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Abstract. A coordinate cone in Rn is an intersection of some coordinate hyperplanes and open
coordinate half-spaces. A semi-monotone set is an open bounded subset of Rn, definable in an o-
minimal structure over the reals, such that its intersection with any translation of any coordinate
cone is connected. This notion can be viewed as a generalization of convexity. Semi-monotone sets
have a number of interesting geometric and combinatorial properties. The main result of the paper
is that every semi-monotone set is a topological regular cell.

Introduction

It is well known that in o-minimal geometry, definable sets that are locally closed are
easier to handle than arbitrary definable sets. A typical example of this phenomenon can
be seen in the well-studied problem of obtaining tight upper bounds on topological in-
variants such as the Betti numbers of semi-algebraic or semi-Pfaffian sets in terms of
the complexity of formulae defining them. Certain standard techniques from algebraic
topology (for example, inequalities stemming from the Mayer–Vietoris exact sequence)
are directly applicable only in the case of locally closed definable sets. Definable sets
which are not locally closed are comparatively more difficult to analyze. In order to over-
come this difficulty, Gabrielov and Vorobjov [3] suggested a construction which, given a
definable set S in an o-minimal structure over the reals, produced an explicit family of
definable compact sets converging to S. Under a certain technical condition (called “sep-
arability”) they proved that the approximating compact sets are homotopy equivalent to
S. The separability condition is automatically satisfied in many cases of interest—such as
when S is described by equations and inequalities with continuous definable functions.

However, the property of separability is not preserved under taking images of de-
finable maps, and this restricts the applicability of this construction. It was conjectured
in [3] that the crucial property of the approximating family (homotopy equivalence to S)
remains true even without the separability hypothesis. Proving this conjecture seems to be
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a rather difficult problem at present. One of the authors of the current paper (Gabrielov)
has outlined a research program whose completion would lead (amongst other things) to
a proof of the conjecture. The goal of the program is a “triangulation” of an increasing
definable family of compact sets. More precisely, the goal is to prove that given any in-
creasing definable family of compact sets converging to a definable set S ⊂ Rn, there
exists a definable triangulation of Rn such that inside each open simplex of this trian-
gulation the increasing definable family belongs to a finite list of combinatorial types.
Such a triangulation should be considered as being compatible with the given increasing
family (thus generalizing the standard notion of definable triangulations compatible with
a given definable set). The homotopy equivalence conjecture will then follow from this
triangulation.

One of the key steps in Gabrielov’s program is to prove the existence of a regular
triangulation of the graph of a definable function. More precisely, there is the following
conjecture.

Conjecture 0.1. Let f : K → R be a definable function on a compact definable set
K ⊂ Rm. Then there exists a definable triangulation of K such that, for each n ≤ dimK

and for each open n-simplex 1 of the triangulation,

1. the graph 0 := {(x, t) | x ∈ 1, t = f (x)} of the restriction of f to 1 is a regular
n-cell (see Definition 2.1);

2. either f is a constant on 1 or each non-empty level set 0 ∩ {t = const} is a regular
(n− 1)-cell.

It should be pointed out that Conjecture 0.1 does not follow from results in the literature
on the existence of definable triangulations adapted to a given finite family of definable
subsets of Rn (such as [7, 2]), since all the proofs use a preparatory linear change of
coordinates in order for the given definable sets to be in a good position with respect
to coordinate projections. Since we are concerned with the graphs and the level sets of a
function, in proving Conjecture 0.1 we are not allowed to make any change of coordinates
which involves the last coordinate. Thus, the standard methods of obtaining a definable
triangulation using “cylindrical decomposition” are not immediately applicable. In the
book [7], van den Dries describes a strong form of cylindrical decomposition in which
the cells are defined by functions having a coordinatewise monotonicity property (such
cells are called regular in [7]). We show that in fact these cells are not necessarily regular
cells in the sense of topology (see Definition 2.1). To prove Conjecture 0.1, we need
a sufficiently general class of definable sets which are guaranteed to be topologically
regular cells.

In this paper, we introduce a new class of definable sets, which we call semi-monotone
sets, and show that a non-empty semi-monotone set in Rn is a regular n-cell. A coordi-
nate cone in Rn is an intersection of some coordinate hyperplanes and open coordinate
half-spaces. A semi-monotone set is an open bounded subset of Rn, definable in an o-
minimal structure over the reals, such that its intersection with any translation of any
coordinate cone is connected. It is obvious that every convex definable bounded open set
is semi-monotone. Some non-convex examples as well as counter-examples are shown in
Figure 1.
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Fig. 1. Top: examples of semi-monotone subsets of the plane. Bottom: examples of open subsets
of the plane which are not semi-monotone.

The paper is organized as follows. In Section 1 we define semi-monotone sets and
prove necessary and sufficient conditions for an open bounded set to be semi-monotone,
which are similar to the properties of cylindrical cells in o-minimal geometry. In par-
ticular, it is proved that any semi-monotone set is a “band” between the graphs of two
semi-continuous functions which are defined on a semi-monotone set of a smaller dimen-
sion and have certain monotonicity properties.

Section 2 contains the proof of the main result, that every semi-monotone set is a regu-
lar cell. In Section 3 we prove the regularity in the case of semi-algebraic semi-monotone
sets defined over an arbitrary real closed field. In Section 4 we show that cylindrical cells
called “regular” in [7] are not necessarily topologically regular.

In Section 5 a concept of a regular Boolean function is introduced. A Boolean function
ψ(ξ1, . . . , ξn) in n Boolean variables ξj ∈ {0, 1} is called regular if the result of any
sequence of operations ∀ξj and ∃ξk applied to ψ does not depend on the order of the
operations. To every point p outside a given open bounded set U we assign a Boolean
function, taking the value 1 exactly on the octants with vertex p which have a non-empty
intersection with U (see Definition 5.7). The main result of Section 5 is that U is semi-
monotone if and only if the functions assigned to all points outside U are regular.

Section 6 is an appendix containing some known and new facts from PL topology
needed in the proof of the main result.

1. Equivalent definitions of semi-monotone sets

In what follows we fix an o-minimal structure over R, and consider only sets and maps
that are definable in this structure.
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Definition 1.1. Let

Xj,σ,c := {x = (x1, . . . , xn) ∈ Rn | xj σ c},

for 1 ≤ j ≤ n, σ ∈ {<,=, >} and c ∈ R. An open (possibly empty) bounded set
U ⊂ Rn is called semi-monotone if

U ∩Xj1,σ1,c1 ∩ · · · ∩Xjk,σk,ck

is connected for any 0 ≤ k ≤ n, any 1 ≤ j1 < · · · < jk ≤ n, any σ1, . . . , σk in {<,=, >},
and any c1, . . . , ck ∈ R.

Lemma 1.2. The projection of a semi-monotone set U on any coordinate subspace is a
semi-monotone set.

Proof. Let U ′ be the projection of U on the subspace of coordinates x1, . . . , xm where
m ≤ n. Then any intersection

U ′ ∩X′j1,σ1,c1
∩ · · · ∩X′jk,σk,ck ,

where X′j,σ,c = {(x1, . . . , xm) ∈ Rm | xj σ c} and 1 ≤ j1 < · · · < jk ≤ m, is connected
as the projection of the connected set

U ∩Xj1,σ1,c1 ∩ · · · ∩Xjk,σk,ck . ut

Theorem 1.3. An open and bounded set U ⊂ Rn is semi-monotone if and only if both of
the following conditions hold:

(S1) its intersection with any line parallel to the xn-axis is either empty or an open inter-
val,

(S2) the projections of the sets U ∩Xn,σ,c to Rn−1 along the xn-axis are semi-monotone
sets in Rn−1 for any σ ∈ {<,=, >} and c ∈ R.

Proof. We prove the statement by induction on n. For n = 1 it is obvious. Let U satisfy
(S1) and (S2). The set U is connected, otherwise its projection U ′ along the xn-axis
would be disconnected (a very special case of the Vietoris–Begle theorem, [6]). This
would contradict (S2), since U = U ∩Xn,<,c for large positive c and hence its projection
is connected.

For jk < n, the projection of

U ∩Xj1,σ1,c1 ∩ · · · ∩Xjk,σk,ck

to Rn−1 is equal to
U ′ ∩X′j1,σ1,c1

∩ · · · ∩X′jk,σk,ck ,

where X′j,σ,c = {x = (x1, . . . , xn−1) ∈ Rn−1
| xj σ c}. This set is connected by the

inductive hypothesis, hence

U ∩Xj1,σ1,c1 ∩ · · · ∩Xjk,σk,ck

is connected, by the Vietoris–Begle theorem.
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For jk = n, the projection of

U ∩Xj1,σ1,c1 ∩ · · · ∩Xjk,σk,ck

to Rn−1 is equal to the intersection of the projection of U ∩Xn,σk,ck and the set

X′j1,σ1,c1
∩ · · · ∩X′jk−1,σk−1,ck−1

.

It is connected due to condition (S2) and the induction hypothesis, hence

U ∩Xj1,σ1,c1 ∩ · · · ∩Xjk,σk,ck

is connected, again by the Vietoris–Begle theorem.
Conversely, if U is a semi-monotone set, its intersection with each line parallel to any

coordinate axis is connected, i.e., either empty or an open interval. Since all sets

U ∩Xn,σ,c ∩Xj1,σ1,c1 ∩ · · · ∩Xjk,σk,ck

are connected, their projections along the xn-axis are connected. This implies that projec-
tions of the sets U ∩Xn,σ,c along the xn-axis are semi-monotone sets in Rn−1. ut

Corollary 1.4. (1) If U ⊂ Rn is a semi-monotone set, then U ∩ Xj,<,a ∩ Xj,>,b is a
semi-monotone set in Rn for any 1 ≤ j ≤ n and a, b ∈ R.

(2) If U ⊂ Rn is a semi-monotone set, then

U ∩Xj1,σ1,c1 ∩ · · · ∩Xjk,σk,ck

is semi-monotone for any 0 ≤ k ≤ n, any 1 ≤ j1 < · · · < jk ≤ n, any σ1, . . . , σk in
{<,=, >}, and any c1, . . . , ck ∈ R.

Proof. (1) The statement is obvious for n = 1. Let n ≥ 2 and j < n. Then the set
U ∩Xj,<,a ∩Xj,>,b satisfies conditions (S1) and (S2), hence it is semi-monotone.

(2) immediately follows from (1). ut

Corollary 1.5. Any semi-monotone set U is acyclic.

Proof. We prove the statement by induction on n. The case n = 1 is obvious. Applying
Theorem 1.3, (S2), to U = U ∩ Xn,<,c for a large positive c we conclude that the pro-
jection U ′ of U along the xn-axis is a semi-monotone set, and therefore, by the inductive
hypothesis, is acyclic. By (S1), the fibres of this projection map are acyclic, so, since the
projection is an open map, the Vietoris–Begle theorem implies that U is also acyclic. ut

Note that in Theorem 2.2 we will prove a much stronger result.

Definition 1.6. A bounded upper semi-continuous function f defined on a semi-mono-
tone set U ⊂ Rn is submonotone if, for any r > infx∈U f (x), the set

{x ∈ U | f (x) < r}

is semi-monotone. A function f is supermonotone if −f is submonotone.
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Theorem 1.7. An open and bounded set U ⊂ Rn is semi-monotone if and only if it
satisfies the following conditions. If U ⊂ R1 then U is an open interval. If U ⊂ Rn, then

U = {(x, t) | x ∈ U ′, f (x) < t < g(x)}

for some functions f and g on a semi-monotone set U ′ ⊂ Rn−1, where f (x) < g(x) for
all x ∈ U ′, with f (x) being submonotone and g(x) being supermonotone.

Proof. Suppose that U is semi-monotone, and U ′ is the projection of U on the subspace
of coordinates x1, . . . , xn−1. By Lemma 1.2, U ′ is a semi-monotone set. According to
(S1) of Theorem 1.3, any fibre of the projection map over a point x ∈ U ′ is an open
interval. Take the lower endpoints of these intervals as values of f and upper endpoints
as values of g. It follows that

U = {(x, t) | x ∈ U ′, f (x) < t < g(x)}.

The function f is bounded because U is bounded. The function f is upper semi-
continuous since otherwise there would exist a sequence x(i) ∈ U ′ with limi→∞ x(i) =
x(0) ∈ U ′ such that limi→∞ f (x(i)) − f (x(0)) > ε for some positive ε ∈ R. Then the
interval with lower endpoint f (x(0)) has a point belonging both to U and to the boundary
of U , which contradicts the openness of U .

Let r > infx∈U ′ f (x). The definition of f implies that the set

Sr := {x ∈ U ′ | f (x) < r}

is the projection of U ∩Xn,<,r on the subspace of coordinates x1, . . . , xn−1. According to
Corollary 1.4, U ∩ Xn,<,r is a semi-monotone set, thus, by Lemma 1.2, its projection Sr
is also semi-monotone. It follows that f is submonotone.

Similarly, the function g is supermonotone.
We have proved that each semi-monotone U satisfies the conditions in the theorem.

Now assume that an open and bounded set U ⊂ Rn satisfies these conditions, in particu-
lar, its projection U ′ is semi-monotone. We prove that U is semi-monotone by induction
on n, the case n = 1 being trivial.

According to Theorem 1.3, it is sufficient to prove that U satisfies conditions (S1)
and (S2). Condition (S1) holds true because every intersection of U with a straight line
parallel to the xn-axis is an interval (f (x), g(x)) for some x ∈ U ′.

For any c ∈ (infx∈U ′ f (x), supx∈U ′ g(x)) the projection of U ∩Xn,<,c on the subspace
of coordinates x1, . . . , xn−1 coincides with {x ∈ U ′ | f (x) < c} and therefore is a semi-
monotone set. Similarly, the projection of U ∩ Xn,>,c is a semi-monotone set. By the
Vietoris–Begle theorem, both sets U ∩Xn,<,c and U ∩Xn,>,c are connected.

To establish condition (S2) of Theorem 1.3 it remains to prove that the projection W
of U ∩ Xn,=,c is also a semi-monotone set. We will prove this by showing that any in-
tersection of the kind W ∩ Xj1,σ1,c1 ∩ · · · ∩ Xjk,σk,ck is connected, where j1 < · · · <

jk < n and σ1, . . . , σk ∈ {<,=, >}. For this, it is enough to prove that any intersection
U ∩ Xn,=,c ∩ Xj1,σ1,c1 ∩ · · · ∩ Xjk,σk,ck is connected. If at least one σi is =, then the
connectedness follows from the inductive hypothesis, since the conditions in the theorem
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are compatible with the translated coordinate cones Xj1,σ1,c1 ∩ · · · ∩Xjk,σk,ck . Otherwise,
U ∩Xj1,σ1,c1 ∩ · · · ∩Xjk,σk,ck is itself a bounded open set in Rn satisfying the conditions
of the theorem, and it remains to prove that the intersection of this set with Xn,=,c or,
without a loss of generality, the intersection U ∩Xn,=,c, is connected.

Suppose that U ∩ Xn,=,c is not connected. Every fibre U ∩ Xn,=,c ∩ Xn−1,=,t of
the projection of U ∩ Xn,=,c on the xn−1-axis is a semi-monotone cell by the inductive
hypothesis, hence, by Corollary 1.5, is acyclic. Then the Vietoris–Begle theorem implies
that the image of the projection of U ∩ Xn,=,c is also disconnected, i.e., there is a point
t0 such that U ∩ Xn,=,c ∩ Xn−1,=,t0 = ∅ while both sets U ∩ Xn,=,c ∩ Xn−1,<,t0 and
U ∩ Xn,=,c ∩ Xn−1,>,t0 are non-empty. Because U is open while the sets U ∩ Xn,<,c
and U ∩Xn,>,c are connected, each of them has a non-empty intersection with Xn−1,=,t0 .
But this implies that U ∩Xn−1,=,t0 is not connected, which contradicts what was proved
before. ut

2. Semi-monotone sets are regular cells

Any compact definable set in Rn admits a finite triangulation (see, e.g., [7]), in particular
is definably homeomorphic to a polyhedron. Any open set in Rn is a polyhedron.

Definition 2.1. A definable set U is called a regular k-cell if the pair (U,U) is definably
homeomorphic to the pair ([−1, 1]k, (−1, 1)k).

In this section we say that a definable set is a closed n-ball if it is definably homeo-
morphic to [−1, 1]n, is an open n-ball if it is definably homeomorphic to (−1, 1)n, and
is an (n− 1)-sphere if it is definably homeomorphic to [−1, 1]n \ (−1, 1)n.

Proposition 6.2 implies that if U ⊂ Rn is an open definable set, then U is a regular
cell if and only if U is an n-ball and the frontier U \ U is an (n− 1)-sphere.

Theorem 2.2. Every non-empty semi-monotone set U ⊂ Rn is a regular n-cell.

We are going to prove Theorem 2.2 by induction on the dimension n of a regular cell. For
n = 1 the statement is obvious. Assume it is true for n− 1.

Lemma 2.3. Let U ⊂ Rn be a semi-monotone set. Let

U0 := U ∩Xj,=,c, U+ := U ∩Xj,>,c, and U− := U ∩Xj,<,c

for some 1 ≤ j ≤ n and c ∈ R. Then U+ ∩ U− = U0.

Proof. Suppose a point x = (x1, . . . , xn) ∈ Xj,=,c \U0 belongs to U+ ∩U−. Then there
is an ε > 0 such that an open cube centered at x,

Cε :=
⋂

1≤j≤n

{(y1, . . . , yn) | |xj − yj | < ε} ⊂ Rn,

has non-empty intersections with both U+ and U− and an empty intersection with U0.
Thus, Cε ∩U is not connected, which is not possible since, according to Corollary 1.4(1),
Cε ∩ U is semi-monotone. ut
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Corollary 2.4. Let U ⊂ Rn be a semi-monotone set. If U+ and U− in Lemma 2.3 are
regular cells, then U is a regular cell.

Proof. We need to prove that U is a closed n-ball, and that the frontier U \ U is an
(n− 1)-sphere. The only non-trivial case is when U0 is non-empty.

Since U0 is semi-monotone due to Corollary 1.4, U0 is a regular (n − 1)-cell by the
inductive hypothesis. It follows that U0, U+, and U− are closed balls, while U0 \U is an
(n− 2)-sphere. Hence U is obtained by gluing together two closed n-balls, U+ and U−,
along the closed (n− 1)-ball U0 (see Definition 6.1). Proposition 6.4 implies that U is a
closed n-ball.

According to Proposition 6.3, the sets U+ \U = ∂U+ \U0 and U− \U = ∂U− \U0
are closed (n − 1)-balls. The frontier U \ U of U is obtained by gluing U+ \ U and
U− \ U along the set (U+ ∩ U−) \ U , which, by Lemma 2.3, is equal to U0 \ U , and
thus is an (n− 2)-sphere, the common boundary of U+ \U and U− \U . It follows from
Proposition 6.2 that U \ U is an (n− 1)-sphere. ut

Lemma 2.5. If U and U− in Lemma 2.3 are regular cells, then U+ is also a regular cell.

Proof. Proposition 6.5 implies that U+ is a closed n-ball. By the inductive hypothesis,
U0 is a regular cell. By Proposition 6.3, U+ \ U = ∂U+ \ U0 is a closed (n − 1)-ball.
Then the frontier U+ \U+ of U+ is obtained by gluing two closed (n− 1)-balls, U+ \U
and U0, along the (n − 2)-sphere U0 \ U . Therefore, by Proposition 6.2, the frontier of
U+ is an (n− 1)-sphere. ut

Lemma 2.6. Let n > 5 and U ⊂ Rn be a semi-monotone set and a regular cell. Then,
for a generic c, both U+ and U− in Lemma 2.3 are regular cells.

Proof. The set U0 is a regular cell by the inductive hypothesis. Due to the theorem
on triangulation of definable functions ([2, Th. 4.5]) applied to the projection of the
xj -coordinate function, there is a triangulation of U and a neighbourhood (a, b) of c
in R such that the polyhedra corresponding to U ∩ ((a, b) × Rn−1) and U0 × (a, b) are
PL-homeomorphic. Hence, the (n − 1)-sphere ∂U0 is locally flatly embedded in the n-
sphere ∂U . The lemma now follows from Proposition 6.10. ut

Let Rn+ be the open first octant {(x1, . . . , xn) ∈ Rn | xj > 0 for all 1 ≤ j ≤ n}.

Lemma 2.7. Let U be a semi-monotone set in Rn+ such that the origin is in U . Let c(t) =
(c1(t), . . . , cn(t)) be a germ of a generic definable curve insideU converging to the origin
as t → 0. Then

Ut := U ∩ {x1 < c1(t), . . . , xn < cn(t)}

is a regular cell for all small positive t .

Proof. By the inductive hypothesis of the induction on n, for every 1 ≤ i ≤ n each
(n− i)-dimensional semi-monotone set

Cj1,...,ji ,t := U ∩ {xj1 = cj1(t), . . . , xji = cji (t), xk < ck(t) for all k 6= j1, . . . , ji},
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where 1 ≤ j1 < · · · < ji ≤ n, is a regular (n− i)-cell. Since c(t) ∈ U , all sets Cj1,...,ji ,t

are non-empty.
Due to the theorem on triangulation of definable functions ([2, Th. 4.5]), for all small

positive t , U t is definably homeomorphic to a closed cone with vertex at the origin and
with base definably homeomorphic to Dt , where Dt is the (n − 1)-dimensional regular
cell complex formed by the cells Cj1,...,ji ,t for all 1 ≤ j1 < · · · < ji ≤ n. Hence it is
enough to prove that Dt is shellable (see Definition 6.6), and therefore is a regular cell
due to Proposition 6.7. We prove by induction on k = 1, . . . , n a more general claim that
the regular cell complex Dk,t formed by the cells Cj1,...,ji ,t , 1 ≤ j1 < · · · < ji ≤ k, is
shellable.

The base case k = 1 holds because C1,t is a regular (n − 1)-cell. By the inductive
hypothesis on n, the set

Ci,j,t = U ∩ {xi = ci(t), xj = cj (t), xk < ck(t) for all k 6= i, j}

is a regular (n− 2)-cell. Since the germ c(t) is generic, Ci,j,t = Ci,t ∩ Cj,t . Hence D2,t
is obtained by gluing together two regular (n − 1)-cells, C1,t and C2,t , along the regular
(n − 2)-cell C1,2,t which is their common boundary (see Definition 6.1). It follows that
the cell complex D2,t is shellable.

By the inductive hypothesis the complex Dk,t is shellable. The set Ck+1,t is a regular
(n − 1)-cell whose common boundary with Dk,t is the (n − 2)-dimensional shellable
complex formed by k regular (n − 2)-cells C1,k+1,t , . . . , Ck,k+1,t . By Proposition 6.7,
this common boundary is a regular (n − 2)-cell. Hence, by Proposition 6.7 again, the
complex Dk+1,t is shellable. ut

Lemma 2.8. Let U ⊂ Rn+ be a semi-monotone set, with n ≤ 5, such that the origin is
in U , and let c(t) = (c1(t), . . . , cn(t)) be a germ of a generic definable curve inside Rn+
(not necessarily inside U) converging to the origin as t → 0. Then

Ut = U ∩ {x1 < c1(t), . . . , xn < cn(t)}

is a regular cell for all small positive t .

Proof. We can repeat the proof of Lemma 2.7 if we prove that the regular cell complex
Dt formed by the non-empty sets

Cj1,...,ji ,t := U ∩ {xj1 = cj1(t), . . . , xji = cji (t), xk < ck(t) for all k 6= j1, . . . , ji},

where 1 ≤ j1 < · · · < ji ≤ n, is shellable. The difference from the proof of Lemma 2.7
is that here some of the sets Cj1,...,ji ,t may be empty.

By Corollary 1.5, the semi-monotone cell Ut is acyclic. Hence so is Dt , for all small
t > 0.

Since U is open, if Cj1,...,jk,t is non-empty then Ci1,...,il ,t is non-empty for any sub-
set {i1, . . . , il} of {j1, . . . , jk}. It follows that the complex Dt can be represented as a
simplicial subcomplex X of an (n − 1)-simplex 1 so that every non-empty set Cj1,...,ji ,t

corresponds to the (i − 1)-face of 1 having vertices j1, . . . , ji .
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Observe that X is acyclic since Dt is acyclic. We prove by induction on the number
of simplices in X that the acyclicity of X implies that Dt is shellable. The base of the
induction, for a single vertex, is trivial. According to Proposition 6.12, X has a vertex v
with an acyclic link L. The vertex v corresponds to a regular (n− 1)-cell Cj,t , while the
link L corresponds to the (n− 2)-subcomplex of Dt along which Cj,t is glued to Dt . By
the inductive hypothesis applied to L, that subcomplex of Dt is shellable, and thus, by
Proposition 6.7, is a regular cell. Removing the star of v in X, we get a subcomplex Y
ofX which is acyclic by the Mayer–Vietoris exact sequence. By the inductive hypothesis,
the subcomplex ofDt corresponding to Y is shellable. We have proved thatDt is obtained
by gluing a regular cell to a shellable complex along a regular cell, hence Dt is shellable.

ut

Lemma 2.9. Let U ⊂ Rn+ be a semi-monotone set, with n ≤ 5, such that the origin is in
U , and let c = (c1, . . . , cn) ∈ Rn+. Then Uc := U ∩ {x1 < c1, . . . , xn < cn} is a regular
cell for generic c with ‖c‖ small.

Proof. Consider a definable set Uy := U ∩ {x1 < y1, . . . , xn < yn} ⊂ R2n
+ with coordi-

nates x1, . . . , xn, y1, . . . , yn and y = (y1, . . . , yn). By Corollary 6.15, there is a partition
of Rn+ (having coordinates y1, . . . , yn) into definable sets T such that if any T is fixed,
then for all y ∈ T the closures Uy are definably homeomorphic to the same polyhedron,
and the frontiers Uy \ Uy are definably homeomorphic to the same polyhedron.

For every n-dimensional T such that the origin is in T , there is, by the curve selection
lemma ([2, Th. 3.2]), a germ of a generic definable curve c(t) converging to 0 as t → 0.
Hence, by Lemma 2.8, for each c ∈ T the set U c is a closed n-ball, while U c \ Uc is an
(n− 1)-sphere. Therefore, Uc is a regular cell. ut

Lemma 2.10. Using the notation from Lemma 2.9, for n ≤ 5, and for generic c ∈ Rn+
with ‖c‖ small, the intersection

Uc ∩
⋂

1≤ν≤k

{xjν σν aν},

for any jν ∈ {1, . . . , n}, σν ∈ {<,>}, and for any generic a1 ≥ · · · ≥ ak , is either empty
or a regular cell.

Proof. It is sufficient to assume that aν < cjν for all ν. We use induction on k. For k = 1,
the set Uc ∩ {xj1 < a1} is itself a set of the kind Uc, and therefore is a regular cell, by
Lemma 2.9. Then the set Uc ∩ {xj1 > a1} is a regular cell due to Corollary 2.5.

By the inductive hypothesis, every non-empty set of the kind

U (k−1)
c := Uc ∩

⋂
1≤ν≤k−1

{xjν σν aν} (2.1)

is a regular cell. Also by the inductive hypothesis, replacing cjk by ak if ak < cjk , every
set U (k−1)

c ∩ {xjk < ak} is a regular cell. Since both U (k−1)
c and U (k−1)

c ∩ {xjk < ak} are
regular cells, so is U (k−1)

c ∩ {xjk > ak}, by Corollary 2.5, which completes the induction.
ut

In the similar statement for n > 5 we need to assume that c is a generic point in U .
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Lemma 2.11. Let U be a semi-monotone set in Rn+, with n > 5, let c = (c1, . . . , cn) be
a generic point in U , and let Uc := U ∩ {x1 < c1, . . . , xn < cn}. Then

Uc ∩
⋂

1≤ν≤k

{xjν σν aν},

for ‖c‖ small, for any jν ∈ {1, . . . , n}, σν ∈ {<,>}, and for any generic a1 ≥ · · · ≥ ak ,
is either empty or a regular cell.

Proof. Lemma 2.7 and the argument from the proof of Lemma 2.9 imply that Uc is a
regular cell. We argue by induction on k. For k = 1, both sets Uc ∩ {xj1 > a1} and
Uc ∩ {xj1 < a1} are regular cells, due to Lemma 2.6. Assume by the inductive hypothesis
that every non-empty set of the kind U (k−1)

c (see (2.1)) is a regular cell. Then, due to
Lemma 2.6, both U (k−1)

c ∩ {xjk > ak} and U (k−1)
c ∩ {xjk < ak} are regular cells. ut

Lemma 2.12. Let U ⊂ Rn be a semi-monotone set, and let y = (y1, . . . , yn) ∈ U . Then
for generic points a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn+ with ‖a‖ and ‖b‖ small, the
intersection

Ua,b := U ∩
⋂

1≤j≤n

{−aj < xj − yj < bj }

is a regular cell.

Proof. We use induction on n, with the case n = 1 being obvious.
Translate the point y to the origin. Let c = (c1, . . . , cm) ∈ Rn be a generic point,

and Pn,c the open octant of Rn containing c. By Lemma 2.9 in the case n ≤ 5, or by
Lemma 2.11 in the case n > 5, for a generic point c = (c1, . . . , cn) ∈ Pn,c ∩ U with ‖c‖
small, the set Uc := U ∩ Pn,c ∩ {|x1| < |c1|, . . . , |xn| < |cn|} is either empty or a regular
cell. Choose such a point c in every octant of Rn.

Choose−ai (respectively, bi) to be the maximum (respectively, minimum) among the
negative (respectively, positive) ci over all octants P. We now prove that, with a and b so
chosen, the set Ua,b is a regular cell. We use induction on r = 0, . . . , n− 1. For r = 0, if
d is a vertex of ⋂

1≤j≤n

{−aj < xj < bj }

belonging to one of the 2n = 2n−r octants P, then Ud is either empty or a regular cell (by
Lemma 2.10 for n ≤ 5, and Lemma 2.11 for n > 5). Partition the family of all sets of the
kind Ud into pairs (Ud ′ , Ud ′′) so that d ′1 = a1, d ′′1 = b1 and d ′i = d

′′

i for all i = 2, . . . , n.
Whenever the cells Ud ′ , Ud ′′ are both non-empty, they have a common (n− 1)-face

U ∩ ({0} × Pn−1,(d ′2,...,d
′
n)
) ∩ {x1 = 0, |x2| < d ′2, . . . , |xn| < d ′n},

which, by the inductive hypothesis of the induction on n, is a regular cell. Then, according
to Corollary 2.4, the union of the common face and Ud ′ ∪ Ud ′′ is a regular cell. Gluing
in this way all pairs (Ud ′ , Ud ′′), we get a family of 2n−1 sets which are either empty or
regular cells. This family is partitioned into pairs of regular cells each of which has a
common regular cell face in the hyperplane {x2 = 0}. In the last step of the induction, for
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r = n − 1, we are left with at most two regular cells having, in the case of exactly two
cells, a common regular cell face in the hyperplane {xn = 0}. Gluing these sets along the
common face, we get, by Corollary 2.4, the regular cell Ua,b. ut

Lemma 2.13. Using the notations from Lemma 2.12, the intersection

Va,b := Ua,b ∩
⋂

1≤ν≤k

{xjν σν dν}, (2.2)

for any jν ∈ {1, . . . , n}, σν ∈ {<,>}, and for any generic d1 ≥ · · · ≥ dk , is either empty
or a regular cell.

Proof. Analogous to the proof of Lemmas 2.10 for n ≤ 5, and to the proof of Lemma 2.11
for n > 5. ut

Proof of Theorem 2.2. For each point y ∈ U choose generic points a, b ∈ Rn as in
Lemma 2.12, so that the set Ua,b becomes a regular cell. We get an open covering of the
compact set U by sets of the kind

Aa,b =:
⋂

1≤j≤n

{−aj < xj − yj < bj };

choose any finite subcovering C. For every j = 1, . . . , n consider the finite set Dj of
j -coordinates aj , bj for all sets Aa,b in C. Let⋃

1≤j≤n

Dj = {d1, . . . , dk}

with d1 ≥ · · · ≥ dk . Every set Va,b, corresponding to {d1, . . . , dk} (see (2.2)), is regular,
by Lemma 2.13, and U is the union of those Va,b and their common faces for which
Aa,b ∈ C.

The rest of the proof is similar to the final part of the proof of Lemma 2.12. Use
induction on r = 1, . . . , n, within the current induction step of the induction on n. The
base of the induction is for r = 1. Let D1 = {d1,1, . . . , d1,k1} with d1,1 ≥ · · · ≥ d1,k1 .
Partition the finite family of all regular cells Va,b, for all Aa,b ∈ C, into (|D1| − 1)-tuples
so that the projections of cells in a tuple on the x1-coordinate are exactly the intervals

(d1,k1 , d1,k1−1), (d1,k1−1, d1,k1−2), . . . , (d1,2, d1,1), (2.3)

and any two cells in a tuple having as projections two consecutive intervals in (2.3) have a
common (n−1)-dimensional face in a hyperplane {x1 = const}. This face, by the external
inductive hypothesis (of the induction on n), is a regular cell. According to Corollary 2.4,
the union of any two consecutive cells and their common face is a regular cell. Gluing in
this way all consecutive pairs in every (|D1|−1)-tuple, we get a smaller family of regular
cells. This family, in the next induction step r = 2, is partitioned into (|D2|−1)-tuples of
cells such that in each of these tuples two consecutive cells have a common regular cell
face in a hyperplane {x2 = const}. In the last step, r = n, of the induction we are left
with one (|Dn| − 1)-tuple of regular cells such that two consecutive cells have a common
regular cell face in a hyperplane {xn = const}. Gluing all pairs of consecutive cells along
their common faces, we get, by Corollary 2.4, the regular cell U . ut
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3. Semi-algebraic semi-monotone sets over real closed fields

In this section we prove the regularity of semi-monotone sets for semi-algebraic sets
defined over an arbitrary real closed field R which is fixed for the rest of the section. Ac-
cordingly, in the definition of semi-monotonicity, “connectivity” refers to “semi-algebraic
connectivity”, while an n-dimensional semi-algebraic regular cell S ⊂ Rn is such that
there exists a semi-algebraic homeomorphism

h : (S, S)→ ([−1, 1]n, (−1, 1)n)

(cf. Definition 2.1).

Definition 3.1. Let S ⊂ Rn be a semi-algebraic set. We say that the complexity of S
is bounded by a natural number N if there exists a quantifier-free first-order formula
8 defining S such that N ≥ sd , where s (respectively, d) is the the number (respec-
tively, maximum degree) of the polynomials appearing in 8. By the complexity of a
semi-algebraic map we mean the complexity of its graph.

The idea of the proof is to show that for a fixed N the statement that “any semi-
monotone set with complexity N is a regular cell” can be expressed by a first-order for-
mula of the theory of R (with integer coefficients), and therefore is true as long as it is
true for R = R, due to the Tarski–Seidenberg transfer principle ([1, Proposition 5.2.3]).
(Note that the direct repetition for arbitrary R of the proof from Section 2 is probably
impossible because R may be non-archimedean.)

Lemma 3.2. For any pair (T1, T2) of semi-algebraic sets with T2 ⊂ T1 ⊂ Rn, there
exists a natural-valued function F(N, n) with the following property. Let pairs (S1, S2)

and (T1, T2) of semi-algebraic sets be semi-algebraically homeomorphic, where the sets
S2 ⊂ S1 ⊂ Rn have complexities bounded by N , and S1 is closed and bounded. Then
there exists a semi-algebraic homeomorphism

f : (S1, S2)→ (T1, T2)

with complexity bounded by F(N, n).

Proof. It follows from the theorem on triangulations of semi-algebraic sets ([1, The-
orem 9.2.1]) that there exists a natural-valued function H(N, n) having the following
property. There exist a finite simplicial complex K1 having at most H(N, n) simplices,
a union K2 of its simplices, and a semi-algebraic homeomorphism

h : (S1, S2)→ (|K1|, |K2|),

such that the complexity of h is also bounded by H(N, n). Since the number of simpli-
cial complexes having at most H(N, n) simplices is finite, there is an N-valued function
G(N, n) bounding the complexity of any semi-algebraic homeomorphism

g : (|K1|, |K2|)→ (T1, T2).
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Thus, there exists a semi-algebraic homeomorphism

f := g ◦ h : (S1, S2)→ (T1, T2)

with complexity bounded by some N-valued function φ of H(N, n) and G(N, n) which
can be explicitly described using bounds on effective quantifier elimination. Define
F(N, n) := φ(H(N, n),G(N, n)). ut

One can consider a semi-algebraic subset in Rm×Rn as a semi-algebraic family of subsets
of Rn parameterized by points of Rm. Using again the theorem on triangulations of semi-
algebraic sets, it is easy to check that the family of all those semi-algebraic subsets of Rn

of complexity bounded by N which are semi-monotone is a semi-algebraic family.

Theorem 3.3. Let R be a real closed field. Every non-empty semi-algebraic semi-mono-
tone subset of Rn is a semi-algebraic regular cell.

Proof. It suffices to prove the theorem for all non-empty semi-algebraic semi-monotone
sets of complexity bounded byN for eachN > 0. FixN . Since the family of all such sets
is a semi-algebraic family, Lemma 3.2 for

(T1, T2) = ([−1, 1]n, (−1, 1)n)

implies that the existence of the required homeomorphism is expressible as a sentence in
the language of the first-order theory of the field R with integer coefficients. The Tarski–
Seidenberg transfer principle now implies that it suffices to prove the truth of this sentence
for any one particular real closed field. The theorem follows since we have proved this
sentence for R = R in Theorem 2.2. ut

4. Regular cells in the sense of van den Dries are not regular

In o-minimality theory the following classes of topological cells and continuous functions
are considered, which are also based on the idea of monotonicity. In [7] these cells and
functions are called regular, we will call them vdD-regular.

Definition 4.1 (cf. Theorem 1.7). An (open) cylindrical cell X ⊂ Rn is an open subset
defined by induction as follows. For n = 0, X is the point. Let X be a cylindrical cell
in Rn−1, and f, g : X → R be two continuous functions such that f (x) < g(x) for all
x ∈ X. Then {(x, t) | x ∈ Y, f (x) < t < g(x)} is a cylindrical cell in Rn+1.

Definition 4.2 ([7]). A cylindrical cellX ⊂ Rn is vdD-regular if for each 1 ≤ i ≤ n, any
two points x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X and each point z = (z1, . . . , zn) ∈ Rn
such that xj = yj = zj for all j 6= i, the condition xi < zi < yi implies z ∈ X.

Let X be a vdD-regular cell. A continuous function f : X→ R is vdD-regular if for
each 1 ≤ i ≤ n it is either strictly increasing, strictly decreasing, or constant along the
coordinate i. Here, f is strictly increasing along the coordinate i if for any two points
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X such that xj = yj for all j 6= i, and xi < yi ,
we have f (x) < f (y). Similarly, we define functions strictly decreasing and functions
constant along the coordinate i.
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The following example shows that a vdD-regular cell may not be regular, and that a
vdD-regular function defined on a vdD-regular cell may not be supermonotone (or sub-
monotone).

Example 4.3. Consider the 3-simplex

X := {(x, y, z) ∈ R3
| 0 < x, 0 < y, 0 < z < 1, x + y < z},

and the continuous function h : X→ R defined by

h(x, y, z) = (x/z)2 + (y/z)2.

Observe that X is a vdD-regular cylindrical cell, while h is a vdD-regular function. It is
easy to see that for every t ∈ (1/2, 1) the level set

{(x, y, z) ∈ X | h(x, y, z) = t}

is not connected, while its closure is a cone with vertex at the origin and base consisting
of two disjoint arcs of a circle. Hence the graph of h itself is not a regular cell. It follows
that the vdD-regular cell

{(x, y, z, t) | (x, y, x) ∈ X, 0 < t < h(x, y, z)}

is not a regular cell.
Note that the set {(x, y, z) ∈ X | h(x, y, z) > 1/2} consists of two connected com-

ponents, and therefore is not semi-monotone. Therefore the vdD-regular function h is not
supermonotone.

5. Semi-monotone sets and regular Boolean functions

Consider a Boolean function ψ = ψ(ξ1, . . . , ξn) in n Boolean variables ξj ∈ {0, 1}.
For any j = 1, . . . , n and c ∈ {0, 1}, let ψj,c be the restriction of ψ to the subspace
Cj,c = {ξj = c} ⊂ {0, 1}n. The operations

Ej (ψ) = ψj,0 ∨ ψj,1 and Aj (ψ) = ψj,0 ∧ ψj,1

assign toψ two Boolean functions in n−1 variables. These operations can also be defined
by the formulae ∃ξj ψ(ξ1, . . . , ξn) and ∀ξj ψ(ξ1, . . . , ξn), respectively.

Definition 5.1. A regular Boolean function is defined inductively as follows. Any uni-
variate Boolean function is regular. A Boolean function ψ(ξ1, ξ2) is regular if the set
{ψ = 1} is neither {(1, 0), (0, 1)} nor {(0, 0), (1, 1)}. Equivalently, ψ(ξ1, ξ2) is regular if
E1(A2(ψ)) = A2(E1(ψ)) or A1(E2(ψ)) = E2(A1(ψ)). For n > 2, a Boolean function
ψ on {0, 1}n is regular if the following two conditions are satisfied:

(R1) Restriction of ψ to each Boolean square

{ξj1 = c1, . . . , ξjn−2 = cn−2}, 1 ≤ j1 < · · · < jn−2 ≤ n,

is regular.
(R2) The functions En(ψ) and An(ψ) are regular.
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Lemma 5.2. Let ψ(ξ1, ξ2, ξ3) be a Boolean function such that the functions ψj,c are
regular for all j = 1, 2, 3 and c ∈ {0, 1}.

1. If E3(ψ) is not regular then {ψ = 1} is one of the four sets each consisting of two
diagonally opposite vertices of {0, 1}3.

2. If A3(ψ) is not regular then {ψ = 0} is one of the four sets each consisting of two
diagonally opposite vertices of {0, 1}3.

Proof. Straightforward checking. ut

Theorem 5.3. A Boolean function ψ(ξ1, . . . , ξn) is regular if and only if the result of
any sequence of operations Ej and Ak applied to ψ does not depend on the order of the
operations.

Proof. We prove the statement by induction on n. The case n ≤ 2 follows immediately
from the definition of a regular function. Let n ≥ 3.

Suppose that for a function ψ the result of any sequence of operations Ej and Ak
applied to ψ does not depend on the order of the operations. This immediately implies
(R1). Since En(ψ) and An(ψ) are functions in n − 1 variables, they are regular by the
inductive hypothesis, i.e., condition (R2) is also true. Hence, ψ is regular.

Conversely, let ψ be a regular function. For any Boolean function χ and any j 6= k
we have Ej (Ek(χ)) = Ek(Ej (χ)) and Aj (Ak(χ)) = Ak(Aj (χ)). Condition (R1) implies
that for regular ψ and any j 6= k, the equality Ej (Ak(ψ)) = Ak(Ej (ψ)) is true. Hence
we only have to show that the functions Ej (ψ) and Aj (ψ) are regular for each j < n. We
will only prove that ϕ := Ej (ψ) is regular. The proof for Aj (ψ) is similar.

For j < n, the functions ϕn,0 := Ej (ψn,0) and ϕn,1 := Ej (ψn,1) are regular due to
the induction hypothesis.

Since En(ψ) is regular and En(ϕ) = Ej (En(ψ)), the function En(ϕ) is regular due to
the induction hypothesis. Since An(ψ) is regular and An(ϕ) = Ej (An(ψ)) by condition
(R1), the function An(ϕ) is regular due to the induction hypothesis. Hence it remains to
show that the restriction of ϕ to any Boolean square B in {0, 1}n−1 is regular. If B has the
value of ξn fixed, this follows from the regularity of ϕn,0 and ϕn,1.

Suppose that the values of all variables except ξn and ξk , for some j 6= k < n− 1, are
fixed on B, and the restriction of ϕ to B is not regular. Then the intersection of {ψ = 1}
with the corresponding Boolean 3-cube C in {0, 1}n (with the values of all variables ex-
cept ξn, ξk and ξj fixed) consists of two diagonally opposite vertices due to Lemma 5.2.
Hence the restriction of En(ψ) to the projection of C along ξn is not regular, which con-
tradicts regularity of En(ψ). ut

Corollary 5.4. Any regular Boolean function ψ remains regular under any permutation
of the variables, replacing any ξj by 1− ξj , replacing ξj by a constant c ∈ {0, 1} for any
j ∈ {1, . . . , n}, and replacing ψ by 1− ψ .

Proof. Straightforward. ut

Consider the cube [−1, 1]n ⊂ Rn as a union of 2n closed unit cubes with the common
vertex at the origin. Shifting the center of a unit cube by (1/2, . . . , 1/2) assigns a point
in {0, 1}n to this unit cube. In this way, the unit cubes correspond bijectively to the points
of {0, 1}n.
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Theorem 5.5. A Boolean function ψ(ξ1, . . . , ξn) 6≡ 0 is regular if and only if the
union Cψ of closed unit cubes corresponding to points (ξ1, . . . , ξn) ∈ {ψ = 1} is a
closed PL n-ball.

Proof. We use induction on n, where the case n = 2 follows from Definition 5.1.
Suppose a Boolean function ψ is regular.
Let Cψ+ (respectively, Cψ−) be the union of all unit cubes corresponding to ver-

tices with ξn = 1 (respectively, ξn = 0). Since, due to Corollary 5.4, the functions
ψ(ξ1, . . . , ξn−1, 1) and ψ(ξ1, . . . , ξn−1, 0) are regular, both Cψ+ and Cψ− are closed
PL n-balls, by the inductive hypothesis. Due to Proposition 6.4, it is sufficient to prove
that the intersection

Cψ0 := Cψ+ ∩ Cψ− ⊂ [−1, 1]n ∩ {xn = 0}

is a closed PL (n− 1)-ball.
If Cψ0 is pure (n− 1)-dimensional, then Cψ0 = CAn(ψ). Since An(ψ) is regular, Cψ0

is a PL (n− 1)-ball, by the inductive hypothesis.
We now show that Cψ0 is indeed pure (n − 1)-dimensional. Suppose that, on the

contrary,Cψ0 contains a commonm-face F of a unit cube inCψ+ and a unit cube inCψ−,
with 0 ≤ m < n, and F is not contained in any common face of a larger dimension.

Let m > 0. Then for some 1 ≤ i ≤ n − 1 and c ∈ {0, 1} the set F ∩ {xi = c} is a
common (m− 1)-face of some unit cubes in Cψ+ ∩ {xi = c} and Cψ+ ∩ {xi = c}, which
is not contained in any common face of a larger dimension. Hence, for the restriction ψi,c
of ψ on {ξi = c}, the set Cψi,c is not a PL (n − 1)-cube, therefore, by the inductive
hypothesis, ψi,c is not regular. This contradicts Corollary 5.4.

Now, let m = 0. This can only happen when each of Cψ+ and Cψ− consists of just
one cube, and this pair of cubes corresponds to diagonally opposite vertices of [−1, 1]n.
Then ψ is not regular, which is a contradiction.

Conversely, suppose for a Boolean function ψ the set Cψ is a PL ball. Then for all
1 ≤ i ≤ n and c ∈ {0, 1} the sets Cψi,c are also PL (n− 1)-balls, hence, by the inductive
hypothesis, all functions ψi,c are regular. This implies condition (R1) for ψ .

The set CEn(ψ) is the projection of Cψ along the coordinate xn, and is therefore a
PL (n − 1)-ball. Hence En(ψ) is a regular function by the inductive hypothesis. The
intersection of the two PL n-balls Cψ+ and Cψ−, defined above, is a PL (n − 1)-ball,
and it coincides with CAn(ψ). Therefore An(ψ) is a regular function by the inductive
hypothesis. Thus condition (R2) is also satisfied, and ψ is regular by definition. ut

Corollary 5.6. For a regular Boolean function ψ ,

(1) Aj (ψ) ≡ 0 if and only if either ψj,0 ≡ 0 or ψj,1 ≡ 0;
(2) Ej (ψ) ≡ 1 if and only if either ψj,0 ≡ 1 or ψj,1 ≡ 1.

Proof. (1) Let Cψ,j+ (respectively, Cψ,j−) be the union of all unit cubes corresponding
to vertices with ξj = 1 (respectively, ξj = 0). Since Aj (ψ) = ψj,0 ∧ψj,1 ≡ 0, the set Cψ
cannot contain two unit cubes corresponding to vertices differing only in the j th coordi-
nate. It follows that if both Cψ,j+ and Cψ,j− are non-empty, then dim(Cψ,j+∩Cψ,j−) <
n− 1. This contradicts the fact that Cψ is a PL n-ball.
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The converse statement is trivial.
(2) follows from (1) and De Morgan’s law: Ej (ψ) ≡ 1− Aj (−ψ). ut

Definition 5.7. Let p ∈ Rn. The finite set Z of octants with vertex at p corresponds to
a Boolean function ψ if, when translated to 0, the octants in Z contain exactly all unit
cubes in [−1, 1]n corresponding to points (ξ1, . . . , ξn) ∈ {ψ = 1}.

Let U ⊂ Rn. If the set Z of all octants with the vertex at p and having non-empty
intersections with U corresponds to a Boolean function ψ , then we say that ψ is the
Boolean function for U at p.

Lemma 5.8. Let U ⊂ Rn be a non-empty semi-monotone set, and U ′ be its projection
along the coordinate xn. If p′ 6∈ U ′ and the Boolean function ϕ for U ′ at p′ is ϕ ≡ 1,
then there exists pn ∈ R such that the Boolean function ψ for U at p = (p′, pn) is either
not regular or ψ ≡ 1.

Proof. Let p′ 6∈ U ′ and ϕ ≡ 1. Suppose that for every pn ∈ R the function ψ is regular.
Since ϕ = En(ψ) for any pn ∈ R, Corollary 5.6 implies that for every pn either ψj,0 ≡ 1,
or ψj,1 ≡ 1. Observe that ψj,0 ≡ 1 for all sufficiently large values of pn, while ψj,1 ≡ 1
for all sufficiently small values of pn. Therefore there exists an intermediate value of pn
for which ψ ≡ 1. ut

Theorem 5.9. A non-empty open set U ⊂ Rn is semi-monotone if and only if for every
point p = (p1, . . . , pn) ∈ Rn \ U the Boolean function ψ for U at p is a non-constant
regular function.

Proof. Suppose that U is semi-monotone and p = (p1, . . . , pn) ∈ Rn \ U . Let ψ be the
Boolean function for U at p, and let Z correspond to ψ .

According to Theorem 5.5, it is sufficient to prove that the union C of all unit cubes in
[−1, 1]n corresponding to octants from Z is a closed PL n-ball different from the whole
[−1, 1]n. We prove this by induction on n, with the case n = 1 being trivial.

Let C = C+ ∪ C− where C+ (respectively, C−) is the union of all unit cubes corre-
sponding to vertices of [−1, 1]n with ξn = 1 (respectively, ξn = 0).

The projection U ′+ (respectively, U ′−) of U ∩ Xn,>,pn (respectively, of U ∩ Xn,<,pn )
along the coordinate xn is semi-monotone due to Proposition 1.2. If (p1, . . . , pn−1) ∈ U

′
±

then the projection of C± along xn coincides with [−1, 1]n−1. Otherwise, by the inductive
hypothesis, the projection of C± along xn is a closed PL (n − 1)-ball. In any case, the
set C± itself is a closed PL n-ball.

By Proposition 6.4, it is sufficient to prove that the intersection C0 := C+ ∩ C− is a
closed PL (n− 1)-ball. The same argument as in the proof of Theorem 5.5 shows that C0
is pure (n−1)-dimensional. We now prove that the set C0 coincides with the union of the
unit (n− 1)-cubes for U ∩Xn,=,pn . Indeed, if for two octants

D+ := X1,σ1,p1 ∩ · · · ∩Xn−1,σn−1,pn−1 ∩Xn,>,pn

and
D− := X1,σ1,p1 ∩ · · · ∩Xn−1,σn−1,pn−1 ∩Xn,<,pn ,
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where σ1, . . . , σn−1 ∈ {<,>}, both intersections D+ ∩ U and D− ∩ U are non-empty,
then U ∩Xn,=,pn is also non-empty since

U ∩X1,σ1,p1 ∩ · · · ∩Xn−1,σn−1,pn−1

is semi-monotone and therefore connected. By the inductive hypothesis, C0 is a closed
PL (n− 1)-ball.

It remains to show that C 6= [−1, 1]n. By the inductive hypothesis, C0 6= [−1, 1]n−1.
It follows that

U ∩X1,σ1,p1 ∩ · · · ∩Xn−1,σn−1,pn−1 ∩Xn,=,pn = ∅

for some σ1, . . . , σn−1 ∈ {<,>}. If C = [−1, 1]n, then U ∩D+ 6= ∅ and U ∩D− 6= ∅.
Hence the semi-monotone set

U ∩X1,σ1,p1 ∩ · · · ∩Xn−1,σn−1,pn−1

is not connected, which is a contradiction.
Conversely, suppose that for every p ∈ Rn \ U the Boolean function ψ for U at p is

a non-constant regular function. We continue the proof by induction on n, with the case
n = 1 being trivial.

Let U ′ be the projection of U along the coordinate xn. For every point p′ ∈ Rn−1
\U ′

the Boolean function ϕ forU ′ at p′ coincides withEn(ψ)whereψ is the Boolean function
for U at some point p ∈ Rn \ U . Then, by (R2) in Definition 5.1, ϕ is regular. The
possibility that ϕ ≡ 1 contradicts Lemma 5.8. Then, by the inductive hypothesis, U ′ is
semi-monotone. It follows that the intersection

V ′ := U ′ ∩Xj1,σ1,c1 ∩ · · · ∩Xjk,σk,ck

is connected for any 0 ≤ k ≤ n − 1, any 1 ≤ j1 < · · · < jk ≤ n − 1, any σ1, . . . , σk in
{<,=, >}, and any c1, . . . , ck . Suppose that the intersection

V := U ∩Xj1,σ1,c1 ∩ · · · ∩Xjk,σk,ck

is not connected. Then, by the Vietoris–Begle theorem, the fibre of the projection along
the coordinate xn over some point p′ = (p1, . . . , pn−1) ∈ V

′ is not connected, i.e., for
some pn, xn, yn ∈ R we have (p′, xn), (p′, yn) ∈ U , (p′, pn) ∈ Rn \ U , and xn <
pn < yn. It follows that the Boolean function ψ for U at (p′, pn−1) is ψ ≡ 1, which is a
contradiction.

It remains to consider the case of the intersection V ∩Xn,σn,cn for σn ∈ {<,=, >}.
Let σn be=. We prove that for a point p ∈ Rn−1

\ (U ∩Xn,=,cn), if U ∩Xn,=,cn 6= ∅,
then the Boolean function ϕ for U ∩Xn,=,cn at p is a non-constant regular function. Since
the Boolean function ψ for U at p is non-constant regular, according to Theorem 5.5,
the corresponding union Cψ of unit cubes is a PL n-ball. Then for the union Cϕ of unit
(n−1)-cubes we haveCϕ = Cψ+∩Cψ−, otherwise the intersection ofU with the cylinder
over the corresponding octant in Rn−1 centred at p would be disconnected, which is a
contradiction. It follows that Cϕ is a PL (n − 1)-ball, thus ϕ is non-constant regular.
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By the inductive hypothesis, U ∩ Xn,=,cn is a semi-monotone set, in particular every set
V ∩Xn,=,cn is connected.

Suppose that some set of the kind V ∩ Xn,σn,cn , where σn ∈ {<,>}, were not con-
nected. Since V is connected, the set V ∩ Xn,=,cn would be disconnected, which is a
contradiction. ut

6. Appendix: topological background

Definition 6.1. Let Z be a closed (open) PL (n − 1)-ball, X, Y be closed (respectively,
open) PL n-balls, and

Z = X ∩ Y = ∂X ∩ ∂Y.

We say that X ∪ Y ∪ Z is obtained by gluing X and Y along Z.

Proposition 6.2 ([4, Lemma 1.10]). LetX and Y be closed PL n-balls and h : ∂X→∂Y

a PL homeomorphism. Then h extends to a PL homeomorphism h1 : X→ Y .

Proposition 6.3 ([4, Corollary 3.13n]). Let X be a closed PL n-ball, Y be a closed
(n + 1)-ball, ∂Y be its boundary (the PL n-sphere), and let X ⊂ ∂Y . Then ∂Y \X is
a PL n-ball.

Proposition 6.4 ([4, Corollary 3.16]). Let X, Y , Z be closed PL balls as in Defini-
tion 6.1, and X ∪ Y be obtained by gluing X and Y along Z. Then X ∪ Y is a closed
PL n-ball.

Proposition 6.5 ([5, Lemma I.3.8]). Let X, Y ⊂ Rn be compact polyhedra such that X
and X∪Y are closed PL n-balls. Let X∩Y be a closed PL (n− 1)-ball contained in ∂X,
and suppose the interior ofX∩Y is contained in the interior ofX∪Y . Then Y is a closed
PL n-ball.

Definition 6.6. An n-dimensional shellable cell complex is defined by induction as fol-
lows.

1. Any PL regular n-cell A is a shellable complex.
2. If W is an n-dimensional shellable complex, B is a PL regular n-cell, and C is a PL

regular (n − 1)-cell in the boundaries of both W and B, then the result of gluing W
and B along C is a shellable complex.

Proposition 6.7. Any n-dimensional shellable cell complex is a PL regular n-cell.

Proof. Follows from Proposition 6.4 by the induction in Definition 6.6. ut

Definition 6.8 ([4, Ch. 4]). A pair (Qm,Qn) of PL manifolds, in particular balls or
spheres, is proper if Qn

∩ ∂Qm
= ∂Qn. A proper pair is locally flat if each point

x ∈ Qn has a neighbourhood in (Qm,Qn) homeomorphic (as a pair) to an open set
in (Rm+,Rn+ × 0). (It is clear that the pair (∂Qm, ∂Qn) is then also locally flat.) The stan-
dard ball pair is ([−1, 1]m, [−1, 1]n×0), and (∂[−1, 1]m, ∂[−1, 1]n×0) is the standard
sphere pair. A ball or a sphere pair is unknotted if it is PL homeomorphic to the appro-
priate standard pair of appropriate dimension.
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Proposition 6.9 (Schönflies theorem, [4, 3.37]). If n 6= 4 then any locally flat pair of
PL spheres (Sn, Sn−1) is unknotted.

The following statement is apparently well-known in PL-topology. However, since we do
not have a good reference, we present a proof communicated to us by N. Mnev.

Proposition 6.10. If n 6= 4, 5, then any locally flat pair of closed PL balls (Bn, Bn−1) is
unknotted.

Proof. Let Sn−1 be the boundary of Bn, and Sn−2 be the boundary of Bn−1. Let Bn+ and
Bn− be the two parts of Bn separated by Bn−1, and let Sn−1

+ and Sn−1
− be the corresponding

parts of Sn−1. For n 6= 5, Proposition 6.9 implies that the pair (Sn−1, Sn−2) of PL spheres
is unknotted, and Sn−1

± are PL n-balls.
Let (Cn,Dn−1) be the cone pair with base (Sn−1, Sn−2). Then W n

:= Bn ∪ Cn is a
PL n-sphere, V n−1

:= Bn−1
∪Dn−1 is a PL (n− 1)-sphere, and the pair (W n, V n−1) is

locally flat. For n 6= 4, Proposition 6.9 implies that the pair (W n, V n−1) of PL spheres is
unknotted, and the two parts ofW n separated by V n−1 are PL n-balls. But these two parts
are the unions Bn± ∪ E

n
±, where En+ and En− are cones over Sn−1

+ and Sn−1
− respectively.

Since Sn−1
± are PL n-balls, Proposition 6.5 implies that so are the Bn±. ut

Remark 6.11. Proposition 6.10 is also true in the case n = 5 but available proofs are
more complex, and we do not need this case here.

Proposition 6.12. For n ≤ 4 any acyclic simplicial subcomplex X of the n-simplex 1
has a vertex with an acyclic link.

Proof. We will consider only the most complex case of n = 4.
1. If X is one-dimensional, then, being acyclic, X is a tree. Then X has a leaf with

acyclic link of a vertex.
2. If X contains a 3-simplex, say δ, then there is the only vertex, say v, in 1 \ δ. If

no simplices apart from δ and its faces are in X, then all vertices of X have acyclic links.
Otherwise, X is homotopy equivalent to the suspension of the link of v in X, hence the
link is acyclic. This covers the cases when X = 1 and when dimX = 3.

3. Suppose thatX is two-dimensional. Since any two 2-simplices in1 have a common
vertex, the one-dimensional part of X consists of trees which cannot have all leaves at
some vertices of 2-simplices of X (otherwise X would have a non-trivial 1-cycle). Hence
either such a tree has a leaf with its adjacent vertex as its acyclic link, or X is pure two-
dimensional.

4. Suppose that X is pure two-dimensional.
4(a) There are ten 2-simplices in 1, and they cannot all be in X since the 2-skeleton

of 1 is not acyclic. Removing one of them, we get the 2-skeleton Z of an acyclic 3-
dimensional complex consisting of three 3-simplices. Hence Z has three independent
2-cycles, and we have to remove at least three 2-simplices to make Z acyclic. It follows
that X has at most six 2-simplices.

4(b) If a vertex v of X has one adjacent 2-simplex in X or two adjacent 2-simplices
having a common edge, then v has a link in X which is a tree. If v has two adjacent 2-
simplices in X without a common edge, then X, being acyclic, consists of just these two
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2-simplices, and any vertex in X different from v has an acyclic link. It follows that if X
does not have any vertices with acyclic links, then for each vertex v of X there should be
at least three 2-simplices having v as a common vertex. If v has exactly three adjacent 2-
simplices, the link L of v is connected, since any disconnected graph with three edges has
at least five vertices. If L is not acyclic, then it is a triangle (the boundary of a 2-simplex).
Since there are five vertices (otherwise X would be a subcomplex of a three-dimensional
simplex), X must have at least five 2-simplices.

It remains to consider the cases of five and six 2-simplices in X.
4(c) Let X have exactly five 2-simplices. If no vertex has an acyclic link in X (and

hence, by 4(b), all links are triangles), then each edge in X is shared by exactly two
2-simplices. But this is impossible since there are 15 edges to divide into pairs.

4(d) Suppose that X has exactly six 2-simplices. Since the average number of sim-
plices adjacent to the vertices of X is 18/5, there should be a vertex v of X with exactly
three adjacent 2-simplices. If the link L of v is not acyclic, then, by 4(b), it is a triangle.
Let w be the vertex of X different from v and from the three vertices of L. Then v is not
in the link M of w, hence M (being a subset of L) is either acyclic or equal to L. In the
latter caseX is combinatorially equivalent to a triangular bipyramid, hence is a non-trivial
2-cycle. This is a contradiction. ut

Example 6.13. The following example shows that Proposition 6.12 does not hold for
n = 5.

Consider a hexagon with vertices 0, . . . , 5.
Attach to it the boundary of a 3-simplex with vertices 0, 1, 2, 3 without the simplex

(013). That is a cell contractible to the union of the hexagon edges (01), (12), (23). Re-
peat the same construction, replacing 0, 1, 2, 3 by 2, 3, 4, 5, and then repeat again, replac-
ing 2, 3, 4, 5 by 4, 5, 0, 1.

No two of these three cells have common 2-simplices, and their common edges are
all on the hexagon. Hence, the union Y of these cells is contractible to the hexagon and is
homotopy equivalent to a circle.

Attach the 2-simplex (135) to Y making the resulting simplicial complex X := Y ∪
(135) contractible, and therefore acyclic. Then the links in X of the vertices 0, 2, 4 have
cycles of length three, while the links in X of the vertices 1, 3, 5 have cycles of length
four. ThusX is an acyclic subcomplex of a five-dimensional simplex1 having no vertices
with acyclic links.

Proposition 6.14 ([7, Ch. 8, (2.14)]). Let X ⊂ Rm+n be a definable set, and let π :
Rm+n → Rm be the projection map. Then there exist an integer N > 0 and a definable
(not necessarily continuous) map f : X→ 1, where 1 is an (N − 1)-simplex, such that
for every x ∈ Rm the restriction fx : X ∩π

−1(x)→ 1 of f to X ∩π−1(x) is a definable
homeomorphism onto a union of faces of 1.

Corollary 6.15. Using the notations from Proposition 6.14, suppose that all fibres X ∩
π−1(x) are definable compact sets. Then there is a partition of π(X) into a finite number
of definable sets T ⊂ Rm such that all fibres X ∩ π−1(x) with x ∈ T are definably
homeomorphic to the same simplicial complex.
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Proof. There are a finite number of different unions of faces in 1. Since f is definable,
the pre-image of any such union under the map f ◦ π−1 is a definable set. ut
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