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Abstract. A coordinate cone in R” is an intersection of some coordinate hyperplanes and open
coordinate half-spaces. A semi-monotone set is an open bounded subset of R”, definable in an o-
minimal structure over the reals, such that its intersection with any translation of any coordinate
cone is connected. This notion can be viewed as a generalization of convexity. Semi-monotone sets
have a number of interesting geometric and combinatorial properties. The main result of the paper
is that every semi-monotone set is a topological regular cell.

Introduction

It is well known that in o-minimal geometry, definable sets that are locally closed are
easier to handle than arbitrary definable sets. A typical example of this phenomenon can
be seen in the well-studied problem of obtaining tight upper bounds on topological in-
variants such as the Betti numbers of semi-algebraic or semi-Pfaffian sets in terms of
the complexity of formulae defining them. Certain standard techniques from algebraic
topology (for example, inequalities stemming from the Mayer—Vietoris exact sequence)
are directly applicable only in the case of locally closed definable sets. Definable sets
which are not locally closed are comparatively more difficult to analyze. In order to over-
come this difficulty, Gabrielov and Vorobjov [3] suggested a construction which, given a
definable set S in an o-minimal structure over the reals, produced an explicit family of
definable compact sets converging to S. Under a certain technical condition (called “sep-
arability”) they proved that the approximating compact sets are homotopy equivalent to
S. The separability condition is automatically satisfied in many cases of interest—such as
when S is described by equations and inequalities with continuous definable functions.
However, the property of separability is not preserved under taking images of de-
finable maps, and this restricts the applicability of this construction. It was conjectured
in [3] that the crucial property of the approximating family (homotopy equivalence to S)
remains true even without the separability hypothesis. Proving this conjecture seems to be
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a rather difficult problem at present. One of the authors of the current paper (Gabrielov)
has outlined a research program whose completion would lead (amongst other things) to
a proof of the conjecture. The goal of the program is a “triangulation” of an increasing
definable family of compact sets. More precisely, the goal is to prove that given any in-
creasing definable family of compact sets converging to a definable set S C R”, there
exists a definable triangulation of R” such that inside each open simplex of this trian-
gulation the increasing definable family belongs to a finite list of combinatorial types.
Such a triangulation should be considered as being compatible with the given increasing
family (thus generalizing the standard notion of definable triangulations compatible with
a given definable set). The homotopy equivalence conjecture will then follow from this
triangulation.

One of the key steps in Gabrielov’s program is to prove the existence of a regular
triangulation of the graph of a definable function. More precisely, there is the following
conjecture.

Conjecture 0.1. Let f : K — R be a definable function on a compact definable set
K C R™. Then there exists a definable triangulation of K such that, for each n < dim K
and for each open n-simplex A of the triangulation,

1. the graph T := {(x,t) | x € A, t = f(X)} of the restriction of f to A is a regular
n-cell (see Definition 2.1);

2. either f is a constant on A or each non-empty level set I' N {t = const} is a regular
(n — 1)-cell.

It should be pointed out that Conjecture 0.1 does not follow from results in the literature
on the existence of definable triangulations adapted to a given finite family of definable
subsets of R" (such as [7, 2]), since all the proofs use a preparatory linear change of
coordinates in order for the given definable sets to be in a good position with respect
to coordinate projections. Since we are concerned with the graphs and the level sets of a
function, in proving Conjecture 0.1 we are not allowed to make any change of coordinates
which involves the last coordinate. Thus, the standard methods of obtaining a definable
triangulation using “cylindrical decomposition” are not immediately applicable. In the
book [7], van den Dries describes a strong form of cylindrical decomposition in which
the cells are defined by functions having a coordinatewise monotonicity property (such
cells are called regular in [7]). We show that in fact these cells are not necessarily regular
cells in the sense of topology (see Definition 2.1). To prove Conjecture 0.1, we need
a sufficiently general class of definable sets which are guaranteed to be topologically
regular cells.

In this paper, we introduce a new class of definable sets, which we call semi-monotone
sets, and show that a non-empty semi-monotone set in R” is a regular n-cell. A coordi-
nate cone in R” is an intersection of some coordinate hyperplanes and open coordinate
half-spaces. A semi-monotone set is an open bounded subset of R”, definable in an o-
minimal structure over the reals, such that its intersection with any translation of any
coordinate cone is connected. It is obvious that every convex definable bounded open set
is semi-monotone. Some non-convex examples as well as counter-examples are shown in
Figure 1.



Semi-monotone sets 637

. +6rF

wFORInK

Fig. 1. Top: examples of semi-monotone subsets of the plane. Bottom: examples of open subsets
of the plane which are not semi-monotone.

The paper is organized as follows. In Section 1 we define semi-monotone sets and
prove necessary and sufficient conditions for an open bounded set to be semi-monotone,
which are similar to the properties of cylindrical cells in o-minimal geometry. In par-
ticular, it is proved that any semi-monotone set is a “band” between the graphs of two
semi-continuous functions which are defined on a semi-monotone set of a smaller dimen-
sion and have certain monotonicity properties.

Section 2 contains the proof of the main result, that every semi-monotone set is a regu-
lar cell. In Section 3 we prove the regularity in the case of semi-algebraic semi-monotone
sets defined over an arbitrary real closed field. In Section 4 we show that cylindrical cells
called “regular” in [7] are not necessarily topologically regular.

In Section 5 a concept of a regular Boolean function is introduced. A Boolean function
¥ (&1, ..., &) in n Boolean variables & € {0, 1} is called regular if the result of any
sequence of operations V&; and 3&; applied to v does not depend on the order of the
operations. To every point p outside a given open bounded set U we assign a Boolean
function, taking the value 1 exactly on the octants with vertex p which have a non-empty
intersection with U (see Definition 5.7). The main result of Section 5 is that U is semi-
monotone if and only if the functions assigned to all points outside U are regular.

Section 6 is an appendix containing some known and new facts from PL topology
needed in the proof of the main result.

1. Equivalent definitions of semi-monotone sets

In what follows we fix an o-minimal structure over R, and consider only sets and maps
that are definable in this structure.
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Definition 1.1. Let
Xjoe={x=01,....,x) €eR" | xjo ¢},

forl1 < j <n, o € {<,=,>}and ¢ € R. An open (possibly empty) bounded set
U c R" is called semi-monotone if

UNXjioper NN Xjyop e

isconnected forany 0 < k <nm,any 1 < j; <--- < jy <m,anyoi,...,ofin{<, =, >},
and any cq, ..., cx € R.

Lemma 1.2. The projection of a semi-monotone set U on any coordinate subspace is a
semi-monotone set.

Proof. Let U’ be the projection of U on the subspace of coordinates xi, ..., x,, where
m < n. Then any intersection

/ / !
un Xj1,61,01 n---n XjksUkka’
where XJ/.UC ={(x1,...,xm) €ER™ | xjocland |1 < j; <--- < jx < m,is connected

as the projection of the connected set
UNXjore NN Xjoper o

Theorem 1.3. An open and bounded set U C R" is semi-monotone if and only if both of
the following conditions hold:

(S1) its intersection with any line parallel to the x,,-axis is either empty or an open inter-
val,

(S2) the projections of the sets U N X, 5,c to Rr—1 along the x,-axis are semi-monotone
sets in R"™! forany o € {<, =, >} and c € R.

Proof. We prove the statement by induction on n. For n = 1 it is obvious. Let U satisfy
(S1) and (S2). The set U is connected, otherwise its projection U’ along the x,-axis
would be disconnected (a very special case of the Vietoris—Begle theorem, [6]). This
would contradict (S2), since U = U N X, < . for large positive ¢ and hence its projection
is connected.

For ji < n, the projection of

un les”l»Cl n---N X]'ksﬂkvck

to R"~! is equal to

/ ’ ’
UﬂXj ﬂ-”ﬂXj

1,01,€1 k+0k,Ck’

.vvhere.XJ/.’U’C = {)f = (X1,...,x0_1) € R*™1| xj o c}. This set is connected by the
inductive hypothesis, hence

un X./lsUIvCI ARERA X/kakak

is connected, by the Vietoris—Begle theorem.
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For ji, = n, the projection of
UNXjiorep N0 Xj o
to R"~! is equal to the intersection of the projection of U N X n,or,¢c;, and the set

X n---NXx.

J1,01,€1 Jk—1,0k—1,Ck—1"

It is connected due to condition (S2) and the induction hypothesis, hence
UNXjiorep N0 Xj o

is connected, again by the Vietoris—Begle theorem.
Conversely, if U is a semi-monotone set, its intersection with each line parallel to any
coordinate axis is connected, i.e., either empty or an open interval. Since all sets

UNXnoeNXjorer NN Xjy oy e

are connected, their projections along the x,-axis are connected. This implies that projec-
tions of the sets U N X, 4, along the x,-axis are semi-monotone sets in R O

Corollary 1.4. (1) If U C R" is a semi-monotone set, then U N Xj - o N X 5 p is a
semi-monotone set in R" forany 1 < j <nanda,b € R.
(2) If U C R”" is a semi-monotone set, then

un lem,q n---N Xjka(fkack

is semi-monotone for any 0 <k <n,any 1 < j; < --- < jr <n,anyoy,...,0fin
{<,=,>},andanycy,...,cr € R

Proof. (1) The statement is obvious for n = 1. Let n > 2 and j < n. Then the set
UNXj<aqNXj - p satisfies conditions (S1) and (S2), hence it is semi-monotone.
(2) immediately follows from (1). ]

Corollary 1.5. Any semi-monotone set U is acyclic.

Proof. We prove the statement by induction on n. The case n = 1 is obvious. Applying
Theorem 1.3, (S2),to U = U N X, <. for a large positive ¢ we conclude that the pro-
jection U’ of U along the x,-axis is a semi-monotone set, and therefore, by the inductive
hypothesis, is acyclic. By (S1), the fibres of this projection map are acyclic, so, since the
projection is an open map, the Vietoris—Begle theorem implies that U is also acyclic. O

Note that in Theorem 2.2 we will prove a much stronger result.

Definition 1.6. A bounded upper semi-continuous function f defined on a semi-mono-
tone set U C R” is submonotone if, for any r > infycy f(x), the set

xeU]| fx) <r}

is semi-monotone. A function f is supermonotone if — f is submonotone.



640 Saugata Basu et al.

Theorem 1.7. An open and bounded set U C R" is semi-monotone if and only if it
satisfies the following conditions. If U C R! then U is an open interval. If U C R", then

U={x1|xelU, f(x) <t < gXx)}

for some functions f and g on a semi-monotone set U' C R"™! where f(x) < g(x) for
allx € U’, with f(X) being submonotone and g(x) being supermonotone.

Proof. Suppose that U is semi-monotone, and U’ is the projection of U on the subspace
of coordinates xp, ..., x,—1. By Lemma 1.2, U’ is a semi-monotone set. According to
(S1) of Theorem 1.3, any fibre of the projection map over a point x € U’ is an open
interval. Take the lower endpoints of these intervals as values of f and upper endpoints
as values of g. It follows that

U={x1t|xelU, fx) <t <gXx)}

The function f is bounded because U is bounded. The function f is upper semi-
continuous since otherwise there would exist a sequence x) e U’ with lim; oo x) =
x© ¢ U’ such that lim;_, o f(x?) — F(x©@) > ¢ for some positive ¢ € R. Then the
interval with lower endpoint f(x()) has a point belonging both to U and to the boundary
of U, which contradicts the openness of U.

Let r > infycyr f(x). The definition of f implies that the set

S i={xeU| fx)<r}

is the projection of U N X, <, on the subspace of coordinates xi, .. ., x,—1. According to
Corollary 1.4, U N X, <, is a semi-monotone set, thus, by Lemma 1.2, its projection S,
is also semi-monotone. It follows that f is submonotone.

Similarly, the function g is supermonotone.

We have proved that each semi-monotone U satisfies the conditions in the theorem.
Now assume that an open and bounded set U C R” satisfies these conditions, in particu-
lar, its projection U’ is semi-monotone. We prove that U is semi-monotone by induction
on n, the case n = 1 being trivial.

According to Theorem 1.3, it is sufficient to prove that U satisfies conditions (S1)
and (S2). Condition (S1) holds true because every intersection of U with a straight line
parallel to the x,-axis is an interval ( f(x), g(x)) for some x € U’.

For any ¢ € (infyey f(X), supgeyr g(x)) the projection of U NX,, . on the subspace
of coordinates xi, ..., x;— coincides with {x € U’ | f(x) < c} and therefore is a semi-
monotone set. Similarly, the projection of U N X,, ~ . is a semi-monotone set. By the
Vietoris—Begle theorem, both sets U N X, < . and U N X,, ~ . are connected.

To establish condition (S2) of Theorem 1.3 it remains to prove that the projection W
of U N X, = is also a semi-monotone set. We will prove this by showing that any in-
tersection of the kind W N X, 5,.¢; N -+ N X} op,¢; 1S connected, where j; < --- <
Jjk <nandoi,...,or € {<,=,>}. For this, it is enough to prove that any intersection
UNXy=cN Xjo1,e; N N Xj op,c 18 connected. If at least one o; is =, then the
connectedness follows from the inductive hypothesis, since the conditions in the theorem
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are compatible with the translated coordinate cones X, o,.¢; M- - N Xj o, ¢, - Otherwise,
UNXj o1y NN Xy oy, 18 itself a bounded open set in R” satisfying the conditions
of the theorem, and it remains to prove that the intersection of this set with X, — . or,
without a loss of generality, the intersection U N X, — ., is connected.

Suppose that U N X, — . is not connected. Every fibre U N X, = N X,—1,=; of
the projection of U N X,, — . on the x,_1-axis is a semi-monotone cell by the inductive
hypothesis, hence, by Corollary 1.5, is acyclic. Then the Vietoris—Begle theorem implies
that the image of the projection of U N X,, — . is also disconnected, i.e., there is a point
to such that U N X, — . N X;,_1 — 4 = ¥ while both sets U N X;, — - N X;,_1, <4, and
UNXp=cN Xu—1,>, are non-empty. Because U is open while the sets U N X, < .
and U N X,, - . are connected, each of them has a non-empty intersection with X,,_1 — 4.
But this implies that U N X,,_1 — ;, is not connected, which contradicts what was proved
before. m]

2. Semi-monotone sets are regular cells

Any compact definable set in R” admits a finite triangulation (see, e.g., [7]), in particular
is definably homeomorphic to a polyhedron. Any open set in R" is a polyhedron.

Definition 2.1. A definable set U is called a regular k-cell if the pair (U, U) is definably
homeomorphic to the pair ([—1, l]k, (-1, 1)").

In this section we say that a definable set is a closed n-ball if it is definably homeo-
morphic to [—1, 117, is an open n-ball if it is definably homeomorphic to (—1, 1)”, and
is an (n — 1)-sphere if it is definably homeomorphic to [—1, 1]" \ (—1, 1)".

Proposition 6.2 implies that if U C R”" is an open definable set, then U is a regular
cell if and only if U is an n-ball and the frontier U \ U is an (n — 1)-sphere.

Theorem 2.2. Every non-empty semi-monotone set U C R" is a regular n-cell.

We are going to prove Theorem 2.2 by induction on the dimension n of a regular cell. For
n = 1 the statement is obvious. Assume it is true for n — 1.

Lemma 2.3. Let U C R” be a semi-monotone set. Let
Uy=UNXj—¢, Up:=UNXjs¢, and U_:=UNXj

forsome1 < j<nandceR. ThenU L NU_ = U.
Proof. Suppose a point X = (x1, ..., ;) € Xj =\ Ug belongs to Uy N U_. Then there
is an ¢ > 0 such that an open cube centered at X,
Cei= () {01 o) |15y —yjl <&} CR",
I<j=n

has non-empty intersections with both U, and U_ and an empty intersection with Uj.
Thus, C, N U is not connected, which is not possible since, according to Corollary 1.4(1),
C. N U is semi-monotone. ]
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Corollary 2.4. Let U C R” be a semi-monotone set. If Uy and U_ in Lemma 2.3 are
regular cells, then U is a regular cell.

Proof. We need to prove that U is a closed n-ball, and that the frontier U \ U is an
(n — 1)-sphere. The only non-trivial case is when Uy is non-empty.

Since Uy is semi-monotone due to Corollary 1.4, Uy is a regular (n — 1)-cell by the
inductive hypothesis. It follows that U, U 4, and U _ are closed balls, while Ug \ U is an
(n — 2)-sphere. Hence U is obtained by gluing together two closed n-balls, U and U _,
along the closed (n — 1)-ball Uy (see Definition 6.1). Proposition 6.4 implies that U is a
closed n-ball.

According to Proposition 6.3, the sets U, \ U = dU, \Upand U_\U = aU_ \ Uy
are closed (n — 1)-balls. The frontier U \ U of U is obtained by gluing U, \ U and
U_ \ U along the set (ﬁ+ N U_) \ U, which, by Lemma 2.3, is equal to ﬁo \ U, and
thus is an (n — 2)-sphere, the common boundary of Uy \ U and U _ \ U. It follows from
Proposition 6.2 that U \ U is an (n — 1)-sphere. O

Lemma 2.5. If U and U_ in Lemma 2.3 are regular cells, then U is also a regular cell.

Proof. Proposition 6.5 implies that U, is a closed n-ball. By the inductive hypothesis,
Uy is a regular cell. By Proposition 6.3, Uy \ U = dU \ Uy is a closed (n — 1)-ball.
Then the frontier U \ U, of U, is obtained by gluing two closed (n — 1)-balls, U \ U
and U, along the (n — 2)-sphere Uy \ U. Therefore, by Proposition 6.2, the frontier of
U is an (n — 1)-sphere. O

Lemma 2.6. Letn > 5 and U C R" be a semi-monotone set and a regular cell. Then,
for a generic c, both Uy and U_ in Lemma 2.3 are regular cells.

Proof. The set Uy is a regular cell by the inductive hypothesis. Due to the theorem
on triangulation of definable functions ([2, Th. 4.5]) applied to the projection of the
xj-coordinate function, there is a triangulation of U and a neighbourhood (a, b) of ¢
in R such that the polyhedra corresponding to UnN ((a,b) x R" Y and Uy x (a, b) are
PL-homeomorphic. Hence, the (n — 1)-sphere dUj is locally flatly embedded in the n-
sphere dU. The lemma now follows from Proposition 6.10. O

Let R} be the open first octant {(x1, ..., x;) € R" | x; > Oforall 1 < j <n}.
Lemma 2.7. Let U be a semi-monotone set in R} such that the origin is in U. Let c(t) =

(c1(®), ..., cn(t)) be a germ of a generic definable curve inside U converging to the origin
ast — 0. Then

U =UN{x <c1(t),...,xp <cu(t)}
is a regular cell for all small positive t.

Proof. By the inductive hypothesis of the induction on n, for every 1 < i < n each
(n — i)-dimensional semi-monotone set

le ,,,, it = Uﬂ{le =Cj (t),...,le. = Cj[.(l‘), xx < cx(t) for all k # j1,...,j,'},
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where 1 < jj < -+ < ji <n,isaregular (n — i)-cell. Since c(t) € U, all sets Cj, .. j
are non-empty.

Due to the theorem on triangulation of definable functions ([2, Th. 4.5]), for all small
positive ¢, U, is definably homeomorphic to a closed cone with vertex at the origin and
with base definably homeomorphic to D;, where D is the (n — 1)-dimensional regular
cell complex formed by the cells Cj, .., forall1 < j; < --- < j; < n. Henceitis
enough to prove that D; is shellable (see Definition 6.6), and therefore is a regular cell
due to Proposition 6.7. We prove by induction on k = 1, ..., n a more general claim that
the regular cell complex Dy, formed by the cells Cj, . ;o 1 < j1 < --- < ji <k, is
shellable.

The base case k = 1 holds because C; ; is a regular (n — 1)-cell. By the inductive
hypothesis on #n, the set

C,',j,l =UN{x;i =ci(t), Xj = Cj(t), xr < ci(¢) forall k 75 i ]}

is a regular (n — 2)-cell. Since the germ c(t) is generic, C; j; = C;, N C;,. Hence Dy,
is obtained by gluing together two regular (n — 1)-cells, Cy; and C2;, along the regular
(n — 2)-cell Cy 2, which is their common boundary (see Definition 6.1). It follows that
the cell complex Dy ; is shellable.

By the inductive hypothesis the complex Dy ; is shellable. The set Ciy1 ; is a regular
(n — 1)-cell whose common boundary with Dy ; is the (n — 2)-dimensional shellable

complex formed by k regular (n — 2)-cells Cy g+1¢, .., Ck k+1,:- By Proposition 6.7,
this common boundary is a regular (n — 2)-cell. Hence, by Proposition 6.7 again, the
complex Dyy1 is shellable. O

Lemma 2.8. Let U C R'j_ be a semi-monotone set, with n < 5, such that the origin is
in U, and let c(t) = (c1(t),...,cn(t)) be a germ of a generic definable curve inside R’_;_
(not necessarily inside U) converging to the origin ast — 0. Then

U =UN{xy <ci(@®),...,xp <cy(t)}

is a regular cell for all small positive t.

Proof. We can repeat the proof of Lemma 2.7 if we prove that the regular cell complex
D, formed by the non-empty sets

le,--ujiJ =UnN {le =Cj (1), ey Xy = Cji(t), xr < ci(t) for all k 73 J1 ...,ji},

where 1 < j; < --- < j; < n, is shellable. The difference from the proof of Lemma 2.7
is that here some of the sets Cj,, .. j;,, may be empty.

By Corollary 1.5, the semi-monotone cell U; is acyclic. Hence so is Dy, for all small
t > 0.

Since U is open, if Cj, . j.: is non-empty then C;, ;. is non-empty for any sub-
set {i1,..., 0} of {j1,..., jk}. It follows that the complex D; can be represented as a
simplicial subcomplex X of an (n — 1)-simplex A so that every non-empty set Cj, .. ji s
corresponds to the (i — 1)-face of A having vertices ji, ..., ji.
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Observe that X is acyclic since D; is acyclic. We prove by induction on the number
of simplices in X that the acyclicity of X implies that D; is shellable. The base of the
induction, for a single vertex, is trivial. According to Proposition 6.12, X has a vertex v
with an acyclic link L. The vertex v corresponds to a regular (n — 1)-cell C;;, while the
link L corresponds to the (n — 2)-subcomplex of D; along which C;; is glued to D;. By
the inductive hypothesis applied to L, that subcomplex of D; is shellable, and thus, by
Proposition 6.7, is a regular cell. Removing the star of v in X, we get a subcomplex Y
of X which is acyclic by the Mayer—Vietoris exact sequence. By the inductive hypothesis,
the subcomplex of D, corresponding to Y is shellable. We have proved that D; is obtained
by gluing a regular cell to a shellable complex along a regular cell, hence D; is shellable.

O

Lemma 2.9. Let U C R’}r be a semi-monotone set, with n <5, such that the origin is in
U, andletc = (ci,...,cp) € RY. Then Ue := U N{x1 < c1,..., %y < ¢y} is a regular
cell for generic c with ||c|| small.

Proof. Consider a definable set Uy := U N {x; < y1,...,X;, < yu} C R%r" with coordi-
nates xi, ..., Xn, ¥1, ..., yp andy = (y1, ..., yn). By Corollary 6.15, there is a partition
of R, (having coordinates y1, ..., y,) into definable sets T such that if any T is fixed,
then for all y € T the closures Uy are definably homeomorphic to the same polyhedron,
and the frontiers Uy \ Uy are definably homeomorphic to the same polyhedron.

For every n-dimensional 7 such that the origin is in T, there is, by the curve selection
lemma ([2, Th. 3.2]), a germ of a generic definable curve c(¢) converging to 0 as t — 0.
Hence, by Lemma 2.8, for each ¢ € T the set U, is a closed n-ball, while U, \ U, is an
(n — 1)-sphere. Therefore, U, is a regular cell. O

Lemma 2.10. Using the notation from Lemma 2.9, for n < 5, and for generic ¢ € R}
with ||c|| small, the intersection

UcN ﬂ {xj, ov av},
1<v<k
forany j, € {1,...,n}, oy € {<, >}, and for any generic a; > --- > ay, is either empty
or a regular cell.

Proof. Itis sufficient to assume that a, < c;, for all v. We use induction on k. For k = 1,
the set U. N {x;, < a1} is itself a set of the kind U,, and therefore is a regular cell, by
Lemma 2.9. Then the set U, N {x;, > a1} is a regular cell due to Corollary 2.5.

By the inductive hypothesis, every non-empty set of the kind

vE V=0 () fx,ova) (2.1)

l<v<k—1
is a regular cell. Also by the inductive hypothesis, replacing cj, by ay if ax < ¢, every
set Uék_l) N {x;, < ai}is aregular cell. Since both Uék_l) and chk_l) N {x;, < ai}are

regular cells, so is Ufk_l) N {xj, > ax}, by Corollary 2.5, which completes the induction.
]

In the similar statement for n > 5 we need to assume that c is a generic point in U.
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Lemma 2.11. Let U be a semi-monotone set in R, withn > 5, let ¢ = (c1, ..., cy) be
a generic pointin U, and let U, := U N{x1 <c1,...,Xy < cp}. Then
UcN ﬂ {xju oy ay},
I<v=<k
for |[c|| small, for any j, € {1, ...,n}, o, € {<, >}, and for any generic a; > --- > ai,

is either empty or a regular cell.

Proof. Lemma 2.7 and the argument from the proof of Lemma 2.9 imply that U, is a
regular cell. We argue by induction on k. For k = 1, both sets U. N {x;, > a;} and
U:. N {xj, < a1} are regular cells, due to Lemma 2.6. Assume by the inductive hypothesis

that every non-empty set of the kind Uc(kfl) (see (2.1)) is a regular cell. Then, due to

Lemma 2.6, both Uik_l) N {x;, > ax} and Uék_l) N {xj, < ai} are regular cells. O
Lemma 2.12. Let U C R" be a semi-monotone set, and lety = (y1, ..., y,) € U. Then
for generic points a = (ay, ..., ay), b = (b1, ..., by) € R, with ||a|| and ||b|| small, the
intersection

Usp =UN ﬂ {—aj < xj —y; < bj}

I<j=<n
is a regular cell.

Proof. We use induction on n, with the case n = 1 being obvious.

Translate the point y to the origin. Let ¢ = (ci,...,cn) € R” be a generic point,
and P, . the open octant of R" containing c. By Lemma 2.9 in the case n < 5, or by
Lemma 2.11 in the case n > 5, for a generic point ¢ = (ci, ..., ¢y) € Py N U with ||c||
small, the set U, :== U NP, . N{|x1| <lcil, ..., x| < |cn|} is either empty or a regular
cell. Choose such a point ¢ in every octant of R".

Choose —a; (respectively, b;) to be the maximum (respectively, minimum) among the
negative (respectively, positive) ¢; over all octants P. We now prove that, with a and b so

chosen, the set U, j is a regular cell. We use inductiononr =0, ...,n — 1. Forr =0, if
d is a vertex of
() (—aj <xj <bj}
I<j<n

belonging to one of the 2" = 2"~" octants IP, then Uy is either empty or a regular cell (by
Lemma 2.10 forn < 5, and Lemma 2.11 for n > 5). Partition the family of all sets of the
kind Uy into pairs (Uyr, Ugr) so that d| = a1, d = by andd] = d foralli =2,...,n.
Whenever the cells Uy, Uy» are both non-empty, they have a common (n — 1)-face

.....

which, by the inductive hypothesis of the induction on n, is a regular cell. Then, according
to Corollary 2.4, the union of the common face and Uy U Uy is a regular cell. Gluing
in this way all pairs (Uy, Ugr), we get a family of 2"~ ! sets which are either empty or
regular cells. This family is partitioned into pairs of regular cells each of which has a
common regular cell face in the hyperplane {x» = 0}. In the last step of the induction, for
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r = n — 1, we are left with at most two regular cells having, in the case of exactly two
cells, a common regular cell face in the hyperplane {x,, = 0}. Gluing these sets along the
common face, we get, by Corollary 2.4, the regular cell U, p. O

Lemma 2.13. Using the notations from Lemma 2.12, the intersection

Va :=Uap N [ {xj, 00du}, 22)
1<v<k
forany j, € {1,...,n}, oy € {<, >}, and for any generic d| > --- > dy, is either empty

or a regular cell.

Proof. Analogous to the proof of Lemmas 2.10 forn < 5, and to the proof of Lemma 2.11
forn > 5. O

Proof of Theorem 2.2. For each point y € U choose generic points a, b € R" as in
Lemma 2.12, so that the set U, becomes a regular cell. We get an open covering of the
compact set U by sets of the kind

Agp = ﬂ {—a; <xj —y; <bj};
I<j=n
choose any finite subcovering C. For every j = 1,...,n consider the finite set D; of
Jj-coordinates a;, b; for all sets A, in C. Let

U Dj ={di,...,dy}

I<j=n

with d; > --- > di. Every set V, j, corresponding to {dy, ..., dr} (see (2.2)), is regular,
by Lemma 2.13, and U is the union of those V, ; and their common faces for which
Aa,h eC.

The rest of the proof is similar to the final part of the proof of Lemma 2.12. Use
induction on r = 1, ..., n, within the current induction step of the induction on n. The
base of the induction is for r = 1. Let D1 = {di,1,...,d1 )} withdy 1 > -+ > djg,.
Partition the finite family of all regular cells V, p, for all A, ; € C, into (|D1| — 1)-tuples
so that the projections of cells in a tuple on the xj-coordinate are exactly the intervals

ik ik =1), @ik =1, d1k=2)s - -5 (d1 2, d1,1), (2.3)

and any two cells in a tuple having as projections two consecutive intervals in (2.3) have a
common (7 — 1)-dimensional face in a hyperplane {x; = const}. This face, by the external
inductive hypothesis (of the induction on n), is a regular cell. According to Corollary 2.4,
the union of any two consecutive cells and their common face is a regular cell. Gluing in
this way all consecutive pairs in every (| D1| — 1)-tuple, we get a smaller family of regular
cells. This family, in the next induction step r = 2, is partitioned into (| D2| — 1)-tuples of
cells such that in each of these tuples two consecutive cells have a common regular cell
face in a hyperplane {x, = const}. In the last step, r = n, of the induction we are left
with one (| D, | — 1)-tuple of regular cells such that two consecutive cells have a common
regular cell face in a hyperplane {x, = const}. Gluing all pairs of consecutive cells along
their common faces, we get, by Corollary 2.4, the regular cell U. O
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3. Semi-algebraic semi-monotone sets over real closed fields

In this section we prove the regularity of semi-monotone sets for semi-algebraic sets
defined over an arbitrary real closed field R which is fixed for the rest of the section. Ac-
cordingly, in the definition of semi-monotonicity, “connectivity” refers to “semi-algebraic
connectivity”, while an n-dimensional semi-algebraic regular cell S C R” is such that
there exists a semi-algebraic homeomorphism

h:(S,8) — (-1,11", (=1, D™
(cf. Definition 2.1).

Definition 3.1. Let S C R” be a semi-algebraic set. We say that the complexity of S
is bounded by a natural number N if there exists a quantifier-free first-order formula
@ defining S such that N > sd, where s (respectively, d) is the the number (respec-
tively, maximum degree) of the polynomials appearing in ®. By the complexity of a
semi-algebraic map we mean the complexity of its graph.

The idea of the proof is to show that for a fixed N the statement that “any semi-
monotone set with complexity N is a regular cell” can be expressed by a first-order for-
mula of the theory of R (with integer coefficients), and therefore is true as long as it is
true for R = R, due to the Tarski—Seidenberg transfer principle ([1, Proposition 5.2.3]).
(Note that the direct repetition for arbitrary R of the proof from Section 2 is probably
impossible because R may be non-archimedean.)

Lemma 3.2. For any pair (T1, T») of semi-algebraic sets with T, C T C R", there
exists a natural-valued function F (N, n) with the following property. Let pairs (S1, S»)
and (Ty, To) of semi-algebraic sets be semi-algebraically homeomorphic, where the sets
S C 81 C R” have complexities bounded by N, and Sy is closed and bounded. Then
there exists a semi-algebraic homeomorphism

[, 82) — (T, T2)

with complexity bounded by F (N, n).

Proof. Tt follows from the theorem on triangulations of semi-algebraic sets ([1, The-
orem 9.2.1]) that there exists a natural-valued function H (N, n) having the following
property. There exist a finite simplicial complex K having at most H (N, n) simplices,
a union K, of its simplices, and a semi-algebraic homeomorphism

h: (81, 8) — (K1l [K2l),

such that the complexity of & is also bounded by H (N, n). Since the number of simpli-
cial complexes having at most H (N, n) simplices is finite, there is an N-valued function
G (N, n) bounding the complexity of any semi-algebraic homeomorphism

g : (IK1l, |Kz]) — (11, T2).
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Thus, there exists a semi-algebraic homeomorphism
fi=goh:(81,%) — (T, Tr)

with complexity bounded by some N-valued function ¢ of H(N, n) and G(N, n) which
can be explicitly described using bounds on effective quantifier elimination. Define
F(N,n) :=¢(H(N,n), G(N,n)). o

One can consider a semi-algebraic subset in R” x R” as a semi-algebraic family of subsets
of R parameterized by points of R”. Using again the theorem on triangulations of semi-
algebraic sets, it is easy to check that the family of all those semi-algebraic subsets of R"
of complexity bounded by N which are semi-monotone is a semi-algebraic family.

Theorem 3.3. Let R be a real closed field. Every non-empty semi-algebraic semi-mono-
tone subset of R" is a semi-algebraic regular cell.

Proof. 1t suffices to prove the theorem for all non-empty semi-algebraic semi-monotone
sets of complexity bounded by N for each N > 0. Fix N. Since the family of all such sets
is a semi-algebraic family, Lemma 3.2 for

implies that the existence of the required homeomorphism is expressible as a sentence in
the language of the first-order theory of the field R with integer coefficients. The Tarski—
Seidenberg transfer principle now implies that it suffices to prove the truth of this sentence
for any one particular real closed field. The theorem follows since we have proved this
sentence for R = R in Theorem 2.2. O

4. Regular cells in the sense of van den Dries are not regular

In o-minimality theory the following classes of topological cells and continuous functions
are considered, which are also based on the idea of monotonicity. In [7] these cells and
functions are called regular, we will call them vdD-regular.

Definition 4.1 (cf. Theorem 1.7). An (open) cylindrical cell X C R”" is an open subset
defined by induction as follows. For n = 0, X is the point. Let X be a cylindrical cell
inR"~! and f, g : X — R be two continuous functions such that f(x) < g(x) for all
x € X.Then {(x,1) | x € Y, f(X) <t < g(x)}is a cylindrical cell in R*+!,

Definition 4.2 ([7]). A cylindrical cell X C R” is vdD-regularif foreach 1 <i < n, any
two points X = (xq,...,x,),y = (1, ..., ¥») € X andeachpointz = (z1,...,2,) € R"?
such that x; = y; = z; forall j # i, the condition x; < z; < y; implies z € X.

Let X be a vdD-regular cell. A continuous function f : X — R is vdD-regular if for
each 1 < i < n it is either strictly increasing, strictly decreasing, or constant along the
coordinate i. Here, f is strictly increasing along the coordinate i if for any two points
X=(x1,...,%), Yy = (1,...,yn) € X suchthat x; = y; forall j # i, and x; < y;,
we have f(x) < f(y). Similarly, we define functions strictly decreasing and functions
constant along the coordinate i.
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The following example shows that a vdD-regular cell may not be regular, and that a
vdD-regular function defined on a vdD-regular cell may not be supermonotone (or sub-
monotone).

Example 4.3. Consider the 3-simplex
X::{(x,y,z)e]R3 |0<x,0<y,0<z<l,x+y<z}
and the continuous function 4 : X — R defined by

h(x,y,2) = (x/2)* + (v/2)%.

Observe that X is a vdD-regular cylindrical cell, while /4 is a vdD-regular function. It is
easy to see that for every # € (1/2, 1) the level set

{(x,y,2) € X | h(x,y,2) =1}

is not connected, while its closure is a cone with vertex at the origin and base consisting
of two disjoint arcs of a circle. Hence the graph of 4 itself is not a regular cell. It follows
that the vdD-regular cell

{x,y,z,0) | (x,y,x) € X, 0<1t < h(x,y,2)}

is not a regular cell.

Note that the set {(x, y,z) € X | h(x, y, z) > 1/2} consists of two connected com-
ponents, and therefore is not semi-monotone. Therefore the vdD-regular function / is not
supermonotone.

5. Semi-monotone sets and regular Boolean functions

Consider a Boolean function ¥ = ¥ (&1,...,§,) in n Boolean variables &§; € {0, 1}.
Forany j = 1,...,n and ¢ € {0, 1}, let v . be the restriction of ¥ to the subspace
Cj.c =1{& = c} C {0, 1}". The operations

Ei(W)=vjoVvyj1 and A;j(¥) =vj0A Y51

assign to ¥ two Boolean functions in n — 1 variables. These operations can also be defined
by the formulae 3¢; ¥ (&1, ..., &,) and V&; ¥ (&1, ..., &), respectively.

Definition 5.1. A regular Boolean function is defined inductively as follows. Any uni-
variate Boolean function is regular. A Boolean function v (&1, &) is regular if the set
{y = 1} is neither {(1, 0), (0, 1)} nor {(0, 0), (1, 1)}. Equivalently, ¥ (&1, &) is regular if
Ei1(Ay(¥)) = Ax(E1 () or Aj(Ex(Yr)) = E2(A1 (). Forn > 2, a Boolean function
¥ on {0, 1}" is regular if the following two conditions are satisfied:

(R1) Restriction of ¢ to each Boolean square
&, =c1,....&,, =2}, 1=<j1<-<jp2=n,

is regular.
(R2) The functions E, () and A, () are regular.



650 Saugata Basu et al.

Lemma 5.2. Let (&1, &, &3) be a Boolean function such that the functions ;. are
regular forall j = 1,2,3 and c € {0, 1}.

1. If Ez(Y) is not regular then { = 1} is one of the four sets each consisting of two
diagonally opposite vertices of {0, 1}3.

2. If A3(y) is not regular then {1y = 0} is one of the four sets each consisting of two
diagonally opposite vertices of {0, 1}3.

Proof. Straightforward checking. O

Theorem 5.3. A Boolean function (&1, ..., &) is regular if and only if the result of
any sequence of operations E; and Ay applied to  does not depend on the order of the
operations.

Proof. We prove the statement by induction on #n. The case n < 2 follows immediately
from the definition of a regular function. Let n > 3.

Suppose that for a function ¥ the result of any sequence of operations E; and Ay
applied to 1 does not depend on the order of the operations. This immediately implies
(R1). Since E, () and A, () are functions in n — 1 variables, they are regular by the
inductive hypothesis, i.e., condition (R2) is also true. Hence, v is regular.

Conversely, let i be a regular function. For any Boolean function x and any j # k
we have E; (Er(x)) = Ex(Ej(x)) and Aj(Ax(x)) = Ar(A;(x)). Condition (R1) implies
that for regular ¥ and any j # k, the equality E; (Ax(¥)) = Ax(E;(¥)) is true. Hence
we only have to show that the functions E;(v) and A;(v) are regular for each j < n. We
will only prove that ¢ := E; () is regular. The proof for A; (1) is similar.

For j < n, the functions ¢, 0 := E;j(¥4,0) and ¢,1 := E;({,,1) are regular due to
the induction hypothesis.

Since E; (¥) is regular and £, (p) = E;(E, (¥)), the function E; (¢) is regular due to
the induction hypothesis. Since A, () is regular and A, (¢) = E;(A,(¢)) by condition
(R1), the function A, (¢) is regular due to the induction hypothesis. Hence it remains to
show that the restriction of ¢ to any Boolean square B in {0, 1}~ is regular. If B has the
value of &, fixed, this follows from the regularity of ¢, o and ¢, 1.

Suppose that the values of all variables except &, and &, for some j # k < n — 1, are
fixed on B, and the restriction of ¢ to B is not regular. Then the intersection of {y = 1}
with the corresponding Boolean 3-cube C in {0, 1}"* (with the values of all variables ex-
cept &,, & and &; fixed) consists of two diagonally opposite vertices due to Lemma 5.2.
Hence the restriction of E, () to the projection of C along &, is not regular, which con-
tradicts regularity of E, (). O

Corollary 5.4. Any regular Boolean function \r remains regular under any permutation
of the variables, replacing any &; by 1 — &;, replacing &; by a constant ¢ € {0, 1} for any
j €{l,...,n}, and replacing W by 1 — .

Proof. Straightforward. O

Consider the cube [—1, 1]* C R" as a union of 2" closed unit cubes with the common
vertex at the origin. Shifting the center of a unit cube by (1/2, ..., 1/2) assigns a point
in {0, 1}" to this unit cube. In this way, the unit cubes correspond bijectively to the points
of {0, 1}"*.
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Theorem 5.5. A Boolean function ¥ (&1,...,&,) # O is regular if and only if the
union Cy of closed unit cubes corresponding to points (&1, ...,§,) € {¢ = 1} isa
closed PL n-ball.

Proof. We use induction on n, where the case n = 2 follows from Definition 5.1.

Suppose a Boolean function v is regular.

Let Cy 4 (respectively, Cy_) be the union of all unit cubes corresponding to ver-
tices with &, = 1 (respectively, &, = 0). Since, due to Corollary 5.4, the functions
v, ..., 81, 1) and ¥ (&1, ...,&,—1,0) are regular, both Cy and Cy_ are closed
PL n-balls, by the inductive hypothesis. Due to Proposition 6.4, it is sufficient to prove
that the intersection

Cyo:=CyNCy_ C[-1, 11" N {x, = 0}

is a closed PL (n — 1)-ball.

If Cyy is pure (n — 1)-dimensional, then Cyg = Ca, y). Since A, () is regular, Cy
is a PL (n — 1)-ball, by the inductive hypothesis.

We now show that Cy is indeed pure (n — 1)-dimensional. Suppose that, on the
contrary, Cy contains a common m-face F of a unit cube in Cy and a unit cube in Cy, _,
with 0 < m < n, and F is not contained in any common face of a larger dimension.

Letm > 0. Then forsome 1 <i <n—1landc € {0,1} theset F N{x; = c}isa
common (m — 1)-face of some unit cubes in Cy4 N {x; = c} and Cy4 N {x; = ¢}, which
is not contained in any common face of a larger dimension. Hence, for the restriction v; .
of ¥ on {§; = c}, the set Cy, . is not a PL (n — 1)-cube, therefore, by the inductive
hypothesis, ¥; . is not regular. This contradicts Corollary 5.4.

Now, let m = 0. This can only happen when each of Cy and Cy_ consists of just
one cube, and this pair of cubes corresponds to diagonally opposite vertices of [—1, 1]".
Then v is not regular, which is a contradiction.

Conversely, suppose for a Boolean function  the set Cy is a PL ball. Then for all
1 <i <nandc € {0, 1} the sets Cy, , are also PL (n — 1)-balls, hence, by the inductive
hypothesis, all functions ; . are regular. This implies condition (R1) for .

The set Cg,(y) is the projection of Cy along the coordinate x,, and is therefore a
PL (n — 1)-ball. Hence E,(¥) is a regular function by the inductive hypothesis. The
intersection of the two PL n-balls Cy 4 and Cy_, defined above, is a PL (n — 1)-ball,
and it coincides with Cy,(y). Therefore A, () is a regular function by the inductive
hypothesis. Thus condition (R2) is also satisfied, and  is regular by definition. O

Corollary 5.6. For a regular Boolean function v,

(1) Aj(¥) = 0ifand only if either Yj o = 0 or ¥j 1 = 0;
(2) Ej(¥) = 1ifand only if either Yrjo =1 oryj1 = 1.

Proof. (1) Let Cy, j+ (respectively, Cy ;) be the union of all unit cubes corresponding
to vertices with &§; = 1 (respectively, §; = 0). Since A;(¢) = ¥ 0 A ;1 = 0, the set Cy,
cannot contain two unit cubes corresponding to vertices differing only in the jth coordi-
nate. It follows that if both Cy, ;4 and Cy, ;— are non-empty, then dim(Cy, j+ NCy ;) <
n — 1. This contradicts the fact that Cy, is a PL n-ball.
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The converse statement is trivial.
(2) follows from (1) and De Morgan’s law: E; () =1 — A; (—¥). O

Definition 5.7. Let p € R”". The finite set Z of octants with vertex at p corresponds to
a Boolean function v if, when translated to O, the octants in Z contain exactly all unit
cubes in [—1, 1]" corresponding to points (&1, ..., &,) € {¢y = 1}.

Let U C R". If the set Z of all octants with the vertex at p and having non-empty
intersections with U corresponds to a Boolean function v, then we say that i is the
Boolean function for U at p.

Lemma 5.8. Let U C R" be a non-empty semi-monotone set, and U’ be its projection
along the coordinate x,. If p’ ¢ U’ and the Boolean function ¢ for U' at p' is ¢ = 1,
then there exists p,, € R such that the Boolean function v for U at p = (p', py) is either
not regular or Yy = 1.

Proof. Let p' ¢ U’ and ¢ = 1. Suppose that for every p, € R the function v is regular.
Since ¢ = E, () for any p, € R, Corollary 5.6 implies that for every p, either ¥; o = 1,
or ¥ 1 = 1. Observe that y; o = 1 for all sufficiently large values of p,, while ¥; | =1
for all sufficiently small values of p,. Therefore there exists an intermediate value of p,

for which v = 1. ]
Theorem 5.9. A non-empty open set U C R”" is semi-monotone if and only if for every
point p = (p1, ..., pn) € R*"\ U the Boolean function \ for U at p is a non-constant
regular function.

Proof. Suppose that U is semi-monotone and p = (py, ..., pp) € R* \ U. Let ¢ be the
Boolean function for U at p, and let Z correspond to .

According to Theorem 5.5, it is sufficient to prove that the union C of all unit cubes in
[—1, 1]" corresponding to octants from Z is a closed PL rn-ball different from the whole
[—1, 1]*. We prove this by induction on n, with the case n = 1 being trivial.

Let C = C4+ U C_ where C (respectively, C_) is the union of all unit cubes corre-
sponding to vertices of [—1, 1]* with &, = 1 (respectively, &, = 0).

The projection U/, (respectively, U") of U N X, -~ p, (respectively, of U N X, < p,)
along the coordinate x,, is semi-monotone due to Proposition 1.2. If (py, ..., ps—1) € UL
then the projection of C+ along x;,, coincides with [—1, 11"~L. Otherwise, by the inductive
hypothesis, the projection of C4 along x, is a closed PL (n — 1)-ball. In any case, the
set C itself is a closed PL n-ball.

By Proposition 6.4, it is sufficient to prove that the intersection Co := CL N C_isa
closed PL (n — 1)-ball. The same argument as in the proof of Theorem 5.5 shows that Cy
is pure (n — 1)-dimensional. We now prove that the set Cy coincides with the union of the
unit (n — 1)-cubes for U N X, — p, . Indeed, if for two octants

Dy = X101,p N N Xntoy_i,pset N Xni>,py

and
D_ = Xl,ffl,pl ARERA Xn—l»Un—l,Pn—l N X’1v<s1’n’
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where o1, ...,0,-1 € {<, >}, both intersections Dy N U and D_ N U are non-empty,
then U N X, — p, is also non-empty since

un XLGI,PI n-.-N X'l—LUn—I,Pn—l

is semi-monotone and therefore connected. By the inductive hypothesis, Cyp is a closed
PL (n — 1)-ball.

It remains to show that C # [—1, 1]". By the inductive hypothesis, Co # [—1, 1"t
It follows that

un X1»<71>P1 n---N X"*L”n—l»l’n—l n X”,=~,Pn = @

for some o1, ...,0,—1 € {<,>} I C =[-1,1]",thenUN Dy AW and U N D_ # @.
Hence the semi-monotone set

un Xl»”l»ﬁl n---N Xn—l,o’,,,l,pnfl

is not connected, which is a contradiction.

Conversely, suppose that for every p € R" \ U the Boolean function ¢ for U at p is
a non-constant regular function. We continue the proof by induction on n, with the case
n = 1 being trivial.

Let U’ be the projection of U along the coordinate x,,. For every point p’ € R"~1\ U’
the Boolean function ¢ for U’ at p’ coincides with E,, (1) where v is the Boolean function
for U at some point p € R" \ U. Then, by (R2) in Definition 5.1, ¢ is regular. The
possibility that ¢ = 1 contradicts Lemma 5.8. Then, by the inductive hypothesis, U’ is
semi-monotone. It follows that the intersection

V= U0 X 0 0 X

is connected forany 0 <k <n—l,any 1l < j;j <--- < jr <n—1,any oy, ..., 0% in
{<,=,>},and any cy, ..., cx. Suppose that the intersection

V:=UN le,o'l,ﬂ n---N Xjk,O'k»Ck

is not connected. Then, by the Vietoris—Begle theorem, the fibre of the projection along
the coordinate x, over some point p’ = (p1,..., pp—1) € V' is not connected, i.e., for
some py, Xu, v, € R we have (p/, x,), (p',yn) € U, (p', pn) € R"\ U, and x,, <
DPn < yn. It follows that the Boolean function ¥ for U at (p’, py—1) is ¥ = 1, which is a
contradiction.

It remains to consider the case of the intersection V N X, 5, ., for o, € {<, =, >}.

Let 0, be =. We prove that for a point p € R"~1\ (U N Xn=¢), fUNXy ¢, 9,
then the Boolean function ¢ for U N X, — ., at p is a non-constant regular function. Since
the Boolean function ¢ for U at p is non-constant regular, according to Theorem 5.5,
the corresponding union Cy of unit cubes is a PL n-ball. Then for the union C, of unit
(n—1)-cubes we have C, = Cy NCy _, otherwise the intersection of U with the cylinder
over the corresponding octant in R"~! centred at p would be disconnected, which is a
contradiction. It follows that Cy, is a PL (n — 1)-ball, thus ¢ is non-constant regular.
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By the inductive hypothesis, U N X, — ., is a semi-monotone set, in particular every set
V N X, =, is connected.

Suppose that some set of the kind V N X,, 5, ¢,, where 0, € {<, >}, were not con-
nected. Since V is connected, the set V N X, — . would be disconnected, which is a
contradiction. m]

6. Appendix: topological background

Definition 6.1. Let Z be a closed (open) PL (n — 1)-ball, X, Y be closed (respectively,
open) PL n-balls, and L
Z=XNY =098XNaY.

We say that X U Y U Z is obtained by gluing X and Y along Z.

Proposition 6.2 ([4, Lemma 1.10]). Let X and Y be closed PL n-balls and h : 0X — 9Y
a PL homeomorphism. Then h extends to a PL homeomorphism hy : X — Y.

Proposition 6.3 ([4, Corollary 3.13,]). Let X be a closed PL n-ball, Y be a closed
(n 4 1)-ball, Y be its boundary (the PL n-sphere), and let X C dY. Then oY \ X is
a PL n-ball.

Proposition 6.4 ([4, Corollary 3.16]). Let X, Y, Z be closed PL balls as in Defini-
tion 6.1, and X U Y be obtained by gluing X and Y along Z. Then X UY is a closed
PL n-ball.

Proposition 6.5 ([5, Lemma 1.3.8]). Let X,Y C R" be compact polyhedra such that X
and X UY are closed PL n-balls. Let X NY be a closed PL (n — 1)-ball contained in 0X,
and suppose the interior of X NY is contained in the interior of XUY. Then Y is a closed
PL n-ball.

Definition 6.6. An n-dimensional shellable cell complex is defined by induction as fol-
lows.

1. Any PL regular n-cell A is a shellable complex.

2. If W is an n-dimensional shellable complex, B is a PL regular n-cell, and C is a PL
regular (n — 1)-cell in the boundaries of both W and B, then the result of gluing W
and B along C is a shellable complex.

Proposition 6.7. Any n-dimensional shellable cell complex is a PL regular n-cell.

Proof. Follows from Proposition 6.4 by the induction in Definition 6.6. O

Definition 6.8 ([4, Ch. 4]). A pair (Q™, Q") of PL manifolds, in particular balls or
spheres, is proper it Q" N dQ™ = 9Q". A proper pair is locally flat if each point
x € Q" has a neighbourhood in (Q™, Q") homeomorphic (as a pair) to an open set
in (R, R% x 0). (Itis clear that the pair (3 9™, 9 Q") is then also locally flat.) The stan-
dard ball pairis ([—1, 17", [—1, 17" x 0), and (3[—1, 1]™, 9[—1, 1]" x 0) is the standard
sphere pair. A ball or a sphere pair is unknotted if it is PL homeomorphic to the appro-
priate standard pair of appropriate dimension.
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Proposition 6.9 (Schonflies theorem, [4, 3.37]). If n # 4 then any locally flat pair of
PL spheres (8", S"~) is unknotted.

The following statement is apparently well-known in PL-topology. However, since we do
not have a good reference, we present a proof communicated to us by N. Mneyv.

Proposition 6.10. Ifn # 4, 5, then any locally flat pair of closed PL balls (B", B~ ) is
unknotted.

Proof. Let $"~! be the boundary of B", and S”~2 be the boundary of B"~!. Let B! and
B" be the two parts of B" separated by B"~!, and let Si_l and S"~! be the corresponding
parts of S”~!. For n # 5, Proposition 6.9 implies that the pair ($” !, §”2) of PL spheres
is unknotted, and Si‘l are PL n-balls.

Let (C*, D"~1) be the cone pair with base (§"~!, $"~2). Then W" := B" UC" isa
PL n-sphere, yr—l.= pn=1yp*"lisaPL (n — 1)-sphere, and the pair (W", V-l is
locally flat. For n # 4, Proposition 6.9 implies that the pair (W”, V"*~1) of PL spheres is
unknotted, and the two parts of W" separated by V*~! are PL n-balls. But these two parts
are the unions B} U E’{, where E’, and E” are cones over S:'L_l and §"! respectively.
Since §".! are PL n-balls, Proposition 6.5 implies that so are the BY.. O
Remark 6.11. Proposition 6.10 is also true in the case n = 5 but available proofs are
more complex, and we do not need this case here.

Proposition 6.12. For n < 4 any acyclic simplicial subcomplex X of the n-simplex A
has a vertex with an acyclic link.

Proof. We will consider only the most complex case of n = 4.

1. If X is one-dimensional, then, being acyclic, X is a tree. Then X has a leaf with
acyclic link of a vertex.

2. If X contains a 3-simplex, say &, then there is the only vertex, say v, in A \ §. If
no simplices apart from § and its faces are in X, then all vertices of X have acyclic links.
Otherwise, X is homotopy equivalent to the suspension of the link of v in X, hence the
link is acyclic. This covers the cases when X = A and when dim X = 3.

3. Suppose that X is two-dimensional. Since any two 2-simplices in A have acommon
vertex, the one-dimensional part of X consists of trees which cannot have all leaves at
some vertices of 2-simplices of X (otherwise X would have a non-trivial 1-cycle). Hence
either such a tree has a leaf with its adjacent vertex as its acyclic link, or X is pure two-
dimensional.

4. Suppose that X is pure two-dimensional.

4(a) There are ten 2-simplices in A, and they cannot all be in X since the 2-skeleton
of A is not acyclic. Removing one of them, we get the 2-skeleton Z of an acyclic 3-
dimensional complex consisting of three 3-simplices. Hence Z has three independent
2-cycles, and we have to remove at least three 2-simplices to make Z acyclic. It follows
that X has at most six 2-simplices.

4(b) If a vertex v of X has one adjacent 2-simplex in X or two adjacent 2-simplices
having a common edge, then v has a link in X which is a tree. If v has two adjacent 2-
simplices in X without a common edge, then X, being acyclic, consists of just these two
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2-simplices, and any vertex in X different from v has an acyclic link. It follows that if X
does not have any vertices with acyclic links, then for each vertex v of X there should be
at least three 2-simplices having v as a common vertex. If v has exactly three adjacent 2-
simplices, the link L of v is connected, since any disconnected graph with three edges has
at least five vertices. If L is not acyclic, then it is a triangle (the boundary of a 2-simplex).
Since there are five vertices (otherwise X would be a subcomplex of a three-dimensional
simplex), X must have at least five 2-simplices.

It remains to consider the cases of five and six 2-simplices in X.

4(c) Let X have exactly five 2-simplices. If no vertex has an acyclic link in X (and
hence, by 4(b), all links are triangles), then each edge in X is shared by exactly two
2-simplices. But this is impossible since there are 15 edges to divide into pairs.

4(d) Suppose that X has exactly six 2-simplices. Since the average number of sim-
plices adjacent to the vertices of X is 18/5, there should be a vertex v of X with exactly
three adjacent 2-simplices. If the link L of v is not acyclic, then, by 4(b), it is a triangle.
Let w be the vertex of X different from v and from the three vertices of L. Then v is not
in the link M of w, hence M (being a subset of L) is either acyclic or equal to L. In the
latter case X is combinatorially equivalent to a triangular bipyramid, hence is a non-trivial
2-cycle. This is a contradiction. O

Example 6.13. The following example shows that Proposition 6.12 does not hold for
n=>3.

Consider a hexagon with vertices 0, . . ., 5.

Attach to it the boundary of a 3-simplex with vertices 0, 1, 2, 3 without the simplex
(013). That is a cell contractible to the union of the hexagon edges (01), (12), (23). Re-
peat the same construction, replacing 0, 1, 2, 3 by 2, 3, 4, 5, and then repeat again, replac-
ing2,3,4,5by 4,5,0, 1.

No two of these three cells have common 2-simplices, and their common edges are
all on the hexagon. Hence, the union Y of these cells is contractible to the hexagon and is
homotopy equivalent to a circle.

Attach the 2-simplex (135) to ¥ making the resulting simplicial complex X := Y U
(135) contractible, and therefore acyclic. Then the links in X of the vertices 0, 2, 4 have
cycles of length three, while the links in X of the vertices 1, 3, 5 have cycles of length
four. Thus X is an acyclic subcomplex of a five-dimensional simplex A having no vertices
with acyclic links.

Proposition 6.14 ([7, Ch. 8, (2.14)]). Let X C R™™™ be a definable set, and let 7w :
R™*T1 — R™ be the projection map. Then there exist an integer N > 0 and a definable
(not necessarily continuous) map f : X — A, where A is an (N — 1)-simplex, such that
for every x € R™ the restriction fx : X N~ (x) = A of f to X N~V (X) is a definable
homeomorphism onto a union of faces of A.

Corollary 6.15. Using the notations from Proposition 6.14, suppose that all fibres X N
77V (X) are definable compact sets. Then there is a partition of w(X) into a finite number
of definable sets T C R™ such that all fibres X N 7~ (x) with x € T are definably
homeomorphic to the same simplicial complex.
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Proof. There are a finite number of different unions of faces in A. Since f is definable,
the pre-image of any such union under the map f o 7! is a definable set. O
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