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Abstract. We give a recursive formula for purely real Welschinger invariants of the following real
Del Pezzo surfaces: the projective plane blown up at q real and s ≤ 1 pairs of conjugate imaginary
points, where q + 2s ≤ 5, and the real quadric blown up at s ≤ 1 pairs of conjugate imaginary
points and having non-empty real part. The formula is similar to Vakil’s recursive formula [22] for
Gromov–Witten invariants of these surfaces and generalizes our recursive formula [12] for purely
real Welschinger invariants of real toric Del Pezzo surfaces. As a consequence, we prove the positiv-
ity of the Welschinger invariants under consideration and their logarithmic asymptotic equivalence
to genus zero Gromov–Witten invariants.
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I. Itenberg: Université Pierre et Marie Curie and Institut Universitaire de France,
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1. Introduction

Welschinger invariants play a role of real analogue of genus zero Gromov–Witten in-
variants. As introduced in [24], they count, with certain signs, the real rational pseudo-
holomorphic curves which pass through given real configurations of points on a given
real rational symplectic four-fold (and on certain six-folds). Tropical geometry together
with the open Gromov–Witten theory [20, 21] and symplectic field theory [25] provides
powerful tools for the study of Welschinger invariants.

In the case of Del Pezzo surfaces, which is treated in the present article, the Wel-
schinger count is equivalent to enumeration of real rational algebraic curves. Here we re-
strict ourselves to configurations of real points, and thus speak of purely real Welschinger
invariants. We use the tropical geometry techniques and produce a recursive formula for
purely real Welschinger invariants W(6,D) of the following real Del Pezzo surfaces 6
(see Theorem 6.3 in Section 6.2):
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• P2
q,s , the real plane blown up at a generic collection of q real points and s pairs of

conjugate imaginary points, where 0 ≤ q ≤ 5, 0 ≤ s ≤ 1, q + 2s ≤ 5,
• the real quadric surface with a non-empty real part blown up at s ≤ 1 pairs of conjugate

imaginary points.

We show that together with certain explicit initial data, this formula recursively deter-
mines all purely real Welschinger invariants of the above surfaces (see Theorem 6.3 in
Section 6.2).

The formula we obtain here can be seen as a real version of Vakil’s recursive formula
for Gromov–Witten invariants of these surfaces [22], and generalizes our earlier recursive
formula for the real toric Del Pezzo surfaces [12] in much the same manner as Vakil’s
formula generalizes the Caporaso–Harris formula [3].

As applications, we derive a number of properties of the invariants under considera-
tion. In particular, we prove that for each surface 6 as above and for any real nef and big
divisor D on 6, the invariant W(6,D) is positive, and

lim
n→∞

logW(6, nD)
n log n

= lim
n→∞

logGW0(6, nD)

n log n
= −DK6,

whereGW0(6, nD) is the genus zero Gromov–Witten invariant (see Theorem 7.1 in Sec-
tion 7.1). The geometric meaning of this result is that through any generic configuration
of −DK6 − 1 distinct real points of 6, one can trace a real rational curve C ∈ |D|, and
furthermore in logarithmic scale the number of such real rational curves is close to the
number of all complex rational curves C ∈ |D| through the given configuration.

In addition, we observe a congruence between purely real Welschinger and genus zero
Gromov–Witten invariants and show the monotone behavior of W(6,D) with respect to
the variable D (see Theorems 7.4 and 7.7 in Sections 7.2 and 7.3, respectively). The
aforementioned positivity, asymptotic and monotonicity properties extend our results for
real toric surfaces with standard and non-standard real structures obtained in [9, 11].

The novelty of the present work consists first of all in application of the tropical
tools to non-toric Del Pezzo surfaces, namely, to P2

4,0, P2
2,1, P2

5,0, P2
3,1 (we call them

small non-toric, since they are closer to toric surfaces than other Del Pezzo surfaces P2
q,s ,

q + 2s = 6, 7, 8). The tools of tropical geometry, as developed in [13, 14] and [16, 17,
18], and explored in [8, 9, 11, 12], are essentially restricted to the toric case. So, having a
non-toric surface, we blow down some exceptional divisors. Thus, we come to a toric sur-
face, but as a price to pay, the curves we are interested in unavoidably acquire some fixed
multiple points with prescribed multiplicities. It is a serious problem, since for curves
with fixed multiple points, correspondence theorems similar to [13, 16] are not known in
general. One of the obstacles is that in this case a direct tropical approach leads to tropical
moduli spaces of wrong dimension. We overcome this difficulty restricting our attention
to very specific configurations of points serving as constraints in our enumerative prob-
lem (CH-configurations defined in Section 4.1). We introduce a special class of tropical
curves matching CH-configurations (see Section 2.3) which, on one hand, suit well the
patchworking of algebraic curves with fixed multiple points (cf. [19]) and, on the other
hand, are adjusted to the cutting procedure and the proof of the tropical recursive formula
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(see Sections 2.2 and 4.2, 4.3). Then, we observe that the complex tropical recursive for-
mula, involving the numbers of complex curves obtained by patchworking quantization of
these specific tropical curves, and Vakil’s recursive formula, involving all complex alge-
braic curves in count, coincide (see Section 5.3). This allows us to get the key ingredient,
a complex correspondence theorem (Section 5). After that, we derive a real tropical re-
cursive formula (Section 4.3) which involves suitable tropical Welschinger multiplicities
(cf. [19]), and, using the complex correspondence theorem, convert the tropical formula
into a recursive formula for Welschinger invariants.

It is natural to compare our formulas with J. Solomon’s recursive formulas for Wel-
schinger invariants. The latter formulas are encoded in a real version of WDVV equations
which was proposed by J. Solomon [21]. One of the differences is that Solomon’s formu-
las involve not only purely real Welschinger invariants but also invariants associated with
collections of real and conjugated imaginary points, whereas our formulas contain only
purely real Welschinger invariants mixed with certain auxiliary tropical numbers. Another
feature is that the coefficients in Solomon’s formulas have alternating signs, whereas in
our formulas all the coefficients are positive. The latter circumstance appears to be crucial
in the proofs of the positivity, asymptotic growth formula, and monotonicity of purely real
Welschinger invariants.

The text is organized as follows. Section 2 contains a description of the class of trop-
ical curves used in the paper. In Section 3 we present an adapted version of Vakil’s re-
cursive formula. In Section 4 we prove tropical recursive formulas, and in Section 5 we
establish a correspondence between the tropical and algebraic curves in count. In Sec-
tion 6 we derive the recursive formula for the purely real Welschinger invariants of the
surfaces under consideration, and in Section 7 we use the formula to prove the aforemen-
tioned properties of Welschinger invariants.

2. Tropical curves

2.1. Parameterized plane tropical curves

For the reader’s convenience, we recall here basic definitions and facts concerning tropical
curves. The details can be found in [13], [14].

Let 0 be a finite graph which has neither bivalent nor isolated vertices. Denote by 00
∞

the set of univalent vertices of 0, and put 0 = 0 \ 00
∞. Denote by 01 the set of edges

of 0. An edge E of 0 is called an end if E is incident to a univalent vertex, and a bounded
edge otherwise. We say that 0 is an abstract tropical curve if 0 is equipped with a metric
such that each bounded edge of 0 is isometric to an open bounded interval in R, each end
of 0 incident to exactly one univalent vertex is isometric to an open ray in R, and each
end of 0 incident to two univalent vertices is isometric to R.

A parameterized plane tropical curve is a pair (0, h), where 0 is an abstract tropical
curve and h : 0→ R2 is a continuous map, such that

• for any edge E ∈ 01 the restriction of h to E is a non-zero affine map, and h(E) is
contained in a line with rational slope,
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• for any edge E ∈ 01, any vertex V incident to E, and any point P ∈ E, one has
dhP (UV,P (E)) = w(E)uV (E), where w(E) is a positive integer, UV,P (E) is the unit
tangent vector to E at P such that UV,P (E) points away from V , and uV (E) is a
primitive integer vector (i.e., a vector whose coordinates are mutually prime integers),
• for each vertex V of 0, the following balancing condition is satisfied:∑

E∈01, V∈∂E

w(E)uV (E) = 0.

For any edge E of a parameterized plane tropical curve (0, h), the number w(E) is
called the weight of E. The multi-set of vectors

{−w(E)uV (E) | V ∈ 0
0
∞, E ∈ 0

1, V ∈ ∂E}

is called the degree of a parameterized plane tropical curve (0, h) and is denoted by
1(0, h). For any parameterized plane tropical curve (0, h), the sum of the vectors in
1(0, h) is equal to 0.

2.2. Cutting procedure

Let (0, h) be a parameterized plane tropical curve, and x a point of 0. We will construct
a new parameterized plane tropical curve (0x, hx) out of (0, h) and x.

If x belongs to an edge E of (0, h), denote by V1 and V2 the vertices incident to E.
Consider a graph 0x obtained from 0 by removing E, introducing two new vertices V a1
and V a2 (called added vertices), and introducing two new edges Ea1 and Ea2 (called added
edges) such that Eai is incident to Vi and V ai , i = 1, 2. We say that the edges Ea1 and Ea2
match each other. The edge E is called the predecessor of V a1 , V a2 , Ea1 , and Ea2 . Extend
the metric on 0 \ E to a metric on (0 \ E) ∪ (Ea1 ∪ E

a
2 ) in such a way that Eai , i = 1, 2,

is isometric to a ray of R if Vi is not univalent, and Eai is isometric to R otherwise. This
turns 0x into an abstract tropical curve (see Figure 1). Denote by 0x the complement
in 0x of the univalent vertices, and consider a map hx : 0x → R2 such that

• hx |0x\(Ea1∪E
a
2 )
= h|0\E ,

• (0x, hx) is a parameterized plane tropical curve,
• the vector uVi (E

a
i ), i = 1, 2, of the curve (0x, hx) coincides with the vector uVi (E) of

the curve (0, h),
• the weight w(Eai ), i = 1, 2, of the edge Eai of the curve (0x, hx) coincides with the

weight w(E) of the edge E of the curve (0, h).

(Note that if the valencies of V1 and V2 are both greater than 1, then the last two conditions
in the definition of hx follow from the first two.)

If the point x coincides with a vertex V of 0, denote by E1, . . . , Ek the edges incident
to V , and denote by Vi , i = 1, . . . , k, the vertex incident to Ei and different from V . In
this case, consider a graph 0x obtained from 0 by removing V , E1, . . . , Ek , introducing
new vertices V a1 , . . . , V

a
k (called added vertices), and introducing new edges Ea1 , . . . , E

a
k

(called added edges) such that Eai is incident to Vi and V ai , i = 1, . . . , k. For each
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Fig. 1. Cutting, I.

i = 1, . . . , k, both elements V and Ei of the graph 0 are called predecessors of V ai and
Eai . Extend the metric on 0\(V ∪E1∪· · ·∪Ek) to a metric on (0\(V ∪E1∪· · ·∪Ek))∪

(Ea1 ∪ · · · ∪ E
a
k ) in such a way that Eai , i = 1, . . . , k, is isometric to a ray of R if Vi is

not univalent, and Eai is isometric to R otherwise. This turns 0x into an abstract tropical
curve (see Figure 2). Denote by 0x the complement in 0x of the univalent vertices, and
consider a map hx : 0x → R2 such that

• hx |0x\(Ea1∪···∪E
a
k )
= h|0\(V∪E1∪···∪Ek),

• (0x, hx) is a parameterized plane tropical curve,
• the vector uVi (E

a
i ), i = 1, . . . , k, of the curve (0x, hx) coincides with the vector

uVi (Ei) of the curve (0, h),
• the weight w(Eai ), i = 1, . . . , k, of the edge Eai of the curve (0x, hx) coincides with

the weight w(Ei) of the edge Ei of the curve (0, h).

(Again, if all vertices V1, . . . , Vk have valencies greater than 1, then the last two condi-
tions in the definition of hx follow from the first two.)

In both cases considered above, the parameterized plane tropical curve (0x, hx) is
called a cut of (0, h) at x.

2.3. L-curves

Put R̂2
= ({−∞}∪R)×R and L−∞ = {−∞}×R ⊂ R̂2. Let (0, h) be a parameterized

plane tropical curve, and V a subset of 00
∞. Put 0̂ = 0 \ V . We say that (0,V, h) is an

L-curve if

• for any univalent vertex V of 0̂ one has uV (E) = (1, 0), where E is the end incident
to V ,
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• for any univalent vertex V ′ ∈ V one has uV ′(E) 6= (1, 0), where E is the end incident
to V ′.

If (0,V, h) is an L-curve, then h naturally extends to a map ĥ : 0̂ → R̂2, and the
image under ĥ of any univalent vertex of 0̂ belongs to L−∞. The ends of 0 which are
incident to univalent vertices of 0̂ are called left.

The degree 1(0,V, h) of an L-curve (0,V, h) is the degree 1(0, h) of the parame-
terized plane tropical curve (0, h). An L-curve (0,V, h) is irreducible if the graph 0 is
connected. The genus of an irreducible L-curve (0,V, h) is the first Betti number b1(0)

of 0. The irreducible L-curves of genus 0 are called rational.
Let (0,V, h) be an L-curve, and 01, . . . , 0n the connected components of 0. For any

integer j = 1, . . ., n, put 0j = 0j \ 00
∞ and denote by Vj the vertices belonging simul-

taneously to V and 0j . The L-curves (0j ,Vj , h|0j ) are called irreducible components of
(0,V, h).

An edge of an L-curve (0,V, h) is said to be horizontal if the image of this edge
under h is contained in a horizontal line. An L-curve (0,V, h) is horizontal if 0 is a
segment and h(0) is a horizontal line in R2. An irreducible L-curve (0,V, h) is called
one-sheeted if among the vectors of its degree 1(0,V, h) there are exactly two vectors
with non-zero second coordinate, and each of these two vectors is of the form (A,±1),
where A is an integer.

An L-curve (0,V, h) is non-degenerate if for any non-univalent vertex V of 0̂ the
vectors uV (E1), . . . , uV (Ek) (where E1, . . . , Ek are the edges incident to V ) span R2.
A non-degenerate L-curve (0,V, h) is called simple if any non-univalent vertex of 0̂ has
valency 3, and pseudo-simple if for any non-univalent vertex V of 0̂,
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• there are exactly three distinct vectors among the vectors uV (E1), . . . , uV (Ek), where
E1, . . . , Ek are the edges incident to V ,
• an equality uV (Ei) = uV (Ej ), where i and j are distinct elements of {1, . . . , k}, im-

plies that uV (Ei) = uV (Ej ) = (1, 0).

If (0,V, h) is an L-curve, and x a point of 0, then a cut (0x, hx) of (0, h) at x
gives rise to an L-curve (0x,Vx, hx), where Vx = V ∪ Va , and Va is the set formed by
the added vertices V ai of 0x such that for the unique edge Eai incident to V ai one has
uV ai

(Eai ) 6= (1, 0). The L-curve (0x,Vx, hx) is also called a cut of (0,V, h) at x.
A marked L-curve (0,V, h,P ) is an L-curve (0,V, h) equipped with a 5-tuple P =

(P [,P ],P 1,P 2,P ν) of disjoint finite sequences of distinct points in 0̂ such that

• each point in P [ is a univalent vertex of 0̂,
• no point in P ], P 1, or P 2 is a vertex of 0̂,
• each point in P ν is a non-univalent vertex of 0̂,
• the connected components of the complement in 0 of the union of the sequences P [,

P ], P 1, P 2, and P ν do not have loops, and each of these components contains exactly
one univalent vertex.

The elements of the union of P [, P ], P 1, P 2, and P ν are called marked points, and to
shorten notation, we write P = P [

∪ P ]
∪ P 1

∪ P 2
∪ P ν .

A left end E of a marked L-curve (0,V, h,P ) is said to be of α-type if it is incident
to a univalent vertex coinciding with a point in P [. We say that an end E of a marked L-
curve (0,V, h,P ) is rigid if either E contains a marked point, or E is left and of α-type.
For any rigid end E of (0,V, h,P ), a marked point certifying the rigidity of E is unique
and is called the rigidity point of E.

A rational marked L-curve is called end-marked if each marked point of this curve
either coincides with a univalent vertex, or belongs to an end. If the graph 0 of such a
curve (0,V, h,P ) is not a segment, then (0,V, h,P ) has exactly one non-rigid end.

Let (0,V, h,P ) be a marked L-curve, and x ∈ 0 a non-marked point. Among the
connected components of 0 \ (P ∪ x) which are incident to x, exactly one contains a
univalent vertex. This component is called the free component associated with x.

If (0,V, h,P ) is a marked L-curve, and x an arbitrary point of 0, then the cut
(0x,Vx, hx) of (0,V, h) at x produces a marked L-curve (0x,Vx, hx,P x) in the fol-
lowing way:

• For any ℵ ∈ {[, ], 1, 2, ν} and any common element e (vertex or edge) of 0x and 0,
the intersections P ℵ ∩ e and (P x)

ℵ
∩ e coincide.

• The union of any added edgeEai of 0x and the added vertex V ai incident toEai contains
at most one marked point.
• An added vertex V ai of 0x coincides with a marked point if and only if the following

holds:

(a) uV ai (E
a
i ) = (1, 0), where Eai is the edge incident to V ai ,

(b) the union of all predecessors of V ai and Eai does not contain a marked point (notice
that the union of all predecessors can contain at most one marked point),
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(c) the vertex Vi incident to Eai and different from V ai belongs to the free component
associated with x (see Figure 3).

• An added edge Eai of 0x contains a marked point if and only if either

(a) the union Ui of all predecessors of V ai and Eai contains a marked point, where V ai
is the added vertex incident to Eai (see Figure 4); or

(b) Ui does not contain a marked point, the vertex Vi incident to Eai and different from
V ai belongs to the free component associated with x, and uV ai (E

a
i ) 6= (1, 0) (see

Figure 5);

moreover, if the union of the predecessors of V ai and Eai contains a point of P ] (re-
spectively, P 1, P 2, P ν), then the marked point of Eai belongs to (P x)

] (respectively,
(P x)

1, (P x)
2, (P x)

1).
• If an added edge Eai of 0x contains a marked point and is incident to a non-univalent

vertex Vi (such a vertex is necessarily a common vertex of 0x and 0), then the distance
(in 0x) between Vi and the marked point belonging to Eai is equal to the distance (in 0)
between Vi and x.

The marked L-curve obtained via this procedure is called a marked cut of (0,V, h,P )
at x.

Let (0,V, h,P ) be a marked L-curve, and x1, . . . , xs a finite sequence of pairwise
distinct points of 0. We say that the set X = {x1, . . . , xs} is sparse, if no two distinct
points of X belong to the same edge of 0 or to incident elements of 0. If X is sparse,
define inductively a marked cut of (0,V, h,P ) at x1, . . . , xs by applying the cutting
procedure successively at x1, . . . , xs . The marked L-curve obtained is also a marked cut
of (0,V, h,P ) at xσ(1), . . . , xσ(s), where σ is an arbitrary permutation of {1, . . . , s}.
The resulting curve is called a marked cut of (0,V, h,P ) at the set X and is denoted
by (0X ,VX , hX ,PX ). Notice that any marked cut of a non-degenerate marked L-curve
is non-degenerate, and any marked cut of a pseudo-simple marked L-curve is pseudo-
simple.
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Fig. 4. Cutting, IV.

2.4. Moduli spaces of marked L-curves

We say that two marked L-curves (0,V, h,P ) and (0′,V ′, h′,P ′) have the same combi-
natorial type if there is a homeomorphism ϕ : 0̂→ 0̂′ such that

• ϕ bijectively maps P onto P ′, respecting their ordered 5-tuple structures,
• for any V ∈ 0 and any edge E incident to V , the vectors uV (E) and uϕ(V )(ϕ(E))

coincide,
• w(E) = w(ϕ(E)) for any edge E ∈ 01.

If, in addition, h′◦ϕ = h, then ϕ is called an isomorphism and the curves (0,V, h,P ) and
(0
′
,V ′, h′,P ′) are said to be isomorphic. Note that, in this case, ϕ defines an isometry

of 0 and 0′.
Let 1 be a finite multi-set of vectors in Z2 such that the sum of all vectors in 1 is

equal to 0, and let k1, k2, g, l, and r be non-negative integers such that l ≤ r . Denote
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Fig. 5. Cutting, V.

by M(1, k1, k2, g, l, r) the set of isomorphism classes of non-degenerate irreducible
marked L-curves (0,V, h,P ) of degree 1 and genus g such that

• the number of points in P is equal to r + 1,
• the number of points in P [ is equal to l,
• the number of points in P 1

∪ P ν is equal to k1,
• the number of points in P 2

∪ P ν is equal to k2.

Let 3(1, k1, k2, g, l, r) be the set of all possible combinatorial types of
marked L-curves whose isomorphism class belongs to M(1, k1, k2, g, l, r). The set
3(1, k1, k2, g, l, r) is clearly finite (cf., for example, [4, Proposition 3.7] and [13]). For
a given combinatorial type λ ∈ 3(1, k1, k2, g, l, r), denote by Mλ(1, k1, k2, g, l, r) the
subset of M(1, k1, k2, g, l, r) formed by the isomorphism classes of curves of type λ.

There is a natural evaluation map ev :M(1, k1, k2, g, l, r)→ (L−∞)
l
× (R2)r+1−l

which associates to any isomorphism class [(0,V, h,P )] ∈ M(1, k1, k2, g, l, r) the
sequence ĥ(P ). For a given combinatorial type λ ∈ 3(1, k1, k2, g, l, r), denote by evλ

the restriction of ev to Mλ(1, k1, k2, g, l, r).
One can encode the elements [(0,V, h,P )] of Mλ(1, k1, k2, g, l, r) by

• the lengths of all bounded edges of 0,
• the image h(x) ∈ R2 of some point x ∈ 0,
• the coordinates of the points of ĥ(P [) on L−∞,
• the distances between P and VP , where P runs over all points in P ]

∪ P 1
∪ P 2, and

VP is one of the vertices of the edge containing P .

This gives an identification of Mλ(1, k1, k2, g, l, r) with the relative interior of a convex
polyhedron in an affine space, and, under this identification, the map evλ becomes affine.

Proposition 2.1. For any element p in (L−∞)l × (R2)r+1−l , the inverse image ev−1(p)

⊂M(1, k1, k2, g, l, r) is finite.
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Proof. Since the set 3(1, k1, k2, g, l, r) is finite, it is enough to show that, for any
λ ∈ 3(1, k1, k2, g, l, r) and any element p in (L−∞)l × (R2)r+1−l , the inverse image
(evλ)−1(p) ⊂ Mλ(1, k1, k2, g, l, r) is a finite set. Furthermore, since we can replace
any marked L-curve (0,V, h,P ) by the collection of the irreducible components of a
marked cut of (0,V, h,P ) at P ]

∪P 1
∪P 2

∪P ν (notice that the set P ]
∪P 1

∪P 2
∪P ν

is sparse), it is sufficient to prove the statement in the situation where λ is a combinatorial
type of rational non-degenerate end-marked L-curves.

For such λ the statement is easily proved by induction. Namely, let (0,V, h,P ) be a
marked L-curve of combinatorial type λ, and assume that 0 has at least two non-univalent
vertices (the other cases are evident). Since the curve (0,V, h,P ) is rational, the graph 0
contains a non-univalent vertex V incident to exactly one bounded edge and not incident
to the non-rigid end. Denote by E1, . . . , Ek the (rigid) ends incident to V . Since the curve
(0,V, h,P ) is non-degenerate, among the ends E1, . . . , Ek we can find two ends Ei and
Ej such that uV (Ei) 6= uV (Ej ). Thus, the images under ĥ of the rigidity points of Ei and
Ej allow one to reconstruct the image of V under ĥ. Modify the sequence P removing
from it the rigidity points of E1, . . . , Ek and adding to P ν a marked point P at V (as
the last term of P ν). Denote the new sequence of marked points by P ′. The graph of a
marked cut of (0,V, h,P ′) at P has fewer non-univalent vertices than 0, and one can
apply the induction hypothesis. ut

2.5. Symmetric L-curves

Let (0,V, h,P ) be a marked L-curve. A homeomorphism ξ : 0̂ → 0̂ is called an
involution if

• ξ2 is the identity,
• the restriction of ξ on 0 is an isometry,
• ĥ ◦ ξ = ĥ,
• ξ is identical on P [

∪ P ]
∪ P ν , and maps P 1 bijectively onto P 2.

A marked L-curve (0,V, h,P ) equipped with an involution ξ : 0̂→ 0̂ is called symmet-
ric. A symmetric marked L-curve is said to be irreducible if it does not decompose into
proper symmetric marked L-subcurves. The genus of an irreducible symmetric marked
L-curve (0,V, h,P , ξ) is defined to be b1(0)− b0(0)+ 1.

We define a combinatorial type and an isomorphism of symmetric marked L-curves
in the same way as in Section 2.4 with an extra requirement that ϕ commutes with the
involutions. Given data (1, k1, k2, g, l, r) as in Section 2.4, we similarly introduce the
set Msym(1, k1, k2, g, l, r) of isomorphism classes of irreducible symmetric marked L-
curves of genus g, and consider the evaluation map evsym

:Msym(1, k1, k2, g, l, r) →

(L−∞)× (R2)r+1−l . Clearly, Msym(1, k1, k2, g, l, r) is non-empty only if k1 = k2. The
following statement can be deduced from Proposition 2.1.

Proposition 2.2. (1) The set of combinatorial types of symmetric marked L-curves
whose isomorphism classes belong to Msym(1, k1, k2, g, l, r) is finite.

(2) For any element p in (L−∞)l × (R2)r+1−l , the inverse image of p under the evalua-
tion map evsym

:Msym(1, k1, k2, g, l, r)→ (L−∞)
l
× (R2)r+1−l is finite.
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3. Algebraic Caporaso–Harris type formulas

3.1. Families of curves on Del Pezzo surfaces

Here, we establish some properties of generic points of ”generalized Severi varieties”.
These auxiliary results are close to similar statements in [3, 22] used in the proof of
the recursive formulas, but our setting is slightly different and we need a more detailed
information on generic elements of the Severi varieties considered.

Let 6 = P2
q be the complex projective plane blown up at 0 ≤ q ≤ 5 generic points,

Ei , 1 ≤ i ≤ q, the exceptional curves of the blow-up, L ∈ Pic(6) the pull-back of a line
in P2, and E a smooth rational curve linearly equivalent to

L if q ≤ 2,
L− E3 if q = 3,
L− E3 − E4 if q ≥ 4.

(3.1)

Denote by Pic+(6,E) and Pic(6,E) the semigroups generated by effective irreducible
divisors D ∈ Pic(6) such that DE > 0 or DE ≥ 0, respectively.

Following [22, Section 2], for a given effective divisor D ∈ Pic(6) and non-negative
integers g, n, we denote by Mg,n(6,D) the moduli space of triples (Ĉ, ẑ, ν), where
Ĉ is a genus g connected nodal curve, ẑ is a collection of n marked points of Ĉ, and
ν : Ĉ → 6 is a stable map such that ν∗Ĉ ∈ |D|. The triples with a smooth curve Ĉ form
an open dense subset in Mg,n(6,D).

Let Z∞+ be the direct sum of countably many additive semigroups Z+ = {m ∈ Z |
m ≥ 0}. Denote by θk the generator of the k-th summand, k ∈ N. For α =
(α1, α2, . . . ) ∈ Z∞+ put

‖α‖ =

∞∑
k=1

αk, Iα =

∞∑
k=1

kαk,

mt(α, i) = k if
∑
j<k

αj < i ≤
∑
j≤k

αj , i = 1, . . . , ‖α‖.

Let a divisor D ∈ Pic(6,E), an integer g, and two elements α, β ∈ Z∞+ satisfy

g ≤ g(6,D) =
D2
+DK6

2
+ 1, Iα + Iβ = DE. (3.2)

Given a sequence z[ = (pi)1≤i≤‖α‖ of ‖α‖ distinct points of E, define V6(D, g, α, β, z[)
⊂Mg,‖α‖(6,D) to be the closure of the set of elements (Ĉ, ẑ, ν) subject to the following
restrictions:
• Ĉ is smooth, ẑ = (p̂i)1≤i≤‖α‖, ν(p̂i) = pi for all i = 1, . . . , ‖α‖,
• the divisor d = ν∗(E) is of the form

d =

‖α‖∑
i=1

mt(α, i) · p̂i +
‖β‖∑
i=1

mt(β, i) · q̂i, (3.3)

where (q̂i)1≤i≤‖β‖ is a sequence of ‖β‖ distinct points of Ĉ \ ẑ.
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Put
R6(D, g, β) = −D(E +K6)+ ‖β‖ + g − 1.

For a component V of V6(D, g, α, β, z[), define the intersection dimension idimV

to be the dimension of the image of V in the linear system |D|. Denote by
idimV6(D, g, α, β, z[) the maximum of the intersection dimensions of the components.

Lemma 3.1. Consider the surface 6 = P2
5, the smooth rational curve E linearly equiv-

alent to L − E3 − E4, and an irreducible curve C′ ⊂ 6 different from E. Let D ∈
Pic(6,E) \ {0}, an integer g, and α, β ∈ Z∞+ satisfy (3.2), and let z[ = (pi)1≤i≤‖α‖ be
a generic sequence of points of E. If V6(D, g, α, β, z[) 6= ∅, then R6(D, g, β) ≥ 0 and
each component V of V6(D, g, α, β, z[) satisfies

idimV ≤ R6(D, g, β). (3.4)

If (3.4) turns into equality andD is not of the formmD0, wherem ≥ 2 andD0 = E3, E4,
or L− Ei − Ej , {i, j} ⊂ {1, 2, 5}, then for a generic element (Ĉ, ẑ, ν) ∈ V the map ν is
an immersion birational onto C = ν(Ĉ), where C is a nodal curve non-singular along E.
Furthermore, if in addition R6(D, g, β) > 0, then the family V has no base points
outside z[, and C crosses C′ transversally.

Proof. First, we prove the lemma under an additional assumption that for a generic el-
ement (Ĉ, ẑ, ν) of the component V ⊂ V6(D, g, α, β, z[), the curve Ĉ is mapped by ν
birationally to its image C = ν(Ĉ).

The relation (3.4) is evident ifD is a (−1)-curve as well as ifD = dL−k1E1−· · ·−

k5E5 with d ≤ 2 or with ki < 0 for some i. So, we assume that D = dL− k1E1 − · · · −

k5E5 with d ≥ 3, k1, . . . , k5 ≥ 0.
Due to generic position of z[, one has

idimV ≤ idimW − ‖α‖

for at least one of the componentsW of V6(D, g, 0, α+β,∅). Hence, to prove (3.4), it is
sufficient to assume that α = 0 and z[ = ∅, and to check that the intersection dimension
of any component of V6(D, g, 0, β,∅) is at most R6(D, g, β). To shorten the notation,
we write (within the present proof) V6(D, g, β) for V6(D, g, 0, β,∅).

The remaining part of the proof of (3.4) literally follows the lines of [3] and is based
on the following numerical observations.

(E1) The conclusion of [3, Corollary 2.4] reads in our situation

idimV6(D, g, (DE)θ1) ≤ −DK6 + g − 1,

and it holds since the hypothesis of [3, Corollary 2.4], which is equivalent to DK6
< 0, is true for any effective divisor D ∈ Pic(6).

(E2) The inequality deg(ν∗OP2(1)(−d)) ≥ 0 in [3, p. 363] (d is defined by (3.3)) reads
in our situation DE ≥ Iβ − ‖β‖, and it holds true since Iβ = DE under our
assumptions.
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(E3) The inequality deg(c1(N (−d))⊗ ω−1
Ĉ
) > 0 in [3, p. 363, last paragraph] (N is the

normal sheaf on Ĉ and ω
Ĉ

is the dualizing bundle) reads in our setting

−DK6 + 2g − 2− deg d + 2− 2g
= −D(K6 + E)+ ‖β‖ = (2d − k1 − k2 − k5)+ ‖β‖ > 0,

and it holds true since 2d − k1 − k2 − k5 ≥ 2 (the latter inequality follows from
Bézout’s bound applied to the intersection of C = ν(Ĉ) with an appropriate curve
from the linear system |2L− E1 − E2 − E5|).

As at the end of the proof of [3, Proposition 2.1], this implies that the intersection dimen-
sion of any component of V6(D, g, β) does not exceed

deg(c1(N (−d))− g + 1 = R6(D, g, β),

which completes the proof of (3.4).
A stronger inequality deg(c1(N (−d)) ⊗ ω−1

Ĉ
) ≥ 2, which is indeed established in

(E3), implies that ν : Ĉ → 6 is an immersion away from ν−1(E) (see [3, proof of
Proposition 2.2, first paragraph]). Similarly, ν is an immersion at ν−1(E) as soon as
deg(c1(N (−d))⊗ ω−1

Ĉ
) ≥ 4, or, equivalently,

(2d − k1 − k2 − k5)+ ‖β‖ ≥ 4. (3.5)

On the other hand, assuming that C = ν(Ĉ) has a singular local branch centered at a
point z ∈ E, we have ‖β‖ > 0 and 2d − k1 − k2 − k5 ≥ 3, where the latter inequality
follows from Bézout’s bound applied to the intersection of C with a curve belonging to
|2L− E1 − E2 − E5| and passing through z and another point of C.

From now on, we suppose that ν is an immersion. To show that C is non-singular
along E and nodal, we may assume that C ∩E 6= ∅, i.e., ‖β‖ > 0. Indeed, otherwise, we
either replace E by another (−1)-curve, or, if C does not meet any (−1)-curve, we blow
them down and reduce the problem to the planar case.

To check the remaining statements, we argue by contradiction. Namely, assuming that
one of them fails, we derive that necessarily idimV6(D, g, β) < R6(D, g, β).

Suppose that ν takes the points q1, . . . , qs (s ≥ 2) of the divisor d to the same point
z ∈ E. Fixing the position of z in E, we obtain a subvariety U ⊂ V6(D, g, β) of dimen-
sion idimU ≥ idimV6(D, g, β) − 1. On the other hand, the same argument as in the
proof of [3, Proposition 2.1] gives

idimU ≤ h0(Ĉ,N (−d − d ′)),

where d ′ = q1 + · · · + qs . Verifying that c1(N (−d − d ′)) ⊗ ω−1
Ĉ

is positive on Ĉ and
applying [3, Observation 2.5], we get (cf. [3, p. 364])

idimV6(D, g, β) ≤ idimU + 1 ≤ h0(Ĉ,N (−d − d ′))+ 1
= deg(c1(N (−d − d ′))− g + 2 = −DK6 + 2g − 2− deg(d + d ′)− g + 2
= −D(K6 + E)+ g + ‖β‖ − s < R6(D, g, β).
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The above positivity is equivalent to

−DK6+2g−2−deg(d+d ′)−2g+2 = (2d−k1−k2−k5− s)+‖β‖ > 0, (3.6)

and it holds since ‖β‖ > 0 and 2d − k1 − k2 − k5 − s > 0, where the latter inequality
follows from Bézout’s bound applied to the intersection of C with a curve belonging to
|2L− E1 − E2 − E5| and passing through z and another point of C.

Suppose that for some point z ∈ 6 \ E the set ν−1(z) consists of s ≥ 3 points.
Fixing the position of the point z, we obtain a subvariety U ⊂ V6(D, g, β) of dimension
idimU ≥ idimV6(D, g, β)− 2. On the other hand, by the same arguments as above we
have again the inequality (3.6) and an upper bound

idimV ≤ h0(Ĉ,N (−d − d ′)),

where d ′ = ν−1(z). By (3.6), the bundle c1(N (−d − d ′)) ⊗ ω−1
Ĉ

is positive on Ĉ, and
thus applying [3, Observation 2.5] we get

idimV6(D, g, β) ≤ idimU + 2 ≤ h0(Ĉ,N (−d − d ′))+ 2
= deg(c1(N (−d − d ′))− g + 3 = −DK6 + 2g − 2− deg(d + d ′)− g + 3
= −D(K6 + E)+ g + ‖β‖ − s + 1 < R6(D, g, β).

Suppose that ν−1(z) = w1 + w2, w1 6= w2 ∈ Ĉ for some z ∈ 6 \ E, and the
two local branches of C = ν(Ĉ) at z are tangent. Fixing the position of z and the di-
rection of the tangent, we obtain a subvariety U ⊂ V6(D, g, β) of dimension idimU ≥

idimV6(D, g, β)− 3. As in the preceding two computations, we have

idimU ≤ h0(Ĉ,N (−d − d ′)),

where d ′ = 2w1 + 2w2. The inequality

−DK6 + 2g − 2− deg(d + d ′)− 2g + 2 = (2d − k1 − k2 − k5 − 4)+ ‖β‖ > 0,

which we derive from ‖β‖ > 0 and Bézout’s bound applied to the intersection of C with
a curve belonging to |2L−E1−E2−E5|, passing through z and tangent to C, results in

idimV6(D, g, β) ≤ idimU + 3 ≤ h0(Ĉ,N (−d − d ′))+ 3
= deg(c1(N (−d − d ′))− g + 4 = −DK6 + 2g − 2− deg(d + d ′)− g + 4
= −D(K6 + E)+ g + ‖β‖ − s − 2 < R6(D, g, β).

Assuming that R6(D, g, β) > 0 and V6(D, g, α, β, z[) has a base point z ∈ 6 \ z[,
we obtain

idimV6(D, g, α, β, z[) ≤ h0(Ĉ,N (−d − d ′)),

where d ′ = ν−1(z). The positivity of the bundle c1(N (−d − d ′))⊗ω−1
Ĉ

on Ĉ reduces to
the inequality

(2d − k1 − k2 − k5)+ ‖β‖ − 1 > 0,
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which holds by Bézout’s bound. It allows us to conclude that

idimV6(D, g, α, β, z[) ≤ h0(Ĉ,N (−d − d ′))

= −DK6+2g−2−deg(d+d ′)−g+1 = −D(K6+E)+g+‖β‖−2 < R6(D, g, β).

Finally, if R6(D, g, β) > 0 then according to the same arguments as above the exis-
tence of a tangency point z with C′ would lead to the following computation:

idimV6(D, g, β) ≤ h0(Ĉ,N (−d − d ′)) = deg(c1(N (−d − d ′))− g + 1
= −DK6 + 2g − 2− deg(d + d ′)− g + 1
= −D(K6 + E)+ g + ‖β‖ − s − 2 < R6(D, g, β),

where d ′ = ν−1(z).
Thus, the proof of Lemma 3.1 is completed under the assumption that ν is birational

onto its image. Hence, to end the proof it remains to assume instead that for a generic
element (Ĉ, ν, ẑ) of V6(D, g, α, β, z[) the map ν is an m-fold covering onto its image,
m ≥ 2. But, in that case, we would haveD = mD0, 2−2g = m(2−2g′)− r , where g′ is
the geometric genus of C = ν(Ĉ), r is the total ramification multiplicity of the covering,
and |(C ∩ E) \ z[| ≤ ‖β‖. Therefore, using (3.4) for the case of birational ν, we get (cf.
[22, p. 62])

idimV6(D, g, α, β, z[) ≤ −(K6 + E)D0 + g
′
− 1+ |(C ∩ E) \ z[|

≤ −
(K6 + E)D

m
+
g − 1− r/2

m
+‖β‖ ≤ −(K6+E)D+g−1+‖β‖ = R6(D, g, β),

the latter inequality coming from the nef property of −(K6 + E). The case of equality
idimV6(D, g, α, β, z[) = R6(D, g, β) leaves the only possibility (K6 + E)D0 = 0.
The latter holds only for D0 = 0 or D0 ∈ {E3, E4, L− Ei − Ej , {i, j} ⊂ {1, 2, 5}}. ut

Lemma 3.2. Consider the surface 6 = P2
5 and the smooth rational curve E linearly

equivalent to L − E3 − E4. Let D ∈ Pic+(6,E), an integer g, and α, β ∈ Z∞+ sat-
isfy (3.2), and let z[ = (pi)1≤i≤‖α‖ be a generic sequence of points of E. Assume
that R6(D, g, β) = 0, and D is represented by a reduced irreducible curve. Then
V6(D, g, α, β, z[) consists of one element for the following quadruples (D, g, α, β):

(i) (Ei, 0, 0, θ1) for i = 3, 4,
(ii) (L− Ei − Ej , 0, 0, θ1) for i, j = 1, 2, 5, i 6= j ,

(iii) (L− Ei, 0, θ1, 0) for i = 1, 2, 5,
(iv) (2L− E1 − E2 − Ei − E5, 0, θ1, 0) for i = 3, 4,
(v) (2L− E1 − E2 − E5, 0, α, 0) as long as Iα = 2,

and V6(D, g, α, β, z[) = ∅ in all the other cases.

Proof. Clearly, V6(D, g, α, β, z[) consists of one element in cases (i)–(v). Assuming
that V6(D, g, α, β, z[) 6= ∅ and R6(D, g, β) = 0, we will derive that (D, g, α, β) nec-
essarily belongs to the list (i)–(v). Let D be equal to dL − k1E1 − · · · − k5E5, where
d, k1, . . . , k5 are integers and d ≥ 0.
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Suppose that d = 0. Since DE = d − k3 − k4 > 0, we obtain D = Ei , i = 3, 4; this
is case (i).

If d > 0 then k1, . . . , k5 ≥ 0. Thus, if d = 1, then DE = d − k3 − k4 > 0 yields
k3 = k4 = 0. Taking additionally into account that

R6(D, g, β) = 2d − k1 − k2 − k5 + |β| + g − 1 = 2− k1 − k2 − k5 + |β| + g − 1 = 0,

we derive that k1 + k2 + k5 ≥ 1. On the other hand, the Bézout upper bound applied
to the intersection of a curve C = ν(Ĉ) as {ν : Ĉ → 6} ∈ V6(D, g, α, β, z[) with an
irreducible curve belonging to |2L−E1−E2−E5| implies k1+ k2+ k5 ≤ 2. Hence, for
D = L−Ei −Ej , i, j = 1, 2, 5, i 6= j , we necessarily obtain α = 0, β = θ1, g = 0; this
is case (ii). Similarly, for D = L − Ei , i = 1, 2, 5, we necessarily obtain β = 0, g = 0,
and α = θ1; this is case (iii).

Assume now that d = 2. In view of the relations

DE = 2− k3 − k4 > 0, R6(D, g, β) = 4− k1 − k2 − k5 + |β| + g − 1 = 0,

and the irreducibility of D, we obtain

β = 0, g = 0, k1 = k2 = k5 = 1, 0 ≤ k3 + k4 ≤ 1,

coming to cases (iv) and (v).
Finally, if d ≥ 3, then intersecting D with the lines from |L − Ei − Ej |, we derive

that ki + kj ≤ d, which implies

R6(D, g, β) = 2d−k1−k2−k5+|β|+g−1 ≥ 2d− 3
2d+|β|+g−1 ≥ 1

2d−1 > 0. ut

Lemma 3.3. Consider the surface 6 = P2
5 and the smooth rational curve E linearly

equivalent to L−E3−E4. LetD ∈ Pic(6,E), an integer g, and α, β ∈ Z∞+ satisfy (3.2)
and R6(D, g, β) > 0, and let z[ = (pi)1≤i≤‖α‖ be a generic sequence of points of E.
Let V be a component of V6(D, g, α, β, z[) of intersection dimension R6(D, g, β), and
let {(Ĉt , νt , ẑt )}t∈(C,0) ⊂ V be a generic one-parameter family such that Ĉt is smooth
connected for t 6= 0, and ν0(Ĉ0) ⊃ E. Then Ĉ0 = Ẽ ∪ C

(1)
∪ · · · ∪ C(m) ∪ Z, where

(1) ν0 maps Ẽ isomorphically onto E, maps each component C(i), 1 ≤ i ≤ m, to a curve
different from E and crossing E, and contracts the components of Z to points,

(2) ν0 maps C(1)∪· · ·∪C(m) birationally onto its image C ∈ |D−E| which is a reduced
nodal curve, non-singular along its intersection with E,

(3) for each i = 1, . . . , m, the map ν0 : C
(i)
→ 6 represents a generic element in a

component of some V6(D(i), g(i), α(i), β(i), (z[)(i)) of dimensionR6(D(i), g(i), β(i))
such that
(a)

∑m
i=1D

(i)
= D − E,

(b) (z[)(i), i = 1, . . . , m, are disjoint subsets of z[,
(c)

∑m
i=1 R6(D

(i), g(i), β(i)) = R6(D, g, β)− 1,
(d) each quadruple (D(i), g(i), α(i), β(i)) with ni = 0 appears at most once in the

list (D(i), g(i), α(i), β(i)), i = 1, . . . , m.
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Proof. The central element (Ĉ0, ν0, ẑ0) must belong to a substratum of intersection di-
mension R6(D, g, β) − 1. Therefore, the fact that there is only one component of Ĉ0
taken to E and the corresponding map is an isomorphism can be proven as in [22, proof
of Theorem 5.1, Case II], where the argument is based on the inequality (3.4) and the
equality −(K6 + E)E = 2.

In the further steps we argue as in [3, Section 3]. Namely, we replace the given family
νt : Ĉt → 6 by a family with the same generic fibers and a semi-stable central fiber so
that (cf. conditions (a)–(d) in [3, Section 3.1], and assumptions (b), (c) in [3, Section 3.2]):

• the family is represented by a smooth surface Y and two morphisms π6 : Y → 6,
πC : Y → (C, 0), and for each t 6= 0, π6 : Yt = π−1

C (t) → 6 is isomorphic to
νt : Ĉt → 6,
• the central fiber Y0 is a connected nodal curve splitting into the union of the following

parts: the component Ẽ isomorphically mapped by π6 onto E, the components C(1),
. . . , C(m) mapped by π6 to curves, and Z̃, the union of the components contracted
by π6 to points,
• the components of Z are rational and form disjoint chains joining Ẽ and C(1) ∪ · · ·
∪ C(m),
• the sections t ∈ (C, 0) \ {0} 7→ p̂i,t , 1 ≤ i ≤ ‖α‖, and t ∈ (C, 0) \ {0} 7→ q̂i,t ,

1 ≤ i ≤ ‖β‖, defined by (cf. (3.3))

d t = π
∗
6(E ∩ π6(Yt )) =

‖α‖∑
i=1

mt(α, i) · p̂i,t +
‖β‖∑
i=1

mt(β, i) · q̂i,t ⊂ Yt ,

π6(p̂i,t ) = pi ∈ z[, 1 ≤ i ≤ ‖α‖,

close up at t = 0 into disjoint global sections avoiding singularities of Y0 and the
components of Z, and such that q̂i,t ∈ C(1) ∪ · · · ∪ C(m) for all i = 1, . . . , ‖β‖,
• for each i = 1, . . . , m, the triple (C(i), π6, ẑ

i)
) with ẑ(i) = ẑ0 ∩ C

(i) represents a
generic element of some V6(D(i), g(i), α(i), β(i), (z[)(i)), where

∑
D(i) = D−E, the

sequences (z[)(i), i = 1, . . . , m, are disjoint subsequences of z[, and
m∑
i=1

R6(D
(i), g(i), β(i)) = R6(D, g, β)− 1. (3.7)

The proof literally follows the argument of [3, Section 3], whose main ingredient is the
inequality (3.4).

Blow down all the components of Z and observe that (3.7) can be rewritten as

χ(Ĉt ) =

m∑
i=1

χ(C(i))+ χ(E)− 2
∥∥∥ m∑
i=1

β(i) − β

∥∥∥, t 6= 0. (3.8)

Since at least ‖
∑m
i=1 β

(i)
− β‖ intersection points of Ẽ with C(1) ∪ · · · ∪ C(m) smooth

up when deforming Y ′0 = Ẽ ∪ C(1) ∪ · · · ∪ C(m) (the blown down Y0) to Yt = Ĉt ,
t 6= 0, we derive that they are the only smoothed up intersection points. In particular,
each component C(i) of Y ′0 intersects with Ẽ.
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It follows from Lemmas 3.1 and 3.2 that if π6 maps C(i) multiply onto its image,
or if π6 maps C(i), C(j) onto the same curve, then this image curve must be a (−1)-
curve crossing E at one point. We can assume that this image curve is E3. Let E3 have
multiplicity s ≥ 2 in C = (π6)∗(C(1) ∪ · · · ∪ C(m)), and let C(k+1), . . . , C(m) be all the
components of Y0 mapped onto E3. Since R6(D, g, β) > 0, we have D = dL− k1E1 −

· · · − k5E5, d ≥ 1, k1, . . . , k5 ≥ 0. Thus,

C′ = (π6)∗(C
(1)
∪ · · · ∪ C(k))

∈ |(d − 1)L− k1E1 − k2E2 − (k3 + s − 1)E3 − (k4 − 1)E4 + k5E5|.

So,C′ crossesE3\E with multiplicity k3+s−1, and as explained above these intersection
points persist in the deformation Y ′0 → Yt , t 6= 0. Hence, (π6)∗(Yt ) must cross E3 with
multiplicity ≥ k3 + s − 1 > k3, which gives a contradiction.

So, the map π6 : C(1) ∪ · · · ∪ C(m) → 6 is birational onto its image. Furthermore,
the genericity of (C(i), π6, ẑ

(i)
) in V6(D(i), g(i), α(i), β(i), (z[)(i)) implies that the above

image C is a nodal curve, non-singular along E. ut

3.2. Vakil recursive formula

For any variety V6(D, g, α, β, z[), denote by V6(D, g, α, β, z[) the union of the compo-
nents of dimension R6(D, g, β) of the natural image of V6(D, g, α, β, z[) in the linear
system |D| on 6. Introduce the numbers

N6(D, g, α, β) =

{
0 if V6(D, g, α, β, z[) = ∅,
degV6(D, g, α, β, z[) if V6(D, g, α, β, z[) 6= ∅.

(3.9)

These numbers do not depend on the choice of z[ and are enumerative: they count the
irreducible nodal curves in |D| which pass through R6(D, g, β) generic points in 6 \ E
and belong to V6(D, g, α, β, z[) (cf. [22, Section 2.4.2]).

To formulate a recursive formula for the numbers N6(D, g, α, β), we use the follow-
ing conventions and notation:

• the relation α ≥ α′ means that α − α′ ∈ Z∞+ ,
• Iα =

∏
k≥1 k

αk ,
• if α ≥ α(1) + · · · + α(s), then(

α

α(1), . . . , α(s)

)
=

∏
k≥1

αk!

α
(1)
k ! . . . α

(s)
k !(αk − α

(1)
k − · · · − α

(s)
k )!

.

Let us also introduce the semigroup

A(6,E) = {(D, g, α, β) ∈ Pic+(6,E)× Z× Z∞+ × Z∞+ |
D, g, α, β satisfy (3.2) and R6(D, g, β) ≥ 0}
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with the operation

(D(1), g(1), α(1), β(1))+ (D(2), g(2), α(2), β(2))

= (D(1) +D(2), g(1) + g(2) − 1, α(1) + α(2), β(1) + β(2)).

Notice that a quadruple (D, g, α, β) inA(6,E)may have negative g. PutN6(D, g, α, β)
= 0 whenever g < 0.

Theorem 3.4. (cf. [22]). Consider a divisor D ∈ Pic+(6,E), an integer g, and two
elements α, β ∈ Z∞+ such that

(D, g, α, β) ∈ A(6,E), D 6= E, R6(D, g, β) > 0.

Then

N6(D, g, α, β) =
∑

j≥1, βj>0

jN6(D, g, α + θj , β − θj )

+

∑(
α

α(1), . . . , α(m)

)
(n− 1)!
n1! . . . nm!

m∏
i=1

((
β(i)

β̃(i)

)
I β̃

(i)

N6(D
(i), g(i), α(i), β(i))

)
, (3.10)

where
n = R6(D, g, β), ni = R6(D

(i), g(i), β(i)), = 1, . . . , m,

and the second sum in (3.10) is taken

• over all splittings

(D − E, g′, α′, β ′) =

m∑
i=1

(D(i), g(i), α(i), β(i)), (3.11)

in A(6,E) of all possible collections (D − E, g′, α′, β ′) ∈ A(6,E) such that

(a) α′ ≤ α, β ≤ β ′, g − g′ = ‖β ′ − β‖ − 1,
(b) each summand (D(i), g(i), α(i), β(i)) with ni = 0 appears in (3.11) at most once,

• over all splittings

β ′ = β +

m∑
i=1

β̃(i), ‖β̃(i)‖ > 0, i = 1, . . . , m, (3.12)

satisfying the restriction β(i) ≥ β̃(i), i = 1, . . . , m,

and factorized by simultaneous permutations in both splittings (3.11) and (3.12).

Remark 3.5. (1) The second sum on the right-hand side of (3.10) becomes empty if
D − E is not effective. Notice also that, under the hypotheses of Theorem 3.4, one has
(D − E)E > 0. Indeed, with our choice of 6 and E, the inequalities DE > 0 and
(D − E)E ≤ 0 may occur only in the case 6 = P2

2, E2
= 1, and DE = 1, but then

D = E since D ∈ Pic+(6,E).
(2) The divisors D(i), i = 1, . . . , m, in (3.10) satisfy D(i)E ≥ I β̃(i) > 0.
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Proof of Theorem 1. The cases6 = P2
q , 0 ≤ q ≤ 4, can be reduced to the case of6 = P2

5
by means of blowing up P2

q at appropriately chosen 5−q points. Indeed, let π : 6∗→ 6

be the blow-up under consideration, E∗ the strict transform of E, and E1, . . . , Eb the
exceptional divisors of π whose images belong to E. According to the pull-back formula
π∗D−E∗ = π∗(D−E)+

∑b
j=1 Ej and due to the fact that the numbersN6(D, g, α, β)

are enumerative, the map which sends a decomposition

(D − E, g′, α′, β ′) =

m∑
i=1

(D(i), g(i), α(i), β(i))

to the decomposition

(π∗D − E∗, g′, α′, β ′ + bθ1) =

m∑
i=1

(π∗D(i), g(i), α(i), β(i))+

b∑
j=1

(Ej , 0, 0, θ1)

gives rise to a 1-to-1 correspondence between the summands on the right-hand side of
formula (3.10) for 6 and 6∗.

The proof of formula (3.10) for 6 = P2
5 follows the scheme of [3, 22]. Lemma 3.1

provides the (expected) upper bound to the dimension of the families of curves under con-
sideration and ensures required properties of generic elements in the families of expected
dimension. The fact that multiple components do not appear in degenerations follows
from Lemmas 3.1 and 3.3. Finally, the condition that each summand (D(i), g(i), α(i), β(i))
with ni = 0 may appear in (3.11) at most once follows from Lemmas 3.2 and 3.3 and
from the fact that the second sum on the right-hand side of (3.11) corresponds to the de-
generations described in Lemma 3.3 (cf. [3, Section 3] and [22, Section 5]). ut

3.3. Initial conditions

Theorem 3.6. All the numbers N6(D, g, α, β) with (D, g, α, β) ∈ A(6,E) are deter-
mined recursively by formula (3.10) and the following list of initial values:

(1) In the cases 6 = P2
q , q ≤ 2, one has

(i) N6(L, 0, α, β) = 1 as long as Iα + Iβ = 1,
(ii) if 1 ≤ q ≤ 2, then N6(L− Ei, 0, θ1, 0) = 1 for each 1 ≤ i ≤ q,

(iii) if q = 2, then N6(L− E1 − E2, 0, 0, θ1) = 1.

(2) In the case 6 = P2
3 one has

(i) N6(E3, 0, 0, θ1) = 1,
(ii) N6(L− Ei, 0, θ1, 0) = 1 for i = 1, 2,

(iii) N6(L− E1 − E2, 0, 0, θ1) = 1.

(3) In the case 6 = P2
4 one has

(i) N6(Ei, 0, 0, θ1) = 1 for i = 3, 4,
(ii) N6(L− Ei, 0, θ1, 0) = 1 for i = 1, 2,

(iii) N6(L− E1 − E2, 0, 0, θ1) = 1.
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(4) In the case 6 = P2
5 one has

(i) N6(Ei, 0, 0, θ1) = 1 for i = 3, 4,
(ii) N6(L− Ei − Ej , 0, 0, θ1) = 1 for i, j = 1, 2, 5, i 6= j ,

(iii) N6(L− Ei, 0, θ1, 0) = 1 for i = 1, 2, 5,
(iv) N6(2L− E1 − E2 − Ei − E5, 0, θ1, 0) = 1 for i = 3, 4,
(v) N6(2L− E1 − E2 − E5, 0, α, 0) = 1 as long as Iα = 2.

(5) N6(D, g, α, β) = 0 for all other tuples (D, g, α, β) ∈ A(6,E) such that either
D = E, or R6(D, g, β) ≤ 0.

Proof. Straightforward from Lemmas 3.1 and 3.2. ut

3.4. Modified recursive formula

For further purposes, we switch the ground field C to the (algebraically closed) field
of complex locally convergent Puiseux series K =

⋃
m≥0 C{t1/m}; this does not affect

the enumerative invariants under consideration. In addition, we rewrite Vakil’s recursive
formula (3.10) in a slightly different way. We specialize the formula to the case 6 = P2

5
and E = L− E3 − E4; the other cases can be reduced to this one in the same way as in
the proof of Theorem 3.4.

Define the subsemigroup Atr(6,E) ⊂ A(6,E) by

Atr(6,E) = {(D, g, α, β) ∈ A(6,E) | DEi ≥ 0, i = 1, . . . , 5}.

Notice that the condition DEi ≥ 0, i = 1, . . . , 5, in the definition of Atr(6,E) means
that E3 and E4 are excluded from the semigroup generators.

Proposition 3.7. (1) If (D, g, α, β) ∈ Atr(6,E) and R6(D, g, β) > 0, then

N6(D, g, α, β) =
∑

j≥1, βj>0

jN6(D, g, α + θj , β − θj )

+

∑(
α

α(1), . . . , α(m)

)
(n− 1)!
n1! . . . nm!

m∏
i=1

((
β(i)

β̃(i)

)
I β̃

(i)

N6(D
(i), g(i), α(i), β(i))

)
, (3.13)

where

n = R6(D, g, β), ni = R6(D
(i), g(i), β(i)) for any i = 1, . . . , m,

and the second sum in (3.13) is taken

• over all elements k ∈ {0, E3, E4, E3 + E4} such that D − E − k ∈ Pic+(6,E),
• over all splittings

(D − E − k, g′, α′, β ′) =
m∑
i=1

(D(i), g(i), α(i), β(i)) (3.14)

of all possible collections (D − E − k, g′, α′, β ′) ∈ Atr(6,E) such that
(a) α′ ≤ α, β ≤ β ′, g − g′ = ‖β ′ − β‖ − 1,
(b) each summand (D(i), g(i), α(i), β(i)) with ni = 0 appears in (3.14) at most once,
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• over all splittings

β ′ = β +

m∑
i=1

β̃(i), ‖β̃(i)‖ > 0, i = 1, . . . , m, (3.15)

satisfying the restriction β(i) ≥ β̃(i), i = 1, . . . , m ,

and factorized by simultaneous permutations in both splittings (3.14) and (3.15).
(2) Formula (3.13) recursively determines all the numbers N6(D, g, α, β),

(D, g, α, β) ∈ Atr(6,E), from the data listed in Theorem 3.6(4(ii)–4(v), 5).

Proof. By condition (b) in Theorem 3.4, each splitting (3.11) contains at most one sum-
mand with D(i) = E3 and at most one summand with D(i) = E4. The second sum on
the right-hand side of formula (3.13) is obtained by subdividing the second sum of the
right-hand side of (3.10) into four sums according to the presence of summands with
D(i) = E3 and D(i) = E4 in (3.11).

The list of initial conditions is obtained from the list given in Theorem 3.6(4, 5) by
removing the cases D = E3 and D = E4. ut

4. Tropical Caporaso–Harris type formulas

4.1. CH-configurations

Let l and r be non-negative integers such that l ≤ r . Introduce the space P(l, r) ⊂
(L−∞)

l
× (R2)r+1−l formed by the (ordered) configurations p = (p[,p],pr+1) of r+1

points in R̂2 such that

• p[ = (p1, . . . , pl) is a sequence of l points on L−∞,
• p] = (pl+1, . . . , pr) is a sequence of r − l points in R2,
• pr+1 is a point in R2,
• for any indices i and j such that l + 1 ≤ i < j ≤ r + 1, the first coordinate of pi is

less than the first coordinate of pj ,
• for any index i such that 1 ≤ i ≤ r , the second coordinate of pr+1 is less than the

second coordinate of pi .

Consider a finite multi-set 1 of vectors in Z2, two non-negative integers k1 and k2, an
integer g, and two elements α and β in Z∞+ . We say that the collection (1, k1, k2, g, α, β)

is (l, r)-admissible if

• ‖α‖ = l and |1| − Iα − Iβ + ‖α‖ + ‖β‖ + g − 1 − k1 − k2 = r , where |1| is the
number of vectors in the multi-set 1,
• the sum of the vectors in1 is equal to 0, and each vector in1 belongs to the list (0, 1),
(0,−1), (1, 1), (−1,−1), (1, 0), (−1, 0),
• the number of vectors (−1, 0) in 1 is non-zero and equal to Iα + Iβ,
• k3 + k4 < d, where d is the number of vectors in 1 which have non-negative coordi-

nates, k3 is the number of vectors (0, 1) in1, and k4 is the number of vectors (−1,−1)
in 1.
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• g ≤ (d − 1)(d − 2)/2 −
∑5
i=1 ki(ki − 1)/2, where k5 is the number of vectors (1, 0)

in 1.

Since the sum of the vectors in 1 is equal to 0, there exists a convex lattice polygon
5(1), possibly reduced to a vertical segment, such that

• each vector in 1 is an outgoing normal vector of a certain side of 5(1),
• for each side σ of 5(1), the integer length of σ (i.e., the number of integer points

minus 1) is equal to the multiplicity of the outgoing normal vector of σ in 1.

The polygon 5(1) is unique up to translation by a vector with integer coordinates.
The geometric meaning of the number d appearing in the definition of an (l, r)-

admissible collection is as follows: d is the smallest positive integer such that 5(1) can
be shifted into the triangle with vertices (0, 0), (d, 0), (0, d).

The multi-set of vectors B − A, where (A,B) runs over all couples of points of
5(1) which have integer coordinates, is denoted by 1̃. We say that a finite multi-set 2
of vectors in Z2 dominates 1 if 1̃ ⊂ 2 (since 1̃ is finite, there always exists a finite
multi-set 2 which dominates 1).

Lemma 4.1. For any integers 0 ≤ l ≤ r and any finite multi-set 2 of vectors in Z2, the
set of (l, r)-admissible collections (1, k1, k2, g, α, β) such that 2 dominates 1 is finite.

Proof. Straightforward. ut

For any p ∈ P(l, r) and any (l, r)-admissible collection (1, k1, k2, g, α, β), the points
of p[ are naturally divided into groups: the first group consists of the first α1 points of p[,
the second consists of the next α2 points of p[, and so on.

For any p ∈ P(l, r) and any (l, r)-admissible collection (1, k1, k2, g, α, β), intro-
duce the set T (1, k1, k2, g, α, β,p) (respectively, T sym(1, k1, k2, g, α, β,p)) of iso-
morphism classes of irreducible marked pseudo-simple L-curves Q = (0,V, h,P ) (re-
spectively, irreducible symmetric marked pseudo-simple L-curves Q = (0,V, h,P , ξ))
satisfying the following conditions:

• Q is of genus g and degree 1◦, where 1◦ is obtained from 1 by replacing i(αi + βi)
vectors (−1, 0) with αi + βi vectors (−i, 0) for each positive integer i;
• ĥ(P [) = p[, h(P ]) = p];
• if P 1

∪ P 2
∪ P ν

6= ∅, then h(P 1
∪ P 2

∪ P ν) = pr+1;
• the number of points in P ℵ ∪ P ν is equal to kℵ, ℵ = 1, 2,
• any point pm ∈ p[ is contained in the image of a left end of Q of weight mt(α,m).

Remark 4.2. (1) The set T sym(1, k1, k2, g, α, β,p) is non-empty only if k1 = k2.
(2) If l > 0 or r > l, then any symmetric marked L-curve (0,V, h,P , ξ) whose

isomorphism class belongs to T sym(1, k1, k2, g, α, β,p) has a connected graph 0, i.e.,
the marked L-curve (0,V, h,P ) is irreducible.

(3) Assume that l = r = 0 and the isomorphism class of an irreducible
symmetric marked L-curve (0,V, h,P , ξ) with disconnected graph 0 belongs to
T sym(1, k1, k2, g, α, β,p). Then p = {p1} ⊂ R2, all the points of P are mapped to p1,
and it follows from the last condition in the definition of marked L-curves and the last
condition in the definition of (l, r)-admissible collections that
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• 1 = {(−1, 0), (−1, 0), (1, 0), (1, 0)}, α = 0, β = (2), g = −1, k1 = k2 = 1,
• 0 consists of two edges interchanged by ξ and mapped by h onto the horizontal straight

line passing through p1 (see Figure 6).

• 2L− E1 − E2 − 2E5
p1

2 2

Fig. 6. Exceptional class T sp(p1).

The collection ({(−1, 0), (−1, 0), (1, 0), (1, 0)}, 1, 1,−1, (0), (2)) is denoted byKsp,
and the isomorphism class described is denoted by T sp(p1). If (1, k1, k2, g, α, β) 6= K

sp,
there is a well-defined forgetful map

9 : T sym(1, k1, k2, g, α, β,p)→ T (1, k1, k2, g, α, β,p), (4.1)

9[(0,V, h,P , ξ)] = [(0,V, h,P )].

Let 2 be a finite multi-set of vectors in Z2. A configuration p ∈ P(l, r) is called
a weak CH2-configuration of type (l, r) if there exist a positive real number ε and real
numbers δl < · · · < δr+1 such that
• for each integer i = l + 1, . . . , r + 1, the point pi belongs to the rectangle (δi−1, δi)×

(−ε, ε),
• for any (l, r)-admissible collection (1, k1, k2, g, α, β) with g ≥ 0 and dominated

by 2, and for each marked L-curve (0,V, h,P ) whose isomorphism class belongs
to T (1, k1, k2, g, α, β,p), the following properties hold:

(1) the image under h of any vertex of 0 has the first coordinate different from δi ,
i = l, . . . , r + 1.

(2) any edge E of 0 such that the image h(E) of E intersects one of the vertical seg-
ments Ii with endpoints (δi,−ε) and (δi, ε), i = l, . . . , r + 1, is horizontal,

(3) for each integer i = l, . . . , r and each irreducible component (0Xi ,X ′i+1,j
,

VXi ,X ′i+1,j
, hXi ,X ′i+1,j

,PXi ,X ′i+1,j
) of a marked cut of (0Xi ,VXi , hXi ,PXi ) at

X ′i+1 (where Xi is the inverse image under h of the segment Ii , the curve
(0Xi ,VXi , hXi ,PXi ) is a marked cut of (0,V, h,P ) at Xi , and X ′i+1 = h

−1
Xi (Ii+1);

notice that Xi and X ′i+1 are sparse), non-emptiness of

hXi ,X ′i+1,j
(0Xi ,X ′i+1,j

∩ 0) ∩ {(x, y) ∈ R2
| δi ≤ x ≤ δi+1, −ε ≤ y ≤ ε}

implies that (0Xi ,X ′i+1,j
,VXi ,X ′i+1,j

, hX ,X ′
i+1,j

) is either horizontal or one-sheeted
(see Figure 7),

(4) for each irreducible component (0Xl ,j ,VXl ,j , hXl ,j ,PXl ,j ) of a marked cut of
(0,V, h,P ) at Xl , the non-emptiness of

hXl ,j (0Xl ,j ∩ 0) ∩ {(x, y) ∈ R2
| x ≤ δl, −ε ≤ y ≤ ε}

implies that (0Xl ,j ,VXl ,j , hXl ,j ) is horizontal.
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Fig. 7. Cutting, VI.

Let p ∈ P(l, r) be a weak CH2-configuration. Numbers ε, δl, . . . , δr+1 cer-
tifying that p is a weak CH2-configuration are said to be parameters of p (of
course, these parameters are far from being unique). The parameter ε is called ver-
tical, and the parameters δl, . . . , δr+1 are called horizontal. Pick a marked L-curve
(0,V, h,P ) whose isomorphism class belongs to T (1, k1, k2, g, α, β,p). For any in-
teger i = l, . . . , r , put Xi = h−1(Ii), where Ii is defined in (2) above, and consider
a marked cut (0Xi ,VXi , hXi ,PXi ) of (0,V, h,P ) at Xi . An irreducible component
(0Xi ,j ,VXi ,j , hXi ,j ,PXi ,j ) of (0Xi ,VXi , hXi ,PXi ) is called left (respectively, right) if

hXi ,j (0Xi ,j ∩ 0) ∩ {(x, y) ∈ R2
| x ≤ δi, −ε ≤ y ≤ ε} 6= ∅

(respectively, hXi ,j (0Xi ,j ∩ 0) ∩ {(x, y) ∈ R2
| x ≥ δi, −ε ≤ y ≤ ε} 6= ∅).

For any configuration p ∈ P(l, r) and u = l+1, . . . , r , the configuration that belongs
to P(u, r) and is obtained from p by removing the points pl+1, . . . , pu from p] and
inserting their horizontal projections to L−∞ into p[ at arbitrary places, is called the
u-projection of p.

A configuration p ∈ P(l, r) is called a CH2-configuration of type (l, r) if there exist
a positive real number ε and real numbers δl, . . . , δr+1 such that

• for any non-negative integers l′ and r ′ with l′ ≤ l and l′ ≤ r ′ ≤ r , any subconfiguration
p′ ⊂ p such that p′ ∈ P(l′, r ′) is a weak CH2-configuration of type (l′, r ′) and has
parameters ε, δs(l′), . . . , δs(r ′), δr+1, where (ps(l′), . . . , ps(r ′)) = (p′)];
• for any integer u = l + 1, . . . , r , any u-projection of p is a weak CH2-configuration

of type (u, r) having ε, δu, . . . , δr , δr+1 as parameters.

Proposition 4.3. Let l and r be non-negative integers such that l ≤ r , and 2 a finite
multi-set of vectors in Z2. Then the set of CH2-configurations in P(l, r) contains a non-
empty subset which is open in P(l, r).

The proof of Proposition 4.3 is based on the following lemmas.
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Lemma 4.4 (cf. [5, proof of Theorem 4.3] and [12, Lemma 28]). Let l and r be non-
negative integers such that l ≤ r , and let (1, k1, k2, g, α, β) be an (l, r)-admissible
collection such that g ≥ 0. Fix a positive real number ε and two real numbers N1 and N2
such that N1 < N2. Consider a configuration p ∈ P(l, r) such that

• the second coordinates of all points in p belong to the interval (−ε, ε),
• no first coordinate of a point in p] ∪ pr+1 belongs to the interval [N1, N2].

Then, for each marked L-curve (0,V, h,P ) whose isomorphism class belongs to
T (1, k1, k2, g, α, β,p), the second coordinate of the image under h of any vertex of
0 belongs to (−ε, ε). Furthermore, if the length of the interval [N1, N2] is sufficiently
large with respect to ε, then there exist real numbers a and b with N1 < a < b < N2
such that for each marked L-curve (0,V, h,P ) whose isomorphism class belongs to
T (1, k1, k2, g, α, β,p), the intersection of h(0) with the rectangle {(x, y) ∈ R2

| a ≤

x ≤ b and − ε ≤ y ≤ ε} consists of horizontal segments.

Proof. The proof is completely similar to the proof of Lemma 28 in [12], but since our
present setting is slightly different from the one in [12], we repeat the proof here.

Consider a marked pseudo-simple L-curve (0,V, h,P ) whose isomorphism class
belongs to T (1, k1, k2, g, α, β,p). Among the non-univalent vertices of 0, choose
a vertex V whose image h(V ) = (v1, v2) has the maximal second coordinate. The
curve (0,V, h,P ) has an end E such that E is incident to V and the second coordi-
nate of the vector uV (E) is positive. This end is of weight 1, and uV (E) is either (0, 1) or
(1, 1). Hence, (0,V, h,P ) should have another edge E′ such that E′ is incident to V and
the second coordinate of uV (E′) is non-negative. If v2 > ε, the connected component of
0 \ P containing V has at least two non-rigid ends, which is impossible by the definition
of marked L-curves. In the same way one shows that 0 has no non-univalent vertex whose
image under h is below the line y = −ε. This proves the first statement of the lemma.

Denote by R the rectangle {(x, y) ∈ R2
| N1 ≤ x ≤ N2 and −ε ≤ y ≤ ε}. It follows

from the first statement of the lemma that the image under h of any path γ ⊂ 0 \ P does
not intersect at least one of the two horizontal edges of R. Let z ∈ 0 be a point such
that h(z) = (x1, y1) belongs to the interior of R, and z belongs to a non-horizontal edge
of 0. Then there exists a path γ ⊂ 0 \ P having z as an extreme point and such that
h(γ ) is the graph of a strictly monotone function f defined on either [N1, x1] or [x1, N2].
Since there are only finitely many slopes that can be realized by the images of edges of a
parameterized plane tropical curve of degree1◦, the length of the definition interval of f
is bounded from above by a constant depending only on 1 and ε. This proves the second
statement of the lemma. ut

Lemma 4.5. Let l and r be non-negative integers such that l ≤ r , and let
(1, k1, k2, g, α, β) be an (l, r)-admissible collection such that g ≥ 0. Fix a positive
real number ε and two real numbers M1 and M2 such that M1 < M2. Consider a config-
uration p ∈ P(l, r) such that

• the second coordinates of all points in p belong to (−ε, ε),
• there exists a point in p] whose first coordinate belongs to (M1,M2), and no other

point in p] ∪ pr+1 has the first coordinate in [M1,M2].
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Pick an irreducible marked pseudo-simple L-curve (0,V, h,P ) with the follow-
ing properties: its isomorphism class belongs to T (1, k1, k2, g, α, β,p), and each
edge E of 0 whose image h(E) intersects one of the two vertical segments Ji with
endpoints (Mi,−ε) and (Mi, ε), i = 1, 2, is horizontal. Consider a marked cut
(0X ,VX , hX ,PX ) of (0,V, h,P ) at X = h−1(J1). Then any irreducible compo-
nent (0X ,X ′,j ,VX ,X ′,j , hX ,X ′,j ,PX ,X ,j ) of a marked cut of (0X ,VX , hX ,PX ) at
X ′ = h−1

X (J2) such that

hX ,X ′,j (0X ,X ′,j ∩ 0) ∩ {(x, y) ∈ R2
| M1 < x < M2, −ε ≤ y ≤ ε} 6= ∅

is either horizontal or one-sheeted.

Proof. Assume that an irreducible component (0X ,X ′,j ,VX ,X ′,j , hX ,X ′,j ,PX ,X ′,j ) is
neither horizontal nor one-sheeted. Then 0X ,X ′,j has at least four non-horizontal ends
E1,E2,E′1, andE′2. Lemma 4.4 implies that the images under hX ,X ′,j of all non-univalent
vertices of 0X ,X ′,j belong to the rectangle

{(x, y) ∈ R2
| M1 < x < M2, −ε < y < ε},

and at least three of the ends E1, E2, E′1, and E′2 are non-rigid. This contradicts the
fact that 0X ,X ′,j \ PX ,X ′,j has at most two connected components whose images un-
der hX ,X ′,j intersect the strip {(x, y) ∈ R2

| M1 < x < M2}. ut

Proof of Proposition 4.3. The statement follows from Lemmas 4.4, 4.5, and the fact that
the number of (l′, r ′)-admissible collections (1, k1, k2, g, α, β) such that l′ ≤ r ′ ≤ r ,
and 2 dominates 1, is finite. ut

Let l and r be non-negative integers such that l ≤ r , and 2 a finite multi-set of vectors
in Z2. A configuration p ∈ P(l, r) is called 2-generic if the following condition is
satisfied: for any end-marked rational marked L-curve (0,V, h,P ) such that its degree
is contained in 2 and h(P ) ⊂ p, the image under h of the non-rigid end of (0,V, h,P )
does not contain any point of p. Let Pgen

2 (l, r) ⊂ P(l, r) be the subset formed by the
2-generic configurations.

The following lemma is an immediate consequence of [19, Lemma 2].

Lemma 4.6. Let l and r be non-negative integers such that l ≤ r , and2 a finite multi-set
of vectors in Z2. Then the subset Pgen

2 (l, r) is dense in P(l, r). ut

4.2. Tropical complex recursive formula

Introduce the set S of admissible 6-tuples (1, k1, k2, g, α, β), each being (l, r)-admis-
sible for certain non-negative integers l and r such that l ≤ r (recall that by the definition
of (l, r)-admissibility, l = ‖α‖ and r = |1| − Iα− Iβ +‖α‖+ ‖β‖+ g− 1− k1− k2).
Define in S the following operation:

(1, k1, k2, g, α, β)+ (1
′, k′1, k

′

2, g
′, α′, β ′)

= (1 ∪1′, k1 + k
′

1, k2 + k
′

2, g + g
′
− 1, α + α′, β + β ′).
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Let l and r be non-negative integers such that l ≤ r . Fix an (l, r)-admissible collec-
tion (1, k1, k2, g, α, β) ∈ S, choose a multi-set 2 dominating 1, and consider a CH2-
configuration p of type (l, r). Let ε, δl, . . . , δr+1 be parameters of p. For any i = l, . . . , r ,
denote by Ii the vertical segment with endpoints (δi,−ε) and (δi, ε).

Denote by T c(1, k1, k2, g, α, β,p) ⊂ T (1, k1, k2, g, α, β,p) the set formed by the
isomorphism classes of irreducible marked pseudo-simple L-curves (0,V, h,P ) such
that

(i) for any integer i = l, . . . , r − 1 and any irreducible component (0Xi ,j ,VXi ,j , hXi ,j ,
PXi ,j ) of a marked cut of (0,V, h,P ) at Xi = h−1(Ii), no two right irreducible
components of a marked cut of (0Xi ,j ,VXi ,j , hXi ,j ,PXi ,j ) at X ′i+1 = h

−1
Xi (Ii+1) are

isomorphic,
(ii) any right irreducible component (0Xr ,j ,VXr ,j , hXr ,j ,PXr ,j ) of a marked cut of

(0,V, h,P ) at Xr = h−1(Ir) has one of the combinatorial types presented in Fig-
ure 8 (the collection (PXr ,j )

] is empty, and the symbol • which does not coincide
with a univalent vertex represents the only element in (PXr ,j )

1
∪(PXr ,j )

2
∪(PXr ,j )

ν ;
this symbol • is equipped with an index i if and only if the corresponding point be-
longs to (PXr ,j )

i , i = 1, 2).
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(d) L− E1 − E2 (h) 2L− E1 − E2 − E5, α = 2θ1

(c) L− Ei , i = 1, 2, α = θ1 (g) 2L− E1 − E2 − E5, α = θ2

(b) L− Ei − E5, i = 1, 2 (f) 2L− E1 − E2 − E3 − E5, α = θ1

(a) L− E5, α = θ1 (e) 2L− E1 − E2 − E4 − E5, α = θ1

i

i

2

Fig. 8. Tropical initial conditions. All edges are of weight 1, except for the left end of weight 2 in (g).
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Notice that the set T c(1, k1, k2, g, α, β,p) does not depend on the choice of param-
eters ε, δl, . . . , δr+1, of p.

For each T = [(0,V, h,P )] ∈ T c(1, k1, k2, g, α, β,p), define the complex multi-
plicity N(T ) = N(0,V, h,P ) as AB, where A is the product of the weights of all left
ends of 0 which are not of α-type, and B is the product of the squares of the weights of
all bounded edges of 0. Put

N (1, k1, k2, g, α, β,p) =
∑

T ∈T c(1,k1,k2,g,α,β,p)

N(T ).

Remark 4.7. The complex multiplicity N(T ) defined above coincides with the complex
weightM(T ) introduced in [19, Section 2.6]. This can be easily checked by applying [19,
formula (7)] to the classes T ∈ T c(1, k1, k2, g, α, β,p).

Assume that 1 has a subset k formed by two vectors: one with a positive second
coordinate and the other with a negative second coordinate. The sum of the vectors of k
is either 0, (−1, 0), or (1, 0). In the first case, we define 1k to be the multi-set 1 \ k,
and in the other two cases we obtain 1k from 1 \ k by adding or removing the vector
(−1, 0) in such a way that the sum of the vectors in 1k becomes 0.

Proposition 4.8. Let l ≤ r be non-negative integers. Fix an (l, r)-admissible collection
(1, k1, k2, g, α, β) and choose a multi-set 2 dominating 1. Let p be a 2-generic CH2-
configuration of type (l, r). Then the number N (1, k1, k2, g, α, β,p) does not depend
on the choices of 2 and p.

This independence allows us to write simply N (1, k1, k2, g, α, β) for N (1, k1, k2,

g, α, β,p) as soon as (1, k1, k2, g, α, β) and p are as in Proposition 4.8. Notice that
according to our definitions, N (1, k1, k2, g, α, β) = 0 whenever g < 0.

The proof of Proposition 4.8 is given below, simultaneously with the proof of the
following theorem.

Theorem 4.9. Let l < r be non-negative integers. If (1, k1, k2, g, α, β) is an (l, r)-
admissible collection, then

N (1, k1, k2, g, α, β) =
∑

j≥1, βj>0

jN (1, k1, k2, g, α + θj , β − θj )

+

∑(
α

α(1), . . . , α(m)

)
(r − l − 1)!

(r(1) − l(1))! . . . (r(m) − l(m))!

×

m∏
i=1

((
β(i)

β̃(i)

)
I β̃

(i)

N (1(i), k(i)1 , k
(i)
2 , g(i), α(i), β(i))

)
, (4.2)

where

l(i) = ‖α(i)‖, i = 1, . . . , m,

r(i) = |1(i)| − Iα(i) − Iβ(i) + ‖α(i)‖ + ‖β(i)‖ + g(i) − 1− k(i)1 − k
(i)
2 , i = 1, . . . , m,

and the second sum in (4.2) is taken
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• over all subsets k of 1 which are formed by two vectors, one with a positive second
coordinate and the other with a negative second coordinate, and such that the multi-
set 1k contains at least one vector (−1, 0),
• over all splittings

(1k, k1, k2, g
′, α′, β ′) =

m∑
i=1

(1(i), k
(i)
1 , k

(i)
2 , g(i), α(i), β(i)) (4.3)

in S of all possible collections (1k, k1, k2, g
′, α′, β ′) ∈ S with

α′ ≤ α, β ≤ β ′, g − g′ = ‖β ′ − β‖ − 1,

such that each summand (1(i), k(i)1 , k
(i)
2 , g(i), α(i), β(i)) with r(i) − l(i) = 0 appears

in (4.3) at most once,
• over all splittings

β ′ = β +

m∑
i=1

β̃(i), ‖β̃(i)‖ > 0, i = 1, . . . , m, (4.4)

satisfying the restriction β(i) ≥ β̃(i), i = 1, . . . , m,

and factorized by simultaneous permutations in both splittings (4.3) and (4.4).

Proof of Proposition 4.8 and Theorem 4.9 (cf. [5] and [12]). In the case r = l, the
statement of Proposition 4.8 immediately follows from property (4) in the definition of
weak CH2-configurations and property (ii) of the set T c(1, k1, k2, g, α, β,p).

Consider now non-negative integers l < r , fix an (l, r)-admissible collection
(1, k1, k2, g, α, β), and choose a multi-set 2 dominating 1. Assume we have al-
ready established that for any non-negative integers lX and rX satisfying lX ≤

rX and rX − lX < r − l, the numbers N (1X, kX1 , k
X
2 , g

X, αX, βX,pX), where
(1X, kX1 , k

X
2 , g

X, αX, βX) is an (lX, rX)-admissible collection, and2 dominates1X,
do not depend on the choice of a CH2-configuration pX of type (lX, rX).

Pick a 2-generic CH2-configuration p of type (l, r) and assume that there exists
an irreducible marked L-curve (0,V, h,P ) whose isomorphism class belongs to
T c(1, k1, k2, g, α, β,p). Suppose, first, that the point Pl+1 ∈ P ] belongs to a left end E
of 0. Denote by j the weight of E, and by V the unique univalent vertex incident to E.
Consider the CH2-configuration p̂ which is a 1-projection of p such that the horizontal
projection of pl+1 is inserted in the j -th group of points in p[. Consider also an (l+1, r)-
admissible collection (1, k1, k2, g, α + θj , β − θj ), and a marked L-curve (0,V, h,P ′)
such that (P ′)[ = P [

∪ {V }, (P ′)] = P ]
\ {Pl+1}, and (P ′)ℵ = P ℵ for any ℵ ∈ {1, 2, ν}.

The isomorphism class of the curve (0,V, h,P ′) belongs toT c(1, k1, k2, g, α + θj ,

β − θj , p̂), and

N(0,V, h,P ′) =
1
j
N(0,V, h,P ).

The above procedure establishes a bijection between T c(1, k1, k2, g, α + θj , β − θj , p̂)

and those isomorphisms classes in T c(1, k1, k2, g, α, β,p) that are realized by curves
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(0,V, h,P ) such that Pl+1 belongs to a left end of 0 of weight j . Thus, by the induction
assumption, the contribution to N(1, k1, k2, g, α, β,p) of the latter isomorphism classes
is equal to ∑

j≥1, βj>0

jN(1, k1, k2, g, α + θj , β − θj ).

Suppose now that Pl+1 does not belong to any left end of 0. Let ε, δl, . . . , δr+1
be parameters of the CH2-configuration p. Consider a marked cut (0X ,VX , hX ,PX )
of (0,V, h,P ) at X = h−1(Il+1), where Il+1 is the vertical segment with endpoints
(δl+1,−ε) and (δl+1, ε).

Let (0X ,ji ,VX ,ji , hX ,ji ,PX ,ji ), i = 1, . . . , m, be the right irreducible components
of (0X ,VX , hX ,PX ). For each i = 1, . . . , m, introduce the following numbers:

• l(i) is the number of points in (PX ,ji )
[, and r(i) is the number of points in (PX ,ji )

[
∪

(PX ,ji )
],

• α
(i)
t (respectively, β(i)t ), t being a positive integer, is the number of those left ends of

weight t in 0X ,ji which are of α-type (respectively, not of α-type),
• g(i) is the genus of (0X ,ji ,VX ,ji , hX ,ji ,PX ,ji ),
• k

(i)
1 (respectively, k(i)2 ) is the number of points in (PX ,ji )

1
∪ (PX ,ji )

ν (respectively,
(PX ,ji )

2
∪ (PX ,ji )

ν).

Let pji be a configuration in P(l(i), r(i)) such that

(pji )
[
= ĥX ,ji ((PX ,ji )

[), (pji )
]
= ĥX ,ji ((PX ,ji )

]),

and the (r(i) + 1)-th point of pji coincides with the (r + 1)-th point pr+1 of p. For each

i = 1, . . . , m, the collection (1(i), k(i)1 , k
(i)
2 , g(i), α(i), β(i)) is (l(i), r(i))-admissible, and

[(0X ,ji ,VX ,ji , hX ,ji ,PX ,ji )] ∈ T c(1(i), k
(i)
1 , k

(i)
2 , g(i), α(i), β(i),pji ).

Since Pl+1 does not belong to any left end of 0, among the left irreducible compo-
nents of (0X ,VX , hX ,PX ) there is one (and only one) which is one-sheeted. Denote
this component by (0X ,left,VX ,left, hX ,left,PX ,left). The point Pl+1 belongs to 0X ,left
and lies on a non-horizontal edge. Any left end of 0X ,left is of α-type. The degree of
(0X ,left,VX ,left, hX ,left,PX ,left) contains two vectors having non-zero second coordi-
nate. Let k be the set formed by these two vectors.

The sum
m∑
i=1

(1(i), k
(i)
1 , k

(i)
2 , g(i), α(i), β(i)), (4.5)

taken in S , gives a collection (1k, k1, k2, g
′, α′, β ′) with certain α′, β ′, g′. For each

right irreducible component (0X ,ji ,VX ,ji , hX ,ji ,PX ,ji ), any left end of α-type of this
component matches the edge of a horizontal left irreducible component, and the edge-
predecessor of the two edges in question is of α-type. Thus, α′ ≤ α. Since any left end
of 0X ,left is of α-type, we obtain β ′ ≥ β. For each i = 1, . . . , m, let the sequence β̃(i)
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encode the weights of the left ends of 0X ,ji which match edges of 0X ,left. Notice that
‖β̃(i)‖ > 0 for any i = 1, . . . , m. Furthermore, g − g′ = ‖β ′ − β‖ − 1. Finally, the fact
that no summand (1(i), k(i)1 , k

(i)
2 , g(i), α(i), β(i)) with r(i) − l(i) = 0 can appear twice in

the sum (4.5) follows from property (i) of the set T c(1, k1, k2, g, α, β,p). Thus, each
marked L-curve whose isomorphism class belongs to T c(1, k1, k2, g, α, β,p) gives rise
to a subset k ⊂ 1 and a pair of splittings (4.3) and (4.4) satisfying all the conditions of
the theorem.

Assume now that we are given a subset k ⊂ 1, a collection (1k, k1, k2, g
′, α′, β ′),

and a pair of splittings (4.3) and (4.4) such that all these data obey the restrictions listed
in the theorem. Put

l(i) = ‖α(i)‖, i = 1, . . . , m,

r(i) = |1(i)| − Iα(i) − Iβ(i) + ‖α(i)‖ + ‖β(i)‖ + g(i) − 1− k(i)1 − k
(i)
2 , i = 1, . . . , m.

Choose m pairwise disjoint subsequences (p(1))[, . . . , (p(m))[ of p[ such that, for
each i = 1, . . . , m, and each positive integer t , the number of points in (p(i))[ which
belong to the t-th group of p[ is equal to α(i)t (the number of possible choices is equal
to
(

α
α(1),...,α(m)

)
). Choose m pairwise disjoint subsequences (p(1))], . . . , (p(m))] of p] \

{pl+1} such that, for each i = 1, . . . , m, the number of points in (P (i))] is equal to
r(i) − l(i) (the number of possible choices is equal to (r−l−1)!

(r(1)−l(1))!...(r(m)−l(m))!
). For each

i = 1, . . . , m, denote by p(i) the sequence of points formed by the sequence (p(i))[, the
sequence (p(i))], and the point pr+1. Each of these m sequences is a 2-generic CH2-
configuration. If all the sets T c(1(i), αi, β(i), g(i), k

(i)
1 , k

(i)
2 ,p(i)) are non-empty, then,

for each i = 1, . . . , m, pick a marked L-curve (0(i),V(i), h(i),P (i)) whose isomorphism
class belongs to T c(1(i), αi, β(i), g(i), k

(i)
1 , k

(i)
2 ,p(i)). For each i = 1, . . . , m, and each

positive integer t , choose β̃(i)t left ends of 0(i) that are of weight t and are not of α-type

(the number of possible choices is
(β(i)
β̃(i)

)
).

There exists a unique isomorphism class

[(0,V, h,P )] ∈ T c(1, k1, k2, g, α, β,p)

such that the point Pl+1 does not belong to a left end of 0 and the curves
(0
(i)
,V(i), h(i),P (i)), i = 1, . . . , m, are the right irreducible components of a marked

cut (0X ,VX , hX ,PX ) of (0,V, h,P ) at X = h−1(Il+1). Indeed, the isomorphism class
of a unique left one-sheeted irreducible component (0X ,left,VX ,left, hX ,left,PX ,left) of
(0X ,VX , hX ,PX ) is given, up to composition of h with a horizontal shift, by the degree
of this component (the degree is the two vectors of k completed by αi−α′i vectors (−i, 0)
and β ′i − βi vectors (i, 0) for any positive integer i), the points in p[ \

⋃m
i=1(p

(i))[ (to-
gether with the distribution of these points into groups), and the heights and the weights
of the chosen left ends of (0(i),V(i), h(i),P (i)), i = 1, . . . , m (see [12, Lemma 29]). The
horizontal shift is uniquely determined by the position of the point pl+1, since this point
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should belong to the image of a non-horizontal edge of (0X ,left,VX ,left, hX ,left,PX ,left)

due to the assumption that p is a 2-generic configuration. Furthermore,

N(0,V, h,P ) =
m∏
i=1

(
I β̃

(i)

N(0
(i)
,V(i), h(i),P (i))

)
.

Thus, the contribution to N(1, k1, k2, g, α, β,p) of the sets T c(1(i), k
(i)
1 , k

(i)
2 , g(i), α(i),

β(i),p(i)), i = 1, . . . , m, is equal to

(
α

α(1), . . . , α(m)

)
(r − l − 1)!

(r(1) − l(1))! . . . (r(m) − l(m))!

×

m∏
i=1

((
β(i)

β̃(i)

)
I β̃

(i)

N (1(i), k(i)1 , k
(i)
2 , g(i), α(i), β(i))

)
.

This implies that the number N (1, k1, k2, g, α, β,p) depends neither on the choice of
2, nor on the choice of a 2-generic CH2-configuration p of type (l, r), and proves the
formula (4.2). ut

Proposition 4.10. All the numbers N (1, k1, k2, g, α, β), where (1, k1, k2, g, α, β)∈S,
are recursively determined by formula (4.2) of Theorem 4.9 and the following ini-
tial values: for any non-negative integer r and any (r, r)-admissible collection
(1, k1, k2, g, α, β), the number N (1, k1, k2, g, α, β) is equal to 0 or 1, and this num-
ber is 1 if and only if the collection (1, k1, k2, g, α, β) is of one of the combinatorial
types in Figure 8, i.e. (1, k1, k2, g, α, β) coincides with one of the following collections:

• ({(−1, 0), (1, 0)}, 0, 0, 0, (1), (0)),
• ({(−1, 0), (1, 0)}, 1, 0, 0, (0), (1)),
• ({(−1, 0), (1, 0)}, 0, 1, 0, (0), (1)),
• ({(−1, 0), (0,−1), (1, 1)}, 1, 0, 0, (1), (0)),
• ({(−1, 0), (0,−1), (1, 1)}, 0, 1, 0, (1), (0)),
• ({(−1, 0), (0,−1), (1, 1)}, 1, 1, 0, (0), (1)),
• ({(−1, 0), (−1,−1), (1, 0), (1, 1)}, 1, 1, 0, (1), (0)),
• ({(−1, 0), (0,−1), (1, 0), (0, 1)}, 1, 1, 0, (1), (0)),
• ({(−1, 0), (−1, 0), (0,−1), (1, 0), (1, 1)}, 1, 1, 0, (0, 1), (0)),
• ({(−1, 0), (−1, 0), (0,−1), (1, 0), (1, 1)}, 1, 1, 0, (2), (0)),

Proof. The description of the numbers N (1, k1, k2, g, α, β), where (1, k1, k2, g, α, β)

is an (r, r)-admissible collection and r a non-negative integer, follows from prop-
erty (4) in the definition of weak CH2-configurations and property (ii) of the
sets T c(1, k1, k2, g, α, β,p). All the other numbers N (1, k1, k2, g, α, β), where
(1, k1, k2, g, α, β) ∈ S, can be expressed as linear combinations of these values by suc-
cessive use of formula (4.2). ut
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4.3. Tropical real recursive formulas

Denote by (Z∞+ )odd the subsemigroup of Z∞+ formed by the sequences α such that α2i = 0
for any positive integer i, and denote by Sodd the subsemigroup of S formed by the 6-
tuples (1, k1, k2, g, α, β) such that α, β ∈ (Z∞+ )odd.

Denote by Sodd, sym the subsemigroup of Sodd formed by the 6-tuples (1, k1, k2, g,

α, β) such that k1 = k2.
Let l and r be non-negative integers such that l ≤ r . Choose an (l, r)-admissible

collection (1, k1, k2, g, α, β) ∈ Sodd, a finite multi-set2 dominating1, and a2-generic
CH2-configuration p.

For each isomorphism class T = [(0,V, h,P )] ∈ T c(1, k1, k2, g, α, β,p), define
the Welschinger multiplicity W(T ) = W(0,V, h,P ) to be 1 if all the edges of 0 have
odd weight, and 0 otherwise. Put

W(1, k1, k2, g, α, β,p) =
∑

T ∈T c(1,k1,k2,g,α,β,p)

W(T ).

For any element (1, k1, k2, g, α, β) ∈ Sodd,sym different from Ksp (see Section 4.1),
a finite multi-set 2 dominating 1, and a 2-generic CH2-configuration p, introduce a
subset T c,sym(1, k1, k2, g, α, β,p) ⊂ T sym(1, k1, k2, g, α, β,p) defined by

T c,sym(1, k1, k2, g, α, β,p) = 9
−1(T c(1, k1, k2, g, α, β,p)),

where 9 is the forgetful map (4.1). In addition, for any p1 ∈ R2, we put

T c,sym(Ksp, {p1}) = {T
sp(p1)},

where T sp(p1) is as in Section 4.1. We consider the following Welschinger multiplicities:

• W sym(T )=W(9(T )) for all T ∈T c,sym(1, k1, k2, g, α, β,p)with (1, k1, k2, g, α, β)

6= Ksp,
• W sym(T sp(p1)) = 1 for any p1 ∈ R2,

and then put

Wsym(1, k1, k2, g, α, β,p) =
∑

T ∈T c,sym(1,k1,k2,g,α,β,p)

W sym(T ).

Proposition 4.11. Let l ≤ r be non-negative integers. Fix an (l, r)-admissible collection
(1, k1, k2, g, α, β) ∈ Sodd (respectively, (1, k1, k2, g, α, β) ∈ Sodd,sym), and choose a
multi-set 2 dominating 1. Let p be a 2-generic CH2-configuration of type (l, r). Then
the number W(1, k1, k2, g, α, β,p) (respectively, Wsym(1, k1, k2, g, α, β,p)) does not
depend on the choices of 2 and p.

Proof. If (1, k1, k2, g, α, β) 6= Ksp, the proof is completely similar to the proof of
Proposition 4.8. Furthermore, Wsym(T sp(p1)) = 1 for any p1 ∈ R2. ut
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This independence allows us to write simply W(1, k1, k2, g, α, β) for W(1, k1, k2, g,

α, β,p) as soon as (1, k1, k2, g, α, β) and p are as in Proposition 4.11. The latter re-
quirement on (1, k1, k2, g, α, β) and p is similar to the requirement on the constraints
related to the enumerative invariants which appear in the recursive formula of [1].

The proof of Proposition 4.12 below is completely similar to the proof of Theorem 4.9.
The only additional observation is that, in the case of symmetric marked L-curves, the
sets h−1(Ii) are invariant with respect to the involution, and each cut inherits a uniquely
defined involution.

Proposition 4.12. Let l < r be non-negative integers. Fix an (l, r)-admissible collection
(1, k1, k2, g, α, β) ∈ S∗, where S∗ stands for either Sodd or Sodd,sym. Then

W∗(1, k1, k2, g, α, β) =
∑

j≥1, βj>0

W∗(1, k1, k2, g, α + θj , β − θj )

+

∑(
α

α(1), . . . , α(m)

)
(r − l − 1)!

(r(1) − l(1))! . . . (r(m) − l(m))!

×

m∏
i=1

((
β(i)

β̃(i)

)
W∗(1(i), k(i)1 , k

(i)
2 , g(i), α(i), β(i))

)
, (4.6)

where W∗ stands for W (respectively, Wsym) if S∗ = Sodd (respectively, S∗ = Sodd,sym),
and

l(i) = ‖α(i)‖, i = 1, . . . , m,

r(i) = |1(i)| − Iα(i) − Iβ(i) + ‖α(i)‖ + ‖β(i)‖ + g(i) − 1− k(i)1 − k
(i)
2 , i = 1, . . . , m,

and the second sum in (4.6) is taken
• over all subsets k of 1 which are formed by two vectors, one with positive second

coordinate and one with negative second coordinate, and such that the multi-set 1k
contains at least one vector (−1, 0),
• over all splittings

(1k, k1, k2, g
′, α′, β ′) =

m∑
i=1

(1(i), k
(i)
1 , k

(i)
2 , g(i), α(i), β(i)) (4.7)

in S∗ of all possible collections (1k, k1, k2, g
′, α′, β ′) ∈ S∗ such that

α′ ≤ α, β ≤ β ′, g − g′ = ‖β ′ − β‖ − 1,

and each summand (1(i), k(i)1 , k
(i)
2 , g(i), α(i), β(i)) with r(i)− l(i) = 0 appears in (4.7)

at most once,
• over all splittings

β ′ = β +

m∑
i=1

β̃(i), ‖β̃(i)‖ > 0, i = 1, . . . , m, (4.8)

satisfying the restriction β(i) ≥ β̃(i), i = 1, . . . , m ,
and factorized by simultaneous permutations in both splittings (4.7) and (4.8). ut

The proof of the next statement coincides with the proof of Proposition 4.10.
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Proposition 4.13. All the numbers W(1, k1, k2, g, α, β), where (1, k1, k2, g, α, β)

∈ S∗, and S∗ stands for either Sodd or Sodd,sym, are recursively determined by for-
mula (4.6) of Proposition 4.12 and the following initial values. For any non-negative
integer r and any (r, r)-admissible collection (1, k1, k2, g, α, β) ∈ S∗, the number
W∗(1, k1, k2, g, α, β) is either 0 or 1. Furthermore,

— if S∗ = Sodd, then W(1, k1, k2, g, α, β) = 1 if and only if (1, k1, k2, g, α, β) is one
of the collections listed in Proposition 4.10,

— if S∗ = Sodd,sym, then Wsym(1, k1, k2, g, α, β) = 1 if and only if (1, k1, k2, g, α, β)

is one of the following collections (the corresponding curves are shown in Figures 8(a,
d–h) and 6):

• ({(−1, 0), (1, 0)}, 0, 0, 0, (1), (0)),
• ({(−1, 0), (0,−1), (1, 1)}, 1, 1, 0, (0), (1)),
• ({(−1, 0), (−1,−1), (1, 0), (1, 1)}, 1, 1, 0, (1), (0)),
• ({(−1, 0), (0,−1), (1, 0), (0, 1)}, 1, 1, 0, (1), (0)),
• ({(−1, 0), (−1, 0), (0,−1), (1, 0), (1, 1)}, 1, 1, 0, (0, 1), (0)),
• ({(−1, 0), (−1, 0), (0,−1), (1, 0), (1, 1)}, 1, 1, 0, (2), (0)),
• ({(−1, 0), (−1, 0), (1, 0), (1, 0)}, 1, 1,−1, (0), (2)). ut

5. Correspondence theorem

5.1. Auxiliary statements

Let l ≤ r be non-negative integers, and 2 a finite multi-set of vectors in Z2. A configura-
tion p ∈ P(l, r) is called 2-proper if

• p is a 2-generic CH2-configuration,
• for any integers 0 ≤ l′ < r ′ and 0 ≤ l′′ ≤ r ′′, any disjoint subconfigurations p′ and

p′′ of p such that p′ ∈ P(l′, r ′) and p′′ ∈ P(l′′, r ′′), any (l′, r ′)-admissible collection
(1′, k′1, k

′

2, g
′, α′, β ′) and any (l′′, r ′′)-admissible collection (1′′, k′′1 , k

′′

2 , g
′′, α′′, β ′′)

such that 2 dominates 1′ and 1′′, one has the following property: for any elements

[(0
′
,V ′, h′,P ′)] ∈ T c(1′, k′1, k

′

2, g
′, α′, β ′,p′),

[(0
′′
,V ′′, h′′,P ′′)] ∈ T c(1′′, k′′1 , k

′′

2 , g
′′, α′′, β ′′,p′′),

the map ĥ′ ∪ ĥ′′ : ((0′)0∞ \ V ′) ∪ ((0′′)0∞ \ V ′′)→ L−∞ is injective.

Lemma 5.1. For any non-negative integers l < r and any finite multi-set 2 of vectors
in Z2, there exists a 2-proper configuration p ∈ P(l, r).

Proof. Pick a configuration p̃ in the interior of the set of 2-generic CH2-configurations
of type (l, r) such that, for any integers 0 ≤ l′ < r ′, any (l′, r ′)-admissible collection
(1′, k′1, k

′

2, g
′, α′, β ′), and any subconfiguration p̃′ ⊂ p̃ of type (l′, r ′), one has the fol-

lowing property:

(∗) p̃′ does not belong to the image of any affine map evλ :Mλ(1′, k′1, k
′

2, g
′, α′, β ′)→

(L−∞)
l′
×(R2)r

′
+1−l′ , where Mλ(1′, k′1, k

′

2, g
′, α′, β ′) is of dimension< 2r ′+2−l′.
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Notice that the conditions imposed on p̃ are open. A point p ∈ L−∞ is called bad for p̃

if there exist integers 0 ≤ l′ ≤ r ′, an (l′, r ′)-admissible collection (1′, k′1, k
′

2, g
′, α′, β ′),

a subconfiguration p̃′ ⊂ p̃, a marked L-curve (0′,V ′, h′,P ′) whose isomorphism class
belongs to T c(1′, k′1, k

′

2, g
′, α′, β ′, p̃′), and a vertex V ′ ∈ (0′)0∞ \ V ′ such that

• ĥ′(V ′) = p,
• in the case l′ < r ′ and V ′ 6∈ (P ′)[, there exist integers 0 ≤ l′′ < r ′′, an (l′′, r ′′)-

admissible collection (1′′, k′′1 , k
′′

2 , g
′′, α′′, β ′′), a subconfiguration p̃′′ ⊂ p̃ disjoint

from p̃′, a marked L-curve (0′′,V ′′, h′′,P ′′) whose isomorphism class belongs to
T c(1′′, k′′1 , k

′′

2 , g
′′, α′′, β ′′, p̃′′), and a vertex V ′′ ∈ (0′′)0∞ \ (V ′′ ∪ (P ′′)[) such that

ĥ′′(V ′′) = p.

Lemma 4.1 and Proposition 2.1 imply that the set B(p̃) ⊂ L−∞ of bad points for p̃ is
finite.

Choose integers 0 ≤ l′ ≤ r ′, an (l′, r ′)-admissible collection (1′, k′1, k
′

2, g
′, α′, β ′),

and a subconfiguration p̃′ of p̃ of type (l′, r ′). Let λ ∈ 3(1′, k′1, k
′

2, g
′, α′, β ′) be a

combinatorial type such that (evλ)−1(p̃′) 6= ∅ (see Section 2.4 for notation). If l′ = r ′,
then λ is one of the combinatorial types in Figure 8.

Assume that l′ < r ′. By the property (∗) above, the map evλ is injective. Thus, there
exists a unique isomorphism class [(0′,V ′, h′,P ′)] ∈ T c(1′, k′1, k

′

2, g
′, α′, β ′, p̃′) such

that (0′,V ′, h′,P ′) is of combinatorial type λ, and any small variation of p̃′ uniquely lifts
to a variation of [(0′,V ′, h′,P ′)] inside Mλ(1′, k′1, k

′

2, g
′, α′, β ′).

The map ĥ′ is injective on (P ′)[ by the definition of marked L-curves. Let V be a point
in (0′)0∞ \ (V ′ ∪ (P ′)[), and K(V ) ⊂ 0′ \P ′ be the connected component containing V .
The componentK(V ) does not contain any other univalent vertex of 0′ (see Section 2.3).
This fact together with property (ii) in the definition of T c(1′, k′1, k

′

2, g
′, α′, β ′, p̃′) im-

plies that the boundary of K(V ) contains a point P ∈ (P ′)]. Then, h′(P ) = p ∈ (p̃′)].
Let E ⊂ K(V ) be the edge incident to P . Move the point p slightly in the direction
orthogonal to h′(E) keeping all the points of p′ \ {p} fixed. By [19, formula (4)], the
corresponding variation of [(0′,V ′, h′,P ′)] in Mλ(1′, k′1, k

′

2, g
′, α′, β ′) changes the po-

sition of ĥ′(V ) in L−∞. This proves that the image of (0′)0∞ \ (V ′ ∪ (P ′)[) under ĥ′ can
be made disjoint from any point in B(p̃).

Assume now that ĥ′(V1) = ĥ
′(V2) for two distinct V1, V2 ∈ (0

′
)0∞ \ (V ′∪ (P ′)[). The

connected components K(V1),K2(V2) ⊂ 0
′
\ P ′ containing V1 and V2, respectively,

do not coincide. Since [(0′,V ′, h′,P ′)] ∈ T c(1′, k′1, k
′

2, g
′, α′, β ′, p̃′), the boundary

of K(Vi), i = 1, 2, contains a point in (P ′)]. Suppose that the second coordinate of
ĥ′(V1) = ĥ′(V2) does not exceed the second coordinate of p̃′r+1. Among the points in
(P ′)] which belong to the boundary of K(V1) ∪ K(V2), choose a point P ′ whose image
has the minimal second coordinate. The point P ′ belongs to the boundary of exactly one
component K(Vi), and moving the point p′ = h′(P ′) as above, we break the equality
ĥ′(V1) = ĥ

′(V2).
Repeating the above procedure for all λ ∈ 3(1′, k′1, k

′

2, g
′, α′, β ′), we transform p̃′

to a certain configuration p′ ∈ P(l′, r ′) and modify the configuration p̃ accordingly. By
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Lemma 4.1, we can iterate similar procedures for all integers 0 ≤ l′ < r ′, all (l′, r ′)-
admissible collections (1′, k′1, k

′

2, g
′, α′, β ′), and all subconfigurations p̃′ ⊂ p̃ of type

(l′, r ′) in order to transform p̃ to a 2-proper configuration p ∈ P(l, r). ut

Lemma 5.2. Let l < r be non-negative integers, (1, k1, k2, g, α, β) an (l, r)-
admissible collection, and 2 a finite multi-set of vectors in Z2 such that 2 domi-
nates 1. Pick a 2-proper configuration p of type (l, r) and a class [(0,V, h,P )] ∈
T c(1, k1, k2, g, α, β,p). Then, for any vertex V of 0 such that the valency of V is greater
than 3, the following statements hold:
(1) all the edges adjacent to V are of weight 1;
(2) any irreducible component (0V,j ,VV,j , hV,j ,P V,j ) of a marked cut of (0,V, h,P )

at V has one of the combinatorial types of Figure 8(b, d) provided that uV a (Ea) =
(1, 0) for a certain added vertex V a of 0V,j and the added edge Ea adjacent to V a .

Proof. IfE is an edge adjacent to V such that h(E) is not horizontal, thenE is of weight 1
by the definition of CH2-configurations and the second condition in the definition of
(l, r)-admissible collections.

Let E be a horizontal edge adjacent to V . In this case, one has uV (E) = (1, 0). Con-
sider the irreducible component (0V,j ,VV,j , hV,j ,P V,j ) of a marked cut of (0,V, h,P )
at V such that E is the predecessor of an added edge Ea of 0V,j . Since p is 2-proper,
the combinatorial type of (0V,j ,VV,j , hV,j ,P V,j ) belongs to the list of Figure 8. More-
over, the added vertex V a adjacent to Ea does not belong to (P V,j )

[ (cf. the proof of
Theorem 4.9). Thus, the combinatorial type of (0V,j ,VV,j , hV,j ,P V,j ) appears in Fig-
ure 8(b, d), and E is of weight 1. ut

5.2. From tropical to algebraic

Let l ≤ r be non-negative integers, and (1, k1, k2, g, α, β) an (l, r)-admissible collec-
tion as defined in Section 4.1. Assume that the vectors of 1, clockwise rotated by π/2,
determine the boundary of a non-degenerate convex lattice polygon 5 having one of the
shapes depicted in Figure 9 (with slopes 0, −1, or∞).

Fig. 9. Shapes of polygons 5.

The field K of complex locally convergent Puiseux series is equipped with the non-
Archimedean valuation val(

∑
i ai t

i) = min{i | ai 6= 0} and the conjugation involution∑
i ai t

i =
∑
i ai t

i .



Welschinger invariants of Del Pezzo surfaces 579

Let6′ = TorK(5) be the toric surface over K associated with5, and let π : 6→ 6′

be the blow-up of 6′ at two generic points z1, z2 ∈ (K∗)2 ⊂ 6′ such that Val(z1) =

Val(z2), where Val : (K∗)2 → R2 is defined by Val(z(1), z(2)) = (val(z(1)), val(z(2))).
Denote by D′ the first Chern class of the line bundle on 6′, generated by the global sec-
tions zω, ω ∈ 5∩Z2, and introduce the divisor classD = π∗D′−k1E1−k2E2 ∈ Pic(6),
where E1 and E2 are exceptional divisors of π , and k1, k2 are non-negative integers. De-
note also by E ⊂ 6 the strict transform of the toric divisor in 6′ associated with the
leftmost vertical side of 5 (cf. Figure 9), and denote by Ĕ ⊂ 6 the union of the strict
transforms of the remaining toric divisors of 6′. We have a well-defined valuation map

6 \ Ĕ
π
→ 6′ \ π(Ĕ)

−Val
−−−→ R̂2

which takes E \ Ĕ to L−∞.
We say that the 5-tuple (6,D, g, α, β) is generated by the collection (1, k1, k2, g,

α, β).
Let 2 be a multi-set dominating 1, and p a 2-generic CH2-configuration of type

(l, r) such that pr+1 = −Val(zi), i = 1, 2. An ordered configuration z = (z[, z]) of r
distinct points of 6 \ (Ĕ ∪ E1 ∪ E2) is called an algebraic CH-configuration over p if

• (−Val) ◦ π maps z[ ∪ z] bijectively onto p[ ∪ p],
• the configuration z is generic among the configurations satisfying the preceding condi-

tion.

If z is an algebraic CH-configuration over p, denote by V6(D, g, α, β, z) the subset in
|D| represented by reduced irreducible curvesC ∈ |D| of genus g subject to the following
restrictions:

• z] ⊂ C,
• C is nodal and non-singular along E,
• C ∩ E consists of ‖α + β‖ distinct points and includes z[,
• the intersection multiplicity (C · E)p equals k ≥ 1 for precisely αk + βk points p ∈
C ∩ E,
• (C · E)pi = mt(α, i).

The set V6(D, g, α, β, z) is finite and the number of its elements is N6(D, g, α, β)
(see Lemma 3.1 and Section 3.2 for a discussion of the corresponding complex enumera-
tive problem and the definition of N6(D, g, α, β)).

Proposition 5.3. Let (1, k1, k2, g, α, β), p, 6, and D be as above. Then for any alge-
braic CH-configuration z over p, there exists a multi-valued map

PW : T c(1, k1, k2, g, α, β,p)→ V6(D, g, α, β, z)

such that

• for each T ∈ T c(1, k1, k2, g, α, β,p), the set PW(T ) consists of N(T ) elements,
• the sets PW(T1) and PW(T2) are disjoint if T1 6= T2.
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In particular, for any algebraic CH-configuration z over p, one has

N (1, k1, k2, g, α, β) ≤ N6(D, g, α, β).

Proof. Let z be an algebraic CH-configuration over p, and T an element of
T c(1, k1, k2, g, α, β,p). Then the set PW(T ) is constructed using the patchworking
procedure described in [19]. Notice that T and ẑ = π(z)∪ {z1, z2} satisfy the hypotheses
of [19, Theorem 2]. Indeed,

• condition (T1) in [19, Section 2.6] immediately follows from the definition of marked
pseudo-simple L-curves;
• condition (T2) in [19, Section 3.1] follows from the definition of T c(1, k1, k2, g,

α, β,p);
• the 5-genericity of the configuration p (condition (T3) in [19, Section 2.6]) follows

from the definition of 2-generic CH2-configurations;
• condition (T4) in [19, Section 3.1] follows from Lemma 5.2(1);
• condition (T5) in [19, Section 3.1] follows from Lemma 5.2 (2);
• condition (T6) in [19, Section 3.1] follows from Lemma 5.2 and condition (i) in the

definition of T c(1, k1, k2, g, α, β,p);
• condition (T7) in [19, Section 3.1] follows from the fact that, for any class T =
[(0,V, h,P )] ∈ T c(1, k1, k2, g, α, β,p), the first coordinate of h(V ) for any vertex
V of 0 does not exceed the first coordinate of pr+1 (cf. Section 4.2).

In addition, ẑ = π(z) ∪ {z1, z2} satisfies (A1)–(A4) in [19, Section 3.1] by construction,
and satisfies (A5) there by [19, Lemma 8].

Thus, the required statement follows from [19, Theorem 2]. ut

5.3. Correspondence

To compare formulas (4.2) and (3.13), we construct a map 8 : Atr(6,E)→ S. Any el-
ement (D, g, α, β) ∈ Atr(6,E) satisfies D = dL− k1E1 − · · · − k5E5 with k1, . . . , k5
≥ 0 and

k3+k4 < d, max
3≤i<j≤5

(ki+kj ) ≤ d, g ≤
(d − 1)(d − 2)

2
−

5∑
i=1

ki(ki − 1)
2

, (5.1)

sinceDE > 0,D(L−Ei−Ej ) ≥ 0 (i, j = 3, 4, 5), and g ≤ (D2
+DK6)/2+1. These

data give rise to the numbers l = ‖α‖ and r = R6(D, g, β)+ l = −D(E+K6)+‖β‖+
g − 1, and the multi-set of vectors 1 formed by

• k3 vectors (0, 1),
• d − k4 − k5 vectors (0,−1),
• d − k3 − k5 vectors (1, 1),
• k4 vectors (−1,−1),
• k5 vectors (1, 0),
• d − k3 − k4 vectors (−1, 0).



Welschinger invariants of Del Pezzo surfaces 581

-

6

@
@

@
@

k4 d − k5

d

k4

d − k3

d

Fig. 10. Polygon 5.

The collection (1, k1, k2, g, α, β) is (l, r)-admissible, and (6,D, g, α, β) is generated
by (1, k1, k2, g, α, β); cf. Section 5.2 (the polygon 5 obtained from 1 is shown in Fig-
ure 10). Put 8(D, g, α, β) = (1, k1, k2, g, α, β).

Proposition 5.4. The map 8 : Atr(6,E) → S is an injective homomorphism of semi-
groups which establishes a bijection between the initial conditions of (4.2) (listed in
Proposition 4.10) and the initial conditions of (3.13) (indicated in Proposition 3.7(2)).
In particular,

N6(D, g, α, β) ≤ N (1, k1, k2, g, α, β) (5.2)
for any (D, g, α, β) ∈ Atr(6,E) and (1, k1, k2, g, α, β) = 8(D, g, α, β) ∈ S.
Proof. The fact that 8 is an injective homomorphism is straightforward. Furthermore,
8 allows one to identify each splitting (3.14) in the recursive formula (3.13) with a
splitting (4.3) in the recursive formula (4.2). Thus, the inequalities N6(D, g, α, β) ≤
N (1, k1, k2, g, α, β) follow from non-negativity of the coefficients of the aforemen-
tioned recursive formulas. ut

The following statement is an immediate consequence of Propositions 5.3 and 5.4.

Theorem 5.5. Let l ≤ r be non-negative integers, (1, k1, k2, g, α, β) an (l, r)-admissi-
ble collection, and 2 a finite multi-set of vectors in Z2 such that 2 dominates 1. Pick a
2-proper configuration p ∈ P(l, r) and an algebraic CH-configuration z over p. Then

V6(D, g, α, β, z) =
∐

T ∈T c(1,k1,k2,g,α,β,p)

PW(T ), (5.3)

where (6,D, g, α, β) is generated by (1, k1, k2, g, α, β). ut

6. Recursive formulas for Welschinger invariants

From now on, we switch back the ground field to C.

6.1. Welschinger invariants

Let 6 be a real unnodal (i.e., not containing any rational (−n)-curve, n ≥ 2) Del Pezzo
surface with a connected real part R6, and letD ⊂ 6 be a real effective divisor. Consider
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a generic set z of c1(6) · D − 1 real points of 6. The set R(6,D, z) of real rational
curves C ∈ |D| passing through the points of z is finite, and all these curves are nodal
and irreducible. By the Welschinger theorem [24] (and the genericity of the complex
structure on 6), the number

W(6,D, z) =
∑

C∈R(6,D,z)
(−1)s(C),

where s(C) is the number of solitary nodes of C (i.e., real points where a local equation
of the curve can be written over R in the form x2

+ y2
= 0), does not depend on the

choice of a generic set z. We denote this Welschinger invariant by W(6,D).

6.2. Welschinger numbers and recursive formula

Put 6 = P2
q,s , where 0 ≤ q+ 2s ≤ 5, s ≤ 1; see Introduction. Denote by L the pull-back

of a line in P2, and by E1, . . . , Eq+2s the exceptional curves of the blow-up. In the case
s = 1, assume that E1 and E2 are conjugate imaginary. Fix a smooth real rational curve
E linearly equivalent to (cf. Section 3.3)

• L for q + 2s ≤ 2,
• L− E3 for q + 2s = 3,
• L− E3 − E4 for q + 2s ≥ 4.

Denote by Picre
+(6,E) the subset of Pic+(6,E) formed by the divisors representable by

a real reduced irreducible over C curve.

Lemma 6.1. The set Picre
+(6,E) consists of the following divisors:

• the divisors represented by real (−1)-curves which cross E,
• the divisors D = dL− k1E1 − · · · − kqEq satisfying

DE > 0, d > 0, g(6,D) ≥ 0,
k1, . . . , kq ≥ 0, max

1≤i<j≤q
(ki + kj ) ≤ d, k1 + · · · + kq ≤ 2d

in the case s = 0, and the divisors D = dL− k1E1 − · · · − kq+2Eq+2 satisfying

DE > 0, d > 0, g(6,D) ≥ 0,
k1, . . . , kq+2 ≥ 0, k1 = k2, max

1≤i<j≤q+2
(ki + kj ) ≤ d, k1 + · · · + kq+2 ≤ 2d

in the case s = 1.

Proof. The inequalities involving ki follow from the Bézout theorem. Real reduced irre-
ducible curves representing the above divisors can be found, for example, in [6]. ut

Introduce the set Are
0 (6,E) which consists of the triples

(D, α, β) ∈ Picre
+(6,E)× (Z

∞
+ )

odd
× (Z∞+ )

odd

such that Iα + Iβ = DE and R6(D, 0, β) ≥ 0. In the case 6 = P2
3,1, include in

Are
0 (6,E) also the element (2L− E1 − E2 − 2E5, 0, 2θ1).

The following statement is straightforward.
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Lemma 6.2. (1) For each element (D, α, β) ∈ Are
0 (6,E) different from

(2L− E1 − E2 − 2E5, 0, 2θ1), (E3, 0, θ1), (E4, 0, θ1),

the quadruple (D, 0, α, β) belongs to Atr(6,E) ∩ 8−1(S∗), where S∗ stands for Sodd

(respectively, Sodd,sym) if s = 0 (respectively, s = 1).
(2) If s = 0, each triple (D, α, β) presented in Figure 8 and relevant to the surface 6

belongs to Are
0 (6,E). If s = 1, each triple (D, α, β) presented in Figure 8(a, d–h) and

relevant to the surface 6 belongs to Are
0 (6,E). ut

Consider the function W6 : A
re
0 (6,E)→ Z defined as follows:

• W6(E3, 0, θ1) = 1 if q + 2s ≥ 3,
• W6(E4, 0, θ1) = 1 if q + 2s ≥ 4,
• W6(2L− E1 − E2 − 2E5, 0, 2θ1) = 1 if 6 = P2

3,1;
• for any (D, α, β) ∈ Are

0 (6,E) different from those mentioned above, putW6(D, α, β)

=W∗(1, k1, k2, 0, α, β), where (1, k1, k2, 0, α, β) = 8(D, 0, α, β) ∈ S∗ (see Lem-
ma 6.2) and W∗ stands for W or Wsym according to whether s = 0 or 1.

Theorem 6.3. (1) For any divisor D ∈ Picre
+(6,E), one has

W(6,D) = W6(D, 0, (DE)θ1). (6.1)

(2) For any (D, α, β) ∈ Are
0 (6,E) such that D ∈ Picre

+(6,E) and R6(D, 0, β) > 0,
the following formula holds:

W6(D, α, β) =
∑

j≥1, βj>0

W6(D, α + θj , β − θj )

+

∑(
α

α(1), . . . , α(m)

)
(n− 1)!
n1! . . . nm!

m∏
i=1

((
β(i)

β̃(i)

)
W6(D

(i), α(i), β(i))

)
, (6.2)

where n = R6(D, 0, β), the number ni is equal to
0 if 6 = P2

3,1,D
(i)
= 2L− E1 − E2 − 2E5,

α(i) = 0, β(i) = (2),
R6(D

(i), 0, β(i)) otherwise,
(6.3)

and the second sum in (6.2) is taken

• over all sequences

(D(1), α(1), β(1)), . . . , (D(m), α(m), β(m)), (6.4)

of elements of Are
0 (6,E) such that

(a)
∑m
i=1D

(i)
= D − E,

(b) α′ ≤ α and β ≤ β ′, where α′ =
∑m
i=1 α

(i) and β ′ =
∑m
i=1 β

(i),
(c) each triple (D(i), α(i), β(i)) with ni = 0 appears in (6.4) at most once,
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• over all splittings in (Z+)odd

β ′ = β +

m∑
i=1

β̃(i), (6.5)

satisfying the restriction β(i) ≥ β̃(i) and

‖β̃(i)‖ =


2 if 6 = P2

3,1, D
(i)
= 2L− E1 − E2 − 2E5,

α(i) = 0, β(i) = (2),
1 otherwise

for all i = 1, . . . , m,

and the second sum in (6.2) is factorized by simultaneous permutations in the sequence
(6.4) and in the splitting (6.5).

(3) All the numbers W6(D, α, β), where (D, α, β) ∈ Are
0 (6,E), D ∈ Picre

+(6,E),
and R6(D, 0, β) > 0, are recursively determined by formula (6.2), the valueWP2

3,1
(2L−

E1 − E2 − 2E5, 0, (2)) = 1 and the values W6(D, α, β) for the elements (D, α, β) ∈
Are

0 (6,E) with R6(D, 0, β) = 0. The latter initial values are equal to 1 in the cases
listed in Figure 8 for s = 0, the cases listed in Figure 8(a, d–h) for s = 1, and vanish in
all the remaining cases.

Proof. To prove the first statement of the theorem, put (1, k1, k2, 0, 0, (DE)θ1) =

8(D, 0, 0, (DE)θ1) and

T ∗(1, k1, k2, 0, 0, (DE)θ1,p) =

{
T c(1, k1, k2, 0, 0, (DE)θ1,p) if s = 0,
T c,sym(1, k1, k2, 0, 0, (DE)θ1,p) if s = 1,

where p is an appropriate configuration of points. Formula (6.1) follows from
Theorem 5.5 and [19, Theorem 3]. The latter theorem states that, for any T ∈

T ∗(1, k1, k2, 0, 0, (DE)θ1,p) and the set PW(T ) constructed in [19] for an alge-
braic CH-configuration z over p (cf. Proposition 5.3), the sum of the Welschinger signs
(−1)s(C) of the real rational curves C in PW(T ) is equal to the Welschinger multiplic-
ity W(T ) of T . (The number W(T ) appears in [19, Section 2.6] under the name of real
weight; our definition ofW(T ) is a specialization of the definition of the real weight given
there.)

To prove the second statement of the theorem, it is sufficient to establish formula (6.2)
for 6 = P2

5,0 or P2
3,1 (cf. proof of Theorem 3.4). Observe that by Lemma 6.2, one has

(D, 0, α, β) ∈ Atr(6,E) and the collection 8(D, 0, α, β) = (1, k1, k2, 0, α, β) belongs
to S∗. This collection is (l, r)-admissible, where l = ‖α‖ and r = l + R6(D, 0, β) > l.
Applying formula (4.6) to W∗(1, k1, k2, 0, α, β) = W6(D, α, β) on the left-hand side
(W∗ stands for W or Wsym according as s = 0 or 1), we intend to equate the right-hand
sides of (4.6) and (6.2). Clearly, the first sum on the right-hand side of (4.6) coincides
with the first sum on the right-hand side of (6.2). So, it remains to compare the sec-
ond sums on the right-hand side of (4.6) and (6.2). In view of Remark 4.2, a non-zero
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value W∗(1(i), k(i)1 , k
(i)
2 , g(i), α(i), β(i)) with g(i) < 0 is possible only if 6 = P2

3,1 and

(1(i), k
(i)
1 , k

(i)
2 , g(i), α(i), β(i)) = Ksp. Hence, the restrictions

g′ =

m∑
i=1

g(i) −m+ 1 = −
m∑
i=1

|β̃(i)| + 1 and ‖β̃(i)‖ > 0, i = 1, . . . , m,

for the second sum on the right-hand side of (4.6) imply that each factor W∗(1(i), k(i)1 ,

k
(i)
2 , g(i), α(i), β(i)) in a non-zero summand either coincides with W∗(Ksp) (in this case
g(i) = −1 and ‖β(i)‖ = 2; such a situation can occur only if 6 = P2

3,1), or sat-
isfies g(i) = 0 and ‖β̃(i)‖ = 1. Moreover, by Theorem 5.5 and [19, Theorem 3], if
W∗(1(i), k(i)1 , k

(i)
2 , 0, α(i), β(i)) 6= 0 then

(1(i), k
(i)
1 , k

(i)
2 , 0, α(i), β(i)) = 8(D̂, 0, α̂, β̂)

for some (D̂, α̂, β̂) ∈ Are
0 (6,E), D̂ ∈ Picre

+(6,E). We complete the comparison of
formulas (4.6) and (6.2) noticing that the summation over k in (4.6) is equivalent to the
subdivision of the second sum on the right-hand side of (6.2) into four sums according to
the presence of sequences (E3, 0, θ1) and (E4, 0, θ1) in (6.4) (cf. Lemma 6.2(1) and the
proof of Proposition 3.7).

The last statement of the theorem immediately follows from Proposition 4.13 and
Lemma 6.2(2). ut

Theorem 6.3 enables calculating the Welschinger invariants of the surfaces P2
q,s with

1 ≤ q ≤ 5, 0 ≤ s ≤ 1, d + 2s ≤ 5, and their blow-downs. Here are some of the values.

• The case 6 = P2
5,0, D = −K or D = −2K , where −K = 3L− E1 − · · · − E5:

W(6,−K) = 8, W(6,−2K) = 4160.

• The case 6 = P2
3,1, D = −K or D = −2K , where −K = 3L− E1 − · · · − E5:

W(6,−K) = 6, W(6,−2K) = 2004.

• The case 6 = P2
4,0, D = −K or D = −2K , where −K = 3L− E1 − · · · − E4:

W(6,−K) = 8, W(6,−2K) = 16440.

• The case 6 = P2
2,1, D = −K or D = −2K , where −K = 3L− E1 − · · · − E4:

W(6,−K) = 6, W(6,−2K) = 7368.

• The case 6 = P2
3,0:

W(6,−K) = 8, W(6,−K + L) = 240,
W(6,−K + L− E1) = 48, W(6,−K + 2L− E1 − E2) = 1086.
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• The case 6 = P2
1,1 (the divisors E1, E2 are imaginary, and the divisor E3 is real):

W(6,−K) = 6, W(6,−K + L) = 144,
W(6,−K + L− E3) = 32, W(−K + 2L− E1 − E2) = 576.

• The case 6 = P1
× P1, the real structure on 6 is standard, that is, given by (z, w) 7→

(z, w), and D is a curve of bi-degree (1, 1):

W(6,D) = 1, W(6, 2D) = 8, W(6, 3D) = 1086.

• The case 6 = (P1
× P1)0,1 (we denote by (P1

× P1)q,s the real surface considered in
the previous item and blown up at a generic collection of q real points and s pairs of
conjugate imaginary points):

W(6,D − E1 − E2) = 1, W(2D − E1 − E2) = 6, W(3D − E1 − E2) = 606.

• The case 6 = P1
× P1, the real structure on 6 is given by (z, w) 7→ (w, z), and D is

a curve of bi-degree (1, 1):

W(6,D) = 1, W(6, 2D) = 6, W(6, 3D) = 576.

• The case 6 = S1,0 (we denote by Sq,s the real surface considered in the previous item
and blown up at a generic collection of q real points and s pairs of conjugate imaginary
points):

W(6,D − E) = 1, W(6, 2D − E) = 6, W(6, 2D − 2E) = 1,
W(6, 3D − E) = 576, W(6, 3D − 2E) = 144, W(6, 3D − 3E) = 8.

• The case 6 = S2,0:

W(6,D−E1−E2) = 1, W(6, 2D−E1−E2) = 6, W(3D−2E1−2E2) = 32.

7. Properties of Welschinger invariants

7.1. Positivity and asymptotics

As is usual, we call a divisor D on a surface 6 nef if D non-negatively intersects any
algebraic curve on 6. When 6 is an unnodal Del Pezzo surface,D is nef if and only if its
intersection with any (−1)-curve is non-negative. A nef divisorD is called big ifD2 > 0.

Theorem 7.1. Let 6 = (P1)20,1 or P2
q,s , 4 ≤ q + 2s ≤ 5, s ≤ 1. Then, for any real nef

and big divisor D on 6, the invariant W(6,D) is positive, and the following asymptotic
relation holds:

logW(6, nD) = (−DK6)n log n+O(n), n→∞. (7.1)

In particular,

lim
n→∞

logW(6, nD)
logGW0(6, nD)

= 1.
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Remark 7.2. (1) The positivity and asymptotic behavior as in Theorem 7.1 were estab-
lished before for all real toric unnodal Del Pezzo surfaces with a non-empty real part,
except for (P1)20,1 (see [8, 9, 11, 18]).

(2) IfD is not nef or not big, thenW(6,D) = 1 or 0 depending on whether the linear
system |D| contains an irreducible curve or not (for the existence of rational irreducible
representatives see, for instance, [6]).

(3) The Gromov–Witten and Welschinger invariants do not depend on variation of
tamed almost complex structures; hence Theorem 7.1 is valid for blow-ups at arbitrary
(not necessarily generic) configurations of points and for any homology classD ∈ H2(6)

with D2 > 0 which non-negatively intersects each class e ∈ H2(6) such that eK6 =
e2
= −1.

Proof of Theorem 7.1. Since the coefficients in the recursive formula (6.2) are positive,
and its initial values are non-negative (see Theorem 6.3(3)), to prove the positivity it is
enough to find at least one tropical curve which matches a given configuration of fixed
points and has a positive Welschinger multiplicity. Due to the upper bound W(6,D) ≤
GW0(6,D) and the asymptotics logGW0(6, nD) = (−DK6)n log n+O(n) (see [10]),
to prove the asymptotic relation (7.1) it is enough to find tropical curves with sufficiently
large total Welschinger multiplicity.

As in the proof of Theorem 3.4, we may consider only two cases, 6 = P2
5,0 or P2

3,1.

Lemma 7.3. If 6 = P2
5,0 and D is a nef and big divisor on 6, then there exists a collec-

tion L,E1, . . . , E5 of disjoint real smooth rational curves on 6 such that L2
= −E2

1 =

· · · = −E2
5 = 1, D = dL− k1E1 − . . .− k5E5, and

k3 ≥ k5 ≥ k1 ≥ k2 ≥ k4 ≥ 0, d ≥ k1 + k3 + k5. (7.2)

If 6 = P2
3,1 and D is a real nef and big divisor on 6, then there exist a collection

L,E3, E4, E5 of real smooth rational curves and a pair E1, E2 of conjugate imaginary
smooth rational curves on 6 which are pairwise disjoint and such that L2

= −E2
1 =

· · · = −E2
5 = 1, D = dL− k1E1 − · · · − k5E5, and

k3 ≥ k5 ≥ k4 ≥ 0, k1 = k2 ≥ 0, d ≥ max{k3 + k4 + k5, k1 + k2 + k3}. (7.3)

Proof (cf. [7] or [6, Section 3]). The last inequalities in (7.2) and (7.3) can be achieved
by means of finitely many basis changes (standard quadratic Cremona transformations)

(L,Ei, Ej , E`) 7→ (2L− Ei − Ej − E`, L− Ej − E`, L− Ei − E`, L− Ei − Ej ),

where either Ei, Ej , E` are all real, or two of them are conjugate imaginary. Such a
transformation diminishes d = DL as soon as d < ki + kj + k`. ut

In addition to (7.2) and (7.3), we may suppose that k2 > 0, since otherwise we can blow
down two exceptional curves and thus deduce the theorem from [9].

Let E be the real smooth rational (−1)-curve linearly equivalent to L − E3 − E4.
Define a multi-set 1 of vectors in Z2 by

(1, k1, k2, 0, 0, (DE)θ1) = 8(D, 0, 0, (DE)θ1).
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Pick a sequence of finite multi-sets 2n dominating n1, n ≥ 1. Put p = (0, 0) and, for
any n ≥ 1, pick a configuration pn of rn = −nDK6 − 1 points in the strip {x < 0, 0 <
y < ε} such that (pn, p) is a 2n-generic CH2n -configuration of type (0, rn) and vertical
parameter ε. Denote by δ0, . . . , δrn+1 horizontal parameters of (pn, p).

(1) Assume that k5 ≥ k1. Consider the divisor

D′ = (d − k2)L− (k3 − k2)E3 − k4E4 − (k1 − k2 + k5)E5

on the real toric surface 6′ = P2
3,0. The divisor D′ is nef in view of (7.2), (7.3) and the

relations

D′Ei ≥ 0, i = 3, 4, 5, D′(L− E3 − E4) = d − k3 − k4 ≥ 0,
D′(L− E4 − E5) = d − k1 − k4 − k5 ≥ 0,
D′(L− E3 − E5) = d − k1 + k2 − k3 − k5 ≥ 0

(as is well-known, the divisors Ei, L − Ej − E`, i, j, ` = 3, 4, 5, j 6= `, generate the
effective cone of6′). The linear system |D′| is naturally associated with the convex lattice
polygon5′ of Figure 11(a). Though some sides may collapse, the polygon is always non-
degenerate, which means, in particular, that D is big. Notice also that DK6 = D′K6′ .

Denote by1′n the multi-set of primitive integral exterior normal vectors to n5′, where
the multiplicity of each normal equals the lattice length of the corresponding side. The
subset Tn ⊂ T c(1′n, 0, 0, 0, 0, n(D′E)θ1,pn) formed by the isomorphism classes T such
that W(T ) = 1 is non-empty (see, for instance, [8]). Furthermore, by [9, Theorem 3],

log
∑
T ∈Tn

W(T ) = (−D′K6′)n log n+O(n) = (−DK6)n log n+O(n), n→∞.

Any tropical curve (0,V, h,P ) representing a class T ∈ Tn has n(k1 − k2 + k5) ends
directed by the vector (1, 0). Lemma 4.4 implies that each of these ends crosses the seg-
ment Irn = {x = δrn , 0 < y < ε}. Among these ends, select nk1 ≤ n(k1 − k2 + k5) ends
and consider a marked tropical L-curve (0′,V ′, h′,P ′) such that

T ′ = [(0
′
,V ′, h′,P ′)] ∈ T c(n1, nk1, nk2, 0, 0, n(d − k3 − k4)θ1, (pn, p)),

(P ′)2 = ∅, and a marked cut of this curve at Xrn = (h′)−1(Irn) has the following proper-
ties:

• the only left component of the cut is isomorphic to (0,V, h,P ),
• the number of right components is n(k1 − k2 + k5),
• exactly n(k1−k2) right components are isomorphic to those in Figure 11(b) and match
n(k1 − k2) selected ends of (0,V, h,P ),
• exactly nk2 right components are isomorphic to those in Figure 11(c) and match nk2

selected ends of (0,V, h,P ),
• the remaining right components are horizontal.

If 6 = P2
3,1, we define an involution ξ = Id on 0

′ and thus obtain a class in
T c,sym(n1, nk1, nk2, 0, 0, n(d − k3 − k4)θ1, (pn, p)). Finally, notice that W(T ′) =
W(T ), which completes the proof in the case under consideration.
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Fig. 11. Illustration to the proof of Theorem 7.1.

(2) Assume that k5 < k1 ≤ k4 + k5, which is relevant only to the case 6 = P2
3,1,

k1 = k2. Consider the divisor

D′ = (d − k1)L− (k3 − k5)E3 − (k4 + k5 − k1)E4 − k5E5

on the real toric surface 6′ = P2
3,0. It is nef in view of our assumption, inequalities (7.3)

and the relations

D′Ei ≥ 0, i = 3, 4, 5, D′(L− E3 − E4) = d − k3 − k4 ≥ 0,
D′(L− E4 − E5) = d − k4 − 2k5 ≥ d − k3 − k4 − k5 ≥ 0,
D′(L− E3 − E5) = d − k1 − k3 ≥ 0.
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Thus, the linear system |D′| is naturally associated with a non-degenerate convex lattice
polygon 5′ (see Figure 11(d)), which implies that D′ is big.

As in the preceding step, we notice that DK6 = D′K6′ and denote by 1′n the
multi-set of all primitive integral exterior normal vectors to n5′, where the multiplic-
ity of each normal equals the lattice length of the corresponding side. The subset Tn ⊂
T c(1′n, 0, 0, 0, 0, n(D′E)θ1,pn) formed by the isomorphism classes T such that W(T )
= 1 is non-empty and

log
∑
T ∈Tn

W(T ) = (−D′K6′)n log n+O(n) = (−DK6)n log n+O(n), n→∞

(see [8] and [9, Theorem 3]). Any tropical curve (0,V, h,P ) representing a class T ∈ Tn
has nk5 ends directed by the vector (1, 0). Lemma 4.4 implies that each of these ends
crosses the segment Irn = {x = δrn , 0 < y < ε}. Denote by 1′′ the multi-set obtained
from 1 by removing k1 − k5 vectors (−1,−1) and k1 − k5 vectors (1, 1). Consider a
marked tropical L-curve (0′,V ′, h′,P ′) such that

T ′ = [(0
′
,V ′, h′,P ′)] ∈ T c(n1′′, nk5, nk5, 0, 0, n(d − k3 − k4)θ1, (pn, p))],

and a marked cut of this curve at Xrn = (h′)−1(Irn) has the following properties:

• the only left component of the cut is isomorphic to (0,V, h,P ),
• the number of right components is nk5, and all these components are isomorphic to

those in Figure 11(c).

The tropical curve (0′,V ′, h′,P ′) has n(d− k4− k5) ends directed by the vector (0,−1).
Lemma 4.4 implies that n(d − k4 − 2k5) of these ends cross the half-line J = {x < δrn ,

y = ε′}, where ε′ is a sufficiently small positive number. Consider a marked tropical
L-curve (0′′,V ′′, h′′,P ′′) such that

T ′′ = [(0
′′
,V ′′, h′′,P ′′)] ∈ T c(n1, nk1, nk2, 0, 0, n(d − k3 − k4)θ1, (pn, p))],

and a marked cut of this curve at X = (h′′)−1(J ) has n(d − k1 − k5) + 1 irreducible
components:

• one component isomorphic to (0′,V ′, h′,P ′),
• n(k1 − k5) components isomorphic to those in Figure 11(e),
• n(d − k1 − k4 − k5) components whose images are vertical lines,
• n(k4 + k5 − k1) components whose images are straight lines of slope 1.

Define an involution ξ = Id on 0′′ and thus obtain a class in T c,sym(n1, nk1, nk2, 0, 0,
n(d − k3 − k4)θ1, (pn, p)). Finally, notice that W(T ′′) = W(T ′) = W(T ), which com-
pletes the proof in the case under consideration.

(3) Assume that k1 > k4 + k5, which again is relevant only in the case 6 = P2
3,1,

k1 = k2. Impose an additional condition on each configuration pn, n ≥ 1, namely suppose
that it can be subdivided into two parts, pn = (p

′′
n,p
′
n), such that

• the number |p′n| of points in p′n is equal to n(3d − 3k1 − k3)− 1,
• the number |p′′n| of points in p′′n is equal to n(k1 − k4 − k5),
• xp′′ < xp′ and yp′′ < yp′ for all p′ = (xp′ , yp′) ∈ p′n and p′′ = (xp′′ , yp′′) ∈ p′′n.



Welschinger invariants of Del Pezzo surfaces 591

Consider the divisor D′ = (d − k1)L − (k3 − k5)E3 − k5E5 on the real toric surface
6′ = P2

2,0. This divisor is nef because

D′E3 = k3 − k5 ≥ 0, D′E5 = k5 ≥ 0,
D′(L− E3 − E5) = d − k1 − (k3 − k5)− k5 = d − k1 − k3 ≥ 0,

and it is big, since it is associated with a non-degenerate convex lattice polygon 5′ of
Figure 11(f). Notice that |p′n| = −nD

′K6′ − 1.
As before, denote by1′n the multi-set of all primitive integral exterior normal vectors

to n5′, where the multiplicity of each normal equals the lattice length of the correspond-
ing side. The subset Tn ⊂ T c(1′n, 0, 0, 0, 0, n(D′E)θ1,p

′
n) formed by the isomorphism

classes T such that W(T ) = 1 is non-empty and

log
∑
T ∈Tn

W(T ) = (−D′K6′)n log n+O(n) = (3d − 3k1 − k3)n log n+O(n) (7.4)

(see [8] and [9, Theorem 3]). Denote by 1′′ the multi-set obtained from 1 by remov-
ing n(k1 − k4 − k5) vectors (0,−1), then n(k1 − k4 − k5) vectors (−1, 0), and finally
n(k1 − k4 − k5) vectors (1, 1). Any tropical curve (0,V, h,P ) representing a class
T ∈ Tn has nk5 ends directed by the vector (1, 0) and n(d − k1 − k5) ends directed
by (0,−1). Applying a procedure similar to the one described in the previous step, we
obtain a marked tropical L-curve (0′′,V ′′, h′′,P ′′) such that T ′′ = [(0′′,V ′′, h′′,P ′′)] ∈
T c(n1′′, n(k4+k5), n(k4+k5), 0, 0, n(d−k1−k3+k5)θ1, (p

′
n, p)) andW(T ′′) = W(T ).

The curve (0′′,V ′′, h′′,P ′′) has n(d−k1) ends directed by the vector (0,−1); choose
among them n(k1 − k4 − k5) ends not adjacent to (P ′′)ν . There are (n(k1 − k4 − k5))!

possibilities to fix a one-to-one correspondence between the chosen ends and the points
of p′′n. Thus, there exist (n(k1 − k4 − k5))! marked tropical L-curves (0′′′,V ′′′, h′′′,P ′′′)
such that

• T ′′′ = [(0
′′′
,V ′′′, h′′′,P ′′′)] ∈ T c(n1, nk1, nk2, 0, 0, n(d − k3 − k4)θ1, (pn, p)),

• W(T ′′′) = W(T ′′) = W(T ),
• (0

′′′
,V ′′′, h′′′,P ′′′) has a marked cut whose irreducible components are as follows: one

of them is isomorphic to (0′′,V ′′, h′′,P ′′), the other n(k1 − k4 − k5) components are
as in Figure 11(g).

Equipping each of these curves with the identity involution, we obtain representatives of
(n(k1−k4−k5))! classes in T c,sym(n1, nk1, nk2, 0, 0, (d−k3−k4)θ1, (pn, p)), and the
Welschinger multiplicity of all these classes is equal to W(T ). This immediately implies
the positivity of W(6,D) as well as the required asymptotics, since from (7.4) and our
construction we obtain

logW(6, nD) ≥ log
(
(n(k1 − k4 − k5))!

∑
T ∈Tn

W(T )
)

= (k1−k4−k5)n log n+(3d−3k1−k3)n log n+O(n) = (−DK6)n log n+O(n). ut
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7.2. Mikhalkin’s congruence

Theorem 7.4. For any nef and big divisor D on a surface 6 = P2, (P1)2, or P2
q,0,

1 ≤ q ≤ 5, one has
W(6,D) ≡ GW0(6,D) mod 4. (7.5)

Proof. Straightforward from Theorem 6.3(1) and the definition of the complex and Wel-
schinger multiplicities in Sections 4.2 and 4.3. ut

Remark 7.5. For 6 = P1, (P1)2, and P2
q,0, q = 1, 2, 3, congruence (7.5) has been

established by G. Mikhalkin ([15], cf. [2]).

7.3. Monotonicity

Lemma 7.6. Let D1,D2 be nef and big divisors on P2
5. If D2 − D1 is effective, then

D2−D1 can be decomposed into a sum E(1)+· · ·+E(k) of smooth rational (−1)-curves
such that each of D(i) = D1 +

∑
j≤i E

(j) is nef and big, and satisfies D(i)E(i+1) > 0,
i = 0, . . . , k − 1.

Proof. As any effective divisor on P2
5, the divisor D2 − D1 has a splitting D2 − D1 =

E(1)+ · · ·+E(k) into the sum of smooth rational (−1)-curves. It remains to show that an
appropriate reordering of E(1), . . . , E(k) ensures the properties asserted in the lemma.

For i = 0, the divisor D(0) = D1 is nef and big.
Suppose that D(i) is nef and big for some i = 0, . . . , k − 1. We first show that there

is j ∈ [i + 1, k] with D(i)E(j) > 0. Indeed, if i = k− 1 then D(k−1)
+E(k) = D2 is nef,

and hence
D(k−1)E(k) = D2E

(k)
− (E(k))2 ≥ 1.

If i ≤ k−2, and E(i+1), . . . , E(k) are all orthogonal toD(i), then they cannot be pairwise
orthogonal, since otherwise D2E

(j)
= −1, j = i + 1, . . . , k. Thus, there exist E(j), E(l)

with i < j < l ≤ k and E(j)E(l) ≥ 1. Therefore, our assumption D(i)E(j) = D(i)E(l)

= 0 leads by the Hodge index theorem to (D(i))2 ≤ 0, contrary to the bigness of D(i).
Hence there is j > i with D(i)E(j) > 0.

Now we can suppose that j = i + 1 and put D(i+1)
= D(i) + E(i+1). This divisor is

big in view of

(D(i+1))2 = (D(i))2 + 2D(i)E(i+1)
− 1 > (D(i))2 > 0.

It is nef, since D(i) is nef and

D(i+1)E(i+1)
= D(i)E(i+1)

− 1 ≥ 0. ut

Theorem 7.7. Let D1,D2 be nef and big divisors on 6 = P2
5,0 such that D2 − D1 is

effective. Then W(6,D2) ≥ W(6,D1). Moreover, in the notation of Lemma 7.6,

W(6,D2) ≥

k∏
i=1

(D(i−1)E(i)) ·W(6,D1).
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Remark 7.8. Theorem 7.7 implies similar inequalities for divisors on 6 = P2, P2
q,0,

1 ≤ q ≤ 4, and (P1)2. In particular, it strengthens the monotonicity result for the surfaces
P2, P2

q,0, q = 1, 2, 3, and (P1)2 from [12, Corollary 4].

Proof of Theorem 7.7. Let E1, . . . , E5 be the exceptional curves of the blow-up, and
L ∈ Pic(6) the pull-back of a line in P2.

In view of Lemma 7.6, it is sufficient to treat the case of D2 −D1 = E1.
(1) Assume that D2E1 = 0. We claim that W(6,D1) = W(6,D2). Indeed, then

D2 = dL− k2E2 − · · · − k5E5, D1 = dL− E1 − k2E2 − · · · − k5E5.

Let us blow down the divisor E1. Choosing a generic configuration z of −D1K6 − 1 real
points in 6, we obtain a bijection between R(6,D1, z) and R(6′, π(D2), z

′), where
z′ = π(z) ∪ {π(E1)} is a generic configuration of −D1K6 = −D2K6 − 1 real points in
6′ = P2

4,0. Hence W(6,D1) = W(6
′, π(D2)) = W(6,D2).

(2) Assume thatD2E1 = m > 0. Performing a suitable real automorphism of Pic(6),
we can make E = E1 and apply formula (6.2) to W(6,D2) = W6(D2, 0, mθ1) on the
left-hand side. Then, among the summands of the right-hand side, one has

(m+ 1)W6(D2 − E, 0, (m+ 1)θ1) = (m+ 1)W(6,D1).

Thus, we are done, since all other summands in the formula are non-negative. ut
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