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Abstract. We generalize the Gauduchon metrics on a compact complex manifold and define the
γk functions on the space of its hermitian metrics.

1. Introduction

Let X be a compact n-dimensional complex manifold. Let g be a hermitian metric on X
and ω its hermitian form. It is well known that if dω = 0, then g or ω is called a Kähler
metric and X is called a Kähler manifold. When X is a non-Kähler manifold, one can
consider the other conditions on ω such as

dωk = 0 for some 2 ≤ k ≤ n− 1. (1.1)

If d(ωn−1) = 0, then g or ω is called a balanced metric and so X is called a balanced
manifold [19]. However, when 2 ≤ k ≤ n − 2, dωk = 0 automatically yields dω = 0
[15]. Instead of (1.1), one can consider the k-Kähler condition [1]. A complex manifold
is called k-Kähler if it admits a closed complex transverse (k, k)–form. By this definition,
a complex manifold is 1-Kähler if and only if it is Kähler; it is (n− 1)–Kähler if and only
if it is balanced.

One can also generalize the Kähler condition in other directions, for instance,

∂∂̄ωk = 0 for some 2 ≤ k ≤ n− 1. (1.2)

When k = n− 1, the metric ω is called a Gauduchon metric. Gauduchon [11] proved an
interesting result that, for any hermitian metric ω on a compact complex n-dimensional
manifold X, there exists a unique (up to a constant) smooth function v such that

∂∂̄(evωn−1) = 0 on X. (1.3)

J.-X. Fu, Z. Wang: Institute of Mathematics, Fudan University, Shanghai 200433, China;
e-mail: majxfu@fudan.edu.cn, youxiang163wang@163.com
D. Wu: Department of Mathematics, The Ohio State University, 1179 University Drive, Newark,
OH 43055, U.S.A.; e-mail: dwu@math.ohio-state.edu;
current address: Department of Mathematics, University of Connecticut,
196 Auditorium Road, Storrs, CT 06269-3009, U.S.A.; e-mail: damin.wu@uconn.edu



660 Jixiang Fu et al.

Thus, the Gauduchon metric always exists on a compact complex manifold. It is important
in complex geometry since one can use such a metric to define the degree, and then make
sense of the stability of holomorphic vector bundles over a non-Kähler complex manifold
(see [18]).

When k = n−2, the metric ω satisfying (1.2) is called an astheno-Kähler metric. Jost
and Yau [17] used this condition to study hermitian harmonic maps, and extended Siu’s
rigidity theorem to non-Kähler complex manifolds.

When k = 1, the metric ω in (1.2) is called pluriclosed, or strong KT (Kähler with
torsion) (see [13, 7] and the references therein). Such a condition appeared in [6, 2] as
a technical condition. Recently, Streets and Tian [21] introduced a hermitian Ricci flow
under which the pluriclosed metric is preserved.

It is important to find specific hermitian metrics on non-Kähler complex manifolds.
J. Li, S.-T. Yau and Fu [8] have constructed balanced metrics on complex structures of
manifolds #k≥2(S

3
× S3) which are obtained from the conifold transition of Calabi–Yau

threefolds. Combining this result with Lemma 2 in [4] implies that there exists no pluri-
closed metric on such manifolds (see [8, p. 2] or compare Proposition 22). We note here
that the specific hermitian geometry of threefolds #k(S3

× S3) was first considered by
Bozhkov [3, 4]. In this paper, we generalize (1.2) to weaker conditions:

∂∂̄ωk ∧ ωn−k−1
= 0 for some 2 ≤ k ≤ n− 1. (1.4)

Definition 1. Let ω be a hermitian metric on an n-dimensional complex manifoldX, and
k be an integer such that 1 ≤ k ≤ n − 1. If ω satisfies (1.4), we call it a k-Gauduchon
metric.

Note that an (n−1)-Gauduchon metric is the classical Gauduchon metric. The natural
question is whether there exists any k-Gauduchon metric, 1 ≤ k ≤ n − 2, on a complex
manifold. To answer this question, one way is to look for such a metric in the conformal
class of a given hermitian metric ω on X:

∂∂̄(evωk) ∧ ωn−k−1
= 0. (1.5)

However, equation (1.5) in general need not admit a solution (see below for reasons). In
this paper, we solve the equation

∂∂̄(evωk) ∧ ωn−k−1
= γke

vωn (1.6)

for some constant γk satisfying the compatibility condition. The constant γk , if nonzero,
can be viewed as an obstruction to the existence of a k-Gauduchon metric in the conformal
class of ω, for 1 ≤ k < n− 1.

Equation (1.6) can be reformulated, in a slightly more general form, as follows: Let
(X, ω) be an n-dimensional compact hermitian manifold, and B be a smooth real 1-form
on X. For any smooth function f on X satisfying∫

X

fωn = 0, (1.7)
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we consider the semilinear equation

1v + |∇v|2 + 〈B, dv〉 = f on X. (1.8)

Here 1 and ∇ are, respectively, the Laplacian and covariant differentiation associated
with ω. Clearly, (1.8) need not have a solution, due to the compatibility condition (1.7).
For instance, let ω be balanced and B = 0; then in order that (1.8) has a solution the
function f has to be zero. Nonetheless, we shall show that there is a smooth function v so
that equation (1.8) holds up to a unique constant c. More generally, we have the following
result:

Theorem 2. Let (X, ω) be a compact hermitian manifold, B be a smooth real 1-form
on X, and ψ ∈ C∞(R) satisfy

lim inf
t→+∞

ψ(t)/tµ ≥ ν > 0, where µ > 1/2 and ν are constants. (1.9)

Then, for each f ∈ C∞(X) satisfying (1.7), there exists a unique constant c, and a smooth
function v on X, unique up to a constant, such that

1v + ψ(|∇v|2)+ 〈B, dv〉 = f + c on X. (1.10)

Remark 3. The compatibility condition of (1.10) implies that

c =

∫
X
(1v + ψ(|∇v|2)+ 〈B, dv〉)ωn∫

X
ωn

,

which in general is nonzero.

Letting ψ(t) = t on R, we obtain an application of Theorem 2:

Corollary 4. Let (X, ω) be an n-dimensional compact hermitian manifold. For any in-
teger 1 ≤ k ≤ n − 1, there exists a unique constant γk and a function v ∈ C∞(X)
satisfying

(
√
−1/2)∂∂̄(evωk) ∧ ωn−k−1

= γke
vωn. (1.11)

The solution v of (1.11) is unique up to a constant. In particular, when k = n−1 we have
γn−1 = 0. If ω is Kähler, then γk = 0 and v is a constant, for each 1 ≤ k ≤ n− 1.

Remark 5. When k = n − 1, this corollary recovers the classical result of Gaudu-
chon [11].

By Corollary 4, we can associate to each hermitian metric ω a unique constant γk(ω).
Clearly, γk = γk(ω) is invariant under biholomorphisms. Furthermore, we will prove that
γk depends smoothly on the hermitian metric ω (see Proposition 9); and that γk(ω) = 0 if
and only if there exists a k-Gauduchon metric in the conformal class of ω (Proposition 8).

We will prove in Proposition 11 that the sign of γk(ω), denoted by (sgn γk)(ω), is
invariant in the conformal class of ω. We denote by 4k(X) the range of sgn γk . By def-
inition 4k(X) ⊂ {−1, 0, 1} for each k, and by Corollary 4 we have 4n−1(X) = {0}.
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A natural question is whether 4k(X) = {−1, 0, 1} for any 1 ≤ k ≤ n − 2 on any com-
pact complex n-dimensional manifold X. Indeed, if 4k(X) ⊃ {−1, 1} then the answer is
positive, by Proposition 9. Thus, there will be a k-Gauduchon metric on X. We can also
ask whether 4k(X) is invariant under proper modifications. (Given two n-dimensional
complex manifolds X̃ and X, a proper holomorphic map F : X̃ → X is called a proper
modification if for some analytic set Y inX with codimension≥ 2, F : X̃ \E→ X \Y is
a biholomorphism, where E = F−1(Y ).) These questions will be systematically studied
later. As a first step, we obtain the following result.

Theorem 6. For n = 3, we have 1 ∈ 41(X). Namely, for any 3-dimensional hermitian
manifold X, there exists a hermitian metric ω such that γ1(ω) > 0. In particular, there is
no 1-Gauduchon metric in the conformal class of ω.

Then, we combine the above results to prove that, as an example, 41 = {−1, 0, 1} on the
three-dimensional complex manifolds constructed by Calabi [5]. As a consequence, there
exists a 1-Gauduchon metric on these manifolds. It is well-known that such manifolds
are non-Kähler but admit balanced metrics. We do not know whether there exists any
pluriclosed metric on them.

Another example we considered is Y = S5
×S1, endowed with a complex structure so

that the natural projection π : S5
×S1

→ P2 is holomorphic. This would imply that there
is no balanced metrics on S5

× S1. Moreover, we can prove that S5
× S1 does not admit

any pluriclosed metric. On the other hand, by considering a natural hermitian metric on
S5
× S1, we are able to show that 41(S

5
× S1) = {−1, 0, 1}. Thus, S5

× S1 admits a
1-Gauduchon metric.

We shall solve equation (1.10) by the continuity method. In Section 2, we set up the
machinery and prove the openness. The closedness and a priori estimates are established
in Section 3. In Section 4, we prove the uniqueness part of Theorem 2 and also prove
Corollary 4. In Section 5, we discuss the relation between γk and k-Gauduchon metrics.
In Section 6, we prove Theorem 6, and explicitly construct a metric with positive γ1 on
the complex 3-torus. As another example, we show that the natural balanced metric on
the Iwasawa manifold has γ1 positive. In Section 7, we establish the existence of a 1-
Gauduchon metric on Calabi’s 3-dimensional non-Kähler manifold, by using Theorem 6
and proving that the balanced metric on the manifold has γ1 negative. In the last section,
we prove the existence of a 1-Gauduchon metric on S5

× S1. We also show the nonexis-
tence of a balanced metric or pluriclosed metric on S5

× S1.

2. Notation and preliminaries

Throughout this note, we use the following convention: We write

ω =

√
−1
2

n∑
i,j=1

gij̄dz
i
∧ dz̄j .

Let (gij̄ ) be the transposed inverse of the matrix (gij̄ ). For any two real 1-forms A and B
on X, locally given by
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A =

n∑
i=1

(Aidzi + Aīdz̄i) and B =

n∑
i=1

(Bidzi + Bīdz̄i),

we denote

〈A,B〉ω =
1
2

n∑
i,j=1

gij̄ (AiBj̄ + Aj̄Bi).

We may omit the subscript ω in 〈·, ·〉ω when it is understood from the context. In particu-
lar, we have

〈dh, dh〉 =

n∑
i,j=1

gij̄
∂h

∂zi

∂h

∂z̄j
≡ |∇h|2 for all h ∈ C1(X).

The Laplacian 1 associated with ω is given by

1h =
nωn−1

∧ (
√
−1/2)∂∂̄h

ωn
=

n∑
i,j=1

gij̄hij̄ for all h ∈ C2(X).

We use the continuity method to solve (1.10). Fix an integer l ≥ n + 4 and a real
number 0 < α < 1. We denote by Cl,α(X) the usual Hölder space on X. Let

S(u) = 1u+ ψ(|∇u|2)+ 〈B, du〉 −

∫
X
(1u+ ψ(|∇u|2)+ 〈B, du〉)ωn∫

X
ωn

for each u ∈ Cl,α(X). Consider the family of equations

S(vt ) = tf, 0 ≤ t ≤ 1. (2.1)

Let I be the subset of [0, 1] consisting of t for which (2.1) has a solution vt ∈ Cl,α(X)
satisfying ∫

X

vt ω
n
= 0. (2.2)

Obviously, I is nonempty since 0 ∈ I . The openness of I will follow from our previous
results [9, Section 3]. Indeed, let

E l,αω =
{
h ∈ Cl,α(X) :

∫
X

hωn = 0
}
. (2.3)

Notice that S : E l+2,α
ω → E l,αω . The linearization of S is

Lω(h) =
d

dt
S(v + th)

∣∣∣∣
t=0
= 1h+ 〈B̃, dh〉 −

∫
X
(1h+ 〈B̃, dh〉)ωn∫

X
ωn

,

where
B̃ = B + 2ψ ′(|∇v|2)dv.

It follows from the proof of Lemma 13 in [9] that Lω is a linear isomorphism from
E l+2,α(X) to E l,α(X). Thus, by the implicit function theorem we obtain the openness
of I .

For the closedness of I we need the a priori estimate which will be established in
Section 3.
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3. A priori estimates

Let (X, ω) be an n-dimensional hermitian manifold, B a smooth 1-form onX, f a smooth
function on X, c a constant, and let ψ ∈ C∞(R) satisfy (1.9). Consider the semilinear
equation

S(v) ≡ 1v + ψ(|∇v|2)+ 〈B, dv〉 − c = f on X, (3.1)

where v ∈ C3(X) satisfies the normalization condition∫
X

vωn = 0. (3.2)

We shall first derive a uniform gradient estimate:

Lemma 7. Let v ∈ C3(X) be a solution of (3.1). We have

sup
X

|∇v| ≤ C,

where C > 0 is a constant depending only on B, f , ω, ψ(0), µ and ν.

Throughout this section, we always denote by C > 0 a generic constant depending only
on B, f , ω, ψ(0), µ, and ν, unless otherwise indicated.

Proof of Lemma 7. Since X is compact, we can assume that |∇v|2 attains its maximum
at some point x0 ∈ X. Consider the linear elliptic operator

L(h) = 1h+ 2ψ ′(|∇v|2)〈dh, dv〉ω = 1h+ ψ ′(|∇v|2)gij̄ (hivj̄ + hj̄vi).

Here the summation convention is used, and we denote

hi =
∂h

∂zi
, g

ij̄
,k =

∂gij̄

∂zk
, . . . .

We compute that

L(|∇v|2) = 1(|∇v|2)+ ψ ′gij̄ [(|∇v|2)ivj̄ + vi(|∇v|
2)j̄ ]

= gij̄gpq̄(vpivq̄ j̄ + vpj̄viq̄)+ g
pq̄
[(1v)pvq̄ + vp(1v)q̄ ] + g

ij̄g
pq̄

,ij̄
vpvq̄

+ gij̄g
pq̄
,i (vpj̄vq̄ + vpvq̄ j̄ )+ g

ij̄g
pq̄

,j̄
(vpivq̄ + vpviq̄)

− gpq̄(g
ij̄
,pvij̄vq̄ + g

ij̄
,q̄ vpvij̄ )+ ψ

′gij̄ [(|∇v|2)ivj̄ + vi(|∇v|
2)j̄ ].

Applying equation (3.1) to the second term on the right hand side and then using the
Schwarz inequality, we find

L(|∇v|2) ≥ 1
2g
ij̄gpq̄(vpivq̄ j̄ + vpj̄viq̄)− C|∇v|

2
− C.

To see things more clearly, let us take a normal coordinate system around x0 such that

gij̄ (x0) = δij for all i, j = 1, . . . , n.
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It follows that

L(|∇v|2) ≥
1
2

n∑
i,p=1

|vpī |
2
− C|∇v|2 − C ≥

1
2

n∑
i=1

|viī |
2
− C|∇v|2 − C

≥
1

2n
|1v|2 − C|∇v|2 − C (by Cauchy’s inequality)

≥
1

2n
|ψ(|∇v|2)+ 〈B, dv〉 − f − c|2 − C|∇v|2 − C (by (3.1))

≥
1

4n
|ψ(|∇v|2)|2 − C|∇v|2 − C(1+ |c|2).

We can assume, without loss of generality, that |∇v|2(x0) is sufficiently large so that

ψ(|∇v|2) ≥
ν

2
|∇v|2µ at x0,

where µ > 1/2 and ν > 0 are constants, by (1.9). Now notice that

L(|∇v|2) ≤ 0 at x0,

because
1(|∇v|2)(x0) ≤, and ∇(|∇v|2)(x0) = 0.

Hence,
sup
X

|∇v|2 = |∇v|2(x0) ≤ C(1+ |c|2).

It remains to bound the constant c in terms of f and ψ(0): Apply the maximum principle
to v in (3.1) to obtain

ψ(0)− sup
X

f ≤ c ≤ − inf
X
f + ψ(0). (3.3)

This finishes the proof. ut

Next, we establish the C0 estimate: Noticing (3.2), there must exist some y0 ∈ X such
that v(y0) = 0. Then, for any y ∈ X, we take a geodesic curve γ connecting y0 to y. By
Lemma 7,

|v(y)| = |v(y)− v(y0)| =

∣∣∣∣∫ 1

0

d(v ◦ γ )

dt
dt

∣∣∣∣ ≤ diamω(X)

∫ 1

0
(|∇v| ◦ γ ) dt < C,

where diamω(X) denotes the diameter ofX with respect to ω. This settles the C0 estimate
of v. We rewrite equation (3.1) as

1v = −ψ(|∇v|2)− 〈B, dv〉 + f + c.

By the W 2,p theory of elliptic equations, for any p > 1 we have

‖v‖W 2,p ≤ C(‖v‖Lp + ‖f + c − ψ(|∇v|
2)− 〈B, dv〉‖Lp ) ≤ C1,
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where in the last inequality we have used the C0 and C1 estimates of v, and (3.3). Here
and below, we denote by C1 a generic constant depending on B, f , ω, µ, ν, p, and
max{|ψ(t)| : 0 ≤ t ≤ max |∇v|2 ≤ C}.

Fix a sufficiently large p such that α ≡ 2n/p < 1. It follows from the Sobolev
embedding theorem that

‖v‖C1,α ≤ C1.

This allows us to apply Schauder’s theory to deduce that

‖v‖C2,α ≤ C1.

Thus, by a bootstrap argument, we have

‖v‖Cl,α ≤ C1 for any l ≥ 1. (3.4)

This implies that the set I defined in Section 2 is closed. As a consequence, we have
shown the existence part in Theorem 2.

4. Uniqueness and Corollary

Let us prove the uniqueness in Theorem 2. Suppose that there exist c, v and c̃, ṽ such that

1v + ψ(|∇v|2)+ 〈B, dv〉 = f + c,

1ṽ + ψ(|∇ṽ|2)+ 〈B, dṽ〉 = f + c̃.

Then

c =

∫
X
(1v + ψ(|∇v|2)+ 〈B, dv〉)ωn∫

X
ωn

, (4.1)

c̃ =

∫
X
(1ṽ + ψ(|∇ṽ|2)+ 〈B, dṽ〉)ωn∫

X
ωn

. (4.2)

Recall that we denote

S(u) = 1u+ ψ(|∇u|2)+ 〈B, du〉 −

∫
X
(1u+ ψ(|∇u|2)+ 〈B, du〉)ωn∫

X
ωn

,

for all u ∈ C2(X). It follows that

0 = S(v)− S(ṽ) =
∫ 1

0

[
d

dt
S(tv + (1− t)ṽ)

]
dt = 1w + 〈B̃, dw〉 − cw. (4.3)

Here w = v − ṽ,

B̃ = B + 2
∫ 1

0
ψ ′(|t∇v + (1− t)∇ṽ|2)[tdv + (1− t)dṽ] dt,



Semilinear equations 667

and cw is a constant given by

cw =

∫
X
(1w + 〈B̃, dw〉)ωn∫

X
ωn

.

Applying the maximum principle to (4.3) yields

cw = 0.

Then, by the strong maximum principle we conclude that w is equal to a constant. This
shows that the solution of (1.10) is unique up to a constant. By (4.1) and (4.2) we have
c = c̃. This completes the proof of Theorem 2.

Let us now prove Corollary 4. We define a smooth real 1-form on X by

B1 =

√
−1
2

nk

n− 1
1
n!
∗ (∂(ωn−1)− ∂̄(ωn−1)) (4.4)

and a smooth function

ϕ =
n(
√
−1/2)∂∂̄(ωk) ∧ ωn−k−1

ωn
. (4.5)

Then (1.11) is equivalent to

1v + |∇v|2 + 〈B1, dv〉 + ϕ = nγk.

Let

ψ(t) = t and f =

∫
X
ϕωn∫
X
ωn
− ϕ;

then Corollary 4 follows readily from Theorem 2.
For each 1 ≤ k ≤ n− 1, the constant γk is given by

γk =

∫
X
e−v(
√
−1/2)∂∂̄(evωk) ∧ ωn−k−1∫

X
ωn

(4.6)

=

∫
X
(1v + |∇v|2 + 〈B1, dv〉 + ϕ)ω

n

n
∫
X
ωn

. (4.7)

On the other hand, directly integrating (1.11) over X yields

γk =

∫
X
(
√
−1/2)∂∂̄(evωk) ∧ ωn−k−1∫

X
evωn

. (4.8)

This together with (4.6) imposes some constraint on the constant γk . For instance, when
k = n− 1, by (4.8) we know that

γn−1 = 0.



668 Jixiang Fu et al.

Thus, in this case Corollary 4 recovers the classical result of Gauduchon [11]. When ω is
Kähler, by (4.8) again we have

γk = 0 for all 1 ≤ k ≤ n− 1.

Then, it follows from (4.7) that ∫
X

|∇v|2ωn = 0.

This tells us that the solution v of (1.11) has to be a constant.

5. Generalized Gauduchon metrics and γk

Let X be an n-dimensional complex manifold. We recall (Definition 1) that a hermitian
metric ω on X is called a k-Gauduchon metric if

∂∂̄(ωk) ∧ ωn−k−1
= 0 on X.

Then the (n − 1)-Gauduchon metric is the Gauduchon metric in the usual sense. By
Corollary 4, to each hermitian metric ω on X one can associate a unique constant γk(ω),
which is invariant under biholomorphisms. The induced function γk = γk(ω) can be used
to characterize the k-Gauduchon metric.

Proposition 8. The hermitian manifold X admits a k-Gauduchon metric if and only if
there exists a hermitian metric ω on X such that

γk(ω) = 0. (5.1)

Proof. If there is some hermitian metric ω satisfying (5.1), then Corollary 4 implies
that the conformal metric ev/kω is a k-Gauduchon metric on X. Conversely, if ω is a
k-Gauduchon metric, then the uniqueness of Corollary 4 implies that γk(ω) = 0 and that
v is a constant. ut

Let M be the set of all hermitian metrics onX. We shall prove that γk is a smooth function
on M. Here M is viewed as an open subset inCl+2,α(3

1,1
R (X)) for a nonnegative integer l

and a real number 0 < α < 1. We denote by Cl,α(3m,mR (X)) the Hölder space of real
(m,m)-forms on X, in which l and m are nonnegative integers, and 0 < α < 1 is a real
number. In particular, Cl,α(30,0

R (X)) = Cl,α(X).

Proposition 9. The function γk = γk(ω) is smooth on M, where M is viewed as an open
subset in Cl+2,α(3

1,1
R (X)).

Proof. It follows from Corollary 4 that, for each ω ∈M, there exists a unique constant γk
and a function v such that

e−v(
√
−1/2)∂∂̄(evωk) ∧ ωn−k−1

− γkω
n
= 0. (5.2)
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Then

γk =

∫
X
e−v(
√
−1/2)∂∂̄(evωk) ∧ ωn−k−1∫

X
ωn

depends smoothly on v and ω. Thus, to show the result, it suffices to show that the solu-
tion v depends smoothly on ω. We shall use the implicit function theorem.

For each ω ∈ M, the space E l,αω is defined by (2.3). Fix ω0 ∈ M, for which we
abbreviate E l,α0 = E l,αω0

. We have two obvious linear isomorphisms from E l,αω to E l,α0 ,
given respectively by

h 7→ h−

∫
X
hωn0∫

X
ωn0

for all h ∈ E l,αω , (5.3)

h 7→ h ·
ωn

ωn0
for all h ∈ E l,αω . (5.4)

Define a map F :M× E l+2,α
0 → E l,α0 by

F(ω, v) =
ne−v(

√
−1/2)∂∂̄(evωk) ∧ ωn−k−1

ωn0

−
n
∫
X
e−v(
√
−1/2)∂∂̄(evωk) ∧ ωn−k−1∫

X
ωn

·
ωn

ωn0
.

Obviously, F is a smooth map. Note that any (ω, v) ∈ M × E l+2,α
0 satisfies (5.2) if and

only if
F(ω, v) = 0.

The Fréchet derivative of F with respect to the variable v is

DvF(ω, v)(h) = Lω(h)
ωn

ωn0
.

Here

Lω(h) = 1h+ 〈B1 + 2dv, dh〉ω −

∫
X
(1h+ 〈B1 + 2dv, dh〉ω)ωn∫

X
ωn

,

in which the Laplacian 1 is with respect to ω, and B1 is the smooth real 1-form given
by (4.4). By the proof of Lemma 13 in [9] and the isomorphism (5.3), the operator Lω :
E l+2,α

0 → E l,αω is a linear isomorphism. Combining this isomorphism with isomorphism
(5.4) implies that DvF(ω, v) : E l+2,α

0 → E l,α0 is a linear isomorphism. The result then
follows by the implicit function theorem. ut

A direct corollary of Proposition 9 is

Corollary 10. For 1 ≤ k ≤ n− 2, if there exist two hermitian metrics ω1, ω2 on X such
that

γk(ω1) > 0 and γk(ω2) < 0,

then there exists a metric ω on X satisfying γk(ω) = 0, i.e., ω is a k-Gauduchon metric.
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Proof. Let
ωt = tω1 + (1− t)ω2 for all 0 ≤ t ≤ 1.

Then ωt is a hermitian metric for each t . The result follows immediately by applying the
mean value theorem to the function φ(t) = γk(ωt ). ut

Proposition 11. For any ρ ∈ C2(M), we have

e−maxX ργk(ω) ≤ γk(e
ρω) ≤ e−minX ργk(ω). (5.5)

In particular, the sign of the function γk is a conformal invariant for hermitian metrics.

Proof. Let ω̃ = eρω. Then, there exists a function ṽ and a number γ̃k = γk(ω̃) satisfying

(
√
−1/2)∂∂̄(eṽω̃k) ∧ ω̃n−k−1

= γ̃ke
ṽω̃n,

that is,
(
√
−1/2)∂∂̄(eṽ+kρωk) ∧ ωn−k−1

= γ̃ke
ṽ+kρeρωn. (5.6)

We can rewrite (5.6) as

1(ṽ + kρ)+ |∇(ṽ + kρ)|2 + 〈B1, d(ṽ + kρ)〉 + ϕ = ne
ρ γ̃k, (5.7)

where the operators 1 and ∇ are with respect to ω, and B1 and ϕ are given by (4.4) and
(4.5), respectively. Subtracting from (5.7) the equation

1v + |∇v|2 + 〈B1, dv〉 + ϕ = nγk(ω)

and then applying the maximum principle to ṽ + kρ − v yields (5.5). ut

Proposition 12. For a hermitian metric ω, we have γk(ω) > 0 (= 0, or < 0) if and only
if there exists a metric ω̃ in the conformal class of ω such that

(
√
−1/2)∂∂̄ω̃k ∧ ω̃n−k−1 > 0 (= 0, or < 0) on X. (5.8)

Proof. Suppose that γk(ω) > 0 (= 0, or < 0). Let ω̃ = ev/kω, where v is a smooth
function associated with ω so that (1.11) holds. Then

(
√
−1/2)∂∂̄ω̃k ∧ ω̃n−k−1

= γk(ω)ω
ne(n−k)v > 0 (= 0, or < 0).

Conversely, if there is a metric ω̃ in the conformal class of ω such that (5.8) holds, then
we claim that γk(ω̃) > 0 (= 0, or < 0). Indeed, by Corollary 4 there exists a smooth
function ṽ such that

(
√
−1/2)∂∂̄(eṽω̃k) ∧ ω̃n−k−1

= γk(ω̃)e
ṽω̃.

This is equivalent to the equation

1ṽ + |∇ṽ|2 + 〈B̃1, dṽ〉 + ϕ̃ = nγk(ω̃), (5.9)

where the operators 1 and ∇ are with respect to ω̃, and B̃1 and ϕ̃ are given by (4.4) and
(4.5), respectively, with ω̃ replacing ω. By (5.8) we have ϕ̃ > 0 (= 0, or < 0). The claim
then follows immediately by applying the maximum principle to (5.9). By Proposition 11,
we finish the proof. ut

Moreover, for the case of γk > 0, we have the following integral criterion, which is often
easier to verify.



Semilinear equations 671

Lemma 13. Suppose that n, the complex dimension of X, is odd. Let k = (n − 1)/2.
Then there is some metric ω satisfying γk(ω) > 0 if and only if there is some semi-metric
ω̊ (i.e., a semi-positive real (1, 1)-form on X) satisfying

√
−1
2

∫
X

∂∂̄ω̊k ∧ ω̊n−k−1 > 0.

Proof. By Proposition 12, the necessity part is obvious. For the sufficiency part, let ω̂ be
any hermitian metric. Let ωt = ω̊ + tω̂ for t ∈ (0, 1). Then we have∫

X

e−v(
√
−1/2)∂∂̄(evωkt ) ∧ ω

n−k−1
t

=

√
−1
2

∫
X

(∂∂̄ωkt ∧ ω
n−k−1
t + ∂v ∧ ∂̄v ∧ ωn−1

t )

+

√
−1
2

∫
X

[
∂∂̄v ∧ ωn−1

t +
k

n− 1
(∂ωn−1

t ∧ ∂̄v + ∂v ∧ ∂̄ωn−1
t )

]
=

√
−1
2

∫
X

(∂∂̄ωkt ∧ ω
n−k−1
t + ∂v ∧ ∂̄v ∧ ωn−1

t )

+

√
−1
2

(
1−

2k
n− 1

)∫
X

v∂∂̄ωn−1
t . (5.10)

Since k = (n− 1)/2, the second integral on the right of (5.10) vanishes. It follows that

∫
X

e−v(
√
−1/2)∂∂̄(evωkt ) ∧ ω

n−k−1
t ≥

√
−1
2

∫
X

∂∂̄ωkt ∧ ω
k
t

=

√
−1
2

∫
X

∂∂̄ω̊k ∧ ω̊k + t

√
−1
2

∫
X

(∂∂̄ω̊k ∧9t + ∂∂̄9t ∧ ω̊
k)

+ t2
√
−1
2

∫
X

∂∂̄9t ∧9t > 0 for sufficiently small t,

where9t = ω̂∧(ω̊k−1
+ω̊k−2

∧ωt+· · ·+ω̊∧ω
k−2
t +ω

k−1
t ). This implies that γk(ωt ) > 0

for the sufficiently small t . ut

A similar argument works for the (classical) Gauduchon metrics, for any dimension n,
and for all 1 ≤ k ≤ n− 2.

Lemma 14. Let X be an n-dimensional hermitian manifold, k an integer such that 1 ≤
k ≤ n−2. Then a hermitian metric ω onX satisfies γk(ω) > 0 if the Gauduchon metric ω̃
in the conformal class of ω satisfies

√
−1
2

∫
X

∂∂̄ω̃k ∧ ω̃n−k−1 > 0. (5.11)
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Proof. By Proposition 11, we can assume that ω = ω̃, without loss of generality. By
(5.10) with ω replacing ωt , and applying ∂∂̄ωn−1

= 0, we obtain∫
X

e−v(
√
−1/2)∂∂̄(evωk) ∧ ωn−1−k

≥

√
−1
2

∫
X

∂∂̄ωk ∧ ωn−1−k > 0. ut

Corollary 15. Let (X, ω) be an n-dimensional balanced manifold. Then, for each 1 ≤
k ≤ n− 2, we have γk(ω) > 0 if

√
−1
2

∫
X

∂∂̄ωk ∧ ωn−1−k > 0.

6. Constructions on hermitian three-manifolds

We shall apply previous results to construct a hermitian metric with γ1 > 0 on a complex
three-dimensional manifold. Theorem 6 will follow from Proposition 12 together with the
following theorem.

Theorem 16. There always exists a hermitian metric ω on a complex three-dimensional
manifold X such that

(
√
−1/2)∂∂̄ω ∧ ω > 0.

Proof. By Lemma 13 and Proposition 12, it suffices to construct a semi-metric ω̊ such
that √

−1
2

∫
X

∂∂̄ω̊ ∧ ω̊ > 0.

Fix a point q ∈ X and a coordinate patch U 3 q. Let (z1, z2, z3) be coordinates on U
centered at q. Here zj = xj+

√
−1 yj for 1 ≤ j ≤ 3. We can assumeN = B×B×R ⊂ U ,

where B is the unit ball in C, and

R = {z3 ∈ C | |x3| ≤ 1, |y3| ≤ 1}.

Take a nonnegative cut-off function η ∈ C∞0 (B) and two nonnegative functions f, g ∈
C∞0 ([−1, 1]) to be determined later. On N , define

φ = η(z1)η(z2)f (x3)f (y3), ψ = η(z1)η(z2)g(x3)g(y3),

and then define

ω̊ =

√
−1
2
[φ(z)dz1 ∧ dz̄1 + ψ(z)dz2 ∧ dz̄2]. (6.1)

Obviously, ω̊ is semi-positive and with compact support in N . So it can be viewed as a
semi-metric on X. Clearly,

√
−1
2

∂∂̄ω̊ ∧ ω̊ =

(
φ
∂2ψ

∂z3∂z̄3
+ ψ

∂2φ

∂z3∂z̄3

)
dV, (6.2)
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where

dV =

(√
−1
2

)3

dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3. (6.3)

Since
∂

∂z3
=

1
2

(
∂

∂x3
−
√
−1

∂

∂y3

)
,

∂

∂z̄3
=

1
2

(
∂

∂x3
+
√
−1

∂

∂y3

)
,

we have

φ
∂2ψ

∂z3∂z̄3
+ ψ

∂2φ

∂z3∂z̄3
=
φ

4

(
∂2ψ

∂x3∂x3
+

∂2ψ

∂y3∂y3

)
+
ψ

4

(
∂2φ

∂x3∂x3
+

∂2φ

∂y3∂y3

)
=

1
4η

2(z1)η
2(z2)f (y3)g(y3)[f (x3)g

′′(x3)+ g(x3)f
′′(x3)]

+
1
4η

2(z1)η
2(z2)f (x3)g(x3)[f (y3)g

′′(y3)+ g(y3)f
′′(y3)].

We choose η so that ∫
B

η2(z)

√
−1
2

dz ∧ dz̄ = 1.

Then it follows that
√
−1
2

∫
X

∂∂̄ω̊ ∧ ω̊ =
1
2

∫ 1

−1
f (t)g(t) dt

∫ 1

−1
[f (t)g′′(t)+ f ′′(t)g(t)] dt

=

∫ 1

−1
f (t)g(t) dt

∫ 1

−1
[−f ′(t)g′(t)] dt.

The result follows immediately from the proposition below. ut

Proposition 17. There exist nonnegative functions f, g ∈ C∞0 ([−1, 1]) such that

−

∫ 1

−1
f ′(t)g′(t) dt > 0.

Proof. For any two real numbers a < b, we denote

χa,b(t) =

exp
(

1
t − b

−
1

t − a

)
if a < t < b,

0 otherwise.

Clearly, χa,b ∈ C∞0 (R), χ
′

a,b(t) > 0 for a < t < (a + b)/2, χ ′a,b(t) < 0 for (a + b)/2 <
t < b, and χ ′a,b(t) = 0 when t = (a + b)/2. Letting

f (t) = χ−1/3,1/3(t), and g(t) = χ0,2/3(t)

yields −f ′(t)g′(t) > 0 for 0 < t < 1/3 and otherwise f ′(t)g′(t) = 0. This in particular
implies the result. ut

Let us now consider some examples. We can directly construct a hermitian metric ω with
γ1(ω) > 0 on T 3, the 3-dimensional complex torus.
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Proposition 18. On the complex torus T 3, there is a metric ω satisfying

(
√
−1/2)∂∂̄ω ∧ ω > 0.

Proof. Let (z1, z2, z3) be the coordinates of T 3 induced from C3. Let

ω =

√
−1
2
[ξ(x3)dz1 ∧ dz̄1 + η(x3)dz2 ∧ dz̄2 + dz3 ∧ dz̄3],

where ξ and η are positive smooth functions on T 3 only depending on x3, which will be
determined later. Then

(
√
−1/2)∂∂̄ω ∧ ω =

(
η
∂2ξ

∂z3∂z̄3
+ ξ

∂2η

∂z3∂z̄3

)
dV > 0

if and only if

η
∂2ξ

∂z3∂z̄3
+ ξ

∂2η

∂z3∂z̄3
=

1
4
η
∂2ξ

∂x2
3
+

1
4
ξ
∂2η

∂x2
3
> 0.

Here dV is defined by (6.3). So we need to look for two smooth, positive, 2π -periodic
functions η and ξ such that

η′′(t)

η(t)
+
ξ ′′(t)

ξ(t)
> 0.

We define
ξ(t) = 1+ κ sin t for some 0 < κ < 1. (6.4)

We observe that∫ 2π

0

ξ ′′

ξ
dt = −

∫ 2π

0

κ sin t
1+ κ sin t

dt = −2π +
∫ 2π

0

dt

1+ κ sin t
.

By Proposition 8 in [9], the above integral tends to +∞ monotonically as κ → 1−.
Hence, for a constant C > 0, there is a unique real number κ such that the function ξ
given by (6.4) satisfies ∫ 2π

0

ξ ′′

ξ
dt =

∫ 2π

0
C dt.

This implies that the equation

ζ ′′ +
ξ ′′

ξ
= C

has a smooth 2π -periodic solution ζ on R. Let η = eζ . Thus,

η′′(t)

η(t)
+
ξ ′′(t)

ξ(t)
= (ζ ′)2 + ζ ′′ +

ξ ′′

ξ
≥ C > 0. ut
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As another example, we show that the natural balanced metric on the Iwasawa manifold
has γ1 positive. Recall (for example, [16, p. 444] and [20, p. 115]) that the Iwasawa
manifold is defined to be the quotient space G/0, where

G =


1 z1 z3

0 1 z2
0 0 1

 : z1, z2, z3 ∈ C

 ,
0 is the discrete subgroup of G consisting of matrices where z1, z2, z3 are Gaussian
integers, i.e., zi ∈ {a + b

√
−1 | a, b ∈ Z} for 1 ≤ i ≤ 3, and 0 acts on G by left

multiplications. Clearly, the global holomorphic 1-forms

ϕ1 = dz1, ϕ2 = dz2, ϕ3 = dz3 − z1dz2

on G are invariant under the action of 0, hence descend to G/0. Observe that G/0 does
not admit any Kähler metric, because dϕ3 = ϕ2 ∧ ϕ1 6= 0. Let

ω = (
√
−1/2)(ϕ1 ∧ ϕ̄1 + ϕ2 ∧ ϕ̄2 + ϕ3 ∧ ϕ̄3).

Then, ω is a balanced hermitian metric on G/0, for dω2
= 0. Furthermore, we have

(
√
−1/2)∂∂̄ω ∧ ω = (

√
−1/2)3ϕ1 ∧ ϕ̄1 ∧ ϕ2 ∧ ϕ̄2 ∧ ϕ3 ∧ ϕ̄3 > 0

on G/0; hence, by Proposition 12, we conclude that γ1(ω) > 0.

7. The 1-Gauduchon metric on Calabi’s manifolds

In this section, we shall establish the existence of a 1-Gauduchon metric on the non-
Kähler manifold introduced by Calabi [5]. In view of Theorem 6 and Corollary 10, we
need to find a hermitian metric with γ1 negative.

We first recall Calabi’s construction of non-Kähler complex three dimensional mani-
folds. Let O ∼= R8 denote the Cayley numbers. We fix a basis {I1, . . . , I7} such that

(1) Ii · Ij = δij with respect to the inner product.
(2) The multiplication table of the cross product Ij × Ik is the following:

× I1 I2 I3 I4 I5 I6 I7
I1 0 I3 −I2 I5 −I4 I7 −I6
I2 −I3 0 I1 I6 −I7 −I4 I5
I3 I2 −I1 0 −I7 −I6 I5 I4
I4 −I5 −I6 I7 0 I1 I2 −I3
I5 I4 I7 I6 −I1 0 −I3 −I2
I6 −I7 I4 −I5 −I2 I3 0 I1
I7 I6 −I5 −I4 I3 I2 −I1 0

(7.1)

Via this basis, we have an isomorphism R7 ∼= Im(O).
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Calabi considered a smooth oriented hypersurfaceX6 ↪→ R7. Fix a unit normal vector
field N of X. There is a natural almost complex structure J : TX → TX induced
by Cayley multiplication as follows. For any x ∈ X and any V ∈ TxX, define J :
TxX→ TxX as

J (V ) = N × V.

Calabi proved that J is integrable if and only if J anticommutes with the second funda-
mental form of X.

Calabi constructed compact complex manifolds as follows. Let 6 be a compact Rie-
mann surface which admits three holomorphic differentials φ1, φ2, φ3 with the following
properties:

(1) φ1, φ2, φ3 are linearly independent;
(2) φ2

1 + φ
2
2 + φ

2
3 = 0;

(3) φ1 ∧ φ̄1 + φ2 ∧ φ̄2 + φ3 ∧ φ̄3 > 0.

Lifting φ1, φ2, φ3 to the universal covering 6̃→ 6 and setting

xj (p) = Re
∫ p

p′
φj , j = 1, 2, 3,

for a fixed point p′ ∈ 6, we obtain a conformal minimal immersion

ψ = (x1, x2, x3) : 6̃→ R3.

This mapping is regular, since the differentials φj satisfy (3); by the Weierstrass represen-
tation, property (2) is equivalent to the statement that ψ is minimal; finally, because of
property (1), it follows that 6̃ does not map into a plane.

Calabi then considered the hypersurface of the type

(ψ, id) : 6̃ × R4
→ R3

× R4
= Im(O),

where R3
= spanR{I1, I2, I3} and R4

= spanR{I4, I5, I6, I7}. Since ψ : 6̃ → R3 is
minimal, 6̃×R4 is a complex manifold. If g : 6̃→ 6̃ denotes a covering transformation,
then ψ(gp) = ψ(p) + tg for some vector tg ∈ R3. It follows that the complex structure
on 6̃×R4 is invariant under the covering group of 6 and so descends to 6×R4. On the
other hand, for R4, we can further divide by a lattice 3 of translation of R4, and thereby
produce a compact complex manifold X3 = 6 × T 4. We can view X3 as a family of
complex tori, parameterized by a Riemann surface.

Calabi showed that such complex manifoldsX3 are non-Kähler. However, there exists
a balanced metric on these manifolds [14, 19]. Let us consider the natural metric.

Define a 2-form on X3 as

ω0(V ,W) = N · (V ×W)

for any V,W ∈ TxX3 at any x ∈ X3. Then clearly we have

ω0(V ,W) = −ω0(W, V );
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and using the formula
N · (V ×W) = (N × V ) ·W,

we also have

ω0(JV, JW) = ω0(V ,W); ω0(V , JV ) = (N × V ) · (N × V ) > 0 if V 6= 0.

So ω0 is a positive (1, 1)-form on X3 and therefore defines a hermitian metric.
Next we check that ω0 is a balanced metric. The unit normal vector field of X in R7

can be written as

N =

3∑
j=1

aj Ij ,

3∑
j=1

a2
j = 1, (7.2)

where aj for j = 1, 2, 3 are functions on 6. Let (x4, x5, x6, x7) be the coordinates of R4.
Then we can write the hermitian metric ω0 as

ω0 = ω6 + ϕ0,

where ω6 is a Kähler metric on 6 and

ϕ0 = a1dx4 ∧ dx5 + a2dx4 ∧ dx6 − a3dx4 ∧ dx7

− a3dx5 ∧ dx6 − a2dx5 ∧ dx7 + a1dx6 ∧ dx7.

By direct check, we have

ϕ2
0 = 2dx4 ∧ dx5 ∧ dx6 ∧ dx7.

Therefore,

d(ω2
0) = d(2ω6 ∧ ϕ0 + ϕ

2
0) = 2dω6 ∧ ϕ0 + 2ω6 ∧ dϕ0 = 0,

since ω6 is a Kähler metric and all functions aj are defined on 6.
Finally, we prove that there exists a 1-Gauduchon metric on X3. By direct computa-

tion, we have

∂∂̄ω0 ∧ ω0 = ∂∂̄ϕ0 ∧ ϕ0 = 2
3∑

j=1

aj∂∂̄aj ∧ dx4 ∧ dx5 ∧ dx6 ∧ dx7.

Condition (7.2) implies
3∑

j=1

aj∂∂̄aj = −

3∑
j=1

∂aj ∧ ∂̄aj ,

Combining the above two equalities yields

√
−1 ∂∂̄ω0 ∧ ω0 = −2

√
−1

3∑
j=1

∂aj ∧ ∂̄aj ∧ dx4 ∧ dx5 ∧ dx6 ∧ dx7

= −4
3∑

j=1

|∂aj |
2ω3

0,
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and therefore

√
−1

∫
X3

∂∂̄(evω0) ∧ ω0 =
√
−1

∫
X3

evω0 ∧ ∂∂̄ω0 < 0.

Hence, we have γ1(ω0) < 0, by Corollary 4; so −1 ∈ 41(X3).

Proposition 19. 41(X3) = {−1, 0, 1}.

Proof. We have proven −1 ∈ 41(X3) and according to Theorem 6 we also have 1 ∈
41(X3). Then by Corollary 10, 0 ∈ 41(X3). ut

Corollary 20. There exists a 1-Gauduchon metric on X3.

8. A 1-Gauduchon metric on S5
× S1

Let S5
→ P2 be the Hopf fibration of the complex projective plane P2. Then S5 can be

viewed as the circle bundle over P2 twisted by ωFS/(2π) ∈ H 2(P2,Z). Here ωFS is the
Fubini–Study metric on P2. We let π : S5

× S1
→ P2 be the natural projection. Then in

a canonical way (cf. [10, 12]), we can define a complex structure on S5
× S1 such that π

is a holomorphic map. We can define a natural hermitian metric on S5
× S1 as follows:

ω0 = π
∗ωFS + (

√
−1/2)θ ∧ θ̄ , (8.1)

where θ = θ1+
√
−1 θ2 is a (1, 0)-form on S5

×S1 such that dθ1 = π
∗ωFS and dθ2 = 0.

So ∂̄θ = π∗ωFS and ∂θ = 0, which imply

(
√
−1/2)∂∂̄ω0 = −

1
4π
∗ω2

FS. (8.2)

Thus
(
√
−1/2)∂∂̄ω0 ∧ ω0 = (

√
−1/2)3π∗ω2

FS ∧ θ ∧ θ̄ = −ω
3
0/3! (8.3)

and therefore

√
−1

∫
S5×S1

∂∂̄(evω0) ∧ ω0 =
√
−1

∫
S5×S1

evω0 ∧ ∂∂̄ω0 < 0.

Hence, γ1(ω0) < 0, by Corollary 4; so −1 ∈ 41(S
5
× S1). Then by Corollary 10,

0 ∈ 41(S
5
× S1). That is, we have

Proposition 21. There exists a 1-Gauduchon metric on S5
× S1.

Using the above natural metric ω0 on S5
× S1, we can also prove

Proposition 22. There does not exist any pluriclosed metric on S5
× S1.
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Proof. If there existed a pluriclosed metric ω on S5
× S1, then

0 =
∫
S5×S1

√
−1
2

∂∂̄ω ∧ ω0 = −
1
4

∫
S5×S1

ω ∧ π∗ω2
FS < 0 (8.4)

since ω∧π∗ω2
FS is a strictly positive definite (3, 3)-form on S5

× S1. That is a contradic-
tion. ut

We also know that there does not exist any balanced metric on S5
× S1. The proof is

standard: There is an obstruction to the existence of a balanced metric on a compact
complex manifold. Namely, on a compact complex manifold with a balanced metric no
compact complex submanifold of codimension 1 can be homologous to 0 [19]. Now for
π : S5

× S1
→ P2, since π is a holomorphic, π−1(P1) for any curve P1 in P2 is a

complex hypersurface in S5
× S1. Certainly π−1(P1) is homologous to zero in S5

× S1

since H 4(S5
× S1,R) = 0. Therefore there exists no balanced metric on S5

× S1.
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