := (AFF )

−1A
E\F
F = (AFF )

−1T E\F
F ∈ME\F

F . (4.16)

The matrix Q satisfies

||Q||s1
(3.16)
≤ C(s1)||(A

F
F )
−1
||s1 ||T ||s1

(4.1),(4.8)
≤ C(s1)N

τ ′+δs1ϒ (4.17)

(the matrix AFF is N -good). Moreover, for all s ≥ s0, using the interpolation Lemma 3.3,
and diam(F ) ≤ 4N ,

||Q||s+b
(3.15)
≤ C(s)(||(AFF )

−1
||s+b||T ||s0 + ||(A

F
F )
−1
||s0 ||T ||s+b)

(3.22)
≤ C(s)(N s+b−s0 ||(AFF )

−1
||s0 ||T ||s0 + ||(A

F
F )
−1
||s0 ||T ||s+b)

(4.1),(4.8)
≤ C(s)N (δ−1)s0(N s+b+τ ′ϒ +N τ ′+s0 ||T ||s+b). (4.18)
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Applying the projector 5{k} in (4.15), we obtain

Au = h ⇒ uk +
∑
k′∈E

0k
′

k uk′ =
∑
k′∈E

Lk
′

k hk′ , (4.19)

which is (4.14) with

0k
′

k :=

{
0 if k′ ∈ F,
Qk′

k if k′ ∈ E \ F,
and Lk

′

k :=

{
[(AFF )

−1
]
k′

k if k′ ∈ F,
0 if k′ ∈ E \ F.

(4.20)

If k is regular then F = {k}, and, by Definition 4.2,

|Akk| ≥ 2. (4.21)

Therefore, by (4.20) and (4.16), the k-line of 0 satisfies

||0k||s0+b ≤ ||(A
k
k)
−1Tk||s0+b

(4.21),(4.8)
≤ C(s0)2

−1ϒ. (4.22)

If k is not regular but (A,N)-regular, since d(k, E \ F) ≥ N we see, by (4.20), that
0k
′

k = 0 for |k − k′| ≤ N . Hence, by Lemma 3.6,

||0k||s0+b
(3.21)
≤ N−(s1−s0−b)||0k||s1

(4.20)
≤ N−(s1−s0−b)||Q||s1

(4.17)
≤ C(s1)ϒN

τ ′+s0+b−(1−δ)s1

≤ C(s1)2
−1ϒ (4.23)

for N ≥ N0(2) large enough. Indeed the exponent τ ′ + s0 + b − (1− δ)s1 < 0 because
s1 is large enough according to (4.5) and δ ∈ (0, 1/2) (recall κ := τ ′ + s0 + b). In both
cases (4.22)–(4.23) imply that each line 0k decays like

||0k||s0+b ≤ C(s1)2
−1ϒ, ∀k ∈ G.

Hence, by Lemma 3.7, ||0||s0 ≤ C
′(s1)2

−1ϒ , which is the first inequality in (4.12). Like-
wise we prove the second estimate in (4.12). Moreover, for all s ≥ s0, still by Lemma 3.7,

||0||s ≤ K sup
k∈G

||0k||s+b
(4.20)
≤ K||Q||s+b

(4.18)
≤ C(s)Nκ(N s−s0 +N−b||T ||s+b)

where κ := τ ′ + s0 + b and for N ≥ N0(ϒ).
The second estimate in (4.13) follows by ||L||s0 ≤ N

κ (see (4.12)) and (3.22) (note that
by (4.20), since diamF ≤ 4N , we have Lk

′

k = 0 for all |k − k′| > 4N ).

Step II. By (4.14) we have

Au = h ⇒ (IG + 0
G)uG = Lh− 0

BuB . (4.24)
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By (4.12), if 2 is large enough (depending on ϒ , namely on the potential V0), we have
||0G||s0 ≤ 1/2. Hence, by Lemma 3.9, IG + 0G is invertible and

||(IG + 0
G)−1
||s0

(3.26)
≤ 2, (4.25)

∀s ≥ s0, ||(IG + 0
G)−1
||s

(3.28)
≤ C(s)(1+ ||0G||s)

(4.13)
≤ C(s)Nκ(N s−s0 +N−b||T ||s+b). (4.26)

By (4.24), Au = h⇒ uG =Mh+NuB , with

M := (IG + 0G)−1L and N := −(IG + 0G)−10B (4.27)

and estimates (4.9)–(4.10) follow by Lemma 3.3, (4.25)–(4.26) and (4.12)–(4.13).
Note that

uG + 0u = Lh ⇔ uG =Mh+NuB . (4.28)

As a consequence, if uG =Mh+NuB then, by (4.20), for k regular,

uk + (A
k
k)
−1
∑
k′ 6=k

Ak
′

k uk′ = (A
k
k)
−1hk,

hence (Au)k = hk , proving (4.11). ut

Lemma 4.2 (Reduction on the bad sites). We have

Au = h ⇒ A′uB = Zh

where
A′ := AB + AGN ∈MB

E, Z := IE − A
GM ∈ME

E (4.29)

satisfy

||A′||s0 ≤ c(2), ||A′||s ≤ C(s,2)N
κ(N s−s0 +N−b||T ||s+b), (4.30)

||Z||s0 ≤ cN
κ , ||Z||s ≤ C(s,2)N

2κ(N s−s0 +N−b||T ||s+b). (4.31)

Moreover (A−1)B is a left inverse of A′.

Proof. By Lemma 4.1,

Au = h ⇒

{
AGuG + A

BuB = h

uG = NuB +Mh
⇒ (AGN + AB)uB = h− AGMh,

i.e. A′uB = Zh. Let us prove estimates (4.30)–(4.31) for A′ and Z.

Step I. For all k regular we have A′k = 0, Zk = 0. By (4.11), for all k regular,

∀h, ∀uB ∈ HB , (AG(NuB +Mh)+ ABuB)k = hk, i.e. (A′uB)k = (Zh)k,

which implies A′k = 0 and Zk = 0.



254 Massimiliano Berti, Philippe Bolle

Step II. Proof of (4.30)–(4.31). Denote by R ⊂ E the set of regular sites in E. For all
k ∈ E \ R, we have |Akk| < 2 (see Definition 4.2). Then (4.8) implies

||AE\R||s0 ≤ 2+ ||T ||s0 ≤ c(2), ||AE\R||s ≤ 2+ ||T ||s, ∀s ≥ s0. (4.32)

By Step I and the definition of A′ in (4.29) we get

||A′||s = ||A
′

E\R||s ≤ ||A
B
E\R||s + ||A

G
E\RN ||s .

Therefore, Lemma 3.3, (4.32), (4.9) and (4.10) imply

||A′||s ≤ C(s,2)N
κ(N s−s0 +N−b||T ||s+b) and ||A′||s0 ≤ c(2),

proving (4.30). The bound (4.31) follows similarly.

Step III. (A−1)B is a left inverse of A′. Indeed, from A−1A′ = A−1(AB + AGN ) =
IBE + I

G
EN we get

(A−1)BA
′
= (A−1A′)B = I

B
B − 0 = IBB . ut

Now A′ ∈MB
E , and the set B is partitioned into clusters �α of size O(NC1), sufficiently

far apart (see (H3)). Then, up to a remainder of very small s0-norm (see (4.35)), A′ is
defined by the submatrices (A′)�α

�′α
where �′α is some neighborhood of �α (the distance

between two distinct�′α and�′β remains large). Since A′ has a left inverse with L2-norm

O(N ′
τ
), so do the submatrices (A′)�α

�′α
. Since these submatrices are of size O(NC1), the

s-norms of their inverse will be O(NC1sN ′
τ
) = O(N ′

τ+χ−1C1s) (see (4.41)). By Lemma
3.9, provided χ is chosen large enough, A′ has a left inverse V with s-norms satisfying
(4.33). The details are given in the following lemma.

Lemma 4.3 (Left inverse with decay). The matrix A′ defined in Lemma 4.2 has a left
inverse V which satisfies

∀s ≥ s0, ||V ||s ≤ C(s)N
2χτ+κ+2(s0+b)C1(NC1s + ||T ||s+b). (4.33)

Proof. Define D ∈MB
E by

Dk
k′ :=

{
(A′)k

k′
if (k, k′) ∈

⋃
α(�α ×�

′
α),

0 if (k, k′) /∈
⋃
α(�α ×�

′
α),

where �′α := {k ∈ E : d(k,�α) ≤ N
2/4}. (4.34)

Step I. D has a left inverse W ∈ME
B with ‖W‖0 ≤ 2(N ′)τ . We define R := A′ − D.

By the definition (4.34), if d(k′, k) < N2/4 then Rk
k′
= 0 and so

||R||s0
(3.21)
≤ 4s1N−2(s1−b−s0)||R||s1−b ≤ 4s1N−2(s1−b−s0)||A′||s1−b

(4.30),(4.8)
≤ C(s1)N

−2(s1−b−s0)Nκ(N s1−b−s0 +N−bϒ) ≤ C(s1)N
2κ−s1 (4.35)
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for N ≥ N0(ϒ) large enough. Therefore

‖R‖0‖(A−1)B‖0
(3.24)
≤ ||R||s0‖A

−1
‖0

(4.35),(H2)
≤ C(s1)N

2κ−s1(N ′)τ

(4.2)
= C(s1)N

2κ−s1+χτ
(4.5)
≤ 1/2 (4.36)

for N ≥ N(s1). Since (A−1)B ∈ME
B is a left inverse of A′ (see Lemma 4.2), Lemma 3.9

and (4.36) imply that D = A′ − R has a left inverse W ∈ME
B , and

‖W‖0
(3.30)
≤ 2‖(A−1)B‖0 ≤ 2‖A−1

‖0
(H2)
≤ 2(N ′)τ . (4.37)

Step II. W0 ∈ME
B defined by

(W0)
k′

k :=

{
W k′

k if (k, k′) ∈
⋃
α(�α ×�

′
α),

0 if (k, k′) 6∈
⋃
α(�α ×�

′
α),

(4.38)

is a left inverse of D and ||W0||s ≤ C(s)N
(s+b)C1+χτ for all s ≥ s0. Since WD = IB , we

prove that W0 is a left inverse of D by showing that

(W −W0)D = 0. (4.39)

Let us prove (4.39). For k ∈ B =
⋃
α �α , there is α such that k ∈ �α , and

∀k′ ∈ B, ((W −W0)D)k
′

k =

∑
q /∈�′α

(W −W0)
q
kD

k′

q (4.40)

since (W −W0)
q
k = 0 if q ∈ �′α (see the definition (4.38)).

Case I: k′ ∈ �α . Then Dk′

q = 0 in (4.40) and so ((W −W0)D)k
′

k = 0.

Case II: k′ ∈ �β for some β 6= α. Then, since Dk′

q = 0 if q /∈ �′β , we infer by (4.40)
that

((W −W0)D)k
′

k =

∑
q∈�′β

(W −W0)
q
kD

k′

q

(4.38)
=

∑
q∈�′β

W
q
k D

k′

q

(4.34)
=

∑
k∈E

W
q
k D

k′

q

= (WD)k
′

k = (IB)
k′

k = 0.

Since diam(�′α) ≤ 2NC1 , definition (4.38) implies (W0)
k′

k = 0 for all |k − k′| ≥ 2NC1 .
Hence, for all s ≥ 0,

||W0||s
(3.22)
≤ C(s)N (s+b)C1‖W0‖0

(4.37)
≤ C(s)N (s+b)C1+χτ . (4.41)

Step III. A′ has a left inverse V satisfying (4.33). Now A′ = D+R,W0 is a left inverse
of D, and

||W0||s0 ||R||s0
(4.41),(4.35)
≤ C(s1)N

(s0+b)C1+χτ+2κ−s1
(4.5)
≤ 1/2
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(we use also that χ > C1 by (4.4)) for N ≥ N(s1) large enough. Hence, by Lemma 3.9,
A′ has a left inverse V with

||V ||s0
(3.26)
≤ 2||W0||s0

(4.41)
≤ CN (s0+b)C1+χτ , (4.42)

and, for all s ≥ s0,

||V ||s
(3.28)
≤ C(s)(||W0||s + ||W0||

2
s0
||R||s) ≤ C(s)(||W0||s + ||W0||

2
s0
||A′||s)

(4.41),(4.30)
≤ C(s)N2χτ+κ+2(s0+b)C1(NC1s + ||T ||s+b). ut

Proof of Proposition 4.1 completed. Lemmas 4.1–4.3 imply

Au = h ⇒

{
uG =Mh+NuB
uB = VZh

whence

(A−1)B = VZ and (A−1)G =M+NVZ =M+N (A−1)B . (4.43)

Therefore, for all s ≥ s0,

||(A−1)B ||s
(4.43),(3.15)
≤ C(s)(||V ||s ||Z||s0 + ||V ||s0 ||Z||s)

(4.33),(4.31),(4.8),(4.42)
≤ C(s)N2κ+2χτ+2(s0+b)C1(NC1s + ||T ||s+b)
≤ C(s)(N ′)

α1((N ′)
α2s
+ ||T ||s)

using ||T ||s+b ≤ C(s)(N ′)b||T ||s (by (3.22)) and defining

α1 := 2τ + b + 2χ−1(κ + C1(s0 + b)), α2 := χ
−1C1.

We obtain the same bound for ||(A−1)G||s . Hence, for s ∈ [s0, S],

||A−1
||s ≤ ||(A

−1)B ||s + ||(A
−1)G||s ≤ C(s)(N

′)
α1((N ′)

α2s
+ ||T ||s)

(4.4)
≤

1
4 (N

′)
τ ′
((N ′)

δs
+ ||T ||s)

for N ≥ N(S) large enough, proving (4.7). ut

5. Separation properties of bad sites

The aim of this section is to verify the separation properties of bad sites required in the
multiscale Proposition 4.1.

Let A := A(ε, λ, θ) be the infinite-dimensional matrix defined in (2.16). Given
N ∈ N and i = (l0, j0), recall that the submatrix AN,i is defined in (2.17).
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Definition 5.1 (N -good/bad site). A site k := (i, a) ∈ Zb × {0, 1} is:

• N -regular if AN,i is N -good (Definition 4.1). Otherwise we say that k is N -singular.
• N -good if

k is regular (Definition 4.2) or all the sites k′ with d(k′, k) ≤ N are N -regular.
(5.1)

Otherwise, we say that k is N -bad.

Remark 5.1. It is easy to see that a site k which is N -good according to Definition 5.1 is
(AEE, N)-good according to Definition 4.3, for any setE = E0×{0, 1} containing k where
E0 ⊂ Zb is a product of intervals of length ≥ N . We introduce these different definitions
for merely technical reasons: it is more convenient to prove separation properties of N -
bad sites for infinite-dimensional matrices. On the other hand, for a finite matrix AEE , we
need the notion of (AEE, N)-good sites in order to apply the “resolvent identity” also near
the boundary ∂E (see Step I of Lemma 4.1).

We define

BN (j0; ε, λ) := {θ ∈ R : AN,j0(ε, λ, θ) is N -bad}. (5.2)

Definition 5.2 (N -good/bad parameters). A couple (ε, λ) ∈ R2 is N -good for A if

∀j0 ∈ Zd , BN (j0; ε, λ) ⊂

N2d+ν+4⋃
q=1

Iq (5.3)

where Iq are intervals with measure |Iq | ≤ N−τ . Otherwise, we say (ε, λ) is N -bad. We
define

GN := GN (u) := {(ε, λ) ∈ [0, ε0] ×3 : (ε, λ) is N -good for A}. (5.4)

The main result of this section is the following proposition. It will enable us to verify
the assumption (H3) of Proposition 4.1 for the submatrices AN ′,j0(ε, λ, θ) (see Lemmas
7.5 and 7.6).

Proposition 5.1 (Separation properties of N -bad sites). There exist C1 := C1(d, ν) ≥ 2
and N1 := N1(ν, d, γ0, τ0, m,2) such that if N ≥ N1 and

(i) (ε, λ) is N -good for A,
(ii) τ > χτ0 (τ0 is the diophantine exponent of ω̄ in (1.5)),

then for all θ ∈ R, the N -bad sites k := (l, j, a) ∈ Zν × Zd × {0, 1} of A(ε, λ, θ) with
|l| ≤ N ′ admit a partition

⋃
α �α into disjoint clusters satisfying

diam(�α) ≤ NC1(d,ν), d(�α, �β) > N2, ∀α 6= β. (5.5)

We underline that the estimates (5.5) are uniform in θ .
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Remark 5.2. The N -bad sites appear necessarily in clusters with increasing size
O(NC1), due to the multiplicity of the eigenvalues of the Laplacian; this happens al-
ready for the singular sites of periodic solutions, i.e. for ν = 1 (see [3]). It is also natural
that the separation between clusters of N -bad sites increases with N , because, roughly
speaking, the N -bad sites correspond to small divisors of size O(N−α).

Remark 5.3. The geometric structure of the bad and singular sites determines the reg-
ularity of the solutions of Theorem 1.1. Actually, the solutions of Theorem 1.1 have the
same Sobolev regularity in time and space because the N -bad clusters are separated in
the space-time Fourier indices (see (5.5)).

We first estimate the time Fourier components of the N -singular sites. We use that, by
(1.5), the frequency vectors ω = λω̄, for all λ ∈ [1/2, 3/2], are diophantine, namely

|ω · l| ≥
γ0

|l|τ0
, ∀l ∈ Zν \ {0}, (5.6)

and we use the “complexity” information (5.3) on the set BN (j0; ε, λ). This kind of argu-
ment was used in [20] and [13].

Lemma 5.1. Assume (i)–(ii) of Proposition 5.1. Then, for all j1 ∈ Zd , the number of N -
singular sites (l1, j1, a1) ∈ Zν ×Zd × {0, 1} with |l1| ≤ 2N ′ does not exceed 2N2d+ν+4.

Proof. If (l1, j1, a1) is N -singular then AN,l1,j1(ε, λ, θ) is N -bad (see Definitions 5.1
and 4.1). By (2.20), we find that AN,j1(ε, λ, θ + λω̄ · l1) is N -bad, namely θ + λω̄ · l1 ∈
BN (j1; ε, λ) (see (5.2)). By assumption, (ε, λ) is N -good, and therefore (5.3) holds.

We claim that in each interval Iq there is at most one element θ+ω·l1 withω = λω̄ and
|l1| ≤ 2N ′. Then, since there are at most N2d+ν+4 intervals Iq (see (5.3)) and a ∈ {0, 1},
the lemma follows.

To prove the claim, suppose for contradiction that there exist l1 6= l′1 with |l1|, |l′1| ≤
2N ′, such that ω · l1 + θ , ω · l′1 + θ ∈ Iq . Then

|ω · (l1 − l
′

1)| = |(ω · l1 + θ)− (ω · l
′

1 + θ)| ≤ |Iq | ≤ N
−τ . (5.7)

By (5.6) we also have

|ω · (l1 − l
′

1)| ≥
γ0

|l1 − l
′

1|
τ0
≥

γ0

(4N ′)τ0
= 4−τ0γ0N

−χτ0 . (5.8)

By assumption (ii) of Proposition 5.1 the inequalities (5.7) and (5.8) contradict each other
for N ≥ N0(γ0, τ0) large enough. ut

Corollary 5.1. Assume (i)–(ii) of Proposition 5.1. Then, for all j1 ∈ Zd , the number of
N -bad sites (l1, j1, a1) ∈ Zν × Zd × {0, 1} with |l1| ≤ N ′ does not exceed CN3d+2ν+4

for some positive constant C depending only on d and ν.
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Proof. By Lemma 5.1, the set S of N -singular sites (l, j, a) with |l| ≤ N ′ + N and
|j − j1| ≤ N has cardinality at most CN2d+ν+4

× Nd . Each N -bad site (l1, j1, a1) with
|l1| ≤ N ′ is included in some N -ball centered at an element of S. Each of these balls
contains at most CNν sites of the form (l, j1, a). Hence there are at most CN2d+ν+4

×

Nd
×Nν such N -bad sites. ut

We now estimate also the spatial components of the N -bad sites. In order to achieve a
partition into clusters we use the notion of “chain” of N -bad sites already used for the
search of periodic solutions of NLS and NLW in higher dimensions in [7], [3].

Definition 5.3 (M-chain). A sequence k0, . . . , kL ∈ Zd+ν × {0, 1} of distinct integer
vectors satisfying, for some M ≥ 2, |kq+1 − kq | ≤ M for q = 0, . . . , L − 1 is called an
M-chain of length L.

Proposition 5.1 will be a consequence of the following lemma. Here we exploit the
fact that N -bad sites k = (i, a) are singular (see (5.1) and Definition 4.2).

Lemma 5.2. There is C(d, ν) > 0 such that, for all θ ∈ R andN , anyM-chain ofN -bad
sites with |lq | ≤ N ′ has length

L ≤ (MN)C(d,ν). (5.9)

Proof. Let kq = (lq , jq , aq), q = 0, . . . , L, be anM-chain ofN -bad sites with |lq | ≤ N ′.
Then

max{|lq+1 − lq |, |jq+1 − jq |} ≤ M, ∀q ∈ [0, L], (5.10)

and, by Definitions 5.1 and 4.2, and (2.21),

|−ω·lq+‖jq‖
2
+m−θ | < 2 (if aq = 1) or |ω·lq+‖jq‖

2
+m+θ | < 2 (if aq = 0).

We deduce one of the following θ -independent inequalities:

|±ω · (lq+1 − lq)+ (‖jq+1‖
2
± ‖jq‖

2)| ≤ 2(2+m).

By (5.10) we get
∣∣‖jq+1‖

2
± ‖jq‖

2
∣∣ ≤ 2(2 + m) + |ω|M ≤ K1M for some K1 :=

K1(2,m). Since
∣∣‖jq+1‖

2
− ‖jq‖

2
∣∣ ≤ ‖jq+1‖

2
+ ‖jq‖

2, in any case
∣∣‖jq+1‖

2
− ‖jq‖

2
∣∣

≤ K1M . Therefore

∀q, q0 ∈ [0, L],
∣∣‖jq‖2 − ‖jq0‖

2∣∣ ≤ |q − q0|K1M (5.11)

and, using also (5.10),

|jq0 · (jq − jq0)| =
1
2

∣∣‖jq‖2 − ‖jq0‖
2
− ‖jq − jq0‖

2∣∣ ≤ K2|q − q0|
2M2. (5.12)

Let us introduce the following subspace of Rd :

G = SpanR{jq − jq ′ : 0 ≤ q, q
′
≤ L} = SpanR{jq − jq0 : 0 ≤ q ≤ L}
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and let g (1 ≤ g ≤ d) be the dimension of G. Define δ := (2d + 1)−2. The constants C
below may depend on 2,m, d, ν.

Case I: For all q0 ∈ [0, L], SpanR{jq − jq0 : |q − q0| ≤ L
δ , q ∈ [0, L]} = G. We select

a basis of G from jq − jq0 (|q − q0| ≤ L
δ), say f1, . . . , fg ∈ G. By (5.10) we have

|fi | ≤ ML
δ, ∀i = 1, . . . , g. (5.13)

Decomposing in this basis the orthogonal projection of jq0 on G,

PGjq0 =

g∑
i=1

xifi (5.14)

and taking the scalar products with fp, p = 1, . . . , g, we get the linear system

Fx = b with F ip := fi · fp, bp := PGjq0 · fp = jq0 · fp.

Since {fi}i=1,...,g is a basis of G, the matrix F is invertible. Since the coefficients of F
are integers, |det(F )| ≥ 1. By the Cramer rule, as (5.13) implies |F ip| ≤ C|fi | |fp| ≤

(MLδ)2, we deduce that

|(F−1)i
′

i | ≤ C(ML
δ)2(g−1), ∀i, i′ = 1, . . . , g. (5.15)

By (5.12), we have |bi | ≤ K2(ML
δ)2 for i = 1, . . . , g, and (5.15) implies

|xi′ | ≤ C(ML
δ)2g, ∀i′ = 1, . . . , g. (5.16)

From (5.14), (5.13), (5.16), we deduce |PGjq0 | ≤ C(ML
δ)2g+1 for q0 ∈ [0, L], and

|jq1 − jq2 | = |PGjq1 − PGjq2 | ≤ C(ML
δ)2g+1

≤ C(MLδ)2d+1, ∀(q1, q2) ∈ [0, L]2.

Since all the jq are in Zd , their number (counted without multiplicity) does not exceed
C(MLδ)(2d+1)d . Thus we have obtained the bound

]{jq : 0 ≤ q ≤ L} ≤ C(MLδ)(2d+1)d . (5.17)

Now by Corollary 5.1, for each q0 ∈ [0, L], the number of q ∈ [0, L] such that jq = jq0

is at most 2N3d+2ν+4, and so

L ≤ C(MLδ)(2d+1)d2N3d+2ν+4.

Since δ(2d + 1)d < 1/2, we get

L ≤ C′M2d(d+1)N2(3d+2ν+4), (5.18)

proving (5.9) for N large enough.

Case II: There is q0 ∈ [0, L] such that

µ := dim Span{jq − jq0 : |q − q0| ≤ L
δ, q ∈ [0, L]} ≤ g − 1,
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so all the vectors jq stay in an affine subspace of dimension µ ≤ g − 1. Then we repeat
on the subchain jq , |q − q0| ≤ L

δ , the argument of Case I, to obtain a bound for Lδ (and
hence for L).

Applying the above procedure at most d times, we obtain a bound for L of the form
L ≤ (MN)C(d,ν), proving the lemma. ut

Proof of Proposition 5.1 completed. Set M := N2. We introduce the following equiva-
lence relation in the set

SN := {k = (l, j, a) ∈ Zν+d × {0, 1} : |l| ≤ N ′, k is N -bad for A(ε, λ, θ)}.

Definition 5.4. We say that x ≡ y if there is an N2-chain {kq}q=0,...,L in SN connecting
x to y, that is, k0 = x, kL = y.

This equivalence relation induces a partition of the N -bad sites of A(ε, λ, θ) with
|l| ≤ N ′ into disjoint equivalent classes �α , satisfying, by Lemma 5.2,

d(�α, �β) > N2, diam(�α)
(5.9)
≤ N2(N3)C(d,ν). (5.19)

This proves (5.5).

6. Measure and “complexity” estimates

We define

B0
N (j0; ε, λ) := {θ ∈ R : ‖A−1

N,j0
(ε, λ, θ)‖0 > N τ

} (6.1)

= {θ ∈ R : ∃ an eigenvalue of AN,j0(ε, λ, θ) with modulus less than N−τ } (6.2)

where ‖ ‖0 is the operator L2-norm defined in (3.9). The equivalence between (6.1) and
(6.2) is a consequence of the self-adjointness of AN,j0(ε, λ, θ). We also define

G0
N := G0

N (u) :=
{
(ε, λ) ∈ [0, ε0] ×3 : ∀j0 ∈ Zd , B0

N (j0; ε, λ) ⊂

N2d+ν+4⋃
q=1

Iq

where Iq are disjoint intervals with measure |Iq | ≤ N−τ
}
. (6.3)

Remark 6.1. The difference between the sets G0
N defined in (6.3) and GN defined in (5.4)

lies in the different definition of B0
N (j0; ε, λ) in (6.1) and BN (j0; ε, λ) in (5.2). For all

θ /∈ BN (j0; ε, λ) the matrices AN,j0(ε, λ, θ) are N -good, i.e. satisfy ||A−1
N,j0

(ε, λ, θ)||s ≤

N δs+τ ′ for s ∈ [s0, s1], while for all θ /∈ B0
N (j0; ε, λ) we only have the L2-bound

‖A−1
N,j0

(ε, λ, θ)‖0 ≤ N
τ . Using the multiscale Proposition 4.1 and the separation Propo-

sition 5.1 (which holds for any θ ) we shall prove inductively that the parameters that stay
in G0

Nk
(uk) along the Nash–Moser scheme are in fact also in GNk (uk).
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The aim of this section is to prove the following proposition.

Proposition 6.1. There is a constant C > 0 such that, forN ≥ N0(V , d, ν) large enough
and

ε0β
−1
0 (‖T1‖0 + ‖∂λT1‖0) ≤ c (6.4)

small enough (β0 is defined in (1.3) and T1 in (2.3)), the set B0
N := (G

0
N )
c
∩ ([0, ε0]×3)

has measure
|B0
N | ≤ Cε0N

−1. (6.5)

Proposition 6.1 is derived from several lemmas based on basic properties of eigenvalues
of self-adjoint matrices, which are a consequence of their variational characterization.

Lemma 6.1. (i) Let A(ξ) be a family of square matrices in ME
E , C1 in the real pa-

rameter ξ ∈ R. Assume that there is an invertible matrix U such that the matrices
Ã(ξ) := A(ξ)U are self-adjoint and ∂ξ Ã(ξ) ≥ βI for some β > 0. Then, for any
α > 0, we have the measure estimate

|{ξ ∈ R : ‖A−1(ξ)‖0 ≥ α
−1
}| ≤ 2|E|αβ−1

‖U‖0 (6.6)

where |E| denotes the cardinality of the set E.
(ii) In particular, if A = Z + ξW with Z,W self-adjoint, W invertible and β1I ≤ Z ≤

β2I and βi > 0, then

|{ξ ∈ R : ‖A−1(ξ)‖0 ≥ α
−1
}| ≤ 2|E|αβ2β

−1
1 ‖W

−1
‖0. (6.7)

Proof. (i) The eigenvalues of the self-adjoint matrices Ã(ξ) can be listed as C1 functions
µk(ξ), 1 ≤ k ≤ |E|. Now

{ξ ∈ R : ‖A−1(ξ)‖0 ≥ α
−1
} ⊂ {ξ ∈ R : ‖Ã−1(ξ)‖0 ≥ (α‖U‖0)

−1
}

= {ξ ∈ R : ∃k ∈ [1, |E|], |µk(ξ)| ≤ α‖U‖0}

because Ã(ξ) is self-adjoint. Since ∂ξ Ã(ξ) ≥ βI , we have ∂ξµk(ξ) ≥ β > 0 and the
measure estimate (6.6) follows readily.

(ii) Applying (i) with U = W−1Z and self-adjoint matrices Ã(ξ) = ZW−1Z + ξZ,
we get

|{ξ ∈ R : ‖A−1(ξ)‖0 ≥ α
−1
}| ≤ 2|E|αβ−1

1 ‖W
−1
‖0‖Z‖0 ≤ 2|E|αβ2β

−1
1 ‖W

−1
‖0. ut

From the variational characterization of the eigenvalues of self-adjoint matrices we can
derive:

Lemma 6.2. Let A, A1 be self-adjoint matrices. Then their eigenvalues (arranged in
nondecreasing order) satisfy the Lipschitz condition

|µk(A)− µk(A1)| ≤ ‖A− A1‖0. (6.8)
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The continuity property (6.8) of the eigenvalues allows one to derive a “complexity esti-
mate” for B0

N (j0; ε, λ) knowing its measure, more precisely the measure of

B0
2,N (j0; ε, λ) := {θ ∈ R : ‖A−1

N,j0
(ε, λ, θ)‖0 > N τ /2}. (6.9)

Lemma 6.3. For all j0 ∈ Zd and ∀(ε, λ) ∈ [0, ε0] × 3, we have B0
N (j0; ε, λ) ⊂⋃2MNτ

q=1 Iq where Iq are intervals with |Iq | ≤ N−τ and M := |B0
2,N (j0; ε, λ)|.

Proof. If θ ∈ B0
N (j0; ε, λ), by (6.8) and since ‖Y‖0 = 1 (see (2.15)), we deduce that

[θ −N−τ , θ +N−τ ] ⊂ B0
2,N (j0; ε, λ)

= {θ ∈ R : some eigenvalue of AN,j0(ε, λ, θ) has modulus less than 2N−τ }.

Hence B0
N (j0; ε, λ) is included in a union of intervals Jm with disjoint interiors,

B0
N (j0; ε, λ) ⊂

⋃
m

Jm ⊂ B
0
2,N (j0; ε, λ) with length |Jm| ≥ 2N−τ (6.10)

(if some of the intervals [θ − N−τ , θ + N−τ ] overlap, then we glue them together). We
decompose each Jm as a union of (nonoverlapping) intervals Iq of length betweenN−τ /2
and N−τ . Then, by (6.10), we get a new covering

B0
N (j0; ε, λ) ⊂

Q⋃
q=1

Iq ⊂ B
0
2,N (j0; ε, λ) with N−τ /2 ≤ |Iq | ≤ N−τ ,

and, since the intervals Iq do not overlap,

QN−τ /2 ≤
Q∑
q=1

|Iq | ≤ |B
0
2,N (j0; ε, λ)| =: M.

As a consequence, Q ≤ 2 MN τ , which proves the lemma. ut

We estimate the measure |B0
2,N (j0; ε, λ)| differently for |j0| ≥ 2N or |j0| < 2N . In the

next lemmas we assume

N ≥ N0(V , ν, d) > 0 large enough and ε‖T1‖0 ≤ 1. (6.11)

Lemma 6.4. For all |j0| ≥ 2N and (ε, λ) ∈ [0, ε0] × 3, we have |B0
2,N (j0; ε, λ)| ≤

CN−τ+d+ν .

Proof. Recalling (2.19) and (2.16), we have

AN,j0(ε, λ, θ) = AN,j0(ε, λ)+ θYN,j0 = DN,j0(λ)+ TN,j0(ε, λ)+ θYN,j0 . (6.12)

We claim that, if |j0| ≥ 2N and N ≥ N0(V , d, ν) (see (6.11)), then

4d|j0|
2I ≥ AN,j0(ε, λ) ≥

1
8 |j0|

2I. (6.13)
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Indeed, by (6.12) and (6.8), the eigenvalues λl,j of AN,j0(ε, λ) satisfy

λl,j = δ
±

l,j +O(ε‖T1‖0 + ‖V ‖0) where δ±l,j := ‖j‖
2
± ω · l. (6.14)

Since |ω| = |λ| |ω̄| ≤ 3/2 (see (1.4)), ‖j‖ ≥ |j | (see (2.18)), |j − j0| ≤ N , |l| ≤ N , we
have

δ±l,j ≥ (|j0| − |j − j0|)
2
− ν|ω| |l| ≥ (|j0| −N)

2
−

3
2νN ≥ |j0|

2/6 (6.15)

for |j0| ≥ 2N and N ≥ N0(ν) large enough. Moreover, since ‖j‖2 ≤ d|j |2,

δ±l,j ≤ d(|j0| + |j − j0|)
2
+ ν|ω||l| ≤ d(|j0| +N)

2
+ 2νN ≤ 3d|j0|

2 (6.16)

for N ≥ N0(ν) large enough. Hence (6.14), (6.15), (6.16) and (6.11) imply (6.13). As a
consequence, by Lemma 6.1(ii) withW =YN,j0 , ‖W−1

‖0=1, we deduce |B0
2,N (j0; ε, λ)|

≤ CN−τ+d+ν . ut

Lemmas 6.3 and 6.4 imply

Corollary 6.1. For all |j0| ≥ 2N and (ε, λ) ∈ [0, ε0] ×3, we have

B0
N (j0; ε, λ) ⊂

Nd+ν+2⋃
q=1

Iq

where Iq are intervals satisfying |Iq | ≤ N−τ .

We now consider the cases |j0| < 2N .

Lemma 6.5. For all |j0| < 2N and (ε, λ) ∈ [0, ε0] ×3, we have

B0
2,N (j0; ε, λ) ⊂ IN := (−11dN2, 11dN2).

Proof. The eigenvalues of θY are ±θ , and (2.18) implies ‖j‖2 ≤ d(|j0| + |j − j0|)
2
≤

9dN2. Hence, by (6.12), (6.14), |l| ≤ N , (1.4) and (6.11),

‖AN,j0(ε, λ)‖0 ≤ ‖DN,j0(λ)‖0+‖TN,j0(ε, λ)‖0 ≤ 2νN+9dN2
+C(1+‖V ‖0) ≤ 10dN2

for N ≥ N(V, d, ν) large enough. By Lemma 6.2, if θ /∈ IN all the eigenvalues of
AN,j0(ε, λ, θ) = AN,j0(ε, λ)+ θYN,j0 are greater than 1 (actually dN2). ut

Lemma 6.6. For all |j0| < 2N , the set

B0
2,N (j0) := {(ε, λ, θ) ∈ [0, ε0] ×3× R : ‖A−1

N,j0
(ε, λ, θ)‖0 > N τ /2} (6.17)

has measure
|B0

2,N (j0)| ≤ ε0N
−τ+d+ν+3. (6.18)
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Proof. By Lemma 6.5, B0
2,N (j0) ⊂ [0, ε0] × 3 × IN . In order to estimate the “bad”

(ε, λ, θ) where at least one eigenvalue of AN,j0(ε, λ, θ) is less than N−τ , we introduce
the variables

ξ := 1/λ, η := θ/λ where (ξ, η) ∈ [2/3, 2] × 2IN (6.19)

and we consider the self-adjoint matrix

1
λ
AN,j0(ε, λ, θ)

(6.12)
= diag|l|≤N, |j−j0|≤N

(
− ω̄ · l 0

0 ω̄ · l

)
+ξPN,j0 −εξT1(ε, 1/ξ)+ηY

(6.20)
where

P :=

(
−1+ V (x) 0

0 −1+ V (x)

)
satisfies P

(1.3)
≥ β0I.

The derivative with respect to ξ of the matrix in (6.20) is

PN,j0 − εT1(ε, 1/ξ)+
ε

ξ
∂λT1(ε, 1/ξ)

(6.4)
≥

β0

2
I,

i.e. is positive definite (for ε0 small enough). By Lemma 6.1, for each fixed η, the set of
ξ ∈ [2/3, 2] such that at least one eigenvalue is≤N−τ has measure at mostO(N−τ+d+ν).
Then, integrating on η ∈ IN , whose length is |IN | = O(N2), and on ε ∈ [0, ε0], and since
the change of variables (6.19) has a Jacobian of modulus ≥ 1/8, we deduce (6.18). ut

By the same arguments (see also the proof of Lemma 7.13) we also get the following
measure estimate that will be used in Section 7, see (S4)n.

Lemma 6.7. The complement of the set

GN := GN (u) := {(ε, λ) ∈ [0, ε0] ×3 : ‖A
−1
N (ε, λ)‖0 ≤ N

τ
} (6.21)

satisfies
|Gc
N ∩ ([0, ε0] ×3)| ≤ ε0N

−τ+d+ν+1. (6.22)

Remark 6.2. For periodic solutions (i.e. ν = 1), a similar eigenvalue variation argument
which exploits −1 ≥ 0 was used in the Appendix of [10] and in [5].

As a consequence of Lemma 6.6, for “most” (ε, λ) the measure of B0
2,N (j0; ε, λ) is

“small”.

Lemma 6.8. For all |j0| < 2N , the set

FN (j0) :=
{
(ε, λ) ∈ [0, ε0] ×3 : |B

0
2,N (j0; ε, λ)| ≥

1
2N
−τ+2d+ν+4}

has measure
|FN (j0)| ≤ 2ε0N

−d−1. (6.23)
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Proof. By the Fubini theorem (see (6.17) and (6.9))

|B0
2,N (j0)| =

∫
[0,ε0]×3

|B0
2,N (j0; ε, λ)| dε dλ. (6.24)

Let µ := τ − 2d − ν − 4. By (6.24) and (6.18),

ε0N
−τ+d+ν+3

≥

∫
[0,ε0]×3

|B0
2,N (j0; ε, λ)| dε dλ

≥
1
2N
−µ
∣∣{(ε, λ) ∈ [0, ε0] ×3 : |B

0
2,N (j0; ε, λ)| ≥

1
2N
−µ
}∣∣

:=
1
2N
−µ
|FN (j0)|,

whence (6.23). ut

By Lemma 6.8, for all (ε, λ) /∈ FN (j0) we have the measure estimate |B0
2,N (j0; ε, λ)| <

N−τ+2d+ν+4/2. Then, Lemma 6.3 implies

Corollary 6.2. For all |j0| < 2N and (ε, λ) /∈ FN (j0), we have B0
N (j0; ε, λ) ⊂⋃N2d+ν+4

q=1 Iq with Iq intervals satisfying |Iq | ≤ N−τ .

Proposition 6.1 is a direct consequence of the following lemma.

Lemma 6.9. B0
N ⊆

⋃
|j0|<2N FN (j0).

Proof. Corollaries 6.1 and 6.2 imply that

(ε, λ) /∈
⋃
|j0|<2N

FN (j0) ⇒ (ε, λ) ∈ G0
N

(see the definition in (6.3)). The lemma follows. ut

Proof of Proposition 6.1 completed. By Lemma 6.9 and (6.23) we get

|B0
N | ≤

∑
|j0|<2N

|FN (j0)| < (2N+1)d |FN (j0)| ≤ (2N+1)d2ε0N
−d−1

≤ Cε0N
−1. ut

7. Nash–Moser iterative scheme

Consider the orthogonal splitting Hs
= Hn ⊕H

⊥
n where Hs is defined in (1.12) and

Hn :=
{
u := u = (u+, u−) ∈ Hs

: u =
∑

|(l,j)|≤Nn

ul,j e
i(l·ϕ+j ·x)

}
(7.1)

H⊥n :=
{
u := u = (u+, u−) ∈ Hs

: u =
∑

|(l,j)|>Nn

ul,j e
i(l·ϕ+j ·x)

}
,

with ul,j := (u+l,j , u
−

l,j ) ∈ C2, and

Nn := N
2n
0 , so Nn+1 = N

2
n , ∀n ≥ 0. (7.2)
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In the proof we shall take N0 ∈ N large enough depending on ε0 and V , d , ν (see (7.95)).
We denote by

Pn : Hs
→ Hn and P⊥n : H

s
→ H⊥n (7.3)

the orthogonal projectors onto Hn and H⊥n . The following “smoothing” properties hold,
for all n ∈ N, s ≥ 0 and r ≥ 0:

‖Pnu‖s+r ≤ N
r
n‖u‖s, ∀u ∈ Hs, (7.4)

‖P⊥n u‖s ≤ N
−r
n ‖u‖s+r , ∀u ∈ Hs+r . (7.5)

More generally, for j0 ∈ Zd , we denote by PN,j0 the orthogonal projector from Hs onto
the subspace

HN,j0 :=

{
u ∈ Hs

: u =
∑

|(l,j−j0)|≤N

ul,j e
i(l·ϕ+j ·x)

}
. (7.6)

With the above notation, Hn = HNn,0 (see (7.1)), and Pn := PNn,0 (see (7.3)). Moreover
we also denote by 5N,j0 the orthogonal projector from H s0(Td) (functions only of the
x-variable) onto the space

EN,j0 :=

{
u(x) :=

∑
|j−j0|≤N

uj e
ij ·x
: uj ∈ C

}
. (7.7)

The composition operator on Sobolev spaces

f : Hs
→ Hs, f (u)(t, x) :=

(
f (ϕ, x, u−u+)u+

f (ϕ, x, u−u+)u−

)
,

where f ∈ Cq(Tν × Td × R;R) with

q ≥ S + 2, (7.8)

has the following standard properties (see e.g. [31]): for all s ∈ [s1, S] and s1 > (d+ν)/2,

(F1) (Regularity) f ∈ C2(Hs
;Hs).

(F2) (Tame estimates) for all u, h ∈ Hs with ‖u‖s1 ≤ 1,

‖f (u)‖s ≤ C(s)‖u‖s, ‖(Df )(u)h‖s ≤ C(s)(‖h‖s + ‖u‖s‖h‖s1), (7.9)

‖D2f (u)[h, v]‖s ≤ C(s)(‖u‖s‖h‖s1‖v‖s1 + ‖v‖s‖h‖s1 + ‖v‖s1‖h‖s). (7.10)

As a consequence we get

(F3) (Taylor tame estimate) For all u ∈ Hs with ‖u‖s1 ≤ 1, and all h ∈ Hs with
‖h‖s1 ≤ 1,

‖f (u+ h)− f (u)− (Df )(u) h‖s ≤ C(s)(‖u‖s‖h‖
2
s1
+ ‖h‖s1‖h‖s). (7.11)

In particular, for s = s1,

‖f (u+ h)− f (u)− (Df )(u) h‖s1 ≤ C(s1)‖h‖
2
s1
. (7.12)
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The values of the constants s1 and S are fixed in (7.16) below.

Remark 7.1. The differential (Df )(u) is the operator T1 defined in (2.3) with (p, q) as
in (2.4).

By Lemma 3.1 and the first inequality in (7.9) applied to the composition operators in
(2.4), the Toeplitz matrix T1 which represents Df (u) satisfies, for all s ∈ [s1, S],

||T1||s = ||(Df )(u)||s ≤ C(s)(1+ ‖u‖s). (7.13)

For simplicity of notation we denote (g, ḡ) simply by g. We shall use that g and the
potential V satisfy

‖g‖Cq ≤ C, ‖V ‖Cq ≤ C, (7.14)

for some fixed constant C.
With the above more concise notation, the vector NLS equation (1.11) becomes

Lωu = ε(f (u)+ g). (7.15)

For definiteness we fix the Sobolev indices s0 < s1 < S as

s0 := b = d + ν, s1 := 10(τ + b)C2, S := 12τ ′ + 8(s1 + 1), (7.16)

where

C2 := 6(C1 + 2), τ := max{d + ν + 2, 2C2 τ0 + 1}, τ ′ := 3τ + 2b, τ0 := ν (7.17)

(the constant τ0 is introduced in (1.5)) and C1 := C1(d, ν) ≥ 2 is defined in Proposition
5.1. Note that s0, s1, S defined in (7.16) depend only on d and ν.

We also fix the constant δ in Definition 4.1 as

δ := 1/4. (7.18)

Remark 7.2. By (7.16)–(7.18) the hypotheses (4.3)–(4.5) of Proposition 4.1 are satisfied
for any χ ∈ [C2, 2C2), as also is assumption (ii) of Proposition 5.1. We assume τ ≥
d + ν + 2 in view of (6.22). The strongest condition for S appears in the proof of Lemma
7.10.

Setting
τ1 := d + ν

and γ > 0, we shall implement the first steps of the Nash–Moser iteration restricting λ to
the set

Ḡ := {λ ∈ 3 : ‖(±λω̄ · l +50(−1+ V (x))|E0)
−1
‖L2

x
≤ N

τ1
0 /γ , ∀|l| ≤ N0}

= {λ ∈ 3 : |±λω̄ · l + µj | ≥ γN
−τ1
0 , ∀|j | ≤ N0, |l| ≤ N0} (7.19)

where µj are the eigenvalues of 50(−1+ V (x))|E0 and 50 := 5N0,0, E0 := EN0,0 are
defined in (7.7). We shall prove in Lemma 7.13 the measure bound |Ḡ| = 1−O(γ ) (since
τ1 ≥ d + ν). The constant γ will be fixed in (7.95).
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We also define
σ := τ ′ + δs1 + 2. (7.20)

Given a set A we denote by N (A, η) the open neighborhood of A of width η (which is
empty if A is empty).

Theorem 7.1 (Nash–Moser). There exist c̄, γ̄ > 0 (depending on d, ν, V , γ0, β0) such
that if

N0 ≥ 2γ−1, γ ∈ (0, γ̄ ), ε0N
S
0 ≤ c̄, (7.21)

then there is a sequence (un)n≥0 of C1 maps un : [0, ε0) × 3 → Hs1 ∩ U (see (1.13))
satisfying

(S1)n un(ε, λ) ∈ Hn ∩U , un(0, λ) = 0, ‖un‖s1 ≤ 1, ‖∂(ε,λ)un‖s1 ≤ C(s1)N
τ1+s1+1
0 γ−1.

(S2)n (n ≥ 1) For all 1 ≤ k ≤ n, ‖uk − uk−1‖s1 ≤ N−σ−1
k , ‖∂(ε,λ)(uk − uk−1)‖s1

≤ N
−1/2
k .

(S3)n (n ≥ 1) We have

‖u− un−1‖s1 ≤ N
−σ
n ⇒

n⋂
k=1

G0
Nk
(uk−1) ⊆ GNn(u) (7.22)

where G0
N (u) (resp. GN (u)) is defined in (6.3) (resp. in (5.4)).

(S4)n Set

Cn :=
n⋂
k=1

GNk (uk−1)

n⋂
k=1

G0
Nk
(uk−1) ∩ ([0, ε0] × Ḡ), (7.23)

where GNk (uk−1) is defined in (6.21), Ḡ in (7.19), and G0
Nk
(uk−1) in (6.3). If

(ε, λ) ∈ N (Cn, N−σn ) then un(ε, λ) solves the equation

(Pn) Pn(Lωu− ε(f (u)+ g)) = 0.

(S5)n Un := ‖un‖S and U ′n := ‖∂(ε,λ)un‖S (where S is defined in (7.16)) satisfy

(i) Un ≤ N2(τ ′+δs1+1)
n , (ii) U ′n ≤ N

4τ ′+2s1+4
n .

The sequence (un)n≥0 converges in C1 norm to a map

u ∈ C1([0, ε0)×3;Hs1) with u(0, λ) = 0, (7.24)

and if (ε, λ) belongs to the Cantor-like set

C∞ :=
⋂
n≥0

Cn, (7.25)

then u(ε, λ) is a solution of (1.11), i.e. (7.15), with ω = λω̄.
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The sets of parameters Cn in (S4)n are decreasing, i.e.

· · · ⊆ Cn ⊆ Cn−1 ⊆ · · · ⊆ C0 ⊂ [0, ε0] × Ḡ ⊂ [0, ε0] ×3,

and it could happen that Cn0 = ∅ for some n0 ≥ 1. In that case un = un0 for all n ≥ n0
(however the map u in (7.24) is always defined), and C∞ = ∅. Later, in (7.95), we shall
specify the values of γ, ε0, N0, in order to verify that C∞ has asymptotically full measure,
i.e. (1.10) holds.

The proof of Theorem 7.1 is based on an improvement of the Nash–Moser theorems
in [2]–[4]. The main difference is that the “tame exponent” τ ′ + δs in (7.64) depends on
the Sobolev index s. We have chosen δ = 1/4 in (7.18) for definiteness. The Nash–Moser
iteration would converge for any δ < 1 (see Section 1.2).

Another difference with respect to the scheme in [2]–[4] is that we perform, at the
same time, the Nash–Moser iteration and the multiscale argument to prove the invertibility
of the linearized operators (see Lemma 7.7). This is more convenient for proving measure
estimates.

7.1. Initialization of the Nash–Moser scheme

We perform the first step of the Nash–Moser iteration restricting λ ∈ N (Ḡ, 2N−σ0 ) (the
set Ḡ is defined in (7.19)).

Lemma 7.1. For all λ ∈ N (Ḡ, 2N−σ0 ), the operator

L0 := P0(Lλω̄)|H0 (7.26)

(where Lω is defined in (2.2)) is invertible and

‖L−1
0 ‖s1 ≤ 2N τ1+s1

0 γ−1. (7.27)

Proof. With the notation of (7.19), for all λ ∈ N (Ḡ, 2N−σ0 ),

∀|(l, j)| ≤ N0, |±λω̄ · l + µj | ≥ γN
−τ1
0 − 2|ω̄|N1−σ

0 ≥
γ

2
N
−τ1
0 , (7.28)

providedN0 ≥ 4γ−1
|ω̄| (recall (7.20), (7.17) and τ1 := d+ν). Then ‖L−1

0 ‖0 ≤ 2γ−1N
τ1
0

and (7.27) follows by the smoothing property (7.4). ut

A fixed point of

F0 : H0 → H0, F0(u) := εL−1
0 P0(f (u)+ g), (7.29)

is a solution of equation (P0).

Lemma 7.2. For εγ−1N
τ1+s1+σ
0 ≤ c(s1) small, and all λ ∈ N (Ḡ, 2N−σ0 ), the map F0 is

a contraction in B0(s1) := {u ∈ H0 : ‖u‖s1 ≤ ρ0 := N
−σ
0 }.
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Proof. The map F0 maps B0(s1) into itself, because, for ‖u‖s1 ≤ ρ0,

‖F0(u)‖s1
(7.27)
≤ 2εγ−1N

τ1+s1
0 (‖f (u)‖s1 + ‖g‖s1)

(F2),(7.14)
≤ εγ−1N

τ1+s1
0 C(s1) ≤ ρ0

for εγ−1N
τ1+s1+σ
0 small enough. Moreover, if ‖u‖s1 ≤ ρ0, then

‖(DF0)(u)‖s1 = ε‖L
−1
0 P0(Df )(u)|H0‖s1

(7.27),(F2)
≤ εN

τ1+s1
0 γ−1C(s1) ≤ 1/2, (7.30)

implying that the map F0 is a contraction in B0(s1). ut

Let ũ0(ε, λ) denote the unique solution of (P0) in B0(s1) defined for all (ε, λ) ∈ [0, ε0] ×

N (Ḡ, 2N−σ0 ). For ε = 0 the map F0 in (7.29) has u = 0 as a fixed point. By uniqueness
we deduce ũ0(0, λ) = 0. Since the contracting map F0 leaves B0(s1) ∩ U invariant (see
(1.13)), we deduce that ũ0(ε, λ) ∈ U . Moreover, by (7.30), the operator

L0(ε) := P0(Lω − ε(Df )(̃u0))|H0 = L0 − εP0(Df )(̃u0)|H0 = L0(I − (DF0)(̃u0))

(7.31)
is invertible and

‖L−1
0 (ε)‖s1 ≤ 2‖L−1

0 ‖s1
(7.27)
≤ 4N τ1+s1

0 γ−1. (7.32)

The implicit function theorem implies that ũ0 ∈ C
1([0, ε0] ×N (Ḡ, 2N−σ0 );H0) and

∂εũ0 = L−1
0 (ε)P0(f (̃u0)+ g), ∂λũ0 = −L−1

0 (ε)(∂λL0)̃u0. (7.33)

Then, by (7.33), (7.32) and ∂λLω = diag(±iω̄ · ∂ϕ), we get

‖∂εũ0‖s1 ≤ N
τ1+s1
0 γ−1C(s1),

‖∂λũ0‖s1 ≤ 4|ω̄|N τ1+s1
0 γ−1

‖ũ0‖s1+1 ≤ CN
τ1+s1+1−σ
0 γ−1

(7.34)

using that ‖ũ0‖s1+1 ≤ N0‖ũ0‖s1 ≤ N0N
−σ
0 .

Finally we define the C1 map u0 := ψ0ũ0 : [0, ε0] ×3→ H0 with cut-off function
ψ0 : 3→ [0, 1],

ψ0 :=

{
1 if λ ∈ N (Ḡ, N−σ0 )

0 if λ /∈ N (Ḡ, 2N−σ0 )
and |Dλψ0| ≤ N

σ
0 C. (7.35)

Then (7.35), ‖ũ0‖s1 ≤ N
−σ
0 and (7.34) imply (we have ∂εψ0 ≡ 0)

‖u0‖s1 ≤ N
−σ
0 , ‖∂(ε,λ)u0‖s1 ≤ C(s1)N

τ1+s1+1
0 γ−1. (7.36)

The statement (S1)0 is proved. Note that (S2)0, (S3)0 are empty. Finally, also property
(S4)0 is proved, because by (7.35) the function u0(ε, λ) solves the equation (P0) for all
(ε, λ) ∈ N (C0, N

−σ
0 ), since C0 = [0, ε0] × Ḡ.

For the next steps of the induction we need the following lemma which establishes a
property which replaces (S3)n for the first steps of the induction.
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Lemma 7.3. There exist N0 := N0(S, V ) ∈ N and c(s1) > 0 such that if

ε0N
τ ′+δs1
0 ≤ c(s1), (7.37)

then for all N1/C2
0 ≤ N ≤ N0 and ‖u‖s1 ≤ 1, GN (u) = [0, ε0] ×3.

In order to prove Lemma 7.3 we need the following lemma.

Lemma 7.4. For N ≥ Ñ(S, V ) large enough, if

‖(ϑ I+5N,j0(−1+ V (x))|EN,j0
)−1
‖L2

x
≤ N τ , ϑ ∈ R, (7.38)

(see the definition of EN,j0 in (7.7)) then, for all s ∈ [s0, S],

||(ϑI+5N,j0(−1+ V (x))|EN,j0
)−1
||s ≤

1
2N

τ ′+δs . (7.39)

Proof. We apply a simplified version of Proposition 4.1 to ϑI+5N,j0(−1+V (x))|EN,j0
.

We sketch the main modifications only. The scale N ′ in Proposition 4.1 is here replaced
by N . Assumption (H1) follows from the regularity of the potential V (x) (see Lemma
3.1), and (H2) is (7.38). With respect to Proposition 4.1, we use a stronger version of
assumption (H3), calling “good sites” the regular sites only, namely the j ∈ Zd with
|j − j0| ≤ N such that

|dj | ≥ 2 where dj := ϑ + ‖j‖
2
+m

and m denotes the average of the potential V (x) (see (2.5)). This is enough because here
the singular sites have the separation properties. For2−1

‖V ‖s1 small enough we have the
analogue of Lemma 4.1 (the proof is simpler because all the good sites satisfy |dj | ≥ 2).
The separation properties of the singular sites j ∈ Zd with |j − j0| ≤ N such that
|dj | < 2 are proved as in Section 5: an M-chain of singular sites has length at most
L ≤ MC3(d) (see Lemma 5.2 and (5.17)). Then, taking M := N δ/2(1+C3(d)) we get a
partition of the singular sites into clusters �α satisfying

d(�α, �β) > N δ/2(1+C3(d)) and diam(�α) ≤ ML ≤ M1+C3(d) = N δ/2.

Estimate (7.39) follows by the arguments of Lemmas 4.2 and 4.3. ut

Proof of Lemma 7.3. We claim that, for all (ε, λ) ∈ [0, ε0] ×3 and j0 ∈ Zd ,

BN (j0; ε, λ) ⊂
⋃

|(l,j−j0)|≤N

{θ ∈ R : |δ±l,j (θ)| ≤ N
−τ
} (7.40)

where

δ±l,j (θ) := ±(ω · l + θ)+ µ̃j , ω = λω̄, µ̃j := eigenvalues of 5N,j0(−1+ V (x))|EN,j0

(which depend on N ) and the subspace EN,j0 is defined in (7.7). Actually (7.40) is equiv-
alent to

|δ±l,j (θ)| > N−τ , ∀ |(l, j − j0)| ≤ N ⇒ AN,j0(ε, λ, θ) is N -good (7.41)
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with A = L(u) = Lω+ θY − ε(Df )(u). We first prove that the premise in (7.41) implies
that

QN,j0 := PN,j0(Lω + θY )|HN,j0
satisfies ||Q−1

N,j0
||s ≤

1
2N

τ ′+δs, ∀s ∈ [s0, S], (7.42)

(the subspace HN,j0 is defined in (7.6)). Indeed, the operator Lω is diagonal in the time
Fourier basis. The premise in (7.41) is equivalent to∥∥(±(λω̄ · l + θ)I+5N,j0(−1+ V (x))|EN,j0

)−1∥∥
L2
x
< N τ , ∀|l| ≤ N.

Lemma 7.4 implies, for N ≥ N1/C2
0 ≥ Ñ(V , S), that∣∣∣∣(±(λω̄ · l + θ)I+5N,j0(−1+ V (x))|EN,j0

)−1∣∣∣∣
s
≤

1
2N

τ ′+δs, ∀|l| ≤ N,

and (7.42) follows because QN,j0 is diagonal in the time Fourier basis.
We now prove (7.41) by a perturbative argument. By (7.13) and ‖u‖s1 ≤ 1 we have

||(Df )(u)||s1 ≤ C(s1). Hence

ε||QN,j0 ||s1 ||(Df )(u)||s1
(7.42)
≤ εN τ ′+δs1C(s1) ≤ ε0N

τ ′+δs1
0 C(s1)

(7.37)
≤ 1/2. (7.43)

Then, by Lemma 3.9, the matrix AN,j0(ε, λ, θ) = PN,j0(Lω + θY − ε(Df )(u))|HN,j0
is

invertible and

∀s ∈ [s0, s1], ||A−1
N,j0

(ε, λ, θ)||s
(3.26)
≤ 2||Q−1

N,j0
||s

(7.42)
≤ N τ ′+δs, (7.44)

so it is N -good.
Finally, by (7.40), BN (j0; ε, λ) is included in a union of 2(2N + 1)b intervals of

measure ≤ 2N−τ , hence of 4(2N + 1)b ≤ N2d+ν+4 intervals Iq of measure |Iq | ≤ N−τ .
This proves that any (ε, λ) ∈ [0, ε0]×3 is N -good (see Definition 5.2) for A = L(u), so
that (ε, λ) is in GN (u) (see (5.4)). ut

Finally we prove (S5)0. With estimates similar to the proof of (S1)0 using the smallness
condition on ε0 in (7.21), we deduce (S5)0(i). In order to estimate ∂(ε,λ)u0, we use that
the inverse of the operator L0(ε) = L0 − εP0Df (̃u0)|H0 defined in (7.31) (L0 is defined
in (7.26)) satisfies, for λ ∈ N (G, 2N−σ0 ),

||L−1
0 (ε)||s ≤ N

τ ′+δs
0 , ∀s ∈ [s1, S]. (7.45)

Indeed, note that by (7.28), for N = N0 and θ = 0, the real numbers |δ±l,j (0)| defined

after (7.40) are bounded from below by γN−τ1
0 /2 ≥ N−τ0 . Hence L0 = QN0,0 satisfies

(7.42), and Lemma 3.9 implies, for all s ∈ [s1, S],

||L−1
0 (ε)||s

(3.27),(7.42)
≤ (1+ C(s)ε||Q−1

N0,0
||s0 ||(Df )(̃u0)||s0)

1
2N

τ ′+δs
0

+ C(s)ε(N
τ ′+δs0
0 )2 ||(Df )(̃u0)||s

(7.42),(7.13),(S5)0
≤ (1+ C(s)εN τ ′+δs0

0 ) 1
2N

τ ′+δs
0 + C(s)εN

2(τ ′+δs0)+2(τ ′+δs1+1)
0

(7.21),(7.16)
≤ N τ ′+δs

0
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since 4τ ′ + 4δs1 + 2 < S. The bound (S5)0(ii) follows easily from (7.45). Let us give the
details for ∂εu0 (whose norm does not tend to 0 as ε→ 0). We have

‖∂εũ0‖S
(7.33)
= ‖L−1

0 (ε)P0(f (̃u0)+ g)‖S

(3.20)
≤ ||L−1

0 (ε)||s1‖f (̃u0)+ g‖S + C(S)||L−1
0 (ε)||S‖f (̃u0)+ g‖s1

(7.45),(F2),(7.14)
≤ C(S)N

τ ′+δs1
0 (‖ũ0‖S + 1)+ C′(S)N τ ′+δS

0
(S5)0(i)
≤ C′(S)N

3(τ ′+δs1)+2
0 + C′(S)N τ ′+δS

0 ≤ N
4τ ′+2s1+4
0

by (7.16) and δ = 1/4. Thus (S5)0(ii) is proved.

7.2. Iteration of the Nash–Moser scheme

Suppose, by induction, that we have already defined un ∈ C1([0, ε0] × 3;Hn ∩ U) and
that properties (S1)k–(S5)k hold for all k ≤ n. We are going to define un+1 and prove
(S1)n+1–(S5)n+1. Consider the operators (introduced in (2.1))

L(u) := L(ω, ε, u) := Lω − ε(Df )(u). (7.46)

In order to carry out a modified Nash–Moser scheme, we shall study the invertibility of

Ln+1(un) := Pn+1L(un)|Hn+1 (7.47)

and the tame estimates of its inverse, applying Proposition 4.1. We distinguish two cases.
If 2n+1 > C2 (the constant C2 is fixed in (7.17)), then there exists a unique p ∈ [0, n]
such that

Nn+1 = N
χ
p , χ = 2n+1−p

∈ [C2, 2C2). (7.48)

If 2n+1
≤ C2 then there exists χ ∈ [C2, 2C2] such that

Nn+1 = N̄
χ , N̄ := [N

1/C2
n+1 ] ∈ (N

1/χ
0 , N0). (7.49)

If (7.48) holds, we consider in Proposition 4.1 the two scales N ′ = Nn+1, N = Np (see
(4.2)). If (7.49) holds, we set N ′ = Nn+1, N = N̄ .

A key point of the whole induction process is that the separation properties of the bad
sites of L(un)+ θY hold uniformly for all θ ∈ R and j0 ∈ Zd .

Lemma 7.5. For all

(ε, λ) ∈

n+1⋂
k=1

G0
Nk
(uk−1), θ ∈ R, j0 ∈ Zd ,

the hypothesis (H3) of Proposition 4.1 applies to ANn+1,j0(ε, λ, θ) where A(ε, λ, θ) :=
L(un)+ θY .



Quasi-periodic solutions of NLS on Td 275

Proof. We give the proof when (7.48) holds. By Remark 5.1, a site

k ∈ E := ((0, j0)+ [−Nn+1, Nn+1]
b)× {0, 1}, (7.50)

which is Np-good for A(ε, λ, θ) := L(un)+ θY (see Definition 5.1 with A = A(ε, λ, θ))
is also (ANn+1,j0(ε, λ, θ),Np)-good (see Definition 4.3 with A = ANn+1,j0(ε, λ, θ)). As
a consequence,

{ (ANn+1,j0(ε, λ, θ),Np)-bad sites} ⊂ {Np-bad sites of A(ε, λ, θ) with |l| ≤ Nn+1},

(7.51)

and (H3) is proved if the latter Np-bad sites (on the right hand side of (7.51)) are con-
tained in a disjoint union

⋃
α �α of clusters satisfying (4.6) (with N = Np). This is a

consequence of Proposition 5.1 applied to the infinite-dimensional matrix A(ε, λ, θ). We
claim that

n+1⋂
k=1

G0
Nk
(uk−1) ⊂ GNp (un),

i.e. any (ε, λ) ∈
n+1⋂
k=1

G0
Nk
(uk−1) is Np-good for A(ε, λ, θ), (7.52)

and then assumption (i) of Proposition 5.1 holds. Indeed, if p = 0 then (7.52) is trivially
true because GN0(un) = [0, ε0] ×3, by Lemma 7.3 and (S1)n. If p ≥ 1, we have

‖un−up−1‖s1 ≤

n∑
k=p

‖uk−uk−1‖s1
(S2)k
≤

n∑
k=p

N−σ−1
k ≤ N−σp

∑
k≥p

N−1
k ≤ N

−σ
p , (7.53)

and so (S3)p implies
p⋂
k=1

G0
Nk
(uk−1) ⊂ GNp (un). (7.54)

Assumption (ii) of Proposition 5.1 holds by (7.17), since χ ∈ [C2, 2C2).
When (7.49) holds the proof is analogous using Lemma 7.3 with N = N̄ and (S1)n.

ut

Lemma 7.6. Property (S3)n+1 holds.

Proof. We want to prove that

‖u− un‖s1 ≤ N
−σ
n+1 and (ε, λ) ∈

n+1⋂
k=1

G0
Nk
(uk−1) ⇒ (ε, λ) ∈ GNn+1(u).

Since (ε, λ) ∈ G0
Nn+1

(un), by (6.3) and Definition 5.2 it is sufficient to prove that for all
j0 ∈ Zd ,

BNn+1(j0; ε, λ)(u) ⊂ B
0
Nn+1

(j0; ε, λ)(un)
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(we highlight the dependence of these sets on u, un), or equivalently, by (6.1), (5.2), that

‖A−1
Nn+1,j0

(ε, λ, θ)(un)‖0 ≤ N
τ
n+1 ⇒ ANn+1,j0(ε, λ, θ)(u) is Nn+1-good, (7.55)

where A(ε, λ, θ)(u) = L(u)+ θY = Lω + θY − ε(Df )(u).
We prove (7.55) applying Proposition 4.1 toA := ANn+1,j0(ε, λ, θ)(u)withE defined

in (7.50), N ′ = Nn+1, N = Np (resp. N = N̄ ) if (7.48) (resp. (7.49)) is satisfied.
Assumption (H1) holds with

ϒ
(2.8),(7.13)
= C(1+ ‖un‖s1 + ||V ||s1)

(S1)n,(7.14)
≤ C′(V ). (7.56)

By Lemma 7.5, for all θ ∈ R, j0 ∈ Zd , the hypothesis (H3) of Proposition 4.1 holds for
ANn+1,j0(ε, λ, θ)(un). Hence, by Proposition 4.1, for s ∈ [s0, s1], if

‖A−1
Nn+1,j0

(ε, λ, θ)(un)‖0 ≤ N
τ
n+1

(which is assumption (H2)) then

||A−1
Nn+1,j0

(ε, λ, θ)(un)||s ≤
1
4N

τ ′

n+1(N
δs
n+1 + ||V ||s + ε||(Df )(un)||s). (7.57)

Finally, since ‖u− un‖s1 ≤ N
−σ
n+1 we have

||ANn+1,j0(ε, λ, θ)(un)− ANn+1,j0(ε, λ, θ)(u)||s1 ≤ Cε‖u− un‖s1 ≤ N
−σ
n+1

and (7.55) follows by (7.57) and a standard perturbative argument (see for instance (3.26)
in Lemma 3.9 with any s ∈ [s0, s1] instead of s0). ut

In order to define un+1, we write, for h ∈ Hn+1,

Pn+1
(
Lω(un + h)− ε(f (un + h)+ g)

)
= Pn+1

(
Lωun − ε(f (un)+ g)

)
+ Pn+1

(
Lωh− ε(Df )(un)h

)
+ Rn(h)

= rn + Ln+1(un)h+ Rn(h), (7.58)

where Ln+1(un) is defined in (7.47) and

rn := Pn+1
(
Lωun − ε(f (un)+ g)

)
,

Rn(h) := −εPn+1
(
f (un + h)− f (un)− (Df )(un)h

)
.

(7.59)

By (S4)n, if (ε, λ) ∈ N (Cn, N−σn ) then un solves the equation (Pn) and so

rn = Pn+1P
⊥
n

(
Lωun − ε(f (un)+ g)

)
= Pn+1P

⊥
n

(
V0 un − ε(f (un)+ g)

)
, (7.60)

using also that Pn+1P
⊥
n (Dωun) = 0 (see (2.7)). Note that, by (7.2) and σ ≥ 2 (see

(7.20)), for N0 ≥ 2, we have the inclusion

N (Cn+1, 2N−σn+1) ⊂ N (Cn, N−σn ). (7.61)
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Lemma 7.7 (Invertibility of Ln+1). For all (ε, λ) ∈ N (Cn+1, 2N−σn+1) the operator
Ln+1(un) is invertible, and for s = s1, S,

||L−1
n+1(un)||s ≤ N

τ ′+δs
n+1 . (7.62)

As a consequence, by (3.20), for all h ∈ Hn+1,

‖L−1
n+1(un)h‖s1 ≤ C(s1)N

τ ′+δs1
n+1 ‖h‖s1 , (7.63)

‖L−1
n+1(un)h‖S ≤ N

τ ′+δs1
n+1 ‖h‖S + C(S)N

τ ′+δS
n+1 ‖h‖s1 . (7.64)

Proof. We give the proof when (7.48) holds. The other case is analogous. First assume
(ε, λ) ∈ Cn+1 (see (7.23)). Then since (ε, λ) ∈ GNn+1(un) (see (6.21) with AN (ε, λ) =
Ln+1(un)), the operator Ln+1(un) is invertible and

‖L−1
n+1(un)‖0 ≤ N

τ
n+1. (7.65)

We now apply the multiscale Proposition 4.1 to A := Ln+1(un) with

E := [−Nn+1, Nn+1]
b
× {0, 1}, N ′ = Nn+1, N = Np, see (7.48).

By Remark 7.2 and since χ ∈ [C2, 2C2) (see (7.48)) the assumptions (4.3)–(4.5) hold.
Assumption (H1) holds with (7.56). Assumption (H2) holds by (7.65). Moreover, by the
definition of Cn+1, as a particular case of Lemma 7.5 for θ = 0, j0 = 0, the hypothesis
(H3) of Proposition 4.1 holds for Ln+1(un). Then Proposition 4.1 applies and we get, for
all (ε, λ) ∈ Cn+1 and s ∈ {s1, S},

||L−1
n+1(un)||s

(4.7)
≤

1
4N

τ ′

n+1(N
δs
n+1 + ||V ||s + ε||(Df )(un)||s),

whence, for s = s1,

||L−1
n+1(un)||s1

(7.13),(S1)n,(7.14)
≤

1
4N

τ ′

n+1(N
δs1
n+1 + ||V ||s1 + εC(s1)) ≤

1
2N

τ ′+δs1
n+1 , (7.66)

and for s = S, recalling that Un := ‖un‖S ,

||L−1
n+1(un)||S

(7.13),(7.14)
≤

1
4N

τ ′

n+1(N
δS
n+1 + ||V ||S + εC(S)(1+ Un))

(S5)n
≤

1
4N

τ ′

n+1(N
δS
n+1 + C

′(S)N2(τ ′+δs1+1)
n ) ≤ 1

2N
τ ′+δS
n+1 (7.67)

by (7.16) and δ = 1/4. Assume next (ε′, λ′) ∈ N (Cn+1, 2N−σn+1) and let (ε, λ) ∈ Cn+1 be
such that |(ε′, λ′)− (ε, λ)| < 2N−σn+1. We write

Ln+1(un(ε
′, λ′)) = Ln+1(un(ε, λ))+ Rn+1

where Ln+1(un(ε, λ)) satisfies (7.66)–(7.67) and

Rn+1 := Ln+1(un(ε
′, λ′))− Ln+1(un(ε, λ)).
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By (7.47), (7.13), (F2), (1.9), (7.21), (S1)n and (S5)n,

||Rn+1||s1 ≤ C(s1)N
−σ+1
n+1 , ||Rn+1||S ≤ C(S)N

4τ ′+2s1+4
n N−σn+1. (7.68)

We apply Lemma 3.9 with

M = Ln+1(un(ε, λ)), N = L−1
n+1(un(ε, λ)), P = Rn+1.

By (7.66), (7.68) and (7.20) the perturbative assumption (3.25) holds with index s1 in-
stead of s0. Then (3.26), (3.27) (with indices s1, S instead of s0, s) imply (7.62) for all
(ε′, λ′) ∈ N (Cn+1, 2N−σn+1), by (7.66), (7.67), (7.68), (7.20). ut

By (7.58), setting

Fn+1 : Hn+1 → Hn+1, Fn+1(h) := −L−1
n+1(un)(rn + Rn(h)), (7.69)

the equation (Pn+1) is equivalent to the fixed point problem h = Fn+1(h).

Lemma 7.8 (Contraction in ‖ ‖s1 -norm). For every (ε, λ) ∈ N (Cn+1, 2N−σn+1), Fn+1 is
a contraction in

Bn+1(s1) := {h ∈ Hn+1 : ‖h‖s1 ≤ ρn+1 := N
−σ−1
n+1 }. (7.70)

The unique fixed point h̃n+1(ε, λ) of Fn+1 in Bn+1(s1) belongs to U (see (1.13)) and
satisfies

‖h̃n+1‖s1 ≤ K(S)N
τ ′+δs1
n+1 N−(S−s1)n Un. (7.71)

Proof. For all (ε, λ) ∈ N (Cn+1, 2N−σn+1), by (7.69) and (7.63), we have

‖Fn+1(h)‖s1 ≤ C(s1)N
τ
′
+δs1

n+1 (‖rn‖s1 + ‖Rn(h)‖s1) (7.72)

and rn has the form (7.60) because of (7.61). Moreover (recall that Un := ‖un‖S)

‖rn‖s1 + ‖Rn(h)‖s1
(7.60),(7.5),(7.59),(7.12)

≤ N−(S−s1)n (‖V0 un‖S + ε‖f (un)‖S + ε‖g‖S)+ εC(s1)‖h‖
2
s1

(7.9),(7.14)
≤ C(S)N−(S−s1)n (Un + 1)+ ε C(s1)‖h‖2s1 (7.73)
(S5)n
≤ C(S)N−(S−s1)n N2(τ ′+δs1+1)

n + ε C(s1)‖h‖
2
s1
. (7.74)

(7.72) and (7.74) imply (using also (7.2)), for some K(S),K(s1) > 0,

‖h‖s1 ≤ ρn+1 ⇒ ‖Fn+1(h)‖s1 ≤ K(S)N
2(τ ′+δs1)+1
n+1 N−(S−s1)n + εK(s1)N

τ ′+δs1
n+1 ρ2

n+1

≤ ρn+1 := N
−σ−1
n+1 ,

because the choices of S in (7.16) and of σ in (7.20) imply (for N ≥ N0(S))

K(S)N
2(τ ′+δs1)+1
n+1 N−(S−s1)n ≤ ρn+1/2, εK(s1)N

τ ′+δs1
n+1 ρn+1 ≤ 1/2. (7.75)
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Next, differentiating (7.69) with respect to h and using (7.59) we get

DhFn+1(h)[v] = L−1
n+1(un)εPn+1

(
(Df )(un + h)[v] − (Df )(un)[v]

)
,

and for all ‖h‖s1 ≤ ρn+1, using (7.10) with s = s1,

‖DhFn+1(h)[v]‖s1
(7.63)
≤ εK(s1)N

τ ′+δs1
n+1 ρn+1‖v‖s1

(7.75)
≤

1
2‖v‖s1 .

Hence Fn+1 is a contraction in Bn+1(s1). Since un ∈ U , it is easy to check that Fn+1
leaves Bn+1(s1) ∩ U invariant, hence h̃n+1 ∈ U . Finally, (7.69), (7.72), (7.73) and (7.75)
imply (7.71). ut

Since h̃n+1(ε, λ) solves, for all (ε, λ) ∈ N (Cn+1, 2N−σn+1), the equation

Qn+1(ε, λ, h) := Pn+1
(
Lω(un + h)− ε(f (un + h)+ g)

)
= 0, h ∈ Hn+1, (7.76)

and un(0, λ)
(S1)n
= 0, we deduce, by the uniqueness of the fixed point, that

h̃n+1(0, λ) = 0, ∀(0, λ) ∈ N (Cn+1, 2N−σn+1).

Lemma 7.9 (Estimate in high norm). For (ε, λ) ∈ N (Cn+1, 2N−σn+1) we have

‖h̃n+1‖S ≤ K(S)N
τ ′+δs1
n+1 Un. (7.77)

Proof. We have

‖h̃n+1‖S
(7.69)
= ‖L−1

n+1(un)(rn + Rn(̃hn+1))‖S

(7.64)
≤ N

τ ′+δs1
n+1 (‖rn‖S + ‖Rn(̃hn+1)‖S)+ C(S)N

τ ′+δS
n+1 (‖rn‖s1

+ ‖Rn(̃hn+1)‖s1). (7.78)

Now, by (7.60), (S1)n, (F2), (F3), (7.14), (7.8), (7.59), and setting Un := ‖un‖S (we can
suppose Un ≥ 1), we get

‖rn‖S + ‖Rn(̃hn+1)‖S ≤ C(S)(Un + ερn+1‖h̃n+1‖S), (7.79)

and using also (7.73), (7.71) and the second inequality in (7.75),

‖rn‖s1 + ‖Rn(̃hn+1)‖s1 ≤ C(S)N
−(S−s1)
n Un. (7.80)

Then (7.78)–(7.80) imply that

‖h̃n+1‖S ≤ C(S)(N
τ ′+δs1
n+1 +N τ ′+δS

n+1 N−(S−s1)n )Un + C(S)εN
τ ′+δs1
n+1 ρn+1‖h̃n+1‖S (7.81)

(7.16),(7.70)
≤ C′(S)N

τ ′+δs1
n+1 Un + εC(S)N

τ ′+δs1−σ−1
n+1 ‖h̃n+1‖S

(7.20)
≤ C′(S)N

τ ′+δs1
n+1 Un +

1
2‖h̃n+1‖S

for ε0 ≤ ε0(S) small. As a consequence, ‖h̃n+1‖S ≤ 2C′(S)N τ ′+δs1
n+1 Un and (7.77) fol-

lows. ut
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Lemma 7.10 (Estimate of the derivatives). We have h̃n+1∈C
1(N (Cn+1, 2N−σn+1);Hn+1)

and

‖∂(ε,λ)h̃n+1‖s1 ≤ N
−1
n+1, ‖∂(ε,λ)h̃n+1‖S ≤ N

τ ′+δs1+1
n+1 (N

τ ′+δs1+1
n+1 Un + U

′
n). (7.82)

Proof. For all (ε, λ)∈N (Cn+1, 2N−σn+1), h̃n+1(ε, λ) is a solution ofQn+1(ε, λ, h̃n+1(ε, λ))

= 0 (see (7.76)). We have (see (7.47))

DhQn+1(ε, λ, h̃n+1) = Ln+1(un + h̃n+1)

= Ln+1(un)− εPn+1
(
(Df )(un + h̃n+1)− (Df )(un)

)
, (7.83)

which is invertible by Lemma 3.9 applied with

M → Ln+1(un), P →−εPn+1
(
(Df )(un + h̃n+1)− (Df )(un)

)
, s0 → s1.

Indeed, the hypothesis (3.25) follows from (7.62) with s = s1, (F1), (S1)n, Lemma 3.1,
‖h̃n+1‖s1 ≤ ρn+1 and (7.75). Therefore Lemma 3.9 with s = s1 implies

||L−1
n+1(un + h̃n+1)||s1

(3.26)
≤ 2||L−1

n+1(un)||s1
(7.62)
≤ 2N τ ′+δs1

n+1 (7.84)

and, by (3.28), (7.62) with s = S, (7.77), (S5)n, (7.10), δ = 1/4 and (7.16),

||L−1
n+1(un + h̃n+1)||S ≤ C(S)N

τ ′+δS
n+1 . (7.85)

Hence, the implicit function theorem implies h̃n+1 ∈ C
1(N (Cn+1, 2N−σn+1),Hn+1) and

∂(ε,λ)h̃n+1
(7.83)
= −L−1

n+1(un + h̃n+1)(∂(ε,λ)Qn+1)(ε, λ, h̃n+1). (7.86)

By (S4)n, un(ε, λ) solves (Pn) for (ε, λ) ∈ N (Cn+1, 2N−σn+1)
(7.61)
⊂ N (Cn, N−σn ). Then

(∂εQn+1)(ε, λ, h̃n+1) = Pn+1P
⊥
n (V0 ∂εun)+ Pn(f (un)+ g)

− Pn+1(f (un + h̃n+1)+ g)+ εPn(Df )(un)∂εun

− εPn+1(Df )(un + h̃n+1)∂εun (7.87)

(we use also that Pn+1P
⊥
n (Dωun) = 0 since un ∈ Hn, see (2.7)) and

(∂λQn+1)(ε, λ, h̃n+1) = Pn+1P
⊥
n (V0 ∂λun)+ (∂λLω )̃hn+1 + εPn(Df )(un)∂λun

− εPn+1(Df )(un + h̃n+1)∂λun. (7.88)

We deduce from (7.84)–(7.88) the estimates (7.82) using also (3.20), (F1), (F2), (F3),
(S1)n, (7.5), (S5)n, (7.14), (7.16), (7.71), (7.77). We omit the details. ut

We now define a C1 extension of (̃hn+1)|Cn+1 onto the whole [0, ε0] ×3.
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Lemma 7.11 (Extension). There is hn+1 ∈ C1([0, ε0) × 3;Hn+1 ∩ U) satisfying
hn+1(0, λ) = 0,

‖hn+1‖s1 ≤ N
−σ−1
n+1 , ‖∂(ε,λ)hn+1‖s1 ≤ N

−1/2
n+1 , (7.89)

and hn+1 is equal to h̃n+1 on N (Cn+1, N
−σ
n+1).

Proof. Let

hn+1(ε, λ) :=

{
ψn+1(ε, λ)̃hn+1(ε, λ) if (ε, λ) ∈ N (Cn+1, 2N−σn+1),

0 if (ε, λ) /∈ N (Cn+1, 2N−σn+1),
(7.90)

where ψn+1 is a C∞ cut-off function satisfying

0 ≤ ψn+1 ≤ 1, ψn+1 ≡

{
1 if (ε, λ) ∈ N (Cn+1, N

−σ
n+1),

0 if (ε, λ) /∈ N (Cn+1, 2N−σn+1),
|∂(ε,λ)ψn+1| ≤ N

σ
n+1C.

Then ‖hn+1‖s1 ≤ ‖h̃n+1‖s1 ≤ N
−σ−1
n+1 by Lemma 7.8, and,

‖∂(ε,λ)hn+1‖s1 ≤ |∂(ε,λ)ψn+1| ‖h̃n+1‖s1 + ‖∂(ε,λ)h̃n+1‖s1 ≤ N
−1/2
n+1

thanks to the first estimate in (7.82), and for N0 large. ut

Finally we define un+1 ∈ C
1([0, ε0)×3;Hn+1 ∩ U) as

un+1 := un + hn+1. (7.91)

By Lemma 7.11, on N (Cn+1, N
−σ
n+1) we have hn+1 = h̃n+1 that solves equation (7.76)

and so un+1 solves equation (Pn+1). Hence (S4)n+1 holds. By Lemma 7.11, property
(S2)n+1 holds. Property (S1)n+1 follows as well because

‖un+1‖s1 ≤ ‖u0‖s1 +

n+1∑
k=1

‖hk‖s1

(7.36),(S2)n+1
≤

1
2
+

n+1∑
k=1

N−σ−1
k ≤

1
2
+N−1

1 ≤ 1,

and the estimate ‖∂(ε,λ)un+1‖s1 ≤ C(s1)N
τ1+s1+1
0 γ−1 follows in the same way.

Lemma 7.12. Property (S5)n+1 holds.

Proof. By the definition of Un, and since ‖hn+1‖S ≤ ‖h̃n+1‖S , we get

Un+1 ≤ Un + ‖h̃n+1‖S
(7.77)
≤ K ′(S)N

τ ′+δs1
n+1 Un

(S5)n
≤ K ′(S)N

τ ′+δs1
n+1 N2(τ ′+δs1+1)

n

(7.2)
≤ N

2(τ ′+δs1+1)
n+1 .

The estimate for U ′n+1 follows similarly by (7.77), (7.82) and (S5)n. ut
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7.3. Proof of Theorem 1.1

By Theorem 7.1 it remains to prove that the measure estimate (1.10) holds.

Lemma 7.13. The set G defined in (7.19) satisfies

|Ḡ| = 1−O(γ ). (7.92)

Proof. The λ such that (7.19) is violated are

Ḡc ∩ [1/2, 3/2] ⊆
⋃

|l|≤N0, |j |≤N0

Rl,j where

R±l,j := {λ ∈ [1/2, 3/2] : |±λω̄ · l + µj | < γ/N
τ1
0 }. (7.93)

Dividing by λ, we have to estimate the ξ := 1/λ ∈ [2/3, 2] such that

|±ω̄ · l + ξµj | < C
γ

N
τ1
0
.

The derivative of the function g±lj (ξ) := ±ω̄·l+ξµj satisfies |∂ξg±lj (ξ)| = |µj | ≥ β0 > 0,
because 50(−1+ V (x))|E0 ≥ β0I by (1.3). As a consequence,

|R±l,j | ≤
C

β0

γ

N
τ1
0
. (7.94)

Then (7.93), (7.94) imply

|Ḡc ∩ [1/2, 3/2]| ≤
∑

|l|≤N0, |j |≤N0,±

|R±l,j | ≤ C
γ

β0

Nd+ν
0

N
τ1
0
= O(γ )

since τ1 ≥ d + ν. ut

Finally we choose

γ := εα0 with α := 1/(S + 1), N0 := 4γ−1, (7.95)

so that (7.21) is fulfilled for ε0 small enough. The complement of C∞ in [0, ε0] ×3 has
measure

|Cc∞|
(7.25),(7.23)
=

∣∣∣⋃
k≥1

Gc
Nk
(uk−1) ∪

⋃
k≥1

(G0
Nk
(uk−1))

c
∪ ([0, ε0] × Ḡc)

∣∣∣
≤

∑
k≥1

|Gc
Nk
(uk−1)| +

∑
k≥1

|(G0
Nk
(uk−1))

c
| + ε0|Ḡc|

(6.22),(6.5),(7.17),(7.92)
≤ Cε0

∑
k≥1

N−1
k + Cε0γ ≤ Cε0(N

−1
0 + γ )

(7.95)
≤ Cε1+α

0 ,

implying (1.10).
Theorem 1.1 is proved with s(d, ν) := s1 defined in (7.16) and q(d, ν) := S + 3 (see

(7.8)).
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Regularity. Finally, we prove that if V, f, g are C∞ then the solution u(ε, λ) is in
C∞(Td × Tν). The argument is the one of Theorem 3 in [4]. The main point is the proof
of the following lemma which gives an a priori bound for the divergence of high Sobolev
norms of the approximate solutions un, extending property (S5)n. Its proof requires only
small modifications in Lemmas 7.7, 7.9 and 7.12.

Lemma 7.14. For all S′ ≥ S,

‖un‖S′ ≤ C(S
′)N2(τ ′+δs1+1)

n . (7.96)

Proof. First of all, by the arguments of Lemma 7.7, we get

||L−1
n+1(un)||S′ ≤ C(S

′)(N τ ′+δS′

n+1 +N τ ′

n+1‖un‖S′). (7.97)

Note that the multiscale Proposition 4.1 is valid for any S′ > s1 (see (4.5)). It requires
also the condition N ≥ N0(ϒ, S

′), which is satisfied for N = Nn with n ≥ n0(S
′) large

enough.
Then, following the proof of Lemma 7.9 we obtain

‖h̃n+1‖S′ ≤ N
τ ′+δs1
n+1 (‖rn‖S′ + ‖Rn(̃hn+1)‖S′)

+ C(S′)(N τ ′+δS′

n+1 +N τ ′

n+1‖un‖S′)(‖rn‖s1 + ‖Rn(̃hn+1)‖s1). (7.98)

We also have the analogue of (7.79)–(7.80), namely

‖rn‖S′ + ‖Rn(̃hn+1)‖S′ ≤ C(S
′)(‖un‖S′ + ερn+1‖h̃n+1‖S′),

‖rn‖s1 + ‖Rn(̃hn+1)‖s1 ≤ C(S
′)N−(S

′
−s1)

n ‖un‖S′ ,

and, by (7.98), we deduce the analogue of (7.81), namely

‖h̃n+1‖S′ ≤ C(S
′)N

τ ′+δs1
n+1 ‖un‖S′ + C(S

′)N τ ′

n+1N
−(S′−s1)
n ‖un‖

2
S′

+ εC(S′)N
τ ′+δs1
n+1 ρn+1‖h̃n+1‖S′ . (7.99)

For n ≥ n0(S
′) large enough,

εC(S′)N
τ ′+δs1
n+1 ρn+1

(7.70)
= εC(S′)N

τ ′+δs1−σ−1
n+1

(7.20)
≤ 1/2,

and (7.99), (7.16) imply the analogue of (7.77), namely

‖h̃n+1‖S′ ≤ K(S
′)N

τ ′+δs1
n+1 ‖un‖S′ +K(S

′)N τ ′

n+1N
−(S′−s1)
n ‖un‖

2
S′ . (7.100)

Of course, hn+1 defined in (7.90) satisfies (7.100) as well. Therefore, as in Lemma 7.12,

‖un+1‖S′ ≤ ‖un‖S′ + ‖hn+1‖S′ ≤ 2K(S′)N τ ′+δs1
n+1 ‖un‖S′ +K(S

′)N τ ′

n+1N
−(S′−s1)
n ‖un‖

2
S′

and we deduce that the sequence ‖un+1‖S′N
−2(τ ′+δs1+1)
n+1 is bounded, i.e. (7.96). ut
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By (7.96) we deduce
‖hn‖S′ ≤ K(S

′)N2(τ1+δs1+1)
n . (7.101)

Now, consider any s > s1 and write s := (1 − t)s1 + tS′ where S′ > s, t ∈ (0, 1). By
interpolation

‖hn‖s ≤ K(s1, S
′)‖hn‖

1−t
s1
‖hn‖

t
S′

(7.70),(7.101)
≤ K(S′)N−(σ+1)(1−t)

n Nαt
n

= K(S′)N−1
n , (7.102)

having set α := 2(τ1 + δs1 + 1), and choosing S′ (large) such that

t =
s − s1

S′ − s1
=

σ + 2
σ + 1+ α

.

In conclusion, (7.102) implies that
∑
n ‖hn‖s <∞ and so u(ε, λ) ∈ Hs , for any s.
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