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Abstract. Second-order symmetric Lorentzian spaces, that is, Lorentzian manifolds with vanishing
second derivative ∇∇R ≡ 0 of the curvature tensor R, are characterized by several geometric
properties, and explicitly presented. Locally, they are a productM = M1×M2 where each factor is
uniquely determined as follows: M2 is a Riemannian symmetric space and M1 is either a constant-
curvature Lorentzian space or a definite type of plane wave generalizing the Cahen–Wallach family.
In the proper case (i.e., ∇R 6= 0 at some point), the curvature tensor turns out to be described by
some local affine function which characterizes a globally defined parallel lightlike direction. As
a consequence, the corresponding global classification is obtained, namely: any complete second-
order symmetric space admits as universal covering such a product M1 ×M2. From the technical
point of view, a direct analysis of the second-symmetry partial differential equations is carried out
leading to several results of independent interest on spaces with a parallel lightlike vector field, the
so-called Brinkmann spaces.
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1. Introduction

A venerable result in differential geometry (Nomizu and Ozeki [34], Tanno [43]) states
that, for a Riemannian manifold (M, g), the vanishing of the rth covariant derivative of
its curvature tensor R,

∇
rR (= ∇ (r). . . ∇R) ≡ 0, r ≥ 2, (1)

implies the vanishing of the first one, i.e., that (M, g) is locally symmetric. As a con-
sequence, the standard generalization of Riemannian locally symmetric spaces are the
semi-symmetric spaces, introduced by Cartan [13] and defined by the commutativity of
the covariant derivatives applied to R:

R(X, Y )R := (∇X∇Y −∇Y∇X −∇[X,Y ])R = 0 for all vector fields X, Y. (2)

Their structure was determined by Szabó locally in [41] and globally later in [42]. How-
ever, when (M, g) is a Lorentzian manifold, the equality (1) does not imply ∇R = 0.
In fact, the irreducible character of the de Rham decomposition, which was an essential
ingredient in the Riemannian result, fails for Lorentzian metrics. Thus, a ladder of logi-
cal generalizations of Lorentzian locally symmetric spaces is given by (1). We call these
semi-Riemannian manifolds rth-order symmetric (or rth-symmetric for short) spaces.1

The purpose of the present article is to determine the simplest of these new classes ex-
plicitly: the Lorentzian 2nd-symmetric spaces.2

The classification of Riemannian locally symmetric spaces has been known since Car-
tan’s work [12] (see also [25, 7]), and the classification of Lorentzian simply-connected
symmetric spaces was carried out by Cahen and Wallach in [10]. Extensions to other sig-
natures and to non-simply-connected cases are also available: see Cahen and Parker [9],
Neukirchner [33] and specially Kath and Olbrich [26, 27]. Lorentzian semi-symmetric
spaces have also been studied in the literature; see for instance their classification in
four dimensions [16, 22] and references therein. Nevertheless, prior to the paper [37]
by one of the authors, the 2nd-symmetric spaces had not been studied systematically. As
pointed out in this reference, simple examples of proper rth-symmetric—rth-symmetric
but not (r − 1)th-symmetric—Lorentzian spaces can be constructed within the class of

1 rth-order symmetric spaces were introduced in [37] and termed r-symmetric for short. How-
ever, a different notion of 3-symmetric space, introduced by Gray [20], was already available and
somehow spread in the literature (for example, see the recent article [21]). Thus, we have preferred
to use the ordinal (3rd-symmetric, say) to avoid any possible confusion.

2 The results of the present paper were announced in particular at the Spanish Relativity Meetings
celebrated in Bilbao, 7–11 September ’09 (only the four dimensional case, see [5]) and in Granada,
6–10 September ’10 where the general n-dimensional case was considered (see [6]).
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n-dimensional plane waves (see Subsection 3.3 below). They constitute a straightforward
generalization of the locally symmetric Cahen–Wallach spaces [10] and, as we will prove,
they essentially exhaust the whole class of proper 2nd-symmetric Lorentzian spaces.

It is worth pointing out that the 2nd-symmetric spaces are appealing from the view-
point of the local group of symmetries of the manifold, because the condition ∇2R = 0
can be expressed in terms of the infinitesimal holonomy algebra of the manifold (as this
algebra is generated by the image of the curvature two-form and its first derivative; see,
for example, [28, Th. 9.2, Ch. III]); in fact, the main result in [37] is a property of this
holonomy group. With the help of this property and the well-established results on locally
symmetric spaces by Cahen and Wallach, our proof will be completely self-contained, by
solving the equations of 2nd-symmetry crudely.3

Specifically, the main result we will prove is:

Theorem 1.1. An n-dimensional proper 2nd-symmetric Lorentzian space (M, g) is lo-
cally isometric to a direct product (M1 ×M2, g1 ⊕ g2) where (M2, g2) is a non-flat Rie-
mannian symmetric space and (M1, g1) is a proper generalized Cahen–Wallach space of
order 2, defined as M1 = Rd+2 (d ≥ 0) endowed with the metric

g1 = −2du
(
dv + du

d+1∑
i,j=2

pij (u)x
ixj
)
+

d+1∑
i=2

(dxi)2,

where (u, v, x2, . . . , xd+1) are the natural coordinates of Rd+2 and each function pij
is affine: pij (u) = αiju + βij for some αij , βij ∈ R with at least one of the αij non-
vanishing, and i, j = 2, . . . , d + 1.

Moreover, if (M, g) is also geodesically complete and simply connected, then (M, g)
is globally isometric to one such direct product.

Very roughly, the idea of the proof is the following. The starting point is a significant re-
sult obtained by one of the authors ([37, Theorem 4.2]): any simply-connected Lorentzian
proper 2nd-symmetric space (M, g) admits a parallel lightlike vector fieldK . Lorentzian
spaces with such a K were obtained by Brinkmann [8] and will be studied in Sec. 4,
where local bases associated to what we call Brinkmann charts {u, v, xi} will be intro-
duced. The fact that, for any such chart, the slices with constant u and v happen to be
locally symmetric suggests a reduction of the equations for 2nd-symmetry. This reduc-
tion is carried out by exploiting the integrability conditions in full, and by applying some
technical algebraic properties. Then, Eisenhart-type decompositions can be used to trans-
form the original equations in (M, g) into the 2nd-symmetry equations of two simpler
spacetimes from which the stated parts (M1, g1) and (M2, g2) emerge locally. Some geo-
metric elaborations yield the global result. In fact, along the proof it will become apparent
that (M, g) admits a globally defined parallel lightlike direction. Thereupon, the global
requirements complete the proof easily.

3 While the present paper was being finished, a different local approach fully based on holonomy
groups (including landmarks such as the classification of all the holonomy groups in Lorentzian
signature [30]) was developed in [1], [19]. By using it, the crucial result in [37, Theorem 4.2] is
revisited in [1], and a partial version of Theorem 1.1 below follows from [1, 19].
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Summing up, we will prove that the implicit symmetries in the equations of 2nd-
symmetry turn out to be sufficient to solve them, and actually to find their general solution
explicitly. Incidentally, different technical tools for some classes of partial differential
equations, which may be of interest in its own right, will be developed.

1.1. Outline of the paper

This article is organized as follows. In Section 2, we fix all our conventions and explain the
notation. We are specially careful with the latter, for we will use a powerful combination
of intrinsic expressions and tensor-component computations.

In Section 3, we review some results on locally symmetric spaces (Subsection 3.1),
and compare them with the known results on 2nd-symmetric ones (Subsection 3.2). We
also describe the properties of the generalized Cahen–Wallach family of Lorentzian man-
ifolds (Subsection 3.3). They will turn out to be the non-trivial part of the proper 2nd-
symmetric spaces (Proposition 3.9). Judicious interpretations alongside some technical
results (Corollary 3.8, Lemma 3.10) will imply that the global counterpart of Theorem
1.1 can be obtained from the local one. Accordingly, in the following sections we will
work locally, except when otherwise stated explicitly.

Section 4 is devoted to a local study of Brinkmann spaces. It has a technical nature,
but it may be of interest in its own right. In Subsection 4.1 we revisit the known procedure
to find a Brinkmann chart {u, v, xi} associated to a Brinkmann decomposition {u, v}, so
that the metric of the manifold is written as

g = − 2du(dv +H(u, xk)du+Wi(u, x
k)dxi)

+ gij (u, x
k)dxidxj , k = 2, . . . , n− 1 (3)

(see Section 2 for notation). These yield an associated spacelike (n − 2)-foliation M
characterized by constant values of u and v, and a not necessarily orthogonal timelike
2-foliation U generated by ∂u, ∂v , as well as other distributions of interest. For the sake
of clarity, the relations among tensor fields on these distributions are briefly explained.
In Subsection 4.2, three operators ∇, d and ˙ adapted to the foliations M and U are in-
troduced and related to the connection ∇, the exterior differential d and the geometry of
the foliation M. In Subsection 4.3, computations à la Cartan on local vector-field bases
introduced in (10) yield manageable expressions of the connection one-forms and the first
two covariant derivatives of the curvature tensor R. To help with simplifying the resulting
expressions, a fourth differential operator D0 with a transverse nature, which comple-
ments the three previous ones, is introduced. The dependence of all the above mentioned
objects on the Brinkmann chart and their behavior under changes of charts is emphasized
and explicitly controlled. Then, a version of a classical Eisenhart theorem [17] adapted
to our problem, which involves u-dependent metrics on the leaves of a foliation endowed
with the intrinsic ∇ and the transverse D0 derivatives, is provided in Theorem 4.29 of
Subsection 4.4. This allows us to obtain sufficient conditions for the u-family of Rieman-
nian metrics g = gij (u, xk)dxidxj in (3) to be simultaneously reducible.

In Section 5 we solve the equations of 2nd-symmetry on Brinkmann spaces in several
steps. Firstly, we prove that the equations of 2nd-symmetry imply that the foliation M
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must be locally symmetric for all Brinkmann charts {u, v, xi} associated to a fixed de-
composition {u, v}, hence severe restrictions on the curvature must hold. Secondly, using
some auxiliary algebraic results on vector spaces, those restrictions are explicitly deter-
mined in Propositions 5.6 and 5.7. Moreover, a two-covariant tensor field Ã on M, asso-
ciated to the Brinkmann decomposition {u, v} only but not to the other coordinates of the
Brinkmann chart, is defined in Corollary 5.2. All the information on the tensor field ∇R
is codified in Ã and the leaves of M. These results are summarized in Theorem 5.1 and
its corollary of Subsection 5.1. Thirdly, a reorganization of the 2nd-symmetry equations
into two independent blocks associated to different Brinkmann manifolds (M [m], g[m])
with m ∈ {1, 2} is proven in Subsection 5.2 (Theorem 5.16 and Proposition 5.18). This is
achieved by applying our version of the Eisenhart theorem showing that the metric is suit-
ably reducible to a Ricci-flat part and a non-Ricci-flat one. Actually, the former is flat as
a consequence of a known result [2] and the operator Ã lives only in this flat part (Propo-
sition 5.12). Finally, the proof of the main result is completed in Subsection 5.3. The
first space (M [1], g[1]) is directly computable leading to the required generalized Cahen–
Wallach expression of the part (M1, g1) in Theorem 1.1. The 2nd-symmetry equations
for the second space (M [2], g[2]) become equivalent to the equations for local symme-
try so that (M [2], g[2]) collapses to a locally symmetric Brinkmann space, therefore the
Cahen–Wallach classification allows us to determine the Riemannian locally symmetric
part (M2, g2) in Theorem 1.1.

To end this introduction, we would like to emphasize that our results open new ques-
tions and lines of interest. The first two are obvious, consisting in the study of proper
rth-symmetric spaces with r > 2, and the study of 2nd-order symmetric spaces with
metrics of index greater than 1. In both cases, our approach is not directly applicable
and, in fact, it is not clear how these generalizations would affect even our starting point
([37, Theorem 4.2]). Moreover, recall that the resulting proper 2nd-symmetric spaces
share the symmetries of plane waves (for explicit expressions including the more exotic
Kerr–Schild symmetries, see [15]). So, an interesting question may be to find connections
between the group of symmetries inherent a priori to rth-symmetry, and the actual sym-
metries of the proper rth-symmetric spaces eventually obtained. Lastly, the non-simply
connected case and, in particular, the existence of compact quotients of plane waves, be-
comes also a natural problem in this setting (we thank Professor A. Zeghib, from ENS
Lyon, for discussions stressing the importance of this question).

2. Notation and conventions

M will denote a (connected) n-dimensional manifold. For simplicity, it will be implicitly
assumed to be differentiable of class Ck with k = ∞, but one only needs k = r + 3
for rth-order symmetric spaces, i.e., k = 5 for most of the paper. Accordingly, all ob-
jects will be assumed to be as differentiable as necessary depending on k. For Lorentzian
metrics, our convention on the signature is (−,+, . . . ,+). Indices written in Greek small
letters α, β, λ, . . . will run from 0 to n − 1, while those in Latin small letters starting
from i (i, j, k, . . .) will run from 2 to n − 1 and the usual summation convention is
used.
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A chart on the manifold will be indicated simply with its coordinate functions {xα}.
When working on a Brinkmann space the coordinates x0 and x1 will also be written as u
and v, respectively, according to (3). For f ∈ C∞(M) its partial derivatives are denoted
by

ḟ ≡
∂f

∂u
and f,i ≡

∂f

∂xi
. (4)

Most of our computations will be local, in an appropriate neighborhood U of any point
p ∈ M , but we will not specify the neighborhood —as we have already done with the
charts. In general, we will use the notation as if U = M except if there were some
possibility of confusion.

Let TM and T ∗M be the tangent and the cotangent bundles of M , respectively, and
π : TM → M the natural projection. An l-distribution on M will be regarded as an
l-subbundle E of TM and it will be involutive if E = TF for some foliation F of M . In
this case, the bundle of all the s-covariant and r-contravariant tensors on TF is denoted
by T rs F . The space of sections of a fiber bundle πE : E → M will be written 0(E),
unless the base is not evident, in which case we use 0(M,E). In the case of sections of
s-form bundles the notation will be simplified: 3sE denotes the space of all s-forms.

To write tensor equations in components, some local vector field basis {Vα} on TM ,
or on some of its subbundles, plus its dual basis {ζα} for T ∗M are used. Of course,
these bases are not necessarily holonomic, i.e., associated to specific coordinates {xα},
for which we use the standard notation {∂α}, {dxα}. We will follow typical notation for
covariant derivatives and their components as, for example, in [36, pp. 30–35]. Notice
that we denote the components of R as defined in (2) by Rαβλµ, which agrees with [24,
40] but differs from [36] where the same is written as Rλµβα (therefore, Rαβλµ differs in
sign).

Sometimes the abstract index notation is also used (see [44] for more information).
The symmetrization (respectively antisymmetrization) of a tensor field T is denoted by
round (respectively square) brackets that enclose the indices to be symmetrized (respec-
tively antisymmetrized). For example, T(αβ)λ = (Tαβλ + Tβαλ)/2 and T[α|β|λ] = (Tαβλ −
Tλβα)/2. Furthermore, we write 2dxαdxβ = dxα ⊗ dxβ + dxβ ⊗ dxα . For the wedge
product, the convention is β1

∧ · · · ∧βm =
∑
σ∈Sm

(−1)[σ ]βσ(1)⊗· · ·⊗βσ(m), where βi

are one-forms, i = 1, . . . , m, and Sm denotes the set of all permutations of {1, . . . , m}.
The metric isomorphism [ : TM → T ∗M, Ev 7→ g(Ev, ·), and its inverse ] : T ∗M → TM ,
are written in components or abstract index notation so that Xα := (X[)α = gαβXβ and
τα := (τ ])α = gαβτβ for all X ∈ 0(TM) and τ ∈ 0(T ∗M).

3. Locally symmetric versus 2nd-symmetric semi-Riemannian manifolds

3.1. Generalities on local symmetry

Let (M, g) be a semi-Riemannian manifold and p ∈ M . The local geodesic symmetry sp
with respect to p is the diffeomorphism sp : Np → Np, defined on a sufficiently small
normal neighborhood Np of p, which maps each q = γ (1) ∈ Np into sp(q) = γ (−1),
where γ is the uniquely determined geodesic in Np from p to q. We collect in the follow-
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ing proposition some characterizations of locally symmetric semi-Riemannian manifolds,
i.e., manifolds satisfying ∇R = 0, for comparison with 2nd-symmetric spaces. See [35,
pp. 219–223] for further details and results.

Proposition 3.1. For a semi-Riemannian manifold (M, g) the following conditions are
equivalent:

(i) (M, g) is locally symmetric.
(ii) If L : TpM → TqM is a linear isometry that preserves curvature (i.e., for any

Xp, Yp, Zp ∈ TpM , L(R(Xp, Yp)Zp) = R(L(Xp), L(Yp))L(Zp)), then there exist
small normal neighborhoods Np of p and Nq of q and a unique isometry φ : Np →
Nq such that dφ|p = L.

(iii) The local geodesic symmetry sp is an isometry at any p ∈ M .
(iv) If X, Y and Z are parallel vector fields along a curve α, then the vector field

R(X, Y )Z is also parallel along α.
(v) The sectional curvature is invariant under parallel translation: for any non-degen-

erate plane, its parallel transport along any curve has constant sectional curvature.

Another important known result is [25, 35]:

Proposition 3.2. Any semi-Riemannian symmetric space is an analytic, (geodesically)
complete, homogeneous spaceG/H . Moreover, the universal covering of a complete con-
nected locally symmetric space is symmetric.

For the Riemannian case, we will need the following.

Proposition 3.3. Let (M, g) be a locally symmetric Riemannian manifold. Then:

(1) (M, g) is locally isometric to the direct product of a finite number of irreducible
locally symmetric spaces and a Euclidean space of dimension d ≥ 0.

(2) If (M, g) is irreducible, then it is an Einstein manifold, i.e., Ric = cg.
(3) If (M, g) is Ricci-flat (that is, Einstein with c = 0), then it is flat.

Proof. (1) This a consequence of the classical de Rham decomposition of M , as any
irreducible part must be locally symmetric.

(2) As the Ricci tensor in a locally symmetric space is parallel, the result follows from
a classical result by Eisenhart (Theorem 4.28 below).

(3) By hypothesis, (M, g) is locally isometric to a Ricci-flat symmetric space and, by
a result in [2], this space must be flat.4 ut

The classification of Lorentzian simply-connected symmetric spaces by Cahen and Wal-
lach [10] can be summarized as follows:

4 In fact, Alekseevskii and Kimelfeld [2] proved that any Ricci-flat homogeneous Riemannian
space is flat. It is worth pointing out that, in contrast to the locally symmetric case, locally homo-
geneus spaces may be non-regular, that is, not locally isometric to any homogeneous space [29].
However, Spiro [39] showed that all locally homogeneous spaces with non-positive Ricci curvature
are regular, hence the result in [2] can be extended to the locally homogeneous case. Neverthe-
less, it cannot be extended to the Lorentzian case: it is easy to find a counterexample among the
Cahen–Wallach spaces below.



602 Oihane F. Blanco et al.

Theorem 3.4. Any simply-connected Lorentzian symmetric space (M, g) is isometric to
the product of a simply-connected Riemannian symmetric space and one of the following
Lorentzian manifolds:

(a) (R,−dt2),
(b) the universal cover of d-dimensional de Sitter or anti-de Sitter spaces, d ≥ 2,
(c) a Cahen–Wallach space CW d(A) = (Rd , gA), d ≥ 2, whereA = (Aij ) is a (d−2)×

(d − 2) symmetric constant matrix, and the metric is written

gA = −2du(dv + Aijxixjdu)+ δijdxidxj , (5)

where δij is the Kronecker delta (observe that CW 2 is just the Lorentz–Minkowski
space L2, as A necessarily vanishes).

Therefore, if a Lorentzian symmetric space admits a parallel lightlike vector field, then
it is locally isometric to the product of a d-dimensional Cahen–Wallach space and an
(n− d)-dimensional Riemannian symmetric space with d ≥ 2.

3.2. Characterization of 2nd-symmetric spaces

There is no reason a priori to think that the characterization for 2nd-symmetric Lorentzian
manifolds may include properties of local geodesic symmetries, as in Proposition 3.1(iii),
or any other similar semi-local property. Of course, this does not mean that such a property
might not be found a posteriori.

For any geodesic γ such that p = γ (0) and tangent plane 5 ⊂ TpM , consider the
parallel-transported plane τ 7→ 5γ (τ ) ⊂ Tγ (τ)M . Using that the scalar product between
parallel-propagated vector fields is constant and that the sectional curvature K(5p) on
non-degenerate planes 5p determines the full curvature tensor, one easily derives the
next lemma.

Lemma 3.5. The following three conditions are equivalent:

(i) For any non-degenerate tangent plane 5, its parallel transport 5γ along any geo-
desic γ satisfies that d

dτ
(K(5γ )) remains constant along γ .

(ii) For any parallel-propagated vector fields X, Y,Z along any geodesic γ , the vector
field (∇γ ′R)(X, Y )Z is itself parallel-propagated along γ .

(iii) ∇X(∇YR)−∇∇XYR is skew-symmetric in X, Y .

Moreover, if these conditions hold, then the following property follows:

(S) if 5 is a lightlike plane with radical spanned by Ev ∈ TpM , and V and 5γ are the
parallel transports of Ev and5 along any geodesic γ , respectively, then d

dτ
(KV (5γ ))

remains constant along γ , where KV (5γ ) denotes the null sectional curvature along
γ and is defined by (see [23])

KV (5γ ) =
R(V,X, V,X)

g(X,X)

with {V,X} spanning 5γ .
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This result leads to the sought-for characterization of 2nd-symmetry.

Proposition 3.6. The following statements are equivalent for a Lorentzian manifold
(M, g):

(i) ∇∇R = 0, i.e., (M, g) is 2nd-symmetric .
(ii) If V,X, Y,Z are parallel-propagated vector fields along any curve α, then

(∇VR)(X, Y )Z is itself parallel-propagated along the curve.
(iii) (M, g) is semi-symmetric (i.e., the curvature tensor satisfies (2)) and satisfies the

equivalent conditions in Lemma 3.5 for any geodesic γ .

Proof. As (ii) characterizes when the tensor ∇R is parallel, this condition is equivalent
to (i). Also, both conditions imply (iii) trivially. For the converse, notice that, by semi-
symmetry, ∇∇R(· ;U1, U2) =∇U2(∇U1R) − ∇∇U2U1R is symmetric in U1, U2, and, a
fortiori, it vanishes by applying the condition (iii) of Lemma 3.5. ut

Remark 3.7. For any Lorentzian manifold that satisfies the equivalent conditions in
Lemma 3.5 the (null) sectional curvature of a plane parallel-propagated along a geodesic
varies as an affine function on the affine parameter of the geodesics; in other words, the
curvature along geodesics grows linearly. Recall that the constancy of the sectional curva-
ture characterizes locally symmetric spaces (Proposition 3.1). On the other hand, there are
obvious situations in which its non-constant linear growth can be excluded. For example,
assume that γ : [0,∞)→ M is a complete lightlike half-geodesic such that its velocity
is imprisoned in a compact subset C ⊂ TM . Then, for any lightlike plane 5 with radical
spanned by Ev = γ ′(0), the derivative of KV (5γ ) must vanish. (There exists a sequence
τn ↗ ∞ such that γ (τn)→ q ∈ M , γ ′(τn)→ Ewq ∈ TqM and 5γ (τn)→ 5q ⊂ TqM ,
hence KV (5γ (τn))→ K Ewq (5q), and this is incompatible with linear growth of the cur-
vature.) This sort of properties, together with Proposition 3.6, suggests global obstructions
to the existence of compact proper 2nd-symmetric spaces.

Corollary 3.8. Let (M, g) be a proper (connected) 2nd-symmetric space. Then ∇R 6= 0
everywhere, and (M, g) admits a unique parallel lightlike direction.

Proof. Obviously, if (∇R)p 6= 0 at some p ∈ M , then (the parallel tensor) ∇R cannot
vanish at any point. To prove the existence of a parallel lightlike direction recall that, as
we have already mentioned, around each point p there exists a parallel lightlike vector K
[37, Theorem 4.2]. Moreover, there cannot exist a second such K ′ that is independent
of K at p, as otherwise a parallel timelike vector field T could be constructed as a linear
combination ofK andK ′; hence, the metric would split around p as a product−dt2⊕gR ,
with T = ∇t and gR a Riemannian metric, which should be locally symmetric, in con-
tradiction with (∇R)p 6= 0. Thus, the corresponding parallel lightlike directions locally
generated by K and K ′ must agree, so that they match into a single global one. 2

3.3. Generalized Cahen–Wallach spaces of order r

In this section we introduce the archetypes for rth-symmetric Lorentzian manifolds,
which are generalizations of the d-dimensional Cahen–Wallach spaces CW d(A) intro-
duced in Theorem 3.4.
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Consider the larger family CW d
r (A) of all the d-dimensional generalized Cahen–

Wallach spaces of order r , CW d
r (A) = (Rd , gA), defined by using the same expres-

sion (5) but letting now A depend on u as a matrix of polynomials of degree ≤ r − 1,

A ≡ A(u) = A(r−1)ur−1
+ · · · + A(1)u+ A(0), (6)

where A(l) is a constant symmetric (d − 2)× (d − 2)matrix for all l ∈ {0, . . . , r − 1}. As
before, a generalized Cahen–Wallach space is proper if at least one of the polynomials
has degree r − 1, that is, if A(r−1)

6= 0. Notice that all the spaces CW d
r (A) contain a

parallel lightlike vector field (see Section 4.1), and CW d
1 (A) = CW

d(A). In addition we
have

Proposition 3.9. Any proper generalized Cahen–Wallach space is analytic, (geodesic-
ally) complete and proper rth-symmetric.

Proof. The analyticity is obvious and the completeness follows from [11, Proposition
3.5], where a more general type of plane waves was treated. The last property was already
mentioned in [37] and follows by computing the derivatives of the curvature tensor in
the basis {Eα} = {∂u − H∂v, ∂v, ∂i − Wi∂v} (see Section 4.3). The only non-vanishing
components of ∇ lR for l ∈ {0, . . . , r − 1} (for l ≥ r , ∇ lR = 0) are

∇0
(l). . . ∇0R

1
i0j =

d lAij

dul
=

r−1∑
k=l

k!

(k − l)!
A
(k)
ij u

k−l .

which leads to the result immediately. ut

The following lemma will be used to reduce the global version of Theorem 1.1 to the
local one.

Lemma 3.10. Let (M, g) be a complete simply-connected Lorentzian manifold which is
locally isometric to the product of some generalized Cahen–Wallach space with a simply
connected Riemannian symmetric space. Then (M, g) is in fact globally isometric to such
a product.

Proof. By assumption, (M, g) is locally isometric to an analytical manifold due to Propo-
sitions 3.2 and 3.9, and thus it is analytical too. The result follows from the fact that,
for any two complete simply-connected analytic semi-Riemannian manifolds (M, g) and
(M ′, g′), every isometry defined between connected open subsets of M and M ′ can be
uniquely extended to an isometry of the entire M and M ′ (see, for example [28, Cor. 6.4,
Ch. VI] for the Riemannian case, and [28, Th. 6.1, Ch. VI], [35, Cor. 7.29] for its gener-
alization to the semi-Riemannian case). ut

4. Brinkmann spaces

A Lorentzian manifold is called a Brinkmann space if it admits a parallel lightlike vector
field. Brinkmann spaces have attracted increasing attention in recent years: see e.g. [3],
[4], [18]. In this section, we derive some of their properties relevant to our problem.
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4.1. Basics on Brinkmann spaces

In what follows, the lightlike parallel vector field K of a Brinkmann space (M, g) will
always be assumed to be fixed. It is well-known that any point p ∈ M admits a coordinate
chart {xα} = {u, v, xi}, which we call a Brinkmann chart, such that the metric takes the
form (3) and K = −∂v ([8], see also [45]). Without loss of generality, we will assume
that the range of the coordinates includes |u|, |v|, |xi | < ε for some ε > 0.

Fig. 1. Construction of a Brinkmann chart for a fixed lightlike parallel vector field K = −∂v .

Brinkmann charts can be obtained by means of the following process (see Figure 1).
AsK is parallel, choose a function u such thatK = ∇u and with the value 0 in the image
of u. Each level set 6u0 = u

−1(u0) is a lightlike integral manifold of the distribution K⊥

orthogonal to K . Set 6 = 60 and choose a hypersurface � which is transverse to both 6
and K . The function u will serve as a coordinate for M as well as for �. In � we choose
a coordinate neighborhood {u, xi�} completing u. The coordinate v on M is defined by
using the flow φ of K to move each point p to the point φvp (p) ∈ 6up ∩ �, and then
we put xip = x

i
�(φvp (p)). Observe that we have chosen to move p by using the flow of

K = −∂v so that 1 ≡ du(∂u) = g(∇u, ∂u) = g(K, ∂u) = −g(∂v, ∂u).
Conversely, the expression (3) selects K as −∂v , and 6 and � are the hypersurfaces

u = 0 and v = 0 respectively. Locally, a pair (6,�) determines a Brinkmann decompo-
sition, i.e., a pair of functions {u, v} constructed as above, which may serve as the first
two coordinates for different Brinkmann charts.

If {u′, v′, x′i} denotes a second Brinkmann chart which overlaps {u, v, xi}, the corre-
sponding 6′ will also be a level set of u, and �′ can be regarded as a graph on �. So, the
change of coordinates can be written as

u′ = u− u0, v′ = v + F(u, xj ), x′i = x′i(u, xj ). (7)
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Consequently, the relations between H , Wi , gij in the original coordinates {u, v, xi} and
H ′, W ′i , g

′

ij in the new ones {u′, v′, x′i} are (recall the conventions at the beginning of
Section 2)

H = H ′ + Ḟ +W ′i ẋ
′i
−

1
2g
′

ij ẋ
′i ẋ′j , (8)

Wi = W
′

j

∂x′j

∂xi
+ F,i −

1
2g
′

jk

(
∂x′j

∂xi
ẋ′k +

∂x′k

∂xi
ẋ′j
)
, (9)

gij = g
′

kl

∂x′
k

∂xi

∂x′
l

∂xj
.

The freedom in the choice of � makes it possible to obtain a Brinkmann decomposi-
tion {u, v} with a Brinkmann chart such thatH ≡ 0 ≡ Wi , in particular ∂u is lightlike and
geodesic in the associated chart (see e.g. [38]). For the sake of completeness, let us con-
struct such a coordinate chart. Choose some6 as above and take any (n−2)-submanifold
M ↪→ 6 which is transverse to K . All such M are locally isometric, as K is a (parallel)
lightlike direction in 6. Now, consider for each x ∈ M the unique lightlike direction Elx
orthogonal toM and linearly independent ofKx . In a small neighborhood, construct� by
taking the geodesics with initial velocity Elx for all x ∈ M . Complete the chart by choos-
ing some local coordinates {xi

M
} in M and defining the coordinates xi� at each y ∈ � by

xi�(y) := xi
M
(xy), where xy is the unique point in M which lies on the same lightlike

geodesic as y. Notice that � is a lightlike hypersurface, and the corresponding coordi-
nate vector field ∂u spans its radical, i.e., H = 0 = Wi , as required. We emphasize
that the value of H and Widx

i depend on the choice of the coordinates {xi}. Moreover,
given a Brinkmann decomposition {u, v}, there exists a Brinkmann chart {u, v, xi} with
H = 0 = Wi if and only if the hypersurface � obtained as v = 0 is lightlike (when
� is lightlike, the integral curves of its radical must be lightlike pregeodesics of M , be-
cause of the local maximizing properties of these curves). In spite of its simplicity, such a
Brinkmann decomposition will not be especially relevant for our study. It might simplify
some intermediate computations, but they are not well adapted to the generalized Cahen–
Wallach spaces of order 2 which will turn out to be, as already announced, the essential
part of proper 2nd-symmetric Lorentzian manifolds.

Given a Brinkmann chart, each integral curve of ∂v is labeled by {u = u0, x
i
= xi0},

and each hypersurface �v0 ≡ {v = v0} is a general pseudo-Riemannian hypersurface
(possibly signature-changing, as studied systematically in [31]) and isometric to �. We
will repeatedly use the two natural transverse foliations associated to each Brinkmann
decomposition, namely:

(1) The (n − 2)-dimensional foliation M with leaves M = 6 ∩ � and the submani-
folds obtained by moving M with the flows of ∂u and ∂v . Each leaf is defined by
{u = u0, v = v0} and represented by M(u0,v0). The induced metric will be denoted
by g (g : TM × TM→ R), so that gij = gij in any Brinkmann chart. When nec-
essary, g will be regarded as a metric on a single leaf. This foliation depends only on
the Brinkmann decomposition (6,�), or equivalently on the chosen functions {u, v}
only.
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(2) The 2-dimensional foliation U whose leaves are the surfaces obtained by moving each
single point along the flows of ∂u and ∂v . Each leaf is given by {xi = ci0} for some
constants ci0 and the induced metric is −2du(dv + Hdu). This foliation depends on
the expression of ∂u, and thereby on the coordinates chosen on � for the Brinkmann
chart.

Any Brinkmann chart allows for the decomposition of the tensor bundles in different
ways, some of them to be detailed here. By a partly null frame {Eα} for a Lorentzian
manifold we mean a local basis of vector fields such that

g(E0, E0) = 0, g(E1, E1) = 0, g(E0, E1) = −1,
g(E0, Ei) = 0, g(E1, Ei) = 0, g(Ei, Ej ) = aij ,

for some functions aij = aji , which must obviously define a positive definite metric.
Its dual basis will be denoted by {θα}. Now, fix a Brinkmann chart and consider the
associated foliations M, U and distributions TM, T U and (T U)⊥. The (canonical) partly
null frame of the Brinkmann chart is given by

{Eα} = {∂u −H∂v, ∂v, −Wi∂v + ∂i},

{θα} = {du, dv +Hdu+Wjdx
j , dxi},

i = 2, . . . , n− 1, (10)

which has aij = gij . Notice that (T U)⊥ is spanned by the vector fields {Ei}, and the
brackets [Ei, Ej ] = (∂jWi − ∂iWj )∂v ∈ 0(T U) measure its lack of involutivity.

The decomposition TM = T U ⊕ TM associated to any Brinkmann chart yields, on
the one hand, the projection

PM : 0(TM)→ 0(TM), X 7→ X,

so that PM(∂u) = PM(∂v) = 0 and PM(Ei) = ∂i , and on the other hand the natural
inclusion

IM : 0(TM)→ 0(TM)

with the corresponding dual map, which we denote

I∗M : 0(T
∗M)→ 0(T ∗M), β 7→ β.

Clearly, {Ei} = {∂i} is a basis in TM whose cobasis is {θ i = dxi}. If X = XαEα ∈

0(TM) and β = βαθα ∈ 0(T ∗M), then X
i
= Xi and βi = βi in the given bases.

We also introduce two linear homomorphisms between spaces of sections defined as:

(1) ¯ : 0(T rs M) → 0(T rs M), which maps each T = T α1...αr
β1...βs

Eα1 ⊗ · · · ⊗ Eαr ⊗ θ
β1 ⊗

· · · ⊗ θβs into T = T i1...irj1...js
Ei1 ⊗ · · · ⊗ Eir ⊗ θ

j1
⊗ · · · ⊗ θ

js ,

(2) ˚ : 0(T rs M)→ 0(T rs M), which maps each T = T i1...irj1...js
Ei1⊗· · ·⊗Eir⊗θ

j1
⊗· · ·⊗θ

js

into T̊ = T i1...irj1...js
Ei1 ⊗ · · · ⊗ Eir ⊗ θ

j1 ⊗ · · · ⊗ θ js .
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In general, T̊ = T but T̊ 6= T , because in the first case T ∈ 0(T rs M) necessarily, but
not in the second.

Remark 4.1. The previous maps are C∞(M)-linear homomorphisms between spaces of
sections, they commute with contractions, with tensor products and, when applicable,
with wedge products in a natural way; moreover, they leave invariant the C∞(M) func-
tions considered as (0, 0)-tensor fields: f̊ = f = f for all f ∈ C∞(M). Both homomor-
phisms ¯ and ˚ have trivial expressions in the introduced bases. Essentially, all components
of the tensor fields and their images remain equal except that, in the case of T 7→ T , the
components along E0, E1, θ0 or θ1 must be dropped, while, in the case of T 7→ T̊ , these
components must be restored with vanishing value. This simplifies our subsequent work
in components substantially, as we will not need to distinguish notationally among dif-
ferent tensor fields derived from a single one: it will be enough to realize which space of
sections is being considered.

As important illustrative examples, observe that the functions Wi in the Brikmann
expression (3) can be regarded as the components in the basis {Ei} = {∂i} of a one-form
on M, namelyW = Wiθ

i
∈ 0(T ∗M), as well as the components in the basis {Eα} of the

one-form W̊ onM . Analogously, gij can be regarded as the components of the projection
PM(g) = g ∈ 0(T 0

2 M), which is the inherited metric on M. Therefore, the metric g
can be rewritten as

g = −2du(dv +Hdu+ W̊ )+ g̊.

One should also keep in mind that, when a single leaf M(u,v) is considered, gij will also
denote the components of the induced metric g on the leaf, with no explicit mention of
(u, v) or the underlying Brinkmann decomposition.

4.2. Three differential operators adapted to M and v-invariant sections

By using the previously obtained vector bundle decomposition associated to each Brink-
mann chart, three differential operators d, ∇ and ˙ (“dot”) are introduced next. The oper-
ator ∇ depends on the Brinkmann decomposition {u, v} only, while the other two depend
on the whole Brinkmann chart {u, v, xi}.

4.2.1. v-invariant tensor fields. The variation on M of T ∈ 0(T rs M) under displace-
ments along the direction E1 = ∂v will be rather irrelevant for us. In fact, E1 = −K

is parallel, and therefore all the interesting objects to be used here will also be invariant
under its flow. More precisely:

Definition 4.2. A tensor field T ∈ 0(T rs M) on M is v-invariant if T̊ is Lie-parallel
along the flow of E1, that is, LE1 T̊ = 0.

Remark 4.3. (1) As E1 = ∂v , a tensor field T = T i1...irj1...js
∂i1⊗· · ·⊗∂ir ⊗dx

j1⊗· · ·⊗dxjs

∈ 0(T rs M) is v-invariant if and only if ∂v(T
i1...ir
j1...js

) = 0. For example, g, H and W are
v-invariant.
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(2) Obviously, if T is v-invariant then it is determined by its value on any of the
hypersurfaces �v0 = {v = v0}, and any section T�v0 ∈ 0(�v0 , T

r
s M), defined only

on �v0 , can be extended to a unique v-invariant section TM ∈ 0(T
r
s M).

(3) As will become obvious later, the derivatives of a v-invariant section with re-
spect to any of the three operators d , ∇ and ˙ to be defined below are also v-invariant.
Hence, these operators can be naturally defined for sections in 0(�v0 , T

r
s M) (for in-

stance, ∇T�v0 is the restriction of ∇TM to �v0 ).

There is an alternative definition of v-invariance.

Proposition 4.4. T ∈ 0(T rs M) is v-invariant if and only if T̊ is parallel in the direc-
tion E1.
Proof. As E1 is parallel, ∇E1Q = LE1Q for any Q ∈ 0(T rs M). ut

4.2.2. The M exterior derivative d

Definition 4.5. The M exterior derivative d : 3sM→ 3s+1M associated to a Brink-
mann chart {u, v, xi} is defined by

dβ = dβ̊ ∀β ∈ 3sM,

where d is the usual exterior derivative on the manifold M .

It is straightforward to check that, if β ∈ 3sM , then d β = dβ. In particular, df = df
for f ∈ C∞(M) and thus θ i = dxi = dxi . This allows us to use the expressions ∂i
and dxi instead of Ei and θ i , respectively. Moreover, using the notation introduced in (4),

df = ḟ du+ ∂vf dv +

˚︷︸︸︷
df .

Proposition 4.6. Let β ∈ 3sM. The differential d has the following properties:
(1) It is linear and d(β ∧ τ) = dβ ∧ τ + (−1)sβ ∧ dτ for all τ ∈ 3qM.
(2) d(dβ) = 0.
(3) If β = 1

s!
βi1...isdx

i1 ∧ · · · ∧ dxis , then dβ = 1
s!
∂k(βi1...is )dx

k
∧ dxi1 ∧ · · · ∧ dxis .

(4) (Poincaré Lemma) If dβ = 0, then each p ∈ M admits a neighborhood U and
an (s − 1)-form τ such that dτ = β on U . Moreover, if the d-closed s-form β is
v-invariant, then so can be chosen the (s − 1)-form τ .

Proof. (1) Straightforward.
(2) d(dβ) := d(dβ̊) = d(dβ̊) = 0.
(3) Apply (1), (2) and df = df in d( 1

s!
βi1...isdx

i1 ∧ · · · ∧ dxis ).
(4) We sketch the notationally simpler case s = 1 (to be used later). For β = βidxi ,

put

τ(u, v, x2, . . . , xn−1) =

n−1∑
i=2

xi
(∫ 1

0
βi(u, v, σx

2, . . . , σxn−1) dσ

)
+ h(u, v),

for arbitrary h. Then dβ = 0 (i.e., ∂βi
∂xj
−

∂βj

∂xi
= 0) yields ∂iτ = βi , as required. ut
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4.2.3. The covariant derivative ∇ and its curvature tensor R on M

Definition 4.7. The covariant derivative ∇ on M associated to a Brinkmann decompo-
sition {u, v} is the map

∇ : 0(TM)× 0(TM)→ 0(TM), (X, Y ) 7→ ∇XY,

defined at each point p ∈ M by

(∇XY )p := (∇
ḡ

X̆
Y̆ )p

where X̆ and Y̆ are the restrictions of X, Y to the leafM(u(p),v(p)) and ∇
ḡ

the Levi-Civita
connection of the first fundamental form ḡ on that leaf.

Remark 4.8. a) Clearly, ∇ has the formal properties of a symmetric covariant derivative,
as well as ∇g = 0.

b) The Christoffel symbols 0ijk of ∇ in the basis {∂i} are defined by the relation
∇∂j ∂i = 0

k
ij∂k . Trivially, they are smooth and invariant under the flow of ∂v .

c) The covariant derivative on M can be extended to sections of T rs M. For the coor-
dinate basis {∂i} and any T ∈ 0(T rs M) one has

∇mT
i1...ir
j1...js

= ∂m(T
i1...ir
j1...js

)+

r∑
a=1

0
ia
kmT

i1...ia−1kia+1...ir
j1...js

−

s∑
b=1

0kjbmT
i1...ir
j1...jb−1kjb+1...js

.

d) For X, Y ∈ 0(TM), ∇XY 6= ∇XY in general (for example, if X = E0 then
X = 0).

The covariant derivative ∇ yields a natural curvature tensor R of the foliation M
defined formally as the usual curvature of ∇:

R(X, Y )Z = (∇X∇Y −∇Y∇X − ∇[X,Y ])Z ∈ 0(TM), ∀X, Y,Z ∈ 0(TM), (11)

and also its derived Ricci tensor Ric and scalar curvature S of M. All of them satisfy
the standard symmetries corresponding to a curvature tensor.

Definition 4.9. Fixed a Brinkmann decomposition {u, v}. The foliation M is called
u-Einstein if Ric = µg for some function µ such that dµ ∧ du = 0. In particular,
when µ is constant, M is called Einstein, and when µ ≡ 0 we say that M is Ricci-flat.

In the case R = 0 (respectively ∇R = 0), the foliation M is said to be flat (respec-
tively locally symmetric).

Some simple properties follow immediately.

Proposition 4.10. Let (M, g) be a Brinkmann space with a fixed Brinkmann decomposi-
tion {u, v}.

(1) If ∇
rR = 0 for some r > 1, then M is a locally symmetric foliation.

(2) If M is locally symmetric and Ricci-flat, then it is flat.
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(3) If M is flat, the Brinkmann decomposition admits a chart {u, v, yi} such that the
metric g becomes

g = −2du(dv +Hdu+Widy
i)+ δijdy

idyj .

Proof. (1) For each (u, v), the Riemannian result which states that ∇
rR = 0 implies

local symmetry can be applied to each leaf M(u,v).
(2) Apply Proposition 3.3(3) to each leaf of M.
(3) We sketch a procedure to obtain the required new coordinates yi = yi(u, xj ),

for the sake of completeness. Let γ be an integral curve of ∂u along the hypersurface
� = {v = 0}, and put, for small U ⊂ Rn−2 with 0 ∈ U ,

ϕ : ]−ε, ε[ × U → M, (u,wi) 7→ expγ (u)(w
i∂i |γ (u)),

where expγ (u) denotes the exponential at γ (u) on the leafM(γ (u),0) for the (flat) metric g.
The classical Cartan theorem shows that each map ϕu := ϕ(u, ·) is an affine transforma-
tion from U to the leaf. So, regarding {wi} as coordinates in Rn−2,

ϕ∗ug = hij (u)dw
idwj

for some constants hij (u) on each leaf (which define a Euclidean metric and depend
smoothly on u). Now, ϕ allows us to consider {u,wi} as coordinates in �, with each co-
ordinate vector field ∂/∂wi parallel on each leaf of M(u,0). By using the Gram–Schmidt
procedure, an orthonormal basis {Vj = Bij

∂
∂wi
} in TM is obtained. Indeed, by construc-

tion the transition matrix (Bij ) depends smoothly only on u, and thus, by Remark 4.3(3),

∇Vj = d(B
i
j )

∂
∂wi
= 0. Therefore, Proposition 4.6(4) implies that (Vj )[ = dy

j
� for some

functions {yj�(u,w
i)} on some open subset of �. The required functions {yj } are ob-

tained by extending {yj�(u,w
i)} to a neighborhood of M in a v-invariant way according

to Remark 4.3(2). ut

4.2.4. The ˙(dot) derivative. We introduce the following simple derivative:

Definition 4.11. The dot derivative Ṫ ∈ 0(T rs M) of a tensor field T ∈ 0(T rs M) is

defined as Ṫ = L∂u T̊ .

The components of Ṫ in the coordinate basis {∂i} are Ṫ i1...irj1...js
= ∂u(T

i1...ir
j1...js

). Indeed,
the first usage of the dot for functions was the definition (4).

4.3. Some geometrical objects and the operator D0

Our aim in this section is to obtain explicit expressions for the curvature and its deriva-
tives adapted to a Brinkmann chart. We start by computing the curvature two-forms for a
partly null frame. Then, we introduce a new operatorD0 which, together with those intro-
duced in the last section, will allow us to simplify calculations and to provide manageable
formulae for the derivatives of the curvature. This will be very helpful in order to solve
the equations of 2nd-symmetry.
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4.3.1. The connection 1-forms and the curvature tensor. We compute the connection and
curvature forms by using Cartan techniques, according to the conventions in [32], [14].
In a standard manner, we define the connection one-forms ωij ∈ 3

1(M) and the corre-
sponding curvature two-forms �ij ∈ 3

2(M) of the foliation M for the given coordinate
basis {∂i} as

∇X∂i = ω
j
i (X)∂j , R(X, Y )∂j = �ij (X, Y )∂i, ∀X, Y ∈ 0(TM).

Observe that ωij = 0
i
jkdx

k , where 0ijk are the Christoffel symbols of ∇ as introduced in
Remark 4.8. Then, a simple computation shows that the first and second Cartan equations
for M still hold:

0 = ωij ∧ dx
j , �ij = d ω

i
j + ω

i
k ∧ ω

k
j .

In order to compute the connection and curvature of the Brinkmann spaces we intro-
duce two tensor fields on M in terms of the adapted differential d and the dot deriva-
tive, which will be especially relevant in the computations. We define h ∈ 31(M) and
t ∈ T 0

2 (M) as

h = dH − Ẇ , (12)
t = − 1

2 (ġ + dW). (13)

Observe that the symmetric and skew-symmetric parts of t are precisely −ġ/2 and
−dW/2, respectively. We emphasize that h and t depend on the Brinkmann chart.
Equipped with these sections, one can check that the non-vanishing connection one-forms
associated to a partly null frame {Eα} of any Brinkmann chart are

ω1
i = ω

j

0gij = hiθ
0
− tij θ

j , (14)

ωij = −g
iktkj θ

0
+ ω̊ij , (15)

where hi = H,i − Ẇi and tij = 1
2 (−ġij +Wi,j −Wj,i) are the components of the tensors

defined in (12) and (13). It should be noted that ωij = ωij , but ω̊ij 6= ωij . Then the non-
vanishing curvature two-forms associated to the partly null frame {Eα} of any Brinkmann
chart read

�1
i = −(∇jhi + ṫij + t

k
i tkj )θ

0
∧ θ j + 1

2 (∇ktij − ∇j tik)θ
j
∧ θk, (16)

�ij = (∇kt
i
j +
˙0ijk)θ

0
∧ θk +�

i

j . (17)

so that again �ij = �
i
j , but �̊ij 6= �

i
j .

From (14)–(15) it is immediate to obtain the components γ αβλ of the connection one-
forms ωαβ , defined by ωαβ = γ αβλθ

λ. These will be used later. Recall also the identity
∇EβEα = γ

λ
αβEλ. This together with (14) provides the simple formula

h(X) = g(X̊,∇E0E0), ∀X ∈ 0(TM). (18)
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Similarly, the non-vanishing components Rαβγ δ of the curvature tensor R, defined by
�αβ =

1
2R

α
βγ δθ

γ
∧ θ δ , can be read off from (16)–(17):

R1
i0j = −(∇jhi + ṫij + t

k
i tkj ), (19)

R1
ijk = ∇ktij − ∇j tik,

Rijkl = Ri
jkl,

Rij0k (= −g
riR1

krj ) = ∇kt
i
j +
˙0ijk, (20)

where, in the last expression, the dot acts on the functions 0ijk . From this, the non-
vanishing components of the Ricci tensor can be easily computed (note that R1

αβµ =

−R0αβµ):

R00 = R
i
0i0 = −g

ijR1
j0i = ∇ih

i
+ gij ṫji + t

ki tki,

R0i = ∇i t
j
j − ∇j t

j
i,

Rij = Rij ,

and the scalar curvature of M turns out to be equal to that of M,

S = S.

Therefore, we have proven the following result.

Proposition 4.12. The curvature tensor R of the foliation M as defined in (11), and its
associated Ricci tensor Ric and scalar curvature S satisfy

R = R, Ric = Ric, S = S,

where R, Ric and S are the projections by the homomorphism ¯ of the curvature ten-
sor R, the Ricci tensor Ric and the scalar curvature S of the Brinkmann space (M, g),
respectively.

Using this result, from now on there will be no need to distinguish between these objects
and we will use only the notation R, Ric and S for them.

Remark 4.13. Concerning the consistency of the tensor equations on M:

(1) If, say, the first index of t and t̊ is raised, then the same expression t ij is obtained, as
the isomorphisms [ and ] commute with the homomorphism T 7→ T̊ (t ij ≡ giαtαj =
gir trj ).

(2) Observe that R = R is related to R by means of the following formula:

R(X, Y )Z = R(X̊, Y̊ )Z̊, ∀X, Y,Z ∈ 0(TM).

4.3.2. The D0 derivation

Definition 4.14. The D0 operator associated to any Brinkmann chart is defined by

D0 : 0(T
r
s M)→ 0(T rs M), T 7→ D0T = ∇E0 T̊ .

Consequently, T ∈ 0(T rs M) is said to be D0-parallel if D0T = 0.
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D0 measures the variation, projected to T rs M, of tensor fields T ∈ 0(T rs M) under
displacements along the direction E0, which is transverse to the leaves of M.

Proposition 4.15. D0 has the formal properties of a tensor derivation on M:

(i) R-linearity:D0(aA+bB) = aD0A+bD0B for all a, b ∈ R and A,B ∈ 0(T rs M).

(ii) Leibniz rule: D0(A⊗ B) = (D0A)⊗ B + A⊗ (D0B) for all A,B ∈ 0(T rs M).

(iii) Commuting with contractions:D0(C
i
j (A)) = C

i
j (D0A) for all A ∈ 0(T rs M), where

Cij denotes the contraction of the ith contravariant slot with the j th covariant one.

Proposition 4.16. For X ∈ 0(TM), the decomposition of ∇E0X̊ in T U ⊕ (T U)⊥ is

∇E0X̊ = h(X)E1 +
˚︷︸︸︷

D0X.

Proof. Putting ∇E0X̊ = X1 +X2 with X1 ∈ 0(T U) and X2 ∈ 0((T U)⊥), the definition
of D0 gives immediately D0X = X2. For X1, since g(X̊, E0) = g(X̊, E1) = 0 and E1 is
parallel using formula (18) we get

X1 = −g(∇E0X̊, E1)E0 − g(∇E0X̊, E0)E1 = g(X̊,∇E0E1)E0 + g(X̊,∇E0E0)E1

= h(X)E1. ut

Proposition 4.17. g is D0-parallel, that is,

D0g = 0. (21)

Proof. By definition,D0g ≡ ∇E0 g̊ and g = −θ0
⊗ θ1
− θ1
⊗ θ0
+ g̊. Since θ0 is parallel

and ∇E0g = 0,
−θ0
⊗∇E0θ

1
−∇E0θ

1
⊗ θ0

+∇E0 g̊ = 0.

Therefore, as θ0 ⊗∇E0θ
1 +∇E0θ

1 ⊗ θ0 = 0, we have ∇E0 g̊ = 0. ut

Remark 4.18. It is not difficult to show that, for a fixed partly null frame {Eα} and for
arbitrary ω = ωidxi ∈ 0(T ∗M), the D0-derivative acts such that

(D0ω)(X) = (E0(ωi)dx
i)(X)+ t (ω], X), ∀X ∈ 0(TM),

while, with the same notation and X = Xi∂i ,

ω(D0X) = ω(E0(X
i)∂i)− t (ω

], X).

These formulae can then be extended to arbitrary sections T ∈ 0(T rs M), and can be
expressed in the local basis {∂i} of 0(TM) by means of

(D0X)
i
≡ D0X

i
= (∂u −H∂v)(X

i)− t ijX
j ,

(D0ω)i ≡ D0ωi = (∂u −H∂v)(ωi)+ t
j
iωj .
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Its generalization to any section T ∈ 0(T rs M) is

(D0T )
i1...ir
j1...js

≡ D0T
i1...ir
j1...js

= (∂u −H∂v)(T
i1...ir
j1...js

)

−

r∑
a=1

t ia kT
i1...ia−1kia+1...ir
j1...js

+

s∑
b=1

tkjbT
i1...ir
j1...jb−1kjb+1...js

.

For v-invariant tensor fields the expression D0T simplifies (D0T = ∇∂uT̊ ) so that

(D0T )
i1...ir
j1...js

= Ṫ
i1...ir
j1...js

−

r∑
a=1

t ia kT
i1...ia−1kia+1...ir
j1...js

+

s∑
b=1

tkjbT
i1...ir
j1...jb−1kjb+1...js

. (22)

Next, we collect some elementary properties of the D0-parallel transport to be used
later. First, let η be an integral curve of E0 and take a vector field Xη along η which is
everywhere tangent to M, i.e., Xη ∈ 0(TηM). The derivative D0(Xη) of Xη, as well as
its D0-parallelism, make an obvious sense.

Lemma 4.19. Let p ∈ M , Ev ∈ TpM and η the integral curve of E0 with η(0) = p =

(up, vp, x
i
p). Then there exists a unique vector fieldXη obtained as theD0-parallel trans-

port along η such that Xη(0) = Ev.

A standard reasoning leads to:

Proposition 4.20. The map which sends each Ev ∈ TpM to its unique D0-parallel trans-
port Xη(τ ) ∈ Tη(τ)M along η is a linear isometry from TpM to Tη(τ)M.

Proof. The result follows from (21), since (g(X, Y ))|η depends only on the parameter u
of η. ut

Our last result yields an extension to all the leaves of any vector field on one leaf.

Proposition 4.21. Let XM be a vector field on a leaf M(u0,v0) of M. Then there exists a
unique v-invariant and D0-parallel vector field XM ∈ 0(TM) which extends XM .

Proof. Consider the hypersurface �v0 = {v = v0} and extend XM to a vector field X�v0
on �v0 by taking each integral curve η of ∂u which starts at some p ∈ M(u0,v0), and
defining X�v0 ◦ η as the D0-parallel transport of Xp. Then, extend X�v0 to a v-invariant
vector field according to Remark 4.3(2). ut

4.3.3. Derivatives of the curvature tensor R. As E1 is parallel, the curvature tensor will
be determined on each Brinkmann chart by its value on quadruples of vectors tangent to
M, plus some extra tensors which take care of the remaining components (partly) along
the θ1 or E0 directions. We start by defining two such tensor fields on M.

Definition 4.22. For any Brinkmann chart and its associated partly null frame {Eα} we
define A ∈ 0(T 0

2 M) and B ∈ 0(T 0
3 M) as A := θ1(R(E0, ·)) and B := θ1(R), that is,

A(X, Y ) = θ1(R(E0, Y̊ )X̊), B(X, Y,Z) = θ1(R(Y̊ , Z̊)X̊), ∀X, Y,Z ∈ 0(TM).
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From the symmetries of the curvature tensor it is obvious that A is symmetric:

A(X, Y ) = A(Y,X), ∀X, Y ∈ 0(TM),

and that B is skew-symmetric in its last two slots and it satisfies a cyclic identity:

B(X, Y,Z) = −B(X,Z, Y ),

B(X, Y,Z)+ B(Y,Z,X)+ B(Z,X, Y ) = 0,
∀X, Y,Z ∈ 0(TM).

Remark 4.23. In the given basis {∂i}, Aij = A(∂i, ∂j ) = R1
i0j and Bijk = B(∂i, ∂j , ∂k)

= R1
ijk . The previous properties can be expressed using this notation as Aij = A(ij),

Bijk = Bi[jk], and B[ijk] = 0. In what follows, and for the sake of brevity, we will
resort to index notation in many cases, which is sufficient to illustrate these properties and
reveals itself as very helpful in the required complicated calculations for 2nd-symmetry.
As a starting example, note that we additionally have for instance

Bij
k (= gkrBijr) = R

k
j0i .

A direct computation of ∇R, for instance in the basis {Eα}, provides the following
formulae:

θ1(∇E0R(E0, ·)) = D0A+ 2S[C1
3(h

]
⊗ B)],

θ1(∇R(E0, ·)) = ∇A− 2S[C15(t ⊗ B)],

θ1(∇E0R) = D0B + h(R),

θ1(∇R) = ∇B − C1
1(t ⊗ R),

∇E0R = D0R,

∇R = ∇ R,

where S[T ] gives the symmetric part of any covariant section T ∈ 0(T 0
s M) in its last

two slots, and Cij denotes the contraction of the ith and j th covariant indices (via the
metric ḡ−1).

We give names to the left-hand sides of these relations (except for the last one),
thereby defining five tensor fields on M which will allow for simpler expressions when
computing ∇2R.

Definition 4.24. For any Brinkmann chart and its associated partly null frame {Eα} we
define Ã ∈ 0(T 0

2 M), Â, B̃ ∈ 0(T 0
3 M), B̂ ∈ 0(T 0

4 M) and R̃ ∈ 0(T 1
3 M), for all

X, Y,Z, V ∈ 0(TM) by:

Ã(X, Y ) = θ1((∇E0R)(E0, Y̊ )X̊),

Â(X, Y,Z) = θ1((∇
X̊
R)(E0, Z̊)Y̊ ),
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B̃(X, Y,Z) = θ1((∇E0R)(Y̊ , Z̊)X̊),

B̂(X, Y,Z, V ) = θ1((∇
X̊
R)(Z̊, V̊ )Y̊ ),

R̃(X, Y )Z = ∇E0R(X̊, Y̊ )Z̊.

Observe that, therefore, one has R̃ = D0R, B̃ = D0B + h(R), etc. in agreement with
the previous formulae.

Remark 4.25. In the given basis {∂i}, Ãij = Ã(∂i, ∂j ) = ∇0R
1
i0j , Âsij = Â(∂s, ∂i, ∂j )

= ∇sR
1
i0j , B̃ijk = B̃(∂i, ∂j , ∂k) = ∇0R

1
ijk , B̂sijk = B̂(∂s, ∂i, ∂j , ∂k) = ∇sR

1
ijk and

R̃ijkl = dxi(R̃(∂k, ∂l)∂j ) = ∇0R
i
jkl . Moreover, from the symmetries of the curvature

tensor it is obvious that

(1) Ã and Â are symmetric in the last two indices: Ãij = Ã(ij); Âsij = Âs(ij).
(2) B̃, B̂, R̃ are skew-symmetric in their last two indices: B̃ijk = B̃i[jk]; B̂sijk =

B̂si[jk]; R̃sijk = R̃si[jk].
(3) B̃, B̂, R̃ satisfy a cyclic identity: R̃i[jkl] = 0; B̃[ijk] = 0; B̂s[ijk] = 0.
(4) R̃ also satisfies R̃ijkl = −R̃jikl and R̃ijkl = R̃klij , so that it has all the symmetries of

a Riemann tensor.

One can prove that, in addition, B̃ij k = ∇0R
k
j0i and B̂sij k = ∇sRkj0i . We also point

out the following basic relations:

R̃ijkl = −2B̂[ij ]kl, (23)
B̃kij = 2Â[ij ]k, (24)

B̂[i|l|jk] = 0 (so B̂[i|l|j ]k = − 1
2 B̂klij ).

They follow by direct application of the second Bianchi identity ∇[αRβσ ]ρµ = 0 in the
partly null frame {Eα}: the first two relations follow by taking {α, β, σ } = {0, i, j} and
the last one for {α, β, σ } = {i, j, k}.

Using all the above, another direct computation of ∇∇R leads to the following for-
mulae:

∇∇R = ∇ ∇ R, ∇E0∇R = D0∇ R, (25a)

∇∇E0R = ∇ R̃ + C13(t ⊗∇ R),

∇E0∇E0R = D0R̃ − C
1
1(h

]
⊗∇ R),

(25b)

θ1(∇∇R) = ∇B̂ − C1
1(t ⊗∇ R),

θ1(∇E0∇sR) = D0B̂ + C
1
1(h⊗∇ R),

(25c)

θ1(∇∇E0R) = ∇B̃ − C
1
1(t ⊗ R̃)+ C13(t ⊗ B̂),

θ1(∇E0∇E0R) = D0B̃ + C
1
1(h⊗ R̃)− C

1
1(h

]
⊗ B̂),

(25d)

θ1(∇∇R(E0, ·)) = ∇Â− 2S[C16(t ⊗ B̂)],

θ1(∇E0∇R(E0, ·)) = D0Â+ 2S[C1
4(h

]
⊗ B̂)],

(25e)
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θ1(∇∇E0R(E0, ·)) = ∇Ã− 2S[C15(t ⊗ B̃)] + C13(t ⊗ Â), (25f)

θ1(∇E0∇E0R(E0, ·)) = D0Ã+ 2S[C1
3(h

]
⊗ B̃)] − C1

1(h
]
⊗ Â). (25g)

Recall that, for example, the equations in the first row can be written as

∇m∇sR
i
jkl = ∇m∇sR

i
jkl, ∇0∇sR

i
jkl = D0∇sR

i
jkl . (26)

4.4. Reducibility and a generalized Eisenhart theorem

The proof of our main Theorem 1.1 will be carried out by means of some local decompo-
sitions of the Brinkmann space. To that end, we need an appropriate notion of reducibility
and a version of a classical theorem by Eisenhart adapted to Brinkmann spaces.

Definition 4.26. A Brinkmann decomposition {u, v} of a Brinkmann space (M, g) is
spatially reducible if there exists a Brinkmann chart {u, v, xi} around each point and
a partition of the indices I1 = {2, . . . , d + 1}, I2 = {d + 2, . . . , n − 1} for some
d ∈ {1, . . . , n − 3} such that gaa′ = 0 and ∂a′gab = 0, where the unprimed indices
a, b always belong to the same subset Im (m ∈ {1, 2}) and the primed ones a′, b′ to the
other one.

For such a Brinkmann chart, we say that T ∈ 0(T rs M) is reducible whenever T =
T (1) + T (2) with T (m) = T (m)

a1...ar
b1...bs

(u, xc)∂a1 ⊗ · · · ⊗ ∂ar ⊗ dx
b1 ⊗ · · · ⊗ dxbs and

a1, . . . , ar , b1, . . . , bs, c ∈ Im. We will denote this decomposition as T = T (1) ⊕ T (2).

Remark 4.27. (1) Observe that, if a Brinkmann decomposition is spatially reducible,
then the metric g on TM is reducible as a tensor field.

(2) Spatial reducibility implies the following property, which provides a more intrinsic
expression for some of its consequences. For some Brinkmann decomposition {u, v} there
exist two foliations M(1),M(2) of M such that TM = TM(1)

⊕ TM(2), and this sum
is orthogonal with respect to g. In this case, we write M = M(1)

×M(2) and g =
g(1) ⊕ g(2), according to the notation in Definition 4.26. Then the metric g on M can be
written as

g = −2du(dv +Hdu+ W̊ )+ g̊(1) ⊕ g̊(2)

(recall that H and W depend on the chosen coordinates {xi}). In this context, a tensor
field T is reducible if and only if T = T (1) + T (2) where each T (m) is invariant under
the flow of vectors in M(m′) (LXT (m) = 0 for all X ∈ 0(TM(m′))) and it vanishes when
applied to any element of TM(m′) and T ∗M(m′). In particular, this happens for g. The
Riemannian manifold (M, g) can be written as the product of two manifolds which will
also be denoted, abusing notation, by (M

(1)
, g(1)) and (M

(2)
, g(2)), eachM

(m)
generating

M(m) as M generated M (see Section 4). Thus, the equality g = g(1) ⊕ g(2) may refer
either to the metric decomposition in a leaf M(u0,v0) or in M. The latter depends on
u and is v-invariant. Even though this ambiguity is harmless, we will always refer to
decompositions in M unless otherwise specified.

(3) Sometimes, a Brinkmann chart may admit a partition I1, . . . , Is , s ≥ 2, of the
indices {2, . . . , n − 1} so that g ∈ 0(T 0

2 M) has the properties given in Definition 4.26
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for each i, j ∈ Im, k′, l′ ∈ Im′ and m 6= m′. In this case, the notation for orthogonal
decomposition is naturally extended:

M = M(1)
× · · · ×M(s), M =M(1)

× · · · ×M(s)
, g = g(1) ⊕ · · · ⊕ g(s),

and notions like being Einstein or flat are also extended to each M(m), M(m)
in a triv-

ial way. However, the following caution must be kept in mind. The given decomposition
of M induces also an orthogonal decomposition at each leaf M(u,v), in particular at M .
Nevertheless, as g is “u-dependent” such a decomposition may be irreducible in the sense
of the traditional de Rham theorem for some leaves, but reducible for other ones. In prin-
ciple, we will not care about this possible “spatial irreducibility” of the metrics g(m) on
the leaves. Eventually, though, we will arrive at a decomposition of g which will induce
an irreducible decomposition of all the leaves, independent of u.

Let us turn to the Eisenhart theorem. Its classical version [17] states:

Theorem 4.28. If a Riemannian manifold (N, gR) admits a symmetric two-covariant
tensor field L ∈ 0(T 0

2 N) not proportional to the metric gR such that ∇gRL = 0, then

• gR is reducible: gR = g
(1)
R ⊕ · · · ⊕ g

(s)
R ,

• L =
∑s
m=1 λm g

(m)
R for some constants λm.

Our aim now is to prove a version of this theorem adapted to the spatial reducibility of
Definition 4.26 for Brinkmann decompositions. In our generalized version, the reduced
metrics g(m) will depend on u but the λm will still be constants, independent of u.

Theorem 4.29. Let (M, g) be a Brinkmann space and fix a Brinkmann chart {u, v, xi}.
Assume that there exists a symmetric v-invariant, ∇-parallel and D0-parallel section
L ∈ 0(T 0

2 M) which is not proportional to g. Then the Brinkmann decomposition {u, v}
is spatially reducible and L is reducible. Furthermore, the decomposition {u, v} admits a
Brinkmann chart {u, v, yi} such that:

(1) g = g(1) ⊕ · · · ⊕ g(s) for some s ≥ 2,
(2) L =

∑s
m=1 λm g

(m) for some constants λm ∈ R.

Proof. Let p be any point of the chart. We construct an orthonormal basis of eigenvector
fields Vi ∈ TM defined on the hypersurface �vp = {v = vp}: consider the eigenvalue
problem for Lp with respect to gp on the vector space TpM, i.e.,

Lp(·, Ev)− λgp(·, Ev) = 0, (27)

and take an orthonormal basis {Evi}n−1
i=2 of eigenvectors of Lp in TpM(up,vp). Extend this

basis to a normal neighborhood U of p in the leaf M(up,vp) by defining Vi |q at each
q ∈ U as the vector obtained by ∇-parallel transport of Evi along the unique geodesic
γq : [0, 1] → U from p to q. Clearly, if Evi is a λ-eigenvector, then Vi |q is an eigen-
vector of Lq with the same eigenvalue λ, because the one-forms on γq defined as τ 7→
Lγq (τ )(·, Vγq (τ )) and τ 7→ λgγq (τ )(·, Vγq (τ )) are parallel and coincide at p due to (27).
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Moreover, {Vi} is an orthonormal basis on U . Now, obtain the sought-for basis {Vi} on
�vp by propagating each Vi |q in a D0-parallel manner along the integral curve of ∂u at
q ∈ U . Since L is D0-parallel, {Vi} is still an orthonormal basis of eigenvector fields of
L and the eigenvalues of L are constant on �vp .

From v-invariance, the eigenvalues and the dimension of each eigenspace remain con-
stant all over M . Therefore, if we denote any λ-eigenvector field as V (λ), and λ1, . . . , λs
are the eigenvalues of L with corresponding multiplicities m1, . . . , ms , we can reorder
the vector fields so that

{V
(λ1)
1 , . . . , V (λ1)

m1
, . . . , V

(λs )
1 , . . . , V (λs )ms

}

is an orthonormal basis of TM.
Let λ be one of the eigenvalues and let us prove that the distribution Sλ generated by its

eigenvectors is involutive. Taking the∇V covariant derivative ofL(· , V (λ)i ) = λg(·, V
(λ)
i )

for any V ∈ 0(TM) and using the fact that L is ∇-parallel, we find that ∇V V
(λ)
i lies

in Sλ, and so does [V (λ)i , V
(λ)
j ]. Analogously, the distribution S⊥λ which assigns to each

point p′ the orthogonal complement of (Sλ)p′ in Tp′M is involutive. Regarding S⊥λ as a
distribution contained in T�, there are mλ + 1 functionally independent functions on �
which are solutions of the equation X(f ) = 0 for all X ∈ S⊥λ . The first of these functions
can be chosen as u|� for all λ. The other functions yiλ, i = 1, . . . , mλ, will complete a
coordinate chart for � when the construction is repeated for all the eigenvalues λ = λj ,

j = 1, . . . , s. From these coordinates {u|�, y
ij
λj
: ij = 1, . . . , mλj , j = 1, . . . , s} on �

we can construct a chart on M by extending the previous functions in a v-invariant way
according to Remark 4.3, including the coordinate v. ut

Remark 4.30. Clearly, under the hypotheses of Theorem 4.29, L̊ ∈ 0(TM) is also
diagonalizable (observe that ∂u and ∂v are associated to the eigenvalue 0). However, the
hypotheses on L are not enough to ensure that L̊ is parallel for (M, g).

5. Proper 2nd-symmetric Lorentzian manifolds

We are now equipped with all the elements that will allow us to solve the problem of 2nd-
symmetry. The only remaining task is to solve the equations for 2nd-symmetry, given by
setting all the expressions in (25) equal to zero. We are going to do this in several steps.

5.1. Reduction of the equations

We start by proving a fundamental simplification of 2nd-symmetric Brinkmann spaces
(that is, of all proper 2nd-symmetric spaces), interesting in its own right.

Theorem 5.1. Let (M, g) be a Brinkmann space with a fixed Brinkmann decomposition
{u, v}. Then, if (M, g) is a 2nd-symmetric manifold, it follows that:
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(1) the foliation M is locally symmetric, i.e., ∇ R = 0,
(2) for any associated Brinkmann chart, the tensor fields B̂, R̃, Â, B̃ in Definition 4.24

vanish,
(3) the scalar curvature S of the manifold is constant.

The proof of this theorem will be carried out in two steps, one involving the intrinsic
geometry of M (beginning of Section 5.1.1), and the other involving the integrability
equations (Propositions 5.6 and 5.7 in Section 5.1.3). An important consequence of this
theorem, to be used later, is:

Corollary 5.2. Let (M, g) be a 2nd-symmetric Brinkmann space with a fixed Brinkmann
decomposition {u, v}. Then the section Ã is a tensor field on M, independent of the
chosen Brinkmann chart. Moreover, (M, g) is proper 2nd-symmetric if and only if Ã 6= 0.

Proof. From Theorem 5.1, the only non-zero components of ∇R in any partly null frame
associated to a Brinkmann chart {u, v, xi} are∇0R

1
i0j (= Ãij ). Now, it is straightforward

to check that

Ãi′j ′ =
∂xi

∂xi
′

∂xj

∂xj
′
Ãij

under a change of the partly null frame associated to a transformation of the type (7).
In particular, Ã behaves as a tensor field on M for the given Brinkmann decomposition
{u, v}. ut

5.1.1. First step: local symmetry of M. To prove (1) of Theorem 5.1, observe that the
first equation in (26) (when set to zero) together with Proposition 4.10 imply the result
immediately. At this stage, we can also prove (3) if we assume (2): given that S = S and
due to ∇ R = 0 the function S depends only on u. Thus, assuming R̃ = 0, which is part
of (2), and recalling that R̃ = D0R, it follows that 0 = D0S, so that S = S is constant, as
required.

Using (25) and Theorem 5.1(1), the equations of 2nd-symmetry thus become

∇nB̂sijk = 0, D0B̂sijk = 0, (28a)

∇sR̃
i
jkl = 0, D0R̃

i
jkl = 0, (28b)

∇kÂsij = 2t r kB̂s(ij)r , D0Âsij = −2hr B̂s(ij)r , (28c)

∇sB̃ijk = t
r
s(R̃rijk − B̂rijk), D0B̃ijk = −h

r(R̃rijk − B̂rijk), (28d)

∇kÃij = t
r
k(2B̃(ij)r − Ârij ), (28e)

D0Ãij = −h
r(2B̃(ij)r − Ârij ), (28f)

∇sR
i
jkl = 0, (28g)

where, for completeness, we include the expressions for all these objects in this notation:

R̃ijkl = D0R
i
jkl, (28h)

B̂sijk = ∇sBijk − trsR
r
ijk, (28i)
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B̃ijk = D0Bijk + hrR
r
ijk, (28j)

Âsij = ∇sAij − 2tksB(ij)k, (28k)

Ãij = D0Aij + 2hkB(ij)k, (28l)

Bijk = ∇ktij − ∇j tik, (28m)

Aij = tir t
r
j −∇jhi −D0tij , (28n)

Rijkl = R
i
jkl . (28o)

5.1.2. Auxiliary algebraic results. As an interlude, before starting the second step we
prove a couple of technical results about tensors with particular properties on a real vector
space V of finite dimension. Tensors will be denoted in abstract index form.

Proposition 5.3. Let V be an l-dimensional vector space with a positive definite inner
product and Tijk a three-covariant tensor such that:

(a) it is skew-symmetric in the last two indices: Ti[jk] = Tijk,
(b) it satisfies a cyclic identity: Tijk + Tjki + Tkij = 0.

If

T(ij)
rTrnm = 0 (29)

then Tijk = 0.

Proof. Observe that, if we use (a), then (b) can be rewritten as T[ijk] = 0. We use
arguments inspired in [37, Lemma 4.1]. Suppose first that there does not exist a non-
vanishing vector v ∈ V such that vrTrnm = 0. Define the set of vectors {Qr(i, j)}li,j=1 by
Qr(i, j) = T(ij)

r for each pair (i, j). Then equation (29) can be rewritten asQr(i, j)Trnm
= 0, that is, Qr(i, j) = 0 for all i, j by our assumption. Consequently, T(ij)k = 0, i.e.,
Tijk = T[ij ]k . From this fact and (a), Tijk is totally skew-symmetric, and so it vanishes
by (b).

Suppose then that there does exist a non-vanishing vector v ∈ V such that vrTrnm = 0.
Without loss of generality, we can assume that ‖v‖ = 1. The orthogonal splitting of Tijk
with respect to v is then

Tijk = aijk + bijvk − bikvj (30)

where
a[ijk] = 0, ai[jk] = aijk, aijkv

i
= aijkv

j
= 0,

bij = Tijkv
k, bijv

i(= Tijkv
kvi) = 0, bijv

j
= 0.

Since (b) implies vi(Tijk + Tjki + Tkij ) = 0, we deduce from (30) that b[jk] = 0, i.e.,
bij is a symmetric two-covariant tensor. But (29) implies vivmT(ij)rTrnm = 0, which in
turn implies bj rbrn = 0 by using (30) once more. Contracting the indices j, n and using
that bij is symmetric, we find that bijbij = 0, and as the inner product is positive definite,
bij = 0. Hence, Tijk = aijk so that Tijk must actually be totally orthogonal to v. As the
tensor aijk has the symmetries (a) and (b) of Tijk but in the (l − 1)-dimensional space
〈v〉⊥, the result follows by induction. ut
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An immediate consequence, to be used later, is

Corollary 5.4. Let V be an l-dimensional vector space with a positive definite inner
product and Tijkl a four-covariant tensor such that:

(a) it is skew-symmetric in the last two indices: Tsi[jk] = 0,
(b) it satisfies the cyclic identity: Tijkl + Tiklj + Tiljk = 0.

If Ts(ij)rTlrnm = 0, then Tsijk = 0.

Proof. Let us consider for any v ∈ V the tensor viTijkl . It satisfies all the conditions in
Proposition 5.3, so viTijkl = 0 for all v ∈ V , that is, Tijkl = 0. ut

5.1.3. Second step: integrability equations. Obviously, 2nd-symmetry implies semi-
symmetry. As a matter of fact, the equations of semi-symmetry happen to be some of
the integrability conditions for the equations of 2nd-symmetry. To check this, and in or-
der to exploit the integrability conditions in full, we introduce the expressions for the
commutator of ∇ and D0.

Proposition 5.5. Given a fixed Brinkmann chart {u, v, xi}:

(1) for any T ∈ 0(T rs M), the Ricci identity reads

(∇n∇s − ∇s∇n)T
i1...ir
j1...js

=

s∑
b=1

RkjbnsT
i1...ir
j1...jb−1kjb+1...js

−

r∑
a=1

Ria knsT
i1...ia−1kia+1...ir
j1...js

, (31)

(2) the commutator ofD0 with ∇ for any F ∈ 0(T 1
1 M) (trivially extendable to arbitrary

T ∈ 0(T rs M)) is

(∇kD0 −D0∇k)F
i
j = (H,k)(∂vF

i
j )+ F

i
rBkj

r
− F rjBkr

i
− t r k∇rF

i
j ,

and when F is v-invariant, this simplifies to

(∇kD0 −D0∇k)F
i
j = F

i
rBkj

r
− F rjBkr

i
− t r k∇rF

i
j . (32)

Proof. (1) follows from the Ricci identities for ∇ on each leaf of M. To prove (2), using
(22) and Remark 4.8 we get

∇k(D0F
i
j ) = ∇k(∂uF

i
j −H∂vF

i
j − t

i
rF

r
j + t

r
jF

i
r),

D0(∇kF
i
j ) = D0(∂kF

i
j + 0

i
rkF

r
j − 0

r
jkF

i
r).

The result follows by expanding these two expressions, and taking into account ∂v0ijk = 0
(Remark 4.8) plus formula (20). ut

Now, we can easily prove the following statement:

Proposition 5.6. Let (M, g) be a Brinkmann space with a fixed Brinkmann chart
{u, v, xi}. If (M, g) is a 2nd-symmetric manifold, the sections B̂ and R̃ on M vanish.
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Proof. By 2nd-symmetry, the integrability conditions associated to the first equations in
(28a) and in (28c) read, respectively,

∇[n∇m]B̂ijkl = 0, i.e.,

Rr snmB̂rijk + R
r
inmB̂srjk + R

r
jnmB̂sirk + R

r
knmB̂sijr = 0, (33)

∇[n∇m]Âsij = B
r
mnB̂s(ij)r , i.e.,

Rr snmÂrij + R
r
inmÂsrj + R

r
jnmÂsir = 2Br nmB̂s(ij)r . (34)

In both cases we used (31), and for the last case we also used the first equations in (28a)
and in (28c), as well as (28m). If we differentiate (34) with respect to ∇k , using the same
information as before plus (28g), (28i) and (33), we obtain

B̂s(ij)
r B̂lrnm = 0.

Therefore, B̂ satisfies all the hypotheses in Corollary 5.4 at each leaf of M, so that B̂ = 0
and, by the identity (23), R̃ = 0 too. ut

This actually implies, due to (28h), (28g), (28d) and (28c), that the three sections R, B̃
and Â are ∇-parallel and D0-parallel.

The integrability equations associated to (28e)–(28g), (28k), (28i) and the first equa-
tion in (28d) simplified via Proposition 5.6 are written, on using (28m) for the expressions
containing ∇t , as

2∇[n∇m]B̃ijk = 0, 2∇[n∇m]Ãij = Brmn(2B̃(ij)r − Ârij ), ∇[n∇m]Rijkl = 0,

2∇[n∇m]Bijk = BrmnRr(ij)k, ∇[n∇m]Aij = B
r
mnB(ij)r ,

which via (31) provide

Rr inmB̃rjk + R
r
jnmB̃irk + R

r
knmB̃ijr = 0, (35)

Rr inmÃrj + R
r
jnmÃir = B

r
nm(2B̃(ij)r − Ârij ), (36)

Rr snmRrijk + R
r
inmRsrjk + R

r
jnmRsirk + R

r
knmRsijr = 0, (37)

Rr inmBrjk + R
r
jnmBirk + R

r
knmBijr = B

r
nmRrijk, (38)

Rr inmArj + R
r
jnmAir = 2Br nmB(ij)r . (39)

On the other hand, the integrability conditions derived from (32) applied to Â, B and Ã
become

Bms
r Ârij + Bmi

r Âirs + Bmj
r Âijr = 0, (40)

BrjkBmi
r
+ BirkBmj

r
+ BijrBmk

r
= Rr ijkArm, (41)

Bmi
r Ãrj + Bmj

r Ãir = (2B̃(ij)r − Ârij )Arm. (42)

where we have used that B̃ and Â are D0-parallel and ∇-parallel together with (28n),
(28f)–(28e) for Ã and (28i) reduced via Proposition 5.6 for B.

Using these integrability equations we can prove the following further improvement
of Proposition 5.6, which completes the proof of Theorem 5.1.
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Proposition 5.7. Under the hypotheses of Proposition 5.6 the sections B̃ and Â vanish.

Proof. We use the results of Proposition 5.6 throughout the proof to simplify the formulae
to be combined in the calculations. Start by applyingD0 to (38), and use (28h), (28j), (37)
and (35) in order to get

B̃rmkRsijr = 0. (43)

Apply ∇n to (41) and use (28g), (28i), (28k) and (38) to obtain

ÂrmkRsijr = 0. (44)

Applying D0 to (36) and using (34), the second equation in (28c) and (28d), (28f), (28h),
(28j) and (35) we get

B̃rmk(2B̃(ij)r − Ârij ) = 0. (45)

However, if we apply D0 to (39) and use (28h), (28j), (28l), (36) and (38) we derive
2B̃rmkB(ij)r + BrmkÂrij = 0. By applying D0 once more to this last expression and
using the second equation in (28c) and (28d), (28j), (43) and (44) we also get

B̃rmk(2B̃(ij)r + Ârij ) = 0. (46)

In conclusion, comparing (45) and (46), we see that

B̃rmkB̃(ij)r = 0,

so that B̃ satisfies all the hypotheses in Proposition 5.3 for each leaf of M, and thus
B̃ = 0. By the identity (24), we also get Â[ij ]k = 0, i.e., Âijk = Â(ij)k .D0-differentiating
(42), using (40) and putting B̃ = 0 in (28f), (28j) and (36), we get ÂnrkÂr ij = 0. Con-
tracting all the indices and using the fact that Â is symmetric in the first two, we arrive at
0 = ÂnrkÂrnk = ÂrnkÂrnk , i.e., Â = 0. ut

Therefore, we obtain

Corollary 5.8. Ã is also a D0-parallel and ∇-parallel section.

Remark 5.9. We simply remark that all the equations written in this section, be they 2nd-
symmetry ones or their integrability conditions, are satisfied for any Brinkmann chart:
if we perform a new decomposition of type (7), the aforementioned equations must be
satisfied in the new Brinkmann chart too.

5.2. Transformation into two independent Lorentzian problems

5.2.1. Reducibility of g, Ric and Ã. For the following application of the generalized
Eisenhart theorem recall Definitions 4.9 and 4.26.
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Proposition 5.10. Let (M, g) be a 2nd-symmetric Brinkmann space. Then any Brink-
mann decomposition {u, v} satisfies

M =M(1)
×M(2), g = g(1) ⊕ g(2),

where M(1) is a d-dimensional flat foliation and M(2) is a d ′-dimensional locally sym-
metric foliation with d, d ′ ≥ 0 and d+d ′ = n−2. Furthermore, M(2) is itself the product
of s2 locally symmetric (non-Ricci flat) Einstein foliations:

M(2)
=M(2,1)

× · · · ×M(2,s2), g(2) = g(2,1) ⊕ · · · ⊕ g(2,s2).

Proof. As R is ∇-parallel and D0-parallel it follows that D0Ric = 0 and ∇ Ric = 0.
Now, if the foliation is u-Einstein, the result is trivial (put M = M(1), g = g(1) and
use Proposition 4.10(2) for the Ricci-flat case; otherwise, from D0Ric = 0 the foliation
is Einstein and M =M(2), g = g(2)). If the foliation is not u-Einstein, apply Theorem
4.29 to L = Ric and, if Ric happens to have a vanishing eigenvalue, choose M(1)

as the
corresponding Ricci-flat part, which, by Proposition 4.10(2), is actually flat. ut

Therefore, under the conditions of Proposition 5.10 with d, d ′ > 0, the partition of the
indices corresponds to the reducibility of g according to Definition 4.26, where I1 yields
the indices of the flat foliation and I2 the indices of the locally symmetric one. Moreover,
the associated curvature tensors satisfy R(1) = 0 and R(2) 6= 0, so that R = R(2) and
∇ R(2) = 0. Moreover,

Ric =
s2∑
m=1

µmg
(2,m), µm ∈ R− {0},

and the flat coordinates {x2, . . . , xd+1
} correspond to the zero eigenvalue µ0 = 0.

Convention 5.11. From now on:

(1) When dealing with a proper 2nd-symmetric Brinkmann manifold and using Proposi-
tion 5.10, we will restrict ourselves to spatially reducible Brinkmann decompositions
{u, v} such that M =M(1)

×M(2) as in the proposition. This includes the limit case
when M is Einstein, so that either M =M(1) (d ′ = 0) or M =M(2) (d = 0).

(2) The indices a, b, c, . . . will run from 2 to d + 1 and the indices a′, b′, c′, . . . will run
from d + 2 to n− 1.

(3) We will denote by µ∗ any of the non-zero eigenvalues of Ric.

Next, our aim is to prove that Ã is reducible and it admits a similar decomposition to
Ric. However, in contrast to Ric, the non-trivial part of Ã lies in M(1).

Proposition 5.12. Choose any spatially reducible Brinkmann decomposition of a proper
2nd-symmetric Brinkmann space. Then Ã is reducible as Ã(1) ⊕ Ã(2) with Ã(2) = 0. In
addition, there exists a Brinkmann chart {u, v, xi} such that g(1) = δabdxadxb and the
matrix of components (Ã(1)ij ) is constant and diagonal.
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Proof. Applying D0 to (41) and using (28l), (28j) and Proposition 5.7 together with the
fact that R is D0-parallel one derives

Rr ijkÃrm = 0,

from which we get Rr iÃrj = 0 for all i, j. However, Ã 6= 0 by Corollary 5.2 so that,
in the Brinkmann chart associated to the spatial reduction of Proposition 5.10, if we set
i ∈ I2, i.e., i = b′, we see that µ∗Ãb′j = 0, that is, Ãb′j = 0 for all j and

Ã = Ãbc(u, x
i)dxbdxc.

Now, from Corollary 5.8 we have 0 = ∇a′Ãbc = ∂a′Ãbc (the last equality because
γ a
ba′
= 0), that is, Ã is reducible with Ã(2) = 0 and satisfies the hypotheses of Theo-

rem 4.29. Moreover, the coordinate vector fields {∂d+2, . . . , ∂n−1} span a subspace S of
the eigenspace S0 associated to the zero eigenvalue of Ã. Therefore, one can follow the
steps of the proof of Theorem 4.29, but working just on S⊥ (X(xa) = 0 for all X ∈ S),
to obtain

• g(1) = g(1,1) ⊕ · · · ⊕ g(1,s1).

• Ã =
∑s1
m=1 λmg

(1,m).

As g(1) is a flat metric, applying Proposition 4.10(3) to each of the mutually orthogonal
g(1,m), a further change of coordinates in the flat block yields g(1) = δabdx

′adx′b (for
example, use the proof of that proposition on the restriction to the block of coordinates
associated to each M(1,m)). In conclusion, in this Brinkmann chart the matrix of the
tensor field Ã is a diagonal matrix of constants. ut

Remark 5.13. Observe that the Brinkmann chart obtained in Proposition 5.12:

(1) maintains the Brinkmann decomposition {u, v} of Proposition 5.10; as the tensor
fields Ric and Ã (Corollary 5.2) depend only on the decomposition, the conclusions
obtained for them are independent of the remaining coordinates of the Brinkmann
chart;

(2) is such that Ã and Ric are orthogonal and occasionally they may vanish simultane-
ously for a subbundle on M(1);

(3) has a flat metric g(1) = δabdxadxb so that ∇a = ∂a ; moreover, ∇a′T ab = ∂a′(T
a
b ).

5.2.2. The building blocks of the metric g. Until now, we have proven the reducibility
of the metric g for any Brinkmann decomposition {u, v}. Our aim is to prove that, in
fact, the 2nd-symmetry induces the existence of two simpler 2nd-symmetric Brinkmann
spaces associated to the original Brinkmann space (M, g).

Lemma 5.14. For a Brinkmann chart {u, v, xi} as in Proposition 5.12, the sections B
and A in Definition 4.22 satisfy

Baba′ = 0, Ba′ab = 0, Ba′b′a = 0, Baa′b′ = 0, Aaa′ = 0.
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Proof. The commutation property (32) applied to the ∇-parallel and D0-parallel section
R provides the following integrability condition:

Bms
rRrijk + Bmi

rRsrjk + Bmj
rRsirk + Bmk

rRsijr = 0.

(i) Contracting here i and k and
• taking m = a, s = b, j = a′, one gets BabrRra′ = Baba′µ

∗
= 0, that is,

Baba′ = 0,
• taking m = a′, s = b′, j = a, one gets Ba′arRb′r = Ba′ab′µ

∗
= 0, that is,

Ba′b′a = 0.
(ii) Using now B[ijk] = 0, Bi[jk] = 0, and (i) above, and
• taking i = a′, j = b′ and k = a, one finds that Baa′b′ = 0,
• taking i = a′, j = a and k = b, one finds that Ba′ab = 0.

(iii) Contracting i and s in (39) and taking j = a,m = a′, one derives Rra′Ar a =
2B(ia)rBra′ i . Using (i) and (ii) above one arrives at µ∗Aa′a = 0, so Aaa′ = 0. ut

Proposition 5.15. For a Brinkmann chart {u, v, xi} as in Proposition 5.12, the sections
t and h are reducible.

Proof. We have to prove that

taa′ = 0, ta′a = 0, ∂a′ tab = 0, ∂a ta′b′ = 0, ∂aha′ = 0, ∂a′ha = 0.

The fact that R is D0-parallel can be rewritten using (22) as

˙Rijkl + t
r
iRrjkl + t

r
jRirkl + t

r
kRijrl + t

r
lRijkr = 0.

Taking i = a one finds that t r aRrjkl = 0, so that contracting j and l and taking k = a′

yields

0 = ta′a = −taa′ . (47)

By (28m) and Lemma 5.14 it follows that 0 = Baba′ = ∇a′ tab − ∇btaa′ , which implies
by Remark 5.13(2) and (47) that ∂a′ tab = 0. Analogously, 0 = Ba′b′a = ∇a ta′b′ −∇b′ ta′a
implies ∂a ta′b′ = 0. Lemma 5.14 and (28n) yield 0 = Aaa′ = tar t r a′−∇a′ha−D0taa′ , so
substituting (47) and using (22) and Remark 5.13(2) again gives ∂aha′ = ∂a′ha = 0. ut

Theorem 5.16. For a proper 2nd-symmetric Brinkmann space, there exists a spatially
reducible Brinkmann decomposition {u′, v′} such that the function H and the one-form
section W in (3) are reducible in the associated Brinkmann chart {u′, v′, x′i}. This chart
is related to that obtained in Proposition 5.12 by {u′, v′, x′i} = {u, v + f (u, xj ), xi} for
some function f .

Proof. We must prove that there exists a Brinkmann chart {u′, v′, x′i} such that

H(u′, x′i) = H (1)(u′, x′a)+H (2)(u′, x′a
′

),

Wa = Wa(u
′, x′b) (= W (1)

a (u′, x′b)), Wa′ = Wa′(u
′, x′b

′

) (= W
(2)
a′
(u′, x′b

′

)).

Let {u, v, xi} be the Brinkmann chart obtained in Proposition 5.12, so that by Proposition
5.15, t and h are reducible.
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Simplification of W . ∂a′ tab = 0 implies thatWa,b−Wb,a depends only on the coordinates
{u, xa}, hence there exists a function f1(u, x

i) such that Wa(u, x
j ) = f1,a(u, x

j ) +

wa(u, x
b). Analogously, ∂a ta′b′ = 0 implies the existence of a function f2(u, x

i) such
that Wa′(u, x

i) = f2,a′(u, x
i) + wa′(u, x

b′). Then (47) tells us that f1,a,a′ = f2,a′,a so
that f1(u, x

i) − f2(u, x
i) = F(u, xa) + G(u, xa

′

) for some functions F and G which
can be absorbed into wa(u, xb) and wa′(u, xb

′

), respectively. Consequently, there exists
a function f (u, xj ) such that

Wa(u, x
j ) = f,a(u, x

j )+wa(u, x
b), Wa′(u, x

j ) = f,a′(u, x
j )+wa′(u, x

b′). (48)

Simplification of H . By using (12), ∂aha′ = ∂a′ha = 0 provides H,a(u, xi) = ha(u, xb)
+ Ẇa(u, x

i) and H,a′(u, xi) = ha′(u, xb
′

)+ Ẇa′(u, x
i), which after use of (48) become

H,a(u, x
i)=ha(u, x

b)+ ḟ,a(u, x
i)+ẇa(u, x

b) andH,a′(u, xi)=ha′(u, xb
′

)+ ḟ,a′(u, x
i)

+ ẇa′(u, x
b′). Hence it is easy to deduce that

H(u, xi) = ḟ (u, xi)+H (1)(u, xa)+H (2)(u, xa
′

)

for some functions H (1), H (2).
By choosing now the new Brinkmann decomposition defined by v′ = v + f (u, xi),

the conclusion follows on using (8) and (9). ut

Remark 5.17. (1) What we have proven is that there exists a Brinkmann chart {u, v, xi}
and a partition of the indices I1 = {2, . . . , d + 1}, I2 = {d + 2, . . . , n − 1} for some
d ∈ {0, . . . , n − 2} (recall Convention 5.11) such that g, H and W are simultaneously
reducible in the sense of Definition 4.26.

(2) Recall that if {u, v} is spatially reducible, there exist two foliations M(1),M(2)

with associated leaves (M
(1)
, g(1)), (M

(2)
, g(2)) such that M = M(1)

×M(2), M =
M
(1)
×M

(2)
and g = g(1)⊕g(2) (Remark 4.27). Observe that the metric g can be written

as
g = −2du(dv + (H (1)

+H (2))du+ W̊ (1)
+ W̊ (2))+ g̊(1) ⊕ g̊(2),

so that to any 2nd-symmetric Brinkmann space we can associate a pair of lower-dimen-
sional Brinkmann spaces (M [m], g[m]),m ∈ {1, 2}, by M [m] = R2

×M
(m)

and

g[m] = −2du(dv +H (m)du+W (m))+ g̊(m).

Of course, such a pair of spaces may be non-unique. (M [m], g[m]) are the building blocks
of any proper 2nd-symmetric Lorentzian manifold, and they are extremely helpful in
the resolution of the equations for 2nd-symmetry because they actually simplify to the
equations corresponding to each of the two simpler Brinkmann spaces (M [m], g[m]),
m ∈ {1, 2}, as the next proposition proves.

Proposition 5.18. The pair (M [m], g[m]) of Brinkmann spaces associated to any 2nd-
symmetric Brinkmann space (M, g) according to the previous remark are themselves
2nd-symmetric.
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Proof. Note first of all that R, h and t are reducible, so that A, B and their ∇-derivations
andD0-derivations are reducible too, hence Ã is also reducible. Therefore, form ∈ {1, 2},
the reduced sections R(m), h(m), t (m), A(m), B(m) correspond to the geometrical objects
for the Brinkmann spaces (M [m], g[m]) as defined in (11), (12), (13) and Definition 4.22
respectively. It is then straightforward to check that, in the Brinkmann chart of Theorem
5.16, the equations of 2nd-symmetry for (M, g) are exactly identical with the combination
of the equations of 2nd-symmetry for the two building blocks (M [m], g[m]). ut

Remark 5.19. In conclusion, applying Proposition 5.18 to the Brinkmann decomposi-
tions {u′, v′} of Theorem 5.16, we can reorganize the equations of 2nd-symmetry in two
simpler sets:
• The equations associated to the Brinkmann space (M [1], g[1]) with coordinates
{u, v, xa}, such that g(1) = δabdx

adxb, R(1) = 0 (ergo Ric
(1)
= 0) and Ã(1) =∑s1

l=1 λlg
(1,l) with some λl 6= 0 (in the proper case).

• Those associated to (M [2], g[2]) with coordinates {u, v, xa
′

}, such that g(2) = g(2,1) ⊕
· · · ⊕ g(2,s2), ∇ R(2,l) = 0 but R(2,l) 6= 0, Ric

(2)
=
∑s2
l=1 µlg

(2,l) with each µl 6= 0
and Ã(2) = 0.

5.3. Proof of the main Theorem 1.1

As a consequence of Corollary 3.8, we can apply Lemma 3.10, and consequently only
the local version of the result must be proven. We will start the computations in the
Brinkmann chart {u′, v′, x′i} of Theorem 5.16 but dropping the primes for clarity of no-
tation.

By Remark 5.19, we first consider the equations for (M [2], g[2]). Since Ã(2) = 0,
Corollary 5.2 informs us that this is a locally symmetric Lorentzian manifold with a par-
allel lightlike vector field. Therefore, Theorem 3.4 implies that it is locally isometric to
the product of a symmetric (non-flat) Riemannian space and L2

= (R2,−2dudv). In
particular, up to a change of coordinates of type

u′ = u, v′ = v + F(u, xa
′

), ya
′

= ya
′

(u, xb
′

), (49)

(M [2], g[2]) has H (2)
= 0, W (2)

= 0 and ġ(2) = 0.
Consider now the 2nd-symmetry equations associated to (M [1], g[1]) according to

Remark 5.19. Using R
(1)
= 0 in (39) we have B(ab)cBcde = 0, hence Proposition 5.3

leads us to

B(1) = 0. (50)

From (28m) it follows that ∇ctab − ∇btac = 0, which together with (13) and Remark
5.13(2) provides ∂ctab − ∂btac = ∂a tcb = 0. We conclude that t (1) is ∇-parallel. We have
two consequences of this fact:
• Wa,b −Wb,a = 2tab(u) depend only on u. Consequently, W (1) can be written as

Wa(u, x
b) = f,a(u, x

b)+ tac(u)x
c

for some function f (u, xb).
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• Setting Â = 0 in (28k) and by Lemma 5.14 and (50) we see that ∂cAab = 0, which
from (28n) and Proposition 5.15 implies that ∂c∂bha = 0, that is, h(1) takes the form

ha(u, x
b) = 3ac(u)x

c
+ Ba(u)

for some functions 3ac and Ba . From (12) we then have

H,a(u, x
b) = 3ac(u)x

c
+ Ba(u)+ Ẇa(u, x

b)

= 3ac(u)x
c
+ Ba(u)+ ḟ,a(u, x

b)+ ṫac(u)x
c.

Observe that the symmetry ofH,a,b implies that3ab+ ṫab = 3ba+ ṫba = 3(ab) where
the antisymmetric character of ṫ has been used in the last equality.

In conclusion, the metric for M [1] becomes

g[1] = −2du(dv +H (1)(u, xa)du+ W̊ (1))+ δabdx
adxb (51)

with

W (1)
= Wa(u, x

b)dxa = [f,a(u, x
b)+ tac(u)x

c
]dxa,

H (1)(u, xa) = ḟ (u, xa)+ 1
23(bc)(u)x

bxc + Bc(u)x
c
+ C(u).

Next, we use the following claim, to be proven later.

Claim 5.20. For (M [1], g[1]), there exists a change of Brinkmann chart of type

u′ = u, v′ = v + χ(u, xa), ya = Rab (u)x
b
+Da(u), (52)

(where Rab (u) is the matrix for a Euclidean rotation at each u) such that the metric be-
comes

g[1] = −2du′(dv′ +H ′(u′, ya)du′)+ δabdyadyb (53)

where H ′(u′, ya) = −Aab(u′)yayb, Aab being the components of the section A in Defi-
nition 4.22 associated to the Brinkmann chart {u′, v′, yi}.

Combining the change of coordinates in this claim and the one given in (49), there exists
a change of coordinates in the entire Brinkmann space (M, g) of type

u′ = u, v′ = v + F(u, xa
′

)+ χ(u, xa),

ya
′

= ya
′

(u, xb
′

), ya = Rab (u)x
b
+Da(u)

such that the metric of (M, g) becomes

g = −2du′(dv′ +H ′(u′, ya)du′)+ δabdyadyb + ga′b′(y
c′)dya

′

dyb
′

where H ′(u′, ya) = −Aab(u′)yayb. To end the proof, note that Ã = Ȧ and therefore
Corollary 5.8 gives, via D0Ã = 0, Äab(u) = 0. Of course, we need Ȧa0b0(u) 6= 0 for
some a0, b0 in order for the manifold not to be locally symmetric, due to Corollary 5.2.



632 Oihane F. Blanco et al.

Proof of the claim. In order to find the required χ , Da and Rab , put H ′(u′, ya) =
−Aab(u

′)yayb, substitute (52) in (53) and require that the resulting expression equals
(51). Then the following equations arise:

χ̇ = H (1)
−H ′ + 1

2δab(Ṙ
a
c x
c
+ Ḋa)(Ṙbdx

d
+ Ḋb),

χ,a = Wa +
1
2δbc

(
(Ṙbdx

d
+ Ḋb)Rca + (Ṙ

c
dx
d
+ Ḋc)Rba

)
,

δabR
a
cR

b
d = δcd . (54)

Here, the known data are tab(u), Bc(u) and 3(ab)(u), while the unknowns are Rab (u),
Db(u) and χ(u, xa). The integrability conditions (given by the cross derivatives) of the
first two expressions yield

tcd =
1
2δab(Ṙ

a
cR

b
d − R

b
c Ṙ

a
d ), (55)

3(cd) = −2AbeRbcR
e
d −

1
2δab(R

a
c R̈

b
d + R

b
c R̈

a
d ), (56)

Bc = −2AbeRbcD
e
+ δabD̈

aRbc . (57)

To prove that these equations have solutions, proceed as follows. Define Rcb(u) as a solu-
tion of the ODE

Ṙcb = −δ
dc(R−1)ad tab

for the given tab(u). Then equation (55) is automatically satisfied. Concerning (54), note
that, for such a solution, the derivative of δcdRcaR

d
b vanishes due to the antisymmetry of

tab(u). Therefore, by imposing as initial condition that Rba(0) is any orthogonal matrix,
the necessary condition (54) holds for all u (that is, Rab (u) is a curve of rotation matrices,
which can be chosen by using d(d−1)/2 free parameters codified in Rba(0)). Once Rbc (u)
is determined, equation (56) fixes Aab(u) and, using this, the existence of Db(u) (which
will depend on two new constant vectors, that is, on 2d new parameters) and, a posteriori,
of χ , is ensured by (57) plus, again, standard results in differential equations. ut

Remark 5.21. As (M1, g1) in Theorem 1.1 is a proper Cahen–Wallach space of order 2,
let Oi

j be the orthogonal matrix that diagonalizes the symmetric matrix A(1) in (6). Then,
performing a change of coordinates of type u′ = u − u0 and yi = Oi

j x
j we can write

A(1) as a diagonal matrix and cancel one of the elements of the symmetric matrix A(0).
In conclusion, the number of essential parameters of a proper 2nd-symmetric Lorentzian
manifold with fixed K = −∂v is given by d − 1 + d(d + 1)/2 (observe that A(1) is a
d × d square matrix). If K is not fixed, by a change of coordinates of type u′ = εu− u0
with v′ = v/ε for some constant ε 6= 0 and yi = Oi

j x
j , the same simplifications can

be achieved and furthermore one of the non-zero eigenvalues of A(1) can be set to ±1, in
which case the number of essential parameters is one less.
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(2008) Zbl 1151.53338 MR 2436237

[19] Galaev, A. S.: Conformally flat Lorentzian manifolds with special holonomy.
arXiv:1011.3977v2 (2011)

[20] Gray, A.: Riemannian manifolds with geodesic symmetries of order 3. J. Differential Geom.
7, 343–369 (1972) Zbl 0275.53026 MR 0331281
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