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Abstract. Define a line bundle L on a projective variety to be q-ample, for a natural number q,
if tensoring with high powers of L kills coherent sheaf cohomology above dimension q. Thus
0-ampleness is the usual notion of ampleness. We show that q-ampleness of a line bundle on a
projective variety in characteristic zero is equivalent to the vanishing of an explicit finite list of
cohomology groups. It follows that q-ampleness is a Zariski open condition, which is not clear
from the definition.

Ample line bundles are fundamental to algebraic geometry. The same notion of am-
pleness arises in many ways: geometric (some positive multiple gives a projective embed-
ding), numerical (Nakai–Moishezon, Kleiman), or cohomological (Serre) [20, Chapter 1].
Over the complex numbers, ampleness of a line bundle is also equivalent to the existence
of a metric with positive curvature (Kodaira).

The goal of this paper is to study weaker notions of ampleness, and to prove some of
the corresponding equivalences. The subject began with Andreotti–Grauert’s theorem that
on a compact complex manifold X of dimension n, a hermitian line bundle L whose cur-
vature form has at least n−q positive eigenvalues at every point hasH i(X,E⊗L⊗m) = 0
for every i > q, every coherent sheaf E on X, and every integer m at least equal to some
m0 depending on E [1]. Call the latter property naive q-ampleness of L, for a given natu-
ral number q. Thus naive 0-ampleness is the usual notion of ampleness, while every line
bundle is naively n-ample. Demailly recently proved a form of the converse to Andreotti–
Grauert’s theorem for (n − 1)-ample line bundles on a complex projective n-fold [9,
Theorem 1.4]. We can try to understand naive q-ampleness on projective varieties over
any field.

Sommese gave a clear geometric characterization of naive q-ampleness when in ad-
dition L is semi-ample (that is, some positive multiple of L is spanned by its global sec-
tions). In that case, naive q-ampleness is equivalent to the condition that the morphism
to projective space given by some multiple of L has fibers of dimension at most q [28].
That has been useful, but the condition of semi-ampleness is restrictive, and in this paper
we do not want to assume it. For example, the line bundle O(a, b) on P1

× P1 is naively
1-ample exactly when at least one of a and b is positive, whereas semi-ampleness would
require both a and b to be nonnegative. Intuitively, q-ampleness means that a line bundle
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Fig. 1. The (open) naive q-ample cones in N1(P1
× P1) ∼= R2.

is positive “in all but at most q directions”. One can hope to relate q-ampleness to the
geometry of subvarieties of intermediate dimension.

The main results of this paper apply to projective varieties over a field of character-
istic zero. In that situation, we show that naive q-ampleness (which is defined using the
vanishing of infinitely many cohomology groups) is equivalent to the vanishing of finitely
many cohomology groups, a condition we call q-T-ampleness (Theorem 6.3). A similar
equivalence holds for all projective schemes over a field of characteristic zero (Theo-
rem 7.1). These results are analogues of Serre’s characterization of ampleness. Indeed,
q-T-ampleness is an analogue of the geometric definition of ampleness by some power
of L giving a projective embedding; the latter is also a “finite” condition, unlike the defi-
nition of naive q-ampleness. The equivalence implies in particular that naive q-ampleness
is Zariski open on families of varieties and line bundles in characteristic zero, which is
not at all clear from the definition.

Theorem 6.3 also shows that naive q-ampleness in characteristic zero is equivalent to
uniform q-ampleness, a variant defined by Demailly–Peternell–Schneider [10]. It follows
that naive q-ampleness defines an open cone (not necessarily convex) in the Néron–Severi
vector spaceN1(X). (For example, the (n−1)-ample cone of an n-dimensional projective
variety is the complement of the negative of the closed effective cone, by Theorem 9.1.)
After these results, it makes sense to say simply “q-ample” to mean any of these equiva-
lent notions for line bundles in characteristic zero.

The following tools are used for these equivalences. First, we use the relation found
by Kawamata between Koszul algebras and resolutions of the diagonal (Theorem 2.1).
Following Arapura [3, Corollary 1.12], we show that Castelnuovo–Mumford regular-
ity behaves well under tensor products on any projective variety (Theorem 3.4). We
prove the vanishing of certain Tor groups associated to the Frobenius homomorphism
on any commutative Fp-algebra (Theorem 4.1). Finally, Theorem 5.1 generalizes Ara-
pura’s positive characteristic vanishing theorem [3, Theorem 5.4] to singular varieties.
The main equivalences of the paper, which hold in characteristic zero, are proved by the
unusual method of reducing modulo many different prime numbers and combining the
results.

Finally, we give a counterexample to a Kleiman-type characterization of q-ample line
bundles. Namely, we define an R-divisor D to be q-nef if −D is not big on any (q + 1)-
dimensional subvariety ofX. The q-nef cone is closed inN1(X) (not necessarily convex),
and all q-ample line bundles are in the interior of the q-nef cone. The converse would be
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a generalization of Kleiman’s numerical criterion for ampleness (the case q = 0). This
“Kleiman criterion” is true for q = 0 and q = n− 1, but Section 10 shows that it can fail
for 1-ample line bundles on a complex projective 3-fold.

1. Notation

Define an R-divisor on a projective variety X to be an R-linear combination of Cartier
divisors on X [20]. Two R-divisors are called numerically equivalent if they have the
same intersection number with all curves on X. We write N1(X) for the real vector space
of R-divisors modulo numerical equivalence, which has finite dimension.

The closed effective cone is the closed convex cone in N1(X) spanned by effective
Cartier divisors. A line bundle is pseudoeffective if its class in N1(X) is in the closed
effective cone. A line bundle is big if its class in N1(X) is in the interior of the closed
effective cone. A line bundle L is big if and only if there are constants m0 and c > 0
such that h0(X,L⊗m) ≥ cmn for all m ≥ m0, where n is the dimension of X [20, Vol. 1,
Theorem 2.2.26].

Let X be a projective scheme of dimension n over a field. Assume that the ring O(X)
of regular functions on X is a field; this holds in particular if X is connected and reduced.
Write k = O(X). Define a line bundle OX(1) on X to be N -Koszul, for a natural num-
ber N , if the sections of OX(1) give a projective embedding of X and the homogeneous
coordinate ringA =

⊕
j≥0H

0(X,O(j)) isN -Koszul. That is, the field k has a resolution
as a graded A-module,

· · · → M1 → M0 → k→ 0,

with Mi a free module generated in degree i for i ≤ N . (Note that Polishchuk–Positsel-
ski’s book on Koszul algebras uses “N -Koszul” in a different sense [27, Section 2.4].)
In particular, we say that a line bundle OX(1) is Koszul-ample if it is 2n-Koszul. For
example, the standard line bundle O(1) on Pn is Koszul-ample. Backelin showed that a
sufficiently large multiple of every ample line bundle on a projective variety is Koszul-
ample (actually withMi generated in degree i for all i, not just i at most 2n, but we do not
need that) [4]. Explicit bounds on what multiple is needed have been given [25, 11, 14].

One advantage of working with N -Koszulity for finite N rather than Koszulity in all
degrees is thatN -Koszulity is a Zariski open condition in families, as we will use in some
arguments.

Given a Koszul-ample line bundleOX(1) on a projective schemeX, define the Castel-
nuovo–Mumford regularity of a coherent sheaf E on X to be the least integerm such that

H i(X,E(m− i)) = 0

for all i > 0 [20, Vol. 1, Definition 1.8.4]. (Thus the regularity is −∞ if E has zero-
dimensional support.) We know that for any coherent sheafE,E(m) is globally generated
and has vanishing higher cohomology for m sufficiently large, and one purpose of regu-
larity is to estimate how large m has to be. Namely, if reg(E) ≤ m, then E(m) is globally
generated and has no higher cohomology [20, Vol. 1, Theorem 1.8.3]. We remark that if
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“H i(X,E(m − i)) = 0 for all i > 0” holds for one value of m, then it also holds for
any higher value ofm [20, Vol. 1, Theorem 1.8.5]. It is immediate from the definition that
reg(E(j)) = reg(E)− j for every integer j .

To avoid confusion, note that reg(OX) can be greater than 0, in contrast to what hap-
pens in the classical case where X is Pn and OX(1) is the standard line bundle O(1).

2. Resolution of the diagonal

In this section, we show that Koszul-ampleness of a line bundle OX(1) leads to an ex-
plicit resolution of the diagonal as a sheaf on X × X. The resolution was constructed for
OX(1) sufficiently ample by Orlov [24, Proposition A.1], and under the more convenient
assumption that the coordinate ring of (X,OX(1)) is a Koszul algebra by Kawamata [15,
proof of Theorem 3.2]. Theorem 2.1 works out the analogous statement when OX(1) is
only N -Koszul.

Let X be a projective scheme over a field. Assume that the ring O(X) of regular
functions on X is a field; this holds in particular if X is connected and reduced. Write
k = O(X). Let OX(1) be an N -Koszul line bundle, for a positive integer N . That is,
OX(1) is very ample and the homogeneous coordinate ring A =

⊕
i≥0H

0(X,O(i)) is
N -Koszul. (In later sections, we will work with a Koszul-ample line bundleOX(1), which
means taking N = 2 dim(X).)

Define vector spaces Bm inductively by B0 = k, B1 = H
0(X,O(1)), and

Bm = ker
(
Bm−1 ⊗H

0(X,O(1))→ Bm−2 ⊗H
0(X,O(2))

)
.

(Products are over k unless otherwise specified.) By definition of N -Koszulity, the com-
plex

BN ⊗ A(−N)→ · · · → B1 ⊗ A(−1)→ A→ k→ 0 (1)

of graded A-modules is exact. (For an integer j and a graded module M , M(j) means
M with degrees lowered by j .) The vector space TorAi (M, k) for a bounded-below
A-module M can be viewed as the generators of the ith step of the minimal resolution
of M . The Koszul resolution (1) of k as an A-module is clearly minimal, and so

Bm ∼= TorAm(k, k)

for 0 ≤ m ≤ N .
Let R0 = OX, and

Rm = ker(Bm ⊗OX → Bm−1 ⊗OX(1))

for m > 0. The definition of Bm gives a complex of sheaves

0→ Rm ⊗OX OX(−m+ 1)→ Bm ⊗k OX(−m+ 1)→ · · ·
→ B1 ⊗k OX → OX(1)→ 0. (2)

This is exact for 0 < m ≤ N by (1), using that (by Serre) a sequence of sheaves is exact
if tensoring with O(j) for j large and taking global sections gives an exact sequence. It
follows that Rm is a vector bundle on X for m ≤ N .
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Theorem 2.1. There is an exact sequence of sheaves on X ×k X,

RN−1 �OX(−N + 1)→ · · · → R1 �OX(−1)→ R0 �OX → O1→ 0, (3)

where 1 ⊂ X ×k X is the diagonal.

Here E � F denotes the external tensor product π∗1 (E) ⊗ π
∗

2 (F ) on a product scheme
X1 ×k X2, for sheaves E on X1 and F on X2.

Proof. By Serre, this sequence of sheaves is exact if tensoring withO(j, l) for all j and l
sufficiently large and taking global sections gives an exact sequence. The definition of Rm

implies that

H 0(X,Rm(j)) = ker
(
Bm ⊗H

0(X,O(j))→ Bm−1 ⊗H
0(X,O(j + 1))

)
= ker(Bm ⊗ Aj → Bm−1 ⊗ Aj+1)

for all j ≥ 0. Thus we want to prove exactness of the complex of k-vector spaces

Al−N+1 ⊗ ker(BN−1 ⊗ Aj → BN−2 ⊗ Aj+1)→ · · ·

→ Al−1 ⊗ ker(B1 ⊗ Aj → Aj+1)→ Al ⊗ Aj → Aj+l → 0 (4)

for all j and l sufficiently large. In fact, we will prove this for all j, l ≥ 0.
Because A is an associative algebra with augmentation A→ k, the groups Ext∗A(k, k)

form an associative algebra (typically not graded-commutative, even when A is commu-
tative). The product can be viewed as composition in the derived category of A. Since
ExtiA(k, k) ∼= TorAi (k, k)

∗, we can also say that TorA∗ (k, k) is a coassociative coalgebra
[27, Section 1.1]. Thus we have natural maps Bi+j → Bi ⊗ Bj for i and j at most N .
Coassociativity says in particular that the two compositions

Bi → A1 ⊗ Bi−1 → A1 ⊗ Bi−2 ⊗ A1 and Bi → Bi−1 ⊗ A1 → A1 ⊗ Bi−2 ⊗ A1

are equal, where we have identified B1 with A1. Also, there is a natural isomorphism
Ext∗A(k, k) ∼= Ext∗Aop(k, k) that reverses the order of multiplication [27, Section 1.1].
For a graded associative algebra A, it follows that A is N -Koszul if and only if Aop is
N -Koszul. Therefore, for an N -Koszul algebra A, the following version of the Koszul
complex (1) (using the maps Bi → A1 ⊗ Bi−1 rather than Bi → Bi−1 ⊗ A1) is also
exact:

A(−N)⊗ BN → · · · → A(−1)⊗ B1 → A→ k→ 0 (1′)

Let us artificially define Bi to be zero for i > N . Consider the following triangular
diagram, where the rows are obtained from the Koszul complex (1′) and the columns from
the Koszul complex (1):
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0 // A0 ⊗ B0 ⊗ Aj+l // 0

...

OO

0

0 // A0 ⊗ Bl−1 ⊗ Aj+1 //

OO

· · · // Al−1 ⊗ B0 ⊗ Aj+1 //

OO

0

0 // A0 ⊗ Bl ⊗ Aj //

OO

· · · // Al−1 ⊗ B1 ⊗ Aj //

OO

Al ⊗ Aj //

OO

0

The diagram commutes by the equality of the two maps Bi → A1 ⊗ Bi−2 ⊗ A1 men-
tioned above. View this diagram as having the group A0 ⊗ B0 ⊗ Aj+l in position (0, 0).
Multiplying the vertical maps in odd columns by −1 makes this commutative diagram
into a double complex C, meaning that the two composite maps in each square add up
to zero. Compare the two spectral sequences converging to the cohomology of the to-
tal complex Tot(C) [22, Section 2.4]. In the first one, IE

pq

0 = Cpq and the differential
d0 : IE

pq

0 → IE
p,q+1
0 is the vertical differential of C. Column p of C (for 0 ≤ p ≤ l)

is Ap tensored with the Koszul complex (1) in degree j + l − p, truncated at the step
min{l − p,N}. Therefore,

IE
pq

1 =


Ap⊗ker(Bl−p⊗Aj → Bl−p−1⊗Aj+1) if q = −l and p+q ≥ −(N −1),
0 if q 6= −l and p+q ≥ −(N −1),
? if p+q ≤ −N.

So Hp(Tot(C)) is isomorphic to the cohomology of the complex

Al−N+1 ⊗ ker(BN−1 ⊗ Aj → BN−2 ⊗ Aj+1)→ · · ·

→ Al−1 ⊗ ker(B1 ⊗ Aj → B0 ⊗ Aj+1)→ Al ⊗ Aj → 0

for −(N − 2) ≤ p ≤ 0, where Al ⊗ Aj is placed in degree zero. (In this range, these
groups in the E1 term cannot be hit by any differential after d1.)

The second spectral sequence converging to H ∗(Tot(C)) has IIE
pq

0 = C
qp, and the

differential d0 : IIE
pq

0 → IIE
p,q+1
0 corresponds to the horizontal differential in C.

Row −r in C is the Koszul complex (1′) in degree r (with the group k omitted in the
case r = 0), truncated at the N th step, and tensored with Aj+l−r . So

IIE
pq

1 =


Aj+l if p = q = 0,
0 if p + q ≥ −(N − 1) and (p, q) 6= (0, 0),
? if p + q ≤ −N.

ThereforeHp(Tot(C)) is isomorphic toAj+l if p = 0 and to zero if−(N−1) ≤ p ≤ −1
(although we only need this for −(N − 2) ≤ p ≤ −1). Combining this with the previous
description of Hp(Tot(C)) gives the exact sequence (4), as we want. ut
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3. Castelnuovo–Mumford regularity of a tensor product

The properties of Castelnuovo–Mumford regularity discussed in Section 1 follow imme-
diately from the classical case of sheaves on projective space. A deeper fact is that, since
OX(1) is Koszul-ample, regularity behaves well under tensor products (Theorem 3.4).
This will be used along with Lemma 3.3 in the proof of our main vanishing theorem,
Theorem 5.1. The theorem that regularity behaves well under tensor products was proved
by Arapura [3, Section 1], but the statements there have to be corrected slightly (we have
to define Koszul-ampleness to be in degrees out to 2n, not just n, for the proof of [3,
Lemma 1.7] to work). Also, Theorem 2.1 simplifies the Koszulity assumption needed for
these results, and [3, Section 1] works with a smooth variety, an assumption which can be
dropped. So it seems reasonable to give the proofs here.

Throughout this section, letX be a projective scheme of dimension n over a field such
that the ring O(X) is a field (for example, any connected reduced projective scheme over
a field). Write k = O(X). Let OX(1) be a very ample line bundle, and define the vector
bundles Ri as in Section 2. (We will only consider Ri when OX(1) is at least i-Koszul.)

Lemma 3.1. Let E be a vector bundle and F a coherent sheaf on X. Let i ≥ 0, and
assume thatOX(1) is (2n− i+1)-Koszul. Suppose that for each pair of integers 0 ≤ a ≤
2n− i and b ≥ 0, either H b(X,E ⊗Ra) = 0 or H i+a−b(X, F (−a)) = 0. Then

H i(X,E ⊗ F) = 0.

Proof. This is essentially [3, Lemma 1.6]. Theorem 2.1 gives the first 2n − i steps of a
resolution of the diagonal on X×k X. Tensoring with E�F gives a resolution of E⊗F
on the diagonal in X ×X:

(E ⊗R2n−i)� F(−2n+ i)→ · · · → (E ⊗R0)� F(0)→ E ⊗ F → 0.

To check that the latter complex really is exact, we have to show that the sheaves
TorOX⊗kOXi (E⊗kF,OX) are zero for i > 0. SinceE is a vector bundle, it suffices to show
that TorOX⊗kOXi (OX ⊗k F,OX) = 0 for i > 0. But this is isomorphic to TorOXi (F,OX),
which is indeed zero for i > 0.

It follows that H i(X,E ⊗ F) is zero if H i+a(X × X, (E ⊗Ra) � F(−a)) = 0 for
0 ≤ a ≤ 2n− i. (Because X×X has dimension 2n, it does not matter how the resolution
continues beyond degree 2n − i.) This vanishing follows from our assumption by the
Künneth formula. ut

For q = 0, the following is a well-known property of Castelnuovo–Mumford regular-
ity [20, Vol. 1, Theorem 1.8.5]. Keeler observed that the proof generalizes to give [16,
Lemma 2.2]:

Lemma 3.2. Let OX(1) be a basepoint-free ample line bundle on a projective scheme X
over a field. Let F be a coherent sheaf and q a natural number such that

0 = H q+1(X, F (−1)) = H q+2(X, F (−2)) = · · · . (Cq )

Then F(1) also satisfies (Cq). That is, 0 = H q+1(X, F ) = H q+2(X, F (−1)) = · · · .
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We return to our standing assumptions in this section: OX(1) is a very ample line bundle
on a projective scheme X such that the ring O(X) is a field k, and X has dimension n
over k.

Lemma 3.3. Let F be a coherent sheaf on X. Let q be a natural number such that

H q+1(X, F (−1)) = H q+2(X, F (−2)) = · · · .

Then H j (X,Ri ⊗ F) = 0 for j > q if OX(1) is (n− j + 1+ i)-Koszul.
Proof. This is [3, Corollary 1.9], with the Koszulity assumption corrected. The method is
to show more generally that for any a ≥ 0, i ≥ 0, and q+a < j ,H j (X,Ri⊗F(−a)) = 0
if OX(1) is (n− j + 1+ i)-Koszul. We prove this by descending induction on a, starting
with a ≥ n where the result is automatic (since j > q + a ≥ n). We can assume that
j ≤ n; otherwise the cohomology group we consider is automatically zero. Therefore,
N := n− j +1+ i is at least i+1. The sequence (2) in Section 2 gives an exact sequence
of vector bundles

0→ Ri+1 ⊗OX(−1)→ Bi+1 ⊗OX(−1)→ Ri → 0,

since i + 1 ≤ N . This gives an exact sequence of cohomology

Bi+1 ⊗H
j (X, F (−a − 1))→ H j (X,Ri ⊗ F(−a))→ H j+1(X,Ri+1 ⊗ F(−a − 1)).

The first group is zero by our assumption on F and Lemma 3.2, and the last group is zero
by our descending induction on a. Thus H j (X,Ri ⊗ F(−a)) = 0 as we want. ut

We now generalize a standard property of Castelnuovo–Mumford regularity from sheaves
on projective space to sheaves on an arbitrary reduced projective scheme. We follow Ara-
pura’s proof [3, Corollary 1.12], with the Koszulity assumption corrected.

Theorem 3.4. LetX be a projective scheme of dimension n over a field such that the ring
of regular functions on X is a field (example: X connected and reduced). Let OX(1) be a
2n-Koszul line bundle on X. Let E be a vector bundle and F a coherent sheaf on X. Then

reg(E ⊗ F) ≤ reg(E)+ reg(F ).
Proof. By definition, E(reg(E)) and F(reg(F )) have regularity zero. So we can assume
that E and F have regularity at most zero, and we want to show that E⊗F has regularity
at most zero. That is, we have to show that

H i(X,E ⊗ F(−i)) = 0

for i > 0. For any 0 ≤ a ≤ n + b − 1 and b > 0, we have H b(X,E ⊗ Ra) = 0 by
Lemma 3.3 (in particular, we have arranged for the Koszulity assumption in Lemma 3.3
to hold). For any b > 0 and any n+ b ≤ a ≤ 2n− i, we have

H i+a−b(X, F (−i − a)) = 0

for dimension reasons. Finally, for any 0 ≤ a ≤ 2n− i and b = 0,

H i+a−b(X, F (−i − a)) = 0

since F has regularity at most zero. Then Lemma 3.1 gives that H i(X,E ⊗ F(−i)) = 0
for i > 0. ut
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4. Hochschild homology and the Frobenius homomorphism

In this section we prove a flatness property of the Frobenius homomorphism F(x) = xp

for all commutative Fp-algebras, to be used in the proof of our main vanishing theorem,
Theorem 5.1. This seems striking, since the Frobenius homomorphism on a noetherian
Fp-algebra A is flat only for A regular [18, Corollary 2.7]. The statement is that the Tor
groups of certain A ⊗ A-modules vanish in positive degrees, or equivalently that certain
Hochschild homology groups vanish in positive degrees. The proof is inspired by Pi-
rashvili’s proof of vanishing for a related set of Tor groups in positive characteristic [26].

Let k be a field of characteristic p > 0, and let N be a natural number. For a commu-
tative k-algebra A, write Ã = k⊗k A, where k maps to k by the N th iterate of Frobenius,
x 7→ xp

N
. We view Ã as a k-algebra using the left copy of k. The relative Frobenius

homomorphism ϕ : Ã→ A is the k-algebra homomorphism given by ϕ(x ⊗ y) = xyp
N

for x ∈ k, y ∈ A. Note that Ã depends on the fixed number N throughout the following
proof.

Theorem 4.1. For any commutative k-algebra A, view Ã⊗k A as a module over Ã⊗k Ã
by x ⊗ y 7→ x ⊗ ϕ(y), and Ã as a module over Ã⊗k Ã by x ⊗ y 7→ xy. Then

TorÃ⊗kÃi (Ã⊗k A, Ã) ∼=

{
A if i = 0,
0 if i > 0.

The Hochschild homology of a k-algebra R with coefficients in an R-bimodule M can
be defined as Hi(R,M) = TorR⊗kR

op

i (M,R) [21, Proposition 1.1.13]. So an equivalent
formulation of Theorem 4.1 is that

Hi(Ã, Ã⊗k A) ∼=

{
A if i = 0,
0 if i > 0.

Proof of Theorem 4.1. In this proof, all tensor products are over k unless otherwise spec-
ified. The theorem is easy in degree zero: an isomorphism

(Ã⊗ A)⊗Ã⊗Ã Ã→ A

is given by mapping (x ⊗ y)⊗ 1 to ϕ(x)y.
The vanishing of Tor in positive degrees is clear for R a free commutative k-algebra

(that is, a polynomial ring, possibly on infinitely many variables). Indeed, the relative
Frobenius homomorphism ϕ : Ã→ A is flat in this case, so that Ã⊗ A is a flat Ã⊗ Ã-
module.

For an arbitrary commutative k-algebra, let P∗ → A be a free resolution of A, mean-
ing anA-augmented simplicial commutative k-algebra P∗→ Awhich is acyclic and such
that each Pi is a free commutative k-algebra. This exists [21, Section 3.5.1].

We are trying to show that Hochschild homology Hi(Ã, Ã ⊗k A) is zero for i > 0.
The standard complex computing Hochschild homology Hi(R,M) for a k-algebra R and
an R-bimodule M consists of the k-vector spaces Cn(R,M) = M ⊗ R⊗n. These form a
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simplicial k-vector space, with boundary maps di : M ⊗ R⊗n → M ⊗ R⊗n−1 given by
[21, Section 1.1.1]:

d0(m, a1, . . . , an) = (ma1, a2, . . . , an),

di(m, a1, . . . , an) = (m, a1, . . . , aiai+1, . . . , an) for 1 ≤ i ≤ n− 1,
dn(m, a1, . . . , an) = (anm, a1, . . . , an−1).

So we can view Hochschild homology Hi(R,M) as the homology groups of the chain
complex C∗(R,M) with boundary map

b =

n∑
i=0

(−1)idi .

For any homomorphism R → S of k-algebras and homomorphism M → N |R
of R-bimodules, we have an obvious homomorphism C∗(R,M) → C∗(S,N) of the
Hochschild chain complexes. Imitating the proof of [21, Theorem 3.5.8], we consider the
homomorphisms between the chain complexes C∗(Pn, P̃n ⊗ Pn) given by the k-algebra
homomorphisms di : Pn → Pn−1 for 0 ≤ i ≤ n. We get a commutative diagram, where
the horizontal arrows are the alternating sum of the homomorphisms given by d0, . . . , dn:y y y
(P̃0 ⊗ P0)⊗ P̃

⊗2
0 ←−−−− (P̃1 ⊗ P1)⊗ P̃

⊗2
1 ←−−−− (P̃2 ⊗ P2)⊗ P̃

⊗2
2 ←−−−−

b

y b

y b

y
(P̃0 ⊗ P0)⊗ P̃0 ←−−−− (P̃1 ⊗ P1)⊗ P̃1 ←−−−− (P̃2 ⊗ P2)⊗ P̃2 ←−−−−

b

y b

y b

y
P̃0 ⊗ P0 ←−−−− P̃1 ⊗ P1 ←−−−− P̃2 ⊗ P2 ←−−−−

Define a double complexM by changing b to−b in the odd columns of this commutative
diagram.

The homology of the ith column in the double complex M is the Hochschild homol-
ogy of the polynomial ring Pi which we have already computed:

Hj (P̃i, P̃i ⊗ Pi) =

{
Pi if j = 0,
0 if j > 0.

Therefore the homology of the total complex, Hi(Tot(M)), is isomorphic to

Hi(P0 ← P1 ← P2 ← · · · ) ∼=

{
A if i = 0,
0 if i > 0.

On the other hand, the homology of the j th row of the double complex M is

Hi(P̃∗ ⊗ P∗ ⊗ P̃
⊗j
∗ ) ∼=

{
Ã⊗ A⊗ Ã⊗j if i = 0,
0 if i > 0.
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This calculation uses the Eilenberg–Zilber theorem: when we define the tensor product of
two simplicial k-vector spaces by (A⊗B)n = An⊗kBn, with boundary maps di(x⊗y) =
di(x)⊗di(y), the associated chain complex has homology groupsHi(A⊗B) isomorphic
to Hi(A)⊗Hi(B) [21, Theorem 1.6.12]. By the second spectral sequence converging to
the homology of Tot(M), we have an isomorphism

Hi(Ã⊗ A← (Ã⊗ A)⊗ Ã← · · · ) ∼=

{
A if i = 0,
0 if i > 0.

The complex here (a quotient of the 0th column ofM) is the one that computes Hochschild
homology Hi(Ã, Ã⊗ A). Thus we have shown that

Hi(Ã, Ã⊗ A) ∼=

{
A if i = 0,
0 if i > 0. ut

5. Vanishing in positive characteristic

In this section, we prove a vanishing theorem for reduced projective schemes over a field
of positive characteristic. For smooth projective varieties, the theorem is due to Arapura
[3, Theorem 5.4]. The generalization to singular schemes follows the original proof,
but with a new ingredient, a flatness property of the Frobenius morphism for arbitrary
schemes over Fp (Theorem 4.1).

Theorem 5.1 is very different from the best-known vanishing theorem in positive char-
acteristic, Deligne–Illusie–Raynaud’s version of the Kodaira vanishing theorem. Their
proof shows that (when a smooth projective variety X lifts from Z/p to Z/p2) vanishing
of cohomology groups for the line bundleKX⊗Lp

b
with b large can imply vanishing for

KX ⊗ L [8, Lemme 2.9]. Theorem 5.1 goes the opposite way.
One result related to Theorem 5.1 is Siu’s nonvanishing theorem. Siu’s theorem says

that if E is a pseudoeffective line bundle on a smooth projective variety X of dimen-
sion n over a field of characteristic zero, and OX(1) is an ample line bundle on X, then
H 0(X,KX⊗E(j)) 6= 0 for some 1 ≤ j ≤ n+1. (Ein pointed out this slight extension of
Siu’s theorem as stated in [20, Corollary 9.4.24].) By Serre duality, Siu’s theorem gives
that if L is a line bundle with 0 = H n(X,L(−1)) = · · · = H n(X,L(−n− 1)), then L is
naively (n− 1)-ample (that is, L∗ is not pseudoeffective, by Theorem 9.1).

We use the notion of regularity reg(M) from Section 1.

Theorem 5.1. Let X be a projective scheme of dimension n over a field of characteristic
p > 0 such that O(X) is a field (example: X connected and reduced). Let OX(1) be a
Koszul-ample line bundle on X. Let q be a natural number. Let L be a line bundle on X
with

0 = H q+1(X,L(−n− 1)) = H q+2(X,L(−n− 2)) = · · · .
Then for any coherent sheaf M on X, we have

H i(X,L⊗p
b

⊗M) = 0

whenever i > q and pb ≥ reg(M).
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Proof. We follow Arapura’s proof in the smooth case as far as possible. Let k be the
field H 0(X,OX). Let i be an integer greater than q, and b a natural number such that
pb ≥ reg(M). Let f ′ = F b, where F : X → X is the absolute Frobenius morphism
(which acts as the identity on X as a set, and acts by pth powers on OX). Let X̃ be the
base extension X ×k k where k maps to k by x 7→ xp

b
. Then f ′ factors as

X
f
→ X̃

g
→ X,

where f is a morphism of k-schemes and g is the natural morphism. The morphism f is
called the relative bth Frobenius morphism. Let L̃ = g∗L and OX̃(1) = g

∗OX(1). Since
g is given by a field extension, OX̃(1) is Koszul-ample.

Let

Ci =

{
R̃−i �OX̃(i) if −2n+ 1 ≤ i ≤ 0,
ker(R̃2n−1 �OX̃(−2n+ 1)→ R̃2n−2 �OX̃(−2n+ 2)) if i = −2n,

where Ri is defined as in Section 2 and R̃i = g
∗Ri . The sheaves Ci form a resolution C∗

of the diagonal 1 on X̃× X̃, by Theorem 2.1. More generally, for vector bundles E1 and
E2 on X̃, (E1 � E2) ⊗ C

∗ is quasi-isomorphic to δ∗(E1 ⊗ E2), where δ : X̃ → X̃ × X̃

denotes the diagonal embedding. Therefore, D∗ = (OX̃(−n)�OX̃(n))⊗ C
∗ is another

resolution of the diagonal.
Let 0 ⊂ X̃ × X be the graph of f : X → X̃, and write γ for the inclusion X ∼=

0 ⊂ X̃ × X. Then 0 = (1 × f )−1(1). Since D∗ is a resolution of O1 ∼= OX̃, the

cohomology sheaves of (1 × f )∗(D∗) are the groups Tor
OX̃×X̃
∗ (OX̃×X,OX̃). Since X

may be singular, the relative Frobenius morphism need not be flat, and so OX̃×X need
not be flat overOX̃×X̃. Nonetheless, Theorem 4.1 shows that these Tor groups are zero in
positive degrees. Therefore, (1× f )∗(D∗) is a resolution of O0 on X̃ ×X.

I claim that the complex of sheaves

G∗ = (L̃�M)⊗ (1× f )∗(D∗)

is a resolution of the sheaf γ∗(f ∗L̃⊗M) ∼= γ∗(L⊗p
b
⊗M). This follows if we can show

that the sheaf Tor
OX̃⊗kOX
i (L̃ ⊗k M,O0) is zero for i > 0, where O0 ∼= OX. Since L̃ is

a line bundle, it suffices to show that Tor
OX̃⊗kOX
i (OX̃ ⊗k M,OX) is zero for i > 0. But

this is isomorphic to TorOXi (M,OX), which is indeed zero for i > 0. Therefore, we can
compute H i(X,L⊗p

b
⊗M) = H i(X̃ ×X, γ∗(L

⊗pb
⊗M)) using the resolution G∗.

By the spectral sequence Ei+c,−c1 = H i+c(X̃ × X,G−c) ⇒ H i(X̃ × X,G∗), the
theorem holds if we can show that H i+c(X̃ × X,G−c) = 0 for i > q and c ≥ 0. This
is clear for the leftmost sheaf in the resolution, corresponding to c = 2n, because X̃ ×X
has dimension only 2n and q is nonnegative. For 0 ≤ c ≤ 2n − 1, the Künneth formula
gives that

H i+c(X̃ ×X,G−c) = H i+c
(
X̃ ×X, (R̃c ⊗ L̃(−n))�M(p

b(n− c))
)

∼=
⊕

r+s=i+c

H r(X̃, R̃c ⊗ L̃(−n))⊗H
s
(
X,M(pb(n− c))

)
.
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It remains to show that for all i > q, all 0 ≤ c ≤ 2n − 1, and all r + s = i + c, either
the H r group or the H s group here is zero.

First suppose that r > q. We can assume that s ≤ n; otherwise the H s group is zero.
So r ≥ i + c − n, or equivalently c ≤ n + r − i, and so c ≤ n + r − 1. By that fact
together with r > q, Koszul-ampleness of OX(1), and our assumption on L, Lemma 3.3
gives that H r(X,Rc ⊗ L(−n)) = 0. This implies the same vanishing on X̃ for the same
sheaf pulled back by the base extension X̃→ X.

Otherwise, r ≤ q. Since r + s = i + c and i > q, we have s > c. In particular, s
is greater than zero. We can assume that s ≤ n; otherwise the H s group is zero. So c <
s ≤ n. Then pb(n− c) ≥ pb ≥ reg(M), and so (since s > 0)H s(X,M(pb(n− c))) = 0.

ut

6. q-T-ampleness

Definition 6.1. Let OX(1) be a Koszul-ample line bundle (defined in Section 1) on a
projective scheme X of dimension n over a field such that O(X) is a field (example:
X connected and reduced). Let q be a natural number. A line bundle L on X is called
q-T-ample if, for some positive integer N , we have

0 = H q+1(X,L⊗N (−n− 1)) = H q+2(X,L⊗N (−n− 2)) = · · ·

= H n(X,L⊗N (−2n+ q)).

The details are not too important. Given that some multiple of L kills cohomology
above dimension q for finitely many explicit line bundles on X, as in this definition, we
will deduce that infinitely many multiples of L kill cohomology above dimension q for
any given coherent sheaf. In particular, that will show that the definition of q-T-ampleness
of a line bundle is independent of the choice of the Koszul-ample line bundle OX(1).

Theorem 5.1 makes it easy to characterize q-T-ampleness in characteristic p > 0
by a certain asymptotic vanishing of cohomology, as follows. In particular, property (2)
shows that q-T-ampleness in characteristic p > 0 does not depend on the choice of the
Koszul-ample line bundle OX(1).

Corollary 6.2. Let X be a projective scheme over a field of characteristic p > 0 such
thatO(X) is a field (example:X connected and reduced). Let q be a natural number. The
following properties are equivalent, for a line bundle L on X:

(1) L is q-T-ample.
(2) Some positive multiple of L is q-F-ample. That is, there is a positive integer N such

that for all coherent sheavesM on X, we haveH i(X,M⊗L⊗Np
j
) = 0 for all i > q

and all j sufficiently large depending on M .

Proof. It is immediate that (2) implies (1). Here the number N in the definition of q-T-
ampleness will be of the form Npj for some j in the notation of (2). Theorem 5.1 shows
that (1) implies (2), with the same value of N . ut
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In characteristic zero, q-T-ampleness has even stronger consequences, as we now show.
Curiously, the proof involves reducing modulo many different prime numbers and using
the prime number theorem. In particular, Theorem 6.3 shows that q-T-ampleness in any
characteristic is independent of the choice of the Koszul-ample line bundle OX(1).

Theorem 6.3. Let X be a projective scheme over a field of characteristic zero such that
O(X) is a field (example: X connected and reduced). Let q be a natural number. The
following properties are equivalent, for a line bundle L on X:

(1) L is q-T-ample.
(2) L is naively q-ample. That is, for every coherent sheafM on X, we have H i(X,M ⊗

L⊗m) = 0 for all i > q and all m sufficiently large depending on M .
(3) L is uniformly q-ample. That is, there is a constant λ > 0 such thatH i(X,L⊗m(−j))

= 0 for all i > q, j > 0, and m ≥ λj .

Proof. Demailly–Peternell–Schneider showed that (3) implies (2), by resolving any co-
herent sheaf by direct sums of the line bundlesOX(−j) [10, Proposition 1.2]. Clearly (2)
implies (1). We will show that (1) implies (3). Let L be a q-T-ample line bundle, and let
N be the positive integer given in the definition.

To prove (3), we can work on a model of X over some finitely generated field exten-
sion of Q. We can extend this to a projective model XR of X over some domain R which
is a finitely generated Z-algebra. We can assume that R = O(XR), after replacing R by
a finite extension if necessary; then all fibers Xt over closed points t of Spec(R) have
O(Xt ) equal to a field (the residue field at t). After inverting a nonzero element of R, we
can assume that XR is also flat over R and OX(1) is Koszul-ample over R. (Recall from
Section 1 that Koszul-ampleness is a Zariski open condition on a line bundle.) Choose an
extension of the line bundle L to X over R.

By semicontinuity of cohomology [13, Theorem III.12.8], after inverting a nonzero
element of R, we have

0 = H q+1(Xt , L
⊗N (−n− 1)) = · · · = H n(Xt , L

⊗N (−2n+ q))

for all closed points t ∈ Spec(R), since that is true in characteristic zero. Let r =
max{1, reg(L)} (computed in characteristic zero). After inverting a nonzero element of R
again, we can assume that reg(L|Xt ) ≤ r for all closed points t ∈ Spec(R), again by
semicontinuity. By Theorem 5.1, for each line bundle M on XR and each closed point
t ∈ Spec(R), we have

H i(Xt , L
⊗Npb

⊗M|Xt ) = 0

whenever i > q and pb ≥ reg(M|Xt ), where p denotes the characteristic of the (finite)
residue field of R at t . Again by semicontinuity of cohomology, it follows that for each
closed point t ∈ Spec(R) and each line bundle M on XR , we have

H i(X,L⊗Np
b

⊗M) = 0 (1)

in characteristic zero whenever i > q and pb ≥ reg(M|Xt ).
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This already leads to an equivalent characterization of q-T-ampleness in characteris-
tic zero; for example, it implies that q-T-ampleness is independent of the choice of the
Koszul-ample line bundle OX(1). But we want to prove the stronger statements that L is
naively q-ample and in fact uniformly q-ample.

The scheme Spec(R) has closed points of every characteristic p at least equal to some
positive integer p0. Therefore, for any positive integer a, we have

H i(X,L⊗Np+a(−j)) = 0 (2)

in characteristic zero if i > q, p is a prime≥ p0, and j+ar ≤ p. (Indeed, let t be a closed
point of characteristic p in Spec(R). We have j+a reg(L|Xt ) ≤ p since we arranged that
reg(L|Xt ) ≤ r . By Theorem 3.4, we have reg(A⊗B) ≤ reg(A)+ reg(B) for line bundles
in any characteristic, and so j + reg(L⊗a|Xt ) ≤ p. Equivalently, reg(L⊗a(−j)|Xt ) ≤ p,
and then equation (1) gives what we want.)

Let c be a real number in (0, 1); we could take c = 1/2 for the current proof, but
Theorem 6.4 will prove a stronger estimate by taking c close to zero. By the prime number
theorem [23, Theorem 3.3.2], there is a positive integerm1 (depending on c) such that for
every integer m ≥ m1, there is a prime number p with

m

N + c/r
≤ p <

m

N
.

Taking m1 large enough, we can also assume that p0 ≤ m1/(N + c/r), so that the
primes p produced above always have p ≥ p0.

Now, for each positive integer j , let m0 = m0(j) be the maximum of m1 and
d(j/(1− c))(N + c/r)e. This will imply an inequality we want. First note that

j

1− c
(N + c/r) ≤ m0,

and hence
j

r
(N + c/r) ≤ m0

1− c
r

.

Therefore
(m0 + j/r)(N + c/r) ≤ m0(N + 1/r),

and hence
m0 + j/r

N + 1/r
≤

m0

N + c/r
.

It follows that the same inequality holds for all m ≥ m0 in place of m0. Combining this
with the previous paragraph’s result, we find that for every m ≥ m0, there is a prime
number p ≥ p0 with

m+ j/r

N + 1/r
≤ p <

m

N
.

Equivalently, if we define an integer a by m = pN + a, then a > 0 and j + a r ≤ p.
By (2), we have shown that for every m ≥ m0(j), we have

H i(X,L⊗m(−j)) = 0

for i > q.
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By our construction of the number m0(j), there is a positive constant λ > 0 such that
m0(j) ≤ λj for all j > 0. (Here λ depends on the chosen constant c ∈ (0, 1); we can take
c = 1/2, for example.) Thus we have shown that for all i > q, j > 0, and all m ≥ λj we
have

H i(X,L⊗m(−j)) = 0.

That is, L is uniformly q-ample. ut

The proof shows something more precise.

Theorem 6.4. Let X be a projective scheme over a field of characteristic zero such that
O(X) is a field (example: X connected and reduced). Let L be a q-T-ample (or naively
q-ample, or uniformly q-ample) line bundle on X. Then there are positive numbers m1
and λ such that

H i(X,E ⊗ L⊗m) = 0

for all i > q, all coherent sheaves E on X, and all m ≥ max{m1, λ reg(E)}. Moreover,
for N the number in the definition of q-T-ampleness, we can take λ to be any real number
greater than N (and some m1 depending on λ).

Demailly–Peternell–Schneider proved this for some constant λ when L is uniformly q-
ample [10, Proposition 1.2]. The point here is that the same holds for the a priori weaker
notions of q-T-ampleness and naive q-ampleness in characteristic zero, and that we have
an explicit estimate for the constant λ.

Proof of Theorem 6.4. The proof of Theorem 6.3 shows that there are positive constants λ
and m1 such that for all i > q, j > 0, and m ≥ max{m1, λj}, we have

H i(X,L⊗m(−j)) = 0.

In terms of a constant c ∈ (0, 1) which we were free to choose, the proof shows that we
can take λ = (1/(1− c))(N + c/r), where r = max{1, reg(L)}. Thus, by taking c close
to zero, we can make λ arbitrarily close to N .

Let E be any coherent sheaf on X, and let s = reg(E), R = max{1, reg(OX)}. Then
E has a resolution by vector bundles of the form

· · · → O(−s − 2R)⊕a2 → O(−s − R)⊕a1 → O(−s)⊕a0 → E→ 0

[2, Corollary 3.2]. For integers i > q and m ≥ max{m1, λs}, we want to show that
H i(X,E⊗L⊗m) = 0. By the given resolution, this holds ifH i+j (X,L⊗m(−s−jR)) = 0
for all j ≥ 0. By the previous paragraph, this holds ifm ≥ max{m1, λ(s+(n−q−1)R)},
using that cohomology vanishes in dimensions greater than n. This is enough to deduce
the statement of the theorem, after slightly increasing λ and increasing m1 as needed. ut
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7. Projective schemes

In this section we generalize the equivalence between the three notions of q-ampleness to
arbitrary projective schemes over a field of characteristic zero.

Theorem 7.1. Let X be a projective scheme over a field of characteristic zero, with an
ample line bundle OX(1). Let q be a natural number. Then there is a positive integer C
such that, for all line bundles L on X, the following properties are equivalent:

(1) There is a positive integer N such that H i(X,L⊗N (−j)) = 0 for all i > q and all
1 ≤ j ≤ C.

(2) L is naively q-ample. That is, for every coherent sheaf M on X, we have H i(X,

M ⊗ L⊗m) = 0 for all i > q and all m sufficiently large depending on M .
(3) L is uniformly q-ample. That is, there is a constant λ > 0 such thatH i(X,L⊗m(−j))

= 0 for all i > q, j > 0, and m ≥ λj .

In contrast to the case of reduced schemes (Theorem 6.3), we choose not to specify the
value of C in condition (1). The proof gives an explicit value for C, probably far from
optimal.

Proof of Theorem 7.1. By the same arguments as in Theorem 6.3, (3) implies (2) and (2)
implies (1), for any fixed choice of the positive integer C. It remains to show that there is
a positive integer C such that (1) implies (3), for all line bundles L on X. The idea is to
reduce to the case of a reduced scheme.

We can assume that X is connected. Let X0 be the underlying reduced scheme of X.
Then k := O(X0) is a field. After replacing the given ample line bundle OX(1) by a
positive multiple, we can assume thatOX(1) restricts to a Koszul-ample line bundle onX0
(by Backelin’s theorem, as in Section 1).

I claim that there is a positive integer C (depending on X and OX(1)) such that any
line bundle onX satisfying (1) restricts to a q-T-ample line bundle onX0. To see this, look
at a resolution of OX0 as a sheaf of OX-modules. Explicitly, if we define s = regX(OX0)

and R = max{1, regX(OX)}, then OX0 has a resolution on X of the form

· · · → OX(−s − 2R)⊕a2 → OX(−s − R)
⊕a1 → OX(−s)

⊕a0 → OX0 → 0

[2, Corollary 3.2]. Then, for any line bundle L on X, and any positive integer c, tensoring
this resolution with L(−c) gives a resolution of L(−c)|X0 as a sheaf of OX-modules:

· · · → L(−c− s − 2R)⊕a2 → L(−c− s −R)⊕a1 → L(−c− s)⊕a0 → L(−c)|X0 → 0.

This gives a spectral sequence

E
−u,v
1 = H v(X,L(−c − s − uR)⊕au)⇒ H v−u(X0, L(−c)).

Let n be the dimension of X, and let C = n + q + 1 + s + (n − q − 1)R (which
does not depend on the line bundle L). Then the spectral sequence shows that for any line
bundle L on X such that H i(X,L(−j)) = 0 for all i > q and all 1 ≤ j ≤ C, we have

0 = H q+1(X0, L(−n− 1)) = H q+2(X0, L(−n− 2)) = · · · .
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Thus, for the given value of C, any line bundle L on X which satisfies condition (1)
restricts to a q-T-ample line bundle on X0. By Theorem 6.3, L is uniformly q-ample
on X0. To complete the proof, we have to show that L is uniformly q-ample on X.

Let I be the ideal sheaf ker(OX → OX0). There is a natural number r such that
I r+1

= 0. Thus the sheaf OX has a filtration with quotients OX/I, I/I 2, . . . , I r/I r+1,
and these quotients are all modules over OX/I = OX0 . By considering a reso-
lution of the sheaves I l/I l+1 (for l = 0, . . . , r) by line bundles O(−j) on X0,
the uniform q-ampleness of L|X0 implies that there is a constant λ > 0 such that
H i(X0, L

⊗m(−j) ⊗ I l/I l+1) = 0 for all i > q, all 0 ≤ l ≤ r , all j > 0, and all
m > λj . By our filtration of OX, it follows that H i(X,L⊗m(−j)) = 0 for all i > q, all
j > 0, and all m > λj . That is, L is uniformly q-ample on X. ut

Therefore, on any projective scheme over a field of characteristic zero, we can say “q-
ample” to mean any of the equivalent conditions on a line bundle in Theorem 7.1. We
mention a consequence of the proof:

Corollary 7.2. Let X be a projective scheme over a field of characteristic zero. Then a
line bundle L is q-ample on X if and only if the restriction of L to the underlying reduced
scheme X0 is q-ample.

8. Openness properties of q-ampleness

In this section we check that q-T-ampleness is Zariski open on families of varieties and
line bundles over Z. It follows that q-ampleness is Zariski open in characteristic zero,
where we can use any of the three equivalent definitions in Theorem 6.3. Using Demailly–
Peternell–Schneider’s results, we also find that q-ampleness defines an open cone (typi-
cally not convex) in the Néron–Severi vector space N1(X) for X of characteristic zero.
Neither property was known for naive q-ampleness. We discuss counterexamples to these
good properties in positive characteristic.

Theorem 8.1. Let π : X→ B be a flat projective morphism of schemes over Z. Suppose
that π has connected fibers in the sense that π∗(OX) = OB . Let L be a line bundle on X,
and let q be a natural number. Then the set of points b of the scheme B such that L is
q-T-ample on the fiber over b is Zariski open.

Proof. This is straightforward. Suppose that L is q-T-ample on the fiber Xb over a point
b ∈ B. There is an affine open neighborhood U of b and a Koszul-ample line bundle
OX(1) on the inverse image ofU . (Koszul-ampleness is a Zariski open condition on a line
bundle, as discussed in Section 1.) We can use this line bundle OX(1) in the definition
of q-T-ampleness. (We have shown that the definition is independent of this choice.) By
definition of q-T-ampleness, there is a positive integer N with

0 = H q+1(Xb, L
⊗N (−n− 1)) = · · · = H n(Xb, L

⊗N (−2n+ q)).

By semicontinuity of cohomology, the same is true over some neighborhood of b. ut
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By Theorem 6.3, it follows that naive q-ampleness and uniform q-ampleness are Zariski
open conditions in characteristic zero.

Demailly–Peternell–Schneider showed that uniform q-ampleness defines an open
cone in the vector space N1(X) of R-divisors modulo numerical equivalence. For com-
pleteness, we give the relevant definitions.

Definition 8.2. Let X be a projective variety over a field of characteristic zero. An R-
divisor D on X is q-ample if D is numerically equivalent to a sum cL + A with L a
q-ample divisor, c a positive real number, and A an ample R-divisor. (By definition, an
R-divisor is ample if it is a positive linear combination of ample Cartier divisors [20,
Definition 3.11].)

Theorem 8.3. For any projective variety X over a field of characteristic zero, q-ample-
ness for R-divisors agrees with the earlier definitions in the case of line bundles. Also,
q-ampleness defines an open cone in the real vector space N1(X).

Also, the sum of a q-ample R-divisor and an r-ample R-divisor is (q + r)-ample.

Demailly–Peternell–Schneider proved Theorem 8.3 for uniform q-ampleness [10, Propo-
sitions 1.4 and 1.5]. This is equivalent to the other notions of q-ampleness forX projective
over a field of characteristic zero, by Theorem 7.1.

Theorem 8.3 gives a simple insight into why the q-ample cone need not be convex
for q > 0: the sum of two q-ample divisors is typically 2q-ample, not q-ample. An
example is the (n− 1)-ample cone of a projective variety of dimension n, which is equal
to the complement of the negative of the closed effective cone by Theorem 9.1. (Thus the
(n− 1)-ample cone is the complement of a closed convex cone.)

In positive characteristic, the right notion of q-ampleness remains to be found. In
particular, naive q-ampleness and uniform q-ampleness are not Zariski open conditions
in mixed characteristic, as one can check in the example of the three-dimensional flag
manifold SL(3)/B over Z with q = 1. The figures show the (naive or uniform) q-ample
cone in characteristic zero and in any characteristic p > 0, where the 1-ample cone is
different from the one in characteristic zero (and independent of p).

On the other hand, q-T-ampleness is also not a good notion in positive characteristic,
in the sense that the sum of a q-T-ample divisor and an r-T-ample divisor need not be
(q + r)-T-ample. This happens with q = r = 1 on (SL(3)/B)2 in any characteristic
p > 0.

0-T-ample cone 1-T-ample cone 2-T-ample cone

0-T-ample cone 1-T-ample cone

Fig. 2. The q-ample cones in N1(SL(3)/B) ∼= R2 in characteristic 0.
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naive 0-ample cone naive 1-ample cone naive 2-ample cone

naive 0-ample cone naive 1-ample cone

Fig. 3. The naive q-ample cones in N1(SL(3)/B) ∼= R2 in characteristic p > 0.

9. The (n− 1)-ample cone

The 0-ample and (n− 1)-ample cones of an n-dimensional variety are better understood
than the intermediate cases. In this section we show that the (n − 1)-ample cone of a
projective variety of dimension n is the complement of the negative of the closed effective
cone. This is well known for smooth varieties, but with care the proof works for arbitrary
varieties.

Theorem 9.1. LetX be a projective variety of dimension n over a field k of characteristic
zero. Let L be a line bundle on X. Then L is (n− 1)-ample if and only if [L] in N1(X) is
not in the negative of the closed effective cone.

Proof. Let ωX be what Hartshorne calls the dualizing sheaf of π : X → Y = Spec(k),
that is, the cohomology sheaf in dimension−n of the dualizing complex π !OY . Then, for
every coherent sheaf F on X, there is a canonical isomorphism

HomX(F, ωX) ∼= H
n(X, F )∗

[13, Proposition III.7.5]. It follows that the sheaf ωX is torsion-free. Indeed, if F is any
coherent sheaf on X whose support has dimension less than n, then H n(X, F ) = 0 and
so HomX(F, ωX) = 0.

Let OX(1) be an ample line bundle on X. For a coherent sheaf F , write F ∗ for the
sheaf HomOX (F,OX). Then the sheaf ω∗X is generically a line bundle onX (in particular,
it is not zero), and soH 0(X, ω∗X(j)) 6= 0 for some j > 0. Equivalently, there is a nonzero
map f : ωX → O(j) for some j > 0, which we fix. Since ωX is torsion-free, f must be
an injection of sheaves.

Suppose that [L] in N1(X) is not in the negative of the closed effective cone. That
is, L∗ is not pseudoeffective. Then for any line bundle F on X, we have H 0(X, F ∗ ⊗

(L∗)⊗m⊗O(j)) = 0 for allm at least equal to somem0 = m0(F ). Using the injection f ,
it follows that H 0(X, F ∗ ⊗ (L∗)⊗m ⊗ ωX) = 0 for all m ≥ m0(F ). That is, HomX(F ⊗

L⊗m, ωX) = 0, and hence H n(X, F ⊗ L⊗m) = 0 for all m ≥ m0(F ). It follows that L is
(n− 1)-T-ample, which we call simply (n− 1)-ample after Theorem 6.3.

Conversely, let L be an (n − 1)-ample line bundle on X. Then for any line bundle F
on X, we have H n(X, F ⊗ L⊗m) = 0 for all m at least equal to some m0 = m0(F ).
Therefore HomX(F⊗L

⊗m, ωX) = 0, which we write asH 0(X, F ∗⊗(L∗)⊗m⊗ωX) = 0.
Since the sheaf ωX is not zero, there is a nonzero map g : OX(−j) → ωX for some



Line bundles with partially vanishing cohomology 751

j > 0, which we fix. Here g is an injection of sheaves because the line bundleOX(−j) is
torsion-free. Therefore,H 0(X, F ∗(−j)⊗ (L∗)⊗m) = 0 for allm ≥ m0(F ). In particular,
for every (n − 1)-ample line bundle L, L∗ is not big. But the (n − 1)-ample cone is
open in N1(X) (Theorem 8.3). So for every (n − 1)-ample line bundle L, L∗ is not
pseudoeffective. ut

10. The q-nef cone

It is an open problem to give a numerical characterization of q-ampleness, analogous to
the Kleiman or Nakai–Moishezon criteria for q = 0. We know from Theorem 8.3 that
q-ampleness on a smooth projective variety of characteristic zero only depends on the
numerical equivalence class of a divisor, but that leaves the problem of describing the q-
ample cone by explicit inequalities. In this section, we disprove the most obvious attempt
at a Kleiman criterion for q-ampleness.

Let X be a projective variety of dimension n over a field. For a natural number q,
define the q-nef cone as the set of D ∈ N1(X) such that for every (q + 1)-dimensional
subvariety Z ⊂ X, −D restricted to Z is not big. The q-nef cone is clearly a closed
cone inN1(X), not necessarily convex. For example, the 0-nef cone is the usual nef cone,
because −D is not big on a curve Z exactly when D · Z ≥ 0. Another simple case is the
(n− 1)-nef cone, which is the complement of the negative of the big cone in N1(X).

Another description of q-nef divisors comes from the theorem of Boucksom–De-
mailly–Păun–Peternell. On any complex projective variety X, BDPP characterized the
dual of the closed effective cone as the closed convex cone spanned by curves that move
on X [6], [20, Vol. 2, Theorem 11.4.19]. For this statement, we say that a curve moves
on a projective variety X if it is the image under some resolution X′ → X of a com-
plete intersection of ample divisors in X′, D1 ∩ · · · ∩ Dn−1. By BDPP’s theorem, an
R-divisor D on X is q-nef if and only if for every q + 1-dimensional subvariety Z of X,
D has nonnegative degree on some curve that moves on Z.

Let X be a projective variety over a field of characteristic zero. It is straightforward
to check that the q-ample cone in N1(X) is contained in the interior of the q-nef cone,
essentially because the restriction of a q-ample divisor to each (q + 1)-dimensional sub-
variety is q-ample. In the extreme cases q = 0 and q = n− 1, the q-ample cone is equal
to the interior of the q-nef cone. But this can fail for the 1-ample cone of a smooth pro-
jective 3-fold, as we now show. The problem remains to give a Kleiman-type description
of the q-ample cone.

Lemma 10.1. Let X be the P1-bundle over P1
× P1 given by X = P(O ⊕ O(1,−1)),

over the complex numbers. (This is a smooth projective toric Fano 3-fold. It is the blow-
up of P3 along two disjoint lines.) Then the 1-ample cone of X is strictly smaller than the
interior of the 1-nef cone of X.

Proof. Let E be the vector bundle O ⊕ O(1,−1) on P1
× P1. Write X = P(E) for

the variety of codimension-1 subspaces of E, with projection π : X → P1
× P1. Every
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line bundle on X has the form π∗O(a, b) ⊗ OP(E)(c) for some integers a, b, c. The
cohomology of a line bundle on X is given by

H i(X, π∗O(a, b)⊗OP(E)(c)) = H
i(P1
× P1,O(a, b)⊗ Rπ∗OP(E)(c)).

If c > 0, then π∗OP(E)(c) = Sc(E) =
⊕c
j=0O(j,−j) and the higher direct images are

zero. Thus, for c > 0,

H i(X, π∗O(a, b)⊗OP(E)(c)) = H
i
(
P1
× P1,

c⊕
j=0

O(a + j, b − j)
)
.

We will compute the 1-ample cone of X intersected with the open half-space c > 0,
which is enough for our purpose. If c > 0, then H 3(X, π∗O(a, b) ⊗ OP(E)(c)) = 0 by
the previous paragraph. It follows that L = π∗O(a, b)⊗OP(E)(c) is 2-ample whenever
c > 0. Next,

H 2(X, π∗O(a, b)⊗OP(E)(c)) = H
2
(
P1
× P1,

c⊕
j=0

O(a + j, b − j)
)
.

Here H 2(P1
× P1,O(p, q)) is zero if and only if p ≥ −1 or q ≥ −1. It follows that a

line bundle L with c > 0 is 1-ample if and only if a > 0 or b > c or a + b > 0.
We now compute the 1-nef cone of X (intersected with c > 0) using toric geometry

[12]. Every line bundle L on X can be made T -equivariant, where T ∼= (Gm)3 acts on X.
By definition, for L to be 1-nef means that L∗ is not big on any surface Y in X. Because
L is T -equivariant, if L∗ is big on some surface Y , then L∗ is big on any translate tY for
t ∈ T . Every action of T on a projective variety has a fixed point, and so there is a fixed
point in the closure of the T -orbit of Y in the Hilbert scheme. Using upper semicontinuity
of h0, it follows that L∗ is big on some T -invariant subscheme Z of dimension 2, and
hence on some irreducible T -invariant surface. Thus L is 1-nef if and only if L∗ is not
big on the finitely many T -surfaces in X. (This argument shows that the q-nef cone of a
toric variety is rational polyhedral, for any q ≥ 0.)

The toric surfaces in X are the two sections S1 = P(O) and S2 = P(O(1,−1)) of
X → P1

× P1 and the inverse images Y1, . . . , Y4 of the four curves P1
× 0, P1

× ∞,
0 × P1, and∞× P1 in P1

× P1. Let L = π∗O(a, b) ⊗ OP(E)(c) be a line bundle with
c > 0. Then L has positive degree on each fiber∼= P1, and these curves cover the surfaces
Y1, . . . , Y4. It follows that L∗ cannot be big on Y1, . . . , Y4. Thus L is 1-nef if and only if
L∗ is not big on S1 and not big on S2. Here OP(E)(1) restricts to the trivial bundle on S1
and to O(1,−1) on S2, so L restricts to O(a, b) on S1 ∼= P1

×P1 and to O(a+ c, b− c)
on S2 ∼= P1

×P1. The big cone of P1
×P1 consists of the line bundlesO(a, b) with a > 0

and b > 0. We conclude that a line bundle L with c > 0 is 1-nef if and only if (a ≥ 0 or
b ≥ 0) and (a + c ≥ 0 or b − c ≥ 0).

For example, the line bundle π∗O(−2, 1) ⊗ OP(E)(3) is in the interior of the 1-nef
cone but is not 1-ample. ut
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11. Questions

We raise two questions. The first is about the relation between q-ampleness and Küronya’s
asymptotic cohomological functions [19]. Let X be a projective variety of dimension n
over a field of characteristic zero. For a line bundle L on X, define

ĥi(L) = lim sup
m→∞

hi(X,L⊗m)

mn/n!
.

Küronya showed that ĥi extends uniquely to a continuous function on N1(X) which is
homogeneous of degree n. For example, for a nef R-divisor D, we have ĥi(D) = 0 for
i > 0, and ĥ0(D) is the intersection number Dn.

Question 11.1. Let D be an R-divisor on a projective variety X over a field of charac-
teristic zero. Let q be a natural number. Suppose that ĥi(E) is zero for all i > q and all
R-divisors E in some neighborhood of D in N1(X). Is D q-ample?

The converse is clear, since the q-ample cone is open in N1(X) (Theorem 8.3). The
question has a positive answer for q = 0, by de Fernex, Küronya, and Lazarsfeld [7]. It
is also true for q = n − 1, using that the (n − 1)-ample cone is the complement of the
negative of the closed effective cone (Theorem 9.1).

Another question was raised by Dawei Chen and Rob Lazarsfeld.

Question 11.2. Let X be a Fano variety, say over a field of characteristic zero. Let q be
a natural number. Is the q-ample cone in N1(X) the interior of a finite union of rational
polyhedral convex cones?

The answer is positive for q = 0: the nef cone of a Fano variety is rational polyhedral,
by the Cone theorem [17, Theorem 3.7]. It is also true for q = n − 1, since the closed
effective cone of a Fano variety is rational polyhedral by Birkar, Cascini, Hacon, and
McKernan [5, Corollary 1.3.1]. So the first open case is the 1-ample cone of a Fano 3-
fold.

Acknowledgments. Thanks to Anders Buch, Jean-Pierre Demailly, Lawrence Ein, and Marcus Zi-
browius for useful discussions.
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