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Abstract. We generalize the Gauduchon metrics on a compact complex manifold and define the
¥k functions on the space of its hermitian metrics.

1. Introduction

Let X be a compact n-dimensional complex manifold. Let g be a hermitian metric on X
and w its hermitian form. It is well known that if dw = 0, then g or w is called a Kihler
metric and X is called a Kdhler manifold. When X is a non-Kihler manifold, one can
consider the other conditions on w such as

do* =0 forsome?2 <k <n-—1. (1.1)

If d (a)”’l) = 0, then g or w is called a balanced metric and so X is called a balanced
manifold [19]. However, when 2 < k < n — 2, do* =0 automatically yields dw = 0
[15]. Instead of (1.1), one can consider the k-Kdhler condition [1]. A complex manifold
is called k-Kéhler if it admits a closed complex transverse (k, k)—form. By this definition,
a complex manifold is 1-Kéhler if and only if it is Kéhler; it is (n — 1)—Kahler if and only
if it is balanced.

One can also generalize the Kéhler condition in other directions, for instance,

99wk =0 forsome2 <k <n-—1. (1.2)

When k = n — 1, the metric w is called a Gauduchon metric. Gauduchon [11] proved an
interesting result that, for any hermitian metric @ on a compact complex n-dimensional
manifold X, there exists a unique (up to a constant) smooth function v such that

39’ H =0 onX. (1.3)
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Thus, the Gauduchon metric always exists on a compact complex manifold. It is important
in complex geometry since one can use such a metric to define the degree, and then make
sense of the stability of holomorphic vector bundles over a non-Kéhler complex manifold
(see [18]).

When k = n —2, the metric w satisfying (1.2) is called an astheno-Kdéhler metric. Jost
and Yau [17] used this condition to study hermitian harmonic maps, and extended Siu’s
rigidity theorem to non-Kihler complex manifolds.

When k = 1, the metric w in (1.2) is called pluriclosed, or strong KT (Kéhler with
torsion) (see [13, 7] and the references therein). Such a condition appeared in [6, 2] as
a technical condition. Recently, Streets and Tian [21] introduced a hermitian Ricci flow
under which the pluriclosed metric is preserved.

It is important to find specific hermitian metrics on non-Kihler complex manifolds.
J. Li, S.-T. Yau and Fu [8] have constructed balanced metrics on complex structures of
manifolds #z>2(S 3 x §3) which are obtained from the conifold transition of Calabi—Yau
threefolds. Combining this result with Lemma 2 in [4] implies that there exists no pluri-
closed metric on such manifolds (see [8, p. 2] or compare Proposition 22). We note here
that the specific hermitian geometry of threefolds #.(S3 x §3) was first considered by
Bozhkov [3, 4]. In this paper, we generalize (1.2) to weaker conditions:

00 A" ¥ 1 =0 forsome2 <k <n—1. (1.4)
Definition 1. Let w be a hermitian metric on an n-dimensional complex manifold X, and
k be an integer such that 1 < k < n — 1. If w satisfies (1.4), we call it a k-Gauduchon
metric.

Note that an (n — 1)-Gauduchon metric is the classical Gauduchon metric. The natural
question is whether there exists any k-Gauduchon metric, 1 < k < n — 2, on a complex
manifold. To answer this question, one way is to look for such a metric in the conformal
class of a given hermitian metric w on X:

39’ A T = 0. (1.5)

However, equation (1.5) in general need not admit a solution (see below for reasons). In
this paper, we solve the equation

39’ A K = yre’ " (1.6)

for some constant y; satisfying the compatibility condition. The constant y, if nonzero,
can be viewed as an obstruction to the existence of a k-Gauduchon metric in the conformal
classof w,for1 <k <n — 1.

Equation (1.6) can be reformulated, in a slightly more general form, as follows: Let
(X, w) be an n-dimensional compact hermitian manifold, and B be a smooth real 1-form
on X. For any smooth function f on X satisfying

f fo' =0, (1.7)
X
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we consider the semilinear equation
Av+ |[Vv)> + (B,dv) = f onX. (1.8)

Here A and V are, respectively, the Laplacian and covariant differentiation associated
with w. Clearly, (1.8) need not have a solution, due to the compatibility condition (1.7).
For instance, let w be balanced and B = 0; then in order that (1.8) has a solution the
function f has to be zero. Nonetheless, we shall show that there is a smooth function v so
that equation (1.8) holds up to a unique constant c. More generally, we have the following
result:

Theorem 2. Let (X, w) be a compact hermitian manifold, B be a smooth real 1-form
on X, and ¢ € C*(R) satisfy

liminf ¥ (¢£)/t* > v >0, where u > 1/2 and v are constants. (1.9
t—400

Then, for each f € C*°(X) satisfying (1.7), there exists a unique constant ¢, and a smooth
function v on X, unique up to a constant, such that

Av+ (Vo) + (B, dv) = f+c onX. (1.10)
Remark 3. The compatibility condition of (1.10) implies that

. [x(Av + ¥ (IVV]?) + (B, dv)o"

fx o' 7

which in general is nonzero.

Letting /() = t on R, we obtain an application of Theorem 2:

Corollary 4. Let (X, w) be an n-dimensional compact hermitian manifold. For any in-
teger 1 < k < n — 1, there exists a unique constant yy and a function v € C*®(X)
satisfying

(V—=1/2)30(" ") A 0" * ! = et (1.11)

The solution v of (1.11) is unique up to a constant. In particular, when k = n — 1 we have
VYn—1 = 0. If w is Kdhler, then yx = 0 and v is a constant, for each 1 <k <n — 1.

Remark 5. When k£ = n — 1, this corollary recovers the classical result of Gaudu-
chon [11].

By Corollary 4, we can associate to each hermitian metric @ a unique constant yx ().
Clearly, yx = yx(w) is invariant under biholomorphisms. Furthermore, we will prove that
yx depends smoothly on the hermitian metric @ (see Proposition 9); and that y (w) = 0 if
and only if there exists a k-Gauduchon metric in the conformal class of @ (Proposition 8).

We will prove in Proposition 11 that the sign of yx(w), denoted by (sgn y¢)(w), is
invariant in the conformal class of w. We denote by E;(X) the range of sgn y,. By def-
inition Ex(X) C {—1,0, 1} for each k, and by Corollary 4 we have E,_1(X) = {0}.
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A natural question is whether B (X) = {—1,0, 1} forany 1 < k < n — 2 on any com-
pact complex n-dimensional manifold X . Indeed, if Ex(X) D {—1, 1} then the answer is
positive, by Proposition 9. Thus, there will be a k-Gauduchon metric on X. We can also
ask whether Ej(X) is invariant under proper modifications. (Given two n-dimensional
complex manifolds X and X, a proper holomorphic map F : X — X is called a proper
modification if for some analytic set ¥ in X with codimension > 2, F : X\ E — X\ Y is
a biholomorphism, where E = F~!(Y).) These questions will be systematically studied
later. As a first step, we obtain the following result.

Theorem 6. For n = 3, we have 1 € E((X). Namely, for any 3-dimensional hermitian
manifold X, there exists a hermitian metric w such that y|(w) > 0. In particular, there is
no 1-Gauduchon metric in the conformal class of w.

Then, we combine the above results to prove that, as an example, E; = {—1, 0, 1} on the
three-dimensional complex manifolds constructed by Calabi [5]. As a consequence, there
exists a 1-Gauduchon metric on these manifolds. It is well-known that such manifolds
are non-Kihler but admit balanced metrics. We do not know whether there exists any
pluriclosed metric on them.

Another example we considered is ¥ = §° x !, endowed with a complex structure so
that the natural projection 77 : §° x S! — P? is holomorphic. This would imply that there
is no balanced metrics on §° x S'. Moreover, we can prove that S5 x S! does not admit
any pluriclosed metric. On the other hand, by considering a natural hermitian metric on
S5 x S1, we are able to show that El(S5 X Sl) = {—1,0, 1}. Thus, S5 x S! admits a
1-Gauduchon metric.

We shall solve equation (1.10) by the continuity method. In Section 2, we set up the
machinery and prove the openness. The closedness and a priori estimates are established
in Section 3. In Section 4, we prove the uniqueness part of Theorem 2 and also prove
Corollary 4. In Section 5, we discuss the relation between y; and k-Gauduchon metrics.
In Section 6, we prove Theorem 6, and explicitly construct a metric with positive y; on
the complex 3-torus. As another example, we show that the natural balanced metric on
the Iwasawa manifold has y; positive. In Section 7, we establish the existence of a 1-
Gauduchon metric on Calabi’s 3-dimensional non-Kihler manifold, by using Theorem 6
and proving that the balanced metric on the manifold has y; negative. In the last section,
we prove the existence of a 1-Gauduchon metric on > x S'. We also show the nonexis-
tence of a balanced metric or pluriclosed metric on §° x S

2. Notation and preliminaries

Throughout this note, we use the following convention: We write

1 <& . .
0y L ndi
L, ]=

Let (g"JT ) be the transposed inverse of the matrix (g; Jf). For any two real 1-forms A and B
on X, locally given by
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n
A=

(Ajdz; + A;dZ;)) and B =

n
i=1 i=1

(Bidz; + B;dz;),

we denote
1 & s
(4, B)o = 5 _Zl 8"/ (AiB; + A5B;).
i,j=
We may omit the subscript w in (-, -), when it is understood from the context. In particu-
lar, we have

" -3h dh
(dh.dh) = > ¢/ —-—=|Vh|* forallh e C'(X).
Pyt 0z; 9z;

The Laplacian A associated with w is given by

UA=1/2)00h N s
nw ( /2) — Z §'h;; forallh e C*(X).

ij=1

Ah =

wl’l
We use the continuity method to solve (1.10). Fix an integer [ > n + 4 and a real

number 0 < o < 1. We denote by C!-%(X) the usual Holder space on X. Let

2 n

Jxe"
for each u € C*(X). Consider the family of equations
Sty =tf, 0=<r<l. 2.1
Let I be the subset of [0, 1] consisting of ¢ for which (2.1) has a solution v, € c! *(X)
satisfying
/ v, =0. 2.2)
X

Obviously, 7 is nonempty since 0 € I. The openness of I will follow from our previous
results [9, Section 3]. Indeed, let

ghe — {h e Ch(X): / ho" = o}. (2.3)
X

Notice that § : E5+2% — L.« The linearization of S is

)

— Ah (B dh) — Jx (AR + (B, dh)w

d
L,h)=—S§ th
o) = g Sw+h) T

where
B = B +2y/'(|Vv})dv.
It follows from the proof of Lemma 13 in [9] that L, is a linear isomorphism from
EH2e(X) to E4%(X). Thus, by the implicit function theorem we obtain the openness
of I.
For the closedness of I we need the a priori estimate which will be established in
Section 3.
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3. A priori estimates

Let (X, w) be an n-dimensional hermitian manifold, B a smooth 1-form on X, f a smooth
function on X, ¢ a constant, and let ¥ € C°°(R) satisfy (1.9). Consider the semilinear
equation

S(v)EAU+I//(|VU|2)+(B,dU>—C=f on X, 3.
where v € C3(X) satisfies the normalization condition
/ vo" = 0. (3.2)
X

We shall first derive a uniform gradient estimate:

Lemma 7. Letv € C3(X) be a solution of (3.1). We have

sup [Vv| < C,
X

where C > 0 is a constant depending only on B, f, w, ¥ (0), u and v.

Throughout this section, we always denote by C > 0 a generic constant depending only
on B, f, w, ¥(0), u, and v, unless otherwise indicated.

Proof of Lemma 7. Since X is compact, we can assume that |Vv|? attains its maximum
at some point xg € X. Consider the linear elliptic operator

L(h) = Ak + 29" (Vo) (dh, dv)y = A+ (VoP)g' (hiv; + hjo).
Here the summation convention is used, and we denote

B — oh ij 08"

T o ST
We compute that
L(VuP) = AQVP) + /g7 [(VuP)iv; + vi (Vo) 5]
= gifgpq_(vpivqu +v,70iz) + g7 [(Av) vz + vy (Av)g] + gijgﬁ?vpvq
+ gifgf;q (v,7vg + vpvz7) + gijg:'}q(v,,ivq + Upvig)
— g (g v, 707 + 8100, 9) + W g IAVUP)v; + i (Vo).

Applying equation (3.1) to the second term on the right hand side and then using the
Schwarz inequality, we find

2 1,ij,pd 2
L(Vv[%) = 58" 8" (vpivg5 +v,;vig) — C|Vv|” — C.
To see things more clearly, let us take a normal coordinate system around xg such that

gl.]f(xo) = (Sij for all i,j = 1, A (N
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It follows that

1 & 1<
LAV 2 5 3 o = CIVUP = C = 2 ) gl = €Yol = C
i,p=1 i=1

v

1
2—|Av|2 — C|Vu|> = C  (by Cauchy’s inequality)
n

v

%W(Wuﬁ) +(B,dv) — f —c]* = C|Vu]* = C (by (3.1)

\

1
WAV = CIVol = 1+ [c).
4n
We can assume, without loss of generality, that |Vv|?(xo) is sufficiently large so that
Y(Ve) = SIVoP*  atxo.

where ¢ > 1/2 and v > 0 are constants, by (1.9). Now notice that
L(IVv]’) <0 atxo,

because
A(IVu[)(x0) <, and  V(Vo[*)(xp) = 0.

Hence,

sup |Vol* = [Vu]*(x0) < C(1 + [c[%).
X

It remains to bound the constant ¢ in terms of f and ¥ (0): Apply the maximum principle
to v in (3.1) to obtain

V(0 —sup f < c = —inff+(0). (3.3)
X

This finishes the proof. o

Next, we establish the C° estimate: Noticing (3.2), there must exist some yp € X such
that v(yp) = 0. Then, for any y € X, we take a geodesic curve y connecting yg to y. By
Lemma 7,

ld o 1
Iv(y)|=|v(y)—v(yo)l="/0 %dr sdiamw(X)/O (Vo] 0 y)di < C,

where diam,, (X) denotes the diameter of X with respect to w. This settles the C 0 estimate
of v. We rewrite equation (3.1) as

Av =~y (IVv|}) — (B,dv) + f +c.
By the W27 theory of elliptic equations, for any p > 1 we have

Wl < Cvllze + If +¢ =¥ (Vol?) = (B, dv)|Lr) < Ci,
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where in the last inequality we have used the CY and C! estimates of v, and (3.3). Here
and below, we denote by C; a generic constant depending on B, f, w, i, v, p, and
max{|¥ ()| : 0 <t < max |Vv|> < C}.

Fix a sufficiently large p such that « = 2n/p < 1. It follows from the Sobolev
embedding theorem that

lvllcre = Ci.
This allows us to apply Schauder’s theory to deduce that
[vllc2e < Ci.
Thus, by a bootstrap argument, we have
lvllcte < C1  foranyl > 1. 3.4

This implies that the set / defined in Section 2 is closed. As a consequence, we have
shown the existence part in Theorem 2.

4. Uniqueness and Corollary

Let us prove the uniqueness in Theorem 2. Suppose that there exist ¢, v and ¢, v such that

Av+ ¥ (|Vo]?) + (B, dv) = f +c,
AT+ Y (|VD)?) + (B, db) = f +¢.

Then
2 n
oo fX(Av+1//(|Vv| )+ (B, dv))w , @.0)
Jxo"
~ ~0 ~\\ n
i fX(Av—l-I/f(Wvl )+ (B, dv))w . “2)
Jxo"

Recall that we denote
 JxQu+y(1Vul) + (B, du))o”

Jx "

Su) = Au~+ ¥ (|Vul|®) + (B, du) ,
for all u € C2(X). It follows that
1
0=SWw) —S®@) = / [%S(rv +(1 - t)f))] dt = Aw + (B, dw) —cyp.  (4.3)
0

Here w = v — v,

1
B=B+ 2/ W (VY + (1 — )VED[tdv + (1 — 1)dD] dt,
0
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and ¢, is a constant given by

_ [x(Aw + (B, dw)o"
fX w' .

Applying the maximum principle to (4.3) yields

Cw

cy =0.

Then, by the strong maximum principle we conclude that w is equal to a constant. This
shows that the solution of (1.10) is unique up to a constant. By (4.1) and (4.2) we have
¢ = ¢. This completes the proof of Theorem 2.

Let us now prove Corollary 4. We define a smooth real 1-form on X by

V=1 nk
B =Y-"

1 n—1 a¢,n—1
5 n_la*(a(a) ) —0d(@" ™)) 4.4)

and a smooth function

o= n(v/=1/2)80(a*) A " !

o 4.5)
Then (1.11) is equivalent to
Av + |Vv|> 4 (B1, dv) + ¢ = ny.
Let
wl’l
Y@ =1 and f = Jx¢ .
Jx "
then Corollary 4 follows readily from Theorem 2.
For each 1 < k < n — 1, the constant y4 is given by
[x e ' (W=1/2)03(e" ") A 0" F!
Vi = f o 4.6)
X
_ [x(Av+ |V + (By, dv) + )0 49
B n [y o . @7
On the other hand, directly integrating (1.11) over X yields
—1/2)8d (e’ ) A @ *1
o = L/ TT/200( _ “s)

fX el

This together with (4.6) imposes some constraint on the constant y. For instance, when
k =n — 1, by (4.8) we know that

Yn—1=0.
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Thus, in this case Corollary 4 recovers the classical result of Gauduchon [11]. When w is
Kihler, by (4.8) again we have

=0 foralll <k <n-—1.

/ V2o =
X

This tells us that the solution v of (1.11) has to be a constant.

Then, it follows from (4.7) that

5. Generalized Gauduchon metrics and y;

Let X be an n-dimensional complex manifold. We recall (Definition 1) that a hermitian
metric w on X is called a k-Gauduchon metric if

(@) A" *1=0 onX.

Then the (n — 1)-Gauduchon metric is the Gauduchon metric in the usual sense. By
Corollary 4, to each hermitian metric w on X one can associate a unique constant yi (w),
which is invariant under biholomorphisms. The induced function y, = yx(w) can be used
to characterize the k-Gauduchon metric.

Proposition 8. The hermitian manifold X admits a k-Gauduchon metric if and only if
there exists a hermitian metric w on X such that

V(@) = 0. 5.1)

Proof. If there is some hermitian metric w satisfying (5.1), then Corollary 4 implies
that the conformal metric e*/*w is a k-Gauduchon metric on X. Conversely, if w is a
k-Gauduchon metric, then the uniqueness of Corollary 4 implies that yx(w) = 0 and that
v is a constant. O

Let 21 be the set of all hermitian metrics on X. We shall prove that yj is a smooth function
on . Here M1 is viewed as an open subset in C I+2.a (AIIR’1 (X)) for a nonnegative integer [
and a real number 0 < o < 1. We denote by Cl""(Ag’m(X)) the Holder space of real
(m, m)-forms on X, in which / and m are nonnegative integers, and 0 < o < 1 is a real
number. In particular, C-¢ (A% (X)) = Ch¥(X).

Proposition 9. The function yx = yr(w) is smooth on IN, where N is viewed as an open
subset in CIT2« (Aﬁ%’1 (X)).

Proof. 1Tt follows from Corollary 4 that, for each w € 91, there exists a unique constant yx
and a function v such that

e V'(V=1/2)33(e") A " TF 1 — 0 = 0. (5.2)
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Then _
[x e " (V=1/2)00(e" ) A " 7K1
Jxe"

depends smoothly on v and w. Thus, to show the result, it suffices to show that the solu-
tion v depends smoothly on w. We shall use the implicit function theorem.

For each w € 9N, the space 55{50[ is defined by (2.3). Fix wy € 9, for which we
abbreviate 5(1)’“ = Eclo(‘;‘ We have two obvious linear isomorphisms from 5% to 5(1)’“,
given respectively by

Yk =

h n
B b= MO0 e ghe, (5.3)
fx gy
n
hsh- 2 forall h € EL%. (5.4)
,
0

Define a map F : 901 x £é+2’“ — 5(1)’“ by
ne " (v=1/2)03(e’ k) A 0" !
2
nfy e V(V—=1/2)30 (e’ ) A " KT

fx“’n .w_g'

F(w,v) =

Obviously, F is a smooth map. Note that any (@, v) € M x 5(1)+2,a satisfies (5.2) if and
only if

F(w,v) =0.
The Fréchet derivative of F with respect to the variable v is

DyF(w,v)(h) = Lw(h)z_:-
0

Here
[x(Ah + (B +2dv, dh)e,)o"

Jx e
in which the Laplacian A is with respect to w, and Bj is the smooth real 1-form given
by (4.4). By the proof of Lemma 13 in [9] and the isomorphism (5.3), the operator L,, :
56”'“ — 5({;“ is a linear isomorphism. Combining this isomorphism with isomorphism

Lo(h) = Ah + (By + 2dv, dh)e,

)

(5.4) implies that D, F(w, v) : €é+2’a — E(l)’a is a linear isomorphism. The result then
follows by the implicit function theorem. O

A direct corollary of Proposition 9 is

Corollary 10. For 1 <k < n — 2, if there exist two hermitian metrics w1, w2 on X such
that
Yk(@1) > 0and yr(w2) < 0,

then there exists a metric w on X satisfying yx(w) = 0, i.e., w is a k-Gauduchon metric.
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Proof. Let
wr=tw;+ (1 —tHwy forall0 <r<1.

Then w; is a hermitian metric for each 7. The result follows immediately by applying the
mean value theorem to the function ¢ () = yi(wy). ]
Proposition 11. Forany p € C (M), we have

e M Py (@) < yr(efw) < e MNPy (o). (5.5)
In particular, the sign of the function yy is a conformal invariant for hermitian metrics.

Proof. Let @ = ePw. Then, there exists a function v and a number 7, = y(®) satisfying

(V=1/2)33(°&) A " * 1 = prela”,

that is, o )
(V=1/2)30(" T k) A K1 = e TP el . (5.6)
We can rewrite (5.6) as
A@ +kp) + V@ +kp)I> + (B1,d (@ + kp)) + ¢ = ne”j, (5.7)

where the operators A and V are with respect to w, and By and ¢ are given by (4.4) and
(4.5), respectively. Subtracting from (5.7) the equation

Av + Vo + (B, dv) + ¢ = nyi(w)
and then applying the maximum principle to v 4+ kp — v yields (5.5). O

Proposition 12. For a hermitian metric , we have yx(w) > 0 (= 0, or < 0) if and only
if there exists a metric @ in the conformal class of w such that

(V=1/2)300* A" %1 >0(=0,0r<0) onX. (5.8)

Proof. Suppose that yx(w) > 0 (= 0, or < 0). Let ® = ¢"/*w, where v is a smooth
function associated with w so that (1.11) holds. Then

(V=1/2)306" A" * ! = p(@)w"e™ P > 0 (=0, or < 0).

Conversely, if there is a metric @ in the conformal class of w such that (5.8) holds, then
we claim that y (@) > 0 (= 0, or < 0). Indeed, by Corollary 4 there exists a smooth
function v such that

(V=1/2)33(°d) A "1 = y(@)e’ .
This is equivalent to the equation
AT+ |VD)? + (B, d?) + ¢ = ny(®), (5.9)

where the operators A and V are with respect to @, and B and § are given by (4.4) and
(4.5), respectively, with @ replacing w. By (5.8) we have ¢ > 0 (= 0, or < 0). The claim
then follows immediately by applying the maximum principle to (5.9). By Proposition 11,
we finish the proof. O

Moreover, for the case of y; > 0, we have the following integral criterion, which is often
easier to verify.
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Lemma 13. Suppose that n, the complex dimension of X, is odd. Let k = (n — 1)/2.
Then there is some metric w satisfying yx(®) > 0 if and only if there is some semi-metric
o (i.e., a semi-positive real (1, 1)-form on X) satisfying

=)

9k A" k1 S 0.

Proof. By Proposition 12, the necessity part is obvious. For the sufficiency part, let @ be
any hermitian metric. Let w; = @ + t@ for ¢t € (0, 1). Then we have

/X—v(\/ 1/2)03(e’ k) A o 7*1
V-1 3 —k—1 3 -1
:T/X(Baa)t/\a);1 +ovAdVAW )
—1 3 n—1 k n—1 a A on—1
A ; 00V A w; —i—m(aw, A OV + 0V A dw; )

/—1 _ B
:Tf(aawt A" L9 A du A"
X
V=1 2k }
+—<1— )f 03w ! (5.10)
X

2 n—1

Since k = (n — 1)/2, the second integral on the right of (5.10) vanishes. It follows that

/e*“(«/—_l/z)aé(e” YAt Rl > */_/ 33wk A of
X

F/ Ak A& +t\/_/(88 /\\l/,+88\11,/\a))
ey

85\11, AW >0 for sufficiently small ¢,
X

where W; = & A (DK +dF 2 Aw; +- - -+ d AWK 2 +wF ). This implies that y; (;) > 0
for the sufficiently small z. O

A similar argument works for the (classical) Gauduchon metrics, for any dimension n,
andforalll <k <n-—2.

Lemma 14. Let X be an n-dimensional hermitian manifold, k an integer such that 1 <

k < n—2. Then a hermitian metric w on X satisfies yx(w) > 0 if the Gauduchon metric &

in the conformal class of w satisfies
/—1 /
2

33" A" > 0. (5.11)
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Proof. By Proposition 11, we can assume that ® = @, without loss of generality. By
(5.10) with w replacing w,, and applying 3dw"~! = 0, we obtain

- /_1 _
/ e (v _1/2)33(6vwk) AR > T/ 990% A" 1F = 0. -
X X

Corollary 15. Let (X, w) be an n-dimensional balanced manifold. Then, for each 1 <
k <n —2, we have yx(w) > 0 if

/_1 _
—/ 99wk A " 17k > 0.
2 Jx

6. Constructions on hermitian three-manifolds

We shall apply previous results to construct a hermitian metric with y; > 0 on a complex
three-dimensional manifold. Theorem 6 will follow from Proposition 12 together with the
following theorem.

Theorem 16. There always exists a hermitian metric w on a complex three-dimensional
manifold X such that

(v =1/2)30w A w > 0.
Proof. By Lemma 13 and Proposition 12, it suffices to construct a semi-metric @ such
that
/1 _
— / 00w A @ > 0.
2 Jx

Fix a point ¢ € X and a coordinate patch U > q. Let (z1, z2, z3) be coordinates on U
centered atg. Here z; = xj++/—1y;forl < j < 3. Wecanassume N = BxBxR C U,
where B is the unit ball in C, and

R={z3eCllx3| =1, [y3l =1}.

Take a nonnegative cut-off function n € C§°(B) and two nonnegative functions f, g €
Cgo ([—1, 1]) to be determined later. On N, define

¢ =) f(x3) f(y3), ¥ =nz)n(z2)g(x3)g(y3),
and then define

=1
& = ——[p()dz1 AdZi + ¥ (Ddz2 A dZ2). (6.1)
Obviously, @ is semi-positive and with compact support in N. So it can be viewed as a

semi-metric on X. Clearly,

_ 2 2
Qaéé)/\a’:@ oV + v %9 )dV, (6.2)

073073 073073
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where ;
V=1
dv = (T) dzi Adzy ANdzp ANdZp ANdzz A dZs. (6.3)
Since 0 1/ 0 0 d 1/ 0 d
— =zl —-v-1l—) —=z—+v-1—),
923 2<3X3 3y3) 073 2(3X3 * 3y3)
we have

9%y P2¢p ¢ 3y 92y v 9% 9%
973073 + 973073 4 \ 9x30x3 + 8y38y3> + Z(axgaxg + 8y38y3>
= 12 @ (22) Fr)g ()L f (x3)g" (13) + g(x3) £ (x3)]

+ 1@ (22) £ (3)g () f (13)8” (v3) + () £ (v3)]-

We choose 1 so that

V=1
/nz(z) dz nd7 = 1.
» 2

Then it follows that

-1 [ .- 1! !
Q/X%&)Aé: 5/1f(t)g(t)dt/I[f(r)g”(t)+f”(t)g(t)]dt

1 1
=/1f(t)g(t)dt/1[—f/(t)g/(t)]dt.

The result follows immediately from the proposition below. O

Proposition 17. There exist nonnegative functions f, g € C5°([—1, 1]) such that

1
—/ g @) dt > 0.
-1
Proof. For any two real numbers a < b, we denote

1 1

exp| — —
Kap(t) = p(r—b I—a
0 otherwise.

> ifa<t<b,

Clearly, x4.» € C*(R), X;,b(f) > 0fora <t < (a+b)/2, X;yb(t) <O0for(a+b)/2 <
t <b,and Xé,b(’) =0 when = (a + b)/2. Letting
F@) = x-173,173(1), and  g(1) = x0,2/3(t)

yields — f/(¢)g’(t) > 0 for 0 < ¢t < 1/3 and otherwise f/(t)g’(t) = 0. This in particular
implies the result. O

Let us now consider some examples. We can directly construct a hermitian metric w with
¥1(®) > 0 on T?, the 3-dimensional complex torus.
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Proposition 18. On the complex torus T3, there is a metric w satisfying

(V=1/2)30w A » > 0.

Proof. Let (z1, 22, z3) be the coordinates of T3 induced from C3. Let

v —1 _ _ _
w = — [E(x3)dz1 ANdZz1 + n(x3)dzo ANdZo +dz3 A dZ3],

where £ and 7 are positive smooth functions on 7> only depending on x3, which will be
determined later. Then

2 2
(\/—_1/2)85a)/\a)=<n ] +£ 9% )dV>0

023073 073073
if and only if
9% ?n 1 9% 1 9%

4+ — =-n—+ -&(— > 0.
n8238z3 0730273 4778)6% 458x32

Here dV is defined by (6.3). So we need to look for two smooth, positive, 2 -periodic
functions 7 and & such that

@ )
0 E0

>

We define
E()=14«sint forsome0 <k < 1. 6.4)

We observe that

2 &1 2 : 2

t dt
/ ‘5;: dt:_/ &dt:—Zn—i—/ -
o § o l+«sins o 1+«sint

By Proposition 8 in [9], the above integral tends to +0o monotonically as k — 1.
Hence, for a constant C > 0, there is a unique real number « such that the function &
given by (6.4) satisfies

2 E//

2
—dt:f Cdt.
o §& 0

" E 1
+=C
R

has a smooth 27 -periodic solution ¢ on R. Let = e%. Thus,

=@Y+{”+%—2C>O. O

This implies that the equation

W@ )
00 0
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As another example, we show that the natural balanced metric on the Iwasawa manifold
has y; positive. Recall (for example, [16, p. 444] and [20, p. 115]) that the Iwasawa
manifold is defined to be the quotient space G/ I', where

1 z1 z3
G = 0 1 z2|:z1,22,23€Cyp,
0 0 1

I" is the discrete subgroup of G consisting of matrices where z1, z2, z3 are Gaussian
integers, i.e., z; € {a + ba/—1 | a,b € Z}for1 < i < 3, and I" acts on G by left
multiplications. Clearly, the global holomorphic 1-forms

o1 =dz1, @2=dz, ¢3=dz3—z1d22

on G are invariant under the action of I', hence descend to G/ I". Observe that G/ I" does
not admit any Kihler metric, because dgsz = @2 A ¢1 # 0. Let

w=(=1/2)(01 NP1+ @2 A @2+ @3 A @3).
Then, w is a balanced hermitian metric on G/ I, for dw? = 0. Furthermore, we have
(V=1/2)ddw Aw = (V=1/2°01 AG1L A@2 A G2 A3 A3 >0

on G/ T'; hence, by Proposition 12, we conclude that y; (w) > 0.

7. The 1-Gauduchon metric on Calabi’s manifolds

In this section, we shall establish the existence of a 1-Gauduchon metric on the non-
Kaihler manifold introduced by Calabi [5]. In view of Theorem 6 and Corollary 10, we
need to find a hermitian metric with y; negative.

We first recall Calabi’s construction of non-Kéhler complex three dimensional mani-
folds. Let © = R8 denote the Cayley numbers. We fix a basis {I, ..., I7} such that

(1) I; - I; = §;; with respect to the inner product.
(2) The multiplication table of the cross product I; x I is the following:

x | I I Iz Iy Is I I;
A 0 L - Is -1y I —Ig
L | -1 0 I Ie —-I -1y Is
L| L -1 0 —I; -1y Is Iy
Iy | —Is —Ig Iy 0 I L -1
Is | Iy I; Ie -1 0 -z —I
Ie | -1 1 —-Is —DIh I 0 I
L I —Is —I1y I3 L, -1 0

(7.1)

Via this basis, we have an isomorphism R’ = Im(0Q).
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Calabi considered a smooth oriented hypersurface X® < R”. Fix a unit normal vector
field N of X. There is a natural almost complex structure J : TX — T X induced
by Cayley multiplication as follows. For any x € X and any V € T,X, define J :
T.X — T X as

J(V)=NxV.

Calabi proved that J is integrable if and only if J anticommutes with the second funda-
mental form of X.

Calabi constructed compact complex manifolds as follows. Let £ be a compact Rie-
mann surface which admits three holomorphic differentials ¢y, ¢, ¢3 with the following
properties:

(1) ¢1, ¢2, @3 are linearly independent;
(2) ¢7 +¢3 +¢3 =0; )
Q) o1 b+ AP+ d3 APz >0.

Lifting ¢1, ¢, ¢3 to the universal covering & — ¥ and setting
, p
x!(p) =Re/ ¢j,  j=1273,
p/

for a fixed point p’ € X, we obtain a conformal minimal immersion
U= (xl,xz,x3) : 3 - R3.

This mapping is regular, since the differentials ¢; satisfy (3); by the Weierstrass represen-
tation, property (2) is equivalent to the statement that ¥ is minimal; finally, because of
property (1), it follows that 3 does not map into a plane.

Calabi then considered the hypersurface of the type

(W, id) : £ x R* - R x R* = Im(0),

where R3 = spang{/1, I, I3} and R* = spang {l4, Is, Is, I7}. Since ¥ : Y - R3is
minimal, S xR4isa complex manifold. If g : % — ¥ denotes a covering transformation,
then ¥ (gp) = ¥ (p) + 1, for some vector ¢, € IR3. It follows that the complex structure
on ¥ x R* is invariant under the covering group of ¥ and so descends to £ x R*. On the
other hand, for R*, we can further divide by a lattice A of translation of R*, and thereby
produce a compact complex manifold X, = £ x T* We can view X, as a family of
complex tori, parameterized by a Riemann surface.

Calabi showed that such complex manifolds X 4 are non-Kihler. However, there exists
a balanced metric on these manifolds [14, 19]. Let us consider the natural metric.

Define a 2-form on X 5 as

wo(V,W)=N-(V x W)
forany V, W € T, X atany x € X . Then clearly we have
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and using the formula
N-(VxW)y=(NxV)-W,

we also have
wo(JV, JW) =wo(V,W);  wo(V,JV)=(NxV)-(NxV)>0ifV #0.

So wy is a positive (1, 1)-form on X 4 and therefore defines a hermitian metric.
Next we check that wy is a balanced metric. The unit normal vector field of X in R7

can be written as
3 3
N=D il ) ai =1, @.2)
j=1 j=1

where a; for j =1, 2, 3 are functions on X. Let (x4, x5, x¢, x7) be the coordinates of R4,
Then we can write the hermitian metric wg as

wo = oz + ¢o,
where wy is a Kdhler metric on X and

@o = ardxs N dxs + axdxs N dxg — azdxa N dx7
—azdxs Ndxg — ardxs A dx7 + ardxe A dxy.

By direct check, we have
@8 = 2dxs A dxs A dxe A dxg.
Therefore,
d@d) = dQws A go + ¢?) = 2dws A go + 2wz A dgo = 0,

since wy is a Kihler metric and all functions a; are defined on X.
Finally, we prove that there exists a 1-Gauduchon metric on X 5. By direct computa-
tion, we have

3
85w0 N wy = aé(p() N @y = ZZajaéaj Adxg ANdxs ANdxe N dxy.
j=1

Condition (7.2) implies
3 3
Zajaéaj = — Z 80]' VAN 561]',
j=1 j=1

Combining the above two equalities yields

3
V=180wy A wp = —2+/—1 Zaa/ A z'mj Adxqg Ndxs N dxg A dxq
j=1

3
=—4> " |9aj ey,
j=1
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and therefore

v —1 93 (e®wp) A wy = v/ —1 e®wo A 30wy < 0.
XA XA

Hence, we have y1(wg) < 0, by Corollary 4; so —1 € E1(Xa).
Proposition 19. Z;(X) ={-1,0, 1}.

Proof. We have proven —1 € E1(Xx) and according to Theorem 6 we also have 1 €
E1(X ). Then by Corollary 10, 0 € E1(Xy). m]

Corollary 20. There exists a 1-Gauduchon metric on X 4.

8. A 1-Gauduchon metric on S° x S!

Let $° — P2 be the Hopf fibration of the complex projective plane P2. Then S° can be
viewed as the circle bundle over P? twisted by wrs/(2r) € H 2(P?, 7). Here wgs is the
Fubini-Study metric on P2, We let 7 : §° x §' — P? be the natural projection. Then in
a canonical way (cf. [10, 12]), we can define a complex structure on S x S! such that &
is a holomorphic map. We can define a natural hermitian metric on S> x S! as follows:

wo = ¥ wps + (vV—1/2)0 A6, 8.1)

whe_re 0 =6, ++/—16risa (1, 0)-form on $5 x S! such that d6; = 7*wgs and d6, = 0.
So 36 = m*wgs and 96 = 0, which imply

(V=1/2)80wy = —t7*wis. (8.2)
Thus
(V=1/2)88wo A @y = (V=1/2)° %0k ANO A G =~} /3! (8.3)
and therefore
V-1 39(e’wo) A wy = vV —1 e"wo A 33wy < 0.
S5xS! S3x 8!

Hence, y1(wg) < 0, by Corollary 4; so —1 € E1(S° x S1). Then by Corollary 10,
0 € E1(S° x S). That is, we have

Proposition 21. There exists a 1-Gauduchon metric on §° x S'.
Using the above natural metric wg on $° x S!, we can also prove

Proposition 22. There does not exist any pluriclosed metric on S° x S'.
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Proof. If there existed a pluriclosed metric w on S° x S!, then

~—=1 - 1
0= Y 0w Awy = —- w AT ogs < 0 (8.4)
sSxst 2 4 Jssxst
since w A rr*a)%s is a strictly positive definite (3, 3)-form on $° x S!. That is a contradic-
tion. O

We also know that there does not exist any balanced metric on S°> x S'. The proof is
standard: There is an obstruction to the existence of a balanced metric on a compact
complex manifold. Namely, on a compact complex manifold with a balanced metric no
compact complex submanifold of codimension 1 can be homologous to 0 [19]. Now for
7 : 8 x S' — P2, since 7 is a holomorphic, 7 ~!(P!) for any curve P! in P? is a
complex hypersurface in $° x S'. Certainly 77~ (P') is homologous to zero in S> x S!
since H*(S? x S', R) = 0. Therefore there exists no balanced metric on S° x S!.
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