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Abstract. We show that the local automorphism group of a minimal real-analytic CR manifold M
is a finite-dimensional Lie group if (and only if)M is holomorphically nondegenerate by construct-
ing a jet parametrization.

1. Introduction

In 1907, Poincaré observed that it is extremely unlikely that one can find an analytic map
between two given real hypersurfaces in C2; in his paper, he formulated the “problème
local”: Given two hypersurfaces, is it possible to determine all such maps? In this paper,
we shall answer the analogous question for automorphisms of real-analytic CR mani-
folds; we establish a necessary and sufficient condition (known as holomorphic nonde-
generacy) for the finite-dimensionality of the automorphism groups and furthermore give
an algorithm to compute them. We note that this problem is markedly different from the
analogous problem in the complex plane, where it is well known that two real-analytic
arcs can always be mapped into each other by an analytic map, and the space of such
maps is necessarily of infinite dimension.

The first positive answer to this question was given by Élie Cartan in 1932 [6, 7]
for strictly pseudoconvex real-analytic hypersurfaces in C2, by applying his method of
equivalence. This type of result, which establishes a complete list of invariants which can
be used to solve the local equivalence problem, is today known for Levi-nondegenerate
real-analytic hypersurfaces in CN , by the work of Tanaka [17] and Chern and Moser [8],
as well as for minimal real-analytic hypersurfaces in C2 by the work of Kolář [14]. An
important corollary to all of their works is that the local automorphism group of such a
real-analytic hypersurface is a subgroup of the automorphism group of the hyperquadric
(or, in Kolář’s case, a more general model); these groups, however, are well known, and
turn out to be finite-dimensional Lie groups.

The methods used to prove the results for Levi-nondegenerate real-analytic hypersur-
faces do not carry over to degenerate cases, and Kolář’s techniques only extend to very
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specific cases in higher dimensions [13]. However, Poincaré’s observation was very gen-
eral, and leads us to expect that even though we might not be able to give a complete list
of invariants, there should not be “too many” maps; maybe we can even prove that the
automorphism groups of more general real-analytic submanifolds are finite-dimensional
Lie groups?

Some partial positive answers to these questions have been given over the last decade.
The first results valid for Levi-degenerate real-analytic hypersurfaces, due to Baouendi,
Ebenfelt, and Rothschild [2] and generalized to higher codimension by Zaitsev [18], gave
not only a solution to the problem in the “finitely nondegenerate” case, but also a general
way of attacking the problem through so-called jet parametrizations. In the context of
automorphism groups of germs of real-analytic submanifold M ⊂ CN at a distinguished
point p ∈ M , a jet parametrization inverts the natural mapping Aut(M, p) → Gkp(CN )
from the local automorphism group

Aut(M, p) = {H : (CN , p)→ (CN , p) : detH ′(p) 6= 0, H(M ∩ U) ⊂ M
for some neighbourhood U of p}

of germs of biholomorphisms of (CN , p) mapping M to itself endowed with its natural
inductive limit topology, to the jet group of order k at the point p for some k. It thus
provides a mapping 9 defined near {p} × U for some U ⊂ Gkp(CN ) with

9(Z, j kpH) = H(Z), H ∈ Aut(M, p).

A jet parametrization which is in addition holomorphic in the first argument and real-
analytic in the second shows that the image of the natural embedding of a neighbourhood
of, say, the identity in Aut(M, p) as a neighbourhood of the identity in a subgroup of
Gkp(CN ) can be defined by real-analytic equations and thus endows Aut(M, p) with a
Lie-group structure.

Jet parametrizations have turned out to be powerful tools. For minimal real-analytic
hypersurfaces in C2, a jet parametrization was used by Ebenfelt, Zaitsev and the second
author [10] to provide a solution of our question above; Mir and the second author [15]
used it to prove that Aut(M, p) is a finite-dimensional Lie group for any real-analytic CR
manifold M which is minimal at p and “essentially finite”.

All of the results discussed so far provide sufficient conditions for Aut(M, p) to be
finite-dimensional; in order to see what a necessary condition looks like, it is helpful to
look at the Lie algebra of infinitesimal automorphisms. An infinitesimal automorphism of
(M, p) is a germ of a holomorphic (1, 0)-vector field

X =

N∑
j=1

aj (Z)
∂

∂Zj
,

vanishing at p, whose real part is tangent to M; we denote the space of infinitesimal
automorphisms of (M, p) by hol(M, p). Clearly, if X itself is tangent to M near p, then
X ∈ hol(M, p); we shall denote the subspace of all such X by ht(M, p) ⊂ hol(M, p)
and refer to them as tangent holomorphic vector fields.
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It is easy to see that if ht(M, p) 6= {0}, then necessarily dimC ht(M, p) = ∞ (after
all, ht(M, p) is a module over the ring of germs of holomorphic functions at 0), which in
turn precludes that Aut(M, p) can be given the structure of a finite-dimensional Lie group.
Thus, ht(M, p) = {0} is clearly necessary for Aut(M, p) to be finite-dimensional. We say
that a connected CR manifold M is holomorphically nondegenerate if ht(M, p) = {0}
for one (or, equivalently, for all) p ∈ M . Holomorphic nondegeneracy was introduced
by Stanton [16] and shown to be sufficient for hol(M, p) to be finite-dimensional by
Baouendi, Ebenfelt, and Rothschild [3]. In this paper we show that actually Aut(M, p) is
a finite-dimensional Lie group for all minimal holomorphically nondegenerate CR mani-
folds, thus showing that holomorphic nondegeneracy characterizes the finite-dimension-
ality of Aut(M, p):

Theorem 1. Let M be a connected real-analytic CR manifold which is minimal at p ∈
M . Then the group Aut(M, p) of real-analytic CR automorphisms of (M, p) is a finite-
dimensional Lie group if and only if M is holomorphically nondegenerate. Furthermore,
in this case, Aut(M, p) can be identified with a real algebraic subgroup of the jet group
Gkp(M) for some k ∈ N.

Let us recall that M is minimal at p ∈ M if there is no proper CR submanifold N ⊂ M
containing p of the same CR dimension asM . We shall establish Theorem 1 by construct-
ing a jet parametrization for automorphisms of a holomorphically nondegenerate minimal
CR manifold. Before we state our jet parametrization theorem, let us note the following
interesting corollary of Theorem 1.

Corollary 1. Let M be a connected, minimal real-analytic CR manifold. If Aut(M, p) is
a finite-dimensional Lie group for some p ∈ M , then Aut(M, q) is a finite-dimensional
Lie group for all q ∈ M .

Indeed, as we already noted above, a real-analytic CR manifold has the property that
if ht(M, p) = {0} for some p ∈ M , then ht(M, q) = {0} for all q in the connected
component of M containing p.

Let us now state our main parametrization theorem.

Theorem 2. Let (M, p) ⊂ (CN , p) be a germ of a generic real analytic submanifold
of CN , which is minimal and holomorphically nondegenerate at p. Then there exists
k ∈ N, a neighbourhood U ⊂ Gkp(CN ) of j kp id, and a map 9 : U → CN , defined on
a neighbourhood U of {p} × U in CN ×Gkp(CN ), holomorphic in the first variable and
real-analytic in the second, such that

H(Z) = 9(Z, j kpH) for all H ∈ Aut(M, p) with j kpH ∈ U. (1)

Furthermore, there exists a polynomial s with s(j kp id) 6= 0 and for every α ∈ NN a poly-
nomial pα on Gkp(CN ) and an integer rα such that

9(Z,3) =
∑
α∈NN

pα(3)

s(3)rα
Zα. (2)
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Furthermore, the integer k = k(M, p) can be bounded by local biholomorphic invariants
of (M, p) and can be chosen in such a way that it remains uniformly bounded on compact
subsets of M .

Let us quickly review how a parametrization as in (1) lets us identify the image of
j kp : Aut(M, p)→ Gkp(CN ). Using a real-analytic defining function ρ(Z, Z̄) of M and a
real-analytic parametrization R2N−d

3 ξ 7→ ϕ(ξ) of M , we see that 3 ∈ j kp (Aut(M, p))
if and only if

0 = ρ
(
9(ϕ(ξ),3),9(ϕ(ξ),3)

)
=

∑
β

Pβ(3)

Q(3)dβ
ξβ ,

and thus j kp (Aut(M, p)) can be defined by the (real) polynomial equations Pβ(3) = 0.
This argument shows that Theorem 1 follows from Theorem 2, since it shows that a
neighbourhood of the identity in Aut(M, p) is homeomorphic to a real-algebraic subset
of a neighbourhood of the identity inGkp(CN ). It actually yields the following, somewhat
more explicit theorem, which identifies Aut(M, p) with a subgroup of Gkp(CN ):

Theorem 3. Let M be the germ of a generic real-analytic submanifold of CN at p. Then
there exists an integer k = k(p) such that the natural map j kp : Aut(M, p) → Gkp(CN )
is an embedding which is a homeomorphism onto its image, which is a real-algebraic
closed subgroup of Gkp(CN ). Furthermore, the integer k(p) can be chosen in such a way
that it remains uniformly bounded on compact subsets of M .

A typical application of a finite jet parametrization only uses that H ∈ Aut(M, p) is
uniquely determined by j k0H . In our setting, this unique determination property is due
to Baouendi, Mir and Rothschild [5], and in more generality to the first author [12] who
both actually proved it for mappings which are not necessarily automorphisms. We now
state a uniqueness property which follows from our theorem.

Corollary 2. Let M be a real-analytic, holomorphically nondegenerate minimal CR
manifold. Then for any compact subsetK ⊂ M there exists an integer k = k(K) such that
if H and H̃ are real-analytic CR automorphisms defined in a neighbourhood of p ∈ M
with j kpH = j

k
p H̃ , then H = H̃ .

A further implication of our Theorem 2 is a global statement. For a general real-analytic
CR manifold M , it is well known that for p outside a real-analytic subvariety V , the
germ (M, p) is biholomorphically equivalent to (M̃ × Cs, 0) where M̃ is a germ of a
holomorphically nondegenerate submanifold of CN−s through 0. To be exact, the sec-
tions of the sheaf ht(M) with stalks ht(M, p) defined above define a foliation of M by
holomorphic manifolds which we refer to as the holomorphic foliation ofM . Any biholo-
morphism of M has to preserve leaves of this foliation. Let us denote by V the singular
set of this foliation. At points p ∈ M \ V , in terms of the local product decomposition
(M, p) ∼= (M̃×Cs, 0), anyH ∈ Aut(M̃×Cs, 0) can be written asH = (H1, H2) where
H1 ∈ Aut(M̃, 0) and H2 is any map of the form H2(Z1, Z2) with det ∂H2

∂Z2
(0) 6= 0. Of

course, the set of these maps does not form a finite-dimensional Lie group, but we can
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show that they form an infinite-dimensional Lie group, where we shall define a Lie group
to be a group which is a locally convex manifold (actually, our groups are modelled on
spaces of germs of power series) whose multiplication and inversion are analytic (in the
usual infinite-dimensional sense, i.e. analytic along finite-dimensional subsets and con-
tinuous in the vector space topology). The groups which appear here will be subgroups
of the group of germs of biholomorphisms of CN , which is a Lie group in this sense.

To discuss the structure of Aut(M̃ × Cs, 0), we use the product decomposi-
tion H = (H1, H2) where H1 ∈ Aut(M̃, 0) and H2 is any map of the form
H2(Z1, Z2) with det ∂H2

∂Z2
(0) 6= 0. Equivalently, H2 is a germ of a holomorphic map

(CN−s, 0) → Aut(Cs, 0). The set of all such germs, which we denote by Hs =

H((CN−s, 0),Aut(Cs, 0)), inherits the structure of an infinite-dimensional Lie group
from Aut(Cs, 0). Furthermore, Aut(CN−s, 0) acts on Hs in an obvious way. The group
of all germs of biholomorphisms of CN of the form (Z1, Z2) 7→ (h1(Z1), h2(Z1, Z2)) is
then exactly the semidirect product Aut(CN−s, 0)nHs .

At a point where the holomorphic foliation is nonsingular, we can thus explicitly de-
scribe the infinite-dimensional part of the automorphism group of a general real-analytic
CR manifold at all points p ∈ M \ V where V is the real-analytic subvariety defined
before.

Theorem 4. LetM be a real-analytic, minimal CR manifold. Then there exists an integer
s such that for the subvariety V ⊂ M defined before, for all p ∈ M \ V there exists
an integer k such that Aut(M, p) = F n Hs for a finite-dimensional Lie-group F =
F(p) with the property that F(p) embeds into the jet group Gkp(CN ) as a closed, real-
algebraic subgroup. In particular, Aut(M, p) is an (infinite-dimensional) Lie group for
every p ∈ M \ V .

We now outline the proof of our main result. The main technical innovation of this paper
is a new kind of parametrization theorem (Theorem 7) for solutions of singular systems
of analytic equations. It replaces the corresponding result used in [15] for the situation
studied here and allows us to “invert” a certain system of equations for our map asso-
ciated to a holomorphically nondegenerate submanifold. This inversion is only valid for
maps which are on a stratum where a certain vanishing order is constant; we relate this
vanishing order to local invariants of (M, p). These invariants are introduced in §3 and
their basic properties are investigated. This step, which is in essence based on mapping
formulas from [12], allows us to construct jet parametrizations “along the Segre maps”
(see Corollary 14); we thus obtain a parametrization of the form H(S(x)) = 9(x, j kpH),
where S is a holomorphic submersion.

In order to pass from this to a parametrization as in Theorem 2, we have to use another
form of inversion. While a technique to overcome this problem is available in the literature
(dubbed as the “doubling trick”), we have decided to attack this problem in a more direct
way, and thus include the relevant theorem, which is another new result of this paper
(Theorem 5): We introduce an inversion formula for the mapping induced by composition
with the germ of a holomorphic map A : (Cm, 0)→ (Cn, 0) which is generically of full
rank n on the spaces of germs of holomorphic functions. As a byproduct, we get a new
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proof of a celebrated result due to Gabrielov [11]: for an A : (Cm, 0) → (Cn, 0) which
is generically of full rank n, if f ◦ A is convergent for some formal power series f ,
than f is necessarily convergent, or equivalently, every formal relation between analytic
functions (A1, . . . , An) is necessarily analytic (under the assumption that the rank ofA =
(A1, . . . , An) is generically full). Our Theorem 5 allows us to write an inductive formula
for f given f ◦A, and we establish the convergence by estimating this induction process
directly. We note that this gives an elementary proof of Gabrielov’s theorem, which we
think is more accessible than the proofs which previously appeared in the literature (see
Eakin and Harris [9]).

Let us note that our parametrization works both in the formal and in the analytic
setting; and the convergent parametrization can be used to conclude that every formal au-
tomorphism between real-analytic CR manifolds which are minimal and holomorphically
nondegenerate is convergent. However, these statements are known in greater generality
from the work of Baouendi, Mir and Rothschild [5], so we shall refrain from stating them.

2. Some basics and notation

This section introduces some basic notation used throughout the paper. Noting that all of
the problems considered here are of a local nature, we may (by considering an intrinsic
complexification ofM) assume thatM is a formal or real analytic generic submanifold of
CN , which is defined in normal coordinates (z, w) ∈ (Cn × Cd , 0) by w = Q(z, z̄, w̄).
Saying that (z, w) are normal coordinates means that Q satisfies

Q(z, 0, τ ) = Q(0, χ, τ ) = τ, Q(z, χ, Q̄(χ, z,w)) ≡ w. (3)

The first condition makes the coordinates normal, and the second one is referred to as the
reality condition.

We study mappings (formal or holomorphic) H : (Cn+d , 0) → (Cn+d , 0) taking M
into M ′, where M and M ′ are generic submanifolds of codimension d in Cn+d defined
in normal coordinates as above by Q and Q′, respectively. We will write H : (M, 0) →
(M ′, 0) if H is such a map taking M into M ′; this is equivalent to the following power
series identity:

Q′
(
F(z,Q(z, χ, τ )), H̄ (χ, τ )

)
= G(z,Q(z, χ, τ )), (4)

where H = (F,G) is the splitting according to the normal coordinates (z′, w′); we often
refer to F as the tangential part of H and to G as the transversal part of H .

We are now ready to introduce one of the basic tools we will use, the Segre mappings;
we have chosen a little variation of the standard notation which is more suitable for our
purposes.

2.1. Iterated Segre mappings

Assume that we are given a generic manifold M as above defined by Q in normal coor-
dinates (z, w).
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For j ≥ 1, we define the iterated Segre mappings Sj : Cnj × Cd → Cn+d iteratively
by the following formulas, where t ∈ Cd and xk ∈ Cn for all k:

S1(x1
; t) = (x1, t),

Sj+1(x1, . . . , xj+1
; t) = (x1,Q(x1, S̄j (x2, . . . , xj+1

; t)), j ≥ 1.
(5)

We also agree to write S0(t) = (0, t), which makes the second line of (5) valid for all
j ≥ 0. We denote by U j : Cnj × Cd → Cd the second component of Sj , i.e.,

Sj (x1, . . . , xj ; t) = (x1, U j (x1, . . . , xj ; t)).

It will be useful to write

x[j ;k] = (xj , . . . , xk), j ≤ k.

With this notation, the definition of the Segre maps (5) reads

S1(x1
; t) = (x1, t), Sj+1(x[1;j+1]

; t) =
(
x1,Q(x1, S̄j (x[2;j+1]

; t))
)
.

Remark 1. By setting t = 0 in Sj , that is, if we consider Sj (x[1;j ]; 0), we get the usual
iterated Segre maps. However, we need to take derivatives with respect to t before setting
t = 0, which is why we will use a nonstandard notation.

We note the following two useful properties of the Segre maps Sj :

Sj+1(x2, x[1;j ]; t) = Sj−1(x[2;j ]; t), j ≥ 2, (6)

S2(x1, x2
; Ū j (x[2;j+1]

; t)) = Sj+1(x[1;j+1]
; t), j ≥ 2, (7)

where the reality condition (3) has been used to prove (6).
The mapping condition (4) is expressed in terms of the Segre maps as the power series

identity
Q′
(
F(S2(z, χ; τ)), H̄ (χ, τ )

)
= G(S2(z, χ; τ)). (8)

By setting z = x1, χ = x2 and τ = Ū j−1(x2, . . . , xj ; t) into (8) and using (7), we get

Q′
(
F(Sj (x[1;j ]; t)), H̄ (S̄j−1(x[2;j ]; t))

)
= G(Sj (x[1;j ]; t)). (9)

If we instead substitute z = x2, χ = x1, τ = Ū j (x1, . . . , xj ; t) and use (6) and (7), we
get

Q′
(
F(Sj−1(x[2;j ]; t)), H̄ (S̄j (x[1;j ]; t))

)
= G(Sj−1(x[2;j ]; t)).

Another way of writing the mapping condition (9) is

H(Sj (x[1;j ]; t)) ≡ S′
2(
F(Sj (x[1;j ]; t)), H̄ (S̄j−1(x[2;j ]; t))

)
. (10)

Let q ≥ 2. By using (10) inductively, together with property (7), we obtain the map-
ping property of the Segre maps for maps H : (M, 0) → (M ′, 0), which we refer to as
“H ◦ Sq = S′q ◦H”, or more precisely:
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Lemma 3. Let H : (M, 0)→ (M ′, 0) be a mapping. Then

H(Sq(x[1;q]; t)) = S′
q
(y[1;q]; u),

where

y2j+1
= F(Sq−2j (x[2j+1;q]

; t)), y2j
= F̄ (Sq−2j+1(x[2j ;q]; t)),

u =

{
Ḡ(xq , t) for q even,
G(xq , t) for q odd.

2.2. A lemma on derivatives

We will need the following lemma, which roughly tells us that if we know the transversal
derivatives of a function along a Segre map, then we know all of its derivatives along that
map.

Lemma 4. For every q ∈ N, α ∈ Nn and β ∈ Nd , there exists a universal power series
p(x[1;q], t;3) (depending on q, α, β, and M , convergent if M is), polynomial in its last
argument, such that for any power series h(z,w), we have

p

(
x[1;q], t;

∂ |γ |

∂(x1)
γ

∂ |δ|

∂tδ
h(Sq(x[1;q]; t))

)
,

where |γ | + |δ| ≤ |α| + |β|.

Proof. This is an easy consequence of the chain rule, and the fact that ∂U
j

∂t
is invertible

near 0 ∈ Cjn+d , which follows since ∂U j

∂t
(0; 0) = Id×d by the normality of the coordi-

nates. ut

2.3. Jet spaces

We will need the notion of the jet space along a submanifold. Given the germ of a holo-
morphic manifold (X, 0) ⊂ (Cr , 0), the jet space J kX((C

r , 0),C) is the quotient of the
local ring Or by the equivalence relation identifying f ∈ Or with g ∈ Or if

f − g ∈ I (X)k+1,

where
I (X) = {f ∈ Or : f |X = 0}

denotes the ideal associated to X. The natural projection Or → J kX((C
r , 0),C) will be

denoted by j kX,0.
In suitable coordinates, we can always assume that X is given by the vanishing of

the last, say, q coordinates. In this setting, if Cr = Cpx × Cqt and we consider jets along
X = {t = 0}, we will denote the corresponding jet space by J kt (C

p
x ×Cqt , 0), with the jet

map j kt,0. We then have for this choice of coordinates a natural identification

J kt ((C
p
x × Cqt , 0),C) = (Op)N(k),
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where N(k) =
∑
j≤k

(
q+j−1
q−1

)
denotes the number of multiindices in q variables of order

at most k, given by

j kt,0h =

(
h(x, 0), . . . ,

∂ |α|h

∂tα
(x, 0), . . .

)
,

and we have to include all multiindices α with |α| ≤ k.
In a similar way we define the jet spaces J kX((C

r , 0),Cn) and J kX((C
r , 0), (Cn, 0)).

We will use ϕ(x, t)[(α1, α2)] to denote the coefficient of xα1 tα2 in ϕ(x, t), and for any
multiindex α ∈ Np+q = Np ×Nq , α1 will denote its projection on the first p entries, and
α2 will denote its projection on the last q entries. For brevity, we sometimes also write
ϕ(x, t)[α] = ϕα .

We will be working with the following notion of an “initial term” of a power series
λ(x, t). We decompose λ into homogeneous terms with respect to x and t ,

λ(x, t) =
∑
j,k

λj,k(x, t), where λj,k(s1x, s2t) = s
j

1 s
k
2λj,k(x, t)

and define the type tp λ of λ as the smallest multiindex (n1, n2) in the lexicographic
ordering on N2 which satisfies λn1,n2(x, t) 6≡ 0, i.e.

λn1,n2 6≡ 0, and λj,k(x, t) = 0 if k < n2 or if k = n2 and j < n1. (11)

With the notation introduced above, this just means that

λ[(α1, α2)] = 0 if |α2
| < n2,

λ[(α1
0, α

2
0)] 6= 0 for some (α1

0, α
2
0) with |α1

0 | = n1, |α
2
0 | = n2.

We write
it λ(x, t) =

∑
|α1|=n1, |α2|=n2

λ(α1,α2)x
α1
tα

2

and call this the initial term of λ(x, t).

3. Invariants

Let (M, 0) be a formal generic submanifold, given as usual in normal coordinates by
w = Q(z, χ, τ ), (z, w) ∈ Cn × Cd = CN ; to simplify notation, we write ζ = (χ, τ ). In
this section, we define an invariant associated to holomorphic nondegeneracy of (M, 0),
namely a descending chain of pairs of integers measuring the vanishing of the Segre map
(descending in the sense of the lexicographic ordering in N2). Recall that holomorphic
nondegeneracy of (M, 0) is equivalent to the map

ζ 7→ (Q
j
zα (0, ζ ) : α ∈ Nn, 1 ≤ j ≤ d)

being of full rank over the field of meromorphic functions in ζ (see e.g. [4, Lemma
11.3.5]); again, equivalently, writing α = (α1, . . . , αN ) and r = (r1, . . . , rN ), the func-
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tions

1(α, r)(z, ζ ) =

∣∣∣∣∣∣∣∣
Q
r1

zα
1
;ζ
(z, ζ )

...

Q
rN

zα
N
;ζ
(z, ζ )

∣∣∣∣∣∣∣∣ , where Q
rj

zα
j
;ζ
=

(∂Qrj

zα
j

∂ζ1
, . . . ,

∂Q
rj

zα
j

∂ζN

)
, (12)

defined for α ∈ NnN , r ∈ {1, . . . , d}N , are not all identically zero. To ease the notation,
we define the index set J by

J = N(n+d)n × {1, . . . , d}n+d .

Now, with the decomposition ζ = (χ, τ ) we define the type of a power series λ(ζ ),
tp λ, as in (11). Using the lexicographic ordering on N2, we define

(n1
1, n

1
2) = min{tp1(α, r)(0, ζ ) : (α, r) ∈ J }. (13)

The higher order version of this invariant is defined for q ≥ 2 and (α, r) ∈ J by the
functions

1q(α, r)(x[1;q]; t) = 1(α, r)(x2, S̄q(x[1;q]; t)) =

∣∣∣∣∣∣∣∣
Q
r1

zα
1
;ζ
(x2, S̄q(x[1;q]; t))

...

Q
rN

zα
N
;ζ
(x2, S̄q(x[1;q]; t))

∣∣∣∣∣∣∣∣ ;
again, by holomorphic nondegeneracy, these are not all zero, since

1q(α, r)(x1, 0, . . . , 0; t) = 1(α, r)(0, x1, t),

and we have already observed that the latter are not all zero.
As above, we define the type of a power series λ(x, t), tp λ, as in (11). Using the

lexicographic ordering on N2, we let

(n
q

1 , n
q

2) = min{tp1q(α, r)(x[1;q]; t) : (α, r) ∈ J }.

Let us show that the definition of (nq1 , n
q

2) for q ≥ 1 is indeed independent of the
choice of normal coordinates. We write (nq1 , n

q

2), (n
′q

1 , n
′q

2) for the numbers defined by
(13) when using Q or Q′ respectively.

By differentiating the mapping equation Q′
(
F(z,Q(z, ζ )), H̄ (ζ )

)
= G(z,Q(z, ζ ))

with respect to ζ we obtain

Q′ζ ′
(
F(z,Q(z, ζ )), H̄ (ζ )

)
H̄ζ (ζ ) = C0(z, ζ )Qζ (z, ζ ), (14)

where

C0(z, ζ ) = Gw(z,Q(z, ζ ))−Q
′

z′

(
F(z,Q(z, ζ )), H̄ (ζ )

)
Fw(z,Q(z, ζ )).

To continue, we first recall
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Lemma 5. Let (M, 0), (M ′, 0) be given in normal coordinates by w = Q(z, χ, τ ) and
w′ = Q′(z′, χ ′, τ ′), respectively, and assume that H : (M, 0) → (M ′, 0). Then for any
α ∈ Nn with |α| > 0, there exists a polynomial Pα such that(

det
(
∂F (z,Q(z, χ, τ ))

∂z

))2|α|−1

Q′z′α (F (z,Q(z, ζ )), H̄ (ζ ))

= Pα

(
∂ |β|

∂zβ
H(z,Q(z, ζ )) : |β| ≤ |α|

)
.

For a multi-index α with |α| > 0, we deduce from Lemma 5 after differentiation with
respect to ζ that

Q′
z′αζ

(
F(z,Q(z, ζ )), H̄ (ζ )

)
H̄ζ (ζ ) =

∑
|β|≤|α|

Cαβ(z, ζ )Qzβζ (z, ζ ), (15)

where Cαβ(z, ζ ) are some power series. From (14) and (15) we obtain, for any (α, r) ∈ J ,

1′(α, r)
(
F(z,Q(z, ζ )), H̄ (ζ )

)
det H̄ζ (ζ )

=

∑
(β,s)∈J

max |βj |≤max |αj |

cβ,sα,r (z, ζ )1(β, s)(z, ζ ), (16)

where cβ,sα,r (z, ζ ) are some power series.
Let us start with the case q = 1. By substituting z = 0 into (16), we obtain

1′(α, r)(F (0, τ ), H̄ (ζ )) det H̄ζ (ζ ) =
∑

(β,s)∈J

max |βj |≤max |αj |

cβ,sα,r (0, ζ )1
1(β, s)(ζ ). (17)

By using the identity

∂ |β|

∂tβ

∣∣∣∣
t=0
f (x, t, t) ≡

∑
β1+β2=β

β!

β1!β2!

∂ |β|

∂t1
β1
∂t2

β2

∣∣∣∣
t1=0
t2=0

f (x, t1, t2),

we get, for any γ ,

∂ |γ |

∂τ γ

∣∣∣∣
τ=0

1′(α, r)(F (0, τ ), H̄ (χ, τ )) =
∂ |γ |

∂τ γ

∣∣∣∣
τ=0

1′(α, r)(0, H̄ (χ, τ ))

+

∑
α′

∑
|γ ′|<|γ |

eα′γ ′
∂ |γ
′
|

∂τ γ
′

∣∣∣∣
τ=0

1′(α′, r)(0, H̄ (χ, τ )), (18)

where we have used that derivatives of1′(α, r)(z′, ζ ′) with respect to z′ are linear combi-
nations of 1′(α′, r)(z′, ζ ′) over (finitely) many α′. Since H̄ (ζ ) is invertible and Ḡ(χ, 0)
≡ 0, we have (n′11, n

′1
2) = min{tp1′(α, r)(0, H̄ (ζ )) : (α, r) ∈ J }, so from (18) we obtain

min{tp1′(α, r)(F (0, τ ), H̄ (χ, τ )) : (α, r) ∈ J } = (n′11, n
′1
2).
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Hence, we see from (17), that (n′11, n
′1
2) ≥ (n

1
1, n

1
2) lexicographically; and, by using the

inverse mapping to H , we obtain the converse inequality, from which we conclude that
(n′

1
1, n
′1
2) = (n

1
1, n

1
2).

For q ≥ 2, we substitute z = x2 and ζ = S̄q(x[1;q]; t) in (16) to obtain

1′(α, r)
(
F(Sq−1(x[2;q]; t)), H̄ (S̄q(x[1;q]; t))

)
det H̄ζ (S̄q(x[1;q]; t))

=

∑
β,s

c̃β,sα,r (x
[1;q], t)1q(β, s)(x[1;q]; t). (19)

Now Lemma 6 below gives

min
{
tp1′(α, r)

(
F(Sq−1(x[2;q]; t)), H̄ (S̄q(x[1;q]; t))

)
: (α, r) ∈ J

}
= (n′

q

1 , n
′q

2).

Hence, we see from (19) that also in this case (n′q1 , n
′q

2) ≥ (n
q

1 , n
q

2).
Again, we can repeat the argument with H replaced with its inverse, so we have

(n′
q

1 , n
′q

2) = (n
q

1 , n
q

2) for all q, and so (nq1 , n
q

2) are indeed invariants.

Lemma 6. Let q ≥ 2. With the notation above, we have

it1′(α, r)
(
F(Sq−1(x[2;q]; t)), H̄ (S̄q(x[1;q]; t))

)
= it1′q(α, r)(y[1;q]; u),

where

y2j+1
= Fz(0)x2j+1, y2j

= Fz(0)x2j , u =

{
Gw(0)t for q even,
Gw(0)t for q odd.

Proof. From Lemma 3, we see that

1′(α, r)
(
F(Sq−1(x[2;q]; t)), H̄ (S̄q(x[1;q]; t))

)
= 1′

q
(α, r)(y[1;q]; u),

where

y2j+1
= F̄ (S̄q−2j (x[2j+1;q]

; t)), y2j
= F(Sq−2j+1(x[2j ;q]; t)),

u =

{
G(xq , t) for q even.
Ḡ(xq , t) for q odd.

The lemma now follows from the fact that G(z, 0) ≡ 0, and that the matrices Fz(0) and
Gw(0) are invertible. ut

In the course of establishing the invariance, we have actually proved the following sta-
bility property of (nq1 , n

q

2) for q ≥ 1 for which we will have use later. Here, we use the
convention that Sq−1(x[2;q]; 0) = 0 for q = 1.
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Lemma 7. Let (M, 0), (M ′, 0) be given in normal coordinates by w = Q(z, χ, τ )

and w′ = Q′(z′, χ ′, τ ′), respectively, and assume that H : (M, 0) → (M ′, 0).
Then for any choice of (α, r) ∈ J with tp1′q(α, r)(x[1;q]; t) = (n

q

1 , n
q

2) we have
tp1′(α, r)

(
F(Sq−1(x[2;q]; t)), H̄ (S̄q(x[1;q]; t))

)
= (n

q

1 , n
q

2), and

it
(
1′(α, r)

(
F(Sq−1(x[2;q]; t)), H̄ (S̄q(x[1;q]; t))

))
= (it1′q(α, r))(y[1;q], u),

where

y2j+1
= Fz(0)x2j+1, y2j

= Fz(0)x2j , u =

{
Gw(0)t for q even,
Gw(0)t for q odd.

4. A concrete version of Gabrielov’s Theorem

One of the new tools which we use in this paper is the following concrete version and gen-
eralization of a theorem of Gabrielov [11]: Given a holomorphic map A(z) : (Cm, 0) →
(Cn, 0), where m ≥ n, we can conclude that g(w) is convergent if (A∗g)(z) = g(A(z))
is, provided that the “generic rank” of A is full. This last condition means that the rank
of the Jacobian matrix A′(z) is full over the field of fractions of C{z}. Our Theorem 5
provides a linear inversion of the pullback map A∗ : C[[w]] → C[[z]] which restricts to a
map C{w} → C{z} if A(z) is convergent. Furthermore, our inversion depends holomor-
phically on A as long as a certain vanishing order associated to A is constant.

For a formal map A(z) : (Cm, 0) → (Cn, 0) we denote by ν(A) the minimum order
of vanishing of minors of size n of the Jacobian of A. To be more precise, we denote
D = {(δ1, . . . , δn) ∈ {1, . . . , m}n : δ1 < · · · < δn}, and for δ ∈ D and a map A ∈ H, we
define

δ(A) =

∣∣∣∣∣∣∣∣
∂A1
∂zδ1

. . .
∂A1
∂zδn

...
...

∂An
∂zδ1

. . . ∂An
∂zδn

∣∣∣∣∣∣∣∣ .
We can thus define

ν(A) = min
δ∈D

ord δ(A).

We write H(m, n) (resp. Ĥ(m, n)) for the space of holomorphic (resp. formal holomor-
phic) maps (Cm, 0)→ (Cn, 0). If the dimensions are clear, we simply write H or Ĥ. We
can thus consider ν : Ĥ→ N; note that the maps of generic full rank are exactly the ones
for which ν <∞.

Theorem 5. For every s ≥ 0 there exists a finite family of polynomials 91, . . . , 9`(s) on
J s+1

0 ((Cm, 0), (Cn, 0)) and corresponding holomorphic functions

8k(A, f ) : Ûk × C[[z]] → C[[w]], 1 ≤ k ≤ `(s),

where Uk = {A ∈ H : 9k(j s+1
0 A) 6= 0}, Ûk = {A ∈ Ĥ : 9k(j s+1

0 A) 6= 0}, and 8k is
linear in its second variable, such that

8k(A,A
∗g) = g for A ∈ Ûk with ν(A) = s,
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and ⋃
k

Ûk ⊃ {A ∈ Ĥ : ν(A) = s},
⋃
k

Uk ⊃ {A ∈ H : ν(A) = s}

Furthermore, if A ∈ Uk , the operator 8k(A, ·) restricts to a linear operator C{w} →
C{z}, and the map 8k : Uk × C{z} → C{w} is holomorphic, where H, C{w}, and C{z}
are all equipped with their natural inductive limit topologies.

This theorem is actually a consequence of the following more explicit theorem. We work
with the weighted lexicographic ordering on monomials, i.e.

α ≺ β if |α| < |β| or |α| = |β| and β−α is negative in its first nonvanishing component;

correspondingly, for a series f (z) =
∑
α fαz

α we write

in f (z) = min
α
{fα 6= 0}, it f (z) = fin f z

in f .

Theorem 6. For every δ ∈ D and every δ0 ∈ Nm, writing q0 = |δ0| and `(β) =
|β|(q0+1), there exist polynomials Pβ on J `(β)0 ((Cm, 0), (Cn, 0))×J `(β)0 ((Cm, 0),C) and
a polynomial c on J q0+1

0 ((Cm, 0), (Cn, 0)) such that if g(A(z)) = f (z) and in δ(A) = δ0,
then

g(w) =
∑
β

Pβ(j
`(β)

0 A, j
`(β)

0 f )

c(j
q0+1
0 A)2|β|−1

wβ . (20)

Actually, c(jq0+1
0 A) is given by

c(j
q0+1
0 A) =

∂ |δ0|δ(A)

∂zδ0
(0),

and thus c(jq0+1
0 A) 6= 0 for all A with in δ(A) = δ0. Furthermore, for any M,R > 0,

there exist N, S > 0 such that if |Aα| ≤ MR−|α| and |fα| ≤ MR−|α|, then

|Pβ(j
`(β)

0 A, j
`(β)

0 f )| ≤ NS−|β|. (21)

We split the proof of Theorem 6 in two parts: In 4.1 we discuss how the Pβ are con-
structed in the formal setting, and we present the estimates in the analytic setting in 4.2.
Let us sketch how Theorem 5 follows from Theorem 6: For this, we choose finitely many
linear maps L1, . . . , L`0(s) : Cm → Cm such that for any homogeneous polynomial p ∈
C[z1, . . . , zm] of degree s there exists a k, 1 ≤ k ≤ `0(s) with in(p ◦Lk) = (s, 0, . . . , 0).

We apply Theorem 6 for every δ ∈ D and δ0 = (s, 0, . . . , 0); let us call the corre-
sponding polynomials P δβ and cδ . We define

9k,δ =
∂sδ(A ◦ Lk)

∂zs1
(0) = cδ(j

q0+1
0 (A ◦ Lk)).
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Thus, for any A ∈ H with 9k,δ(A) 6= 0, we have

g(w) =
∑
β

P δβ

(
j
`(β)

0 (A ◦ Lk), j
`(β)

0 (f ◦ Lk)
)

cδ(j
q0+1
0 (A ◦ Lk))2|β|−1

wβ = 8k,δ(A, f )(w),

provided that g(A(z)) = f (z). The holomorphy of 8k,δ follows from the estimates (21)
by the same arguments as presented in [15, §5], and Theorem 5 is proved.

4.1. Formal construction of the Pβ

We assume that δ(A)(z) 6≡ 0, and write Rδ(z) for the m × n matrix comprised of the
classical adjoint of the columns in ∂A/∂z corresponding to δ in the rows corresponding
to δ, and 0 in the other rows; thus A′(z)Rδ(z) = δ(A)(z)In×n. From now on, we will only
consider functions f and g such that f (0) = g(0) = 0, and think about δ as fixed; we
will write R = Rδ and λ(z) = δ(A)(z) for ease of notation.

Given a fixed nonnegative integer q0, we define functions Tα,β(f,A) for |α| ≥ 0 and
|β| ≥ 1, where f ∈ C[[z]], A ∈ C[[z]]n with f (0) = 0, A(0) = 0 by the following
recursion formulas:

Tα,ej (f,A) =
∑

α1
+α2
=α

1≤k≤m

α!

α1!α2!

∂ |α|+1f

∂zα
1+ek

(0)
∂ |α

2
|Rkj

∂zα
2 (0)

Tα,β+ej (f,A) =
∑

(α1,α2,α3)∈I 1
α

1≤k≤m

α!

α1!α2!α3!

∂ |α
1
|λ

∂zα
1 (0)Tα2+ek,β

(f,A)
∂ |α

3
|Rkj

∂zα
3 (0)

− (2|β| − 1)
∑

(α1,α2,α3)∈I 2
α

1≤k≤m

α!

α1!α2!α3!

∂ |α
1
|+1λ

∂zα
1+ek

(0)Tα2,β(f,A)
∂ |α

3
|Rkj

∂zα
3 (0), (22)

where I 1
α and I 2

α are index sets defined by

I 1
α = {(α

1, α2, α3) : α1
+ α2

+ α3
= α, |α1

| ≥ q0, |α
2
| ≥ (2|β| − 1)q0 − 1},

I 2
α = {(α

1, α2, α3) : α1
+ α2

+ α3
= α, |α1

| ≥ q0 − 1, |α2
| ≥ (2|β| − 1)q0}.

We will use the following observation to determine the order `(β) in Theorem 6; the proof
is a straightforward induction on |β|.

Lemma 8. With the notation above, Tα,β(f,A) is a polynomial in ∂ |γ |f
∂zγ

(0) and ∂ |γ |A
∂zγ

(0)
for |γ | ≤ |α|−|β|q0+|β|+q0, which is linear in f . In particular for a δ0 with |δ0| = q0,
T(2|β|−1)δ0,β(f,A) is a polynomial in ∂ |γ |f

∂zγ
(0) and ∂ |γ |A

∂zγ
(0) for |γ | ≤ |β|(q0 + 1).
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We are now in a position to define the Pβ by

Pβ(j
`(β)

0 A, j
`(β)

0 f ) =
T(2|β|−1)δ0,β(f,A)

β!((2|β| − 1)δ0)!
,

and c by c(jq0+1
0 A) =

∂q0λ(z)

∂z
q0
1
(0).

We now need to show that the Pβ defined in that way satisfy (20).
For every multi-index β with |β| > 0, we let the function ψβ(z) be defined by

λ(z)2|β|−1gwβ (A(z)) = ψβ(z). (23)

First note that

ψej (z) =

m∑
k=1

fzk (z)R
k
j (z);

indeed, start by taking the derivative of the equation g(A(z)) = f (z) with respect to z;
this gives g′(A(z))A′(z) = f ′(z), which after application of R(z) reads

λ(z)g′(A(z)) = f ′(z)R(z).

If we compare the j th rows in the last equation, we obtain the claimed formula for ψej .
Now we take a derivative of (23), after dividing by λ(z)2|β|−1, and see that

∂gwβ

∂w
(A(z))A′(z) =

λ(z)
∂ψβ (z)

∂z
− (2|β| − 1)ψβ(z) ∂λ(z)∂z

λ(z)2|β|
;

an application of R leads to

λ(z)g
w
β+ej (A(z)) =

1
λ(z)2|β|

m∑
k=1

(
λ(z)

∂ψβ(z)

∂zk
− (2|β| − 1)ψβ(z)

∂λ(z)

∂zk

)
Rkj (z).

Thus the ψβ satisfy the following recursion formulas:

ψβ+ej (z) =

m∑
k=1

(
λ(z)

∂ψβ(z)

∂zk
− (2|β| − 1)ψβ(z)

∂λ(z)

∂zk

)
Rkj (z).

It is now easy to see inductively that ∂
|α|ψβ
∂zα

(0) = Tα,β(f,A).

4.2. Convergence estimates

To prove the convergence properties, we show that if A is convergent, then the ψβ(z)
defined in (23) satisfy an estimate of the form |ψβ(0)| ≤ Mβ!C|β| for some constants
M and C, by adapting a method introduced by the first author in his thesis. We start by
introducing some notation and stating some lemmata which are needed in the proof of the
main estimate in Proposition 11. For a multi-index α = (α1, . . . , αm) and a real number
N ≥ 0, we will use (1+ α)N to denote

∏m
j=1(1+ αj )

N .
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Lemma 9. LetN > 1 be a real number. Then there exists a constant E(N) ≤ 2N+1ζ(N)

(where ζ(N) denotes the classical Riemann zeta function) such that for all multi-indices
α = (α1, . . . , αm), ∑

α1+α2=α

(1+ α)N

(1+ α1)N (1+ α2)N
≤ E(N)m. (24)

Proof. Note that it is enough to treat the case m = 1; for m > 1, the estimate follows by
rewriting the sum as a product of sums, and applying the estimate for m = 1:∑

α1+α2=α

(1+ α)N

(1+ α1)N (1+ α2)N
=

n∏
j=1

( ∑
α1
j +α

2
j =αj

(1+ αj )N

(1+ α1
j )
N (1+ α2

j )
N

)
≤ E(N)m.

For m = 1, we estimate as follows:

∑
α1+α2=α

(1+ α)N

(1+ α1)N (1+ α2)N
≤ 2

bα/2c∑
`=0

(1+ α)N

(1+ `)N (1+ α − `)N

≤ 2
bα/2c∑
`=0

(1+ α)N

(1+ `)N (1+ α/2)N
≤ 2N+1

bα/2c∑
`=0

1
(1+ `)N

< 2N+1
∞∑
`=0

1
(1+ `)N

<∞. ut

We define a useful function e(α, k), where α = (α1, . . . , αm) is a multi-index and k is a
nonnegative integer in the following way: Choose p, 1 ≤ p ≤ m, such that αp = maxj αj
and set

e(α, k) = (αp + k)!
∏

1≤j≤m
j 6=p

αj ! (25)

We will need the following two properties of e(α, k), the proof of which are left to the
reader:

Lemma 10. e(α, k), defined in (25), satisfies the following:

e(β + ej , k) ≤ e(β, k + 1), 1 ≤ j ≤ m,

α!e(α1, k)

α1!
≤ e(α, k), α1

≤ α.

We can now state the main result of this section.

Proposition 11. Let N > 1, and assume that∣∣∣∣∂ |α|f∂zα
(0)
∣∣∣∣ ≤ α! M1

K |α|(1+ α)N
,

∣∣∣∣∂ |α|h∂zα
(0)
∣∣∣∣ ≤ α! M2

K |α|(1+ α)N
, (26)

where h denotes any of the functions λ(z), λzj (z), or entries of the matrix R(z). There
exists a constant C1 = C1(K,M2) such that for all multi-indices α ∈ Nm and β ∈ Nn
with |β| > 0 we have

|Tα,β(f,A)| ≤ e(α, |β|)
M1C

|β|

1
K |α|+|β|(1+ α)N

. (27)
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Proof. We will prove (27) by induction on |β|. First, we look at the case |β| = 1, so we
estimate, using (26) and Lemma 10:

|Tα,ej (f,A)| ≤

m∑
k=1

∑
α1+α2=α

α!

α1!α2!

(α1
+ ek)!M1

K |α
1|+1(1+ α1 + ek)N

(α2)!M2

K |α
2|(1+ α2)N

≤
M1M2

K |α|+1

m∑
k=1

∑
α1+α2=α

α!

α1!
e(α1, 1)

1
(1+ α1)N

1
(1+ α2)N

≤
mM1M2

K |α|+1 e(α, 1)
∑

α1+α2=α

1
(1+ α1)N

1
(1+ α2)N

≤ e(α, 1)
M1C1

K |α|+1(1+ α)N
,

provided that C1 ≥ mM2E(N)
m. We now turn to the induction step, and prove (27) holds

with β replaced by β + ej for some j , provided that it holds for all β of lesser length. To
estimate Tα,β+ej , let us write (22) as

Tα,β+ej (f,A) =
∑

α1
+α2
=α

|α1
|≥2|β|q0−1
1≤k≤m

α!

α1!α2!
Qα1,β,k(f,A)

∂ |α
2
|Rkj

∂zα
2 (0), (28)

where Qα,β,k(f,A) = Q
1
α,β,k(f,A)+Q

2
α,β,k(f,A) with

Q1
α,β,k(f,A) =

∑
α1
+α2
=α

|α1
|≥q0

|α2
|≥(2|β|−1)q0−1

α!

α1!α2!

∂ |α
1
|λ

∂zα
1 (0)Tα2+ek,β

(f,A),

Q2
α,β,k(f,A) = −(2|β| − 1)

∑
α1
+α2
=α

|α1
|≥q0−1

|α2
|≥(2|β|−1)q0

α!

α1!α2!

∂ |α
1
|+1λ

∂zα
1+ek

(0)Tα2,β(f,A).

We will first establish estimates for Q1
α,β,k and Q2

α,β,k . Again using (26), and Lem-
ma 10 as at the induction start, we have

|Q1
α,β,k(f,A)| ≤

∑
α1+α2=α

α!

α1!α2!

e(α1
+ ek, |β|)M1C

|β|

1

K |α
1|+|β|+1(1+ α1 + ek)N

α2
!M2

K |α
2|(1+ α2)N

≤ e(α, |β| + 1)
M1M2E(N)

mC
|β|

1
K |α|+|β|+1(1+ α)N

.

Similarly, we see that

|Q2
α,β,k(f,A)| ≤ e(α, |β| + 1)

2M1M2C
|β|

1 E(N)m

K |α|+|β|(1+ α)N
,
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and combining this for Qα,β,k = Q
1
α,β,k +Q

2
α,β,k , we have

|Qα,β,k(f,A)| ≤ e(α, |β| + 1)
M1M2C

|β|

1 E(N)m(1+ 2K)
K |α|+|β|+1(1+ α)N

.

Finally, using (28) we estimate

|Tα,β+ej (f,A)| ≤

m∑
k=1

∑
α1+α2+α

α!

α1!
e(α1, |β| + 1)

M1M
2
2C
|β|

1 E(N)m(1+ 2K)
K |α|+|β|+1(1+ α1)N (1+ α2)N

≤ e(α, |β| + 1)
M1M

2
2 (1+ 2K)C|β|1 mE(N)2m

K |α|+|β|+1(1+ α)N

≤ e(α, |β| + 1)
M1C

|β|+1
1

K |α|+|β|+1(1+ α)N

provided that C1 ≥ M
2
2 (1+ 2K)mE(N)2m. We thus obtain (27) with

C1 ≥ mM2E(N)
m max(M2E(N)

m(1+ 2K), 1). ut

The proposition implies that

1
((2|β| − 1)δ0)!β!

|T(2|β|−1)δ0,β(f,A)| ≤

(
(n+ 1)2δ0m+1C1

K2q0+1

)|β|
·

Kq0

(n+ 1)δ0m
·M1,

where δ0m = maxj δ0j , which in particular implies the last statement of Theorem 6, the
proof of which is thus finished.

5. A parametrization theorem

As noted in the introduction, we need a parametrization theorem for solutions to a certain
type of singular analytic equations. While these equations usually do not possess any so-
lutions, if they do, the dependence of the solutions on the right hand side of the equations
is analytic as well. More specifically, we have the following theorem. We refer the reader
back to §2.3 for our notation for the jets appearing in its statement.

Theorem 7. Let P : (Cr , 0)→ (Cr , 0) be a holomorphic map, and assume that λ(y) =
detPy(y) 6≡ 0. Let h0(x, t) : (Cpx × Cqt , 0)→ (Cr , 0) be a holomorphic map, and write
λ ◦ h0

= λ0, g0
= P ◦ h0. Furthermore assume that λ0(x, t) 6≡ 0, and write (n1, n2) =

tp λ0 and k(`) = max(2n2− 1, n2+ `). Then there exists an integer k0, a neighbourhood
U0
⊂ J k0((Cp+q , 0), (Cr , 0)) of j k0

0 h
0, and for every ` ≥ 0 a neighbourhood V 0

` ⊂

J
k(`)
t ((Cpx × Cqt , 0),Cr) of j k(`)t,0 g0 and a holomorphic mapping 8` : U0

× V 0
` ⊃ W` →

J `t ((Cp × Cq , 0),Cr), where U0
× V 0

` ⊂ W`, with the property that

j `t,0h = 8`
(
j
k0
0 h, j

k(`)
t,0 (P ◦ h)

)
whenever tp(λ ◦ h) = (n1, n2).
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Following the arguments given in [15, §5], we see that Theorem 7 is an immediate conse-
quence of the following, more explicit theorem, whose proof is the main objective of this
section.

Theorem 8. Let P : (Cr , 0)→ (Cr , 0) be a holomorphic map, and assume that λ(y) =
detPy(y) 6≡ 0. Let h0(x, t) : (Cpx×C

q
t , 0)→ (Cr , 0) be a holomorphic map, and write λ◦

h0
= λ0. Furthermore assume that λ0(x, t) 6≡ 0, and denote (n1, n2) = tp λ0. Then there

exists an integer k0, a polynomial e : J k0((Cp+q , 0), (Cr , 0)) → C with e(j k0
0 h

0) 6= 0,
and for every α ∈ Np+q a set Nα ⊂ Np+q , a polynomial pα(Y, Zα), where Zα is a
variable in Cr|Nα |, and an integer dα , with the property that for any formal power series
h(x, t) =

∑
β hβx

β1
tβ

2
with h(0, 0) = 0 and g(x, t) =

∑
β gβx

β1
tβ

2
which satisfy

∂ |γ |

∂tγ

∣∣∣∣
t=0
P(h(x, t)) =

∂ |γ |

∂tγ

∣∣∣∣
t=0
g(x, t), |γ 2

| ≤ max(2n2 − 1, n2 + |α
2
|), (29)

and tp(λ ◦ h) = (n1, n2), we have

hα =
pα(j

k0
0 h, (gβ)β∈Nα )

e(j
k0
0 h)

dα
. (30)

The sets Nα can be chosen to satisfy Nα ⊂ {(β1, β2) : |β2
| ≤ max(|α2

| + n2, 2n2 − 1),
|β1
| ≤ a + b|α1

|} for some integers a, b ∈ N.
Furthermore, the pα can be chosen in such a way that for every multiradiusR∈Rp+q+ ,

N > 0, and every compact subset L ⊂ J k0((Cp+q , 0), (Cr , 0)) \ {e = 0} there exists a
multiradius C ∈ Rp+q+ and M > 0, depending on R, N , L and P , with the property that

if |gβ | ≤
N

Rβ
, β ∈ Nα, then

∣∣∣∣pα(3, (gβ)β∈Nα )e(3)dα

∣∣∣∣ ≤ M

Cα
for all 3 ∈ L.

We note the following useful corollary, which can be deduced from either Theorem 8 or
Theorem 7 by arguments analogous to the proof of Corollary 3.2 in [15]. We note that
similar statements hold with X replaced by e.g. a smooth or a topological manifold, with
the conclusions valid with the appropriate regularity.

Corollary 12. LetX be a complex manifold, and g(x, t, ω) be a map defined on a neigh-
bourhood of (0, 0, ω0) ∈ Cp × Cq × X. Let P : (Cr , 0) → (Cr , 0) be a holomorphic
map, and assume that λ(y) = detPy(y) 6≡ 0. Let h0(x, t) : (Cpx × Cqt , 0) → (Cr , 0),
write λ ◦ h0

= λ0 and g0
= P ◦ h0, and assume that g0(x, t) = g(x, t, ω0). Fur-

thermore assume that λ0(x, t) 6≡ 0. Then there exists an integer k0, a neighbourhood
U0
⊂ J k0((Cp+q , 0), (Cr , 0)) of j k0

0 h
0, and for every ` ≥ 0 a neighbourhood V 0

` ⊂ X

of ω0 and a holomorphic mapping 8` : U0
× V 0

` ⊃ W`→ J `t ((Cp ×Cq , 0),Cr), where
(n1, n2) = tp λ0, which satisfies

j `t,0h = 8`(j
k0
0 h, ω) if j k(`)t,0 (P ◦ h) = j

k(`)
t,0 (g(x, t, ω)) and tp(λ ◦ h) = (n1, n2).

Here we again set k(`) = max(2n2 − 1, n2 + `).
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Proof of Theorem 8. By assumption, λ0
= det ∂P

∂y
(h0(x, t)) 6≡ 0, and we recall that we

write (n1, n2) = tp λ0. We write A(y) for the classical adjoint of ∂P/∂y, that is, A(y) is
the r × r-matrix satisfying ∂P

∂y
(y)A(y) = A(y) ∂P

∂y
(y) = λ(y)Ir×r .

We first make a linear change of coordinates in x and a linear change of coordinates
in t to ensure that

e0 :=
1

n1!n2!

∂n1+n2λ0

∂x
n1
1 ∂t

n2
1
(0) 6= 0,

and write δ1
= (n1, 0, . . . , 0) ∈ Np, δ2

= (n2, 0, . . . , 0) ∈ Nq and δ = (δ1, δ2) ∈ Np+q .
Similarly, if h is any map with tp λ ◦ h = tp λ0, we write

e :=
1

n1!n2!

∂n1+n2(λ ◦ h)

∂x
n1
1 ∂t

n2
1

(0); (31)

e is a polynomial in the n1 + n2-jet of h at 0.
For the remainder of the proof, we recall that we use the following notation. For any

multiindex α ∈ Np+q = Np × Nq , α1 denotes its projection on the first p entries, and
α2 its projection on the last q entries. We write ϕ(x, t)[α] for the coefficient of xα

1
tα

2
in

ϕ(x, t). For brevity, we sometimes also write ϕ(x, t)[α] = ϕα .
We first define a weight ωk(α) = k1|α

1
| + k2|α

2
| by choosing k = (k1, k2), where k1

and k2 are positive integers. Let p0 = ωk(δ), and assume k2/k1 is chosen large enough
so that |α2

| < n2+ 1 whenever ωk(α) ≤ p0. Note that if λ0
[α] 6= 0 and ωk(α) ≤ p0 then

(|α1
|, |α2
|) = (n1, n2). We also introduce a monomial order ≺ by

α ≺ β :⇔


ωk(α) < ωk(β), or
ωk(α) = ωk(β), and α1 <lex β

1, or
ωk(α) = ωk(β), and α1

= β1, and α2 <lex β
2.

By Taylor’s Theorem, we can rewrite the equation

P(h(x, t)) = g(x, t)

for any decomposition of h(x, t) as the sum of two terms, say h = T1 + T2, as

P(T1)+ Py(T1)T2 + R(T1, T2) = g(x, t),

where R(T1, T2) is of order at least 2 in T2. After multiplying by A(T1), we obtain

λ(T1)T2 = A(T1)(g(x, t)− P(T1)− R(T1, T2)). (32)

We are going to exploit (32) iteratively, and start with the formal statement (i.e. we prove
the existence of the polynomials pα). For any given multiindex γ with ωk(γ ) > p0, we
let ` = max(|γ 2

|, n2 − 1) and write h = Tγ h+ Sγ h, where Tγ h = T 0h+ T 1
γ h and

(T 0h)(x, t) =
∑

ωk(α)≤p0

hαx
α1
tα

2
, (T 1

γ h)(x, t) =
∑

ωk(α)>p0, α≺γ

|α2
|≤`

hαx
α1
tα

2
.
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If h satisfies the hypotheses of the theorem, we substitute T1 = Tγ h, T2 = Sγ h in (32)
and compute the coefficient of xγ

1
+δ1
tγ

2
+δ2

. On the left hand side, we obtain

(λ(Tγ h)Sγ h)[γ + δ] =
∑

α+β=γ+δ

λ(Tγ h)[α] Sγ,`h[β] = λ(Tγ h)[δ] Sγ h[γ ] = ehγ .

Since ` ≥ n2 − 1 and ωk(γ ) > ωk(δ), the right hand side simplifies to A(Tγ h)(g(x, t)−
P(Tγ h)), which is a polynomial in the coefficients gα of g(x, t) with α � γ + δ, |α2

| ≤

`+ n2, as well as in hα , where α ≺ γ , and α2
≤ `.

We define k0 = max{|α1
| + |α2

| : ωk(α) ≤ p0}. Note that we can regard e =
e((hα)ωk(α)≤p0) as a polynomial on J k0

0 ((C
p
x×C

q
t , 0),Cr). Now a simple induction shows

that we can define polynomials pγ (Y, Z) in the variables Y = (Yα)ωk(α)≤p0 and Z =
(Zβ)β�γ+δ,|β2|≤`+n2

such that with some numbers dγ for any map h(x, t) satisfying the
hypotheses of the theorem we have

hγ =
pγ ((hα)ωk(α)≤p0 , (gβ)β�γ+δ,|β2|≤`+n2

)

e((hα)ωk(α)≤p0)
dγ

, (33)

as required.
In order to carry out the estimates, we need to be a bit more precise about how we

define the polynomials pγ . To do that, we will use the splitting Tγ h = T 0h + T 1
γ h. We

rewrite the right hand side of (32) (with R removed, as it does not contribute any terms)
by setting T1 = Y1 + Y2:

A(T1)(g(x, t)− P(T1)) = A(Y1 + Y2)(g(x, t)− P(Y1 + Y2))

= A(Y1)(g(x, t)− P(Y1))+
∑
j,k

∂Aj

∂Y k
(Y1)(g

j (x, t)− P j (Y1))Y
k
2

− λ(Y1)Y2 + R2(x, t, Y1, Y2), (34)

where R2 is at least of order 2 in Y2; we have written Y = (Y 1, . . . , Y r), and denoted
the j th column of A by Aj ; gj , P j are the components of g and P , respectively. We will
replace Y1 and Y2 by (T 0h)(x, t) and (T 1

γ h)(x, t), respectively.
To simplify notation, we write

Ãk(x, t) =
∑
j

∂Aj

∂Y k
((T 0h)(x, t))

(
gj (x, t)− P j ((T 0h)(x, t))

)
,

J̃ (x, t) =
∑
j

Aj ((T
0h)(x, t))

(
gj (x, t)− P j ((T 0h)(x, t))

)
,

R2(x, t, Y1, Y2) =
∑
j,k

R2,j,k(x, t, Y1, Y2)Y
j

2 Y
k
2 .

(35)
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Using this notation, we define the polynomials pγ satisfying (33) by the recursion formula

e · hγ = J̃ (x, t)[γ + δ] +
∑
k

∑
α+β=γ+δ
ωk(β)≥p0+1

(T 1
γ h

k)(x, t)[α]Ãk(x, t)[β]

−

∑
α+β=γ+δ
ωk(β)≥p0

(T 1
γ h)(x, t)[α]λ((T

0h)(x, t))[β]+R2(x, t, (T
0h)(x, t), (T 1

γ h)(x, t))[γ + δ].

(36)

Next we turn to the convergence estimates. For this part we will no longer assume that
h satisfies (29) and tp(λ ◦ h) = (n1, n2), but we assume that h satisfies the recursion for-
mula (36). We assume the following convergence estimates for some R ∈ Rp+q+ , S ∈ Rr+,
and some N > 1:

‖Ãk(x, t)[α]‖∞ ≤
M2

Rα(1+ α)N
, |α2

| ≤ n2 + `,

‖J̃ (x, t)[α]‖∞ ≤
M2

Rα(1+ α)N
, |α2

| ≤ n2 + `,

|λ(T 0h(x, t))[α]| ≤
M2

Rα(1+ α)N
, |α2

| ≤ n2 + `,

‖R2,j,k(x, t, T
0h(x, t), Y )[xα

1
tα

2
Y η]‖∞ ≤

M2

RαSη(1+ α)N
, |α2

| ≤ n2 + `.

We also write
N0 =

∑
ωk(α)=p0
α>δ

|λ(T 0h(x, t))[α]|

We define e from (31). We will regard N0 and e as functions on J k0
0 ((C

p
x × Cqt , 0),Cr).

In order to have a common notation, we will assume that we choose the neighbourhood
U0 such that e and N0 remain bounded above, and e remains bounded below on it, and
we write

e = min
3∈U0

|e(3)|, N0 = max
3∈U0

|N0(3)|.

We assume that by induction we already have

‖T 1
γ h(x, t))[α]‖∞ ≤

M

Cα(1+ α)N
for α ≺ γ, |α2

| ≤ `. (37)

We can assume that the multiradius R is of the form

R = ( R
k1
0 , . . . , R

k1
0︸ ︷︷ ︸

p entries

, R
k2
0 , . . . , R

k2
0︸ ︷︷ ︸

q entries

)

for some R0 > 0, and we will choose C of the form

C = (C
k1
0 , C

k1
0 /K, . . . , C

k1
0 /K︸ ︷︷ ︸

p−1 entries

, C
k2
0 , C

k2
0 /K, . . . , C

k2
0 /K︸ ︷︷ ︸

q−1 entries

),
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where C0 and K are real numbers satisfying 0 < C0 < R0 and K ≥ 1. We note that by
our choice of ordering it then follows that

Cα

Cδ
≤

1
K

for ωk(α) = ωk(δ), δ ≺ α.

We also note that

1
Cδ

Cβ

Rβ
=

1
C
p0
0

Cβ

Rβ
≤

C0

R
p0+1
0

if ωk(β) > p0. (38)

We furthermore choose M in (37) to be of the form

M = M1C
p0
0 .

Now, we will successively restrict the constants K , M1, and C0 by requiring that they
satisfy the following inequalities (E denotes the constant given by Lemma 9 for N ):

(1+ |δ|)(p+q)NN0

K
≤

e
4
, C0

M2

M1

1

R
2p0+1
0

≤
e
4
,

r2M1M2E
2(p+q)

≤
e
4
,

(r + 1)C0M2E
p+q

R
p0+1
0

≤
e
4
,

(39)

and

max
j

Cj

Rj
+

∑
|η|>0

(C
p0
0 M1E

p+q)|η|

Sη
≤ 1. (40)

Let us now start estimating terms in (36). We start with

‖J̃ (x, t)[γ + δ]‖∞ ≤
M2

Rγ+δ(1+ γ + δ)N
=

M

Cγ (1+ γ + δ)N
M2

M1R
p0
0

Cγ

C
p0
0 Rγ

≤
M

Cγ (1+ γ )N
C0M2

M1R
2p0+1
0

≤
e
4

M

Cγ (1+ γ )N
, (41)

where we have used (39) and (38).
We continue with

∑
α+β=γ+δ, ωk(β)≥p0

(T 1
γ h)(x, t)[α] λ((T

0h)(x, t))[β], in which we
are going to treat the sums over β with ωk(β) = p0 and with ωk(β) > p0 differently. We
have
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α+β=γ+δ

ωk(β)=p0, δ≺β

‖(T 1
γ h)(x, t)[α]‖∞ |λ((T

0h)(x, t))[β]|

≤

∑ M

Cα(1+ α)N
|λ((T 0h)(x, t))[β]|

≤
M

Cγ (1+ γ )N
∑ Cγ

Cα

(1+ γ )N

(1+ α)N
|λ((T 0h)(x, t))[β]|

≤
M(1+ |δ|)(p+q)N

Cγ (1+ γ )N
∑ Cβ

Cδ
|λ((T 0h)(x, t))[β]| ≤

M(1+ |δ|)(p+q)NN0

KCγ (1+ γ )N

≤
e
4

M

Cγ (1+ γ )N
(42)

for terms with ωk(β) = p0, where we have used (39) in the last line. For the other terms,
we use (38) and estimate

∑
α+β=γ+δ
ωk(β)>p0

‖(T 1
γ h)(x, t)[α]‖∞ |λ((T

0h)(x, t))[β]| ≤
∑ M

Cα(1+ α)N
M2

Rβ(1+ β)N

≤
MM2

Cγ

∑ 1
Cδ

Cβ

Rβ

1
(1+ α)N (1+ β)N

≤
M

Cγ (1+ γ )N
C0M2E

p+q

R
p0+1
0

. (43)

We next turn to terms arising from the second term on the right hand side of (36). We
can estimate these terms as in (43) by∑

k

∑
α+β=γ+δ
ωk(β)≥p0+1

|(T 1
γ h

k)(x, t)[α]| ‖Ãk(x, t)[β]‖∞

≤ r
∑ M

Cα(1+ α)N
M2

Rβ(1+ β)N
≤

M

Cγ (1+ γ )N
rC0M2E

p+q

R
p0+1
0

.

If we combine this with the terms from (43), we see that we can estimate them together
using (39) by

M

Cγ (1+ γ )N
(r + 1)C0M2E

p+q

R
p0+1
0

≤
e
4

M

Cγ (1+ γ )N
. (44)

Now let us turn to the remaining term in (36) containing R2. We write

R2,j,k(x, t, T
0h(x, t)), Y ) = R̃2,j,k(x, t, Y )

and claim that

‖R̃2,j,k(x, t, T
1
γ h(x, t))[α]‖∞ ≤

M2

Cα(1+ α)N
.
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To prove the claim, we first note that it holds for α = 0, so we assume |α| > 0. We
estimate

‖R̃2,j,k(x, t, T
1
γ h(x, t))[α]‖∞ =

∥∥∥ ∑
ν+σ=α
ν+η>0

R̃2,j,k(x, t, Y )[x
ν1
tν

2
Y η](T 1

γ h(x, t))
η
[σ ]

∥∥∥
∞

≤
M2

Rα(1+ α)N
+

∑
ν+σ=α
|η|>0

M2

RνSη(1+ ν)N
M |η|E(p+q)(|η|−1)

(1+ σ)NCσ
.

Now, since Cj ≤ Rj and |α| > 0, we have

M2

Rα(1+ α)N
≤

M2

Cα(1+ α)N
max
j

Cj

Rj
.

Again using that Cj ≤ Rj , we get∑
ν+σ=α
|η|>0

M2

RνSη(1+ ν)N
M |η|E(p+q)(|η|−1)

(1+ σ)NCσ
≤

M2

Cα(1+ α)N
∑
|η|>0

(C
p0
0 M1E

p+q)|η|

Sη
.

Hence the claim follows from the assumption (40). We continue to estimate the remainder
by

‖R̃2,j,k(x, t, T
1
γ h(x, t))(T

1
γ h)j (T

1
γ h)k[γ + δ]‖∞ ≤

M2M
2E2(p+q)

Cγ+δ(1+ γ + δ)N

≤
M

Cγ (1+ γ )N
M1M2E

2(p+q). (45)

So from (45) and (39), we have∥∥∥∑
j,k

R̃2,j,k(T
1
γ h)j (T

1
γ h)k[γ + δ]

∥∥∥
∞

≤
M

Cγ (1+ γ )N
r2M1M2E

2(p+q)

≤
e
4

M

Cγ (1+ γ )N
. (46)

We can now combine (41), (42), (44) and (46); we see that with our choices, also

|ehγ | ≤ e
M

Cγ (1+ γ )N
,

which ends the proof of the theorem. ut

6. Proof of Theorem 2

After having discussed all the necessary tools, we can finally turn to the proof of The-
orem 2. We start with the following proposition, which acts as the induction step in the
construction of the parametrization.
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Proposition 13. Let (M, 0) be a generic real-analytic submanifold of CN which is holo-
morphically nondegenerate. Then for any q ≥ 1, there exists a sequence {mq(`)}`≥0 of
integers with the following property: If for some ` ≥ 0, there exists a mapping 8 defined
on some open neighbourhood U of {0} × V ⊂ C(q−1)n

× J k0 ((C
N , 0), (CN , 0)), tak-

ing values in J
mq (`)
t ((C(q−1)n

× Cd , 0), (CN , 0)), holomorphic in the first variable and
real-analytic in the second, where V is an open neighbourhood of j k0 id, such that

j
mq (`)

t,0 H ◦ Sq−1(x[2;q], t) = 8(x[2;q], j k0H),

for all H ∈ Aut(M, 0) with j k0H ∈ V , then there exists an integer k̃ and a mapping

9 : CN × J k̃0 ((C
N , 0), (CN , 0)) ⊃ Ũ → CN

defined in an open neighbourhood Ũ of {0} × Ṽ , where Ṽ is an open neighbourhood of
j k̃0 id, holomorphic in the first variable and real-analytic in the second, which satisfies

j `t,0H ◦ S
q(x[1;q], t) = 9(x[1;q], j k0H) for all H ∈ Aut(M, 0) with j k0H ∈ Ṽ .

Proof. Let us choose normal coordinates for (M, 0) as usual, and choose (α, r) ∈ J with
tp1q(α, r) = (nq1 , n

q

2). Let us write

Q(z, ζ ) = (Qr1
α1(z, ζ ), . . . ,Q

rN
αN
(z, ζ )),

and recall that we define |α| = max |αj |. Lemma 5 and an application of the chain rule
provide us with a mapping P1, polynomial in its last argument, such that we can write

Q
(
F(z,Q(z, ζ )), H̄ (ζ )

)
=
P1
(
z, ζ ;Hzγwδ (z,Q(z, ζ )) : |γ | + |δ| ≤ |α|

)(
det
(
∂F (z,Q(z,ζ ))

∂z

))2|α|−1 . (47)

Let us write R(z, ζ ;Fz(z, ζ ), Fw(z, ζ )) for the denominator in (47). In (47), we replace
ζ by S̄q(x[1;q]; t) and z by x2 to obtain

Q
(
F(Sq−1(x[2;q]; t)), H̄ (S̄q(x[1;q]; t))

)
=
P2
(
x[1;q], t;Hzγwδ (S

q−1(x[2;q]; t)) : |γ | + |δ| ≤ |α|
)

R
(
x[1;q], t;Fz(Sq−1(x[2;q]; t)), Fw(Sq−1(x[2;q]; t))

) . (48)

If we choose mq(`) ≥ |α|, we can use the assumption and Lemma 4 applied to the
representation of H ◦ Sq−1

= 8 in order to replace the right hand side of (48) by a
fraction R(x[1;q], t; j k0H) = P(x

[1;q], t; j k0H)/R(x
[1;q], t; j k0H) satisfying

j
mq (`)−|α|

t,0 Q
(
F(Sq−1(x[2;q]; t)), H̄ (S̄q(x[1;q]; t))

)
= j

mq (`)−|α|

t,0 R(x[1;q], t; j k0H),

where both P(x, t;3) and R(x, t;3) are convergent in a neighbourhood of
{0} × J k0 ((C

N , 0), (CN , 0)), and R(0, 0;3) 6= 0 if 3 is invertible. We now consider
the system of equations

H ◦ Sq−1
= 8, Q(F ◦ Sq−1, H̄ ◦ S̄q) = R,
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and we would like to apply Corollary 12 to it. The system is of the form considered there,
with P(y1, y2, y3) = (y1, y2,Q(y1, y3)), so that λ(y) = 1(α, r)(y1, y3), with 1 defined
in (12). Corresponding to H = id, we set h0(x, t) = (Sq−1(x[2;q], t), S̄q(x[1;q], t)),
and we have λ0(x, t) = λ ◦ h0(x, t) = 1q(α, r)(x[1;q]; t), and tp λ0

= (n
q

1 , n
q

2).
We now use Corollary 12 with X = J k0 ((C

N , 0), (CN , 0)), setting g(x, t, ω) =

(8(x, t, ω),R(x, t, ω)), ω0 = j
k
0 id. It supplies us with an integer k0, a neighbourhood

V 0
` of j k0

0 id, and a holomorphic function8` with j `t,0h = 8`(j
k0
0 h, ω) if h = (h1, h2, h3)

satisfies j k(`)t,0 P(h1, h2, h3) = j
k(`)
t,0 g(x, t, ω). Hence, if we set mq(`) = |α| + k(`) and

use Lemma 7, we see that (h1, h2, h3) = (F ◦ S
q−1,G ◦ Sq−1, H̄ ◦ S̄q) satisfies all the

assumptions of Corollary 12, and we have, with 8` = (81
`,8

2
`,8

3
`),

j `t,0H̄ ◦ S̄
q
= 83

`(j
k0
0 H̄ ◦ S̄

q , j k0H),

and hence we have the required function 9 with k̃ = max(k, k0) after substituting
j
k0
0 H̄ ◦ S̄

q
= ϕ(j

k0
0 H̄ ) and taking the complex conjugate of the last equation. ut

Corollary 14. Let (M, 0) be a generic real-analytic submanifold of CN which is holo-
morphically nondegenerate. Then for any q ≥ 1, there exists an integer k(q) and a map
9q defined on an open neighbourhood of {0} × Vq ⊂ Cqn × J k(q)0 ((CN , 0), (CN , 0))
where Vq is an open neighbourhood of j k(q)0 id, valued in CN , holomorphic in the first
variable and real-analytic in the second, such that

H ◦ Sq(x[1;q], 0) = 9q(x[1;q], j k(q)0 H) for H ∈ Aut(M, 0) with j k(q)0 H ∈ Vq .

Furthermore, there exists a polynomial s defined on J
k(q)

0 ((CN , 0), (CN , 0)) with
s(j

k(q)

0 id) 6= 0, integers rα and polynomials pα (also defined on J k(q)0 ((CN , 0), (CN , 0)))
defined for α ∈ Nnq such that

9q(x, ω) =
∑
α∈Nnq

pα(ω)

s(ω)rα
xα.

Proof. The corollary follows in a straightforward manner from Proposition 13 after not-
ing that H(0, t) satisfies the assumptions for q = 1 trivially for any order; in particular,
for the order m1(m2(. . . mq(0) . . . )). Now we can apply the proposition inductively, end-
ing with an integer k(q) as claimed.

In order to check the second part of the corollary, we refer the reader to the specific
form of the solution used in the proposition which is constructed in Theorem 8; that is,
we use (30) to obtain this result. ut

Proof of Theorem 2. If (M, 0) is minimal, the Baouendi–Ebenfelt–Rothschild criterion
[1] ensures that for some q ≤ d + 1, the Segre map Sq(x[1;d]; 0) is generically of full
rank. We can thus apply Theorem 5 to the parametrization of H along Sq constructed in
Corollary 14. The result now follows immediately. ut
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