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Abstract. We determine parts of the contact homology of certain contact 3-manifolds in the frame-
work of open book decompositions, due to Giroux. We study two cases: when the monodromy map
of the compatible open book is periodic and when it is pseudo-Anosov. For an open book with
periodic monodromy, we verify the Weinstein conjecture. In the case of an open book with pseudo-
Anosov monodromy, suppose the boundary of a page of the open book is connected and the frac-
tional Dehn twist coefficient c equals k/n, where n is the number of prongs along the boundary. If
k ≥ 2, then there is a well-defined linearized contact homology group. If k ≥ 3, then the linearized
contact homology is exponentially growing with respect to the action, and every Reeb vector field
of the corresponding contact structure admits an infinite number of simple periodic orbits.
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1. Background and introduction

About ten years ago, Emmanuel Giroux [Gi] described a 1-1 correspondence between
isotopy classes of contact structures and equivalence classes of open book decomposi-
tions (in any odd dimension). This point of view has been extremely fruitful, particularly
in dimension three. Open book decompositions were the conduit for defining the con-
tact invariant in Heegaard–Floer homology (due to Ozsváth–Szabó [OSz]). This contact
invariant has been studied by Lisca–Stipsicz [LS] and others with great success, and has
contributed considerably to the understanding of tight contact structures on Seifert fibered
spaces. It was also open book decompositions that enabled the construction of concave
symplectic fillings for any contact 3-manifold (due to Eliashberg [El] and Etnyre [Et1]);
this in turn was the missing ingredient in Kronheimer–Mrowka’s proof of Property P
for knots [KM]. In higher dimensions, the full potential of the open book framework is
certainly not yet realized, but we mention Bourgeois’ existence theorem for contact struc-
tures on any odd-dimensional torus T 2n+1 [Bo2].

The goal of this paper is to use the open book framework to calculate parts of the
contact homology HC(M, ξ) of a contact manifold (M, ξ) adapted to an open book de-
composition, in dimension three. Giroux already indicated that there exists a Reeb vector
field R which is in a particularly nice form with respect to the open book: R is transverse
to the interior of each page S, and is tangent to and agrees with the orientation of the
binding ∂S of the open book. (Here the orientation of ∂S is induced from S.) The diffi-
culty that we encounter is that this Reeb vector field is not nice enough in general, e.g.,
it is not easy to see whether the contact homology is cylindrical, and boundary maps are
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difficult to determine. (Some results towards understanding HC(M, ξ) were obtained by
Yau [Y2, Y3].)

In this paper we prove that, for large classes of tight contact 3-manifolds, HC(M, ξ)
is cylindrical, and moreover that HC(M, ξ) 6= 0. What enables us to get a handle on
the contact homology is a better understanding of tightness in the open book framework.
The second author, together with Kazez and Matić [HKM], showed a contact manifold
(M, ξ) is tight if and only if all its compatible open books have right-veering monodromy.
We will see that there is a distinct advantage to restricting our attention to right-veering
monodromy maps.

In this section we review some notions around open book decompositions in dimen-
sion three.

1.1. Fractional Dehn twist coefficients

Let S be a compact oriented surface with nonempty boundary ∂S. Fix a reference hyper-
bolic metric on S so that ∂S is geodesic. (This excludes the cases where S is a disk or an
annulus, which we understand well.) Suppose that ∂S is connected. Let h : S → S be a
diffeomorphism for which h|∂S = id. If h is not reducible, then h is freely homotopic to
a homeomorphism ψ of one of the following two types:

(1) A periodic diffeomorphism, i.e., there is an integer n > 0 such that ψn = id.
(2) A pseudo-Anosov homeomorphism.

Let H : S × [0, 1] → S be the free isotopy from h(x) = H(x, 0) to its periodic or
pseudo-Anosov representative ψ(x) = H(x, 1). We can then define β : ∂S × [0, 1] →
∂S × [0, 1] by sending (x, t) 7→ (H(x, t), t), i.e., β is the trace of the isotopy H along
∂S. Form the union of ∂S × [0, 1] and S by gluing ∂S × {1} and ∂S. By identifying this
union with S, we construct the homeomorphism β∪ψ on S which is isotopic to h relative
to ∂S. We will assume that h = β ∪ ψ , although ψ is usually just a homeomorphism in
the pseudo-Anosov case. (More precisely, ψ is smooth away from the singularities of the
stable/unstable foliations.)

If we choose an oriented identification ∂S ' R/Z, then we can define an orientation-
preserving homeomorphism f : R→ R as follows: lift β : R/Z×[0, 1] → R/Z×[0, 1]
to β̃ : R × [0, 1] → R × [0, 1] and set f (x) = β̃(x, 1) − β̃(x, 0) + x. We then call β
a fractional Dehn twist by an amount c ∈ Q, where c is the rotation number of f , i.e.,
c = limn→∞ (f

n(x)− x)/n for any x. In case ψ is periodic, c is simply f (x) − x for
any x. In the pseudo-Anosov case, c can be described as in the next paragraphs.

A pseudo-Anosov homeomorphism ψ is equipped with a pair of laminations—the
stable and unstable measured geodesic laminations (3s, µs) and (3u, µu)—which sat-
isfy ψ(3s, µs) = (3s, τµs) and ψ(3u, µu) = (3u, τ−1µu) for some τ > 1. (Here 3s

and3u are the laminations and µs and µu are the transverse measures.) The lamination3
(=3s or3u) is minimal (i.e., does not contain any sublaminations), does not have closed
or isolated leaves, is disjoint from the boundary ∂S, and every component of S − 3 is
either an open disk or a semi-open annulus containing a component of ∂S. In particular,
every leaf of 3 is dense in 3.
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Now the connected component of S − 3s containing ∂S is a semi-open annulus A
whose metric completion Â has geodesic boundary consisting of n infinite geodesics
λ1, . . . , λn. Suppose that the λi are numbered so that i increases (modulo n) in the direc-
tion given by the orientation on ∂S. Now let Pi ⊂ A be a semi-infinite geodesic which
begins on ∂S, is perpendicular to ∂S, and runs parallel to γi and γi+1 (modulo n) along
the “spike” that is “bounded” by γi and γi+1. These Pi will be referred to as the prongs.
Let xi = Pi ∩ ∂S be the endpoint of Pi on ∂S. We may assume that ψ permutes (rotates)
the prongs, and in particular there exists an integer k so that ψ : xi 7→ xi+k for all i. It
then follows that c is a lift of k/n ∈ R/Z to Q.

If ∂S is not connected, then one can similarly define a fractional Dehn twist coeffi-
cient ci for the ith boundary component of S.

1.2. Open book decompositions and tightness

In this paper, the ambient 3-manifold M is oriented and the contact structure ξ is coori-
ented.

Let (S, h) be a pair consisting of a compact oriented surface S and a diffeomorphism
h : S

∼
−→ S which restricts to the identity on ∂S, and let K be a link in a closed oriented

3-manifold M . An open book decomposition for M with binding K is a homeomorphism
between ((S × [0, 1])/∼h, (∂S × [0, 1])/∼h) and (M,K). The equivalence relation ∼h
is generated by (x, 1) ∼h (h(x), 0) for all x ∈ S and (y, t) ∼h (y, t ′) for all y ∈ ∂S
and t, t ′ ∈ [0, 1]. We will often identify M with (S × [0, 1])/∼h; with this identification
St = S × {t}, t ∈ [0, 1], is called a page of the open book decomposition and h is
called the monodromy map. Two open book decompositions are equivalent if there is an
ambient isotopy taking binding to binding and pages to pages. We will denote an open
book decomposition by (S, h), although, strictly speaking, an open book decomposition
is determined by the triple (S, h,K). There is a slight difference between the two—if we
do not specify K ⊂ M , we are referring to isomorphism classes of open books instead of
isotopy classes.

Every closed 3-manifold has an open book decomposition, but it is not unique. One
way of obtaining inequivalent open book decompositions is to perform a positive or neg-
ative stabilization: (S′, h′) is a stabilization of (S, h) if S′ is the union of the surface S
and a band B attached along the boundary of S (i.e., S′ is obtained from S by attaching
a 1-handle along ∂S), and h′ is defined as follows. Let γ be a simple closed curve in S′

“dual” to the cocore of B (i.e., γ intersects the cocore of B at exactly one point) and let
idB ∪h be the extension of h by the identity map to B ∪ S. Also let Rγ be the positive (or
right-handed) Dehn twist about γ . Then for a positive stabilization, h′ = Rγ ◦ (idB ∪ h),
and for a negative stabilization, h′ = R−1

γ ◦ (idB ∪ h). It is well-known that if (S′, h′) is a
positive (resp. negative) stabilization of (S, h), and (S, h) is an open book decomposition
of (M,K), then (S′, h′) is an open book decomposition of (M,K ′) where K ′ is obtained
by a Murasugi sum of K (also called the plumbing of K) with a positive (resp. negative)
Hopf link.

According to Giroux [Gi], a contact structure ξ is supported by the open book decom-
position (S, h,K) if there is a contact 1-form α which:
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(1) induces a symplectic form dα on each page St ;
(2) K is transverse to ξ , and the orientation on K given by α is the same as the boundary

orientation induced from S coming from the symplectic structure.

In the 1970’s, Thurston and Winkelnkemper [TW] showed that (in Giroux’s terminology)
any open book decomposition (S, h,K) of M supports a contact structure ξ . Moreover,
the contact planes can be made arbitrarily close to the tangent planes of the pages, away
from the binding.

The following result is the converse (and more), due to Giroux [Gi].

Theorem 1.1 (Giroux). Every contact structure (M, ξ) on a closed 3-manifold M is
supported by some open book decomposition (S, h,K). Moreover, two open book de-
compositions (S, h,K) and (S′, h′,K ′) which support the same contact structure (M, ξ)
become equivalent after applying a sequence of positive stabilizations to each.

Akbulut–Ozbagci [AO] and Giroux (independently) also clarified the role of Stein filla-
bility, inspired by the work of Loi–Piergallini [LP]:

Corollary 1.2 (Loi–Piergallini, Akbulut–Ozbagci, Giroux). A contact structure ξ on M
is holomorphically fillable if and only if ξ is supported by some open book (S, h,K) with
h a product of positive Dehn twists.

The second author, together with Kazez and Matić [HKM], partially clarified the role of
tightness in the open book framework. In particular, the following theorem was obtained:

Theorem 1.3. A contact structure (M, ξ) is tight if and only if all of its open book de-
compositions (S, h) have right-veering h.

We will briefly describe the notion of right-veering. Let α and β be isotopy classes, rel
endpoints, of properly embedded oriented arcs [0, 1] → S with a common initial point
α(0) = β(0) = x ∈ ∂S. Assume α 6= β. Choose representatives a, b of α, β so that
they intersect transversely (this include the endpoints) and efficiently, i.e., with the fewest
possible number of intersections. Then we say β is strictly to the right of α if the tangent
vectors (ḃ(0), ȧ(0)) define the orientation on S at x. A monodromy map h is right-veering
if for every choice of basepoint x ∈ ∂S and every choice of arc α based at x, h(α) is α or
is strictly to the right of α.

Theorem 1.4. Suppose h is freely homotopic to ψ which is periodic or pseudo-Anosov,
and ci is the fractional Dehn twist coefficient corresponding to the ith boundary compo-
nent of S.

(1) If ψ is periodic, then h is right-veering if and only if all ci are nonnegative. Hence
(M, ξ) is overtwisted if some ci is negative.

(2) If ψ is pseudo-Anosov, then h is right-veering if and only if all ci are positive. Hence
(M, ξ) is overtwisted if some ci is nonnegative.
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2. Main results

In this article, we prove the existence and nontriviality of cylindrical contact homology
for a contact structure (M, ξ) given by an open book decomposition (S, h) with periodic
or pseudo-Anosov monodromy, under favorable conditions. Here S is a compact, oriented
surface with nonempty boundary ∂S (often called a “bordered surface”), and h : S

∼
−→ S is

an orientation-preserving diffeomorphism which restricts to the identity on the boundary.
One of the motivating problems in 3-dimensional contact geometry is the following

Weinstein conjecture:

Conjecture 2.1 (Weinstein conjecture). Let (M, ξ) be a contact 3-manifold. Then for
any contact form α with kerα = ξ , the corresponding Reeb vector field R = Rα admits
a periodic orbit.

During the preparation of this paper, Taubes [Ta] gave a complete proof of the Wein-
stein conjecture in dimension three. Our methods are completely different from those of
Taubes, who uses Seiberg–Witten Floer homology instead of contact homology. In some
situations (i.e., Theorem 2.3 and Corollary 2.6), we prove a better result which guarantees
an infinite number of simple periodic orbits.

Prior to the work of Taubes, the Weinstein conjecture in dimension three was verified
for contact structures which admit planar open book decompositions [ACH] (also see
related work of Etnyre [Et2]), for certain Stein fillable contact structures [Ch, Ze], and for
certain universally tight contact structures on toroidal manifolds [BC]. We also refer the
reader to the survey article by Hofer [H2].

2.1. The periodic case

Our first result is the following:

Theorem 2.2. The Weinstein conjecture holds when (S, h) has periodic monodromy.

Proof. By the work of Hofer [H1], the Weinstein conjecture holds for overtwisted contact
structures, on S3 and manifolds which are covered by S3, and on manifolds for which
π2(M) 6= 0. If any of the fractional Dehn twist coefficients ci are negative, then (M, ξ) is
overtwisted by Theorem 1.4. If any ci is zero, then h = id. In this case, M is a connected
sum of (S1

× S2)’s, and has π2(M) 6= 0.
When all the ci are positive and the universal cover of M is R3, then the cylindrical

contact homology is well-defined and nontrivial by Theorem 4.4. ut

In the periodic case, we also prove Theorem 4.2, which states that (M, ξ) is tight if and
only if h is right-veering. Moreover, the tight contact structures are S1-invariant and also
Stein fillable.

2.2. The pseudo-Anosov case

We now turn our attention to the pseudo-Anosov case. For simplicity, suppose S has only
one boundary component. Then h gives rise to two invariants: the fractional Dehn twist
coefficient c and the pseudo-Anosov homeomorphism ψ which is freely homotopic to h.
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If c ≤ 0, then the contact manifold (M, ξ) is overtwisted by Theorem 1.4. Hence we
restrict our attention to c > 0. Let us write c = k/n, where n is the number of prongs
about the unique boundary component ∂S. Our main theorem is the following:

Theorem 2.3. Suppose ∂S is connected and c = k/n is the fractional Dehn twist coeffi-
cient.

(1) If k ≥ 2, then any chain group (A(α, J ), ∂) of the full contact homology admits an
augmentation ε. Hence there is a well-defined linearized contact homology group
HCε(M, α, J ).

(2) If k ≥ 3, then the linearized contact homology group HCε(M, α, J ) has exponential
growth with respect to the action. (In particular, HCε(M, α, J ) is nontrivial.)

For the notions of full contact homology, linearized contact homology, and augmenta-
tions, see Section 3. The action Aα(γ ) of a closed orbit γ with respect to a contact 1-
form α is

∫
γ
α. The linearized contact homology group HCε(M, α, J ) with respect to the

contact 1-form α and adapted almost complex structure J on the symplectization is said
to have exponential growth with respect to the action if there exist constants c1, c2 > 0
so that the number of linearly independent generators in HCε(M, α, J ) which are repre-
sented by

∑
i ai(γi − ε(γi)), ai ∈ Q, with Aα(γi) < L for all i is greater than c1e

c2L.
Here the contact homology groups are defined over Q. The notion of exponential growth
with respect to the action is independent of the choice of contact 1-form α and almost
complex structure J in the following sense: Given another A(α′, J ′), there is a chain map
8 : A(α′, J ′) → A(α, J ) which pulls back the augmentation ε on A(α, J ) to 8∗ε on
A(α′, J ′), so that HC8

∗ε(M, α′, J ′) ' HCε(M, α, J ) and HC8
∗ε(M, α′, J ′) has expo-

nential growth if and only if HCε(M, α, J ) does.
Theorem 2.3, together with Theorem 1.4, implies the following:

Corollary 2.4. The Weinstein conjecture holds for (M, ξ) which admits an open book
with pseudo-Anosov monodromy if either c ≤ 0 or c ≥ 3/n.

In [CH2], we prove that every open book (S, h) can be stabilized (after a finite number of
stabilizations) to (S′, h′) so that h′ is freely homotopic to a pseudo-Anosov homeomor-
phism and ∂S′ is connected. This proves that “almost all” contact 3-manifolds satisfy the
Weinstein conjecture.

Remark 2.5. With our approach, it remains to prove the Weinstein conjecture for c =
1/n and 2/n. The c = 1/n case is fundamentally different, and requires a different strat-
egy; the c = 2/n case might be possible by a more careful analysis of Conley–Zehnder
indices.

We also have the following:

Corollary 2.6. Let α be a contact 1-form for (M, ξ) which admits an open book with
pseudo-Anosov monodromy and c ≥ 3/n. Then the corresponding Reeb vector field Rα
admits an infinite number of simple periodic orbits.

In the corollary we do not require that the contact 1-form α be nondegenerate. The proof
of Corollary 2.6 will be given in Section 11.3.
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The main guiding philosophy of the paper is that a Reeb flow is not too unlike a
pseudo-Anosov flow on a 3-manifold, since both types of flows are transversely area-
preserving. The difference between the two will be summarized briefly in Section 6.1 and
discussed more thoroughly in the companion paper [CHL].

We are also guided by the fundamental work of Gabai–Oertel [GO] on essential lam-
inations, which we now describe as it pertains to our situation. Suppose S is hyperbolic
with geodesic boundary. Suspending the stable geodesic lamination3s ofψ , for example,
we obtain a codimension 1 lamination L onM , which easily satisfies the conditions of an
essential lamination, provided k > 1. In particular, the universal cover M̃ ofM is R3 and
each leaf of L has fundamental group which injects into π1(M).

The following is an immediate corollary of the proof of Theorem 2.3:

Corollary 2.7. A contact structure (M, ξ) supported by an open book with pseudo-
Anosov monodromy with k > 1 is universally tight with universal cover R3.

2.3. Growth rates of contact homology

Theorem 2.3 opens the door to questions about the growth rates of linearized contact
homology groups on various contact manifolds.

Example 1. Consider the standard tight contact structure on S3. Modulo taking direct
limits, there is a contact 1-form with two simple periodic orbits, both of elliptic type. The
two simple orbits, together with their multiple covers, generate the cylindrical contact
homology group. Hence the growth is linear with respect to the action.

Example 2. Consider the unique Stein fillable tight contact structure (T 3, ξ), given by
α = sin(2πz)dx − cos(2πz)dy on T 3

= R3/Z3 with coordinates (x, y, z). Modulo
direct limits, the closed orbits are in 2-1 correspondence with Z2

− {(0, 0)}. Hence the
cylindrical contact homology grows quadratically with respect to the action.

Example 3. The set of periodic orbits of the geodesic flow on the unit cotangent bundle
of a closed hyperbolic surface6 is in 1-1 correspondence with the set of closed geodesics
of 6. Hence the cylindrical contact homology of the corresponding contact structure
grows exponentially with respect to the action.

Question 2.8. Which contact manifolds (M, ξ) have linearized contact homology with
exponential growth? Are there contact manifolds which have linearized contact homology
with polynomial growth, where the degree of the polynomial is greater than 2?

A special case of the question is:

Question 2.9. What happens to contact structures on circle bundles over closed hyper-
bolic surfaces 6 with Euler number between 0 and 2g(6) − 3, which are transverse to
the fibers? Here g(6) is the genus of 6.

Euler number 2g(6)−2 corresponds to the unit cotangent bundle case; on the other hand,
Euler number ≤ −1 corresponds to the S1-invariant case, and has linear growth.
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We also conjecture the following:

Conjecture 2.10. Universally tight contact structures on hyperbolic manifolds have ex-
ponential growth.

Organization of the paper. The notions of contact homology will be described in Sec-
tion 3. In particular we quickly review the notions of augmentations and linearizations.
Section 4 is devoted to the periodic case. In particular, we show that a periodic (S, h) is
tight if and only if h is right-veering (Theorem 4.2); moreover, a tight (S, h) with peri-
odic monodromy is Stein fillable. In Section 5, we present the Rademacher function and
its generalizations, adapted to periodic and pseudo-Anosov homeomorphisms. In Sec-
tion 6 we construct the desired Reeb vector field R which closely hews to the suspension
lamination. This section is the technical heart of the paper, and is unfortunately rather in-
volved. Section 7 is devoted to some discussions on perturbing the contact form to make it
nondegenerate. Then in Sections 8 and 9, we give restrictions on the holomorphic disks
and cylinders. In particular, we prove Theorem 8.1, which states that for any N � 0
there is a contact 1-form α for a contact structure which is supported by an open book
with pseudo-Anosov monodromy and fractional Dehn twist coefficient c > 1/n, so that
none of the closed orbits γ of action ≤ N are positive asymptotic limits of (holomorphic)
finite energy planes ũ. The actual calculation of contact homology with such contact 1-
forms will involve direct limits, discussed in Section 10. We then prove Theorem 2.3(1)
in Section 10.2. Finally, we discuss the growth rate of periodic points of a pseudo-Anosov
homeomorphism and use it to conclude the proofs of Theorem 2.3(2) and Corollary 2.6
in Section 11.

3. Contact homology

In this section we briefly describe the full contact homology, its linearizations, and
Morse–Bott theory. Contact homology theory is part of the symplectic field theory
of Eliashberg–Givental–Hofer [EGH]. For a readable account, see Bourgeois’ lecture
notes [Bo3].

Disclosure. The full details of contact homology have not yet appeared. In particular,
the gluing argument and, more importantly, the treatment of multiply-covered orbits are
not written anywhere. However, various portions of the theory are available. For the
asymptotics, refer to Hofer–Wysocki–Zehnder [HWZ1]. Compactness was explained in
[BEHWZ]. The Fredholm theory and transversality (for non-multiply-covered curves)
were treated by Dragnev [Dr]. For the Morse–Bott approach, refer to [Bo1]. Examples of
contact homology calculations were done by Bourgeois–Colin [BC], Ustilovsky [U] and
Yau [Y1].

3.1. Definitions

Let (M, ξ) be a contact manifold, α a contact form for ξ , and R = Rα the corre-
sponding Reeb vector field, i.e., iRdα = 0 and iRα = 1. Consider the symplectization
(R×M,d(etα)), where t is the coordinate for R. We will restrict our attention to almost
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complex structures J on R × M which are adapted to the symplectization: If we write
T(t,x)(R ×M) = R∂/∂t ⊕ RR ⊕ ξ , then J maps ξ to itself and sends ∂/∂t 7→ R and
R 7→ −∂/∂t .

Let γ be a closed orbit of R with period T . The closed orbit γ is nondegenerate if the
derivative ξγ (0)→ ξγ (T ) of the first return map does not have 1 as an eigenvalue. A Reeb
vector field R is said to be nondegenerate if all its closed orbits γ are nondegenerate.
Suppose α is a contact 1-form for which R is nondegenerate.

A closed orbit is said to be good if it does not cover a simple orbit γ an even number
of times, where the first return map ξγ (0) → ξγ (T ) has an odd number of eigenvalues in
the interval (−1, 0). Here T is the period of the orbit γ . Let P = Pα be the collection of
good closed orbits of R = Rα . We emphasize that P includes multiple covers of simple
periodic orbits, as long as they are good.

In dimension three, a closed orbit γ has even parity (resp. odd parity) if the derivative
of the first return map is of hyperbolic type with positive eigenvalues (resp. is either of
hyperbolic type with negative eigenvalues or of elliptic type). The Conley–Zehnder index
is a lift of the parity from Z/2Z to Z. If γ is a contractible periodic orbit which bounds
a disk D, then we trivialize ξ |D and define the Conley–Zehnder index µ(γ,D) to be the
Conley–Zehnder index of the path of symplectic maps {dφt : ξγ (0) → ξγ (t), t ∈ [0, T ]}
with respect to this trivialization, where φt is the time t flow of the Reeb vector field R. In
our cases of interest, π2(M) = 0, so µ(γ ) is independent of the choice ofD. We will also
sometimes write |γ | = µ(γ ) − 1. If γ , γ ′1, . . . , γ

′
m ∈ P and [γ ] = [γ ′1] + · · · + [γ

′
m] ∈

H1(M;Z), then let Z be a surface whose boundary is γ − γ ′1 − · · · − γ
′
m. Trivialize

ξ |Z and define the Conley–Zehnder index µ[Z](γ, γ ′1, . . . , γ
′
m) with respect to the relative

homology class [Z] ∈ H2(M, γ ∪
⋃
i γ
′

i ) to be the Conley–Zehnder index of γ minus the
sum from i = 1 to m of the Conley–Zehnder indices of γ ′i , all calculated with respect to
the trivialization on Z.

Now, we fix a point mγ , called a marker, on each simple periodic orbit γ . Also, an
asymptotic marker at z ∈ S2 is a ray r originating from z.

Define Hol[Z](J, γ, γ ′1, . . . , γ
′
m) to be the set of all holomorphic maps

ũ = (a, u) : (6 = S2
− {x, y1, . . . , ym}, j)→ (R×M,J),

together with asymptotic markers r at x and ri at yi , i = 1, . . . , m, subject to the follow-
ing:

• limρ→0 u(ρ, θ) = γ (θ) near x;
• limρ→0 u(ρ, θ) = γ

′

i (θ) near y′1, . . . , y
′
m;

• the limit of u as ρ → 0 along r is mγ ;
• the limit of u as ρ → 0 along ri is mγ ′i ;
• limρ→0 a(ρ, θ) = +∞ near x;
• limρ→0 a(ρ, θ) = −∞ near y′1, . . . , y

′
m.

Here, x, y1, . . . , ym ∈ S
2, j is a complex structure on 6, u is in the class [Z], we are

using polar coordinates (ρ, θ) near each puncture, and γ (θ) and γ ′i (θ), i = 1, . . . , m,
refer to some parametrization of the trajectories γ and γ ′i . The convergence for u(ρ, θ)
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and a(ρ, θ) is in the C0-topology. In the current situation, the punctures x, y1, . . . , ym,
the complex structure j , and the asymptotic markers r, r1, . . . , rm are allowed to vary,
while the markers mγ stay fixed.

Next, two curves ũ : (6 = S2
− {x, y1, . . . , ym}, j) → (R ×M,J) and ũ′ : (6 =

S2
− {x′, y′1, . . . , y

′
m}, j

′) → (R ×M,J) in Hol[Z](J, γ, γ ′1, . . . , γ
′
m) are equivalent if

ũ′ = ũ ◦ H , where H is a biholomorphism of 6 which takes the asymptotically marked
punctures

((x′, r ′), (y′1, r
′

1), . . . , (y
′
m, r
′
m))→ ((x, r), (y1, r1), . . . , (ym, rm)).

We define the moduli space M[Z](J, γ, γ
′

1, . . . , γ
′
m) to be the quotient of

Hol[Z](J, γ, γ ′1, . . . , γ
′
m) under the above equivalence relation. The moduli space

M[Z](J, γ, γ
′

1, . . . , γ
′
m) supports an R-action (in the target), obtained by translat-

ing a curve along the R-direction of R × M . Assuming sufficient transversality,
M[Z](J, γ, γ

′

1, . . . , γ
′
m)/R is endowed with the structure of a weighted branched man-

ifold with rational weights. For that one can use the Kuranishi perturbation theory of
Fukaya–Ono [FO] or the multi-valued perturbation of Liu and Tian [LT]; see also Mc-
Duff [McD]. In that case, M[Z](J, γ, γ

′

1, . . . , γ
′
m)/R is a union of manifolds with cor-

ners along a codimension one branching locus, each piece having the expected dimension
µ[Z](γ, γ

′

1, . . . , γ
′
m)− (1−m)− 1. When this dimension is 0, we find a finite collection

of points, according to the “Gromov compactness theorem” due to [BEHWZ].
We now define the full contact homology groups FHC(M, α, J ). The contact homol-

ogy groups are necessarily defined over Q, since we must treat multiply covered orbits.
The chain group is the supercommutative Q-algebra A = A(α, J ) with unit, which is
freely generated by the elements of P . Here supercommutative means that γ1 and γ2
commute if one of them has odd parity (and hence even degree | · |) and anticommute
otherwise. Now the boundary map ∂ : A→ A is given on elements γ ∈ P by

∂γ =
∑ nγ,γ ′1,...,γ

′
m

(i1)! . . . (il)!κ(γ
′

1) . . . κ(γ
′
m)
γ ′1 . . . γ

′
m,

where the sum is over all unordered tuples γ ′ = (γ ′1, . . . , γ
′
m) of orbits of P and homology

classes [Z] ∈ H2(M, γ ∪
⋃
i γ
′

i ) so that, for any given ordering γ ′1, . . . , γ
′
m of γ ′, the

expected dimension of the moduli space M[Z](J, γ, γ
′

1, . . . , γ
′
m)/R is zero. Here κ(γ )

is the multiplicity of γ . The integers i1, . . . , il denote the number of occurrences of each
orbit γ ′i in the list γ ′1, . . . , γ

′
m. Also, we denote by nγ,γ ′1,...,γ ′m the signed weighted count

of points in M[Z](γ, γ
′

1, . . . , γ
′
m)/R, for the corresponding ordering of γ ′, following a

coherent orientation scheme as given in [EGH]. This definition does not depend on the
ordering of γ ′, since if we permute γ ′i and γ ′i+1, the coefficient nγ,γ ′1,...,γ ′m is multiplied

by (−1)|γ
′
i | |γ

′

i+1|, which is annihilated by the sign coming from the supercommutativity
of A. If γ , γ ′1, . . . , γ

′
m are multiply covered, then each non-multiply-covered holomorphic

curve ũ ∈M[Z](γ, γ
′

1, . . . , γ
′
m)/R contributes ±κ(γ )κ(γ ′1) . . . κ(γ

′
m) to nγ,γ ′1,...,γ ′m . This

is due to the fact that, for the puncture x (resp. yi), there are κ(γ ) (resp. κ(γ ′i )) possible
positions for the asymptotic marker r (resp. ri). If ũ is a cover of a somewhere injective
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holomorphic curve, then it is counted as± 1
k
(κ(γ )κ(γ ′1) . . . κ(γ

′
m)), where k is the number

of automorphisms of the cover, since this group of automorphisms acts freely on the set
of asymptotic markers and thus allows us to identify different positions. The coefficient
i1! . . . il ! takes into account the following overcounting: if, for example, y1, . . . , yi1 go
to γ ′1, then, for any permutation of these indices, the corresponding permutation of the
punctures will give rise to different maps in M[Z](γ, γ

′

1, . . . , γ
′
m)/R. The definition of ∂

is then extended to all of A using the graded Leibniz rule.

Theorem 3.1 (Eliashberg–Givental–Hofer). (1) ∂2
= 0, so that (A(α, J ), ∂) is a differ-

ential graded algebra.
(2) FHC(M, α, J ) = H∗(A(α, J ), ∂) does not depend on the choice of the contact

form α for ξ , the complex structure J and the multi-valued perturbation.

The action Aα(γ ) =
∫
γ
α of a closed orbit γ with respect to the 1-form α gives rise

to a filtration, which we call the action filtration. Define the action of γ1 . . . γm to be
Aα(γ1 . . . γm) =

∑m
i=1Aα(γi). The boundary map is action-decreasing, since every non-

trivial holomorphic curve has positive dα-energy. There is a second filtration which comes
from an open book decomposition, which we call the open book filtration, and is given
by the number of times an orbit intersects a given page. This will be described in more
detail in Section 9.

3.2. Linearized contact homology

In this subsection we discuss augmentations, as well as linearizations of contact homol-
ogy induced by the augmentations. We have learned what is written here from Tobias
Ekholm [Ek]. Details of the assertions are to appear in [BEE]. The notion of an augmen-
tation first appeared in [Chk], in the context of Legendrian contact homology.

Let (A = A(α, J ), ∂) be the chain group for the full contact homology as defined
above. An augmentation for A is a Q-algebra homomorphism ε : A→ Q which is also
a chain map. (Here we are assuming that the boundary map ∂ ′ for Q satisfies ∂ ′a = 0 for
all a ∈ Q. This means that ε∂ = 0.) In this paper, we will assume that ε(a) = 0 if a not
contractible or if a is contractible but |a| 6= 0. (Recall that π2(M) = 0 in this paper.) Let
Aug(A, ∂) denote the set of augmentations of (A, ∂).

An augmentation ε for (A, ∂) induces a “change of coordinates” a 7→ a = a − ε(a)

of A, where a ∈ P . Then ∂a has the property that it does not have any constant terms
when expressed in terms of sums of words in ai . (Proof by example: Suppose ∂a =
1+ a1 + a2a3. Then

∂a = 1+ (a1 + ε(a1))+ (a2 + ε(a2))(a3 + ε(a3)) = ε(1+ a1 + a2a3)+ h.o. = h.o.

Here ‘h.o.’ means higher order terms in the word length filtration.) In other words, with
respect to the new generators a, ∂ is nondecreasing with respect to the word length filtra-
tion, i.e., ∂ = ∂1+∂2+· · · , where ∂j is the part of the boundary map which counts words
of length j in the ai’s. Therefore it is possible to define the linearized contact homology
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group HCε(M, α, J ) with respect to ε to be the homology of (A1, ∂1), where A1 is the
Q-vector space generated by the ai for all ai ∈ P .

Example 1: cylindrical contact homology. When ∂a does not have a constant term
for all a ∈ P , then it admits the trivial augmentation ε which satisfies ε(1) = 1 and
ε(a) = 0 for all a ∈ P . The linearized contact homology with respect to the trivial
augmentation ε is usually called cylindrical contact homology, and will be denoted by
HC(M, α, J ). If we restrict to the class of nondegenerate Reeb vector fields Rα with
trivial augmentations, then HC(M, α, J ) does not depend on α (or on J ) and will be
written as HC(M, ξ = kerα).

We make two remarks about cylindrical contact homology. First, the trivial augmen-
tation does not always exist. Second, it is possible to have finite energy planes which
asymptotically limit to a at the positive end and still have ∂a without a constant term, as
long as the total signed count is zero.

Example 2: augmentations from cobordisms. Suppose (X4, ω) is an exact symplec-
tic cobordism with (M, α) at the positive end and (M ′, α′) at the negative end, and J
be a compatible almost complex structure on (X4, ω). If A(M ′, α′, J |kerα′) admits an
augmentation

ε′ : A(M ′, α′, J |kerα′)→ Q,
then we can compose it with the chain map

8(X,J ) : A(M, α, J |kerα)→ A(M ′, α′, J |kerα′)

to obtain the pullback augmentation ε = 8∗(X,J )ε
′
= ε′ ◦ 8(X,J ). Moreover, we have an

induced map
HCε(M, α)→ HCε

′

(M ′, α′)

between the linearized contact homology groups.
Two augmentations ε0, ε1 : (A, ∂)→ Q are said to be homotopic if there is a deriva-

tion K : (A, ∂)→ (A, ∂) of degree 1 satisfying

ε1 = ε0 ◦ e
∂◦K+K◦∂ .

Theorem 3.2 (Bourgeois–Ekholm–Eliashberg). (1) If ε0, ε1 are homotopic augmenta-
tions of (A(M, α, J ), ∂), then

HCε0(M, α, J ) ' HCε1(M, α, J ).

(2) Given a 1-parameter family of compatible almost complex structures Jt , t ∈ [0, 1],
on the exact symplectic cobordism (X4, ω) from (M, α) to (M ′, α′) which agrees
with J on M and J ′ on M ′, and an augmentation ε′ on A(M ′, α′, J ′), the pullback
augmentations ε0 = ε

′
◦8(X,J0) and ε1 = ε

′
◦8(X,J1) are homotopic and induce the

same map
HCεi (M, α, J )→ HCε

′

(M ′, α′, J ′).

(3) The set
{HCε(M, α, J ) | ε ∈ Aug(A(M, α, J ), ∂)}

of linearized contact homologies up to isomorphism is an invariant of (M, ξ = kerα).
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3.3. Morse–Bott theory

We briefly describe how to compute the cylindrical contact homology of a degenerate
contact form of Morse–Bott type. For more details, we refer the reader to Bourgeois’
thesis [Bo2]. Again, let φt be the time t flow of the Reeb vector field Rα of α.

A contact form α is of Morse–Bott type if:

(1) the action spectrum σ(α) = {Aα(γ ) | γ periodic orbit} is discrete;
(2) the union NT of fixed points of φT is a closed submanifold of M;
(3) the rank of dα|NT is locally constant and TpNT = ker(dφT (p)− I ).

The submanifold NT is foliated by orbits of Rα . In the case where dimNT = 3, the
manifold NT is a Seifert fibered space. The quotient space ST is thus an orbifold, whose
singularities with singularity groups Z/mZ are the projections of orbits of actions T/m.

Choose a complex structure J on ξ which is invariant under the S1-action on NT
induced by the flow φt . Now, for each T , pick a Morse function fT : ST → R so that
the downward gradient trajectory of fT with respect to the metric induced from dα(·, J ·)

(by quotienting out the S1-direction) is of Morse–Smale type. We also assume that, if
ST ⊂ SkT , then fkT extends the function fT so that fkT has positive definite Hessian in
the normal directions to ST .

Let γ ∈ ST . We choose a trivialization of ξ |γ . As before, define the Conley–Zehnder
index µ(γ ) to be the Conley–Zehnder index of the path

{dφt (γ (0)) : ξγ (0)→ ξγ (T ), t ∈ [0, T ]}

with respect to the trivialization, using the Robbin–Salamon definition [RS]. (Note that
the value 1 belongs to the spectrum of the map dφT (γ (0)), with eigenspace isomorphic
to the tangent space of ST .)

If γ ∈ ST is a critical point of fT , then define the grading |γ | of γ as

|γ | = µ(γ )− 1
2 dim ST + indexγ (fT )− 1.

The parity of |γ | does not depend on the choice of framing of ξ along γ . Also, if γ ∈ ST ,
then a choice of framing for ξ along γ induces a framing along any γ ′ ∈ ST , by isotoping
through fibers. The index µ(γ ) then does not depend on γ ∈ ST for this particular family
of framings. If γ ∈ ST , then let mγ denote the m-fold cover of γ in SmT . A critical
point γ of fT is bad if it is an even multiple 2kγ ′ of a point γ ′ whose parity differs from
the one of γ , and is good otherwise.

Let MBC(α, J ) be the free Q-vector space generated by the good critical points of fT ,
for all T ∈ σ(α). We now briefly describe the differential ∂ on MBC. Let γ+ and γ− be
good critical points of

⊔
T fT . The coefficient 〈∂γ+, γ−〉 of γ− in the differential ∂γ+

is a signed count of points of 0-dimensional moduli spaces of generalized holomorphic
cylinders from γ+ to γ−. A generalized holomorphic cylinder from γ+ to γ− is a finite
collection {C1, . . . , Ck} of J -holomorphic cylinders, together with downward gradient
trajectories {a0, a1, . . . , ak+1} of fT on ST , satisfying the following:

• The holomorphic cylinder Ci , i = 1, . . . , k, is asymptotic to γ+i at +∞ and to γ−i
at −∞.
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• γ+ = γ−0 and γ− = γ+k+1.
• The orbits γ−i and γ+i+1, i = 0, . . . , k, lie on the same component of ST , and ai connects
γ−i to γ+i+1.

The map ∂ is extended linearly to all of MBC(α, J ). The main theorem of Bourgeois’
thesis is the following:

Theorem 3.3. If no orbit of Rα is the asymptotic limit of a finite energy plane, then
(MBC(α, J ), ∂) is a chain complex and its homology is isomorphic to HC(M, ξ).

Example. If M is fibered by Reeb periodic orbits of action T , then ST is a smooth sur-
face. Since all the orbits in NT = M have the same action T , the only generalized cylin-
ders between orbits in ST are the gradient flow lines of fT . Thus, if γ, γ ′ ∈ ST , then
〈∂γ, γ ′〉 will be the same as that given by the Morse differential.

Example. If M is a Seifert fibered space with singular fibers of orders s1, s2, . . . , sn so
that all its fibers are Reeb orbits, then all regular orbits have the same action T , and the
singular orbits have actions T/s1, . . . , T /sn. If γi denotes the singular fiber of action T/si ,
then ST/si is γi . Moreover, µ(γi) is odd since the regular fibers rotate about the singular
fiber. Hence |γi | = µ(γi)− 1 is even.

The above examples will be explored in more detail in Section 4.

4. The periodic case

Suppose the contact 3-manifold (M, ξ) admits an open book decomposition (S, h) with
periodic monodromy. Let ci be the fractional Dehn twist coefficient of the ith boundary
component and ψ be the periodic representative of h.

Theorem 4.1. If all the ci are positive, then (M, ξ) is an S1-invariant contact structure
which is transverse to the S1-fibers.

A transverse contact structure ξ (= transverse to the fibers) on a Seifert fibered space M
with base B and projection map π : M → B is said to be S1-invariant if there is a Reeb
vector field R of ξ so that (i) each fiber π−1(p) is an orbit of R and (ii) a neighborhood
of a singular fiber is a Z/mZ-quotient of S1

×D2 with the standard contact form dt + β,
where t is the coordinate for S1, β is rotationally invariant and independent of t , dβ is an
area form on D2, and the Reeb vector field is ∂/∂t .

Proof of Theorem 4.1. Suppose (S, h) is periodic. Let β be a 1-form on S satisfying
dβ > 0. We additionally require that, along each component of ∂S, β = (C/2π)dφ,
where φ is the angular coordinate of the boundary component equipped with the boundary
orientation, andC > 0 is a constant. If the periodic representativeψ of h has order n (here
ci = ki/n, where ki and n are relatively prime), we average β by taking

β =
1
n

n−1∑
i=0

(ψ i)∗β.
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Consider the [0, 1]-invariant contact 1-form α = dt + β on S × [0, 1]. Here t is
the [0, 1]-coordinate. By construction, α descends to a contact form on the manifold
N = (S × [0, 1])/(x, 1) ∼ (ψ(x), 0) and the corresponding Reeb vector field R on
S × [0, 1] is ∂/∂t . The manifold N is a Seifert fibered space whose fibers are closed or-
bits of R. Observe that a nonsingular fiber intersects S × {0} at n points. Although R is
probably the most natural Reeb vector field, it is highly degenerate, i.e., for each p ∈ S
there is a corresponding closed orbit {p}× S1. Hence we are in the Morse–Bott situation.

We then extend the contact 1-form to the neighborhoodN(K) ' S1
×D2

= R/Z×D2

of each binding component K . Let us use cylindrical coordinates (z, (r, θ)) on N(K),
so that the pages restrict to θ = const. From the construction of α on N , ∂N(K) is
(i) linearly foliated by the Reeb vector field R of slope ci ; and (ii) linearly foliated by
the characteristic foliation of ξ of slope −1/C, C > 0. Here we are using coordinates
(θ/2π, z) to identify ∂N(K) ' R2/Z2.

Start with [0, 1] ×D2 with coordinates (z, (r, θ)) and contact form α = dz+ 1
2 r

2dθ .
Here 1

2 r
2dθ is the primitive of an area form for D2 and is invariant under rotation by

θ = θ0. Moreover, R = ∂/∂z. Now glue {1} × D2 to {0} × D2 via a diffeomorphism φ

which sends (r, θ) 7→ (r, θ + θ0) for some constant θ0. The Reeb vector field R will then
have slope 2π/θ0; pick θ0 so that ci = 2π/θ0. Furthermore, if we adjust the size of the
disk D2 to have a suitable radius, then the characteristic foliation on ∂(S1

× D2) would
have slope −1/C. (For another, more or less equivalent, construction, see Section 6.2.3.)

By taking the n-fold cover of S1
× D2 we obtain a transverse contact structure on

S1
× D2 which is fibered by Reeb vector fields and which does not have any singular

fibers. This completes the proof of Theorem 4.1. ut

Theorem 4.2. If (S, h) has periodic monodromy, then (M, ξ) is tight if and only if h is
right-veering. Moreover, the tight contact structures are Stein fillable.

Let M be a Seifert fibered space over an oriented closed surface of genus g and with r
singular fibers, whose Seifert invariants are β1/α1, . . . , βr/αr . Then the Euler number
e(M) is

∑r
i=1 βi/αi .

Some of the contact structures will be (universally) tight contact structures on lens
spaces, which we know are Stein fillable.

Proof of Theorem 4.2. By Theorem 1.4, h is right-veering if and only if all the ci are
nonnegative. Moreover, if any coefficient ci is negative, then (M, ξ) is overtwisted. If
some ci is 0, then h must be the identity, since ψ is periodic. In this case (M, ξ) is the
standard Stein fillable contact structure on #(S1

× S2).
Hence it remains to consider the case where all ci are positive. According to The-

orem 4.1, (M, ξ) is S1-invariant. According to a result of Lisca and Matić [LM], a
Seifert fibered space M carries an S1-invariant transverse contact structure if and only
if e(M) < 0. It is not hard to see that this S1-invariant contact structure is symplectically
fillable and universally tight.

Neumann and Raymond [NR, Corollary 5.3] have shown that, if e(M) < 0, then
M is the link of an isolated surface singularity with a holomorphic C∗-action. Hence
M is the oriented, strictly pseudoconvex boundary of a compact complex surface (with
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a singularity). Let ξ ′ be the complex tangencies TM ∩ J (TM). The holomorphic C∗-
action on the complex surface becomes an S1-action on M . The vector field X on M
generated by the S1-action is transverse to ξ ′, since JX is transverse to M . Hence X is
a Reeb vector field for ξ ′, and ξ ′ is an S1-invariant transverse contact structure. Now, by
Bogomolov [Bog] (also Bogomolov–de Oliveira [Bd, Theorem (2′)]), (M, ξ ′) is also a
strictly pseudoconvex boundary of a smooth Stein surface.

It remains to identify the S1-invariant transverse contact structures ξ and ξ ′ on M .
By Lemma 4.3 below, there is a unique S1-invariant horizontal contact structure on M
up to isotopy, once the fibering is fixed. By Hatcher [Hat, Theorem 4.3], Seifert fiberings
of closed orientable Seifert fibered spaces over orientable bases are unique up to isomor-
phism, with the exception of S3, S1

× S2, and lens spaces. (The other items on Hatcher’s
list consist ofM with boundary or identifications with Seifert fibered spaces over nonori-
entable bases.) All the tight contact structures on S3, S1

× S2, and lens spaces are Stein
fillable. ut

Lemma 4.3. For any Seifert fibered space M with a fixed fibering, any two S1-invariant
transverse contact structures are isotopic.

Proof. Let π : M → B be a fixed fibering and let ξ , ξ ′ be S1-invariant transverse contact
structures on M . Given any point p in B (p may be a singular fiber), there exist small
neighborhoods U,U ′ ⊂ B of p so that the holonomy of the characteristic foliation of ξ
on π−1(∂U) and ξ ′ on π−1(∂U ′) agree. By taking a diffeomorphism of U to U ′, we may
assume that U = U ′. Writing π−1(U) = S1

× U with fibers S1
× {pt} and coordinates

(t, (x, y)), we may modify t 7→ t+f (x, y) in a neighborhood of ∂U so that ξ = ξ ′ along
S1
× ∂U . The case of a singular fiber is similar.
The rest of the argument is similar to that which appears in Giroux [Gi2]. We now

have S1-invariant transverse contact structures ξ and ξ ′ on S1
×B ′, where B ′ is a surface

with boundary and ξ = ξ ′ on S1
× ∂B ′. We may then write ξ = ker(dt + β) and

ξ ′ = ker(dt + β ′), where β = β ′ on S1
× ∂B ′. Here β and β ′ are 1-forms on B ′ which

are independent of t . We simply interpolate by taking αs = dt + (1 − s)β + sβ ′. Since
dβ and dβ ′ are area forms on B ′, αs is a contact form. ut

Theorem 4.4. If all the ci are positive, then the cylindrical contact homology is well-
defined. If the universal cover of M is R3, then the cylindrical contact homology is non-
trivial.

Proof. If M → B is the Seifert fibration by orbits of the Reeb vector field, then view
the closed, oriented base B as an orbifold. Since we are disallowing the case when the
page S is D2, B is always a good orbifold in the sense of Scott [Sc, Theorem 2.3], and
admits a finite covering which is a closed surface with no orbifold singularities. Now, if
we view a Seifert fibered space M as an orbifold circle bundle, then the pullback bundle
of an orbifold cover π : B ′ → B is a genuine covering space M ′ of M [Sc, Lemma 3.1].
Taking a closed surface B ′ with no singularities, we see thatM ′ is a circle bundle over B ′.
The Euler number e(M) lifts to the Euler number e(M ′), which is e(M) times the degree
of the cover. Since e(M) < 0, it follows that e(M ′) < 0.
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Suppose first that B ′ ' S2. Then the universal cover M̃ ofM must be S3 and the Reeb
fibration becomes the Hopf fibration. In particular, there can be no contractible periodic
orbit γ of M with Conley–Zehnder index µ(γ ) = 2, since there is none in M̃ . On the
other hand, if g(B ′) ≥ 1, then M̃ ' R3. Since every fiber of M lifts to R, there are no
contractible periodic orbits γ of M . In either case, the cylindrical contact homology is
well-defined.

Next we prove that if γ ′ windsm′ times around a regular fiber and γ ′′ windsm′′ times
around a regular fiber, then there are no holomorphic cylinders in the symplectization
from γ ′ to γ ′′, providedm′ 6= m′′. If there is such a holomorphic cylinder in R×M , then
there would be a cylinder from γ ′ to γ ′′ inM . Since the cylinder has the homotopy type of,
say, γ ′, it can be lifted toM ′ since regular fibers are not expanded under bundle pullbacks.
Now e(M ′) < 0, so the homology class of a regular fiber is a generator of Z/|e(M ′)|Z ⊂
H1(M;Z). If we take an n-fold cover B ′′ of B ′, then the pullback M ′′ satisfies e(M ′′) =
n · e(M ′), and we can distinguish γ ′ from γ ′′ homologically, provided n is sufficiently
large. Analogous statements can also be made for multiple covers of singular fibers, by
simply viewing a singular fiber as a suitable fraction of a regular fiber F .

Now suppose that M̃ = R3. First suppose that B does not have any orbifold sin-
gular points. Then the orbits of smallest action are simple orbits around the S1-fibers,
parametrized by the base B. Therefore, the portion of HC(M, ξ) with the least action is
H∗(B;Q), by Bourgeois’ Morse–Bott theory sketched in Section 3.3. Next suppose that
the orbifold singularities of S/ψ have orders s1, . . . , sm, arranged in nonincreasing order
(these are the “interior” singularities). The orbifold singularities coming from the binding
all have order n, where ci = ki/n as before. Hence the simple Reeb orbits corresponding
to the singular fibers are 1/s1, . . . , 1/sm, 1/n of a regular fiber F . They are all elliptic
orbits and have even parity, so there are no holomorphic cylinders amongst them. Hence
simple orbits around the singular fibers correspond to nontrivial classes in HC(M, ξ). ut

Remark 4.5. The techniques involved in proving Theorem 4.4 are sufficient to com-
pletely determine the cylindrical contact homology groups of the relevant contact struc-
tures.

5. Rademacher functions

We now define the Rademacher function and its generalizations. The usual Rademacher
function is a beautiful function on the Farey tessellation, which admits an interpretation
as a bounded cohomology class inH 2

b (SL(2,Z)). For more details, see [BG, GG1, GG2].
The (generalized) Rademacher functions are used to measure certain types of “lengths” of
arcs in the universal cover S̃ of a compact hyperbolic surface S with geodesic boundary.

In this section we do not make any assumptions about the number of boundary com-
ponents of S.

5.1. The usual Rademacher function

Let S be a compact hyperbolic surface with geodesic boundary. We first triangulate S with
geodesic arcs which begin and end on ∂S. Here the boundary of each “triangle” consists
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Fig. 1. The tessellation of the universal cover S̃ of S and values of the Rademacher function on the
tessellation (given right next to each edge).

of three geodesic arcs (which may happen to coincide), together with subarcs of ∂S.
(Henceforth we omit the quotes when referring to triangles. In general, when we refer to
an n-gon, we will not be counting the subarcs of ∂S.) Let τ be the set of geodesic arcs of
the triangulation that are not subarcs of ∂S. Also let τ̃ = π−1(τ ), where π : S̃ → S is
the universal covering map.

The Rademacher function8 is a function τ̃ → Z, defined as follows: Pick a reference
arc a ∈ τ̃ , and set 8(a) = 0. Given a′ ∈ τ̃ , take an oriented geodesic arc δ in S̃ from a

to a′. Then 8(a′) is the number of right turns taken minus the number of left turns taken
along the path δ from a to a′. In other words, if a′, a′′, a′′′ ∈ τ̃ form a triangle in S̃, where
the edges are in counterclockwise order around the triangle, and we have inductively de-
fined 8(a′) but not 8(a′′) and 8(a′′′), then we set 8(a′′) = 8(a′) + 1 and 8(a′′′) =
8(a′)− 1. Here the induction is on the distance of the triangle from the reference arc a.

Let us also define 8(γ ), where γ is an oriented arc with endpoints on a′, a′′ ∈ τ̃ , to
be the number of right turns minus the number of left turns of a geodesic representative
of γ . We will write γ−1 for γ with reversed orientation, and γ γ ′ for the concatenation
of γ , followed by γ ′.

The Rademacher function has the following useful properties:

Lemma 5.1. Let a′, a′′, a′′′ ∈ τ̃ , γ be a geodesic arc from a′ to a′′ and γ ′ be a geodesic
arc from a′′ to a′′′. Then:

(1) 8(γ−1) = −8(γ ).
(2) 8(γ ) +8(γ ′) = 8(γ γ ′) + 3ε, where ε = −1, 0, 1, depending on the angles made

by γ and γ ′.
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Proof. (1) is immediate—a right turn becomes a left turn when traveling in the other
direction.

To prove (2), suppose first that a′, a′′, a′′′ form a triangle in S̃. If a′, a′′, a′′′ are in
counterclockwise order, then8(γ )+8(γ ′) = 8(γ γ ′)+3; if a′, a′′, a′′′ are in clockwise
order, then 8(γ ) + 8(γ ′) = 8(γ γ ′) − 3. We can then reduce to the above situation by
applying (1) to subarcs of γ and γ ′ that cancel. Observe that ε = 0 happens when either
(i) the concatenation of γ and γ ′ is already efficient with respect to τ̃ , i.e., γ γ ′ and its
geodesic representative intersect τ̃ in the same number of times, or (ii) the sequence of
arcs of τ̃ intersecting γ ′ is exactly the reverse of those intersecting γ (or vice versa). ut

5.2. Rademacher functions for periodic diffeomorphisms

We initially envisioned a more complicated proof of Theorem 4.4 which involved Rade-
macher functions. Although no longer logically necessary, in this subsection we describe
Rademacher functions which are adapted to periodic diffeomorphisms.

Let ψ be a periodic diffeomorphism on S and let S′ be the orbifold obtained by quo-
tienting S by the action of ψ . (For more details on 2-dimensional orbifolds, see [Sc].)
The orbifold S′ will have the same number of boundary components as S, and m orbifold
singularities. Assume S′ is not a disk with m = 1. Then cut up S′ using (not always
geodesic) arcs from ∂S′ to itself which do not pass through any orbifold singularities, so
that the complementary regions are either (1) triangles which do not contain any singular-
ities, or (2) monogons containing exactly one singularity. Denote the union of such arcs
on S′ by τ ′, their preimage on S by τ , and the preimage in the universal cover S̃ by τ̃ . The
connected components of S̃ − τ̃ are s-gons, where s > 1 (no monogons!). In particular,
if we have a connected component of S̃ − τ̃ which projects to a monogon containing a
singularity of order s, then the component is an s-gon.

We now define the (generalized) Rademacher function 8 on the oriented geodesic
arcs γ of S̃ which have endpoints on τ̃ . The function 8 will now take values in Q instead
of Z. We define 8(γ ) to be the sum, over the set of s-gons P intersecting γ in their
interior, of 8(γ |P ), so we may assume γ to be an arc in P . Order the edges of P in τ in
counterclockwise order to be a0, a1, . . . , as−1. If γ goes from a0 to ai , then define

8(γ |P ) = 3
s − 2− 2(i − 1)

s
= 3−

6i
s
.

Observe this formula agrees with the previous definition of the Rademacher function
when τ̃ consists only of triangles. Also, it is possible that s=2, in which case8(γ |P )=0.
[It is instructive to compute 8(γ |P ) if γ connects a0 to ai and s = 7. In that case, the
values are, in counterclockwise order, 15/7, 9/7, 3/7,−3/7,−9/7,−15/7.]

It is not difficult to see that the generalized 8 also satisfies Lemma 5.1. Also observe
that 8 is invariant under ψ .

5.3. Rademacher functions for pseudo-Anosov homeomorphisms

Let S be a compact oriented surface endowed with a hyperbolic metric so that ∂S is
geodesic, and let ψ be a pseudo-Anosov homeomorphism of S. The reader is referred
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to [FLP] for the stable/unstable foliation perspective and to [Bn, CB] for the lamination
perspective.

We will first explain the Rademacher function8 from the lamination perspective, and
later rephrase the definition in the language of singular foliations. The well-definition of
the Rademacher function and its properties are easier to see in the lamination context,
whereas the characteristic foliations that we construct in Section 6 will closely hew to the
stable foliation.

In the geodesic lamination setting, 8 of an oriented arc γ : [0, 1] → S is defined as
follows: Let 3 = 3s be the stable lamination and S be the union of all the prongs of S.
Then isotop γ relative to its endpoints so that γ is geodesic, or at least intersects S ∪ 3
efficiently (assuming γ is not contained in S ∪ 3). Also let 3̃ and S̃ be the preimages
of 3 and S in the universal cover π : S̃ → S, and γ̃ be any lift of γ . Now consider the
(open) intervals of Im(γ̃ ) − (S̃ ∪ 3̃). Then 8(γ ) is a signed count of intervals, both of
whose endpoints lie on S̃. (We throw away all other intervals!) The sign is positive if the
interval is oriented in the same direction as ∂S̃, and negative otherwise. Although there
are infinitely many intervals of Im(γ̃ ) − (S̃ ∪ 3̃), the sum 8(γ ) is finite. In fact, if Q is
a connected component of S − (S ∪3) which nontrivially intersects ∂S, and Q̃ is its lift
to the universal cover, then the distance between two lifts P̃j , P̃j+1 of prongs on ∂Q̃ is
bounded below. See Figure 2 for a sample calculation of 8(γ ). We will usually blur the
distinction between arcs and isotopy classes of arcs.

d1

d2

Fig. 2. The Rademacher function 8 on the given arc is 1, with a contribution of 2 from the com-
ponent d1 of ∂S̃ and a contribution of −1 from the component d2 of ∂S̃. Here the blue arcs are the
lifts of the prongs.

Proposition 5.2. The Rademacher function 8 satisfies the following:

(1) 8 is invariant under ψ .
(2) 8(γ−1) = −8(γ ).
(3) 8(γ γ ′) = 8(γ )+8(γ ′)+ ε, where ε = −1, 0 or 1.
(4) Let γ be an arc which parametrizes a component (∂S)i of ∂S, i.e., γ (0) = γ (1)

and γ wraps once around (∂S)i , in the direction of the boundary orientation of S.
If γ (0) ∈ S , then 8(γ ) = ni , where ni is the number of prongs along (∂S)i , and if
γ (0) /∈ S, then 8(γ ) = ni − 1.
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Proof. (2) and (4) are straightforward.
(1) Recall that ψ(3) = 3. This implies that ψ maps complementary regions of 3,

i.e., connected components of S−3, to complementary regions of3. In particular, an in-
terior n-gon is either mapped to itself (its edges might be cyclically permuted) or mapped
to another interior n-gon (with the same n). A semi-open annulus region A, i.e., an n-gon
with a disk removed, is also mapped to itself, and its edges cyclically permuted. We may
also assume that the prongs along the boundary component (∂S)i are cyclically permuted.

Therefore, if γ is a geodesic arc, then ψ(γ ) is not necessarily geodesic, but at least
intersects S ∪3 efficiently. Moreover, ψ is type-preserving: intervals of Im(γ̃ )− (S̃ ∪ 3̃)
with endpoints on S̃ get mapped to intervals with endpoints on S̃, and intervals without
both endpoints on S̃ get mapped to intervals without both endpoints on S̃. This proves (1).

(3) First isotop γ and γ ′ relative to their endpoints so that they are geodesic. Then
lift γ , γ ′ and γ γ ′ to S̃. We abuse notation and omit tildes, with the understanding that the
terminal point of γ is the initial point of γ ′, even in the universal cover.

Suppose γ and γ ′ can be factored into γ0γ1 and γ ′0γ
′

1, respectively, where the initial
point of γ1 and the terminal point of γ ′0 lie on the same leaf L̃ of 3̃. In that case we
may contract γ1γ

′

0 to a point on L̃, using (2) in the process. By successively shortening γ
and γ ′ if possible, we are reduced to the cases (i), (ii), (iii), or (iv) below.

Let Q̃ be a connected component of S̃ − (S̃ ∪ 3̃) which nontrivially intersects ∂S̃,
and let Q̃′ be a lift of an interior m-gon.

(i) Suppose γ and γ ′ are arcs in Q̃′. There are no contributions from interior m-gons,
so 8(γ ), 8(γ ′), and 8(γ γ ′) are all zero.

(ii) Suppose γ, γ ′ are arcs in Q̃, and all the endpoints of γ , γ ′ lie on ∂Q̃ ∩ (S̃ ∪ 3̃).
If γ (0) and γ ′(1) lie on the same leaf of S̃ ∪ 3̃, then 8(γ γ ′) = 8(γ ) + 8(γ ′). Hence
we may assume that γ (0) and γ ′(1) lie on distinct leaves. Depending on whether γ (0),
γ (1) = γ ′(0), γ ′(1) are in counterclockwise order or not, we have 8(γ γ ′) = 8(γ ) +

8(γ ′)± 1.

(iii) Suppose γ, γ ′ are arcs in Q̃, and γ (0), γ ′(1) lie on ∂Q̃∩(S̃∪3̃), but γ (1) = γ ′(0)
does not. Then 8(γ ) = 8(γ ′) = 0, and 8(γ γ ′) is 0 or 1. (A similar consideration holds
if two of γ (0), γ (1) = γ ′(0), γ ′(1) lie on ∂Q̃ ∩ (S̃ ∪ 3̃).)

(iv) Suppose γ, γ ′ are arcs in Q̃, and γ (0), γ ′(1) do not lie on ∂Q̃ ∩ (S̃ ∪ 3̃). Then
8(γ ), 8(γ ′), and 8(γ γ ′) are all zero. ut

Next we translate the definition of 8 into the singular foliation language. Let F s

(resp. Fu) be the invariant stable (resp. unstable) foliation of S with respect to ψ . We
will take F = F s . The boundary of S is tangent to F , and F has ni singular points of
saddle type along the ith component (∂S)i of ∂S. Here ni is also the number of prongs
that end on (∂S)i in the lamination picture. Let S be the union of the separatrices of the
saddle points on ∂S that are not tangent to ∂S. (This set corresponds to the union of the
prongs in the lamination picture.) Then S̃ = π−1(S) can be decomposed into a disjoint
union of sets S̃d , where d is a component of ∂S̃ and S̃d is the union of the components
of S̃ which intersect d.
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Given an oriented arc γ : [0, 1] → S, we isotop it, relative to its endpoints, to an
oriented arc γ ′ so that (i) γ ′ has efficient intersection with S, (ii) γ ′ is piecewise smooth,
and (iii) each smooth piece is either transverse to F away from the interior singularities,
or is contained in ∂S. Such an arc γ ′ is called a quasi-transverse arc, in the terminology of
[FLP, Exposé 5 (I.7)]. The proof of the existence of the isotopy is given in [FLP, Exposé
12 (Lemma 6)]. To pass from the geodesic lamination 3 to the foliation F , we collapse
the interstitial regions of3. If we take a geodesic representative γ ′′ of γ , then the desired
quasi-transverse arc γ ′ is the image of γ ′′ under the collapsing operation.

We now rephrase8(γ ) with respect to F . Given the arc γ , choose a quasi-transverse
representative γ ′ with the same endpoints, and let γ̃ ′ be any lift of γ ′ to S̃. Then 8(γ ) is
the sum, over all components d of ∂S̃, of the signed number of intervals of Im(γ̃ ′) − S̃d
that do not contain an endpoint of γ̃ ′. The signs of the intervals are assigned as follows:
positive if γ̃ ′ is oriented in the same direction as ∂S̃ along the interval, and negative
otherwise. Alternatively, 8(γ ) is the sum of the signed number of intersections of S̃d
with γ̃ ′ minus one, if we have at least one intersection.

The are also slight variants of 8 described above. The simplest modification is to
use the unstable lamination instead of the stable one. Also, we can take the universal
cover of S −

⋃
i Di , where Di are small disks removed from interior n-gons; this version

then also counts contributions along interior n-gons. However, our 8 and its variants
are “fake” Rademacher functions, which only register boundary rotations and discard all
other intersections with n-gons. We close this section with a question:

Question 5.3. Is there a “genuine” Rademacher function 8(γ ) which is adapted to a
stable geodesic lamination 3s in the sense that it actually somehow sums the “left turn”
and “right turn” contributions of γ , where the sum is over all the intervals γ −3s?

6. Construction of the Reeb vector field

6.1. First return maps

Let S be a compact oriented surface with nonempty boundary, ω be an area form on S,
and h be an area-preserving diffeomorphism of (S, ω). Suppose for the moment that h|∂S
is not necessarily id, but does not permute the boundary components.

Consider the mapping torus 6(S, h) of (S, h), which we define as (S × [0, 1])/(x, 1)
∼ (h(x), 0). Here (x, t) are coordinates on S × [0, 1]. If there is a contact form α on
6(S, h) for which dα|S×{0} = ω and the corresponding Reeb vector field Rα is directed
by ∂t , then we say h is the first return map of Rα .

We are interested in the realizability of a given pseudo-Anosov ψ as the first return
map of some Rα , after possibly perturbing ψ near the singular points to make ψ smooth.
We summarize the following results from [CHL]:

Fact 1. If h∗ − id : H 1(S;R) → H 1(S;R) is invertible, then h can be realized as the
first return map of some Rα . Hence, a pseudo-Anosov homeomorphism ψ (after a small
perturbation near its singular points) isotopic to such an h can be realized as the first
return map of some Rα .
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Fact 2. On the other hand, there exist pseudo-Anosov homeomorphisms ψ which (even
after a small perturbation near its singular points) cannot be realized as the first return
map of any Rα .

If ψ is realizable, then we can use Rα and avoid the technicalities of the rest of Sec-
tion 6. If ψ is not realizable as a first return map of a Reeb vector field Rα , then there
are two strategies: (1) Enlarge the class of vector fields to the class of stable Hamiltonian
ones, as described in [BEHWZ]. The drawback is that one needs to prove invariance of
the generalized contact homology groups using the bifurcation strategy, instead of the
continuation method which is usually used in contact homology. (2) Carefully construct a
Reeb vector field for which we have some control over the periodic orbits. The drawback
of this approach is that the construction is rather complicated. Since the details of the
bifurcation strategy do not exist in the literature at this moment, we opt for (2). This will
occupy the rest of the section.

6.2. Preliminary constructions

6.2.1. Construction of a contact 1-form on S × [0, 1]. Let S be a compact oriented sur-
face with nonempty boundary. Consider S × [0, 1] with coordinates (x, t). We will first
construct a contact 1-form α and the corresponding Reeb vector field R on S × [0, 1].

Lemma 6.1. Given 1-forms β0, β1 on S which agree near ∂S and which satisfy dβi > 0,
i = 0, 1, there exist contact 1-forms α = αε and Reeb vector fields R = Rε on S×[0, 1],
depending on ε > 0 sufficiently small, which satisfy the following properties:

(1) α = dt + εβt , where βt , t ∈ [0, 1], is a 1-form on S which varies smoothly with t .
(2) R is directed by ∂/∂t + Y , where Y = Yε is tangent to {t = const}.
(3) Y = 0 in a neighborhood of (∂S)× [0, 1].
(4) At points x ∈ S where β0 and β1 have the same kernel, Y is tangent to kerβ0 =

kerβ1.
(5) The direction of the Reeb vector field Rε does not depend on the choice of ε > 0, as

long as ε is sufficiently small to satisfy the contact condition.
(6) By taking ε > 0 sufficiently small, Rε can be made arbitrarily close to ∂/∂t + Y .

Proof. Let χ : [0, 1] → [0, 1] be a smooth map for which χ(0) = 0, χ(1) = 1, χ ′(0) =
χ ′(1) = 0, and χ ′(t) > 0 for t ∈ (0, 1). Consider the form

βt = (1− χ(t))β0 + χ(t)β1.

Let us write ωt = (1− χ(t))dβ0 + χ(t)dβ1. Observe that ωt is an area form on S.
We then compute

dα = ε((1− χ(t))dβ0 + χ(t)dβ1 + χ
′(t)dt ∧ (β1 − β0))

= ε(ωt + χ
′(t)dt ∧ (β1 − β0)),

α ∧ dα = εdt ∧ ωt − ε
2χ ′(t)dt ∧ β0 ∧ β1.

If ε is small enough, then α satisfies the contact condition α ∧ dα > 0.
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The Reeb vector field R for α is collinear to ∂/∂t+Y , where Y is tangent to the levels
{t = const} and satisfies

iYωt = χ
′(t)(β0 − β1). (6.2.1)

(Verification:

i∂/∂t+Y dα = ε · i∂/∂t+Y (ωt + χ
′(t)dt ∧ (β1 − β0)) = 0

implies that
iYωt + χ

′(t)(β1 − β0)− dt · χ
′(t)(β1 − β0)(Y ) = 0.

This separates into two equations

iYωt + χ
′(t)(β1 − β0) = 0, χ ′(t)(β1 − β0)(Y ) = 0.

The first is (6.2.1), and the second follows from the first.) Observe that (3), (4), and (5)
are consequences of (6.2.1). To prove (6), observe that α(∂/∂t + Y ) = 1+ εβt (Y ). Then
Rε =

∂/∂t+Y
|1+εβt (Y )|

, which approaches ∂/∂t + Y as ε→ 0. ut

6.2.2. Construction of a contact 1-form on 6(S, g). For notational simplicity, assume
that ∂S is connected. Let β be a 1-form on S satisfying dβ > 0. We say that β exits ∂S
uniformly with respect to a diffeomorphism g : S

∼
−→ S if there exists a small annular

neighborhood A = S1
× [0, 1] of ∂S with coordinates (θ, y) so that

(1) ∂S = S1
× {0} and β = (C − y)dθ , where C is a constant� 0.

(2) g restricts to a rotation (θ, y) 7→ (θ+C′, y) on S1
×[0, 1], whereC′ is some constant.

Suppose β exits ∂S uniformly with respect to g. The easiest construction of a contact
1-form on 6(S, g) would be to set β0 = g∗β = (g−1)∗β and β1 = β, and glue up
the contact 1-form from Lemma 6.1. However, in this paper we will use a slightly more
complicated 1-form, given below.

Construction. Let β0 = g∗(fε′β) = fε′(g∗β), β1/2 = β, and β1 = fε′β, where ε′ > 0
is a sufficiently small constant. Here, fε′ : S → R is ε′ outside the small annular neigh-
borhood A of ∂S, and, inside A, is independent of θ , equals 1 for y ∈ [0, ε′′], and satisfies
∂fε′/∂y < 0 for y ∈ (ε′′, 1). We can easily verify that dfε′ ∧ β ≥ 0; hence fε′β is a
primitive of an area form on S. Then let βt be the interpolation between β0 and β1/2 for
t ∈ [0, 1/2], given by

βt = (1− χ0(t))β0 + χ0(t)β1/2,

where χ0 : [0, 1/2] → [0, 1] is a smooth map for which χ0(0) = 0, χ0(1/2) = 1,
χ ′0(0) = χ

′

0(1/2) = 0 and χ ′0(t) > 0 for t ∈ (0, 1/2). Similarly define the interpolation
βt between β1/2 and β1 for t ∈ [1/2, 1] by

βt = (1− χ1(t))β1/2 + χ1(t)β1,

where χ1 : [1/2, 1] → [0, 1] is a smooth map for which χ1(1/2) = 0, χ1(1) = 1,
χ ′1(1/2) = χ

′

1(1) = 0 and χ ′1(t) > 0 for t ∈ (1/2, 1). Then we set αε,ε′ = dt + εβt as in
Lemma 6.1. It induces a contact form αε,ε′ on 6(S, g).
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Let ωt = d2βt , where d2 indicates the exterior derivative in the S-direction. Then the
Reeb vector field R = Rε,ε′ for α = αε,ε′ is collinear to ∂/∂t + Y , where Y = Yε′ is
tangent to the levels {t = const} and satisfies

iYωt = −β̇t . (6.2.2)

Here a dot means d/dt . Observe that Y does not depend on ε (by (5) of Lemma 6.1) and
the direction of Rε,ε′ does not depend on ε. By taking ε sufficiently small as in (6) of
Lemma 6.1, we can make R as close to ∂/∂t + Y as we like.

Description of Rε,ε′ . Let Z be a vector field which directs kerβ. Fix a small neighbor-
hood U ⊂ S of the singular set of β. Also let A′ ⊂ A be the set {0 ≤ y ≤ ε′′}.

Lemma 6.2. The Reeb vector field Rε,ε′ is directed by and is arbitrarily close to
∂/∂t+Yε′ , provided ε > 0 is sufficiently small. The vector field Yε′ satisfies the following:

(1) Yε′ = 0 on A′ × [0, 1]/∼. In particular, Rε,ε′ is tangent to ∂6(S, g).
(2) Yε′ = 0 when t = 0 and t = 1/2.
(3) On (S − A′ − U) × (0, 1/2), Yε′(x, t)|Yε′(x, t)| → −Z(x)/|Z(x)| uniformly, as

ε′→ 0.
(4) On (S − A′)× (1/2, 1), Yε′ is parallel to and in the same direction as Z.

One can think of the vertical projections Y of R as what happens in a “puffer machine”:
Between t = 0 and t = 1/2, Y flows away from ∂S and is sucked towards the singularities
of β along kerβ (with some error), and, between t = 1/2 and t = 1, Y flows away from
the singularities of β towards ∂S along kerβ (with no error).

Proof. This follows from (6.2.2). First suppose t ∈ [0, 1/2]. Then

β̇t = χ
′

0(t)(β1/2 − β0) = χ
′

0(t)(β − fε′(g∗β)). (6.2.3)

(1) follows from β̇t = 0 by observing that β0 = β1/2 on A′. Similarly, (2) follows from
β̇t = 0 by observing that χ ′0(t) = 0 when t = 0 or t = 1/2. We now prove (3). The
vector field Yε′ directs the kernel of fε′(g∗β) − β, since χ ′0(t) > 0 when t ∈ (0, 1/2).
In order for Yε′(x, t)/|Yε′(x, t)| to make sense, we need Yε′(x, t) to be nonzero—this is
achieved by making ε′ sufficiently small and restricting to (S − A′ − U)× (0, 1/2). The
uniform convergence of fε′(g∗β)− β to −β on (S −A−U)× (0, 1/2) as ε′→ 0 (note
that we wrote A instead of A′) implies the uniform convergence of Yε′(x, t)/|Yε′(x, t)| to
−Z(x)/|Z(x)| on (S − A − U) × (0, 1/2). On the other hand, on (A − A′) × (0, 1/2),
Yε′(x, t)/|Yε′(x, t)| = −Z(x)/|Z(x)| already.

The situation t ∈ [1/2, 1] is similar and is left to the reader. ut

6.2.3. Extension to the binding. Let S0 be the surface obtained by gluing an annulus
A0 = S1

× [−1, 0] to S so that S1
× {0} is identified with ∂S. Let h : S0

∼
−→ S0 be

a diffeomorphism which restricts to the identity on ∂S0. Suppose h = h0 ∪ g, where
g is the diffeomorphism on S as above and h0 : S

1
× [−1, 0]

∼
−→ S1

× [−1, 0] maps
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(θ, y) 7→ (θ +C′(y+ 1), y), where C′ is the positive constant which records the rotation
about the boundary and θ ∈ S1

= R/Z.
Fix a 1-form β on S so that dβ > 0 and β exits ∂S uniformly with respect to g. Let

α = αε,ε′ and R = Rε,ε′ be the contact 1-form and Reeb vector field constructed on
6(S, g) as in the previous subsection. According to Lemma 6.2, R = ∂/∂t on ∂6(S, g);
hence ∂6(S, g) is linearly foliated by R. Also the characteristic foliation of α along
∂6(S, g) is linearly foliated by leaves which are close to ∂S.

We now extend α and R to the closed 3-manifold M which corresponds to the open
book (S0, h), by gluing a neighborhood N(K) of the binding to ∂6(S, g). Endow N(K)

' R/Z×D2 with cylindrical coordinates (z, (r, θ)) so that D2
= {r ≤ 1}. The fibration

of the open book is given on N(K) by (z, r, θ) 7→ θ . If we use coordinates (θ/2π, z)
to identify ∂N(K) ' R2/Z2, then R has slope C′ > 0 and ξ |∂(S1×D2) has slope −1/Cε
for Cε � 0. We extend the contact form αε,ε′ to N(K) by an equation of the form
aε(r)dz + bε(r)dθ , where aε(r) > 0 and bε(r) ≥ 0. The characteristic foliation on {r =
r0} will then be directed by aε(r0)∂/∂θ − bε(r0)∂/∂z. The contact condition is given by
the inequality aεb′ε − a

′
εbε > 0. It expresses the fact that the plane curve (aε(r), bε(r)) is

transverse to the radial foliation of the plane, and rotates in the counterclockwise direction
about the origin. The Reeb vector field is given by

Rε =
1

aεb′ε − a
′
εbε

(
b′ε
∂

∂z
− a′ε

∂

∂θ

)
.

The boundary condition uniquely determines the values aε(1), bε(1), a′ε(1) and b′ε(1). In
particular, these values depend smoothly on ε. For all ε, (aε(1), bε(1)) is in the interior
of the first quadrant. Also, we require that (aε(r), bε(r)) lie on a line segment that starts
on the positive θ -axis and ends at (aε(1), bε(1)), and is directed by (a′ε(1), b

′
ε(1)). We

can then extend aε and bε on [0, 1], so that aε(r) = C0,ε − C1,εr
2 and bε(r) = r2 near

r = 0 (where C0,ε, C1,ε are appropriate positive constants which depend on ε) and so
that they depend smoothly on ε. By construction Rε will linearly foliate the level tori
{r = const > 0} so that the slope remains constant (= C′). In particular, R will be
transverse to the pages S × {t}, except along the binding γ0, which is a closed orbit of R.

In the remaining subsections of this section, we will construct a suitable diffeomor-
phism g = ψ ′ which is freely homotopic to a pseudo-Anosov homeomorphism ψ , and a
1-form β which is adapted to ψ .

6.3. Main proposition

Let M be a closed, oriented 3-manifold and ξ be a cooriented contact structure. Suppose
that ξ is carried by an open book with page S and monodromy h : S

∼
−→ S. Recall that

h|∂S = id. For notational simplicity, assume that ∂S is connected.
Suppose h is freely homotopic to a pseudo-Anosov homeomorphismψ with fractional

Dehn twist coefficient c = k/n. Let (F , µ) = (F s, µs) be the stable foliation on S, and
λ > 1 be the constant such that ψ∗µ = λµ. The foliation F has saddle type singularities
on ∂S, and the singular points of F on ∂S are denoted by x1, . . . , xn. (Here the subscript i
increases in the direction given by the orientation of ∂S.) Denote the interior singularities
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of F by y1, . . . , yq . The homeomorphism ψ is a diffeomorphism away from these singu-
lar points. Also let Pi be the prong emanating from xi , and letQj1,Qj2, . . . ,Qjmj be the
prongs emanating from yj , arranged in counterclockwise order about yj .

6.3.1. N(∂S). Let N(∂S) ⊂ S be a neighborhood of ∂S with a particular shape (see
Figure 3):
(1) ∂(N(∂S)) − ∂S is a concatenation of smooth arcs which are alternately tangent to

Fu (the vertical arcs a1, . . . , an, since they are transverse to F) and tangent to F (the
horizontal arcs b1, . . . , bn). Here bi is between ai and ai+1, where the indices are
taken modulo n, and there is a prong Pi starting at xi which exits N(∂S) through ai .

(2) Each transverse arc ai is divided into two subarcs by the prong Pi starting at xi . We
pick N(∂S) so that all these subarcs have the same transverse measure δ � 1. (This
becomes important later on!)

(3) No horizontal arc bi is contained in any prong Pj or Qj l . (This can be achieved
by observing that the intersection between ai and any prong is countable, and by
shrinking δ if necessary.)
Let P ′i be the first component of Pi ∩ (S − int(N(∂S))) that can be reached from

the singular point xi , traveling inside Pi . By (3), P ′i is a compact arc with endpoints on
int(ai) and some int(ai′). Similarly, let Q′j l be the component of Qj l ∩ (S − int(N(∂S)))
that begins at yj and ends on some int(aj ′).

Next, endow each ai with the boundary orientation of S − int(N(∂S)). For each ai ,
define a parametrization pi : [−δ, δ] → ai so that pi(−δ) is the initial point of ai ,
pi(δ) is the terminal point, and the µ-measure from pi(−δ) to pi(s) is s + δ. Let ε > 0
be a sufficiently small constant so that all the leaves of F |S−int(N(∂S)) which start from
pi([−δ,−δ + ε]) exit S − int(N(∂S)) together along some ai′ and also are disjoint from
P ′
i′

. Also, for each i, define the map qi : [−δ, δ] → ∂S so that qi(s) is the point on
∂S which is closest to pi(s) with respect to the fixed hyperbolic metric. In particular,
qi(0) = xi and the geodesic through pi(0) and qi(0) agrees with the prong Pi , since
the prong Pi is perpendicular to ∂S. Also let pi(s)qi(s) be the shortest geodesic between
pi(s) and qi(s).

6.3.2. Walls. Let W be a properly embedded, oriented arc of S so that W ∩ N(∂S) con-
sists of exactly two components. The component containing the initial point is the initial
arc of W , the component containing the terminal point is the terminal arc of W , and
W ∩ (S − int(N(∂S))) is the middle arc of W . We now define the walls Wi,L, Wi,R

for i = 1, . . . , n. The wall Wi,L (resp. Wi,R) is a properly embedded, oriented arc of S
which intersects N(∂S) in two components. The initial arc of Wi,L (resp. Wi,R) is the
geodesic arc qi(−δ + ε)pi(−δ + ε) (resp. qi(δ − ε)pi(δ − ε)), the terminal arc of Wi,L

is pi′(si,L)qi′(si,L) (resp. pi′(si,R)qi′(si,R)), and the middle arc is a leaf of F |S−int(N(∂S)).
(We may need to take a C0-small modification of the geodesic arcs, so that the walls be-
come smooth. From now on, we assume that such smoothings have taken place, with the
tacit understanding that the arcs pi(s)qi(s) are only “almost geodesic”.) It is conceivable
that, a priori, Wi,L = Wi′,R for i 6= i′, with opposite orientations. In that case, perturb ε
so that the walls are pairwise disjoint.
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6.3.3. N(yj ). Now, for each j , we define N(yj ) to be a sufficiently small neighborhood
of Q′j1 ∪ · · · ∪Q

′

jmj
in S − int(N(∂S)) so that ∂N(yj ) is a union of smooth arcs which

are alternately vertical and horizontal, and so that N(yj ) has the following properties:

(1) N(yj ) is disjoint from N(yj ′) for j ′ 6= j .
(2) N(yj ) does not intersect any P ′i .
(3) Each vertical arc of ∂N(yj ) is contained in some int(ai) and is disjoint from

pi([−δ,−δ + ε]) and pi([δ − ε, δ]).

(3) is possible since the horizontal arc bi is disjoint from all the prongs.

6.3.4. S′ and S′′. We now define the subsets S′′ ⊂ S′ ⊂ S:

S′ = S −
⋃

1≤j≤q

int(N(yj ))− int(N(∂S)),

S′′ = S′ −
⋃

1≤i≤n

int(N(P ′i )).

Here we take N(P ′i ) to be a plaque of F , each of whose vertical boundary components is
sufficiently short to be contained in the interior of some vertical arc in ∂S′, and is disjoint
from pi([−δ,−δ + ε]), pi([δ − ε, δ]).

6.3.5. Modified diffeomorphism ψ ′. Finally, we describe the diffeomorphism ψ ′ :

S
∼
−→ S, which is derived from and freely homotopic to the pseudo-Anosov homeo-

morphism ψ , and agrees with ψ outside a small neighborhood of N(∂S) ∪ ψ(N(∂S)).
First consider the restriction ψ : S − int(N(∂S)) → S with image S − ψ(int(N(∂S))).
Let g1 be a flow on S which is parallel to the stable foliation, pushes ψ(N(∂S)) into
N(∂S), and maps ψ(ai) inside ai+k . (Recall k/n is the fractional Dehn twist coeffi-
cient.) Next, let g2 be a flow on S which is parallel to the unstable foliation and maps
g1 ◦ ψ(N(∂S)) to N(∂S). Observe that g2 ◦ g1 can be taken to be supported in a neigh-
borhood of N(∂S) ∪ ψ(N(∂S)). Now, ψ ′ = g2 ◦ g1 ◦ ψ is a diffeomorphism from
S − int(N(∂S)) to itself, and, by choosing g1 and g2 judiciously, we can ensure that
the restrictions ψ ′ : ai → ai+k and ψ ′ : bi → bi+k are transverse measure-preserving
diffeomorphisms. Hence we can extend ψ ′ to N(∂S) by a rigid rotation about ∂S which
takes pi(s)qi(s) to pi+k(s)qi+k(s). In the case k = 0, ψ ′|N(∂S) is the identity.

6.3.6. Statement of proposition. Let γ1 and γ2 be two properly embedded oriented arcs
of S with the same initial point x ∈ ∂S. Let γ̃1 and γ̃2 be lifts to the universal cover S̃,
starting at the same point x̃. We say that γ1 is setwise to the left of γ2, and write γ1 ≤ γ2,
if γ̃1 does not intersect the component of S̃ − γ̃2 whose boundary orientation is opposite
that of the orientation of γ̃2. We make this definition to distinguish from the notion of [γ1]

being to the left of [γ2], where [γi], i = 1, 2, is the isotopy class of γi rel endpoints.
Having said that, in the rest of the paper, “to the left” will always mean “setwise to the
left”. (The same definition can be made when only one of the γi is a properly embedded
arc of S, and the other is an arc which just starts at x.)

We are now ready to state the main proposition of this section.
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Proposition 6.3. There exists a 1-form β on S with dβ > 0 such that the walls Wi,L,
Wi,R , i = 1, . . . , n, are integral curves of kerβ, and satisfy the following properties:

(1) Each wall contains exactly one singularity of β. It is an elliptic singularity, and is in
the interior of the initial arc or in the interior of the terminal arc.

(2) Wi,L (resp. Wi,R) is to the left (resp. to the right) of the prong Pi .
(3) Wi,L (resp. Wi,R) is to the left of ψ ′(Wi−k,L) (resp. to the right of ψ ′(Wi−k,R)).
(4) β exits ∂S uniformly with respect to ψ ′.
(5) The initial and terminal arcs of (ψ ′)−1(Wi,L) and (ψ ′)−1(Wi,R) are integral arcs of

kerβ.
(6) Suppose ψ ′ maps an initial (resp. terminal) arc of (ψ ′)−1(Wi,L) to an initial (resp.

terminal) arc of Wi,L. If both arcs contain elliptic singularities, then ψ ′ matches the
germs of these elliptic singularities. The same holds for (ψ ′)−1(Wi,R) and Wi,R .

When comparingWi,L with Pi , we concatenate Pi with a small arc from qi(−δ+ε) to xi ,
and assume Wi,L and Pi have the same initial points (and similarly for Wi,R and Pi).

The proof of Proposition 6.3 occupies the next two subsections. In Subsection 6.4 we
construct the 1-form β, and in Subsection 6.5 we verify the properties satisfied by the
walls.

6.4. Construction of β

Step 1 (Construction of β on S′′). The surface S′′ has corners and carries the nonsingular
line field F |S′′ .

Claim 6.4. The restriction of F to S′′ is orientable.

Proof. All the corners of S′′ are convex, except those which are also corners of N(∂S).
Each concave corner pi(±δ) is always adjacent to a convex one of type pi(s), obtained
by removing the neighborhood of some P ′j or Q′j l ; moreover, such an assignment defines
an injective map from the set of concave corners to the set of convex corners. Let C be
a connected component of S′′. Since the foliation F is either tangent to or transverse to
every smooth subarc of ∂S′′, if we smooth ∂C, then for every boundary component ci of
∂C, the degree of F along ∂ci is

deg(F , ∂ci) = 1
4 (]{concave corners} − ]{convex corners}) ≤ 0.

Therefore we see that χ(C) ≥ 0, and C is either a disk or an annulus. Moreover, in the
case of an annulus, the degree of F must be zero on the two boundary components. The
claim follows. ut

From now on, fix an orientation of F |S′′ . The transverse measure for F |S′′ on S′′ is now
given by a closed 1-form ν which vanishes on F |S′′ and satisfies ψ∗ν = λν. The measure
of an arc transverse to F |S′′ is given by the absolute value of the integral of ν along this
arc. We stipulate that ν(Y ) > 0 if (X, Y ) is an oriented basis for T S at a point and X is
tangent to and directs F |S′′ .
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The surface S′′ can be covered by interiors of finitely many Markov charts of F in
S−int(N(∂S)). (Here we are using the topology induced from S−int(N(∂S)).) It suffices
to consider charts of type R = [−1, 1] × [−δ0, δ0] and R′ = ([−1, 1] × [−δ0, δ0]) −

([−1/3, 1/3] × [−δ0, 0)), where δ0 > 0 is small and we use coordinates (x, y) for both
types of charts. Here we take ν = dy; in particular, this means F = {dy = 0}. Moreover,
we require {±1} × [−δ0, δ0] to be subarcs of vertical arcs of ∂S′ for both R and R′;
{±1/3}×[−δ0, 0] to be subarcs of vertical arcs of ∂(N(∂S)) forR′; and [−1/3, 1/3]×{0}
to be a horizontal arc of ∂(N(∂S)) for R′.

On each chart U = R or R′, let fU be a function R→ R≥0 (resp. R′→ R≥0) which
satisfies:

(1) fU = 0 on [−1, 1] × {−δ0, δ0} (resp. ([−1, 1] × {−δ0, δ0}) ∩ R
′).

(2) ∂fU
∂x
(x, y) > 0 for y ∈ (−δ0, δ0).

If we sum the forms fUdy over all the charts U , we obtain a form ν′ on S′′ with dν′ > 0.
Now consider the form β = ν + ε0ν

′
= Fν, where ε0 > 0. We have dβ > 0, since

dν = 0 and dν′ > 0. Observe that β is defined in a slight enlargement of S′′, and the
desired β is β|S′′ .

Step 2 (Extension of β to S in the absence of interior singularities). Suppose there are
no interior singularities. We first state and prove a useful lemma.

Lemma 6.5. Consider the rectangle R = [−1, 1] × [−δ1, δ1] with coordinates (x, y).
Let β = Fdy, F > 0, be the germ of a 1-form on ∂R which satisfies ∂F/∂x > 0. Then β
admits an extension to R with the properties that dβ > 0 and β(∂/∂y) > 0 if and only if∫
∂R
β > 0.

Proof. The condition
∫
∂R
β > 0 is clearly necessary by Stokes’ theorem. We check that

it is sufficient. Let φ−1 : [−δ1, δ1] → [−δ1, δ1] be an orientation-preserving diffeo-
morphism for which φ∗

−1β(−1, y) = c−1dy, where c−1 > 0 is a constant. Similarly
define φ1 so that φ∗1β(1, y) = c1dy with c1 > c−1. Take an isotopy φx rel endpoints
between φ−1 and φ1, and define φ(x, y) = (x, φx(y)). There exists a 1-form Gdy near
∂R which agrees with φ∗(β) and we may extend G to all of R with ∂G/∂x > 0. Now let
β = φ∗(Gdy). ut

Next consider the walls Wi,L, Wi,R , i = 1, . . . , n. The walls are pairwise disjoint, and
are disjoint from P ′

i′
as well as the portions of Pi′ ∩N(∂S) of type pi′(0)qi′(0), for all i′.

Moreover, we may assume that ψ ′ leaves the union of the initial arcs ofWi,L (resp.Wi,R),
i = 1, . . . , n, invariant.

Step 2A. Consider the region Bi−1 of N(∂S) which is bounded by the initial arcs of
Wi−1,R and Wi,L, the arc bi−1, portions of ai , ai−1, and an arc of ∂S. Assume without
loss of generality that, with respect to the orientation on F |S′′ , bi−1 is oriented from ai−1
to ai . Our strategy is as follows: Start with F ′|S′′ = F |S′′ , extend F ′ to a singular Morse–
Smale characteristic foliation on Bi−1, and construct a 1-form β with dβ > 0 so that
kerβ = F ′.
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Wi−1,R

Wi,L

ai−1 ai

bi−1

pi−1(δ − ε) pi(−δ + ε)

∂S

hi−1 ei−1

Fig. 3. The kernel of the 1-form β in the region Bi−1 between the walls Wi−1,R and Wi,L. The
walls are the orange arcs (see the pdf file).

Consider a characteristic foliation F ′ on a small neighborhood of Bi−1 with the fol-
lowing properties (see Figure 3):

• The initial arc of Wi−1,R is a nonsingular leaf which points out of ∂S.
• The initial arc of Wi,L is an integral curve with one positive elliptic singularity ei−1 on

it. We place the ei−1 so that Property (1) of Proposition 6.3 holds.
• int(Bi−1) contains a positive hyperbolic singularity hi−1, where the stable separatrices

come from ei−1 and from pi−1(δ− ε2) on ai−1, and the unstable separatrices go to ∂S
and pi(−δ + ε3) on ai .
• By making ε2 > 0 small enough, we have∫

[δ−ε2,δ]
p∗i−1β <

∫
[−δ+ε3,−δ]

p∗i β. (6.4.1)

• The foliation points out of S along ∂S.

We now explain how to extend β to Bi−1 so that kerβ is the above characteristic
foliation and dβ > 0. This procedure follows Giroux’s construction in [Gi2, Proposi-
tion 2.6]. The form β can be defined in a neighborhood of hi−1 and ei−1, and, provided β
is sufficiently large on the boundary of the neighborhood of hi−1, the extension to small
neighborhoods of the separatrices and initial arcs of Wi−1,R and Wi,L is immediate. The
complementary regions are all foliated rectangles. All but one have one vertical edge ei-
ther on ∂S or on ∂N(ei−1), and easily satisfy the conditions of Lemma 6.5. The condition
that β exit uniformly with respect to ψ ′ is also easily met, on the portion that is defined.
The remaining component is a rectangle whose vertical edges are small retractions of
pi−1([δ − ε2, δ]) and pi([−δ + ε3,−δ]). Observe that the conditions of Lemma 6.5 also
hold for the remaining rectangle, thanks to (6.4.1). Now we can apply Lemma 6.5, and
extend β to all the rectangles.

Step 2B. Next, for each i, we extend the horizontal arcs of ∂(N(P ′i )) inside N(∂S) by
geodesic arcs to ∂S. More precisely, let pi(s1), pi(s2), pi′(s3), pi′(s4) be the four corners
ofN(P ′i ), where s1 < s2 and s3 < s4. Extend the horizontal arc pi(s1)pi′(s4) by geodesic
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arcs pi(s1)qi(s1), pi′(s4)qi′(s4) to obtain the arc di,L which is properly embedded in S.
Similarly, extend pi(s2)pi′(s3) by geodesic arcs pi(s2)qi(s2), pi′(s3)qi′(s3) to obtain di,R .
Let Ai ⊂ S be the strip which lies between di,L and di,R . We extend F ′ = kerβ to Ai .
There are two cases:

(1) The orientations of F |S′′ agree on di,L ∩ ∂(N(P ′i )) and di,R ∩ ∂(N(P ′i )). This situa-
tion is given in Figure 4. In this case, we extend the characteristic foliation F ′ to N(P ′i )
so that it coincides with F on N(P ′i ) and the orientation agrees with that of F |S′′ along
di,L ∩ ∂(N(P

′

i )) and di,R ∩ ∂(N(P ′i )). There are two remaining rectangles Rto and Rfrom

in Ai to be foliated. The rectangle Rto (resp. Rfrom) has a vertical edge in common with
N(P ′i ), along which F ′ exits (resp. enters) N(P ′i ). On Rto, the foliation F ′ consists of
geodesic arcs from pi′(s) to qi′(s), for s ∈ [s3, s4], by switching i, i′ if necessary. On
Rfrom, we place a positive elliptic singularity on each of pi(s1)qi(s1) and pi(s2)qi(s2)
so that the two geodesics become integral curves. Next we place a positive hyperbolic
singularity in the interior of Rfrom, so that both stable separatrices come from the two el-
liptic points and the unstable separatrices exit through ∂S and ∂N(P ′i ). Also, we arrange
so that F ′ exits from S along ∂S ∩ Ai . The extension of β to Ai as a 1-form with ker-
nel F ′ subject to the condition dβ > 0 follows from Lemma 6.5 and the considerations
in Step 2A.

∂S

di,L di,R

Fig. 4. Construction of F ′ near Rfrom.

(2) The orientations of F |S′′ on di,L∩∂(N(P ′i )) and di,R∩∂(N(P ′i )) are opposite. Without
loss of generality assume that F ′ is oriented from pi(s1) to pi′(s4). Place an elliptic
singularity between pi(s1) and qi(s1), and between pi′(s3) and qi′(s3), so that di,L and
di,R are integral curves of F ′. Next, place a hyperbolic singularity in the interior of one of
the components of Ai −N(P ′i ). Its stable separatrices come from the elliptic singularities
on di,L and di,R , and its unstable separatrices exit S along the two distinct components of
Ai ∩∂S. We can extend the foliation F ′ to all of Ai without adding any extra singularities
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Fig. 5

Fig. 6

and so that F ′|N(Pi ) is a Reeb component. See Figures 5 and 6 for the ends of Ai . Finally,
extend β to Ai as before.

Step 2C. After Steps 2A and 2B, we are left with rectangles R in N(∂S) whose vertical
edges are on ai and on ∂S and whose horizontal edges are of type p(s)q(s). We subdi-
vide the rectangles by adding horizontal edges so that the Wi,L, Wi,R and (ψ ′)−1(Wi,L),
(ψ ′)−1(Wi,R) become integral arcs of kerβ, i.e., Property (5) of Proposition 6.3 is
satisfied. Observe that the initial arcs of Wi,L and Wi,R are already integral arcs by
Step 2A, and the initial arcs of (ψ ′)−1(Wi,L), (ψ ′)−1(Wi,R) are the same as the initial
arcs of Wi−k,L and Wi−k,R by the definition of ψ ′. Hence we only consider the terminal
arcs.
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Let pφL(i)(si,L), pφR(i)(si,R), (ψ
′)−1(pφL(i)(si,L)), and (ψ ′)−1(pφR(i)(si,R)) be the

initial points of the terminal arcs of Wi,L, Wi,R , (ψ ′)−1(Wi,L), and (ψ ′)−1(Wi,R). Here
φL, φR are some functions. By construction, pφL(i)(si,L) is on the boundary of some rect-
angle R. If the orientation of F ′ at pφL(i)(si,L) points into R, then extend F ′ and β so that
F ′ is tangent to and nonsingular along the horizontal edge pφL(i)(si,L)qφL(i)(si,L). If the
orientation points out of R, then extend F ′ and β so that pφL(i)(si,L)qφL(i)(si,L) is an inte-
gral curve containing an elliptic singularity. Next, if pφL(i)−k(s

′) = (ψ ′)−1(pφL(i)(si,L))

is on the boundary of some rectangle R, then F ′ and β ′ can be extended similarly. If
pφL(i)−k(s

′) is inside some Ai′′ , then let W be a properly embedded arc in S obtained by
concatenating qφL(i)−k(s

′)pφL(i)−k(s
′), the leaf of F |S−int(N(∂S)) through pφL(i)−k(s

′),
and a terminal arc of type pi′′(s′′)qi′′(s′′). We then modify F ′ by erasing F ′|Ai′′ , extend-
ing F ′ to W so that W is an integral curve which contains an elliptic singularity, splitting
Ai′′ into two annuli along W , and applying the procedure in Step 2B to each of the two
annuli. The cases of pφR(i)(si,R) and ψ ′(pφR(i)(si,R)) are treated similarly.

Finally, the extensions of F ′ and β to the interiors of the rectangles are identical to
the extensions to Rto and Rfrom in Case (1) of Step 2B.

We remark that the extension of β can be chosen so that β exits ∂S uniformly with
respect to ψ ′.

Step 3 (Extension of β to S in the presence of interior singularities). We now explain
how to extend β to N(yj ). Let us denote the vertical boundary components of N(yj ) by
c1, . . . , cmj and the horizontal components by d1, . . . , dmj (both ordered in a counter-
clockwise manner), where the prong Qj l is between dl and dl+1 and intersects cl . Here
we orient dl by F ′. For a fixed j , extend dl by geodesics to ∂S as before, and denote
them by d ′l . Now let Cj ⊃ N(yj ) be the subsurface of S bounded by d ′1, . . . , d

′
mj

. Refer
to Figure 7.

d1

d2
d3

c1

c2

c3

Fig. 7. Description of F ′ on N(yj ).
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We extend F ′ to Cj as follows: Place an elliptic singularity at yj . Next, place a hy-
perbolic singularity on the prong Q′j l emanating from yj , if and only if at least one of dl ,
dl+1 enters the region S − int(N(∂S)) along cl . In this case, the prong Q′j l is contained
in the union of the stable separatrices. If both dl and dl+1 enter S − int(N(∂S)) along cl ,
then the unstable separatrices exit N(yj ) along cl−1 and cl+1. Otherwise, one unstable
separatrix exits along cl and the other exits along cl−1 (resp. cl+1) if dl (resp. dl+1) enters
S − int(N(∂S)) along cl . Finally, we complete F ′ and β on N(yj ) without adding extra
singularities, and then extend to Cj using the models of Rto and Rfrom (Figure 4) from
Case (1) of Step 2B, and Figure 5 from Case (2) of Step 2B.

As in Step 2C, if there is an initial point of a terminal arc of (ψ ′)−1(Wi,L) or
(ψ ′)−1(Wi,R) which lies in N(yj ), then we may need to insert extra arcs of type W and
redo the construction of F ′ and β.

This completes the construction of β on S.

6.5. Verification of the properties

In this subsection we prove Properties (1)–(6) of Proposition 6.3. Properties (1) and
(4)–(6) are clear from the construction.

(2) We compare Wi,L and Pi . The wall Wi,L is initially to the left of Pi . (More precisely,
pi(−δ+ ε)qi(−δ+ ε) is to the left of pi(0)qi(0).) On S−N(∂S),Wi,L and P ′i are leaves
of F , and they do not cross. If there is some prong P ′j orQ′jk that intersects pi([−δ+ε, 0]),
then Wi,L and Pi bifurcate in the universal cover S̃ and never reintersect. Otherwise,
Wi,L ∩ (S − N(∂S)) and Pi ∩ (S − N(∂S)) are parallel paths in S̃. Let pi′(s) be the
“other” endpoint of Wi,L ∩ (S −N(∂S)), i.e., the one that is not pi(−δ + ε).

If s > 0, then we claim that the prong P ′
i′

is betweenWi,L and P ′i . Indeed, first observe
that the transverse distance between Wi,L and P ′i is δ − ε. Now, in Section 6.3.1, ε > 0
was defined so that all the leaves of F which start from pi([−δ,−δ + ε]) exit together
along some ai′ and also avoid P ′

i′
. Hence s ≤ δ − ε and s 6= 0. This means that P ′i

intersects ai′ at pi′(s′) with s′ < 0, and the prong P ′
i′

is between Wi,L and P ′i .
Therefore s < 0, and Pi continues to the right while Wi,L enters N(∂S) and exits

along ∂S.

(3) To compare Wi,L and ψ ′(Wi−k,L), we compare W = Wi,L ∩ (S −N(∂S)) and W ′ =
ψ ′′(Wi−k,L ∩ (S −N(∂S))), where ψ ′′ = g1 ◦ψ and g1 is as given in Section 6.3.5. The
initial point of W is pi(−δ + ε) and the initial point of W ′ is pi( 1

λ
(−δ + ε)). As in (2),

if there is a prong P ′j or Q′jk that intersects pi([−δ + ε, 1
λ
(−δ + ε)]), then W and W ′

bifurcate in S̃, implying (3).
Otherwise W and W ′ fellow-travel. Let pi′(s) ∈ ai′ be other endpoint of W and let

pi′(s
′′) be the corresponding intersection of W ′ with ai′ . (If W ′ is shorter than W , then

(3) is immediate.) We observe that s = s′′ + (1 − 1
λ
)(δ − ε). If s′′ is in the interval

[−
1
λ
(δ− ε), 1

λ
(δ− ε)], then pi′(s′′) is the other endpoint ofW ′ and (3) follows. If s′′ ≥ 0,

then we necessarily have s′′ ∈ [0, 1
λ
(δ − ε)], since s − s′′ = (1− 1

λ
)(δ − ε). On the other

hand, (3) is immediate if s′′ < 0.
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This concludes the proofs of Properties (2) and (3), and also the proof of Proposi-
tion 6.3.

6.6. Calculation of 8

First observe the following:

Lemma 6.6.

Pi−1 ≤ Wi−1,R ≤ (ψ
′)−1(Wi−1+k,R) ≤ (ψ

′)−2(Wi−1+2k,R) ≤ · · ·

· · · ≤ (ψ ′)−2(Wi+2k,L) ≤ (ψ
′)−1(Wi+k,L) ≤ Wi,L ≤ Pi .

Recall that a ≤ b means a is to the left of b. Also, c = k/n is the fractional Dehn twist
coefficient, where n is the number of prongs.

Proof. By Proposition 6.3, Pi−1 ≤ Wi−1,R and ψ ′(Wi−1,R) ≤ Wi−1+k,R . Hence Wi−1,R
≤ (ψ ′)−1(Wi−1+k,R), and the first row of inequalities holds. Similarly, the second row of
inequalities holds. Next, Wi−1,R ≤ Wi,L. (Reason: Wi−1,R is initially to the left of Wi,L.
In order for them to reintersect,Wi−1,R ∩ (S− int(N(∂S))) andWi,L ∩ (S− int(N(∂S)))
must both have endpoints on the same ai′ . This implies the existence of a monogon,
which is a contradiction.) Repeated application of (ψ ′)−1 gives (ψ ′)−j (Wi−1+jk,R) ≤

(ψ ′)−j (Wi+jk,L). ut

Consider a trajectory Q of the type

Q = γ1((ψ
′)−1(γ2)) . . . ((ψ

′)−m+2(γm−1))((ψ
′)−m+1(γm)). (6.6.1)

The trajectory Q is said to be an ideal trajectory if, for each i, γi : [0, 1] → S is tangent
to F ′ and does not pass through a singular point, and γi(1) = (ψ ′)−1(γi+1(0)).

Proposition 6.7. If Q is an ideal trajectory, then 8(Q) = 0.

Proof. Assume without loss of generality that ψ(xi) = xi . (This is just for ease of index-
ing.)

Towards a contradiction, suppose that 8(Q) < 0. (The case 8(Q) > 0 is similar.)
We lift to the universal cover π : S̃ → S. A tilde placed over a curve will indicate an
appropriate lift to S̃. Then a lift Q̃ of Q in S̃ must intersect two consecutive prongs P̃i
and P̃i−1 which start from the same component L of ∂S̃, in that order. Also choose a lift
ψ̃ ′ : S̃ → S̃ of ψ ′ which fixes L pointwise.

Assume γ̃1(0) is strictly to the right of the lift W̃i,L, whose initial point is between
the initial points of P̃i and P̃i−1 on L. (The modifier “strictly” means γ̃1(0) is not
on W̃i,L.) Then, since the trajectory is ideal, γ̃1(1) is also strictly to the right of W̃i,L. Next,
(ψ̃ ′)−1(W̃i,L) ≤ W̃i,L, so γ̃1(1) = (ψ̃ ′)−1(γ̃2(0)) is strictly to the right of (ψ̃ ′)−1(W̃i,L).
Again, since the trajectory is ideal, (ψ̃ ′)−1(γ̃2(1)) is strictly to the right of (ψ̃ ′)−1(W̃i,L).
Eventually we prove that (ψ̃ ′)−m+1(γ̃m(1)) is strictly to the right of (ψ̃ ′)−m+1(W̃i,L).
Since P̃i−1 ≤ (ψ̃ ′)−m+1(W̃i,L) by Lemma 6.6, it follows that Q̃ cannot cross from P̃i
to P̃i−1, a contradiction.
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An equivalent proof (the one we use in the general case) is to consider the sequence
γ̃1, . . . , γ̃m, where ψ̃ ′(γ̃i(1)) = γ̃i+1(0). First, γ̃1 is strictly to the right of W̃i,L. Hence
ψ̃ ′(γ̃1) is strictly to the right of ψ̃ ′(W̃i,L) and also strictly to the right of W̃i,L. This
implies that γ̃2 is strictly to the right of W̃i,L. Repeating the procedure, γ̃m is strictly to
the right of W̃i,L. Shifting back by (ψ̃ ′)−m+1, (ψ̃ ′)−m+1(γ̃m(1)) is strictly to the right of
(ψ̃ ′)−m+1(W̃i,L), a contradiction. ut

Let β be the 1-form on S constructed in Section 6.4, and let αε,ε′ and Rε,ε′ be the contact
1-form and Reeb vector field constructed in Section 6.2.2 using β. Define a genuine tra-
jectory Q to be a concatenation of the type given by (6.6.1), where each γi is the image
of a trajectory of Rε,ε′ from t = 0 to t = 1, under the projection π : S × [0, 1] → S onto
the first factor.

Proposition 6.8. GivenN � 0, for sufficiently small ε, ε′ > 0, any genuine trajectoryQ
of Rε,ε′ with m ≤ N satisfies 8(Q) = 0.

During the proof, a leaf of a singular foliation is understood to be a maximal integral
submanifold which does not contain a singular point.

Proof. Let Q be a genuine trajectory. Suppose each γi : [0, 1] → S is parametrized by t .
We prove that a lift Q̃ of Q cannot cross P̃i and P̃i−1, as in Proposition 6.7.

Case 1. Suppose that ψ ′ matches the germ of an elliptic point on (ψ ′)−1(Wi,L) to the
germ of an elliptic point on Wi,L. Recall that, by Property (6) of Proposition 6.3, the
germs of the elliptic singularities are matched by ψ ′ if the initial arcs (or terminal arcs)
of (ψ ′)−1(Wi,L) and Wi,L both contain elliptic singularities.

We first recall Lemma 6.2. Let U be a small neighborhood of the singular set of kerβ.
On (S − U) × [0, 1/2], given δ0 > 0 small, there exists ε′ > 0, so that, at points where
Yε′ is nonzero, |Yε′/|Yε′ |+Z| ≤ δ0, where Z is a unit vector field which directs kerβ. On
S × [1/2, 1], Yε′ directs kerβ, at points where Yε′ is nonzero.

LetUi,L be the connected component ofU which, after possibly shrinkingU , satisfies
the following:

• Ui,L is a small disk which is centered at the elliptic point of Wi,L.
• kerβ = ker (ψ ′)∗β on Ui,L.

The second condition holds since ψ ′ matches the germs of the elliptic singularities of
(ψ ′)−1(Wi,L) andWi,L. This implies that an arc γ : [0, 1] → Ui,L which is tangent to Yε′
does not jump from one leaf of kerβ|Ui,L to another leaf.

Next let Ni,L = ([0, 1] ∪ [2, 3]) × [−τ, τ ] ⊂ S − U be a foliated neighborhood of
Wi,L∩ (S−U) with coordinates (x, y), so that y = const are leaves of kerβ and y = 0 is
Wi,L ∩ (S−U). See Figure 8. Since the lengths of leaves of kerβ|Ni,L are bounded, there
exists a constant K (independent of ε, ε′) so that any arc γ : [0, 1] → S − U which is
tangent to Yε′ and passes through {y = y0} must be contained in {max(y0 −Kδ0,−τ) ≤

y ≤ min(y0 + Kδ0, τ )} ∪ (S − Ni,L − U). We then take δ0 sufficiently small so that
NKδ0 < τ . In other words, Ni,L is the protective layer of Wi,L which makes it hard to
cross Wi,L when ε′ is small.
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Wi,L

Ui,LNi,L Ni,L

Fig. 8. The neighborhood of the wall Wi,L.

The initial point γ̃1(0) must be strictly to the right of P̃i and also disjoint from Ñi,L
corresponding to W̃i,L. By the considerations of the previous two paragraphs, γ̃1([0, 1])∩
Ñi,L ⊂ {τ − Kδ0 ≤ y}, where we are taking y > 0 to be to the right of W̃i,L. Observe
that, since γ̃1|[1/2,1] is tangent to kerβ, it does not jump leaves.

Next, γ̃2(0) = ψ̃ ′(γ̃1(1)). Since ψ̃ ′(W̃i−k,L) is to the right of W̃i,L, γ̃2(0) is further
to the right of γ̃1(1). In particular, if γ̃2(0) is in Ñi,L, then its y-coordinate is greater
than or equal to that of γ̃1(1). Now apply the same considerations to γ̃2 to deduce that
γ̃2([0, 1])∩ Ñi,L ⊂ {τ −2Kδ0 ≤ y}. Continuing in this manner, we find that γ̃m([0, 1])∩
Ñi,L ⊂ {τ −mKδ0 ≤ y}. If m ≤ N , then τ −mKδ0 > 0. Hence the entire trajectory Q̃
must be to the right of (ψ̃ ′)−m+1(W̃i+(m−1)k,L), which, in turn, is to the right of P̃i−1.

Case 2. Suppose that the initial arc of Wi,L contains an elliptic point, whereas the initial
arc of (ψ ′)−1(Wi,L) does not.

The difference with the previous case is that γi can now switch leaves inside Ui,L.
Consider coordinates (x, y) on Ui,L so thatWi,L ∩Ui,L = {y = 0},Wi,L is directed from
x > 0 to x < 0, β = xdy − ydx, and fε′ψ ′∗β = ε

′(u(x)dy), with ∂u/∂x > 0 and u > 0.
We also suppose that being locally to the right of Wi,L means y > 0. We compute that

fε′ψ
′
∗β − β = (−x + ε

′u(x))dy + ydx,

which is directed by Y ′ = (−x + ε′u(x))∂/∂x − y∂/∂y. If ε′ is sufficiently small, then
the elliptic point of fε′ψ ′∗β − β is contained inside Ui,L. Suppose γi |[0,1/2] enters Ui,L
at x < 0, y > 0. Comparing with the vector field x∂/∂x + y∂/∂y which directs kerβ,
we see that γi |[1/2,1] exits Ui,L along a leaf of kerβ which is further to the right of Wi,L,
since −x + ε′u(x) > −x. If x > 0 and y > 0, then γi |[1/2,1] will exit Ui,L along a leaf
of kerβ which is closer to Wi,L. However, this does not present any problem, since the
initial arc of Wi,L is an integral arc of both β and (ψ ′)∗β, and Lemma 6.1(4) implies that
γi cannot cross the wall Wi,L along the initial arc.

The same proof holds when the terminal arc of Wi,L contains an elliptic point and the
terminal arc of (ψ ′)−1(Wi,L) does not. ut
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7. Nondegeneracy of Reeb vector fields

In this section we collect some results on perturbing the contact 1-form to make the cor-
responding Reeb vector field nondegenerate.

We start with the proof of the following well-known fact (see for example [HWZ6,
Proposition 6.1]).

Lemma 7.1. Let α be a contact form on a closed 3-manifold M . The set of smooth func-
tions g : M → (0,+∞) for which the form gα is nondegenerate is a dense subset of
C∞(M, (0,+∞)) in the C∞-topology.

Proof. Fix N > 0. We consider the set GN of functions g : M → (0,+∞) for which all
the orbits of the Reeb vector field Rgα of gα of period ≤ N are nondegenerate.

We first claim that GN is open. First observe that the union 0≤N of all closed orbits
of Rα of action ≤ N is closed, and hence compact. Next, any closed orbit which comes
sufficiently close to an orbit γ , all of whose multiple covers with period ≤ N are nonde-
generate, is a long orbit, i.e., has action > N . (A sequence of closed orbits of period ≤ N
converging to γ implies that the return map for some multiple cover of γ before time N
has 1 as eigenvalue.) It is therefore possible to cover 0≤N by finitely many sufficiently
small disjoint solid tori U1, . . . , Uk , together with security neighborhoods V1, . . . , Vk , so
that, if D(r) is the disk of radius r centered at the origin and S1

= R/Z, then:

(1) For all 1 ≤ i ≤ k, Vi ' S1
×D(2) and Vi ⊃ Ui ' S1

× int(D(1)).
(2) S1

× {(0, 0)} is a nondegenerate periodic orbit of Rα of action ≤ N , and is the only
periodic orbit of action ≤ N inside Vi .

(3) Rα is transverse to the foliation by horizontal disks on Vi .
(4) For any θ ∈ S1

= R/Z, all the orbits which start from {θ} × D(1) stay inside Vi at
least for an amount of time greater than N + 1 and thus at least until the first return
to {θ} ×D(2), which occurs before time N + ε.

Any sufficiently small perturbation Rgα will still have a single nondegenerate orbit,
amongst those that start from {θ} × D(1). This follows from the transversality of the
graphs of the return maps with the diagonal of ({θ} ×D(1))× ({θ} ×D(2)). (The same
considerations also hold for multiple covers of the nondegenerate orbit of period ≤ N .) If
Z = M −

⋃k
i=1 Ui , then there is a small constant τ > 0 so that no orbit δ : [0, N] → M

which is strictly contained in Z has two points t1, t2 sufficiently far apart, so that δ(t1)
is within τ -distance of δ(t2). This implies that a sufficiently small perturbation will not
create any new periodic orbits of action ≤ N . This proves the claim.

Next we prove that GN is dense in C∞(M, (0,+∞)). It suffices to show that there
exists a sequence of functions fn going to zero, so that 1 + fn ∈ GN for all n ∈ N. Let
{Ui}

k
i=1 be an open cover of 0≤N and Vi be the security neighborhood of Ui , satisfying

(1), (3), (4) of the previous paragraph. As in the previous paragraph, if we make a suf-
ficiently small perturbation of α, we do not create orbits of action less than N outside⋃k
i=1 Ui .

We first modify α on V1. Let C > 0 so that the first return occurs at a time strictly
greater than C. We take an embedding [0, C] × D(3/2) → V1 so that {0} × D(3/2) is
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mapped to the horizontal disk {0}×D(3/2) ⊂ S1
×D(2), and so that, if t is the coordinate

of the [0, C] factor, ∂/∂t = R. We may also assume that α = dt+β, where β is a 1-form
on D(3/2) which is independent of t , β(0, 0) = 0, and β is small on D(3/2) (by taking
the Vi to be sufficiently small to start with). If f is a function on M with support on
[0, C] ×D(3/2), then

d((1+ f )α) =
(
d2f −

∂f

∂t
β

)
∧ dt + (1+ f )dβ,

where d2 means the exterior derivative in the direction of D(3/2). Provided d2f �
∂f
∂t
β

on [0, C]×D(1) (which is the case for our specific choice of f below),R(1+f )α is parallel
to ∂/∂t +X, which approximately satisfies

iXdβ = −
d2f

1+ f
.

Now we can look at a family of deformations corresponding to functions which are
zero outside of [0, C] ×D(3/2) and given by

fa,b(x, y, t) = χ1(t)χ2

(√
x2 + y2

)
(ax + by)

inside, where (t, x, y) are coordinates on [0, C] ×D(3/2), χ1 and χ2 are positive cut-off
functions such that the 2-jet of χ1 is 0 at t = 0 and t = C, χ2([0, 1]) = 1, and χ2 = 0
near 3/2. This gives a sequence of families (F la,b)1≤l≤p, with 1 ≤ p ≤ N/C + 1, of
lth return maps which are transverse to the diagonal in ({0} × D(1)) × ({0} × D(2)) as
families: the transversality is obtained by looking at derivatives of F la,b in (a, b) variables
at (a, b) = (0, 0).

The transversality of the families F la,b implies that the fixed points of F la,b are non-
degenerate for a generic (a, b) ∈ R2. Thus we can find a function fa,b as small as we
want so that the periodic orbits of period less than N of Rg1α , g1 = 1 + fa,b, which are
contained in U1, are nondegenerate. Next, we deform g1α on V2, by multiplying by a
function g2 which is very close to 1, so that the orbits in U1 of period ≤ N remain nonde-
generate and all the periodic orbits inside U2 of period ≤ N become nondegenerate. The
density of GN follows by induction.

Now the proof of the lemma follows by looking at
⋂
N∈NGN , which is a dense Gδ-

set. ut

Lemma 7.2. Given N � 0, there is a C∞-small perturbation of αε,ε′ so that the per-
turbed Reeb vector field R satisfies the following:

(1) All the closed orbits of R with action ≤ N are nondegenerate.
(2) The binding γ0 and its multiple covers are nondegenerate periodic orbits of R.
(3) All other orbits of R are positively transverse to the pages of the open book.
(4) All the orbits near γ0 lie on the boundary of a solid torus whose core curve is γ0 and

have irrational slope on the solid torus.
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Proof. Recall the functions aε(r) = C0,ε−C1,εr
2 and bε(r) = r2 from Section 6.2.3. We

can slightly modify aε(r) near r = 0 by replacing C1,ε 7→ C1,ε + τ , where τ is a small
number so that the ratio b′ε(r) :

a′ε(r)

2π becomes irrational. Hence (2) and (4) are satisfied.
Also, (1) and (3) are satisfied for orbits near γ0. Finally, the procedure in Lemma 7.1 can
be applied to M −N(γ0) to yield (1) and (3). ut

The following lemma is used in the proof of Corollary 2.6.

Lemma 7.3. Let α be a contact 1-form on a closed 3-manifoldM . If α is degenerate and
has a finite number of simple orbits, then for any N � 0 there exists a smooth function
gN which is C∞-close to 1 so that all the periodic orbits of RgNα of action ≤ N are
nondegenerate and lie in small neighborhoods of the periodic orbits of Rα (and hence
are freely homotopic to multiple covers of the periodic orbits of Rα).

Proof. Let U1, . . . , Uk be the neighborhoods of the simple orbits S1
× {(0, 0)} and

V1, . . . , Vk be the security neighborhoods as in Lemma 7.1, taken so they are sufficiently
small and mutually disjoint. As before, on Z = M −

⋃k
i=1 Ui , any sufficiently small

perturbation will not create any new orbits of action ≤ N . The perturbations inside the Vi
will make the Reeb vector field nondegenerate. ut

8. Holomorphic disks

Let h be a diffeomorphism which is freely homotopic to a pseudo-Anosov representa-
tiveψ and let S be a page of the open book decomposition. For each boundary component
(∂S)i of ∂S, there is an associated fractional Dehn twist coefficient ci = ki/ni , where ni
is the number of prongs. Let αε,ε′ be the contact 1-forms and Rε,ε′ be the correspond-
ing Reeb vector fields constructed in Section 6. Recall that the direction of Rε,ε′ does not
depend on ε, provided ε is small enough that the contact condition is satisfied. In what fol-
lows we assume that αε,ε′ is nondegenerate, by applying the C∞-small perturbation given
in Lemma 7.2. Let (R ×M,d(etαε,ε′)) be the symplectization of (M, ξε,ε′ = kerαε,ε′)
and Jε,ε′ be an almost complex structure which is adapted to the symplectization. We
have the following theorem:

Theorem 8.1. Suppose the fractional Dehn twist coefficient ci ≥ 2/ni for each boundary
component (∂S)i . GivenN � 0, for sufficiently small ε, ε′ > 0, no closed orbit γ of Rε,ε′
with action

∫
γ
αε,ε′ ≤ N is the positive asymptotic limit of a finite energy plane ũ with

respect to Jε,ε′ .

We will usually say that γ which is the positive asymptotic limit of a finite energy plane ũ
bounds ũ. Theorem 8.1 implies that:

Corollary 8.2. Suppose ci ≥ 2/ni for each boundary component (∂S)i . Given N � 0,
for sufficiently small ε, ε′ > 0, the cylindrical contact homology group HC≤N (M, αε,ε′)
is well-defined.
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Outline of proof of Theorem 8.1. Without loss of generality assume that ∂S is connected.
Fix N � 0. By Proposition 6.8, for sufficiently small ε, ε′ > 0, any genuine trajectory Q
of Rε,ε′ which intersects a page at mostN times satisfies8(Q) = 0. Also, for ε small, the
number of intersections of a closed orbit γ with a page of the open book is approximately
the same as the action Aαε,ε′ (γ ), provided γ lies in 6(S,ψ ′). Fix sufficiently small con-
stants ε, ε′ > 0 so that the above hold, and write α = αε,ε′ , R = Rε,ε′ , ξ = ξε,ε′ , and
J = Jε,ε′ . We will prove that no closed orbit of R in 6(S,ψ ′) which intersects a page
at most N times bounds a finite energy plane, and that no closed orbit in M − 6(S,ψ ′)
bounds a finite energy plane.

Towards a contradiction, suppose there exists a nondegenerate orbit γ of R which
bounds a finite energy plane ũ = (a, u) : C → R × M . Assume in addition that γ
is not a cover of the binding γ0, oriented as the boundary of a page. By construction,
γ is transverse to the pages of the open book. After perturbing u if necessary, we may
take u to be positively transverse to γ0. The holomorphicity of ũ ensures that there are
no negative intersections. Now let N(γ0) be a sufficiently small tubular neighborhood of
γ0, one which depends on γ . By restricting to M − N(γ0) and reparametrizing, we view
u as a map u from a planar surface P to M − N(γ0). Here P is obtained from a unit
disk D by excising small disks which consist of points whose images lie in N(γ0). Next
identify M − N(γ0) ' (S′0 × [0, 1])/(x, 1) ∼ (h(x), 0), where S′0 is a small retraction
of the page S0. Cut M − N(γ0) open along S′0 × {0} and project to S′0 via the projection
π : S′0 × [0, 1] → S′0 onto the first factor. Then we obtain the map π ◦ u : D → S′0,
where D is a disk obtained from P by making cuts along arcs as given in Figure 9. The
cutting-up/normalization process will be done in detail in Section 8.1. In Section 8.2 we
prove Proposition 8.6, which states that π(u(∂D)) cannot be contractible if c ≥ 2/n. This
is proved using the Rademacher function 8 which is adapted to F , and relies on the fact
from Proposition 6.8 that 8 of a genuine trajectory Q is zero. This gives us the desired
contradiction. The case when γ is a multiple cover of γ0 is similar. ut

h−1(α−1
3 )

γ3

α3

β3

γ2

β1

α1

β2

α2

h−1(α−1
1 )

γ1

h−1(α−1
2 )

Fig. 9. The disk D. The labelings indicate the image of the given boundary arc under the map u.
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8.1. Cutting up the finite energy plane

The type of argument we are using first appeared in [CH1, Annexe]. The discussion in
this subsection does not depend on the specific diffeomorphism type of h.

Suppose there exists a nonconstant finite energy plane ũ = (a, u) : C→ R×M which
is bounded by γ . We will slightly modify u to get a map u : D2

= {|z| ≤ 1} → M . Let w
be the coordinate for C and z be the coordinate forD2. Also let5 : TM = RR⊕ ξ → ξ

be the projection to ξ .
The following summarizes the results of Hofer–Wysocki–Zehnder [HWZ1], tailored

to our needs:

Proposition 8.3. There exists a smooth map u : D2
→ M which is bounded by γ and

satisfies the following:

• u|int(D2) is immersed away from a finite number of points in int(D2).
• u(z) = u(Rz) for large R > 0 and |z| ≤ r0 < 1. Hence (a(Rz), u(z)) is holomorphic

on the subdisk {|z| ≤ r0}. Moreover, {|w| ≤ Rr0} contains the set of nonimmersed
points of u.
• At points where u is immersed, u is positively transverse to R.
• u(z) 6∈ Im(γ ) for r0 < |z| < 1.

Proof. Let R/Z × D2
δ be a small neighborhood of Im(γ ), where D2

δ is a disk of radius
δ > 0 and γ maps to R/Z × {0}. Let k0 be the multiplicity of γ , i.e., the number of
times γ covers a simple orbit. When restricted to |w| � 0, u(w) maps to R/Z×D2

δ and
has components (u0(w), u1(w)). Then, according to [HWZ1, Theorem 1.4],

• u0(re
2πit ) asymptotically approaches k0t , with error term O(e−Cr). The same holds

for all the derivatives of u0.
• u1(re

2πit ) = e

∫ r
r1
µ(τ) dτ

[E(e2πit ) + F(re2πit )], where µ : [r1,∞) → R is a smooth
function which limits to λ < 0, E(e2πit ) is a nowhere vanishing function with values
in R2, and F(re2πit ) is the remainder term which approaches 0 uniformly in t for
all derivatives, as r → ∞. (The function E(e2πit ) is an eigenfunction of a suitable
operator with eigenvalue λ.)

We note that some care is required in choosing the coordinates on R/Z×D2
δ .

We now reparametrize u : C → M . Consider the map φ : int(D2) → C, (r, θ) 7→
(f (r), θ), where f (r) = Rr for r ≤ r0, f ′(r) > 0, and f (r) = 1/(1− r) near r = 1.
Then let u = u ◦ φ on int(D2) and u(e2πit ) = (k0t, 0). The above asymptotics guarantee
the smoothness of u : D2

→ M .
The first and last statements follow from [HWZ1, Theorem 1.5], which states that (i)

5 ◦ u∗ is nonzero (and hence u is an immersion) away from a finite number of points and
that (ii) u intersects γ at finitely many points. ut

The map u, restricted to int(D2), either intersects γ0 transversely and positively or inter-
sects γ0 at a point where 5 ◦ u∗ = 0. The following lemma allows us to restrict to the
former situation.
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Lemma 8.4. There exists a perturbation v of u with small support inside int(D2) so that
v is positively transverse to R away from isolated complex branch points and is positively
transverse to γ0.

We emphasize that u and v are no longer holomorphic everywhere.

Proof. Suppose without loss of generality that 5 ◦ u∗(0) = 0 and u(0) ∈ γ0. Let
[−1, 1] × D2

⊂ M be a small neighborhood of u(0) = (0, 0), where the Reeb orbits
are [−1, 1] × {pt} and [−1, 1] × {0} is a subarc of γ0. Now restrict the domain of u to a
small neighborhood D2

ε = {|z| ≤ ε} of 0 and write u = (u0, u1), where u0 is the com-
ponent that maps to [−1, 1] and u1 is the component that maps to D2. Define a smooth
function f : D2

ε → R which satisfies the following:

• f (z) = δ on |z| ≤ ε′′.
• f (z) = 0 on |z| ≥ ε′.
• |f ′| is small on D2

ε . (This means that δ must be a very small positive number.)

Here 0 < ε′′ < ε′ < ε. Then define v(z) = (u0(z), u1(z) + f (z)). On |z| ≤ ε′′, we are
simply translating the holomorphic disk; this does not affect the transversality with R.
Now, provided |f ′| is sufficiently small, the transversality on ε′′ ≤ |z| ≤ ε′ is unaffected.
The point near z = 0 which intersects γ0 is distinct from the point z = 0 at which
5 ◦ v∗ = 0. ut

The map v from Lemma 8.4 will be renamed as u.
Suppose that γ does not cover γ0. By this we mean γ 6= γ0 and γ is not a multiple

cover of γ0. Since γ0 intersects u transversely, there is a small neighborhood N(γ0) of γ0
so that u(D2)∩∂(M−N(γ0)) is a union of circles, each of which intersects ∂(S′0×{pt})
exactly once. Let P be the planar subsurface of D2 obtained by excising all z ∈ D2

such that u(z) ∈ int(N(γ0)). We write ∂P = ∂0P + ∂1P where ∂0P maps to γ and the
components of ∂1P map to ∂(M −N(γ0)).

Now take S′0 = S
′

0 × {0} and consider the intersection of S′0 and u(P ). Observe that
u|P is already transverse to S′0 × {t} in a neighborhood of ∂P , for all t . Next, by Sard’s
theorem, there exists S′0 × {ε} which is transverse to u|P with ε arbitrarily small. By
renaming the t-variable (i.e., translating t 7→ t − ε), we may assume that S′0 = S

′

0 × {0}
and u|P intersect transversely. We now have the following:

Lemma 8.5. The intersection P ∩ u−1(S′0) is a union of properly embedded arcs and
embedded closed curves in P which satisfy the following:

(1) The embedded closed curves bound disks in P .
(2) There is an arc ai which is the unique arc to connect the ith component of ∂1P to ∂0P .

Order the ai so that their endpoints in ∂0P are in counterclockwise order, and order the
components of ∂1P using the ai . Also, ai is oriented from ∂1P to ∂0P .

Proof. Let δ be a closed curve of P ∩ u−1(S′0). Then δ cuts off a planar subsurface P0
whose boundary consists of δ, together with components of ∂1P . Now consider the inter-
section pairing with S′0. Since 〈u(δ), S′0〉 = 0 but each component of u(∂1P) intersects S′0
negatively, it follows that ∂P0 = δ.
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Now if 〈γ, S′0〉 = m > 0, then there must be m endpoints of P ∩ u−1(S′0) on ∂0P

and one endpoint on each of the m components of ∂1P . If the arc ai which begins at
the ith component of ∂1P ends on another component of ∂1P , then there must be an arc
from ∂0P to itself. This would contradict 〈γ, S′0〉 = m. The lemma follows. ut

Take an embedded closed curve of P ∩u−1(S′0) in P which bounds an innermost diskD0.
Then u(D0) can be pushed across S′0 by either flowing forwards or backwards along R
(depending on the situation). In this way we can eliminate all the embedded closed curves
of P ∩ u−1(S′0) in P .

Now cut P along the union of the arcs in P ∩ u−1(S′0) to obtain a disk D. We now
have a map u : D→ S′0 × [0, 1]. After cutting open at one point, u(∂D) is given by

u(∂D) = h−1(α−1
1 )β1α1γ1 . . . h

−1(α−1
m )βmαmγm, (8.1.1)

where αi refers to αi × {0}, α−1
i is αi with the opposite orientation, h−1(α−1

i ) refers to
h−1(α−1

i )×{1}, γi are components of the Reeb orbit γ cut along S′0×{0}, and βi are arcs
of the type {pt} × [0, 1] where pt ∈ ∂S′0. See Figure 9.

Next we compose u with the projection π : S′0 × [0, 1] → S′0 onto the first factor.
Then the curve π(u(∂D)) ⊂ S′0 is decomposed into consecutive arcs:

π(u(∂D)) = h−1(α−1
1 )α1γ1 . . . h

−1(α−1
m )αmγm, (8.1.2)

where the γi are actually π(γi). Also note that the βi project to points.
Rewrite π(u(∂D)) as

π(u(∂D)) = h−1(ξ−1
1 )ξ1h

−1(ξ−1
2 )ξ2 . . . h

−1(ξ−1
m )ξmQ

′, (8.1.3)

where Q′ = hm−1(γ1)h
m−2(γ2) . . . γm is the projection S′0 × [0, m] → S′0 onto the first

factor of a lift of γ to S′0 × [0, m] and

ξ1 = α1,

ξ2 = α2h(γ
−1
1 ),

ξ3 = α3h(γ
−1
2 )h2(γ−1

1 ),
...

8.2. Noncontractibility

Let h : S0
∼
−→ S0 be a diffeomorphism with h|∂S0 = id, fractional Dehn twist coefficient

c = k/n, and pseudo-Anosov representative ψ . Writing S0 = A0 ∪ S, we may assume
that h|S = ψ ′ and h|A0 is a rotation/fractional Dehn twist by c. Also let h0 : S0

∼
−→ S0 be

a homeomorphism which is isotopic to h relative to ∂S0, so that h0|S = ψ .
In this subsection we prove the following proposition:

Proposition 8.6. Suppose γ does not cover γ0. If k ≥ 2, then γ does not bound a finite
energy plane.
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Suppose γ ⊂ 6(S,ψ ′). If γ bounds a finite energy plane ũ, then we can cut up the finite
energy plane to obtain D which satisfies (8.1.3). If we apply h−m+1 to (8.1.3), then we
obtain

0 := h−m+1(π(u(∂D))) = h−1(ζ−1
1 )ζ1h

−1(ζ−1
2 )ζ2 . . . h

−1(ζ−1
m )ζmQ. (8.2.1)

Here ζi = h−m+1(ξi) and

Q = γ1h
−1(γ2) . . . h

−m+1(γm) = γ1(ψ
′)−1(γ2) . . . (ψ

′)−m+1(γm)

is a concatenation of the type appearing in (6.6.1). The goal is to prove that 0 is not
contractible.

The key ingredient to proving the noncontractibility of 0 is the Rademacher func-
tion 8 with respect to the stable foliation F . Let (θ, y) be coordinates on A0 =

S1
× [−1, 0] so that S1

× {0} is identified with ∂S. Pick a retraction ρ : S0 → S which
sends (θ, y) 7→ (θ, 0). If τ is an arc in S0, then we define 8(τ) = 8(ρ(τ)).

Lemma 8.7. Let η be an arc on S0. Then 8(h−1
0 (η−1)η) = k − 1 or k.

When we compute 8 values, we often suppress ρ and write τ to mean ρ(τ).

Proof. First observe that the arc h−1
0 (η−1)η is isotopic, relative to its endpoints, to the

concatenation ψ−1(η−1)δη, where δ is a subarc of ∂S.
Next lift ψ−1(η−1)δη to the universal cover S̃. We place a tilde to indicate a lift. Let

ψ̃ be an appropriate lift of ψ so that ψ̃−1(η̃−1)̃δη̃ is the chosen lift of ψ−1(η−1)δη. Let
d be the component of ∂S̃ which contains δ̃. Recall that S̃d is the union of prongs P̃i that
emanate from d . We orient each component P̃i of S̃d so that it points into S̃.

If necessary, we perturb the initial point of η̃ (and hence the terminal point of
ψ̃−1(η̃−1)) so that the endpoints of δ̃ do not lie on S̃d . In that case, 8(δ) = k − 1,
since8 of an oriented arc on d is the oriented intersection number with S̃d minus 1 when
the contribution is positive, and plus 1 when it is negative. If the terminal point of η̃ lies
on S̃d , then the whole of ψ̃−1(η̃−1)̃δη̃ can be isotoped onto d via an isotopy which con-
strains the endpoints to lie on S̃d . In this case, 8(h−1

0 (η−1)η) = k. Assume otherwise.
Then we can isotop η̃ while fixing one endpoint and constraining the other to lie on d ,
so that η̃ becomes disjoint from S̃d . We may also assume that η̃ is a quasi-transverse arc.
By the ψ̃-invariance of S̃d , it follows that ψ̃−1(η̃−1) is also disjoint from S̃d . Hence the
contribution of d to 8(ψ−1(η−1)δη) is k − 1. Moreover, there is no concatenation error
if we use the η̃ as normalized above. Since 8(ψ−1(η−1)) = −8(η) by Proposition 5.2,
it follows that 8(h−1

0 (η−1)η) = k − 1. ut

Let x be the initial point of Q. Then (8.2.1) can be written as

0 = R′h−1
0 (η−1

1 )η1h
−1
0 (η−1

2 )η2 . . . h
−1
0 (η−1

m )ηmQ, (8.2.2)
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whereR′ is the path g1h
−1
0 (g2) . . . h

−m+1
0 (gm)which joins h−m(x) to h−m0 (x) for some x,

and

ηm = ζm,

ηm−1 = ζm−1gm,

ηm−2 = ζm−2gm−1h
−1
0 (gm),

...

Here gi is a path such that h−1(ζ−1
i ) = gih

−1
0 (ζ−1

i ).
In what follows, we pass to the universal cover S̃0 of S0. Choose a lift of

π(u(∂D)). Let h̃−m0 be the lift of h−m0 which sends the terminal point of the lift of
h−1

0 (η−1
1 )η1h

−1
0 (η−1

2 )η2 . . . h
−1
0 (η−1

m )ηm to its initial point. We may decompose it as

h̃−m0 = h̃−1
0,m ◦ h̃

−1
0,m−1 ◦ · · · ◦ h̃

−1
0,1,

where the h̃−1
0,i is the lift of h−1

0 which sends the terminal point of η̃i to the terminal point

of η̃i−1. Also let h̃−m = h̃−1
m ◦ h̃

−1
m−1 ◦ · · · ◦ h̃

−1
1 be the lift of h−m which coincides with

h̃−m0 near ∂S̃0, and let ˜(ψ ′)−m = (̃ψ ′)−1
m ◦ · · · ◦ (̃ψ

′

1)
−1 and ψ̃−m = ψ̃−1

m ◦ · · · ◦ ψ̃
−1
1 be

the restrictions of h̃−m and h̃−m0 to S̃. Now the arc R̃′ is an arc which joins h̃−m(̃ηm(1))

to h̃−m0 (̃ηm(1)) in S̃0.
Assume that ψ(xi) = xi , again for ease of indexing.

Lemma 8.8. Suppose ψ̃−m and ˜(ψ ′)−m are isotopic lifts of ψ−m and (ψ ′)−m, with
m ≥ 1. If p ∈ S̃ and ψ̃−m(p) is to the left of a lift P̃i of Pi , then ˜(ψ ′)−m(p) is strictly to
the left of the lift of (ψ ′)−m(Wi,R) which starts near P̃i on the same component of ∂S̃.

The same holds if we replace all occurrences of “left” by “right”.

Proof. If ψ̃−m(p) is to the left of a lift P̃i of Pi , then p is to the left of ψ̃m(P̃i). Since
ψ̃m(P̃i) is a prong, p is strictly to the left of the lift W̃i,R of Wi,R which starts near it (as

ψ̃m(P̃i) ≤ W̃i,R). Applying ˜(ψ ′)−m to p and W̃i,R gives the lemma. ut

Corollary 8.9. Suppose ψ̃−m and ˜(ψ ′)−m are isotopic lifts of ψ−m and (ψ ′)−m, with
m≥1. For any p∈ S̃, the path g−m,p from ψ̃−m(p) to ˜(ψ ′)−m(p) satisfies8(g−m,p)=0.

Proof. Suppose 8(gp) 6= 0. Then g−m,p needs to cross two consecutive prongs P̃i and
P̃i+1 which emanate from the same component of ∂S̃. Suppose, without loss of generality,
that ψ̃−m(p) is to the left of P̃i and ˜(ψ ′)−m(p) is to the right of P̃i+1. This contradicts
Lemma 8.8, since ˜(ψ ′)−m(W̃i,R) ≤ P̃i+1. ut

We now prove Proposition 8.6.
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Proof of Proposition 8.6. Suppose that γ ⊂ 6(S,ψ ′). By Lemma 8.7,8(h−1
0 (η−1

j )ηj ) ≥

k − 1 for all j . By (3) of Proposition 5.2, we deduce that

8(h−1
0 (η−1

1 )η1h
−1
0 (η−1

2 )η2 . . . h
−1
0 (η−1

m )ηm) ≥ m(k − 1)− (m− 1).

Since k ≥ 2, the right-hand side of the inequality is ≥ 1. Hence we know that there
exist consecutive lifts P̃i and P̃i+1 starting on the same component d of ∂S̃, so that the
initial point and the terminal point of a lift of the arc h−1

0 (η−1
1 )η1 . . . h

−1
0 (η−1

m )ηm are
respectively strictly to the left of P̃i and strictly to the right of P̃i+1.

As we saw in the proof of Proposition 6.8, the endpoint of Q̃ (= the endpoint of the

lift 0̃ of 0) is then strictly to the right of ˜(ψ ′)−m+1(W̃i+1,L), which starts on d between
P̃i and P̃i+1, provided 0 < m ≤ N . Now, by Lemma 8.8, the initial point of R̃′ (= the
initial point of 0̃) is strictly to the left of ˜(ψ ′)−m(W̃i,R), which starts on d between P̃i and

P̃i+1. Since ˜(ψ ′)−m(W̃i,R) ≤
˜(ψ ′)−m+1(W̃i+1,L), it follows that 0 is not contractible,

which is a contradiction.
Next suppose that γ lies inM−6(S,ψ ′). In this case, we retract 0 using ρ : S0 → S;

this time the endpoints of ηi are moved to ∂S. The rest of the argument is the same. This
concludes the proof of Proposition 8.6. ut

Case when γ covers γ0. Finally consider the case when γ covers γ0. Let N(γ0) be a
small tubular neighborhood of γ0 so that (5 ◦ u∗)(q) 6= 0 for all q with u(q) ∈ N(γ0).
Also, by Lemma 7.2, we may take ∂N(γ0) to be foliated by Reeb orbits of irrational
slope c, where ∂N(γ0) is identified with R2/Z2 so that the meridian has slope 0 and ∂S′0
has slope∞. Consider M − N(γ0) = S

′

0 × [0, 1]/∼ as before. As u|int(D2) is transverse
to the Reeb vector field R away from finitely many branch points, it follows that the com-
ponent δ of u(D2) ∩N(γ0), parallel to and oriented in the same direction as γ in u(D2),
would have slope 1/m0 which satisfiesm0 < 1/c. On the other hand, all the other compo-
nents of u(D2) ∩ ∂N(γ0)—those that bound meridian disks in N(γ0) and are oriented as
∂(u(D2) ∩ (M − N(γ0)))—intersect S′0 negatively. Since the oriented intersection num-
ber of ∂(u(D2) ∩ (M − N(γ0))) with S′0 is zero, it follows that m0 ≥ 0. Now, m0 = 0 is
impossible, since δ could then be homotoped to ∂S0 and u(D2) to a disk in S0. Ifm0 > 0,
then we can apply the analysis of this section with a slightly smaller disk whose bound-
ary maps to δ. This time, 8(Q) will contribute positively, making 8(π(u(∂D)) more
positive. This concludes the proof of Theorem 8.1.

9. Holomorphic cylinders

In this section we give restrictions on holomorphic cylinders between closed Reeb orbits.
We say that there is a holomorphic cylinder from γ to γ ′ if there is a holomorphic cylinder
in the symplectization R×M whose asymptotic limit at the positive end is γ and whose
asymptotic limit at the negative end is γ ′.

Let Pε,ε′ be the set of good orbits of Rε,ε′ . A periodic orbit γ which is an m0-fold
cover of the binding γ0 will be written as m0γ0. Let P>0

ε,ε′
be the set of good orbits which
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are not m0γ0 for any m0. In other words, they nontrivially intersect the pages of the open
book. We now define the open book filtration F : P>0

ε,ε′
→ N, which maps γ to the

number of intersections with a given page. (This filtration was pointed out to the authors
by Denis Auroux.) Denote by γb any periodic orbit in P>0

ε,ε′
such that F(γb) = b. The

following lemma shows that the boundary map is filtration nonincreasing.

Lemma 9.1. There are no holomorphic cylinders from γb to γb′ if b < b′.

Proof. The holomorphic cylinders intersect the binding positively. (We may need to per-
turb the holomorphic cylinder to also make it intersect the binding transversely.) If there
is a holomorphic cylinder ũ from γb to γb′ , then there is a map u : P → M −N(γ0), ob-
tained by a cutting-up process given in Section 9.1. By examining the intersection number
of ∂u(P ) with S′0 × {0}, we see that b ≥ b′. ut

The main theorem of this section is the following:

Theorem 9.2. Suppose ci ≥ 3/ni for each boundary component (∂S)i . Given N � 0,
for sufficiently small ε, ε′ > 0, there are no holomorphic cylinders from γ to γ ′ if∫
γ
αε,ε′ ,

∫
γ ′
αε,ε′ ≤ N , and one of the following holds:

(1) γ = γb, γ ′ = γb′ , and b 6= b′;
(2) γ = γb and γ ′ = m0γ0;
(3) γ = m0γ0 and γ ′ = γb;
(4) γ = m0γ0, γ ′ = m1γ0, and m0 6= m1.

The rest of this section is devoted to proving Theorem 9.2. The basic idea is exactly the
same as in the proof of Theorem 8.1.

9.1. Cutting up the holomorphic cylinder

Suppose that γ = γb and γ ′ = γb′ . By Lemma 9.1, b < b′ is not possible, so assume that
b > b′.

Suppose there is a holomorphic cylinder ũ = (a, u) : S1
× R → R × M from γ

to γ ′. Again, with the aid of the asymptotics from [HWZ1], we view u as a smooth map
u : S1

× [0, 1] → M where:

• u(S1
× {1}) = γ and u(S1

× {0}) = γ ′. Moreover, the orientation on u(S1
× {1})

induced from S1
× [0, 1] agrees with that of γ and the orientation on u(S1

× {0})
induced from S1

× [0, 1] is opposite to that of γ ′.
• u|int(S1×[0,1]) is immersed away from a finite number of points in int(S1

× [0, 1]).
• At points where u is immersed, u is positively transverse to R.
• u(z) 6∈ Im(γ )∪ Im(γ ′) for z ∈ S1

× ([0, r0] ∪ [1− r0, 1]), where r0 is a small positive
number.

As before, perturb u so that u is still positively transverse to R away from ∂(S1
× [0, 1])

and a finite set F in int(S1
×[0, 1]), points in F are complex branch points, and (5◦u∗)(z)

6= 0 for all z with u(z) in a sufficiently small neighborhood N(γ0) of γ0. Let P be the
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planar subsurface of S1
× [0, 1] obtained by excising z ∈ S1

× [0, 1] such that u(z) ∈
int(N(γ0)). We write ∂P = ∂0P + ∂1P + ∂2P , where ∂0P maps to γ , ∂1P maps to −γ ′,
and the components of ∂2P map to ∂N(γ0).

We now consider the intersection of S′0 = S
′

0 × {0} and u(P ), which we may assume
to be a transverse intersection. Then the set of points of P which map to S′0 under u are
properly embedded arcs and embedded closed curves. By the positivity of intersection of
∂0P , −∂1P , and each component of −∂2P with S′0, we find that the embedded closed
curves bound disks in P , hence can be isotoped away as before.

Therefore, the holomorphic cylinder ũ from γb to γb′ gives rise to a map u : P →
M − N(γ0), where P is a planar surface and N(γ0) a small tubular neighborhood of the
binding γ0, such that:
• u is an immersion away from a finite number of points;
• u(∂P ) = γb ∪ γ

−1
b′
∪ u(∂2P), where u(∂2P) ⊂ ∂N(γ0) and consists of b − b′ closed

curves which are parallel to and oriented in the opposite direction from the boundary
of the meridian disk of N(γ0) which intersects γ0 positively;
• u(P ) ∩ (S′0 × {0}) consists of b properly embedded arcs. Here b′ arcs begin on γb′ ,
b − b′ begin on ∂2P , and all end on γb.

The arcs of u(P ) ∩ (S′0 × {0}) cut P into b′ disks. See Figure 10.

γ

α4

τ

α1

γ ′

α3

α2

γ

Fig. 10.

We select one arc amongst the b′ arcs beginning on γb′ , and let τ be the image of the
arc under u. Consider the disk D obtained by cutting P along (the arc that maps to) τ as
well as along the b− b′ arcs from u(∂1P) to γb. Also denote the images of the b− b′ arcs
from ∂2P to γb under u by α1, . . . , αb−b′ , in counterclockwise order along γb. Here, α1 is
the first arc reached from τ , traveling counterclockwise along γb. The disk u(D) can be
thought of as living in S′0 × [0, b

′
]. Consider the projection π : S′0 × [0, b

′
] → S′0 onto

the first factor.



494 Vincent Colin, Ko Honda

We consider the curve π(u(∂D)) and obtain a contradiction by showing that it is not
contractible in S′0, in a manner analogous to Theorem 8.1. Let 0 (resp. 0′) be the subarc
of π(u(∂D)) which maps to π(γb) (resp. π(γb′)) in S′0. (By π(γb) we mean the projection
of an appropriate lift of γb to S′0 × [0, b

′
].)

9.2. Completion of proof of Theorem 9.2

We now complete the proof of Theorem 9.2. Suppose k ≥ 3.

(1) Suppose γ = γb, γ ′ = γb′ , and γ, γ ′ ⊂ 6(S,ψ ′). The case when at least one of
γ, γ ′ 6⊂ 6(S,ψ ′) is similar. As in the proof of Theorem 8.1, we can write

π(u(∂D)) = h−1(ξ−1
1 )ξ1h

−1(ξ−1
2 )ξ2 . . . h

−1(ξ−1
b−b′

)ξb−b′0h
−b′(τ−1)(0′)−1τ. (9.2.1)

Here we are writing τ for π(τ), 0 = hb−1(γ1) . . . γb and 0′ = hb
′
−1(γ ′1) . . . γ

′

b′
.

Next, we apply h−b+1 and rewrite our equation as

h−b+1(π(u(∂D))) = R′01(h
−b+1(0))h−b

′

(κ−1)(h−b+1(0′)−1)κ, (9.2.2)

where

01 = h
−1
0 (η−1

1 )η1h
−1
0 (η−1

2 )η2 . . . h
−1
0 (η−1

b−b′
)ηb−b′ ,

and R′ is of the type which appears in (8.2.2).
We will apply the retraction ρ : S0 → S if necessary, without further mention, and

work on S. By taking a sufficiently large cover of the holomorphic cylinder from γ to γ ′

(and replacing γ and γ ′ byKγ andKγ ′), we may assume that b−b′ is sufficiently large.
Hence,

8(01) ≥ (b − b
′)(k − 1)− (b − b′)+ 1� 0.

Next we note that 8(R′) = 0 by Corollary 8.9. Also, by Proposition 6.8,
8((ψ ′)−b+1(0)) = 0, since (ψ ′)−b+1(0) = γ1 . . . h

−b+1(γb). Although (ψ ′)−b+1(0′)

= hb
′
−b(γ ′1) . . . h

−b+1(γ ′
b′
) is not quite a concatenation of type Q, the same proof shows

that 8((ψ ′)−b+1(0′))) = 0. Finally, 8(κ) = −8(ψ−b
′

(κ−1)), and the difference be-
tween ψ−b

′

(κ−1) and (ψ ′)−b
′

(κ−1) is two arcs of the type R′. Since these two arcs of
type R′ have 8 = 0, we have

8(h−b+1(π(u(∂D)))) ≈ 8(01)� 0.

This is a contradiction.

(2) Suppose γ = γb and γ ′ = m0γ0. As in Section 8, let N(γ0) be a small tubular neigh-
borhood of γ0 so that (5◦u∗)(q) 6= 0 for all q with u(q) ∈ N(γ0). We retract the cylinder
so that γ is fixed but γ ′ is now on ∂N(γ0). Since ∂N(γ0) is foliated by Reeb orbits of
irrational slope c and we require that the cylinder be positively transverse to the Reeb
vector field, it follows that γ ′ has slope m0/m1 which satisfies m1/m0 > 1/c. Therefore,
8(0′) contributes negatively, and hence8((0′)−1) contributes positively, which is in our
favor.
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(3) Suppose γ = m0γ0 and γ ′ = γb. Consider N(γ0) as in (2). This time, we retract the
cylinder so that γ is on ∂N(γ0) and γ ′ is fixed. Then γ has slope m0/m1 which satisfies
m1/m0 < 1/c, and 8(0) contributes more positively, which is in our favor.

(4) This just combines the observations made in (2) and (3).

This completes the proof of Theorem 9.2.

10. Direct limits

10.1. Direct limits in contact homology

Let α and α′ be contact 1-forms for the same contact structure ξ , with nondegenerate
Reeb vector fields Rα, Rα′ . Denote by A≤L(α) the supercommutative Q-algebra with
unit generated by P≤Lα , the set of good orbits of Rα with action

∫
α ≤ L. The boundary

map ∂ is the restriction of ∂ : A(α)→ A(α) to A≤L(α) ⊂ A(α).
Write α′ = f0(x)α, where f0(x) is a positive function. If K is a constant satisfying

K > supx∈M f0(x), then a sufficient condition for the existence of a chain map

8αα′ : A≤L(α)→ A≤L′(α
′)

is that L′ > KL, as will be explained in the next paragraph.
Consider R ×M with coordinates (t, x). We define a function f (t, x) for which (i)

∂f/∂t > 0, (ii) f (t, x)→ K as t →+∞, (iii) f (t, x)→ f0(x) as t →−∞, (iv) f (t, x)
does not depend on x for t large positive, and (v) f (t, x) = g(t)f0(x) for t large negative
(this means that g(t) is a function which approaches 1 as t →−∞ and has small positive
derivative dg/dt). Then define the symplectization d(f (t, x)α). Let J be an almost com-
plex structure which is adapted to the symplectization at both ends. Take the collections
Pα , Pα′ of the good orbits for α and α′, respectively. Let M[Z](J, γ, γ

′

1, . . . , γ
′
m) be the

moduli space of J -holomorphic rational curves with (asymptotically marked) punctures
which limit to γ ∈ Pα at the positive end and to γ ′1, . . . , γ

′
m ∈ Pα′ at the negative end.

Then define
8αα′(γ ) =

∑ nγ,γ ′1,...,γ
′
m

(i1)! . . . (il)!κ(γ
′

1) . . . κ(γ
′
m)
γ ′1 . . . γ

′
m,

where the sum is over all unordered tuples γ ′ = (γ ′1, . . . , γ
′
m) and homology classes

[Z] ∈ H2(M, γ ∪ γ
′) so that the moduli space M[Z](J, γ, γ

′

1, . . . , γ
′
m) is 0-dimensional.

Here nγ,γ ′1,...,γ ′m is a signed count of points in M[Z](J, γ, γ
′

1, . . . , γ
′
m), κ(γ ) is the mul-

tiplicity of γ , and i1, . . . , il denote the number of occurrences of each orbit γ ′i in the list
γ ′1, . . . , γ

′
m. By Stokes’ theorem applied to d(f (t, x)α), we see that if there is a holo-

morphic curve from γ to γ ′1, . . . , γ
′
m, then K

∫
γ
α ≥

∑m
i=1

∫
γ ′i
f0α. Hence if L′ > KL,

then 8αα′ is well-defined. Moreover, 8αα′ is a chain map, as can easily be seen by ana-
lyzing the breaking of 1-dimensional moduli spaces M[Z](J, γ, γ

′

1, . . . , γ
′
m). There is an

induced map on the full contact homology:

8αα′ : FHC≤L(M, α)→ FHC≤L′(M, α′).
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In this paper we will use the same notation8αα′ for the map on the chain level and on the
level of homology; it should be clear from the context which we are referring to.

We now discuss direct limits. Fix a nondegenerate contact 1-form α for (M, ξ).
Let {αi = fiα}, i = 1, 2, . . . , be a collection of contact 1-forms and let Mi =

sup{fi(x), 1/fi(x) | x ∈ M}. We say that the sequence (αi, Li) is exhaustive if there
is a sequence Li →∞ such that

Li+1 > CMiMi+1Li,

where C > 1 is a constant.

Proposition 10.1. Suppose the sequence (αi, Li) is exhaustive. Then the direct limit

lim
i→∞

FHC≤Li (αi)

exists. Moreover,
8 : FHC(α)

∼
−→ lim

i→∞
FHC≤Li (αi).

This implies that the direct limit calculates the full contact homology of (M, ξ), and is
independent of the particular choice of nondegenerate contact 1-form.

Proof. Suppose (αi, Li) is exhaustive. Then the chain maps 8αiαi+1 : A(αi)→ A(αi+1)

restrict to
8αiαi+1 : A≤Li (αi)→ A≤Li+1(αi+1),

since Li+1 > (supx∈M fi+1(x)/fi(x)) · Li by the exhaustive condition. Hence the direct
limit exists.

Next we show that for any N � 0 there exists a pair (αi, Li) so that

8ααi : A≤N (α)→ A≤Li (αi),

obtained by counting rigid marked rational holomorphic curves, is a chain map. Since
Li/Mi > Li−1 and Li−1 → ∞ as i → ∞, there is a symplectization from α to αi so
that γ with Aα(γ ) ≤ N is mapped to γ ′ with Aαi (γ ′) ≤ Li . In fact, we simply need
Li/Mi > N .

Now, 8αiαi+1 ◦ 8ααi and 8ααi+1 are chain homotopic by the usual argument, so the
collection of maps 8ααi induces the map

8≤N : FHC≤N (α)→ lim
i→∞

FHC≤Li (αi)

on the level of homology. Now, it is easy to see that FHC(α) = limi→∞ FHC≤Ni (α),
provided Ni → ∞ (and is increasing). By the usual chain homotopy argument, 8≤Ni is
equal to the composition of FHC≤Ni (α) → FHC≤Ni+1(α) followed by 8≤Ni+1 . Hence,
by the universal property of direct limits, we obtain the map

8 : FHC(α)→ lim
i→∞

FHC≤Li (αi).
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Finally, to prove that 8 is an isomorphism, we use the usual chain homotopy argu-
ment. Given (αi, Li), there exist Ni and i′ so that LiMi < Ni < Li′/Mi′ . Hence we have
maps A≤Li (αi)→ A≤Ni (α) and A≤Ni (α)→ A≤Li′ (αi′), and their composition is chain
homotopic to

8αiαi′ : A≤Li (αi)→ A≤Li′ (αi′).

Therefore, the composition

lim
i→∞

FHC≤Li (αi)
9
→ FHC(α)

8
→ lim

i→∞
FHC≤Li (αi)

is equal to the identity map. This gives a right inverse of 8; the left inverse is argued
similarly. ut

10.2. Verification of the exhaustive condition

The goal of this subsection is to show the existence of an exhaustive sequence (αi, Li),
where the αi are all adapted to the same open book (S, h) with pseudo-Anosov mon-
odromy and fractional Dehn twist coefficient c ≥ 2/n, so that the direct limit process can
be applied. Let C≤Li (αi) be the Q-vector space generated by P≤Liαi .

Let αε,ε′ be the contact 1-form defined in Section 6. In what follows, we perturb αε,ε′
with respect to a suitable large constant N � 0, as in Lemma 7.2. For simplicity of
notation, we will still call the perturbed 1-form αε,ε′ .

Proposition 10.2. Given a sequence Li , i = 1, 2, . . . , going to∞, there is a sequence
of contact 1-forms αεi ,ε′i , i ∈ N, with εi , ε′i → 0, so that:

(1) The chain groups C≤Li (αεi ,ε′i ) are cylindrical.
(2) There exists an isotopy (ϕis)s∈[0,1] of M so that (ϕi1)

∗αεi ,ε′i
= Giαε0,ε

′

0
and 1/4i ≤

Gi ≤ 4i .

We now apply Proposition 10.2 to obtain an exhaustive sequence: In our situationMi=4i .
Pick Li so that the exhaustive condition is satisfied. By Proposition 10.2, there exist αi =
(ϕi1)

∗αε,ε′ = Giαε0,ε
′

0
so that (αi, Li) is exhaustive.

We first prove some preparatory lemmas, which are proved for the unperturbed αε,ε′ ;
however, the same results are also true for the perturbed αε,ε′ , since the perturbation is a
C∞-small one.

Lemma 10.3. On 6(S,ψ ′), the quantity |βt (Yε′)| is bounded from above by a constant
which is independent of 0 < ε′ < 1 (and of course independent of ε).

Proof. For technical reasons, we specialize the function fε′ : S → R, defined in Sec-
tion 6.2.2, on the region A = S1

× [0, 1]. In particular, we require that ∂fε′/∂y ≤ −1
when y ∈ [y0, y1], where fε′(y0) > 1/2 and fε′(y1) = 2ε′.

We first restrict to the subset (away from ∂6(S,ψ ′)) where fε′ ≤ 2ε′. Suppose t ∈
[0, 1/2]. Recall that iYε′ωt = −β̇t (Equation (6.2.2)) and β̇t = χ ′0(t)(β − fε′(g∗β))



498 Vincent Colin, Ko Honda

(Equation (6.2.3)). The quantity |β̇t | is bounded above by a constant independent of ε
and ε′, since |χ ′0(t)|, |β|, |g∗β|, and |fε′ | are all bounded above. Next,

ωt = (1− χ0(t))d(fε′(g∗β))+ χ0(t)dβ.

Clearly, |dβ| is bounded from below. On the other hand, d(fε′g∗β) = ε′d(g∗β) on S−A
and (fε′ −

∂fε′

∂y
(C − y))dθdy on S1

× [y1, 1]. Hence |d(fε′g∗β)| is bounded below by ε′

times a positive constant. This means that |Yε′(t)| is bounded above by

C0

(1− χ0(t))ε′C1 + χ0(t)C2
,

where C0, C1, C2 > 0 are constants. Since βt = (1−χ0(t))fε′(g∗β)+χ0(t)β, we obtain

|βt (Yε′)| ≤
(1− χ0(t))ε

′C3 + χ0(t)C4

(1− χ0(t))ε′C5 + χ0(t)C6
,

where C3, . . . , C6 > 0 are constants. The expression on the right-hand side is bounded
above by a constant independent of ε′. The situation t ∈ [1/2, 1] is treated similarly.

Now, on the subset fε′ ≥ 2ε′, d(fε′(g∗β)) = (fε′ −
∂fε′

∂y
(C − y))dθdy, and

∂fε′/∂y < −1 or fε′ > 1/2. Hence |d(fε′(g∗β))| is bounded below by a positive constant
which is independent of ε′. Hence |Yε′ | is bounded above by a constant independent of ε′,
and the conclusion follows easily. ut

As a consequence of Lemma 10.3, if ε is sufficiently small, then αε,ε′(∂/∂t + Yε′) =
1+ εβt (Yε′) is bounded from below by a positive constant.

Now we recall Moser’s method: Let (αs)s∈[0,1] be a path of contact 1-forms. We are
looking for an isotopy (φs)s∈[0,1] such that φ∗s αs = Hsα0. If Xs is a time-dependent
vector field which generates φs , then it satisfies the equation

φ∗s (α̇s + LXsαs) = Ḣsα0,

where the dot means the derivative in the s-variable (at time s). Using the relation φ∗s αs =
Hsα0, this can be rewritten as

α̇s + LXsαs = Gsαs, (10.2.1)

where Gs = ( d
ds

logHs) ◦ φ−1
s . It will be convenient to choose Xs to be in kerαs , in

which case LXsαs = iXsdαs .

Lemma 10.4. For every 0 < ε′ < 1, one can find δ1(ε
′) > 0 so that, for every 0 <

ε1 < ε0 < δ1(ε
′), the 1-forms αε0,ε′ and αε1,ε′ are contact forms and there exists an

isotopy (φs)s∈[0,1] of M starting from the identity such that φ∗1αε1,ε′ = Hαε0,ε′ with
1/2 ≤ H ≤ 2.
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Proof. We first work on 6(S,ψ ′). Apply Moser’s method to the path of contact 1-forms
given by αεs ,ε′ , where εs = (1 − s)ε0 + sε1 and s ∈ [0, 1]. The infinitesimal generator
Xs ∈ kerαεs ,ε′ of the isotopy φs satisfies α̇εs ,ε′ + iXsdαεs ,ε′ = Gsαεs ,ε′ . If we evaluate
this equation on ∂/∂t + Yε′ , we obtain

(ε1 − ε0)βt (Yε′) = Gs(1+ εsβt (Yε′)).

By Lemma 10.3, |βt (Yε′)| is bounded above and |1 + εsβt (Yε′)| is bounded below by a
positive constant, provided we take ε0 and ε1 small enough. Hence |Gs | and | d

ds
logHs |

are bounded above by a small constant. This implies that 1/C < Hs < C for C > 1, say
C = 2.

In the neighborhoodN(K) = R/Z×D2 of the binding, αε,ε′ is of the form aε(r)dz+

bε(r)dθ , according to Section 6.2.3. For sufficiently small ε0, ε1, αε0,ε′ and αε1,ε′ are
close, and so are Rε0,ε′ and Rε1,ε′ . Hence, the left-hand side of (10.2.1), evaluated on
the Reeb vector field Rs , can be made arbitrarily small. Hence we conclude that H is
arbitrarily close to 1 near the binding. ut

Lemma 10.5. For every 0 < ε′1 < ε′0 < 1, there exists δ2(ε
′

1) > 0 so that, for every
0 < ε1 < δ2(ε

′

1), there exists an isotopy (φ′s)s∈[0,1] of M so that (φ′1)
∗αε1,ε

′

1
= H ′αε1,ε

′

0
with 1/2 ≤ H ′ ≤ 2.

Proof. We can concentrate our attention on 6(S,ψ ′), since αε,ε′ does not depend on ε′

on N(K). Given 0 < ε′0, ε
′

1 < 1 and s ∈ [0, 1], let ε′s = (1 − s)ε′0 + sε
′

1. By (10.2.1)
applied to the path αε1,ε′s

, we obtain

ε1β̇t (Yε′s ) = Gs(1+ ε1βt (Yε′s )),

where the dot is the derivative in the s-variable. As before, we see that if ε1 is small
enough, then |1 + ε1βt (Yε′s )| is bounded below by a positive constant. Since β̇t and Yε′s
do not depend on ε1, |Gs | is bounded above by a small constant, provided δ2(ε

′

1) is suffi-
ciently small. Again, this implies that 1/C < H ′s < C for C > 1, say C = 2. ut

We are now ready to prove Proposition 10.2.

Proof of Proposition 10.2. First use Theorem 8.1 to choose sequences (εi)i∈N and (ε′i)i∈N
so that no closed orbit of the Reeb vector field Rεi ,ε′i which intersects a page ≤ Li times
bounds a finite energy plane. (Here we are using the perturbed αεi ,ε′i .) Next, after shrink-
ing εi if necessary, suppose ε0 < δ1(ε

′

0) and (εi)i∈N is a decreasing sequence which
satisfies εi < inf{δ1(ε

′

i−1), δ1(ε
′

i), δ2(ε
′

i)}. By Lemma 6.2, we may also assume that εi
is sufficiently small so that Rεi ,ε′i is arbitrarily close to ∂/∂t + Yε′i on 6(S,ψ ′) and the
action is almost the same as the number of intersections with a page. Hence C≤Li (αεi ,ε′i )
is cylindrical. Now, if we compose the two isotopies given by Lemmas 10.4 and 10.5, we
find an isotopy whose time 1 map pulls αεi+1,ε

′

i+1
back to Hiαεi ,ε′i with 1/4 ≤ Hi ≤ 4.

The composition of all these isotopies produces an isotopy whose time 1 map pulls αεi ,ε′i
back to Giαε0,ε

′

0
with 1/4i ≤ Gi ≤ 4i . ut
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10.3. Proof of Theorem 2.3(1)

Suppose ∂S is connected. Let (S, h) be the open book, where h is freely homotopic to the
pseudo-Anosov ψ and has fractional Dehn twist coefficient c = k/n.

Suppose k ≥ 2. By Proposition 10.2 there exists an exhaustive sequence {(αi, Li)}∞i=1
adapted to (S, h), so that each Q-vector space C≤Li (αi) is cylindrical. There are chain
maps

8
cyl
αiαi+1 : C≤Li (αi)→ C≤Li+1(αi+1),

which count rigid holomorphic cylinders in the symplectization from αi to αi+1. Let
limi→∞ HC≤Li (αi) be the direct limit.

Next consider the chain maps

8αiαi+1 : A(αi)→ A(αi+1)

which count rigid punctured rational curves in the symplectization from αi to αi+1. We
claim that no orbit γ of P≤Liαi bounds a finite energy plane in the symplectization from αi
to αi+1. The argument is identical to that of Theorem 8.1, by observing that the almost
complex structure J can be chosen so that R times the binding γ0 is J -holomorphic.
(This is possible since we can make the binding an orbit of the Reeb vector field for each
f (t0, x)α with t0 fixed.) Therefore, under the maps8αiαi+1 , the trivial augmentation εi+1
on A≤Li+1(αi+1) pulls back to the trivial augmentation εi of A≤Li (αi).

We now prove that A(α) admits an augmentation ε. Define 8αα1 in the same way as
8αiαi+1 . Take γ ∈ A(α). If we let

8αi = 8αi−1αi ◦ · · · ◦8α1α2 ◦8αα1 ,

then, for sufficiently large i, each term of 8αi (γ ) has αi-action ≤ Li by the exhaustive
condition. (Here Aαi (aγ1 . . . γm) =

∑
j Aαi (γj ), where a ∈ Q.) We then define ε(γ ) =

εi ◦8αi (γ ). The definition of ε(γ ) does not depend on the choice of sufficiently large i,
due to the fact that εi+1 pulls back to εi under 8αiαi+1 : A≤Li (αi)→ A≤Li+1(αi+1).

It remains to see that HCε(α) ' limi→∞ HC≤Li (αi). We use the same argument as in
Proposition 10.1. Given Li , there exist Ni and i′ so that there are maps 9i : A≤Li (αi)→
A≤Ni (α) and 8i′ : A≤Ni (α)→ A≤Li′ (αi′) so that 8∗

i′
εi′ = ε. Hence we have

HC
9∗i ε

≤Li
(αi)

9i
→ HCε

≤Ni
(α)

8i′
→ HC≤Li′ (αi′),

whose composition is the map HC≤Li (αi)
8αiα

′
i

−−−→ HC≤Li′ (αi′) by Theorem 3.2, since9∗i ε

is homotopic to the trivial augmentation and HC≤Li (αi) ' HC
9∗i ε

≤Li
(αi). The direct limit

of the right-hand side yields

8 : HCε(α)→ lim
i→∞

HC≤Li (αi).

As before, we have a right inverse of 8, and a left inverse exists similarly.
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11. Exponential growth of contact homology

11.1. Periodic points of pseudo-Anosov homeomorphisms

We collect some known facts about the dynamics of pseudo-Anosov homeomorphisms.
Let6 be a closed oriented surface andψ be a pseudo-Anosov homeomorphism on6. The
homeomorphismψ is smooth away from the singularities of the stable/unstable foliations.

A pseudo-Anosov homeomorphism ψ admits a Markov partition {R1, . . . , Rl} of 6,
where Ri = [0, 1] × [0, 1] are “birectangles” with coordinates (x, y), where y = const
are leaves of the unstable foliation Fu and x = const are leaves of the stable foliation F s .
(See [FLP, Exposé 10] for details, including the definition of a Markov partition.)

The Markov partition gives rise to a graph G as follows: the set of vertices is
{R1, . . . , Rl} and there is a directed edge from Ri to Rj if int(ψ(Ri))∩ int(Rj ) 6= ∅. The
periodic orbits of ψ of order m are in 1-1 correspondence with cycles of G of length m.
(The singular points of F s or Fu are omitted from this consideration.) In particular, the
orbits which multiply cover a simple orbit correspond to cycles ofGwhich multiply cover
a “simple” cycle ofG. As a corollary, we have the following exponential growth property:

Theorem 11.1. There exist constants A,B > 0 so that the number of periodic orbits
of ψ of period m is greater than AeBm. The same is true for simple periodic orbits or
good periodic orbits, i.e., orbits which are not even multiple covers of hyperbolic orbits
with negative eigenvalues.

Next we transfer this property to an arbitrary diffeomorphism h of 6 which is homotopic
to ψ , using Nielsen classes. Let f, g be homotopic homeomorphisms of 6. If x is a
periodic point of f and y is a periodic point of g, both of orderm, then we write (f, x) ∼
(g, y) if there exist lifts x̃, ỹ of x, y and lifts f̃ , g̃ of f, g to the universal cover 6̃ such that
d(f̃ k(x̃), g̃k(ỹ)) ≤ K for all k ∈ Z. Here K > 0 is a constant and d is some equivariant
metric on 6̃. Elements (f, x) and (g, y) which satisfy (f, x) ∼ (g, y) are said to be in
the same Nielsen class. Since the periodic points of ψ belong to different Nielsen classes,
we have the following:

Theorem 11.2. For each periodic (ψ, x), there exists at least one (h, y) in the same
Nielsen class. Hence the number of periodic points h of periodm is greater than or equal
to the number of periodic points of ψ of period m.

The above theorem is stated by Thurston in [Th]. A proof can be found in [Hn].
Given a diffeomorphism f : 6 → 6 and a nondegenerate fixed point x of 6,

its ±1 contribution to the Lefschetz fixed point formula is calculated by the sign of
det(df (x) − id). More precisely, if df (x) is of hyperbolic type with positive eigenval-
ues, then det(df (x) − id) < 0 and the contribution is −1; if df (x) is of hyperbolic type
with negative eigenvalues or of elliptic type, then det(df (x) − id) > 0 and the contribu-
tion is+1. They correspond to even and odd parity, respectively, in the contact homology
setting. For a pseudo-Anosov ψ , the sum of contributions (in the Lefschetz fixed point
theorem) of a periodic orbit x of period m in a particular Nielsen class is ±1 if the orbit
does not pass through a singular point of the stable/unstable foliation, since there is only
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one orbit in its Nielsen class. On the other hand, if the orbit passes through a singular
point, then the sum of contributions is still nonzero, but the orbit is counted with multi-
plicity. Now, the same holds for the sum of contributions from all the (h, y) that are in the
same Nielsen class as (ψ, x).

So far the discussion has been for 6 closed. In our case, the surface S has nonempty
boundary. Let f : S → S be the first return map of the Reeb vector field R = Rε,ε′ con-
structed above. By construction, f |∂S = id and is homotopic to h and ψ . We cap off S by
attaching disks Di to obtain a closed surface 6 and extend f to 6 by extending by the
identity map. Since we want to compare f on 6 to ψ on 6, we extend ψ to 6 (as well as
the stable and unstable foliations). The extension of ψ to 6 is pseudo-Anosov, provided
the number of prongs on the boundary is not n = 1. (Boundary monogons could exist, al-
though interior monogons do not.) We can avoid monogons by passing to a ramified cover
which is ramified at the singular point of the monogon. The nondegeneracy of R implies
the nondegeneracy on the cover. Also, there is an at most finite-to-one correspondence
between periodic points on the cover of S and periodic points on S. Hence, the number of
Nielsen classes of f with period m grows exponentially with respect to m. We will then
discard the fixed points of f in the same Nielsen class as (f, x), where x ∈ ∂S.

11.2. Proof of Theorem 2.3(2)

Suppose k ≥ 3. We prove that the direct limit limi→∞ HC≤Li (αi) has exponential growth
with respect to the action. Recall we already proved the isomorphism between HCε(α)
and limi→∞ HC≤Li (αi), during the proof of Theorem 2.3(1).

Let C′ = C′
≤Li

(αi) be the subspace of C = C≤Li (αi) generated by the orbits that
are not covers of the binding. Also let C′′ = C′′

≤Li
(αi) be the subspace of C generated

by the orbits which are covers of the binding. Then C = C′ ⊕ C′′ and ∂ = ∂ ′ + ∂ ′′,
where ∂ ′ : C′ → C′ and ∂ ′′ : C′′ → C′′, in view of Theorem 9.2. Here ∂, ∂ ′, ∂ ′′

only count holomorphic cylinders. Also C′ is filtered by the open book filtration (i.e.,
the number of times an orbit intersects a page). Let Fj be the subspace of C′ generated
by orbits which intersect a page exactly j times, and let Fj,(ψ,x) be the subspace of Fj
generated by orbits in the same Nielsen class as (ψ, x). Suppose (ψ, x) is good, i.e., it
is not an even multiple of an orbit which has negative eigenvalues. The set of such good
Nielsen classes grows exponentially with respect to j , provided j < Li . (Recall that we
can take the contact form so that the action is arbitrarily close to the number of inter-
sections with the binding.) By Theorem 9.2, the boundary map ∂ : C → C, restricted
to Fj,(ψ,x), has image in Fj,(ψ,x). Since Fj,(ψ,x) can be split into even and odd parity
subspaces, and they have dimensions that differ by one by Euler characteristic reasons,
it follows that the homology of (Fj,(ψ,x), ∂) has dimension at least one. This proves the
exponential growth of HC≤Li (αi) with respect to the action, provided we stay with or-
bits of action ≤ Li . (Alternatively, one can say that the E1-term of the spectral sequence
given by the open book filtration which converges to HC≤Li (αi) has exponential growth
with respect to the action, and, moreover, the higher differentials of the spectral sequence
vanish.)
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Let Fj,(ψ,x)(αi) be Fj,(ψ,x) for αi . Suppose (ψ, x) is good. We claim that the map

8αiαi+1 : C≤Li (αi)→ C≤Li+1(αi+1)

sends Fj,(ψ,x)(αi) to Fj,(ψ,x)(αi+1). In other words, no holomorphic cylinder from a gen-
erator γ of Fj,(ψ,x)(αi) to a generator γ ′ of Fj,(ψ,x)(αi+1) intersects R×γ0. This follows
from applying the same argument as in the proof of Theorem 9.2.

Finally we show that, by choosing sufficiently large Li , there is a sequence Ni →∞
so that the map

8αiαi+1 : H(Fj,(ψ,x)(αi))→ H(Fj,(ψ,x)(αi+1)) (11.2.1)

on the level of homology is injective, if j ≤ Ni . This is sufficient to guarantee the ex-
ponential growth for the direct limit. Recall that the orbits of Rαi of action K map to
orbits of Rαi+1 of action ≤ MiMi+1K under 8αiαi+1 , and the orbits of Rαi+1 of action K ′

map to orbits of Rαi of action ≤ MiMi+1K
′ under 8αi+1αi . Hence, in order to compose

8αi+1αi ◦ 8αiαi+1 in the cylindrical regime, we need j ≤ Li/(MiMi+1)
2. Provided this

holds, the usual chain homotopy proof shows that 8αiαi+1 , restricted to H(Fj,(ψ,x)(αi)),
has a left inverse and hence is injective. Therefore, we choose Li so that, in addition to
the exhaustive condition, Ni = Li/(MiMi+1)

2 is strictly increasing to∞.
This completes the proof of Theorem 2.3(2).

11.3. Proof of Corollary 2.6

Suppose α is nondegenerate. By Theorem 2.3(1), there is a linearized contact homology
for any nondegenerate α. Observe that, if Rα only has finitely many simple orbits, then
HCε(M, α) will have at most polynomial growth for any augmentation ε. The corollary
then follows from Theorem 2.3(2).

Suppose α is degenerate and has a finite number of simple orbits γ1, . . . , γl . Then,
according to Lemma 7.3, for any N � 0 there exists a C∞-small perturbation αN of α
so that the only periodic orbits of action ≤ N are isotopic to multiple covers of γi . This
means that the only free homotopy classes which could possibly have generators in the
linearized contact homology group limi→∞ HC≤Li (αi) are multiples of the l simple or-
bits. This contradicts the fact, sketched in the next two paragraphs, that there are infinitely
many simple free homotopy classes in M which have generators in limi→∞ HC≤Li (αi).

We now sketch the proof, following Gabai–Oertel [GO, Lemma 2.7]. If γ and γ ′ are
closed orbits of the suspension flow ofψ , then γ and γ ′ are both tangent to the suspension
lamination L, which is an essential lamination if c > 1/n. Let u : R × S1

→ M be an
immersed cylinder from γ to γ ′. Then the lamination on R × S1, induced by pulling
back L via u, cannot have any 0-gons or monogons, after normalizing/simplifying as in
[GO, Lemma 2.7]. Since, by Euler characteristic reasons, an m-gon with m > 2 implies
the existence of a 0-gon or a monogon, it implies thatm-gons withm > 2 also do not exist.
Hence the only complementary regions of u−1(L) are annuli S1

× [0, 1] and R× [0, 1].
Now, if c > 2/n, then it is possible to replace u by u′ which does not intersect

the binding γ0: Let v : S1
× [0, 1] → M be an immersion whose interior maps to the
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connected component V ofM−L that contains γ0 and such that S1
×{0, 1}maps to L. The

map v is the restriction of u to the closure of one connected component of u−1(M − L).
It is not hard to see that v can be replaced by v′ so that they agree on ∂(S1

×[0, 1]) and v′

is disjoint from γ0. The same technique works for v : R× [0, 1] → M . Therefore, γ and
γ ′ are freely homotopic in M if and only if they correspond to the same Nielsen class.

Remark 11.3. The above argument gives an easy proof of Theorem 2.3 if ψ is realized
as a first return map of a Reeb vector field.
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