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Abstract. We prove that every linear-activity automaton group is amenable. The proof is based
on showing that a random walk on a specially constructed degree 1 automaton group—the mother
group—has asymptotic entropy 0. Our result answers an open question by Nekrashevych in the
Kourovka notebook, and gives a partial answer to a question of Sidki.

Fig. 1. A Schreier graph for a linear-activity group.

1. Introduction

Automaton groups are the core of the algebraic theory of fractals. Just as fractals do in
geometry, automata groups form a rich new world within group theory. This world has
been a source of many interesting examples, but until recently it resisted a general theory.
Yet the simplicity of the definitions and the richness of examples suggest the existence of
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such a theory. The goal of this paper is to make a step in this direction by proving that all
linear-activity groups are amenable.

Automaton groups arise in various areas of mathematics; examples include:

The Grigorchuk group (see Grigorchuk, 1984), which has faster than polynomial but
subexponential growth, answering the question of Milnor (1968) about the existence
of such groups.

The Basilica group, a finitely generated amenable group containing a non-cyclic free
semigroup. Its level Schreier graphs have a limit which is homeomorphic to the Basil-
ica fractal, that is, the Julia set of the polynomial z2

− 1, see Grigorchuk and Żuk
(2002), Bartholdi, Grigorchuk, and Nekrashevych (2003, Figure 17 and Theorem 9.7),
and Bartholdi and Virág (2005).

The Hanoi towers group, the group of possible moves in the Hanoi towers game on three
pegs, a game introduced by Édouard Lucas in 1883. Its level Schreier graphs are
discrete Sierpiński gaskets (see Grigorchuk and Šunić, 2006).

The long-range group, an interesting group whose Schreier graphs (Figure 1) were stud-
ied by Benjamini and Hoffman (2005) in the context of long-range percolation theory.

The lamplighter group on Z, the first example of an infinite group with a Cayley graph
that has discrete spectrum, providing also a counterexample to the strong Atiyah con-
jecture. See Grigorchuk and Żuk (2001).

Automaton groups are subgroups of the automorphism group Aut(Tm) of the rooted
infinite m-ary tree for some m. Every element of Aut(Tm) can be decomposed as

g = 〈〈g0, . . . , gm−1〉〉σ, gi ∈ Aut(Tm), σ ∈ Sym(m),

where the gi , called first-level sections, now act on the subtrees rooted at the children
of the root of Tm, and σ permutes these subtrees. An automaton A is a finite subset of
Aut(Tm) so that first level sections of elements of A are also in A. An automaton group is
a group generated by an automaton. See, e.g., Sunic and Grigorchuk (2007) and references
there for a general survey on automaton groups.

A systematic study of automaton groups was initiated by Sidki (2000), who intro-
duced the concept of activity growth (or more briefly, activity), a measure of complexity
for automaton groups. We defer the precise definition for later, but note that the activity
can be either polynomial (of any degree) or exponential. There are exponential activity
growth automaton groups that are isomorphic to the free group (see Glasner and Mozes,
2005; Vorobets and Vorobets, 2007). However, one expects polynomial activity automa-
ton groups to be smaller. In particular, in contrast with most examples of finitely generated
non-amenable groups, Sidki (2000) showed that polynomial activity automaton groups
have no free subgroups (the works of Ol’shanski (1980), Adian (1982), and Olshanski
and Sapir (2002), showed such groups exist (finitely generated, non-abelian with no free
subgroup), but the examples were quite hard to come by). This prompted Sidki (2004) to
ask the following natural question.

Question. Are all polynomial activity automaton groups amenable?
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It seems that the structure of polynomial automaton groups depends a lot on the de-
gree, and we do not have a conjectured answer to Sidki’s question. The first result in this
direction is due to Bartholdi, Kaimanovich, and Nekrashevych (2008), who showed that
all degree 0 (also called bounded) activity automaton groups are amenable. Their proof
uses a variant of the self-similar random walk idea introduced in Bartholdi and Virág
(2005) to prove the amenability of the Basilica group and later streamlined and general-
ized in Kaimanovich (2005). The goal of this paper is to show the following.

Theorem 1. All linear-activity automaton groups are amenable.

Example. A simple example of our theorem is given by the long-range group: Let b act
on integers by increasing them by 1, and let a act on integers by increasing them by the
lowest power of 2 by which they are not divisible (with a(0) = 0). The group generated by
a, b is called the long-range group; its Schreier graph is shown in Figure 1. Its automaton
has two states defined recursively by

a = 〈〈a, b〉〉, b = 〈〈b, 1〉〉(01).

The question of the amenability of the long-range group was posed by Nekrashevych,
in the Kourovka notebook (2006, Question 16.74), and also in Guido’s book of conjec-
tures (2008, Conjecture 35.9).

Our paper builds on previous work in the theory, including Bartholdi and Virág (2005),
Kaimanovich (2005), and Bartholdi et al. (2008). The first part of the proof is to construct
a family of linear-activity automaton groups—the mother groups—which are then shown
to contain subgroups isomorphic to every linear-activity automaton group. This has been
done in Bartholdi et al. (2008) for bounded automaton groups. We show how to perform
this step for polynomial automata of any degree. It then suffices to show that the linear-
activity mother groups are amenable.

The second part is to find a random walk on the mother group with zero asymptotic
entropy. We can only do this for linear-activity mother groups. In fact, we conjecture that
there is a phase transition for this question, namely such walks only exist up to degree 2.
Recall that a random walk is symmetric if its step distribution µ satisfies µ(g) = µ(g−1)

for all group elements g.

Conjecture 2. The mother group of degree d has a symmetric random walk whose step
distribution is supported on a finite generating set and whose asymptotic entropy is zero
if and only if d = 0, 1, 2.

For d = 1 this follows from this paper. The high degree (d ≥ 3) case is proved1 in Amir
and Virág (2011). For d = 2 this conjecture is still open.

Compared to previous work the random walks we consider are no longer self-similar,
in the following sense.

The proof involves the analysis of random walks on an automaton group, by consid-
ering the action of the group elements on certain subtrees. This gives rise to a random

1 The conjecture is actually proved for all mother groups of degree 3 or more other than the
degree 3 mother group over the binary alphabet. We believe this to be an artifact of the proof.
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walk on a subgroup that is isomorphic to the automaton group. A key difference between
this and previous work is that the walks we consider are no longer self-similar, in that
the projected random walk has a different support. In fact, while the initial distributions
we consider have finite support, our proof involves the analysis of random walks with
infinite support that arise through the evolution of the random walk step measure. The
role previously played by self-similar walks is played by the evolution of random walk
step measures that we can control. Such control requires a high level of regularity for the
random walk. However, we believe that this is an artifact of the proof, and that the entropy
bounds should hold for more general random walks.

Conjecture 3. Every symmetric random walk with boundedly supported step distribution
on a polynomial automaton group with degree d ≤ 2 has zero asymptotic entropy.

This conjecture is open even for d = 0.
The main tool for the analysis of asymptotic entropy is study of the so-called as-

cension operator. Consider a random walk Xn with step distribution µ on an automaton
group, and let v be the first child of the root of Tm. The section of Xn at v, looked at the
times at which the walk fixes v forms another random walk with step distribution µ′. The
map T : µ 7→ µ′ is called the ascension operator (see further details in Section 4).

Ascension of random walks was first considered in Bartholdi and Virág (2005). The
ascension operator in this form appeared in Kaimanovich (2005), where the asymptotic
entropy inequalityH∞(µ) ≤ H∞(T µ)was also proved. Iterating this inequality, one gets
H∞(µ) ≤ H∞(T

nµ). In this paper, we will analyze T nµ in the case when these mea-
sures are not finitely supported and not computable exactly. The following proposition
allows us to relate H∞(µ) to the asymptotic entropy of limit points of the sequence of
measures T nµ.

Proposition 4 (Upper semicontinuity of asymptotic entropy). If νn, ν are probability
measures on a countable group so that νn→ ν weakly and H(νn)→ H(ν), then

lim sup
n→∞

H∞(νn) ≤ H∞(ν).

In light of Proposition 4, it suffices to find a subsequence along which T nµ → ν and
H(T nµ)→ H(ν), and ν has zero asymptotic entropy. Perhaps surprisingly, it is not too
difficult to show that for appropriate µ, any subsequential limit point ν has zero asymp-
totic entropy. For the other two claims, it suffices to show the tightness and entropy-
tightness (defined below) of the sequence T nµ. Proving these facts takes up a large part
of this paper. Showing the tightness of the sequence T nµ is the main obstacle to extend-
ing our proof to the degree 2 case. For convenient reference, we summarize the preceding
discussion in a theorem.

Theorem 5 (Asymptotic entropy of automaton groups). If the group generated by the
support of µ acts transitively on all levels of the tree and the sequence T kµ is entropy-
tight, then for every subsequential weak limit point ν we have

H∞(µ) ≤ H∞(ν).
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The main challenge is to construct measures for which the ascension operator is tractable.
The measures that we consider are based on the uniform measures qi on certain finite
subgroups of the mother group M. They have the property that if a probability measure
µ on M is a convex combination of convolution products of the qi’s, then so is T µ (i.e.
the algebra generated by the qi is invariant under T ). Thus the iterated ascensions T nµ
of such measures can be understood in terms of the qi’s, which have extra symmetry and
can be controlled. Further details can be found in Section 6.

Organization. The structure of this paper is as follows. Sections 2–4 contain definitions,
setup, background review and proof of some preliminary results; readers familiar with
previous work on the subject may want to skip these sections. Section 2 reviews basic
concepts related to automata groups. In Section 3 we do the same for entropy, and prove
Proposition 4. In Section 4 we introduce and study the ascension operator. Mother groups
are defined in Section 5, and it is shown that they contain all polynomial automata groups.
In Section 6 we introduce a special class of measures, called patterns, and an algebraic
way to study them. We also define an ascension operator for patterns. In Section 7 we
study properties of iterated ascension on patterns. Sections 8 contains some preliminary
results on entropy of pattern measures, and finally, the main theorem is proved in Sec-
tion 9.

2. Automata and their groups

Basic definitions. Finite automata are the simplest interesting model of computing; we
first connect our definition of automata to the more traditional one.

The space of words in alphabet {0, . . . , m − 1} has a natural tree structure, with
{wx}x<m being the children of the finite word w, and the empty word ∅ being the root.
Let Tm denote this tree. A finite automaton on m symbols is a finite set A of states to-
gether with a map A→ Am×Sym(m) sending a 7→ (a0, . . . , am−1, σa). We will use the
notation

a = 〈〈a0, . . . , am−1〉〉σa .

An automaton acts on words in alphabet {0, . . . , m− 1} sequentially. When the au-
tomaton is in a state a and reads a letter x, it outputs x.σa and moves to state ax . From this
state the automaton acts on the rest of the word. Symbolically, for a word xw (starting
with a letter x) we have the recursive definition

(xw).a = (x.σa)(w.ax). (1)

The first k symbols of the output are determined by the first k symbols read, and the
action is invertible. Note that the action is defined for both finite and infinite words, and
the action on infinite words determines the action on finite words and vice versa. It follows
that each element a ∈ A is an automorphism of Tm. The automaton group corresponding
to an automaton A is the subgroup of Aut(Tm) generated by A.
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The action (1) corresponds to the following multiplication rule:

〈〈a0, . . . , ad〉〉σ 〈〈b0, . . . , bd〉〉τ = 〈〈a0b0.σ , . . . , am−1b(m−1).σ 〉〉στ.

This multiplication rule can be used to define automaton groups without any reference to
automorphisms of the tree. However, keeping the action on the tree in mind makes some
constructions used in the proof more natural.

We use the conjugation notation ab = b−1ab.

The notion of first-level sections can be generalized to any level. If v ∈ Tm is a finite
word and g ∈ Aut(Tm), then there is a word v′ of equal length to v and an automorphism
g′ ∈ Aut(Tm) such that vw.g = v′(w.g′) for every word w. This g′ is called the section
of g at v. Informally, g′ is the action of g on the subtree above the vertex v. The section
of g at v is denoted g(v).

Activity growth of automaton groups. For any state a ∈ A, the number of length-n
words v such that the section a(v) is not the identity satisfies a linear recursion. Thus this
number grows either polynomially with some degree d or exponentially. We define the
degree of activity growth (for short, degree) of a to be d or∞, respectively. The degree
of an automaton group is the maximal degree of any of its generators. Automaton groups
are said to have bounded, linear, polynomial or exponential activity growth when their
degree is 0, 1, finite or infinite, respectively.

Degree and cycle structure. An automaton gives rise to a directed graph where there is a
directed edge from a state a to each of its first-level sections a(i). If the same state appears
more than once as an ai then there are parallel edges. If a appears as a first-level section of
itself (i.e., a(i) = a) then there is a loop at a. Thus the only edges leaving the identity (if
it is a state of A) are loops back to the identity. The loops at the identity are called trivial
cycles. To avoid degeneracies in the graph, we will assume from now on that all non-
identity states in the automaton act non-trivially. This assumption, which does not limit
the generality of the automaton groups considered, allows some connections between the
structure of the above graph and properties of the automaton.

The number of active vertices of a at level n is just the number of directed paths
of length n starting at a and ending anywhere but the identity. It follows easily that an
automaton is exponential if and only if there are two non-trivial cycles so that each is
reachable from the other via a directed path.

The non-trivial directed cycles in the directed graph of a polynomial automaton have
a partial order: c1 < c2 if c1 6= c2 and there is a directed path from a state of c2 to a state
of c1. Define the degree of a cycle c as the maximal n so that there is an increasing chain
c0 < c1 < · · · < cn = c. It is straightforward to see that the degree of a polynomial
automaton is the maximal degree of any cycle in its directed graph. The degree of a state
g is the maximal degree of a cycle reachable via a directed path from g. The identity 1 is
always considered to have degree −1. An automaton generates a finite group if and only
if it contains no non-trivial cycle.
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Hierarchy levels. For a polynomial automaton, the hierarchy level of a state is a refine-
ment of its degree, taking values in the sequence

−1̃,−1, 0̃, 0, 1̃, 1, 2̃, 2, . . . .

States in cycles of degree d have hierarchy level d̃. States of degree d that are not in a
cycle have hierarchy level d. A state can point to states either in its own hierarchy level
or in lower levels. The only state with hierarchy level −1̃ is the identity.

Collapsing levels. By dividing words in m symbols into blocks of length k, we can view
them as words in mk symbols. Similarly, given an automaton A acting on m symbols, it
naturally gives rise to an automaton with the same states acting on words in mk symbols;
we call this new automaton the k-collapse of A, and it acts on the tree Tmk .

Claim 2.1. The automaton groups of A and of its k-collapse are isomorphic.

Proof. The key is that the vertices of Tmk are naturally associated with every kth level
of Tm, and that Aut(Tm) ⊂ Aut(Tmk ). Restricting this embedding to G = 〈A〉 gives an
isomorphism from the automaton group of A to the group of the k-collapse of A. ut

3. Entropy and asymptotic entropy

The purpose of this section is to review the notion of entropy and to prove Proposition 3.3
below, which gives a condition for upper semicontinuity of the asymptotic entropy of a
random walk on a group.

Through the rest of the section we assume {µi}, µ, ν to be non-negative measures
supported on a countable set. Recall that the entropy of a finite non-negative measure µ
supported on a countable set G is defined by

H(µ) =
∑
x∈G

−µ(x) logµ(x),

where by convention 0 log 0 = 0. Throughout this paper all measures to which we ap-
ply our results will have finite entropy, though the general statements below make sense
and are correct even if we allow measures with infinite entropy. The entropy H(X) of
a discrete random variable X is given by the entropy of its distribution; the entropy
H(X1, . . . , Xn) of more random variables is given by the entropy of the joint distribution
of the Xi . In order to define conditional entropy for two random variables X, Y , let f (y)
denote the entropy of the conditional distribution ofX given Y = y. Then the conditional
entropy of X given Y is defined as H(X|Y ) := Ef (Y ).

The conditional entropy satisfies

H(X, Y ) = H(X|Y )+H(Y).

A useful and easy fact is that among measures supported on a given finite set, the one
having maximal entropy is the uniform measure on that set. Another well known fact,
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which is relevant to our cause is that among all measures supported on the non-negative
integers with given expectationM , the entropy is maximized by the geometric distribution
with P(µ = k) = 1

1+M

(
M
M+1

)k (k = 0, 1, 2, . . .). In particular, this gives the following
fact, which be of use later on:

Lemma 3.1. For any random variable τ supported on N we have

H(τ) ≤ 2 log(Eτ + 2).

Define the asymptotic entropy of a sequence of random variables Xn as

lim sup
n→∞

1
n
H(Xn).

If a random walk on a groupG has i.i.d. steps with distribution given by µ, its asymptotic
entropy is given by

H∞(µ) = lim
n→∞

1
n
H(µ∗n),

where µ∗n is the n-fold convolution of µ, or equivalently, the distribution of the nth step
of the random walk. The limit exists by subadditivity (it is easy to show that H(Xn+m) ≤
H(Xn)+H(Xm)). In particular, if H(µ) <∞ then H∞(µ) is also finite.

Recall that a set {µi} of probability measures is tight if for every ε there exists a finite
set K so that

∑
x /∈K µi(x) < ε for all i.

We say that a set {µi} of probability measures is entropy-tight if for every ε there
exists a finite set K so that for all i,∑

x /∈K

−µi(x) logµi(x) < ε. (2)

In other words, entropy-tightness means the uniform integrability of the function
µi(x) logµi(x) with respect to counting measure. The importance of entropy-tightness
comes from the following direct application of Vitali’s convergence lemma.

Lemma 3.2. Assume that µn → µ weakly. Then H(µn) → H(µ) if and only if the
sequence µn is entropy-tight.

The aim of this section is to prove the following result:

Proposition 3.3. If µi → µ and {µi} is entropy-tight, then lim supH∞(µi) ≤ H∞(µ).

We begin with two lemmas.

Lemma 3.4. For any two measures µ and ν we have H(µ ∗ ν) ≤ |ν|H(µ)+ |µ|H(ν).
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Proof. For the product measure µ× ν we have

H(µ× ν) =
∑
x,y

µ(x)ν(y) log(µ(x)ν(y))

=

∑
x,y

µ(x)ν(y) logµ(x)+
∑
x,y

µ(x)ν(y) log ν(y) = |µ|H(ν)+ |ν|H(µ).

Now by subadditivity of the function−x log x we haveH(µ∗ν) ≤ H(µ×ν). The lemma
follows. ut

Lemma 3.5. If a family {µi} of probability measures is both tight and entropy-tight then
so is the set {µi1 ∗ · · · ∗ µin} of all their n-fold convolutions.

Proof. It suffices to prove this for n = 2, with larger n following by induction. For a
measure µ we denote the measure restricted to A, without normalization, by µA.

Fix some ε > 0. The conditions imply that there is a finite set K such that for all i,

|µK
c

i | = µi(K
c) < ε, H(µK

c

i ) < ε.

For any two measures µ, ν from the set we have

µ ∗ ν = µK ∗ νK + µK
c

∗ νK + µK ∗ νK
c

+ µK
c

∗ νK
c

.

Consider the finite set B = K ∗K , and note that the support of µK ∗ νK is contained in
B. It follows that

|(µ ∗ ν)B
c

| ≤ |µK
c

∗ νK + µK ∗ νK
c

+ µK
c

∗ νK
c

| < 2ε + ε2,

which can be made arbitrarily small, hence the convolutions form a tight family.
Note that for a, b ≥ 0 we have −a log a − b log b > −(a + b) log(a + b), so

that entropy of measures is sub-additive. Note also that entropy-tightness implies that
for some M , we have H(µi) ≤ M for every i.

It follows using Lemma 3.4 that

H((µ ∗ ν)B
c

) ≤ H(µK
c

∗ νK + µK ∗ νK
c

+ µK
c

∗ νK
c

) < 2Mε + 2ε + 2ε2.

Since this too can be made arbitrarily small, the convolutions are also entropy-tight. ut

Proof of Proposition 3.3. Fix some n. By Lemma 3.5 the set {µ∗ni }i is entropy-tight, and
so by Lemma 3.2 we have

H(µ∗n) = lim
i→∞

H(µ∗ni ).

The sequence H(µ∗ni ) is subadditive, and therefore

H∞(µi) ≤
1
n
H(µ∗ni ).

Taking the lim sup of both sides we get

lim sup
i→∞

H∞(µi) ≤
1
n

lim sup
i→∞

H(µ∗ni ) =
1
n
H(µ∗n).

Since n is arbitrary, we can take a limit as n→∞ to conclude the proof. ut
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4. Random walks and the ascension operator

In our proof we use the method, introduced by Bartholdi and Virág (2005), of studying a
random walk on an automaton group by looking at its induced action on the subtree above
a vertex v, specifically at times n at which Xn fixes v.

Random walks on quotients and subgroups. Let {Xn}n≥0 be a random walk on a
countable group G started at X0 = 1.

If N is a normal subgroup of G, and K = G/N , then X has a canonical projection
to K , namely the cosets Yn = NXn. We call this the quotient random walk on G/N .

A set S ⊂ G is called recurrent (for a random walk X) if X visits S infinitely often
with probability one. For example, every finite index subgroup is recurrent in G. For a
recurrent subgroup S the steps at which the random walk visits S form a random walk Y
on S (i.e. if τn is the nth visit to S, let Yn = Xτn ). We call this the induced random walk
on S.

The ascension operator. Given an automaton groupA and a vertex j ∈ Tm, consider the
stabilizer subgroup Aj of j . Consider also the subgroup A′j which is the stabilizer of the
entire subtree above vertex j . Then A′j is normal in Aj . For g ∈ Aj the coset gA′j consists
of all elements with the same action g(j) on the subtree above j . Since A is an automaton
group, g(j) ∈ A, hence the group Aj/A′j is canonically isomorphic to a subgroup of A.

We now specialize to vertex j = 0 in the first level of Tm. Given a random walk on A
with step distribution µ, we can consider the induced walk on A0, and then its quotient
walk on A0/A

′

0. By the above, this again can be viewed as a random walk on A with step
distribution µ′. The ascension operator T is the operator that maps each probability mea-
sure µ on A, to the measure µ′ above. If τn are the times at which Xτn fixes vertex 0, then
the actions of Xτn on the subtree above 0 are a random walk with step distribution T µ.

We say that a measure µ is transitive on level k if the group generated by its support
acts transitively on that level of Tm. We will use the following entropy inequality.

Theorem 4.1 (Kaimanovich (2005, Theorem 3.1)). Assume that a probability measure
µ is transitive on the first level. Then the asymptotic entropies satisfyH∞(µ) ≤ H∞(T µ).

The upper semicontinuity of asymptotic entropy (Proposition 4) yields the following.

Theorem 4.2 (Asymptotic entropy of automaton groups). If the group generated by the
support of µ is transitive on all levels and the sequence {T kµ} is entropy-tight, then for
any subsequential limit point ν we have

H∞(µ) ≤ H∞(ν).

Proof. The transitivity of µ implies that T kµ is transitive on the first level for all k.
Repeated application of Theorem 4.1 shows that for each k,

H∞(µ) ≤ H∞(T
kµ).

Taking lim sup along the subsequence converging to ν and using Proposition 3.3 gives

H∞(µ) ≤ lim supH∞(T kµ) ≤ H∞(ν). ut
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5. Mother groups

The (m, r)-mother group, denoted Mm,r , is defined as the group generated by the au-
tomaton with the following states:

αk,σ = 〈〈αk,σ , αk−1,σ , 1, . . . , 1〉〉, 0 ≤ k ≤ r,
α−1,σ = σ, (3)
βk,ρ = 〈〈βk,ρ, βk−1,ρ, 1, . . . , 1〉〉, 1 ≤ k ≤ r,
β0,ρ = 〈〈β0,ρ, 1, . . . , 1〉〉ρ,

where σ, ρ ∈ Sym(m) are arbitrary, subject to 0.ρ = 0. The number of states in Mm,r

as defined here is m!(r + 2) + (m − 1)!(r + 1). The same group can be generated by a
smaller set of elements by taking σ, ρ only in a minimal, 2-element set of generators of
Sym(m) and stab(0) ⊂ Sym(m) respectively. This would give a generating set of size
4r + 6. However, our original choice will prove more suited to our purpose.

The actions of αk,σ and βk,ρ on a word have simple descriptions. Both read the word
and make no changes up to the (k + 1)th non-zero letter.

• If the first k + 1 non-zero letters in a word are all 1, then αk,σ permutes the next letter
by σ . Otherwise it does nothing.
• If the first k non-zero letters in a word are all 1, then βk,ρ permutes the next non-zero

letter by ρ. Otherwise it does nothing.

Thus both affect only the (k+1)th non-zero letter and the letter immediately following it.
Note that αk,σ and βk,ρ both have self-loops and are of degree k, so they have hierar-

chy level k̃.

Theorem 5.1 (Mother groups contain all). Every degree-r automaton group is isomor-
phic to a subgroup of Mm,r for some m.

Note that m is generally not the same as the degree of the tree on which the automaton
acts.

Proof. We prove that there exist m′, m′′ so that each of the following groups can be
isomorphically embedded in the next: A ⊂ Gm′,r ⊂ M∗

m′,r
⊂ Mm′′,r . The intermediate

groups are defined below. The three containments are proved in Lemmas 5.2, 5.6, 5.7. ut

The first reduction

For each hierarchy level h ∈ {−1̃,−1, 0̃, 0, 1̃, 1, 2̃, 2, . . . } we define an automaton group
as follows: G

m,−1̃ = {1}, and Gm,−1 = Sym(m). For any r ≥ 0 the group Gm,r̃ is
obtained by adding to Gm,r−1 all possible elements of the form

g = 〈〈g0, . . . , gm−1〉〉σ

(with σ ∈ Sym(m)) satisfying the following: there is a unique i such that gi = g and
gj ∈ Gm,r−1 for j 6= i.
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Similarly, for r ≥ 0 we define Gm,r by adding to Gm,r̃ all possible elements of the
form g = 〈〈g0, . . . , gm−1〉〉σ where σ ∈ Sym(m) and gj ∈ Gm,r̃ for all j .

Since they are larger than the mother groups, and are also predecessors of the mother
groups, in this section we will refer to the groups Gm,h as grandmother groups.

Lemma 5.2. LetA be an automaton with all states having hierarchy level at most h. Then
for some k, the automaton group corresponding to the k-collapse of A is isomorphic to a
subgroup of Gmk,h.
Proof. Let k ∈ Z be a multiple of all cycle lengths of A and larger than the length of any
simple directed path in A. The k-collapsed version A′ of A has the property that all of its
cycles are loops. States with loops have a single loop only, since otherwise A would be
exponential.

A state of a given hierarchy level can only point to a state from a lower level, ex-
cept for states with loops that also point to themselves. By construction, the grandmother
group Gm′,r contains all possible elements of this form. ut

Extended mother groups

Let Wk denote the finite subgroup of Aut(Tm) for which all sections at level k are the
identity.

Definition 5.3. The extended mother groups M∗
m,r̃
,M∗m,r are defined the same way as

the ordinary mother groups Mm,r , except that in the definition of the ασ,` states (3),
σ ranges over all elements of Wr+2 (for M∗

m,r̃
) and Wr+3 (for M∗m,r ). (The definition of

the βρ,` states remains unchanged.)

The extended mother groups are nested:

M∗m,k−1 ⊂M∗
m,k̃
⊂M∗m,k.

Moreover, we have the following lemma.

Lemma 5.4. If g0, . . . , gm−1 ∈M∗
m,r̃

, then g = 〈〈g0, . . . , gm−1〉〉 ∈M∗m,r .
Proof. By taking products, it suffices to prove this for the case when all gi are the identity
except for one, which is a state of M∗

m,r̃
. Moreover, since Sym(m) ⊂M∗m,r , by conjugat-

ing by a transposition τ ∈ Sym(m), we may assume that the non-identity entry is g0.
We now prove the claim by induction on the degree of g0. Consider first elements of

type α. For g0 = α−1,σ = σ this holds by the definition of M∗m,r (this is the reason for
the choice of Wr+3 in the definition). For higher degree states, by definition

αk,σ = 〈〈αk,σ , αk−1,σ ,1, . . . ,1〉〉,

so
〈〈αk,σ ,1, . . . ,1〉〉 = αk,σ 〈〈1, αk−1,σ ,1, . . . ,1〉〉

−1.

Now, αk,σ ∈M∗
m,r̃
⊂M∗m,r , and the induction hypothesis implies 〈〈1, αk−1,σ ,1, . . . ,1〉〉

∈M∗m,r as well, hence so is their product.
The proof for type β states is trivial since their definition remains the same as in the

original mother groups. ut



Amenability of linear-activity automaton groups 717

Lemma 5.5. If g1, . . . , gm ∈M∗m,r−1, and ρ ∈ Sym(m) has 0.ρ = 0, then

a = 〈〈a, g1, . . . , gm〉〉ρ ∈M∗m,r̃ .

Proof. If g is a generator of M∗m,r−1 then by definition a = 〈〈a, g, 1, . . . , 1〉〉 ∈ M∗
m,r̃

.
Multiplying such generators shows that this is true for any g ∈ M∗m,r−1. Define ai =
〈〈ai, gi, 1, . . .〉〉. We have

a =
(∏
i

a
(1i)
i

)
ρ

where (1j) is the transposition. Since β0,(1j) and β0,ρ are in M∗
m,r̃

, it follows that a ∈
M∗
m,r̃

as claimed. ut

The key step in the following construction is a conjugation due to Bartholdi et al. (2008),
where it was used for bounded automaton groups. Consider the automorphism

δ = 〈〈δ, δγ−1, δγ−2, . . .〉〉σ

where γ is the cyclic shift (012 . . . m− 1).

Lemma 5.6. For every hierarchy level h the conjugated grandmother group Gδm,h is a
subgroup of the mother group M∗m,h.

Proof. The proof proceeds by induction on h. On each level, it suffices to show this for
the group generators. For hierarchy level −1 we see that

σ δ = 〈〈γ 0−0.σ , . . . , γm−1−(m−1).σ
〉〉σ

is an element of W2 =M∗m,−1.
Assume the assertion holds for hierarchy level r − 1. Let g = 〈〈g0, . . . , gm−1〉〉σ be a

generator ofGm,r̃ . Assume that gk = g is the loop at element g. We need to prove that gδ

is an element of M∗
m,r̃

, for which it suffices to show that this holds for h = γ kgδγ−k.σ .
We have

h = 〈〈h0, . . . , hm−1〉〉γ
kσγ−k.σ , where hi = γ

i+kgδi+kγ
−(i+k).σ .

Now h0 = h, the h1, h2, . . . are in M∗m,r−1, and γ kσγ−k.σ fixes 0. Thus by Lemma 5.5
we deduce that h ∈M∗

m,r̃
.

To get from hierarchy level r̃ to hierarchy level r , suppose that g = 〈〈g0, . . . , gm−1〉〉σ

where gi are generators of M∗
m,r̃

. Then

gδ = 〈〈g
δγ 0

0 , . . . , g
δγm−1

m−1 〉〉σ
δ
∈M∗m,r

by the inductive hypothesis and Lemma 5.4. ut
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Embedding in M

The extended mother groups contain the ordinary mother groups, but there are also em-
beddings in the other direction, as the following lemma shows.

Lemma 5.7. The r + 3-collapsed version of M∗m,r is a subgroup of Mmr+3,r .

Proof. It suffices to show the inclusion of r + 3-collapsed generators. Let m′ = mr+3.
Clearly, the r + 3-collapse of any element in Wr+3 is just an element in Sym(m′). The
r + 3-collapsed version of any other state of type α is of the form

a = 〈〈a, g1, . . . , gm′−1〉〉σ

where σ ∈ Sym(m′) and the gi’s are states of lower degree than a. Just as in Lemma 5.5,
we define ai from gi by

ai = 〈〈ai, gi,1, . . . ,1〉〉

and we note that ai is a state of Mm′,r . Further 〈〈1, . . . ,1〉〉σ is just α−1,σ and so is also
in Mm′,r . Thus we can conjugate by the transposition (1i) and write

a =
(m−1∏
i=1

a
(1i)
i

)
σ

as an element of Mm′,r . The proof for states of type β uses similar arguments. ut

Level subgroups

Observe that the group of automorphisms of the first two levels of Tm fixing 0 and its
children is isomorphic to Sym(m)oSym(m−1). (We will interpret elements in Sym(m−1)
as acting on {1, . . . , m− 1}.)

For each σ ∈ Sym(m) o Sym(m− 1) and each word w in the symbols {1, . . . , m− 1}
let λw,σ denote the element of Aut(Tm) acting as follows: If the first |w| non-zero letters
agree with w, then λw,σ permutes the (|w| + 1)th non-zero letter and the following letter
by σ . Otherwise λw,σ does nothing. (E.g. λ21,(01)o(12)(· · · 001020010) = · · · 012020010
and λ21,(01)o(12)(· · · 002010010) = · · · 002010010.)

For a word w of length k, define the group Lwm,k generated by λw,σ as σ ranges over
Sym(m) o Sym(m − 1). Define Lm,k to be the group generated by the Lwm,k for all words
w of length k. Define further Lm,−1 = Sym(m).

Later, we will consider random walks on the mother group whose step distribution is
a convex combination of uniform measures on the subgroups Lm,k for various k’s.

Lemma 5.8. For each w, Lwm,k ≈ Sym(m) o Sym(m− 1). The group Lm,k is a subgroup
of Mm,k and is the direct product of Lwm,k for w ∈ {1, . . . , m−1}k . Moreover, the mother
group Mm,k is generated by the subgroups {Lm,`}`≤k.



Amenability of linear-activity automaton groups 719

Proof. The structure of Lwm,k follows from λw,σλw,σ ′ = λw,σσ ′ . Generators correspond-
ing to different words w of equal length commute, hence Lm,k is the direct product of
the Lwm,k’s.

For w = 11 . . . 1 of length k we see that Lwm,k is generated by the βk,ρ and αk,σ ’s,
hence it is a subgroup of Mm,k .

Now let w be a general word of length k, and note that the automorphism

b = βk−1,(1wk) · · ·β0,(1w1)

changes only the first k non-zero letters, and if they are all 1 it changes them to the letters
of w. Thus Lwm,k is the conjugate by b of L11...1

m,k , and therefore Lwm,k ⊂Mm,k for any w.
Note that all elements in Lm,` have degree at most `. Also since for any σ, ρ ∈

Sym(m) with ρ.0 = 0 the generators α`,σ , β`,ρ are in Lm,`, the mother group Mm,k

is generated by the subgroups {Lm,l}`≤k. ut

From now on, we will use the shorthand notation Lk and Mk for Lm,k and Mm,k respec-
tively.

6. Patterns

The random walks on the mother groups that we consider below have a step distribution
that is a mixture of the uniform measures qi on the finite level subgroups Li , and con-
volutions of these measures. It is convenient to think of the measures qi as elements of
the group algebra RMk . Note that every element of g ∈ Li for i ≥ 0 is of the form
g = 〈〈g, g1, . . . , gm〉〉 with gj ∈ Li−1. Choosing an element of Li uniformly corresponds
to choosing the gj ’s uniformly from Li−1. This property is central to the control of the
ascension of measures that we study.

The elements qi ∈ RMk satisfy the relations qi2 = qi (being uniform measures on
subgroups), and possibly some other relations that are less tractable. Therefore we intro-
duce the more basic semigroup (with identity ∅) Qk given by the generators q−1, . . . , qk
(which we call pattern letters) and the relations q2

i = qi . Elements of Qk are called pat-
terns. We further defineD = Dk ⊂ Qk to be the set of patterns that contain the letter q−1.

Since the measures qi satisfy all relations satisfied by the qi , the map qi 7→ qi extends
multiplicatively to a unique semigroup homomorphism Qk → RMk . The image p of a
pattern p is called the evaluation of p.

Each pattern is an equivalence class of words in the letters {q−1, q0, . . . , qk}. The
equivalence relation is that repetition of a symbol is equivalent to a single instance. For
example, for a, b, c in the set of letters, we have abaacaaabba ≡ abacaba. Composition
is concatenation. The length of a pattern p, i.e. the length of the shortest element of its
equivalence class, is denoted |p|. The set Q0 is of particular interest to us. It contains
patterns in two letters, which must alternate. Thus Q0 has only two patterns of any length.
Finally, for a measure µ on patterns and α ≥ 0 the α-moment of the length is denoted by

µ(|p|α) =
∑
p∈Qk

|p|αµ(p).
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The main reason for the definition of patterns is that they behave nicely with respect
to the ascension operator. To make this statement more precise, consider a probability
measure µ supported on patterns. It is a convex combination of measures concentrated on
a single pattern, and is naturally an element of RQk . Its image µ under the quotient map
is an element of RMk , or more precisely, a probability measure on Mk . The measure µ
will also be called the evaluation of µ. It is given by the formula

µ =
∑
p∈Qk

µ(p)p.

Probability measures of the form µ are special. Nevertheless, this class is preserved
by the ascension operator T . This suggests that the ascension operator can be defined on
the level of patterns.

The ascension formula

Let {Zn} be the random walk on G, with steps Xn, so that Zn = X1 · · ·Xn, and write
Xn = 〈〈Xn(0), . . . , Xn(m− 1)〉〉σn. Clearly the trajectory of 0 is itself a Markov chain: if
Jn = 0.Zn then Jn = Jn−1.σn. The section Zn(0) is not itself a Markov chain (except for
very restricted step distributions). However, the pair (Jn, Zn(0)) is a Markov chain, since
Zn(0) = Zn−1(0)Xn(Jn−1): to determine the action of Zn on the subtree above 0 we need
to know the action of Zn−1 on that subtree, and a single section of Xn, with index given
by 0.Zn−1.

A key observation used by Kaimanovich (2005) is that if we consider the process
{Zn(0)} conditioned on {Jn} we get a process with independent increments. Moreover, if
Zn(0) = Y1 · · ·Yn, then Yn depends on {Jn} only through the pair Jn−1, Jn. Indeed the
law of Yn is the distribution of Zn(Jn−1) conditioned on Jn−1.σn = Jn.

Such a process can be described naturally by the m×m matrix M with entries

Mij = EX(i)1{i.X=j} (4)

in the group algebra RG. Here X ∈ Mk is a step of the original random walk, and
therefore the section X(i) is also in the group. To take its expectation consider X(i) as
an element of the group algebra RMk . Note that the entries of this matrix are interpreted
as subprobability measures. Their total masses ‖Mij‖1 are the transition probabilities for
the Markov chain {Jn}. A useful consequence of this definition is that for µ = µ1 ∗ µ2
we have M = M1M2.

For an m×m matrix M , consider its block decomposition

M =

(
M00 M0∗
M∗0 M∗∗

)
,

so that M∗∗ is an (m− 1)× (m− 1) matrix.

Proposition 6.1. Let M be as above. Then

T µ = M00 +M0∗(I −M∗∗)
−1M∗0,

where (I − A)−1 means I + A+ A2
+ · · · .
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This appears as Theorem 2.3 in Kaimanovich (2005). Note thatM∗∗ is an (m−1)×(m−1)
matrix with entries in RG. We include the above discussion and the brief proof because
similar ideas are used next for measures on patterns.

Proof of Proposition 6.1. With the above notation, consider the trajectory of 0 until the
first time τ such that Jτ = 0. The probability of a particular trajectory 0 = J0, J1, . . . , Jτ
= 0 is the product of the transition probabilities ‖Mij‖1 of the J Markov chain. Con-
ditioned on these values, the process Yn is a product of independent samples from the
probability measuresMij/‖Mij‖1 corresponding to the transitions. Paths of length τ cor-
respond to the term M0∗M

τ−2
∗∗ M∗0, and τ = 1 gives the M00 term. ut

Ascension formula for patterns

Suppose now that µ is a probability measure on Qk , and consider the random walk on
Mk with step distribution µ. This measure has a great deal of symmetry. A uniformly
chosen term X ∈ L−1 sends any i to a uniform vertex on level 1 of the tree, and has
trivial sections X(i). An element X ∈ L` for ` > 0 stabilizes the first level of the tree,
and its sections are X(0) = X and X(i) ∈ L`−1, again uniformly. Similarly, an element
X ∈ L0 fixes 0, permutes {1, . . . , m − 1} uniformly, and its sections are X(0) = X and
X(i) ∈ L−1, again uniformly and independently.

Thus the matrix M defined above is as follows:

• For q`, ` > 0, we get a diagonal matrix, with terms M00 = q` and Mii = q`−1.
• For q−1 it is the constant matrix Mij = 1/m (entries are the measure of mass 1/m on

the identity element of the group).
• For q0 we have M00 = q−1, and M0i = Mi0 = 0 for i 6= 0. The remaining minor has

constant entries: Mij =
1

m−1q−1 for i, j > 0.

Note that in all cases, all entries Mij are in RQk .
Next, consider a measure p for a pattern p = qα1 · · · qα` . Since p is a convolution

of qαi , the resulting M is a product of the corresponding M’s, and also has entries in
RQk . Finally, from (4) we see thatM is linear in the step distribution. Since µ is a convex
combination of p, we see that µ also gives M with entries in RQk .

Further, note that for all q` the following sets of entries are all constant:

• the first row, except M00;
• the first column, except M00;
• the main diagonal, except M00;
• Mi,j for i 6= j and i, j > 0.

Note that the algebra of m × m matrices satisfying the bulleted conditions preserves
the two-dimensional space of vectors of the form (x, y, y, . . . , y). Let R be the oper-
ator M acting on this space written in the basis {(1, 0, 0, . . . , 0), (0, 1, 1, . . . , 1)}. More
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explicitly,

R00 = M00, R01 =
∑
j>0

M0j ,

R10 = M10, R11 =
∑
j>0

M1j ,

where M is defined by (4) for a sample of µ. (Taking any i > 0 in place of 1 will not
make a difference.) Matrices with the above properties form an algebra, and therefore the
same identities hold for any µ.

Since M 7→ R is a homomorphism of matrix algebras, µ 7→ R is a homomorphism
from RQk to the matrix algebra of 2 × 2 matrices over RMk: if µ = µ1 ∗ µ2 then
R = R1R2.

We now introduce the operators Rij so that for any measure µ on Qk we have Rijµ =
Rijµ. Since µ 7→ R is a homomorphism, it suffices to define R for patterns of a single
letter, and extend it by multiplicativity and linearity to all of RQk . It is clear that the
following definition satisfies this desire. For k ≥ 0, define

Rijqk =


qk, i = j = 0,
qk−1, i = j = 1,
0, i 6= j.

Note that k = 0 no longer needs special care (an advantage of using R over M). For
k = −1 define

Rijq−1 =

{
1
m
, j = 0,

m−1
m
, j = 1.

It follows that the total mass of Rijν for any measure on patterns is given by

Rijν(Qk) = 1i=j (1− ν(D))+ ν(D)
(m− 1)j

m
, (5)

where D is the set of patterns containing the letter q−1. Let Rµ be the matrix with en-
tries Rijµ. As noted above, for a pattern p = qα1 · · · qα` we have, using matrix multipli-
cation, Rp =

∏
Rqαi . For measures µ we define Rµ =

∑
p µ(p)Rp.

A key consequence of this construction is that a version of Proposition 6.1 holds
with R. Define the pattern ascension operator by

T µ = R00µ+ (R01µ)(1−R11µ)
−1(R10µ), (6)

where (1− a)−1
= 1+ a + a2

+ · · · .

Proposition 6.2. For a probability measure µ ∈ RQk we have T µ = T µ.
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Proof. Let M be the matrix corresponding to µ. By Proposition 6.1,

T µ = M00 +M0∗(I −M∗∗)
−1M∗0.

However, since M is in the aforementioned matrix algebra, it is straightforward to verify
that R01R

k
11R10 = M0∗M

k
∗∗M∗0, and hence

T µ = R00 + R01(I − R11)
−1R10.

Since Rµ = Rµ, this implies the proposition. ut

We now inspect the structure of R in more detail. Since R is multiplicative, for some
patterns its entries are delta measures:

Lemma 6.3. For a pattern p = qα1 · · · qα` that does not contain the letter q−1, we have

Rijp =


p, i = j = 0,
qα1−1 · · · qα`−1, i = j = 1,
0, i 6= j.

For a general pattern with decomposition p = p0q−1p1 · · · q−1p` into patterns pi ∈ Dc

we have

Rijp = (Riip0)

`−1∏
i=1

(
1
m
R00pi +

m− 1
m

R11pi

)
(Rjjp`).

Proof. Since R is multiplicative, the first part holds by definition. The second part follows
from the first and from Rijq−1 = (m− 1)j/m. ut

Define the averaged legacy operator

A =
∑

i,j∈{0,1}

(m− 1)i

m
Rij ,

so that Aµ =
( 1
m

m−1
m

)
(Rµ)

(1
1

)
. Note that when µ is a probability measure, so are∑

j Rijµ, and Aµ.

Lemma 6.4. Let p = p0 q−1 p1 q−1 . . . q−1 pk where pi ∈ Dc be the decomposition of
p into subpatterns not containing q−1 (possibly p0 or pk are ∅). Then

Ap = (Ap0) · · · (Ap`). (7)

Proof. This follows from the fact that R is multiplicative. Writing Rq−1=
(1

1

)( 1
m

m−1
m

)
we have∏̀

i=0

Api =
( 1
m

m−1
m

)
(Rp0)

(
1
1

)( 1
m

m−1
m

)
(Rp1)

(
1
1

)
· · ·
( 1
m

m−1
m

)
(Rp`)

(
1
1

)
=
( 1
m

m−1
m

)
(Rp0)(Rq−1)(Rp1) · · · (Rq−1)(Rp`)

(
1
1

)
= Ap. ut
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Algorithmic description of T

We now present an algorithm that uses samples of µ to get a sample from T µ. This
algorithm is an interpretation of Proposition 6.2, though it is also possible to use it to
define T , and derive Proposition 6.2 from it analogously to Proposition 6.1.

To sample T µwe consider the Markov chain {En,Qn}n>0 with state space {0, 1}×Qk

and transition probabilities

P(En = j, Qn = p | En−1 = i, Qn−1) = (Rijµ)(p). (8)

Lemma 6.5. If E0 = 0 and τ > 0 is minimal such that Eτ = 0, then Q1 · · ·Qτ has the
law of T µ.

Proof. This is almost identical to Proposition 6.1. The term R00µ corresponds to τ = 1,
and the term (R01µ)(R11µ)

n(R10µ) to τ = n+ 2. ut

Since Rµ is linear, the algorithm above can be broken into the following steps:

• Start with E0 = 0.
• For i = 1, 2, . . . sequentially pick Pn ∼ µ, and pick (En,Qn) with distribution

P(En = j, Qn = p | En−1 = i, Qn−1) = (RijPn)(p).

• At the first time τ ≥ 1 so that Eτ = 0, stop and return the pattern Q1 · · ·Qτ .

7. Properties of T and the sequence T kµ

In this section we study the evolution of a measure µ on patterns under iterated ascension.

Proposition 7.1. For a probability measure µ on patterns, the first moment of the pattern
lengths with respect to T µ satisfies

T µ(|p|) ≤ mAµ(|p|).
Proof. Because length is subadditive (|pq| ≤ |p|+ |q|), (6) implies that the first moment
of the length of a sample from T µ is bounded above by the first moment of

θ = R̃00µ+ R̃01µ(1− R̃11µ)
−1R̃10µ,

where R̃ij refer to induced measures on length, and the above formula takes values in the
semigroup algebra of Z+. Let ϕij (z) =

∑
n(R̃ijµ)(n)z

n denote the generating function
for the measure R̃ijµ. The generating function of the measure θ is

f = ϕ00 + ϕ01(1− ϕ11)
−1ϕ10.

The first moment of θ is given by f ′(1).
We have formula (5) for the total mass:

ϕij (1) = Rijµ(Qk) = 1i=j (1− µ(D))+ µ(D)
(m− 1)j

m
.

It follows that

f ′(1) = ϕ′00(1)+ ϕ
′

01(1)+ (m− 1)(ϕ′10(1)+ ϕ
′

11(1)) = mAµ(|p|). ut
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Lemma 7.2. We have the following (where D ⊂ Qk is the set of patterns contain-
ing q−1):

(a) For any x /∈ D we have T µ(x) ≥ µ(x).
(b) If µ(D) > 0, then T µ(D) < µ(D).
(c) If µ is supported on Qk−1 ∪ {qk} then so is T µ, and µ(qk) = T µ(qk).

Proof. We refer to the algorithmic description of T µ and Lemma 6.3. If the first pat-
tern P1 chosen from µ is in Dc, then E1 = 0 and Q1 = P1 is also the output of the
procedure. Claim (a) follows.

For (b), assume that µ(p) > 0 for some p ∈ D. Consider Rp as given by Lemma 6.3.
Taking only the (1/m)R00 terms in the product shows that R00p assigns some positive
probability δ ≥ m−` to the pattern p with all appearances of q−1 deleted. This pattern is
in Dc. Thus T µ(Dc) ≥ µ(Dc)+ δµ(p).

For (c), note that for such measures, the only way to get qk in the ascension algorithm
is if the first pattern selected from µ is qk , in which case it is also the output. ut

Lemma 7.3. If the measure sequence {T kµ} is tight, then its limit exists and is supported
on Dc.

Proof. Since the measures are tight they have subsequential limits that are probability
measures. Let ν be such a limit. As T is continuous, there are k so that ν and T kµ are
close enough to have

T k+1µ(D)− T ν(D) < ε.

But again since ν is a limit point there is ` > k so that

ν(D)− T `µ(D) < ε.

Summing the last two formulae and using that T `µ(D) ≤ T k+1µ(D) we get

ν(D)− T ν(D) < 2ε.

Since ε is arbitrary, T ν(D) = ν(D). By Lemma 7.2(b), this implies that ν(D) = 0.
Now, T kµ(x) is monotone in k for x /∈ D, so all subsequential limits are equal. ut

Lemma 7.4. Consider an entropy-tight set {µi} of measures on Qk such thatµi(|p|)<M
for some M . Assume further that H(p) = o(|p|) for all patterns p ∈

⋃
i supp(µi). Then

{µi} is also entropy-tight.

Proof. Denote K = {g ∈ Mm,k : |g| ≤ `}, and consider a measure µ on Qk . By
definition,

µ(·) =
∑
p

µ(p)p(·).

For compactness, denote h(x) = −x log x, and note that h is subadditive. We have

HKc (µ) =
∑
|g|>`

h
(
µ(g)

)
≤

∑
|g|>`

∑
p

h(µ(p)p(g)).
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Since p is supported on group elements of length at most |p|, the above equals∑
|g|>`

∑
|p|>`

h
(
µ(p)p(g)

)
≤

∑
|p|>`

∑
g

h(µ(p)p(g)).

However, since p is a probability measure, for any a > 0 we have∑
g

h
(
ap(g)

)
= −

∑
g

(log a + logp(g))ap(g) = h(a)+ aH(p),

and therefore
HKc (µ) ≤

∑
|p|>`

h(µ(p))+
∑
|p|>`

µ(p)H(p). (9)

Now fix ε. For ` sufficiently large, the first sum in (9) is uniformly small for all µ in our
entropy-tight family. Also by assumption, if ` is large enough then either µ(p) = 0 or
H(p) < ε|p|. Thus for large enough ` we have

HKc (µ) ≤ ε +
∑
|p|>`

µ(p)ε|p| ≤ ε +Mε.

Since ε is arbitrary, this implies that {µi} is entropy-tight as claimed. ut

8. Preliminary results for entropy of patterns

Here we establish some useful facts about entropy of µ for some measures µ on patterns.
We first recover the following result.

Theorem 8.1 (Bartholdi et al. (2008)). Let µ be supported on patterns of length 1 in Q0.
Then H∞(µ) = 0, or equivalently H(µ∗n) = o(n).

We present what is essentially the original proof, written in the language of this paper.

Proof. Lemma 7.2(c) shows that T kµ is supported on {q0} ∪Q−1 = {q0, q−1,∅}. Thus
the sequence T kµ is tight and entropy-tight. Lemma 7.3 shows that the ν = lim T kµ

exists and is supported on {q0,∅}. Thus supp(ν) is contained in a finite group, andH∞(ν)
= 0. The result now follows by Theorem 4.2. ut

Next, we show that evaluations of patterns on Q0 have entropy which is sublinear in their
length. We need the following simple lemma.

Lemma 8.2 (Monotonicity of pattern entropy). If p and r are patterns, then

H(pr) ≥ max(H(p),H(r)).

Proof. pr is a convex combination of measures of the form pg where g is chosen accord-
ing to Q. All these measures have the same entropy H(r). Entropy is a concave function,
so by Jensen’s inequality

H(pr) ≥ H(p).

In the same way, H(pr) ≥ H(r). ut
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Lemma 8.3. There is a function f (n) = o(n) such that for any pattern p ∈ Q0,

H(p) ≤ f (|p|).

Proof. Let µ be the uniform measure on {q−1, q0}, and µn = µ∗n. By concavity of
entropy and Jensen’s inequality, since µn =

∑
µn(p)p, we have

H(µn) ≥
∑
p∈Q0

µn(p)H(p) ≥
∑
p∈A`

µn(p)H(p),

where A` consists of all patterns of length greater than `. By Lemma 8.2, the entropy of
each word of length n is greater than the entropy of each word of length n − 1 (since
patterns in Q0 are just alternating q0’s and q−1’s). It follows that

H(µn) ≥ µn(A`)H(Q
∗

`),

where Q∗` can be either of the two patterns of length `.
The length of a sample of µn is the number of runs in the word Q1 · · ·Qn with i.i.d.

letters. Since each letter starts a new run with probability 1/2, the length is binomial, and
symmetric about n/2. Thus with n = 2` we have µn(A`) ≥ 1/2. We find

H(Q∗`) ≤ 2H(µ2`) = o(`). ut

We can also make some conclusions about linear automaton groups. It is not hard to see
that the combined supports L0,L1 of the evaluated patterns q0, q1 generate a bounded
automaton group. Certain walks on this group also have zero asymptotic entropy.

Lemma 8.4. Any measureµ on Q1 supported on the patterns {q0, q1,∅} satisfiesH∞(µ)
= 0.

Proof. Consider the subgroup of Mm,1 consisting of all automorphisms of the form

g = 〈〈g, g1, . . . , gm−1〉〉ρ,

where 0.ρ = 0. Note that the support of µ is contained in this subgroup. Consider a
random walk Xk with step distribution µ, and write

Xk = 〈〈Xk, Yk(1), . . . , Yk(m− 1)〉〉ρk.

The key observation is that the distribution of each Y1(i) is µ′ where µ′ = R11µ. It
follows that for each i > 0 the process (Yk(i), k ≥ 0) is a random walk on Mm,0 with
step distribution µ′, where µ′ is supported on {q−1, q0,∅}. By Theorem 8.1, this random
walk has zero asymptotic entropy. On the other hand, X is determined by ρ and the Yi’s,
so

H(Xk) ≤ H(ρk)+

m−1∑
i=1

H(Yk(i)) ≤ logm! + (m− 1)H(Yk(1)).

Thus H∞(µ) ≤ (m− 1)H∞(µ′) = 0, as required. ut
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9. The linear-activity case and the main theorem

The key step in the proof of the main theorem is the following proposition. It is based on
the results from the previous sections.

Proposition 9.1. Let µ be a measure on Q0 ∪ {q1} with µ(|p|) <∞. Then the sequence
µk = T kµ is both tight and entropy-tight.

The tightness of the sequence depends on a certain contracting property of the ascension
operator T for patterns on Q0. Proposition 7.1 gives bounds on moments of T µ in terms
of moments of Aµ. The next lemma bounds the moments of Aµ.

Lemma 9.2 (Length of legacy). For a probability measure µ on {q1} ∪Q0, we have

Aµ(|p|) ≤ 1+
m− 1
m2 µ(|p|)

Proof. The probability measure µ is a convex combination of delta measures on single
patterns. Since Aµ is linear, and the bounds are all affine in µ, it suffices to prove the
claim for delta measures µ = p supported on a single pattern p ∈ {q1} ∪Q0.

If p ∈ {∅, q1, q−1}, then Aµ is supported on patterns of length at most 1, and the
claim is trivial.

Otherwise, µ = p for some p ∈ Q0. Let t > 0 be the number of times q0 appears in
p, so that |p| ≥ 2t − 1. By (7), a sample of Aµ is given by X1 · · ·Xt where Xi are i.i.d.
with distribution Aq0 =

1
m
q0 +

m−1
m
q−1. Each run of q0’s or q−1’s reduces to a single

letter, so the length R of X1 · · ·Xt is given by the number of runs.
LetNi be the indicator of the event thatXi starts a new run, so thatR = N1+· · ·+Nj .

Then N1 ≡ 1 and for 1 < i ≤ t we have ENi = 2(m− 1)/m2. Now,

ER = 1+
2(m− 1)
m2 (t − 1) ≤ 1+

m− 1
m2 |p|. ut

Combining Lemma 9.2 with Proposition 7.1 gives the following contraction property
of T :

Corollary 9.3 (Contraction). For any probability measure µ on Q0 ∪ {q1} we have

T µ(|p|) ≤
m− 1
m

µ(|p|)+m.

Proof of Proposition 9.1. Any non-negative sequence satisfying xk+1 ≤ c + αxk with
α < 1 must be bounded. By Corollary 9.3, the sequence µk(|p|) is bounded by some
constant C, which implies tightness.

For entropy-tightness, since µk is supported within {q0, q1,∅}∪D, it suffices to show
that the contribution to its entropy from the set D converges to 0. Let νk denote µk con-
ditioned to the set D. The contribution to H(µk) from D is given by∑

P∈D

−µk(P ) logµk(P ) = εkH(νk)− εk log εk. (10)
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We have
νk(|p|) ≤

µk(|p|)

εk
≤
C

εk
.

However, note that νk is supported on patterns of alternating q0’s and q−1’s, so we have

H(νk) ≤ 1+H(ν̃k), (11)

where ν̃k is the induced measure on lengths. Using Lemma 3.1 we get

H(ν̃k) ≤ 2 log(C/εk + 2).

Combining this with (10), (11), and Lemma 7.3 which shows that εk → 0, completes the
proof. ut

We are ready to prove the following, which implies Theorem 1.

Theorem 9.4. Let µ be a probability measure on patterns in Q0∪{q1} with µ(|p|) <∞.
The random walk on the linear-activity mother group with step distribution µ has zero
asymptotic entropy.

Proof. By Theorem 4.2 it suffices to show that the sequence T kµ is entropy-tight and
converges weakly to a measure with zero asymptotic entropy.

Consider first the sequence T kµ of measures on patterns. Proposition 9.1 shows this
sequence is tight. Lemmas 7.2 and 7.3 imply that ν = lim T kµ exists and is supported on
{q1, q0,∅}. Finally, by Lemma 8.4, evaluations of measures supported on {q1, q0,∅} have
zero entropy, so H∞(ν) = 0.

It remains to show that T kµ is entropy-tight. This follows from Lemma 7.4, so we
verify its conditions. Entropy-tightness and uniformly bounded expected length for T kµ

are proved in Proposition 9.1. The support of any T kµ is contained in {q1} ∪ Q0. By
Lemma 8.3 the entropy of p ∈ {q1} ∪Q0 is o(|p|). ut
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Grigorchuk, R., Šunić, Z. (2006): Asymptotic aspects of Schreier graphs and Hanoi towers groups.
C. R. Math. Acad. Sci. Paris 342, 545–550 Zbl 1135.20016 MR 2217913
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