DOI 10.4171/JEMS/370

J. Eur. Math. Soc. 15, [659](#page-0-0)[–680](#page-21-0) c European Mathematical Society 2013

Jixiang Fu · Zhizhang Wang · Damin Wu

Semilinear equations, the γ_k function, and generalized Gauduchon metrics

Received June 11, 2011 and in revised form September 5, 2011

Abstract. We generalize the Gauduchon metrics on a compact complex manifold and define the γ_k functions on the space of its hermitian metrics.

1. Introduction

Let X be a compact *n*-dimensional complex manifold. Let g be a hermitian metric on X and ω its hermitian form. It is well known that if $d\omega = 0$, then g or ω is called a Kähler metric and X is called a *Kähler manifold*. When X is a non-Kähler manifold, one can consider the other conditions on ω such as

$$
d\omega^k = 0 \quad \text{for some } 2 \le k \le n - 1. \tag{1.1}
$$

If $d(\omega^{n-1}) = 0$, then g or ω is called a *balanced metric* and so X is called a *balanced manifold* [\[19\]](#page-21-1). However, when $2 \le k \le n - 2$, $d\omega^k = 0$ automatically yields $d\omega = 0$ [\[15\]](#page-21-2). Instead of [\(1.1\)](#page-0-1), one can consider the k-Kähler condition [\[1\]](#page-20-0). A complex manifold is called k-Kähler if it admits a closed complex transverse (k, k) –form. By this definition, a complex manifold is 1-Kähler if and only if it is Kähler; it is $(n - 1)$ –Kähler if and only if it is balanced.

One can also generalize the Kähler condition in other directions, for instance,

$$
\partial \bar{\partial} \omega^k = 0 \quad \text{for some } 2 \le k \le n - 1. \tag{1.2}
$$

When $k = n - 1$, the metric ω is called a *Gauduchon* metric. Gauduchon [\[11\]](#page-20-1) proved an interesting result that, for any hermitian metric ω on a compact complex *n*-dimensional manifold X , there exists a unique (up to a constant) smooth function v such that

$$
\partial \bar{\partial} (e^v \omega^{n-1}) = 0 \quad \text{on } X. \tag{1.3}
$$

J.-X. Fu, Z. Wang: Institute of Mathematics, Fudan University, Shanghai 200433, China; e-mail: majxfu@fudan.edu.cn, youxiang163wang@163.com

D. Wu: Department of Mathematics, The Ohio State University, 1179 University Drive, Newark, OH 43055, U.S.A.; e-mail: dwu@math.ohio-state.edu;

current address: Department of Mathematics, University of Connecticut,

¹⁹⁶ Auditorium Road, Storrs, CT 06269-3009, U.S.A.; e-mail: damin.wu@uconn.edu

Thus, the Gauduchon metric always exists on a compact complex manifold. It is important in complex geometry since one can use such a metric to define the degree, and then make sense of the stability of holomorphic vector bundles over a non-Kähler complex manifold (see [\[18\]](#page-21-3)).

When $k = n-2$, the metric ω satisfying [\(1.2\)](#page-0-2) is called an *astheno-Kähler* metric. Jost and Yau [\[17\]](#page-21-4) used this condition to study hermitian harmonic maps, and extended Siu's rigidity theorem to non-Kähler complex manifolds.

When $k = 1$, the metric ω in [\(1.2\)](#page-0-2) is called *pluriclosed*, or strong KT (Kähler with torsion) (see $[13, 7]$ $[13, 7]$ $[13, 7]$ and the references therein). Such a condition appeared in $[6, 2]$ $[6, 2]$ $[6, 2]$ as a technical condition. Recently, Streets and Tian [\[21\]](#page-21-6) introduced a hermitian Ricci flow under which the pluriclosed metric is preserved.

It is important to find specific hermitian metrics on non-Kähler complex manifolds. J. Li, S.-T. Yau and Fu [\[8\]](#page-20-5) have constructed balanced metrics on complex structures of manifolds $#_{k\geq 2}(S^3 \times S^3)$ which are obtained from the conifold transition of Calabi–Yau threefolds. Combining this result with Lemma 2 in [\[4\]](#page-20-6) implies that there exists no pluriclosed metric on such manifolds (see $[8, p. 2]$ $[8, p. 2]$ or compare Proposition [22\)](#page-19-0). We note here that the specific hermitian geometry of threefolds $#_k(S^3 \times S^3)$ was first considered by Bozhkov $[3, 4]$ $[3, 4]$ $[3, 4]$. In this paper, we generalize (1.2) to weaker conditions:

$$
\partial \bar{\partial} \omega^k \wedge \omega^{n-k-1} = 0 \quad \text{for some } 2 \le k \le n-1. \tag{1.4}
$$

Definition 1. Let ω be a hermitian metric on an *n*-dimensional complex manifold X, and k be an integer such that $1 \leq k \leq n-1$. If ω satisfies [\(1.4\)](#page-1-0), we call it a k-Gauduchon *metric*.

Note that an (n−1)-Gauduchon metric is the classical Gauduchon metric. The natural question is whether there exists any k-Gauduchon metric, $1 \le k \le n-2$, on a complex manifold. To answer this question, one way is to look for such a metric in the conformal class of a given hermitian metric ω on X:

$$
\partial \bar{\partial} (e^v \omega^k) \wedge \omega^{n-k-1} = 0. \tag{1.5}
$$

However, equation [\(1.5\)](#page-1-1) in general need not admit a solution (see below for reasons). In this paper, we solve the equation

$$
\partial \bar{\partial} (e^v \omega^k) \wedge \omega^{n-k-1} = \gamma_k e^v \omega^n \tag{1.6}
$$

for some constant γ_k satisfying the compatibility condition. The constant γ_k , if nonzero, can be viewed as an obstruction to the existence of a k -Gauduchon metric in the conformal class of ω , for $1 \leq k < n - 1$.

Equation [\(1.6\)](#page-1-2) can be reformulated, in a slightly more general form, as follows: Let (X, ω) be an *n*-dimensional compact hermitian manifold, and B be a smooth real 1-form on X . For any smooth function f on X satisfying

$$
\int_X f \omega^n = 0,\tag{1.7}
$$

we consider the semilinear equation

$$
\Delta v + |\nabla v|^2 + \langle B, dv \rangle = f \quad \text{on } X. \tag{1.8}
$$

Here Δ and ∇ are, respectively, the Laplacian and covariant differentiation associated with ω . Clearly, [\(1.8\)](#page-2-0) need not have a solution, due to the compatibility condition [\(1.7\)](#page-1-3). For instance, let ω be balanced and $B = 0$; then in order that [\(1.8\)](#page-2-0) has a solution the function f has to be zero. Nonetheless, we shall show that there is a smooth function v so that equation (1.8) holds up to a unique constant c. More generally, we have the following result:

Theorem 2. *Let* (X, ω) *be a compact hermitian manifold,* B *be a smooth real* 1*-form on X, and* $\psi \in C^{\infty}(\mathbb{R})$ *satisfy*

$$
\liminf_{t \to +\infty} \psi(t)/t^{\mu} \ge \nu > 0, \quad \text{where } \mu > 1/2 \text{ and } \nu \text{ are constants.} \tag{1.9}
$$

Then, for each $f \in C^{\infty}(X)$ *satisfying* [\(1.7\)](#page-1-3)*, there exists a unique constant c, and a smooth function* v *on* X*, unique up to a constant, such that*

$$
\Delta v + \psi(|\nabla v|^2) + \langle B, dv \rangle = f + c \quad \text{on } X. \tag{1.10}
$$

Remark 3. The compatibility condition of (1.10) implies that

$$
c = \frac{\int_X (\Delta v + \psi(|\nabla v|^2) + \langle B, dv \rangle)\omega^n}{\int_X \omega^n},
$$

which in general is nonzero.

Letting $\psi(t) = t$ on R, we obtain an application of Theorem [2:](#page-2-2)

Corollary 4. *Let* (X, ω) *be an* n*-dimensional compact hermitian manifold. For any integer* $1 \leq k \leq n-1$ *, there exists a unique constant* γ_k *and a function* $v \in C^{\infty}(X)$ *satisfying* √

$$
(\sqrt{-1}/2)\partial\bar{\partial}(e^v\omega^k) \wedge \omega^{n-k-1} = \gamma_k e^v \omega^n. \tag{1.11}
$$

The solution v *of* (1.11) *is unique up to a constant. In particular, when* $k = n - 1$ *we have* $\gamma_{n-1} = 0$ *. If* ω *is Kähler, then* $\gamma_k = 0$ *and* ν *is a constant, for each* $1 \leq k \leq n-1$ *.*

Remark 5. When $k = n - 1$, this corollary recovers the classical result of Gauduchon [\[11\]](#page-20-1).

By Corollary [4,](#page-2-4) we can associate to each hermitian metric ω a unique constant $\gamma_k(\omega)$. Clearly, $\gamma_k = \gamma_k(\omega)$ is invariant under biholomorphisms. Furthermore, we will prove that γ_k depends smoothly on the hermitian metric ω (see Proposition [9\)](#page-9-0); and that $\gamma_k(\omega) = 0$ if and only if there exists a k-Gauduchon metric in the conformal class of ω (Proposition [8\)](#page-9-1).

We will prove in Proposition [11](#page-11-0) that the sign of $\gamma_k(\omega)$, denoted by $(\text{sgn } \gamma_k)(\omega)$, is invariant in the conformal class of ω . We denote by $\mathbb{E}_{k}(X)$ the range of sgn γ_k . By definition $\Xi_k(X)$ ⊂ {−1, 0, 1} for each k, and by Corollary [4](#page-2-4) we have $\Xi_{n-1}(X) = \{0\}.$ A natural question is *whether* $\Xi_k(X) = \{-1, 0, 1\}$ *for any* $1 \le k \le n - 2$ *on any compact complex n-dimensional manifold* X. Indeed, if $\Xi_k(X) \supset \{-1, 1\}$ then the answer is positive, by Proposition [9.](#page-9-0) Thus, there will be a k-Gauduchon metric on X. We can also ask whether $\Xi_k(X)$ is invariant under proper modifications. (Given two *n*-dimensional complex manifolds \tilde{X} and X, a proper holomorphic map $F : \tilde{X} \to X$ is called a *proper modification* if for some analytic set Y in X with codimension ≥ 2 , $F : \tilde{X} \setminus E \to X \setminus Y$ is a biholomorphism, where $E = F^{-1}(Y)$.) These questions will be systematically studied later. As a first step, we obtain the following result.

Theorem 6. *For* $n = 3$ *, we have* $1 \in \Xi_1(X)$ *. Namely, for any* 3*-dimensional hermitian manifold* X, there exists a hermitian metric ω such that $\gamma_1(\omega) > 0$. In particular, there is *no* 1*-Gauduchon metric in the conformal class of* ω*.*

Then, we combine the above results to prove that, as an example, $\Xi_1 = \{-1, 0, 1\}$ on the three-dimensional complex manifolds constructed by Calabi [\[5\]](#page-20-8). As a consequence, there exists a 1-Gauduchon metric on these manifolds. It is well-known that such manifolds are non-Kähler but admit balanced metrics. We do not know whether there exists any pluriclosed metric on them.

Another example we considered is $Y = S^5 \times S^1$, endowed with a complex structure so that the natural projection $\pi : S^5 \times S^1 \to \mathbb{P}^2$ is holomorphic. This would imply that there is no balanced metrics on $S^5 \times S^1$. Moreover, we can prove that $S^5 \times S^1$ does not admit any pluriclosed metric. On the other hand, by considering a natural hermitian metric on $S^5 \times S^1$, we are able to show that $\Xi_1(S^5 \times S^1) = \{-1, 0, 1\}$. Thus, $S^5 \times S^1$ admits a 1-Gauduchon metric.

We shall solve equation (1.10) by the continuity method. In Section [2,](#page-3-0) we set up the machinery and prove the openness. The closedness and *a priori* estimates are established in Section [3.](#page-5-0) In Section [4,](#page-7-0) we prove the uniqueness part of Theorem [2](#page-2-2) and also prove Corollary [4.](#page-2-4) In Section [5,](#page-9-2) we discuss the relation between γ_k and k-Gauduchon metrics. In Section [6,](#page-3-1) we prove Theorem 6, and explicitly construct a metric with positive γ_1 on the complex 3-torus. As another example, we show that the natural balanced metric on the Iwasawa manifold has γ_1 positive. In Section 7, we establish the existence of a 1-Gauduchon metric on Calabi's 3-dimensional non-Kähler manifold, by using Theorem [6](#page-3-1) and proving that the balanced metric on the manifold has γ_1 negative. In the last section, we prove the existence of a 1-Gauduchon metric on $S^5 \times S^1$. We also show the nonexistence of a balanced metric or pluriclosed metric on $S^5 \times S^1$.

2. Notation and preliminaries

Throughout this note, we use the following convention: We write

$$
\omega = \frac{\sqrt{-1}}{2} \sum_{i,j=1}^n g_{i\bar{j}} dz^i \wedge d\bar{z}^j.
$$

Let $(g^{i\bar{j}})$ be the transposed inverse of the matrix $(g_{i\bar{j}})$. For any two real 1-forms A and B on X , locally given by

$$
A = \sum_{i=1}^{n} (A_i dz_i + A_{\overline{i}} d\overline{z}_i) \quad \text{and} \quad B = \sum_{i=1}^{n} (B_i dz_i + B_{\overline{i}} d\overline{z}_i),
$$

we denote

$$
\langle A, B \rangle_{\omega} = \frac{1}{2} \sum_{i,j=1}^{n} g^{i \bar{j}} (A_{i} B_{\bar{j}} + A_{\bar{j}} B_{i}).
$$

We may omit the subscript ω in $\langle \cdot, \cdot \rangle_{\omega}$ when it is understood from the context. In particular, we have

$$
\langle dh, dh \rangle = \sum_{i,j=1}^n g^{i\bar{j}} \frac{\partial h}{\partial z_i} \frac{\partial h}{\partial \bar{z}_j} \equiv |\nabla h|^2 \quad \text{ for all } h \in C^1(X).
$$

The Laplacian Δ associated with ω is given by

$$
\Delta h = \frac{n\omega^{n-1} \wedge (\sqrt{-1}/2)\partial \bar{\partial}h}{\omega^n} = \sum_{i,j=1}^n g^{i\bar{j}} h_{i\bar{j}} \quad \text{ for all } h \in C^2(X).
$$

We use the continuity method to solve [\(1.10\)](#page-2-1). Fix an integer $l \ge n + 4$ and a real number $0 < \alpha < 1$. We denote by $C^{l, \alpha}(X)$ the usual Hölder space on X. Let

$$
S(u) = \Delta u + \psi(|\nabla u|^2) + \langle B, du \rangle - \frac{\int_X (\Delta u + \psi(|\nabla u|^2) + \langle B, du \rangle)\omega^n}{\int_X \omega^n}
$$

for each $u \in C^{l,\alpha}(X)$. Consider the family of equations

$$
S(v_t) = tf, \quad 0 \le t \le 1. \tag{2.1}
$$

Let *I* be the subset of [0, 1] consisting of t for which [\(2.1\)](#page-4-0) has a solution $v_t \in C^{l,\alpha}(X)$ satisfying

$$
\int_{X} v_t \,\omega^n = 0. \tag{2.2}
$$

Obviously, I is nonempty since $0 \in I$. The openness of I will follow from our previous results [\[9,](#page-20-9) Section 3]. Indeed, let

$$
\mathcal{E}_{\omega}^{l,\alpha} = \left\{ h \in C^{l,\alpha}(X) : \int_{X} h\omega^n = 0 \right\}.
$$
 (2.3)

Notice that $S: \mathcal{E}_{\omega}^{l+2,\alpha} \to \mathcal{E}_{\omega}^{l,\alpha}$. The linearization of S is

$$
L_{\omega}(h) = \frac{d}{dt} S(v + th) \Big|_{t=0} = \Delta h + \langle \tilde{B}, dh \rangle - \frac{\int_{X} (\Delta h + \langle \tilde{B}, dh \rangle) \omega^{n}}{\int_{X} \omega^{n}},
$$

where

$$
\tilde{B} = B + 2\psi'(|\nabla v|^2)dv.
$$

It follows from the proof of Lemma 13 in [\[9\]](#page-20-9) that L_{ω} is a linear isomorphism from $\mathcal{E}^{l+2,\alpha}(X)$ to $\mathcal{E}^{l,\alpha}(X)$. Thus, by the implicit function theorem we obtain the openness of I .

For the closedness of I we need the a priori estimate which will be established in Section [3.](#page-5-0)

3. A priori estimates

Let (X, ω) be an *n*-dimensional hermitian manifold, B a smooth 1-form on X, f a smooth function on X, c a constant, and let $\psi \in C^{\infty}(\mathbb{R})$ satisfy [\(1.9\)](#page-2-5). Consider the semilinear equation

$$
S(v) \equiv \Delta v + \psi(|\nabla v|^2) + \langle B, dv \rangle - c = f \quad \text{on } X,\tag{3.1}
$$

where $v \in C^3(X)$ satisfies the normalization condition

$$
\int_X v\omega^n = 0.
$$
\n(3.2)

We shall first derive a uniform gradient estimate:

Lemma 7. Let $v \in C^3(X)$ be a solution of [\(3.1\)](#page-5-1). We have

$$
\sup_X |\nabla v| \leq C,
$$

where $C > 0$ *is a constant depending only on* B, f, ω , $\psi(0)$, μ *and* ν .

Throughout this section, we always denote by $C > 0$ a generic constant depending only on B, f, ω , $\psi(0)$, μ , and ν , unless otherwise indicated.

Proof of Lemma [7.](#page-5-2) Since X is compact, we can assume that $|\nabla v|^2$ attains its maximum at some point $x_0 \in X$. Consider the linear elliptic operator

$$
L(h) = \Delta h + 2\psi'(|\nabla v|^2)\langle dh, dv \rangle_{\omega} = \Delta h + \psi'(|\nabla v|^2)g^{i\bar{j}}(h_i v_{\bar{j}} + h_{\bar{j}} v_i).
$$

Here the summation convention is used, and we denote

$$
h_i = \frac{\partial h}{\partial z^i}, \quad g_{,k}^{i\bar{j}} = \frac{\partial g^{i\bar{j}}}{\partial z^k}, \quad \dots
$$

We compute that

$$
L(|\nabla v|^2) = \Delta(|\nabla v|^2) + \psi' g^{i\bar{j}} [(|\nabla v|^2)_i v_{\bar{j}} + v_i (|\nabla v|^2)_{\bar{j}}]
$$

\n
$$
= g^{i\bar{j}} g^{p\bar{q}} (v_{pi} v_{\bar{q}\bar{j}} + v_{p\bar{j}} v_{i\bar{q}}) + g^{p\bar{q}} [(\Delta v)_p v_{\bar{q}} + v_p (\Delta v)_{\bar{q}}] + g^{i\bar{j}} g^{p\bar{q}}_{,i\bar{j}} v_p v_{\bar{q}}
$$

\n
$$
+ g^{i\bar{j}} g^{p\bar{q}}_{,i} (v_{p\bar{j}} v_{\bar{q}} + v_p v_{\bar{q}\bar{j}}) + g^{i\bar{j}} g^{p\bar{q}}_{,\bar{j}} (v_{pi} v_{\bar{q}} + v_p v_{i\bar{q}})
$$

\n
$$
- g^{p\bar{q}} (g_{,p}^{i\bar{j}} v_{i\bar{j}} v_{\bar{q}} + g_{,\bar{q}}^{i\bar{j}} v_p v_{i\bar{j}}) + \psi' g^{i\bar{j}} [(|\nabla v|^2)_i v_{\bar{j}} + v_i (|\nabla v|^2)_{\bar{j}}].
$$

Applying equation [\(3.1\)](#page-5-1) to the second term on the right hand side and then using the Schwarz inequality, we find

$$
L(|\nabla v|^2) \geq \frac{1}{2} g^{i\bar{j}} g^{p\bar{q}} (v_{pi} v_{\bar{q} \bar{j}} + v_{p\bar{j}} v_{i\bar{q}}) - C |\nabla v|^2 - C.
$$

To see things more clearly, let us take a normal coordinate system around x_0 such that

$$
g_{i\bar{j}}(x_0) = \delta_{ij}
$$
 for all $i, j = 1, ..., n$.

It follows that

$$
L(|\nabla v|^2) \ge \frac{1}{2} \sum_{i,p=1}^n |v_{p\bar{i}}|^2 - C|\nabla v|^2 - C \ge \frac{1}{2} \sum_{i=1}^n |v_{i\bar{i}}|^2 - C|\nabla v|^2 - C
$$

\n
$$
\ge \frac{1}{2n} |\Delta v|^2 - C|\nabla v|^2 - C \quad \text{(by Cauchy's inequality)}
$$

\n
$$
\ge \frac{1}{2n} |\psi(|\nabla v|^2) + \langle B, dv \rangle - f - c|^2 - C|\nabla v|^2 - C \quad \text{(by (3.1))}
$$

\n
$$
\ge \frac{1}{4n} |\psi(|\nabla v|^2)|^2 - C|\nabla v|^2 - C(1 + |c|^2).
$$

We can assume, without loss of generality, that $|\nabla v|^2(x_0)$ is sufficiently large so that

$$
\psi(|\nabla v|^2) \ge \frac{\nu}{2} |\nabla v|^{2\mu} \quad \text{at } x_0,
$$

where $\mu > 1/2$ and $\nu > 0$ are constants, by [\(1.9\)](#page-2-5). Now notice that

$$
L(|\nabla v|^2) \le 0 \quad \text{at } x_0,
$$

because

$$
\Delta(|\nabla v|^2)(x_0) \leq, \quad \text{and} \quad \nabla(|\nabla v|^2)(x_0) = 0.
$$

Hence,

$$
\sup_X |\nabla v|^2 = |\nabla v|^2(x_0) \le C(1 + |c|^2).
$$

It remains to bound the constant c in terms of f and $\psi(0)$: Apply the maximum principle to v in (3.1) to obtain

$$
\psi(0) - \sup_X f \le c \le -\inf_X f + \psi(0). \tag{3.3}
$$

This finishes the proof. \Box

Next, we establish the C^0 estimate: Noticing [\(3.2\)](#page-5-3), there must exist some $y_0 \in X$ such that $v(y_0) = 0$. Then, for any $y \in X$, we take a geodesic curve γ connecting y_0 to y. By Lemma [7,](#page-5-2)

$$
|v(y)| = |v(y) - v(y_0)| = \left| \int_0^1 \frac{d(v \circ \gamma)}{dt} dt \right| \le \text{diam}_{\omega}(X) \int_0^1 (|\nabla v| \circ \gamma) dt < C,
$$

where diam_{ω}(*X*) denotes the diameter of *X* with respect to ω . This settles the C⁰ estimate of v. We rewrite equation (3.1) as

$$
\Delta v = -\psi(|\nabla v|^2) - \langle B, dv \rangle + f + c.
$$

By the $W^{2,p}$ theory of elliptic equations, for any $p > 1$ we have

$$
||v||_{W^{2,p}} \leq C(||v||_{L^p} + ||f + c - \psi(|\nabla v|^2) - \langle B, dv \rangle||_{L^p}) \leq C_1,
$$

where in the last inequality we have used the C^0 and C^1 estimates of v, and [\(3.3\)](#page-6-0). Here and below, we denote by C_1 a generic constant depending on B, f, ω , μ , ν , p , and $\max\{|\psi(t)| : 0 \le t \le \max |\nabla v|^2 \le C\}.$

Fix a sufficiently large p such that $\alpha = 2n/p < 1$. It follows from the Sobolev embedding theorem that

$$
\|v\|_{C^{1,\alpha}}\leq C_1.
$$

This allows us to apply Schauder's theory to deduce that

$$
||v||_{C^{2,\alpha}} \leq C_1.
$$

Thus, by a bootstrap argument, we have

$$
||v||_{C^{l,\alpha}} \le C_1 \quad \text{ for any } l \ge 1. \tag{3.4}
$$

This implies that the set I defined in Section 2 is closed. As a consequence, we have shown the existence part in Theorem [2.](#page-2-2)

4. Uniqueness and Corollary

Let us prove the uniqueness in Theorem [2.](#page-2-2) Suppose that there exist c, v and \tilde{c} , \tilde{v} such that

$$
\Delta v + \psi(|\nabla v|^2) + \langle B, dv \rangle = f + c,
$$

$$
\Delta \tilde{v} + \psi(|\nabla \tilde{v}|^2) + \langle B, d\tilde{v} \rangle = f + \tilde{c}.
$$

Then

$$
c = \frac{\int_X (\Delta v + \psi(|\nabla v|^2) + \langle B, dv \rangle)\omega^n}{\int_X \omega^n},
$$
\n(4.1)

$$
\tilde{c} = \frac{\int_X (\Delta \tilde{v} + \psi(|\nabla \tilde{v}|^2) + \langle B, d\tilde{v} \rangle) \omega^n}{\int_X \omega^n}.
$$
\n(4.2)

Recall that we denote

$$
S(u) = \Delta u + \psi(|\nabla u|^2) + \langle B, du \rangle - \frac{\int_X (\Delta u + \psi(|\nabla u|^2) + \langle B, du \rangle)\omega^n}{\int_X \omega^n},
$$

for all $u \in C^2(X)$. It follows that

$$
0 = S(v) - S(\tilde{v}) = \int_0^1 \left[\frac{d}{dt} S(tv + (1 - t)\tilde{v}) \right] dt = \Delta w + \langle \tilde{B}, dw \rangle - c_w. \tag{4.3}
$$

Here $w = v - \tilde{v}$,

$$
\tilde{B} = B + 2 \int_0^1 \psi'(|t\nabla v + (1-t)\nabla \tilde{v}|^2) [tdv + (1-t)d\tilde{v}] dt,
$$

and c_w is a constant given by

$$
c_w = \frac{\int_X (\Delta w + \langle \tilde{B}, dw \rangle) \omega^n}{\int_X \omega^n}.
$$

Applying the maximum principle to [\(4.3\)](#page-7-1) yields

 $c_w = 0.$

Then, by the strong maximum principle we conclude that w is equal to a constant. This shows that the solution of (1.10) is unique up to a constant. By (4.1) and (4.2) we have $c = \tilde{c}$. This completes the proof of Theorem [2.](#page-2-2)

Let us now prove Corollary [4.](#page-2-4) We define a smooth real 1-form on X by

$$
B_1 = \frac{\sqrt{-1}}{2} \frac{nk}{n-1} \frac{1}{n!} * (\partial(\omega^{n-1}) - \bar{\partial}(\omega^{n-1}))
$$
 (4.4)

and a smooth function

$$
\varphi = \frac{n(\sqrt{-1}/2)\partial\bar{\partial}(\omega^k) \wedge \omega^{n-k-1}}{\omega^n}.
$$
\n(4.5)

Then (1.11) is equivalent to

$$
\Delta v + |\nabla v|^2 + \langle B_1, dv \rangle + \varphi = n\gamma_k.
$$

Let

$$
\psi(t) = t
$$
 and $f = \frac{\int_X \varphi \omega^n}{\int_X \omega^n} - \varphi;$

then Corollary [4](#page-2-4) follows readily from Theorem [2.](#page-2-2)

For each $1 \leq k \leq n-1$, the constant γ_k is given by

$$
\gamma_k = \frac{\int_X e^{-\nu} (\sqrt{-1}/2) \partial \bar{\partial} (e^{\nu} \omega^k) \wedge \omega^{n-k-1}}{\int_X \omega^n}
$$
(4.6)

$$
= \frac{\int_X (\Delta v + |\nabla v|^2 + \langle B_1, dv \rangle + \varphi) \omega^n}{n \int_X \omega^n}.
$$
\n(4.7)

On the other hand, directly integrating (1.11) over X yields

$$
\gamma_k = \frac{\int_X (\sqrt{-1}/2) \partial \bar{\partial} (e^v \omega^k) \wedge \omega^{n-k-1}}{\int_X e^v \omega^n}.
$$
\n(4.8)

This together with [\(4.6\)](#page-8-0) imposes some constraint on the constant γ_k . For instance, when $k = n - 1$, by [\(4.8\)](#page-8-1) we know that

$$
\gamma_{n-1}=0.
$$

Thus, in this case Corollary [4](#page-2-4) recovers the classical result of Gauduchon [\[11\]](#page-20-1). When ω is Kähler, by (4.8) (4.8) again we have

$$
\gamma_k = 0 \quad \text{ for all } 1 \le k \le n - 1.
$$

Then, it follows from [\(4.7\)](#page-8-2) that

$$
\int_X |\nabla v|^2 \omega^n = 0.
$$

This tells us that the solution v of (1.11) has to be a constant.

5. Generalized Gauduchon metrics and γ_k

Let X be an *n*-dimensional complex manifold. We recall (Definition [1\)](#page-1-4) that a hermitian metric ω on X is called a k*-Gauduchon metric* if

$$
\partial \bar{\partial}(\omega^k) \wedge \omega^{n-k-1} = 0 \quad \text{on } X.
$$

Then the $(n - 1)$ -Gauduchon metric is the Gauduchon metric in the usual sense. By Corollary [4,](#page-2-4) to each hermitian metric ω on X one can associate a unique constant $\gamma_k(\omega)$, which is invariant under biholomorphisms. The induced function $\gamma_k = \gamma_k(\omega)$ can be used to characterize the k-Gauduchon metric.

Proposition 8. *The hermitian manifold* X *admits a* k*-Gauduchon metric if and only if there exists a hermitian metric* ω *on* X *such that*

$$
\gamma_k(\omega) = 0. \tag{5.1}
$$

Proof. If there is some hermitian metric ω satisfying [\(5.1\)](#page-9-3), then Corollary [4](#page-2-4) implies that the conformal metric $e^{v/k}\omega$ is a k-Gauduchon metric on X. Conversely, if ω is a k-Gauduchon metric, then the uniqueness of Corollary [4](#page-2-4) implies that $\gamma_k(\omega) = 0$ and that v is a constant.

Let M be the set of all hermitian metrics on X. We shall prove that γ_k is a smooth function on \mathfrak{M} . Here \mathfrak{M} is viewed as an open subset in $C^{l+2,\alpha}(\Lambda^{1,1}_\mathbb{R}(X))$ for a nonnegative integer l and a real number $0 < \alpha < 1$. We denote by $C^{l,\alpha}(\Lambda^{m,m}_{\mathbb{R}}(X))$ the Hölder space of real (m, m) -forms on X, in which l and m are nonnegative integers, and $0 < \alpha < 1$ is a real number. In particular, $C^{l,\alpha}(\Lambda^{0,0}_\mathbb{R}(X)) = C^{l,\alpha}(X)$.

Proposition 9. *The function* $\gamma_k = \gamma_k(\omega)$ *is smooth on* \mathfrak{M} *, where* \mathfrak{M} *is viewed as an open subset in* $C^{l+2,\alpha}(\Lambda^{1,1}_{\mathbb{R}}(X)).$

Proof. It follows from Corollary [4](#page-2-4) that, for each $\omega \in \mathfrak{M}$, there exists a unique constant γ_k and a function v such that

$$
e^{-v}(\sqrt{-1}/2)\partial\bar{\partial}(e^v\omega^k)\wedge\omega^{n-k-1}-\gamma_k\omega^n=0.
$$
 (5.2)

Then

$$
\gamma_k = \frac{\int_X e^{-\nu} (\sqrt{-1}/2) \partial \bar{\partial} (e^{\nu} \omega^k) \wedge \omega^{n-k-1}}{\int_X \omega^n}
$$

depends smoothly on v and ω . Thus, to show the result, it suffices to show that the solution ν depends smoothly on ω . We shall use the implicit function theorem.

For each $\omega \in \mathfrak{M}$, the space $\mathcal{E}_{\omega}^{l, \alpha}$ is defined by [\(2.3\)](#page-4-1). Fix $\omega_0 \in \mathfrak{M}$, for which we abbreviate $\mathcal{E}_0^{l,\alpha} = \mathcal{E}_{\omega_0}^{l,\alpha}$. We have two obvious linear isomorphisms from $\mathcal{E}_\omega^{l,\alpha}$ to $\mathcal{E}_0^{l,\alpha}$ $\begin{matrix} \alpha & \alpha \\ 0 & \alpha \end{matrix}$ given respectively by

$$
h \mapsto h - \frac{\int_X h \omega_0^n}{\int_X \omega_0^n} \quad \text{for all } h \in \mathcal{E}_{\omega}^{l, \alpha}, \tag{5.3}
$$

$$
h \mapsto h \cdot \frac{\omega^n}{\omega_0^n} \qquad \text{for all } h \in \mathcal{E}_{\omega}^{l, \alpha}.
$$
 (5.4)

.

Define a map $F: \mathfrak{M} \times \mathcal{E}_0^{l+2,\alpha} \to \mathcal{E}_0^{l,\alpha}$ $\int_0^t \frac{\alpha}{b}$ by

$$
F(\omega, v) = \frac{ne^{-v}(\sqrt{-1}/2)\partial\bar{\partial}(e^v\omega^k) \wedge \omega^{n-k-1}}{\omega_0^n}
$$

$$
-\frac{n\int_X e^{-v}(\sqrt{-1}/2)\partial\bar{\partial}(e^v\omega^k) \wedge \omega^{n-k-1}}{\int_X \omega^n} \cdot \frac{\omega^n}{\omega_0^n}
$$

Obviously, F is a smooth map. Note that any $(\omega, v) \in \mathfrak{M} \times \mathcal{E}_0^{l+2, \alpha}$ $\int_0^{\pi/2}$ satisfies [\(5.2\)](#page-9-4) if and only if

$$
F(\omega, v) = 0.
$$

The Fréchet derivative of F with respect to the variable v is

$$
D_v F(\omega, v)(h) = L_{\omega}(h) \frac{\omega^n}{\omega_0^n}.
$$

Here

$$
L_{\omega}(h) = \Delta h + \langle B_1 + 2dv, dh \rangle_{\omega} - \frac{\int_X (\Delta h + \langle B_1 + 2dv, dh \rangle_{\omega}) \omega^n}{\int_X \omega^n},
$$

in which the Laplacian Δ is with respect to ω , and B_1 is the smooth real 1-form given by [\(4.4\)](#page-8-3). By the proof of Lemma 13 in [\[9\]](#page-20-9) and the isomorphism [\(5.3\)](#page-10-0), the operator L_{ω} : $\mathcal{E}_0^{l+2,\alpha} \to \mathcal{E}_{\omega}^{l,\alpha}$ is a linear isomorphism. Combining this isomorphism with isomorphism [\(5.4\)](#page-10-1) implies that $D_v F(\omega, v) : \mathcal{E}_0^{l+2, \alpha} \to \mathcal{E}_0^{l, \alpha}$ $\int_0^{t,\alpha}$ is a linear isomorphism. The result then follows by the implicit function theorem. \Box

A direct corollary of Proposition [9](#page-9-0) is

Corollary 10. *For* $1 \leq k \leq n-2$, *if there exist two hermitian metrics* ω_1 , ω_2 *on* X *such that*

$$
\gamma_k(\omega_1) > 0
$$
 and $\gamma_k(\omega_2) < 0$,

then there exists a metric ω *on* X *satisfying* $\gamma_k(\omega) = 0$ *, i.e.,* ω *is a k-Gauduchon metric.*

Proof. Let

$$
\omega_t = t\omega_1 + (1-t)\omega_2 \quad \text{ for all } 0 \le t \le 1.
$$

Then ω_t is a hermitian metric for each t. The result follows immediately by applying the mean value theorem to the function $\phi(t) = \gamma_k(\omega_t)$.

Proposition 11. *For any* $\rho \in C^2(M)$ *, we have*

e

$$
-\max_{X} \rho_{\gamma_k}(\omega) \le \gamma_k(e^{\rho}\omega) \le e^{-\min_{X} \rho_{\gamma_k}(\omega)}.
$$
\n(5.5)

In particular, the sign of the function γ_k *is a conformal invariant for hermitian metrics. Proof.* Let $\tilde{\omega} = e^{\rho} \omega$. Then, there exists a function $\tilde{\nu}$ and a number $\tilde{\gamma}_k = \gamma_k(\tilde{\omega})$ satisfying

$$
(\sqrt{-1}/2)\partial\bar{\partial}(e^{\tilde{v}}\tilde{\omega}^k) \wedge \tilde{\omega}^{n-k-1} = \tilde{\gamma}_k e^{\tilde{v}}\tilde{\omega}^n,
$$

that is,

$$
(\sqrt{-1}/2)\partial\bar{\partial}(e^{\tilde{v}+k\rho}\omega^k) \wedge \omega^{n-k-1} = \tilde{\gamma}_k e^{\tilde{v}+k\rho} e^{\rho} \omega^n.
$$
 (5.6)

We can rewrite (5.6) as

$$
\Delta(\tilde{v} + k\rho) + |\nabla(\tilde{v} + k\rho)|^2 + \langle B_1, d(\tilde{v} + k\rho) \rangle + \varphi = n e^{\rho} \tilde{\gamma}_k, \tag{5.7}
$$

where the operators Δ and ∇ are with respect to ω , and B_1 and φ are given by [\(4.4\)](#page-8-3) and [\(4.5\)](#page-8-4), respectively. Subtracting from [\(5.7\)](#page-11-2) the equation

$$
\Delta v + |\nabla v|^2 + \langle B_1, dv \rangle + \varphi = n\gamma_k(\omega)
$$

and then applying the maximum principle to
$$
\tilde{v} + k\rho - v
$$
 yields (5.5).

Proposition 12. *For a hermitian metric* ω *, we have* $\gamma_k(\omega) > 0$ (= 0*, or* < 0*) if and only if there exists a metric* $\tilde{\omega}$ *in the conformal class of* ω *such that*

$$
(\sqrt{-1}/2)\partial\bar{\partial}\tilde{\omega}^k \wedge \tilde{\omega}^{n-k-1} > 0 \ (=0, \ or \ <0) \quad on \ X. \tag{5.8}
$$

Proof. Suppose that $\gamma_k(\omega) > 0$ (= 0, or < 0). Let $\tilde{\omega} = e^{\nu/k} \omega$, where v is a smooth function associated with ω so that [\(1.11\)](#page-2-3) holds. Then

$$
(\sqrt{-1}/2)\partial\bar{\partial}\tilde{\omega}^k \wedge \tilde{\omega}^{n-k-1} = \gamma_k(\omega)\omega^n e^{(n-k)v} > 0 \, (= 0, \text{ or } < 0).
$$

Conversely, if there is a metric $\tilde{\omega}$ in the conformal class of ω such that [\(5.8\)](#page-11-4) holds, then we claim that $\gamma_k(\tilde{\omega}) > 0$ (= 0, or < 0). Indeed, by Corollary [4](#page-2-4) there exists a smooth function \tilde{v} such that

$$
(\sqrt{-1}/2)\partial\bar{\partial}(e^{\tilde{v}}\tilde{\omega}^k) \wedge \tilde{\omega}^{n-k-1} = \gamma_k(\tilde{\omega})e^{\tilde{v}}\tilde{\omega}.
$$

This is equivalent to the equation

$$
\Delta \tilde{v} + |\nabla \tilde{v}|^2 + \langle \tilde{B}_1, d\tilde{v} \rangle + \tilde{\varphi} = n\gamma_k(\tilde{\omega}), \tag{5.9}
$$

where the operators Δ and ∇ are with respect to $\tilde{\omega}$, and \tilde{B}_1 and $\tilde{\varphi}$ are given by [\(4.4\)](#page-8-3) and [\(4.5\)](#page-8-4), respectively, with $\tilde{\omega}$ replacing ω . By [\(5.8\)](#page-11-4) we have $\tilde{\varphi} > 0$ (= 0, or < 0). The claim then follows immediately by applying the maximum principle to (5.9) . By Proposition [11,](#page-11-0) we finish the proof. \Box

Moreover, for the case of $\gamma_k > 0$, we have the following integral criterion, which is often easier to verify.

Lemma 13. Suppose that *n, the complex dimension of* X*, is odd. Let* $k = (n - 1)/2$ *. Then there is some metric* ω *satisfying* $\gamma_k(\omega) > 0$ *if and only if there is some semi-metric* ω˚ (*i.e., a semi-positive real* (1, 1)*-form on* X) *satisfying*

$$
\frac{\sqrt{-1}}{2} \int_X \partial \bar{\partial} \dot{\omega}^k \wedge \dot{\omega}^{n-k-1} > 0.
$$

Proof. By Proposition [12,](#page-11-6) the necessity part is obvious. For the sufficiency part, let $\hat{\omega}$ be any hermitian metric. Let $\omega_t = \mathring{\omega} + t\hat{\omega}$ for $t \in (0, 1)$. Then we have

$$
\int_{X} e^{-v} (\sqrt{-1}/2) \partial \bar{\partial} (e^{v} \omega_{t}^{k}) \wedge \omega_{t}^{n-k-1}
$$
\n
$$
= \frac{\sqrt{-1}}{2} \int_{X} (\partial \bar{\partial} \omega_{t}^{k} \wedge \omega_{t}^{n-k-1} + \partial v \wedge \bar{\partial} v \wedge \omega_{t}^{n-1})
$$
\n
$$
+ \frac{\sqrt{-1}}{2} \int_{X} \left[\partial \bar{\partial} v \wedge \omega_{t}^{n-1} + \frac{k}{n-1} (\partial \omega_{t}^{n-1} \wedge \bar{\partial} v + \partial v \wedge \bar{\partial} \omega_{t}^{n-1}) \right]
$$
\n
$$
= \frac{\sqrt{-1}}{2} \int_{X} (\partial \bar{\partial} \omega_{t}^{k} \wedge \omega_{t}^{n-k-1} + \partial v \wedge \bar{\partial} v \wedge \omega_{t}^{n-1})
$$
\n
$$
+ \frac{\sqrt{-1}}{2} \left(1 - \frac{2k}{n-1} \right) \int_{X} v \partial \bar{\partial} \omega_{t}^{n-1}.
$$
\n(5.10)

Since $k = (n - 1)/2$, the second integral on the right of [\(5.10\)](#page-12-0) vanishes. It follows that

$$
\int_{X} e^{-v} (\sqrt{-1}/2) \partial \bar{\partial} (e^{v} \omega_{t}^{k}) \wedge \omega_{t}^{n-k-1} \ge \frac{\sqrt{-1}}{2} \int_{X} \partial \bar{\partial} \omega_{t}^{k} \wedge \omega_{t}^{k}
$$
\n
$$
= \frac{\sqrt{-1}}{2} \int_{X} \partial \bar{\partial} \dot{\omega}^{k} \wedge \dot{\omega}^{k} + t \frac{\sqrt{-1}}{2} \int_{X} (\partial \bar{\partial} \dot{\omega}^{k} \wedge \Psi_{t} + \partial \bar{\partial} \Psi_{t} \wedge \dot{\omega}^{k})
$$
\n
$$
+ t^{2} \frac{\sqrt{-1}}{2} \int_{X} \partial \bar{\partial} \Psi_{t} \wedge \Psi_{t} > 0 \quad \text{for sufficiently small } t,
$$

where $\Psi_t = \hat{\omega} \wedge (\hat{\omega}^{k-1} + \hat{\omega}^{k-2} \wedge \omega_t + \cdots + \hat{\omega} \wedge \omega_t^{k-2} + \omega_t^{k-1})$. This implies that $\gamma_k(\omega_t) > 0$ for the sufficiently small t .

A similar argument works for the (classical) Gauduchon metrics, for any dimension n , and for all $1 \leq k \leq n-2$.

Lemma 14. Let *X* be an *n*-dimensional hermitian manifold, k an integer such that $1 \leq$ k ≤ n−2*. Then a hermitian metric* ω *on* X *satisfies* γk(ω) > 0 *if the Gauduchon metric* ω˜ *in the conformal class of* ω *satisfies*

$$
\frac{\sqrt{-1}}{2} \int_X \partial \bar{\partial} \tilde{\omega}^k \wedge \tilde{\omega}^{n-k-1} > 0. \tag{5.11}
$$

Proof. By Proposition [11,](#page-11-0) we can assume that $\omega = \tilde{\omega}$, without loss of generality. By [\(5.10\)](#page-12-0) with ω replacing ω_t , and applying $\partial \bar{\partial} \omega^{n-1} = 0$, we obtain

$$
\int_X e^{-\nu} (\sqrt{-1}/2) \partial \bar{\partial} (e^{\nu} \omega^k) \wedge \omega^{n-1-k} \ge \frac{\sqrt{-1}}{2} \int_X \partial \bar{\partial} \omega^k \wedge \omega^{n-1-k} > 0.
$$

Corollary 15. *Let* (X, ω) *be an n-dimensional balanced manifold. Then, for each* $1 \leq$ $k \leq n-2$ *, we have* $\gamma_k(\omega) > 0$ *if*

$$
\frac{\sqrt{-1}}{2}\int_X \partial \bar{\partial} \omega^k \wedge \omega^{n-1-k} > 0.
$$

6. Constructions on hermitian three-manifolds

We shall apply previous results to construct a hermitian metric with $\gamma_1 > 0$ on a complex three-dimensional manifold. Theorem [6](#page-3-1) will follow from Proposition [12](#page-11-6) together with the following theorem.

Theorem 16. *There always exists a hermitian metric* ω *on a complex three-dimensional manifold* X *such that* √

$$
(\sqrt{-1}/2)\partial\bar{\partial}\omega\wedge\omega>0.
$$

Proof. By Lemma [13](#page-11-7) and Proposition [12,](#page-11-6) it suffices to construct a semi-metric ϕ such that √

$$
\frac{\sqrt{-1}}{2}\int_X \partial\bar{\partial}\mathring{\omega}\wedge\mathring{\omega} > 0.
$$

Fix a point $q \in X$ and a coordinate patch $U \ni q$. Let (z_1, z_2, z_3) be coordinates on U centered at q. Here $z_j = x_j + \sqrt{-1} y_j$ for $1 \le j \le 3$. We can assume $N = B \times B \times R \subset U$, where B is the unit ball in \mathbb{C} , and

$$
R = \{ z_3 \in \mathbb{C} \mid |x_3| \le 1, |y_3| \le 1 \}.
$$

Take a nonnegative cut-off function $\eta \in C_0^{\infty}(B)$ and two nonnegative functions $f, g \in$ $C_0^{\infty}([-1, 1])$ to be determined later. On N, define

$$
\phi = \eta(z_1)\eta(z_2)f(x_3)f(y_3), \quad \psi = \eta(z_1)\eta(z_2)g(x_3)g(y_3),
$$

and then define

$$
\mathring{\omega} = \frac{\sqrt{-1}}{2} [\phi(z) dz_1 \wedge d\bar{z}_1 + \psi(z) dz_2 \wedge d\bar{z}_2]. \tag{6.1}
$$

Obviously, $\dot{\omega}$ is semi-positive and with compact support in N. So it can be viewed as a semi-metric on X. Clearly,

$$
\frac{\sqrt{-1}}{2}\partial\bar{\partial}\dot{\omega}\wedge\dot{\omega} = \left(\phi \frac{\partial^2 \psi}{\partial z_3 \partial \bar{z}_3} + \psi \frac{\partial^2 \phi}{\partial z_3 \partial \bar{z}_3}\right) dV,\tag{6.2}
$$

where

$$
dV = \left(\frac{\sqrt{-1}}{2}\right)^3 dz_1 \wedge d\bar{z}_1 \wedge dz_2 \wedge d\bar{z}_2 \wedge dz_3 \wedge d\bar{z}_3. \tag{6.3}
$$

Since

$$
\frac{\partial}{\partial z_3} = \frac{1}{2} \left(\frac{\partial}{\partial x_3} - \sqrt{-1} \frac{\partial}{\partial y_3} \right), \quad \frac{\partial}{\partial \bar{z}_3} = \frac{1}{2} \left(\frac{\partial}{\partial x_3} + \sqrt{-1} \frac{\partial}{\partial y_3} \right),
$$

we have

$$
\phi \frac{\partial^2 \psi}{\partial z_3 \partial \bar{z}_3} + \psi \frac{\partial^2 \phi}{\partial z_3 \partial \bar{z}_3} = \frac{\phi}{4} \left(\frac{\partial^2 \psi}{\partial x_3 \partial x_3} + \frac{\partial^2 \psi}{\partial y_3 \partial y_3} \right) + \frac{\psi}{4} \left(\frac{\partial^2 \phi}{\partial x_3 \partial x_3} + \frac{\partial^2 \phi}{\partial y_3 \partial y_3} \right) \n= \frac{1}{4} \eta^2 (z_1) \eta^2 (z_2) f(y_3) g(y_3) [f(x_3) g''(x_3) + g(x_3) f''(x_3)] \n+ \frac{1}{4} \eta^2 (z_1) \eta^2 (z_2) f(x_3) g(x_3) [f(y_3) g''(y_3) + g(y_3) f''(y_3)].
$$

We choose η so that

$$
\int_B \eta^2(z) \frac{\sqrt{-1}}{2} dz \wedge d\bar{z} = 1.
$$

Then it follows that

$$
\frac{\sqrt{-1}}{2} \int_X \partial \bar{\partial} \dot{\omega} \wedge \dot{\omega} = \frac{1}{2} \int_{-1}^1 f(t)g(t) dt \int_{-1}^1 [f(t)g''(t) + f''(t)g(t)] dt
$$

$$
= \int_{-1}^1 f(t)g(t) dt \int_{-1}^1 [-f'(t)g'(t)] dt.
$$

The result follows immediately from the proposition below. \Box

Proposition 17. *There exist nonnegative functions* $f, g \in C_0^{\infty}([-1, 1])$ *such that*

$$
-\int_{-1}^{1} f'(t)g'(t) dt > 0.
$$

Proof. For any two real numbers $a < b$, we denote

$$
\chi_{a,b}(t) = \begin{cases} \exp\left(\frac{1}{t-b} - \frac{1}{t-a}\right) & \text{if } a < t < b, \\ 0 & \text{otherwise.} \end{cases}
$$

Clearly, $\chi_{a,b} \in C_0^{\infty}(\mathbb{R})$, $\chi'_{a,b}(t) > 0$ for $a < t < (a+b)/2$, $\chi'_{a,b}(t) < 0$ for $(a+b)/2 <$ $t < b$, and $\chi'_{a,b}(t) = 0$ when $t = (a+b)/2$. Letting

$$
f(t) = \chi_{-1/3, 1/3}(t)
$$
, and $g(t) = \chi_{0,2/3}(t)$

yields $-f'(t)g'(t) > 0$ for $0 < t < 1/3$ and otherwise $f'(t)g'(t) = 0$. This in particular implies the result. \Box

Let us now consider some examples. We can directly construct a hermitian metric ω with $\gamma_1(\omega) > 0$ on T^3 , the 3-dimensional complex torus.

Proposition 18. On the complex torus T^3 , there is a metric ω satisfying

$$
(\sqrt{-1}/2)\partial\bar{\partial}\omega\wedge\omega>0.
$$

Proof. Let (z_1, z_2, z_3) be the coordinates of T^3 induced from \mathbb{C}^3 . Let

$$
\omega = \frac{\sqrt{-1}}{2} [\xi(x_3) dz_1 \wedge d\bar{z}_1 + \eta(x_3) dz_2 \wedge d\bar{z}_2 + dz_3 \wedge d\bar{z}_3],
$$

where ξ and η are positive smooth functions on T^3 only depending on x_3 , which will be determined later. Then

$$
(\sqrt{-1}/2)\partial\bar{\partial}\omega \wedge \omega = \left(\eta \frac{\partial^2 \xi}{\partial z_3 \partial \bar{z}_3} + \xi \frac{\partial^2 \eta}{\partial z_3 \partial \bar{z}_3}\right) dV > 0
$$

if and only if

$$
\eta \frac{\partial^2 \xi}{\partial z_3 \partial \bar{z}_3} + \xi \frac{\partial^2 \eta}{\partial z_3 \partial \bar{z}_3} = \frac{1}{4} \eta \frac{\partial^2 \xi}{\partial x_3^2} + \frac{1}{4} \xi \frac{\partial^2 \eta}{\partial x_3^2} > 0.
$$

Here dV is defined by [\(6.3\)](#page-14-0). So we need to look for two smooth, positive, 2π -periodic functions η and ξ such that

$$
\frac{\eta''(t)}{\eta(t)} + \frac{\xi''(t)}{\xi(t)} > 0.
$$

We define

$$
\xi(t) = 1 + \kappa \sin t \quad \text{for some } 0 < \kappa < 1. \tag{6.4}
$$

We observe that

$$
\int_0^{2\pi} \frac{\xi''}{\xi} dt = -\int_0^{2\pi} \frac{\kappa \sin t}{1 + \kappa \sin t} dt = -2\pi + \int_0^{2\pi} \frac{dt}{1 + \kappa \sin t}.
$$

By Proposition 8 in [\[9\]](#page-20-9), the above integral tends to $+\infty$ monotonically as $\kappa \to 1^-$. Hence, for a constant $C > 0$, there is a unique real number κ such that the function ξ given by (6.4) satisfies

$$
\int_0^{2\pi} \frac{\xi''}{\xi} dt = \int_0^{2\pi} C dt.
$$

This implies that the equation

$$
\zeta'' + \frac{\xi''}{\xi} = C
$$

has a smooth 2π -periodic solution ζ on \mathbb{R} . Let $\eta = e^{\zeta}$. Thus,

$$
\frac{\eta''(t)}{\eta(t)} + \frac{\xi''(t)}{\xi(t)} = (\xi')^2 + \xi'' + \frac{\xi''}{\xi} \ge C > 0.
$$

As another example, we show that the natural balanced metric on the Iwasawa manifold has γ¹ positive. Recall (for example, [\[16,](#page-21-7) p. 444] and [\[20,](#page-21-8) p. 115]) that the *Iwasawa manifold* is defined to be the quotient space G/Γ , where

$$
G = \left\{ \begin{bmatrix} 1 & z_1 & z_3 \\ 0 & 1 & z_2 \\ 0 & 0 & 1 \end{bmatrix} : z_1, z_2, z_3 \in \mathbb{C} \right\},\,
$$

 Γ is the discrete subgroup of G consisting of matrices where z_1 , z_2 , z_3 are Gaussian integers, i.e., $z_i \in \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z}\}\$ for $1 \le i \le 3$, and Γ acts on G by left multiplications. Clearly, the global holomorphic 1-forms

$$
\varphi_1 = dz_1, \quad \varphi_2 = dz_2, \quad \varphi_3 = dz_3 - z_1 dz_2
$$

on G are invariant under the action of Γ , hence descend to G/Γ . Observe that G/Γ does not admit any Kähler metric, because $d\varphi_3 = \varphi_2 \wedge \varphi_1 \neq 0$. Let

$$
\omega=(\sqrt{-1}/2)(\varphi_1\wedge\bar{\varphi}_1+\varphi_2\wedge\bar{\varphi}_2+\varphi_3\wedge\bar{\varphi}_3).
$$

Then, ω is a balanced hermitian metric on G/Γ , for $d\omega^2 = 0$. Furthermore, we have

$$
(\sqrt{-1}/2)\partial\bar{\partial}\omega\wedge\omega=(\sqrt{-1}/2)^3\varphi_1\wedge\bar{\varphi}_1\wedge\varphi_2\wedge\bar{\varphi}_2\wedge\varphi_3\wedge\bar{\varphi}_3>0
$$

on G/Γ ; hence, by Proposition [12,](#page-11-6) we conclude that $\gamma_1(\omega) > 0$.

7. The 1-Gauduchon metric on Calabi's manifolds

In this section, we shall establish the existence of a 1-Gauduchon metric on the non-Kähler manifold introduced by Calabi $[5]$ $[5]$. In view of Theorem [6](#page-3-1) and Corollary [10,](#page-10-2) we need to find a hermitian metric with γ_1 negative.

We first recall Calabi's construction of non-Kähler complex three dimensional manifolds. Let $\mathbb{O} \cong \mathbb{R}^8$ denote the Cayley numbers. We fix a basis $\{I_1, \ldots, I_7\}$ such that

(1) $I_i \cdot I_j = \delta_{ij}$ with respect to the inner product.

(2) The multiplication table of the cross product $I_j \times I_k$ is the following:

$$
\begin{array}{c|ccccccccc}\n\times & I_1 & I_2 & I_3 & I_4 & I_5 & I_6 & I_7 \\
\hline\nI_1 & 0 & I_3 & -I_2 & I_5 & -I_4 & I_7 & -I_6 \\
I_2 & -I_3 & 0 & I_1 & I_6 & -I_7 & -I_4 & I_5 \\
I_3 & I_2 & -I_1 & 0 & -I_7 & -I_6 & I_5 & I_4 \\
I_4 & -I_5 & -I_6 & I_7 & 0 & I_1 & I_2 & -I_3 \\
I_5 & I_4 & I_7 & I_6 & -I_1 & 0 & -I_3 & -I_2 \\
I_6 & -I_7 & I_4 & -I_5 & -I_2 & I_3 & 0 & I_1 \\
I_7 & I_6 & -I_5 & -I_4 & I_3 & I_2 & -I_1 & 0\n\end{array} \tag{7.1}
$$

Via this basis, we have an isomorphism $\mathbb{R}^7 \cong \text{Im}(\mathbb{O})$.

Calabi considered a smooth oriented hypersurface $X^6 \hookrightarrow \mathbb{R}^7$. Fix a unit normal vector field N of X. There is a natural almost complex structure $J : TX \rightarrow TX$ induced by Cayley multiplication as follows. For any $x \in X$ and any $V \in T_xX$, define J: $T_xX \to T_xX$ as

$$
J(V) = N \times V.
$$

Calabi proved that J is integrable if and only if J anticommutes with the second fundamental form of X.

Calabi constructed compact complex manifolds as follows. Let Σ be a compact Riemann surface which admits three holomorphic differentials ϕ_1 , ϕ_2 , ϕ_3 with the following properties:

(1) ϕ_1 , ϕ_2 , ϕ_3 are linearly independent; (2) $\phi_1^2 + \phi_2^2 + \phi_3^2 = 0;$ (3) $\phi_1 \wedge \bar{\phi_1} + \phi_2 \wedge \bar{\phi_2} + \phi_3 \wedge \bar{\phi_3} > 0.$

Lifting ϕ_1, ϕ_2, ϕ_3 to the universal covering $\tilde{\Sigma} \rightarrow \Sigma$ and setting

$$
x^{j}(p) = \text{Re} \int_{p'}^{p} \phi_{j}, \quad j = 1, 2, 3,
$$

for a fixed point $p' \in \Sigma$, we obtain a conformal minimal immersion

$$
\psi = (x^1, x^2, x^3) : \tilde{\Sigma} \to \mathbb{R}^3.
$$

This mapping is regular, since the differentials ϕ_i satisfy (3); by the Weierstrass representation, property (2) is equivalent to the statement that ψ is minimal; finally, because of property (1), it follows that $\tilde{\Sigma}$ does not map into a plane.

Calabi then considered the hypersurface of the type

$$
(\psi, id) : \tilde{\Sigma} \times \mathbb{R}^4 \to \mathbb{R}^3 \times \mathbb{R}^4 = \text{Im}(\mathbb{O}),
$$

where \mathbb{R}^3 = span $\mathbb{R} \{I_1, I_2, I_3\}$ and \mathbb{R}^4 = span $\mathbb{R} \{I_4, I_5, I_6, I_7\}$. Since $\psi : \tilde{\Sigma} \to \mathbb{R}^3$ is minimal, $\tilde{\Sigma} \times \mathbb{R}^4$ is a complex manifold. If $g : \tilde{\Sigma} \to \tilde{\Sigma}$ denotes a covering transformation, then $\psi(gp) = \psi(p) + t_g$ for some vector $t_g \in \mathbb{R}^3$. It follows that the complex structure on $\tilde{\Sigma} \times \mathbb{R}^4$ is invariant under the covering group of Σ and so descends to $\Sigma \times \mathbb{R}^4$. On the other hand, for \mathbb{R}^4 , we can further divide by a lattice Λ of translation of \mathbb{R}^4 , and thereby produce a compact complex manifold $X_{\Lambda} = \Sigma \times T^4$. We can view X_{Λ} as a family of complex tori, parameterized by a Riemann surface.

Calabi showed that such complex manifolds X_Λ are non-Kähler. However, there exists a balanced metric on these manifolds [\[14,](#page-21-9) [19\]](#page-21-1). Let us consider the *natural* metric.

Define a 2-form on X_{Λ} as

$$
\omega_0(V,\,W)=N\cdot(V\times W)
$$

for any V, $W \in T_x X_\Lambda$ at any $x \in X_\Lambda$. Then clearly we have

$$
\omega_0(V, W) = -\omega_0(W, V);
$$

and using the formula

$$
N \cdot (V \times W) = (N \times V) \cdot W,
$$

we also have

$$
\omega_0(JV, JW) = \omega_0(V, W); \quad \omega_0(V, JV) = (N \times V) \cdot (N \times V) > 0 \text{ if } V \neq 0.
$$

So ω_0 is a positive (1, 1)-form on X_Λ and therefore defines a hermitian metric.

Next we check that ω_0 is a balanced metric. The unit normal vector field of X in \mathbb{R}^7 can be written as \overline{a} \overline{a}

$$
N = \sum_{j=1}^{3} a_j I_j, \quad \sum_{j=1}^{3} a_j^2 = 1,
$$
 (7.2)

where a_j for $j = 1, 2, 3$ are functions on Σ . Let (x_4, x_5, x_6, x_7) be the coordinates of \mathbb{R}^4 . Then we can write the hermitian metric ω_0 as

$$
\omega_0 = \omega_{\Sigma} + \varphi_0,
$$

where ω_{Σ} is a Kähler metric on Σ and

$$
\varphi_0 = a_1 dx_4 \wedge dx_5 + a_2 dx_4 \wedge dx_6 - a_3 dx_4 \wedge dx_7 - a_3 dx_5 \wedge dx_6 - a_2 dx_5 \wedge dx_7 + a_1 dx_6 \wedge dx_7.
$$

By direct check, we have

$$
\varphi_0^2 = 2dx_4 \wedge dx_5 \wedge dx_6 \wedge dx_7.
$$

Therefore,

$$
d(\omega_0^2) = d(2\omega_{\Sigma} \wedge \varphi_0 + \varphi_0^2) = 2d\omega_{\Sigma} \wedge \varphi_0 + 2\omega_{\Sigma} \wedge d\varphi_0 = 0,
$$

since ω_{Σ} is a Kähler metric and all functions a_i are defined on Σ .

Finally, we prove that there exists a 1-Gauduchon metric on X_Λ . By direct computation, we have

$$
\partial \bar{\partial} \omega_0 \wedge \omega_0 = \partial \bar{\partial} \varphi_0 \wedge \varphi_0 = 2 \sum_{j=1}^3 a_j \partial \bar{\partial} a_j \wedge dx_4 \wedge dx_5 \wedge dx_6 \wedge dx_7.
$$

Condition [\(7.2\)](#page-18-0) implies

$$
\sum_{j=1}^3 a_j \partial \overline{\partial} a_j = -\sum_{j=1}^3 \partial a_j \wedge \overline{\partial} a_j,
$$

Combining the above two equalities yields

$$
\sqrt{-1} \,\partial \bar{\partial}\omega_0 \wedge \omega_0 = -2\sqrt{-1} \sum_{j=1}^3 \partial a_j \wedge \bar{\partial} a_j \wedge dx_4 \wedge dx_5 \wedge dx_6 \wedge dx_7
$$

$$
= -4 \sum_{j=1}^3 |\partial a_j|^2 \omega_0^3,
$$

 $\overline{2}$

and therefore

$$
\sqrt{-1}\int_{X_{\Lambda}}\partial\bar{\partial}(e^{v}\omega_0)\wedge\omega_0=\sqrt{-1}\int_{X_{\Lambda}}e^{v}\omega_0\wedge\partial\bar{\partial}\omega_0<0.
$$

Hence, we have $\gamma_1(\omega_0) < 0$, by Corollary [4;](#page-2-4) so $-1 \in \Xi_1(X_\Lambda)$.

Proposition 19. $\Xi_1(X_{\Lambda}) = \{-1, 0, 1\}.$

Proof. We have proven $-1 \in \Xi_1(X_\Lambda)$ and according to Theorem [6](#page-3-1) we also have $1 \in$ $\Xi_1(X_\Lambda)$. Then by Corollary [10,](#page-10-2) $0 \in \Xi_1(X_\Lambda)$.

Corollary 20. *There exists a* 1-Gauduchon metric on X_Λ .

8. A 1-Gauduchon metric on $S^5 \times S^1$

Let $S^5 \to \mathbb{P}^2$ be the Hopf fibration of the complex projective plane \mathbb{P}^2 . Then S^5 can be viewed as the circle bundle over \mathbb{P}^2 twisted by $\omega_{FS}/(2\pi) \in H^2(\mathbb{P}^2, \mathbb{Z})$. Here ω_{FS} is the Fubini–Study metric on \mathbb{P}^2 . We let $\pi : S^5 \times S^1 \to \mathbb{P}^2$ be the natural projection. Then in a canonical way (cf. [\[10,](#page-20-10) [12\]](#page-20-11)), we can define a complex structure on $S^5 \times S^1$ such that π is a holomorphic map. We can define a natural hermitian metric on $S^5 \times S^1$ as follows:

$$
\omega_0 = \pi^* \omega_{\text{FS}} + (\sqrt{-1}/2)\theta \wedge \bar{\theta}, \qquad (8.1)
$$

where $\theta = \theta_1 +$ √ $\overline{-1} \theta_2$ is a (1, 0)-form on $S^5 \times S^1$ such that $d\theta_1 = \pi^* \omega_{FS}$ and $d\theta_2 = 0$. So $\bar{\partial}\theta = \pi^* \omega_{FS}$ and $\partial \theta = 0$, which imply

$$
(\sqrt{-1}/2)\partial\bar{\partial}\omega_0 = -\frac{1}{4}\pi^*\omega_{\text{FS}}^2.
$$
 (8.2)

Thus

$$
(\sqrt{-1}/2)\partial\bar{\partial}\omega_0 \wedge \omega_0 = (\sqrt{-1}/2)^3 \pi^* \omega_{\rm FS}^2 \wedge \theta \wedge \bar{\theta} = -\omega_0^3/3! \tag{8.3}
$$

and therefore

$$
\sqrt{-1} \int_{S^5 \times S^1} \partial \bar{\partial} (e^v \omega_0) \wedge \omega_0 = \sqrt{-1} \int_{S^5 \times S^1} e^v \omega_0 \wedge \partial \bar{\partial} \omega_0 < 0.
$$

Hence, $\gamma_1(\omega_0) < 0$, by Corollary [4;](#page-2-4) so $-1 \in \Xi_1(S^5 \times S^1)$. Then by Corollary [10,](#page-10-2) $0 \in \Xi_1(S^5 \times S^1)$. That is, we have

Proposition 21. *There exists a* 1-*Gauduchon metric on* $S^5 \times S^1$ *.*

Using the above natural metric ω_0 on $S^5 \times S^1$, we can also prove

Proposition 22. There does not exist any pluriclosed metric on $S^5 \times S^1$.

Proof. If there existed a pluriclosed metric ω on $S^5 \times S^1$, then

$$
0 = \int_{S^5 \times S^1} \frac{\sqrt{-1}}{2} \partial \bar{\partial} \omega \wedge \omega_0 = -\frac{1}{4} \int_{S^5 \times S^1} \omega \wedge \pi^* \omega_{\rm FS}^2 < 0 \tag{8.4}
$$

since $\omega \wedge \pi^* \omega_{FS}^2$ is a strictly positive definite (3, 3)-form on $S^5 \times S^1$. That is a contradiction. \Box

We also know that there does not exist any balanced metric on $S^5 \times S^1$. The proof is standard: There is an obstruction to the existence of a balanced metric on a compact complex manifold. Namely, on a compact complex manifold with a balanced metric no compact complex submanifold of codimension 1 can be homologous to 0 [\[19\]](#page-21-1). Now for $\pi : S^5 \times S^1 \to \mathbb{P}^2$, since π is a holomorphic, $\pi^{-1}(\mathbb{P}^1)$ for any curve \mathbb{P}^1 in \mathbb{P}^2 is a complex hypersurface in $S^5 \times S^1$. Certainly $\pi^{-1}(\mathbb{P}^1)$ is homologous to zero in $S^5 \times S^1$ since $H^4(S^5 \times S^1, \mathbb{R}) = 0$. Therefore there exists no balanced metric on $S^5 \times S^1$.

Acknowledgments. The authors would like to thank Professor S.-T. Yau for helpful discussions. Part of the work was done while the third named author was visiting Fudan University; he would like to thank for the warm hospitality. Fu was supported in part by NSFC grants 10831008 and 11025103 and LMNS.

References

- [1] Alessandrini, L., Andreatta, M.: Closed transverse (p, p) -forms on compact complex manifolds. Compos. Math. 61, 181–200 (1987) [Zbl 0619.53019](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0619.53019&format=complete) [MR 0882974](http://www.ams.org/mathscinet-getitem?mr=0882974)
- [2] Bismut, J.-M.: A local index theorem for non-Kähler manifolds. Math. Ann. 284 , $681-699$ (1989) [Zbl 0666.58042](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0666.58042&format=complete) [MR 1006380](http://www.ams.org/mathscinet-getitem?mr=1006380)
- [3] Bozhkov, Y.: The geometry of certain three-folds. Rend. Ist. Mat. Univ. Trieste 26, 79–93 (1994) [Zbl 0849.57013](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0849.57013&format=complete) [MR 1363914](http://www.ams.org/mathscinet-getitem?mr=1363914)
- [4] Bozhkov, Y.: The specific Hermitian geometry of certain three-folds. Riv. Mat. Univ. Parma 4, 61–68 (1995) [Zbl 0865.53059](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0865.53059&format=complete) [MR 1395324](http://www.ams.org/mathscinet-getitem?mr=1395324)
- [5] Calabi, E.: Construction and properties of some 6-dimensional almost complex manifolds. Trans. Amer. Math. Soc. 87, 407–438 (1958) [Zbl 0080.37601](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0080.37601&format=complete) [MR 0130698](http://www.ams.org/mathscinet-getitem?mr=0130698)
- [6] Demailly, J.-P.: Sur l'identité de Bochner–Kodaira–Nakano en géométrie hermitienne. In: Lecture Notes in Math. 1198, Springer, Berlin, 88–97 (1986) [Zbl 0594.32031](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0594.32031&format=complete) [MR 0874763](http://www.ams.org/mathscinet-getitem?mr=0874763)
- [7] Fino, A., Tomassini, A.: A survey on strong KT structures. Bull. Math. Soc. Sci. Math. Roumanie 52, 99–116 (2009) [Zbl 1199.53138](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1199.53138&format=complete) [MR 2521810](http://www.ams.org/mathscinet-getitem?mr=2521810)
- [8] Fu, J.-X., Li, J., Yau, S.-T.: Balanced metrics on non-Kähler Calabi–Yau threefolds. J. Differential Geom. 90, 81–129 (2012). [Zbl pre06051253](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06051253&format=complete) [MR 2891478](http://www.ams.org/mathscinet-getitem?mr=2891478)
- [9] Fu, J.-X., Wang, Z., Wu, D.: Form-type Calabi–Yau equations. Math. Res. Lett. 17, 887–903 (2010) [Zbl 1238.32016](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1238.32016&format=complete) [MR 2727616](http://www.ams.org/mathscinet-getitem?mr=2727616)
- [10] Fu, J.-X., Yau, S.-T.: The theory of superstring with flux on non-Kähler manifolds and the complex Monge–Ampère equation. J. Differential Geom. 78, 369–428 (2008) [Zbl 1141.53036](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1141.53036&format=complete) [MR 2396248](http://www.ams.org/mathscinet-getitem?mr=2396248)
- [11] Gauduchon, P.: Sur la 1-forme de torsion d'une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984) [Zbl 0523.53059](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0523.53059&format=complete) [MR 0742896](http://www.ams.org/mathscinet-getitem?mr=0742896)
- [12] Goldstein, P., Prokushkin, S.: Geometric model for complex non-Kähler manifolds with SU (3) structures. Comm. Math. Phys. 251, 65–78 (2004) [Zbl 1085.32009](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1085.32009&format=complete) [MR 2096734](http://www.ams.org/mathscinet-getitem?mr=2096734)
- [13] Grantcharov, D., Grantcharov, G., Poon, Y.-S.: Calabi-Yau connections with torsion on tori bundles. J. Differential Geom. 78, 13–32 (2008) [Zbl 1171.53044](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1171.53044&format=complete) [MR 2406264](http://www.ams.org/mathscinet-getitem?mr=2406264)
- [14] Gray, A.: Some examples of almost Hermitian manifolds. Illinois J. Math. 10, 353–366 (1966) [Zbl 0183.50803](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0183.50803&format=complete) [MR 0190879](http://www.ams.org/mathscinet-getitem?mr=0190879)
- [15] Gray, A., Hervella, L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123, 35–58 (1980) [Zbl 0444.53032](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0444.53032&format=complete) [MR 0581924](http://www.ams.org/mathscinet-getitem?mr=0581924)
- [16] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley (1978) [Zbl 0408.14001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0408.14001&format=complete) [MR 0507725](http://www.ams.org/mathscinet-getitem?mr=0507725)
- [17] Jost, J., Yau, S.-T.: A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math. 170, 221–254 (1993) [Zbl 0806.53064](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0806.53064&format=complete) [MR 1301396](http://www.ams.org/mathscinet-getitem?mr=1301396)
- [18] Li, J., Yau, S.-T.: Hermitian–Yang–Mills connection on non-Kahler manifolds. In: Mathemat- ¨ ical Aspects of String Theory (San Diego, CA, 1986), Adv. Ser. Math. Phys. 1, World Sci., Singapore, 560–573 (1987) [Zbl 0664.53011](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0664.53011&format=complete) [MR 0915839](http://www.ams.org/mathscinet-getitem?mr=0915839)
- [19] Michelsohn, M. L.: On the existence of special metrics in complex geometry. Acta Math. 149, 261–295 (1982) [Zbl 0531.53053](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0531.53053&format=complete) [MR 0688351](http://www.ams.org/mathscinet-getitem?mr=0688351)
- [20] Morrow, J., Kodaira, K.: Complex Manifolds. Holt, Rinehart and Winston (1971) [Zbl 0325.32001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0325.32001&format=complete) [MR 0302937](http://www.ams.org/mathscinet-getitem?mr=0302937)
- [21] Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Notices 2010, 3101–3133 [Zbl 1198.53077](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1198.53077&format=complete) [MR 2673720](http://www.ams.org/mathscinet-getitem?mr=2673720)