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Abstract. We are interested in the three-dimensional coupling between an incompressible fluid
and a rigid body. The fluid is modeled by the Navier–Stokes equations, while the solid satisfies
Newton’s laws. In the main result of the paper we prove that, with the help of a distributed control,
we can drive the fluid and structure velocities to zero and the solid to a reference position provided
that the initial velocities are small enough and the initial position of the structure is close to the
reference position. This is done without any condition on the geometry of the rigid body.

1. Introduction

1.1. Statement of problem

We consider a rigid structure immersed in a viscous incompressible fluid. At time t , we
denote by �S(t) the domain occupied by the structure. The structure and the fluid are
contained in a fixed bounded domain � ⊂ R3. Let O ⊂⊂ � be the control domain. We
suppose that the boundaries of �S(0) and � are smooth (C4 for instance) and that

�S(0) ⊂ � \O, d(∂(� \O),�S(0)) ≥ δ0 > 0. (1)

For any t > 0, we denote by�F (t) := �\�S(t) the region occupied by the fluid and
by Õ ⊂⊂ O an open set. The time evolution of the eulerian velocity u and the pressure p
of the fluid is governed by the incompressible Navier–Stokes equations: for all t > 0 and
x ∈ �F (t), {

(ut + (u · ∇)u)(t, x)−∇ · σ(u, p)(t, x) = v(t, x)ζ(x),

∇ · u(t, x) = 0.
(2)

The stress tensor is given by

σ(u, p) := 2µε(u)− p Id,

where ε(u) := 1
2 (∇u + ∇u

t ) and the viscosity coefficient µ is supposed to be positive.
The function ζ ∈ C2

c (O) satisfies ζ = 1 in Õ and v is a control force which acts over the
system through O.
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At time t , the motion of the rigid structure is given by the position b(t) ∈ R3 of
the center of mass and by a rotation (orthogonal) matrix Q(t) ∈ M3×3(R). The domain
�S(t) is given by χS(t, �S(0)), where χS denotes the flow associated to the motion of
the structure:

χS(t, y) = b(t)+Q(t)Q
−1
0 (y − b0) ∀y ∈ �S(0).

Here, Q0 and b0 are the initial rotation matrix and the initial position of the solid.
Let r : (0, T )→ R3 be the angular velocity. Then the rotation matrix is the solution

of the following system:
dQ

dt
(t) = (r ×Q)(t), t ∈ (0, T ),

Q(0) = Q0.

(3)

For the equations of the structure, we denote by m > 0 the mass of the rigid structure
and by J (t) ∈M3×3(R) its inertia tensor at time t . This tensor is given by

J (t)d · d̃ =

∫
�S (0)

(d ×Q(t)(y − b0)) · (d̃ ×Q(t)(y − b0)) dy ∀d, d̃ ∈ R3. (4)

One can prove that
J (t)d · d ≥ CJ |d|

2 for all d ∈ R3,

where CJ is a positive constant independent of t > 0. The equations of the structure
motion are given by the balance of linear and angular momentum. We have, for all t ∈
(0, T ), 

mb̈ =

∫
∂�S (t)

σ(u, p)n dγ,

J ṙ = (J r)× r +

∫
∂�S (t)

(x − b)× (σ (u, p)n) dγ.

(5)

In these equations, n is the outward unit normal to ∂�S(t). On the boundary of the fluid,
the eulerian velocity has to satisfy a no-slip boundary condition. Therefore, we have, for
all t > 0, {

u(t, x) = 0, ∀x ∈ ∂�,

u(t, x) = ḃ(t)+ r(t)× (x − b(t)), ∀x ∈ ∂�S(t).
(6)

The system is completed with the following initial conditions:

u(0, ·) = u0 in �F (0), b(0) = b0, ḃ(0) = b1, r(0) = r0, (7)

which satisfy u0 ∈ H
1(�F (0)) and

∇·u0 = 0 in �F (0), u0 = 0 on ∂�, u0(x) = b1+r0×(x−b0), x ∈ ∂�S(0). (8)

Let us now recall some of the most relevant results on interaction problems between
a rigid structure and an incompressible fluid.
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A local result was proved in [12], while the existence of global weak solutions was
proved in [5] and [6] (with variable density) and [16] (2D, with variable density); in
this last paper, the existence of a solution was proved even beyond collisions. Later, the
existence and uniqueness of strong global solutions in 2D was proved in [17] together
with the local in time existence and uniqueness of strong solutions in 3D.

In this paper, we prove the local null controllability of system (2)-(7). The same result
was proved in [4] and in [14] in dimension 2 provided that�S(0) satisfies some geometric
conditions. For the Burgers equation with a moving particle in dimension 1, the local null
controllability was proved in [7]. In the absence of a solid, the local exact controllability
to the trajectories of the Navier–Stokes equations was proved in [13]. This result was later
improved in [9].

We now state the main result of this paper:

Theorem 1. There exists δ > 0 such that for any (u0, b0, b1, r0,Q0) satisfying (8), u0 ∈

H 2(�F (0)) and

‖u0‖H 2(�F (0)) + |b0| + |b1| + |r0| + |Q0 − Id| < δ, (9)

there exists a control v ∈ L2(0, T ;H 1(�)) such that the solution of (2)–(7) satisfies

u(T , ·) = 0 in �F (T ), b(T ) = 0, ḃ(T ) = 0, r(T ) = 0, Q(T ) = Id.

The proof of this result is based on a fixed-point argument. For this, we first consider
a linearized system for which we prove the existence of controls in L2(0, T ;H 1(�))

which drive the velocities to zero and the position of the structure to the desired reference
position (b(T ),Q(T )) = (0, Id).

This null controllability result is established with the help of a Carleman inequality
for the associated adjoint system. To prove this inequality, we use a method different and
more concise than the one presented in [13] and [9] and used in [4] and [14]: we first
consider the parabolic equation satisfied by the curl of the solution (where the pressure
does not appear) and establish a Carleman inequality for this parabolic problem in terms
of two boundary integrals concerning some traces of the velocity. These boundary terms
are then estimated thanks to regularity results which are stated and proved in the Appendix
at the end of the paper.

1.2. A problem linearized with respect to the fluid velocity

Let us introduce {
(b̂, r̂) ∈ H 2(0, T )×H 1(0, T ),

(b̂,
˙̂
b, r̂)|t=0 = (b0, b1, r0).

(10)

This allows us to define the domains

�̂S(t) := b̂(t)+ Q̂(t)Q
−1
0 (�S(0)− b0) and �̂F (t) := � \ �̂S(t),
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where Q̂ is the solution of (3) with r replaced by r̂ . We suppose that the solid domain
stays far away from ∂(� \O):

∃δ1 > 0 ∀t ∈ [0, T ] : d(�̂S(t), ∂(� \O)) ≥ δ1. (11)

Let us now define several notations which we will use all along the paper. We intro-
duce the following spaces of functions defined on moving domains: for r, p ∈ N,

L2(L2) :=

{
u measurable :

∫ T

0

∫
�̂F (s)

|u|2 dx ds <∞

}
,

L2(Hp) :=

{
u ∈ L2(L2) :

∫ T

0
‖u‖2

Hp(�̂F (s))
ds <∞

}
,

H r(Hp) :=

{
u ∈ L2(L2) :

∫ T

0

r∑
β=0

‖∂
β
t u‖

2
Hp(�̂F (s))

ds <∞

}
,

with the natural associated norms coming from the definition. On the other hand, we
define

C0(L2) := {u : ũ(s, x) := u(s, x)1�̂F (s) ∈ C
0([0, T ];L2(�))},

Cr(Hp) := {u : ∂
β
t ∂

α
x u ∈ C

0(L2), ∀0 ≤ β ≤ r, ∀0 ≤ |α| ≤ p},

with the associated norms

‖u‖C0(L2) := max
t∈(0,T )

‖u(t)‖L2(�̂F (t))
= max
t∈(0,T )

‖ũ(t)‖L2(�),

‖u‖Cr (Hp) :=

r∑
β=0

max
t∈(0,T )

‖∂
β
t u(t)‖Hp(�̂F (t))

.

Let us now consider a velocity û satisfying

{
û ∈ Ẑ := H 1(L6) ∩ L2(W 2,6), ∇ · û = 0, x ∈ �̂F (t),

û(t, x) = (
˙̂
b(t)+ r̂(t)× (x − b̂(t)))1∂�̂S (t)(x), x ∈ ∂�̂F (t).

(12)

Let us also introduce the spaces

Ŷk := L
2(H 2+k) ∩H 1+k/2(L2)

for k ∈ [−2, 2]. Observe that Ŷk is continuously imbedded in H 1(H k).
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Now, we consider the following linear system around (û, b̂, r̂): for all t ∈ (0, T ),

ut (t, x)+ (û · ∇)u(t, x)−∇ · σ(u, p)(t, x) = v(t, x)ζ(x), x ∈ �̂F (t),

∇ · u(t, x) = 0, x ∈ �̂F (t),

u(t, x) = 0, x ∈ ∂�,

u(t, x) = ḃ(t)+ r(t)× (x − b̂(t)), x ∈ ∂�̂S(t),

mb̈(t) =

∫
∂�̂S (t)

(σ (u, p)n)(t, x) dγ,

(Ĵ ṙ)(t) = ((Ĵ r̂)× r)(t)+

∫
∂�̂S (t)

(x − b̂(t))× (σ (u, p)n)(t, x) dγ,

u|t=0 = u0 in �F (0), b(0) = b0, ḃ(0) = b1, r(0) = r0,

(13)

where Ĵ is defined by (4) with Q replaced by Q̂. The rotation matrix Q is then defined
by (3).

As we will see in Section 3, we will be interested in driving the solution of (13)
to zero by means of L2(0, T ;H 1(�)) controls. In order to do this, we will first obtain
L2((0, T )×�) controls supported in a smaller open set O2 ⊂⊂ Õ for the system

u∗t (t, x)+ (û · ∇)u
∗(t, x)−∇ · σ(u∗, p∗)(t, x) = v∗(t, x)1O2(x), x ∈ �̂F (t),

∇ · u∗(t, x) = 0, x ∈ �̂F (t),

u∗(t, x) = 0, x ∈ ∂�,

u∗(t, x) = ḃ∗(t)+ r∗(t)× (x − b̂(t)), x ∈ ∂�̂S(t),

mb̈∗(t) =

∫
∂�̂S (t)

(σ (u∗, p∗)n)(t, x) dγ,

(Ĵ ṙ∗)(t) = ((Ĵ r̂)× r∗)(t)+

∫
∂�̂S (t)

(x − b̂(t))× (σ (u∗, p∗)n)(t, x) dγ,

u∗
|t=0 = u0 in �F (0), b∗(0) = b0, ḃ∗(0) = b1, r

∗(0) = r0.

(14)

Notice that the control force is slightly different from the one in (13).
In order to prove the null controllability of this system, we will prove a Carleman

inequality for its adjoint system, which is

−ϕt (t, x)− (û · ∇)ϕ(t, x)−∇ · σ(ϕ, π)(t, x) = 0, x ∈ �̂F (t),

∇ · ϕ(t, x) = 0, x ∈ �̂F (t),

ϕ(t, x) = 0, x ∈ ∂�,

ϕ(t, x) = ȧ(t)+ ω(t)× (x − b̂(t)), x ∈ ∂�̂S(t),

mä(t) = −

∫
∂�̂S (t)

(σ (ϕ, π)n)(t, x) dγ,

d

dt
(Ĵω)(t) = ((Ĵ r̂)× ω)(t)−

∫
∂�̂S (t)

(x − b̂(t))× (σ (ϕ, π)n)(t, x) dγ,

ϕ|t=T = ϕT in �̂F (T ), a(T ) = aT0 , ȧ(T ) = a
T
1 , ω(T ) = ωT .

(15)

We will suppose that ϕT ∈ L2(�̂F (T )) and aT0 , a
T
1 , ωT ∈ R3.
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The paper is organized as follows: in Section 2, we state and prove the Carleman
inequality satisfied by the adjoint system. In Section 3, we deduce from this inequality an
observability inequality and a controllability result for the linearized system. Finally, in
Section 4, we prove the null controllability of the non-linear system using a fixed point
theorem.

2. Carleman inequality for the adjoint system

Let us first introduce the weight functions which we will use in the proof. Let β ∈
C0(W 2,∞) ∩ C1(W 1,∞) satisfy

β = 0 on ∂�̂F (t), β > 0 in �̂F (t), |∇β| ≥ c0 > 0 in �̂F (t) \O0,

∂β

∂n
≤ −c1 < 0 on ∂�,

∂β

∂n
≥ c2 > 0 on ∂�̂S(t),

where O0 ⊂⊂ O2 is an open set. The existence of a function β with the above properties
is proved in [4]. Let now λ be a positive parameter, M := ‖β‖C0(L∞) and

α(t, x) :=
e(2k+2)λM

− eλ(2kM+β(t,x))

tk(T − t)k
, ξ(t, x) =

eλ(2kM+β(t,x))

tk(T − t)k
,

α∗(t) :=
e(2k+2)λM

− e2kλM

tk(T − t)k
, ξ∗(t) =

e2kλM

tk(T − t)k
.

(16)

Here, k ≥ 24 is a constant.
We will prove the following Carleman inequality:

Proposition 2. Let (û, b̂, r̂) be such that (10)–(12) are satisfied. Then there exist con-
stants C1 (depending on�, O, δ0 and ‖û‖

Ẑ
, ‖b̂‖W 1,∞(0,T ), ‖r̂‖L∞(0,T )) and C2 > 0 (just

depending on �, O and δ0) such that for all ϕT ∈ L2(�̂F (T )) and all aT0 , a
T
1 , ωT ∈ R3

we have

s4λ6
∫ T

0

∫
�̂F (t)

e−2sαξ5
|ϕ|2 dx dt + s4λ5

∫ T

0
e−2sα∗(ξ∗)4(|ȧ|2 + |ω|2) dt

≤ C2s
5λ6

∫ T

0

∫
O2

e−2sαξ5
|ϕ|2 dx dt (17)

for all λ ≥ C1 and all s ≥ C1(T
k
+ T 2k), where (ϕ, π, a, ω) is the solution to (15).

Proof. All along the proof, C (resp. Ĉ) will stand for a positive constant just depending
on �, O and δ0 (resp. on �, O, δ0 and ‖û‖

Ẑ
, ‖b̂‖W 1,∞(0,T ), ‖r̂‖L∞(0,T )).
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2.1. A. Carleman estimate for the heat equation

Let us apply the curl operator to the equation satisfied by (ϕ, π):

−(∇ × ϕ)t − (û · ∇)(∇ × ϕ)− µ1(∇ × ϕ) = L(û, ϕ) in �̂F (t), (18)

where the right-hand side satisfies

|L(û, ϕ)| ≤ C|∇û| |∇ϕ| in �̂F (t).

Therefore, ∇ × ϕ satisfies a system of three heat equations. For this kind of system, Car-
leman inequalities are well-understood since [10]. Here, we are going to use an inequality
which has been proved in [4, Section 2.1]. More precisely, we use the first inequality in
[4, p. 2] by observing that, for the second term of the third line of that inequality, we have
e−2sV∗γ 2

= |∇wτ |2 (τ is the tangential vector field) in the notations of [4]. Using this
for ψ := e−2sα

∇ × ϕ, we can deduce

s3λ4
∫ T

0

∫
�̂F (t)

ξ3
|ψ |2 dx dt + sλ2

∫ T

0

∫
�̂F (t)

ξ |∇ψ |2 dx dt

+ s3λ3
∫ T

0

∫
∂�̂F (t)

(ξ∗)3|ψ |2 dγ dt + sλ

∫ T

0

∫
∂�̂F (t)

ξ∗|∇ψn|2 dγ dt

≤ C

(
s3λ4

∫ T

0

∫
O0

ξ3
|ψ |2 dx dt + sλ2

∫ T

0

∫
O0

ξ |∇ψ |2 dx dt

+ sλ

∫ T

0

∫
∂�̂F (t)

ξ∗|∇ψτ |2 dγ dt + sλ2
∫ T

0

∫
∂�̂F (t)

ξ∗|∇ψn| |ψ | dγ dt

+

∫ T

0

∫
∂�̂F (t)

|∇ψn| |ψt + (û · ∇)ψ | dγ dt +

∫ T

0

∫
�̂F (t)

e−2sα
|∇û|2|∇ϕ|2 dx dt

)
(19)

for all λ ≥ Ĉ and all s ≥ C(T k + T 2k). Young’s inequality applied to the fourth and fifth
terms on the right-hand side of this inequality yields

s3λ4
∫ T

0

∫
�̂F (t)

ξ3
|ψ |2 dx dt + sλ2

∫ T

0

∫
�̂F (t)

ξ |∇ψ |2 dx dt

+ s3λ3
∫ T

0

∫
∂�̂F (t)

(ξ∗)3|ψ |2 dγ dt + sλ

∫ T

0

∫
∂�̂F (t)

ξ∗|∇ψn|2 dγ dt

≤ C

(
s3λ4

∫ T

0

∫
O0

ξ3
|ψ |2 dx dt + sλ2

∫ T

0

∫
O0

ξ |∇ψ |2 dx dt

+ sλ

∫ T

0

∫
∂�̂F (t)

ξ∗|∇ψτ |2 dγ dt +

∫ T

0

∫
∂�̂F (t)

(sλξ∗)−1
|ψt + (û · ∇)ψ |

2 dγ dt

+

∫ T

0

∫
�̂F (t)

e−2sα
|∇û|2|∇ϕ|2 dx dt

)
(20)
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for all λ ≥ Ĉ and all s ≥ C(T k + T 2k). We can estimate the term (û · ∇)ψ in the fourth
integral of the right-hand side thanks to (12) (since Ẑ ⊂ C0(L∞)):

s−1λ−1
∫ T

0

∫
∂�̂F (t)

(ξ∗)−1
|(û · ∇)ψ |2 dγ dt ≤ εsλ

∫ T

0

∫
∂�̂F (t)

ξ∗|∇ψ |2 dγ dt

for ε > 0 small enough provided that λ ≥ Ĉε and s ≥ CεT 2k .
We come back to ϕ now. Observe that the boundary term concerning ψt in (20) can

be bounded as follows:

s−1λ−1
∫ T

0

∫
∂�̂F (t)

(ξ∗)−1
|ψt |

2 dγ dt

≤ 2
(
s−1λ−1

∫ T

0

∫
∂�̂F (t)

e−2sα∗(ξ∗)−1
|∇ × ϕt |

2 dγ dt

+ s−1λ−1
∫ T

0

∫
∂�̂F (t)

|∂t (e
−sα∗)|2(ξ∗)−1

|∇ × ϕ|2 dγ dt

)
.

Since |α∗t | ≤ Ĉ(T + T
2)(ξ∗)1+1/k , the last term can be absorbed by the third integral on

the left-hand side of (20) by taking λ ≥ Ĉ and s ≥ C(T 2k−1
+T 2k). Thus, using also that

∇β · τ = 0 on ∂�̂S(t) for the third term on the right-hand side of (20), we can rewrite
estimate (20) in the following way:

s3λ4
∫ T

0

∫
�̂F (t)

e−2sαξ3
|∇ × ϕ|2 dx dt + sλ2

∫ T

0

∫
�̂F (t)

e−2sαξ |∇(∇ × ϕ)|2 dx dt

≤ C

(
s3λ4

∫ T

0

∫
O0

e−2sαξ3
|∇ × ϕ|2 dx dt + sλ2

∫ T

0

∫
O0

e−2sαξ |∇(∇ × ϕ)|2 dx dt

+ sλ

∫ T

0

∫
∂�̂F (t)

e−2sα∗ξ∗|∇(∇ × ϕ)τ |2 dγ dt

+

∫ T

0

∫
∂�̂F (t)

e−2sα∗(sλξ∗)−1
|∇ × ϕt |

2 dγ dt +

∫ T

0

∫
�̂F (t)

e−2sα
|∇û|2|∇ϕ|2 dx dt

)
(21)

for λ ≥ Ĉ and s ≥ C(T k + T 2k).
Let us obtain estimates on the second term on the right-hand side of (21). Let O1 be

an open set with O0 ⊂⊂ O1 ⊂⊂ O2 and θ0 ∈ C
2
c (O1) be a positive function satisfying

θ0(x) = 1 for all x ∈ O0. We apply the curl operator to the first equation in (15):

−(∇ × ϕ)t −∇ × [(û · ∇)ϕ] − µ1(∇ × ϕ) = 0 in �̂F (t).

Then we set ρ(t, x) := sλ2θ0(x)e
−2sα(t,x)ξ(t, x), we multiply the above equation by

ρ∇ × ϕ and we integrate by parts in O0 to obtain
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−
1
2
d

dt

∫
O0

ρ|∇ × ϕ|2 dx +
1
2

∫
O0

ρt |∇ × ϕ|
2 dx +

∫
O0

ρ[(û · ∇)(∇ × ϕ)] · (∇ × ϕ) dx

+

∫
O0

[(∇ρ)× (∇ × ϕ)] · [(û · ∇)ϕ] dx +

∫
O0

ρ1ϕ · [(û · ∇)ϕ] dx

+ µ

∫
O0

ρ|∇(∇ × ϕ)|2 dx −
µ

2

∫
O0

1ρ|∇ × ϕ|2 dx = 0 (22)

for t ∈ (0, T ). Next, we integrate between t = 0 and t = T , and we use û ∈ Ẑ ⊂ C0(L∞)

and
|ρt | + |1ρ| ≤ Cs

3λ4ξ3e−2sα for s ≥ C(T k + T 2k) and λ ≥ C,
to obtain

sλ2
∫ T

0

∫
O0

e−2sαξ |∇(∇ × ϕ)|2 dx dt

≤ Ĉ

(
s3λ4

∫ T

0

∫
O1

e−2sαξ3
|∇ × ϕ|2 dx dt + sλ2

∫ T

0

∫
O1

e−2sαξ−1
|∇ϕ|2 dx dt

)
(23)

for λ ≥ Ĉ and s ≥ C(T k + T 2k). Observe that the second term on the right-hand side
can be bounded by the last one in (21) by taking s ≥ CT 2k . Next, we estimate the local
term with ∇ × ϕ. In order to do this, let θ1 ∈ C

2
c (O2) be a positive function satisfying

θ1(x) = 1 for all x ∈ O1. Then integrating by parts in

s3λ4
∫ T

0

∫
O2

θ1e
−2sαξ3(∇×ϕ) · (∇×ϕ) dx dt + sλ2

∫ T

0

∫
O2

θ1e
−2sαξ(∇ϕ) · (∇ϕ) dx dt

we can prove that

s3λ4
∫ T

0

∫
O1

e−2sαξ3
|∇ × ϕ|2 dx dt + sλ2

∫ T

0

∫
O1

e−2sαξ |∇ϕ|2 dx dt

≤ Cεs
5λ6

∫ T

0

∫
O2

e−2sαξ5
|ϕ|2 dx dt + ε

(
sλ2

∫ T

0

∫
O2

e−2sαξ |∇(∇ × ϕ)|2 dx dt

+ s3λ4
∫ T

0

∫
O2

e−2sαξ3
|∇ × ϕ|2 dx dt

)
for λ ≥ C and s ≥ CT 2k . Combining this with (21) and (23), we obtain

s3λ4
∫ T

0

∫
�̂F (t)

e−2sαξ3
|∇ × ϕ|2 dx dt + sλ2

∫ T

0

∫
�̂F (t)

e−2sαξ |∇(∇ × ϕ)|2 dx dt

≤ C

(
s5λ6

∫ T

0

∫
O2

e−2sαξ5
|ϕ|2 dx dt + sλ

∫ T

0

∫
∂�̂F (t)

e−2sα∗ξ∗|∇(∇ × ϕ)τ |2 dγ dt

+ s−1λ−1
∫ T

0

∫
∂�̂F (t)

e−2sα∗(ξ∗)−1
|∇ × ϕt |

2 dγ dt

+

∫ T

0

∫
�̂F (t)

e−2sα
|∇û|2|∇ϕ|2 dx dt

)
(24)

for λ ≥ Ĉ and s ≥ C(T k + T 2k).
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B. Elliptic estimates

Since ∇ · ϕ = 0, observe that ϕ satisfies the following boundary-value problem:{
1ϕ = −∇ × (∇ × ϕ) := f0 in �̂F (t),

ϕ = (ȧ + ω × (x − b̂))1∂�̂S (t) := g0 on ∂�̂F (t).

• Applying classical elliptic estimates, we have

‖ϕ‖H 1(�̂F (t))
≤ Ĉ(‖f0‖H−1(�̂F (t))

+ ‖g0‖H 1/2(∂�̂F (t))
)

≤ Ĉ(‖∇ × ϕ‖L2(�̂F (t))
+ |ȧ| + |ω|),

which directly leads to

s3λ4
∫ T

0

∫
�̂F (t)

e−2sα∗(ξ∗)3|∇ϕ|2 dx dt ≤ Ĉ

(
s3λ4

∫ T

0

∫
�̂F (t)

e−2sαξ3
|∇ × ϕ|2 dx dt

+ s3λ4
∫ T

0
e−2sα∗(ξ∗)3(|ȧ|2 + |ω|2) dt

)
. (25)

•We now apply the classical elliptic Carleman estimate which can be proved as in [10]:

κ4λ6
∫
�̂F (t)

exp{2κeλβ}e4λβ
|ϕ|2 dx + κ2λ4

∫
�̂F (t)

exp{2κeλβ}e2λβ
|∇ϕ|2 dx

+ κ4λ5
∫
∂�̂F (t)

e2κ
|ϕ|2 dγ

≤ C

(
κ4λ6

∫
O2

exp{2κeλβ}e4λβ
|ϕ|2 dx + κλ2

∫
�̂F (t)

exp{2κeλβ}eλβ |f0|
2 dx

+ κ2λ3e2κ
∫
∂�̂F (t)

|∂κg0|
2 dγ

)
for any κ ≥ Ĉ and any λ ≥ Ĉ. Combining this withH 2 elliptic estimates, we deduce that

κ4λ6
∫
�̂F (t)

exp{2κeλβ}e4λβ
|ϕ|2 dx + κ2λ4

∫
�̂F (t)

exp{2κeλβ}e2λβ
|∇ϕ|2 dx

+ κ4λ5
∫
∂�̂F (t)

e2κ
|ϕ|2 dγ + λ2

∫
�̂F (t)

exp{2κeλβ}|D2ϕ|2 dx

≤ C

(
κ4λ6

∫
O2

exp{2κeλβ}e4λβ
|ϕ|2 dx

+ κλ2
∫
�̂F (t)

exp{2κeλβ}eλβ |1ϕ|2 dx + κ2λ3e2κ(|ȧ|2 + |ω|2)

)
for any κ ≥ Ĉ and any λ ≥ Ĉ, where we have used

‖ϕ‖H 3/2(∂�̂F (t))
≤ Ĉ(|ȧ| + |ω|).
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We set κ := se2kλM/(tk(T − t)k) and we multiply the previous inequality by

exp
{
−2s

e(2k+2)λM

tk(T − t)k

}
.

This yields

λ2
∫ T

0

∫
�̂F (t)

e−2sα(s4λ4ξ4
|ϕ|2 + s2λ2ξ2

|∇ϕ|2 + |D2ϕ|2) dx dt

+ s4λ5
∫ T

0

∫
∂�̂F (t)

e−2sα∗(ξ∗)4|ϕ|2 dγ dt

≤ C

(
s4λ6

∫ T

0

∫
O2

e−2sαξ4
|ϕ|2 dx dt + sλ2

∫ T

0

∫
�̂F (t)

e−2sαξ |1ϕ|2 dx dt

+ s2λ3
∫ T

0
e−2sα∗(ξ∗)2(|ȧ|2 + |ω|2) dt

)
(26)

for λ ≥ Ĉ and s ≥ Ĉ(T k + T 2k). Observe that the terms |∇ϕ|2 and |D2ϕ|2 on the
left-hand side of (26) allow the last term in (24) to be absorbed by taking λ ≥ Ĉ and
s ≥ CT 2k and using û ∈ C0(W 1,3). Combining this with (25) and (24), we obtain

s4λ6
∫ T

0

∫
�̂F (t)

e−2sαξ4
|ϕ|2 dx dt + s3λ4

∫ T

0

∫
�̂F (t)

e−2sα∗(ξ∗)3|∇ϕ|2 dx dt

+ s4λ5
∫ T

0

∫
∂�̂F (t)

e−2sα∗(ξ∗)4|ϕ|2 dγ dt

≤ C

(
s5λ6

∫ T

0

∫
O2

e−2sαξ5
|ϕ|2 dx dt + sλ

∫ T

0

∫
∂�̂F (t)

e−2sα∗ξ∗|∇(∇ × ϕ)τ |2 dγ dt

+ s−1λ−1
∫ T

0

∫
∂�̂F (t)

e−2sα∗(ξ∗)−1
|∇ × ϕt |

2 dγ dt

+ s3λ4
∫ T

0
e−2sα∗(ξ∗)3(|ȧ|2 + |ω|2) dt

)
(27)

for λ ≥ Ĉ and s ≥ Ĉ(T k + T 2k).
We notice that ∫

∂�̂S (t)

|ϕ|2 dγ ≥ Ĉ(|ȧ|2 + |ω|2).

The proof of this inequality is given in [3, Lemma 1, Section 4.1]. This allows the last
term on the right-hand side of (27) to be absorbed thanks to s ≥ ĈT 2k . For the moment,
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we have

s4λ6
∫ T

0

∫
�̂F (t)

e−2sαξ4
|ϕ|2 dx dt + s3λ4

∫ T

0

∫
�̂F (t)

e−2sα∗(ξ∗)3|∇ϕ|2 dx dt

+ s4λ5
∫ T

0
e−2sα∗(ξ∗)4(|ȧ|2 + |ω|2) dt

≤ C

(
s5λ6

∫ T

0

∫
O2

e−2sαξ5
|ϕ|2 dx dt + sλ

∫ T

0

∫
∂�̂F (t)

e−2sα∗ξ∗|∇(∇ × ϕ)τ |2 dγ dt

+ s−1λ−1
∫ T

0

∫
∂�̂F (t)

e−2sα∗(ξ∗)−1
|∇ × ϕt |

2 dγ dt

)
(28)

for λ ≥ Ĉ and s ≥ Ĉ(T k + T 2k).
The rest of the proof is dedicated to the estimate of the two boundary terms

B1 := sλ

∫ T

0

∫
∂�̂F (t)

e−2sα∗ξ∗|∇(∇ × ϕ)τ |2 dγ dt,

B2 := s
−1λ−1

∫ T

0

∫
∂�̂F (t)

e−2sα∗(ξ∗)−1
|∇ × ϕt |

2 dγ dt.

C. Estimate of B1

Let us define, on (0, T ),
θ1 := s

1/2λ1/2e−sα
∗

(ξ∗)1/2,

and set (ϕ∗, π∗, ȧ∗, ω∗) := θ1(ϕ, π, ȧ, ω) together with a∗(T ) = 0. These functions
satisfy

−ϕ∗t (t, x)− (û · ∇)ϕ
∗)(t, x)−∇ · σ(ϕ∗, π∗)(t, x) = −θ̇1ϕ, x ∈ �̂F (t),

∇ · ϕ∗(t, x) = 0, x ∈ �̂F (t),

ϕ∗(t, x) = 0, x ∈ ∂�,

ϕ∗(t, x) = ȧ∗(t)+ ω∗(t)× (x − b̂(t)), x ∈ ∂�̂S(t),

mä∗(t) = −

∫
∂�̂S (t)

(σ (ϕ∗, π∗)n)(t, x) dγ +mθ̇1ȧ,

d

dt
(Ĵω∗)(t) = ((Ĵ r̂)× ω∗)(t)−

∫
∂�̂S (t)

(x − b̂(t))× (σ (ϕ∗, π∗)n)(t, x) dγ + Ĵ θ̇1ω,

ϕ∗
|t=T = 0 in �̂F (T ), a∗(T ) = ȧ∗(T ) = 0, ω∗(T ) = 0.

(29)

Here, we apply Corollary 9 (stated in the Appendix) with k0 = 13/9 and we deduce the
existence of a constant Ĉ such that

‖θ1ϕ‖L2(H 23/9) + ‖θ1ϕ‖H 1(H 5/9) + ‖θ1ȧ‖H 23/18(0,T ) + ‖θ1ω‖H 23/18(0,T )

≤ Ĉ(‖θ̇1ϕ‖L2(H 5/9) + ‖θ̇1ϕ‖H 5/18(L2) + ‖θ̇1ȧ‖H 5/18 + ‖θ̇1ω‖H 5/18). (30)
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Since 23/9 > 5/2, B1 ≤ Ĉ‖θ1ϕ‖
2
L2(H 23/9)

, it suffices to estimate all four terms on the
right-hand side of (30).

C.1. Estimate of ‖θ̇1ϕ‖L2(H 5/9). By an interpolation argument, we have

‖ϕ‖H 5/9(�̂F (t))
≤ Ĉ‖ϕ‖

4/9
L2(�̂F (t))

‖ϕ‖
5/9
H 1(�̂F (t))

.

Multiplying this inequality by θ̇1, we obtain

θ̇1‖ϕ‖H 5/9(�̂F (t))

≤ Ĉs2/9(ξ∗)2/9−4/(9k)(θ̇1)
4/9
‖ϕ‖

4/9
L2(�̂F (t))

s−2/9(ξ∗)−2/9+4/(9k)(θ̇1)
5/9
‖ϕ‖

5/9
H 1(�̂F (t))

.

Applying now Young’s inequality, we get

θ̇1‖ϕ‖H 5/9(�̂F (t))
≤ εs1/2(ξ∗)1/2−1/k θ̇1‖ϕ‖L2(�̂F (t))

+ Ĉεs
−2/5(ξ∗)−2/5+4/(5k)θ̇1‖ϕ‖H 1(�̂F (t))

. (31)

Observe that
|θ̇1| ≤ s

3/2λ1/2e−sα
∗

(ξ∗)3/2+1/k,

with s ≥ Ĉ(T k + T 2k).
Integrating inequality (31) in time, we obtain

‖θ̇1ϕ‖
2
L2(H 5/9)

≤ εs4λ

∫ T

0

∫
�̂F (t)

e−2sα∗(ξ∗)4|ϕ|2 dx dt

+ Cεs
11/5λ

∫ T

0

∫
�̂F (t)

e−2sα∗(ξ∗)11/5+18/(5k)
|∇ϕ|2 dx dt.

These two terms can be absorbed by the left-hand side of the Carleman inequality (28)
provided that k ≥ 9, s ≥ C(T k + T 2k) and λ ≥ 1.

C.2. Estimate of ‖θ̇1ϕ‖H 5/8(L2). Observe that

‖θ̇1ϕ‖
2
L2(L2)

≤ Ĉs3λ

∫ T

0

∫
�̂F (t)

e−2sα∗(ξ∗)3+2/k
|ϕ|2 dx dt

and

‖θ̇1ϕ‖
2
H 1(L2)

≤ Ĉ

(
s3λ

∫ T

0

∫
�̂F (t)

e−2sα∗(ξ∗)3+2/k
|ϕt |

2 dx dt

+ s5λ

∫ T

0

∫
�̂F (t)

e−2sα∗(ξ∗)5+4/k
|ϕ|2 dx dt

)
.
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By an interpolation argument due to [18], we get

‖θ̇1ϕ‖
2
H 5/18(L2)

≤ Ĉλ

(∫ T

0

∫
�̂F (t)

e−2sα∗(s3(ξ∗)3+2/k
|ϕ|2)13/18(s3(ξ∗)3+2/k

|ϕt |
2)5/18 dx dt

+

∫ T

0

∫
�̂F (t)

e−2sα∗(s3(ξ∗)3+2/k
|ϕ|2)13/18(s5(ξ∗)5+4/k

|ϕ|2)5/18 dx dt

)
= Ĉλ

(∫ T

0

∫
�̂F (t)

e−2sα∗(s4(ξ∗)4|ϕ|2)13/18(s2/5(ξ∗)2/5+36/(5k)
|ϕt |

2)5/18 dx dt

+

∫ T

0

∫
�̂F (t)

e−2sα∗(s4(ξ∗)4|ϕ|2)13/18(s12/5(ξ∗)12/5+46/(5k)
|ϕ|2)5/18 dx dt

)
.

In these two integrals, we apply Young’s inequality with parameters 18/13 and 18/5 to
find

‖θ̇1ϕ‖
2
H 5/18(L2)

≤ Ĉλs4
∫ T

0

∫
�̂F (t)

e−2sα∗(ξ∗)4|ϕ|2 dx dt

+ Ĉλs2/5
∫ T

0

∫
�̂F (t)

e−2sα∗(ξ∗)2/5+36/(5k)
|ϕt |

2 dx dt

+ Ĉλs12/5
∫ T

0

∫
�̂F (t)

e−2sα∗(ξ∗)12/5+46/(5k)
|ϕ|2 dx dt.

The first and third integrals can be absorbed by the left-hand side of (28) on taking
λ ≥ Ĉ, s ≥ C(T k + T 2k) and k ≥ 23/2, while the second integral is absorbed by the
second term on the left-hand side of (30) (squared) if we take λ ≥ Ĉ, s ≥ C(T k + T 2k)

and k ≥ 24.

C.3. Estimate of ‖θ̇1ȧ‖H 5/18 . We have

‖θ̇1ȧ‖
2
L2(0,T ) ≤ Ĉs

3λ

∫ T

0
e−2sα∗(ξ∗)3+2/k

|ȧ|2 dt

and

‖θ̇1ȧ‖
2
H 1(0,T ) ≤ Ĉ

(
s3λ

∫ T

0
e−2sα∗(ξ∗)3+2/k

|ä|2 dt + s5λ

∫ T

0
e−2sα∗(ξ∗)5+4/k

|ȧ|2 dt

)
.

Using again an interpolation argument from [18], we get

‖θ̇1ȧ‖
2
H 5/18(0,T ) ≤ Ĉλ

(∫ T

0
e−2sα∗(s3(ξ∗)3+2/k

|ȧ|2)13/18(s3(ξ∗)3+2/k
|ä|2)5/18 dt

+

∫ T

0
e−2sα∗(s3(ξ∗)3+2/k

|ȧ|2)13/18(s5(ξ∗)5+4/k
|ȧ|2)5/18 dt

)
.



Local null controllability of a fluid-solid interaction problem in dimension 3 839

We apply Young’s inequality with parameters 18/13 and 18/5 to find

‖θ̇1ȧ‖
2
H 5/18(0,T ) ≤ Ĉλs

32/9
∫ T

0
e−2sα∗(ξ∗)32/9+23/(9k)

|ȧ|2 dt

+ Ĉλs2/5
∫ T

0
e−2sα∗(ξ∗)2/5+36/(5k)

|ä|2 dt + Ĉλs4
∫ T

0
e−2sα∗(ξ∗)4|ȧ|2 dt. (32)

The first and third integrals can be absorbed by the left-hand side of (28) taking λ ≥ Ĉ,
s ≥ C(T k + T 2k) and k ≥ 23/4 while the second integral can be absorbed by the third
term on the left-hand side of (30) provided that λ ≥ Ĉ, s ≥ C(T k + T 2k) and k ≥ 12.

C.4. Estimate of ‖θ̇1ω‖H 5/18 . In order to estimate this term, we proceed exactly as in
Step C.3.

To conclude Step C, we put together Steps C.1–C.4 to obtain

B1 ≤ ε

(
s4λ6

∫ T

0

∫
�̂F (t)

e−2sαξ4
|ϕ|2 dx dt + s3λ4

∫ T

0

∫
�̂F (t)

e−2sα∗(ξ∗)3|∇ϕ|2 dx dt

+ s4λ5
∫ T

0
e−2sα∗(ξ∗)4(|ȧ|2 + |ω|2) dt

)
(33)

for λ ≥ Ĉε and s ≥ Ĉε(T k + T 2k) for k ≥ 24.

D. Estimate of B2

Let us define, on [0, T ],

θ2 := s
−1/2λ−1/2e−sα

∗

(ξ∗)−1/2.

Then θ2(ϕ, π, ȧ, ω) satisfies system (29) with θ1 replaced by θ2. We notice that

|B2| ≤ C‖θ2ϕt‖
2
L2(H 14/9)

,

since 14/9 > 3/2.
Let us apply Corollary 9 for k0 = 4/9. For our system, the compatibility condition

(71) is satisfied since, thanks to the weight function θ2, all the initial conditions are equal
to zero. This yields, in particular,

‖θ2ϕt‖L2(H 14/9) ≤ Ĉ(‖θ̇2ϕ‖L2(H 14/9)∩H 7/9(L2) + ‖θ̇2ȧ‖H 7/9(0,T ) + ‖θ̇2ω‖H 7/9(0,T )).

Observe that

‖θ̇2ϕ‖L2(H 14/9)∩H 7/9(L2) + ‖θ̇2ȧ‖H 7/9(0,T ) + ‖θ̇2ω‖H 7/9(0,T )

≤ C(‖θ̇2ϕ‖Ŷ0
+ ‖θ̇2ȧ‖H 1(0,T ) + ‖θ̇2ω‖H 1(0,T )).
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Applying now Proposition 7 to θ̇2(ϕ, π, ȧ, ω), we deduce

‖θ2ϕt‖L2(H 14/9) ≤ Ĉ(‖θ̈2ϕ‖L2(L2) + ‖θ̈2ȧ‖L2(0,T ) + ‖θ̈2ω‖L2(0,T )). (34)

Using the definition of the weight functions (see (16)), we obtain

|θ̈2| ≤ Ĉ(sξ
∗)3/2+2/kλ−1/2e−sα

∗

for s ≥ Ĉ(T k + T 2k).

This readily implies that the first (resp. second and third) norm on the right-hand side of
(34) is absorbed by the first (resp. third) integral on the left-hand side of (28) provided
that λ ≥ Ĉ, s ≥ Ĉ(T k + T 2k) and k ≥ 4.

Consequently, we have proved that

B2 ≤ ε

(
s4λ6

∫ T

0

∫
�̂F (t)

e−2sαξ4
|ϕ|2 dx dt + s4λ5

∫ T

0
e−2sα∗(ξ∗)4(|ȧ|2 + |ω|2) dt

)
(35)

for λ ≥ Ĉε and s ≥ Ĉε(T k + T 2k) for k ≥ 4.
Thus combining (33) and (35) with (28), we obtain the desired inequality (17). This

concludes the proof of Proposition 2.

3. Controllability problems

3.1. Observability inequalities for the adjoint system

Proposition 3. There exists a constant C1 > 0 depending on ‖û‖
Ẑ

, ‖b̂‖W 1,∞(0,T ),
‖r̂‖L∞(0,T ) such that for any (ϕT , aT0 , a

T
1 , ωT ) with ϕT ∈ L2(�̂F (T )) and any (û, b̂, r̂)

satisfying (10)–(12), the solution (ϕ, π, a, ω) of (15) satisfies

‖ϕ(0, ·)‖2
L2(�F (0))

+ |ȧ(0)|2 + |ω(0)|2 ≤ C1

∫∫
(0,T )×O2

|ϕ|2 dx dt. (36)

Proof. The proof relies on an energy inequality for system (15). Indeed, let us multiply
the equation for ϕ by ϕ and integrate in space. Using the equations for a and ω, this yields

−
1
2
d

dt

∫
�̂F (t)

|ϕ|2 dx +

∫
�̂F (t)

|∇ϕ|2 dx −
m

2
d

dt
|ȧ|2 −

1
2
d

dt
(Ĵω · ω) =

1
2
˙̂
Jω · ω.

Thus, for any 0 ≤ t1 < t2 ≤ T , we have∫
�̂F (t1)

|ϕ(t1)|
2 dx + |ȧ(t1)|

2
+ |ω(t1)|

2
≤ Ĉ

(∫
�̂F (t2)

|ϕ(t2)|
2 dx + |ȧ(t2)|

2
+ |ω(t2)|

2
)
.

Combining this with the Carleman inequality (17) and using the properties of the weight
function α (see (16)), we obtain (36) in a classical way.

The observability inequality (36) will not allow us to drive the center of mass a to
zero at time t = T and the rotation matrix Q to the identity at time t = T . For this, we
will improve this observability inequality (see (39) below), following the ideas of [15].
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We first introduce some auxiliary problems. Let us denote by ek the k-th element of the
canonical basis in R3 for k = 1, 2, 3. Let (ϕ(j), π (j), a(j), ω(j)) be the solution of

−ϕ
(j)
t (t, x)− (û · ∇)ϕ(j))(t, x)−∇ · σ(ϕ(j), π (j))(t, x) = 0, x ∈ �̂F (t),

∇ · ϕ(j)(t, x) = 0, x ∈ �̂F (t),

ϕ(j)(t, x) = 0, x ∈ ∂�,

ϕ(j)(t, x) = ȧ(j)(t)+ ω(j)(t)× (x − b̂(t)), x ∈ ∂�̂S(t),

m(ä(j)(t)+ ej ) = −

∫
∂�̂S (t)

(σ (ϕ(j), π (j))n)(t, x) dγ,

d

dt
(Ĵω(j))(t) = ((Ĵ r̂)× ω(j))(t)−

∫
∂�̂S (t)

(x − b̂(t))× (σ (ϕ(j), π (j))n)(t, x) dγ,

ϕ
(j)
|t=T = 0 in �̂F (T ), a(j)(T ) = ȧ(j)(T ) = ω(j)(T ) = 0,

(37)

for j = 1, 2, 3 and the solution of

−ϕ
(j)
t (t, x)− (û · ∇)ϕ(j))(t, x)−∇ · σ(ϕ(j), π (j))(t, x) = 0, x ∈ �̂F (t),

∇ · ϕ(j)(t, x) = 0, x ∈ �̂F (t),

ϕ(j)(t, x) = 0, x ∈ ∂�,

ϕ(j)(t, x) = ȧ(j)(t)+ ω(j)(t)× (x − b̂(t)), x ∈ ∂�̂S(t),

mä(j)(t) = −

∫
∂�̂S (t)

(σ (ϕ(j), π (j))n)(t, x) dγ,

d

dt
(Ĵω(j))(t)+ej−3=((Ĵ r̂)×ω

(j))(t)−

∫
∂�̂S (t)

(x− b̂(t))×(σ (ϕ(j), π (j))n)(t, x) dγ,

ϕ
(j)
|t=T = 0 in �̂F (T ), a(j)(T ) = ȧ(j)(T ) = ω(j)(T ) = 0,

(38)

for j = 4, 5, 6.
Using the duality between systems (37)–(38) and (14), we obtain∫ T

0

∫
O2

v∗ · ϕ(j) dx dt = −

∫
�F (0)

u0 · ϕ
(j)

|t=0 dx −mȧ
(j)(0) · b1 − Ĵ (0)r0 · ω(j)(0)

+m(b∗j (T )− b0,j )

for j = 1, 2, 3 and∫ T

0

∫
O2

v∗ · ϕ(j) dx dt = −

∫
�F (0)

u0 · ϕ
(j)

|t=0 dx −mȧ
(j)(0) · b1 − Ĵ (0)r0 · ω(j)(0)

+

∫ T

0
r∗j−3(t) dt

for j = 4, 5, 6.
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Observe that b∗j (T ) = 0 for j = 1, 2, 3 is equivalent to v∗ satisfying three conditions
depending on u0, b0, b1 and r0. On the other hand, if we denote by θ0 and (x0, x1, x2)

respectively the angle and the axis of the rotation matrix Q0, we have

Q0 = exp

 0 −x2θ0 x1θ0
x2θ0 0 −x0θ0
−x1θ0 x0θ0 0

 .
Note also that from (3) we get

Q∗(t) = exp

∫ t

0

 0 −r∗3 r∗2
r∗3 0 −r∗1
−r∗2 r∗1 0

 (τ ) dτ
Q0.

Thus, Q∗(T ) = Id will hold if∫ T

0
r∗3 (t) dt = −x2θ0,

∫ T

0
r∗2 (t) dt = −x1θ0,

∫ T

0
r∗1 (t) dt = −x0θ0,

which is equivalent to three conditions on the control v∗ depending on u0, b1, r0 and Q0.
As a conclusion, enforcing b∗(T ) = 0 and Q∗(T ) = Id is equivalent to∫ T

0

∫
O2

v∗(t, x) · ϕ(j)(t, x) dx dt = C(j) ∀1 ≤ j ≤ 6,

for someC(j) ∈ R depending on the initial conditions. Observe that the set of functions v∗

satisfying this system of equations is nonempty. Indeed, assume that a linear combination
of {ϕ(j)}1≤j≤6 vanishes on O2; then according to the unique continuation property of the
fluid problem proved in [8], it vanishes on the whole fluid domain. Then due to the solid
equations, we can show that the coefficients of the linear combination are null (we refer
to [4] for more details).

We define the orthogonal projection P from L2((0, T )×�) to span(1O2(ϕ
(j))1≤j≤6):∫ T

0

∫
O2

(v∗ − P(v∗)) · ϕ(j) dx dt = 0, 1 ≤ j ≤ 6.

We also consider the operators P (j) satisfying

P(v∗) =

6∑
j=1

P (j)(v∗)ϕ(j).

Proposition 4. There exists C1 > 0 depending on ‖û‖
Ẑ
, ‖b̂‖W 1,∞(0,T ), ‖r̂‖L∞(0,T ) such

that for any (ϕT , aT0 , a
T
1 , ωT ) with ϕT ∈ L2(�̂F (T )) and any (û, b̂, r̂) satisfying (10)–

(12), the solution (ϕ, π, a, ω) of (15) satisfies

‖ϕ(0, ·)‖2
L2(�F (0))

+ |ȧ(0)|2 + |ω(0)|2 +
6∑

j=1

|P (j)(ϕ)|2

≤ C1

∫∫
(0,T )×O2

|ϕ − P(ϕ)|2 dx dt. (39)
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The idea of the proof is to argue by contradiction and use the Carleman inequality (17).
This is done in the same way as in [7, Proposition 3.2] and [4, Proposition 5], so we omit
the proof.

3.2. Controllability of system (13)

In this subsection, we prove the null controllability of system (13):

Proposition 5. Let (u0, b0, b1, r0) satisfy (8), u0 ∈ H 2(�F (0)) and (û, b̂, r̂) satisfy
(10)–(12). Then there exists a control v ∈ L2(0, T ;H 1(�)) such that the solution
(u, p, b, r) to the problem (13) satisfies

u(T , ·) = 0 in �̂F (T ), b(T ) = 0, ḃ(T ) = 0, ω(T ) = 0, Q(T ) = Id, (40)

where Q is given by (3). Moreover, there exists a constant K0 > 0 such that

‖v‖L2(0,T ;H 1(�)) ≤ K0(‖u0‖H 2(�F (0)) + |b0| + |b1| + |r0|). (41)

Proof. From the observability inequality (39), it is classical to prove the existence of a
control v∗ ∈ L2((0, T )×�) such that the solution

(u∗, p∗, b∗, r∗) ∈ (L2(H 2) ∩ C0(H 1))× L2(H 1)×H 2(0, T )×H 1(0, T )

of (14) satisfies (40) and (41) for the L2(L2) norm (see [7, Proposition 4.1] [4, Proposi-
tion 6]). In the rest of this proof, Ĉ denotes a generic positive constant which may depend
on ‖û‖

Ẑ
, ‖b̂‖W 1,∞(0,T ) and ‖r̂‖L∞(0,T ).

Let us now modify the control v∗ to an L2(H 1) control such that (40) and (41) are
still satisfied. For this purpose, let (ū, p̄, b̄, r̄) be the solution of (13) with null control.
From Corollary 9 for k0 = 1, we have

(ū, p̄, b̄, r̄) ∈ (L2(H 3) ∩ C0(H 2))× L2(H 2)×H 5/2(0, T )×H 3/2(0, T )

and there exists K > 0 such that

‖ū‖L2(H 3) + ‖ū‖C0(H 2) + ‖p̄‖L2(H 2) + ‖b̄‖H 5/2(0,T ) + ‖r̄‖H 3/2(0,T )

≤ Ĉ(‖u0‖H 2(�F (0)) + |b0| + |b1| + |r0|). (42)

We now consider a function η0 ∈ C
1([0, T ]) such that η0(t) = 1, t ∈ [0, T /2],

η0(t) = 0, t ∈ [3T/4, T ] and η0(t) ≥ 0, t ∈ [0, T ]. Then the function

(w, q, c, s) := (u∗ − η0ū, p
∗
− η0p̄, b

∗
− η0b̄, r

∗
− η0r̄)
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satisfies the first four identities of (40) and the system

wt (t, x)+ (û · ∇)w)(t, x)−∇ · σ(w, q)(t, x) = F0(t, x)+ v
∗1O2 , x ∈ �̂F (t),

∇ · w(t, x) = 0, x ∈ �̂F (t),

w(t, x) = 0, x ∈ ∂�,

w(t, x) = ċ(t)+ s(t)× (x − b̂(t))+ F1(t), x ∈ ∂�̂S(t),

mc̈(t) =

∫
∂�̂S (t)

(σ (w, q)n)(t, x) dγ + F2(t),

(Ĵ ṡ)(t) = ((Ĵ r̂)× s)(t)+

∫
∂�̂S (t)

(x − b̂(t))× (σ (w, q)n)(t, x) dγ + F3(t),

w|t=0 = 0 in �F (0), c(0) = 0, ċ(0) = 0, s(0) = 0,

(43)

where F0 := −η0,t ū ∈ L
2(H 2), F1 = η0,t b̄, F2 := −m(η0,t t b̄+ 2η0,t

˙̄b) ∈ H 1(0, T ) and
F3 := −η0,t Ĵ r̄ ∈ H

1(0, T ). Thanks to (42), we have

‖F0‖L2(H 2) + ‖F1‖H 1(0,T ) + ‖F2‖H 1(0,T ) + ‖F3‖H 1(0,T )

≤ Ĉ(‖u0‖H 2(�F (0)) + |b0| + |b1| + |r0|). (44)

Using this estimate and Proposition 7, we obtain

‖w‖L2(H 2) + ‖w‖H 1(L2) + ‖q‖L2(H 1) + ‖c‖H 2(0,T ) + ‖s‖H 1(0,T )

≤ Ĉ(‖u0‖H 2(�F (0)) + |b0| + |b1| + |r0|). (45)

We consider two open sets O3 and O4 such that

O2 ⊂⊂ O3 ⊂⊂ O4 ⊂⊂ Õ.

Let θ ∈ C2
c (O4) be a function satisfying θ(x) = 1 for every x ∈ O3. We introduce the

functions
(w̃, q̃, c̃, s̃) := ((1− θ)w, (1− θ)q, c, s),

which satisfy the first four identities of (40) and the following system:

w̃t (t, x)+ (û · ∇)w̃)(t, x)− µ1w̃(t, x)+∇q̃(t, x)

= F0(t, x)+G0(t, x), x ∈ �̂F (t),

∇ · w̃(t, x) = −∇θ · w, x ∈ �̂F (t),

w̃(t, x) = 0, x ∈ ∂�,

w̃(t, x) = ˙̃c(t)+ s̃(t)× (x − b̂(t)), x ∈ ∂�̂S(t),

m ¨̃c(t) =

∫
∂�̂S (t)

(σ (w̃, q̃)n)(t, x) dγ + F2(t),

(Ĵ ˙̃s)(t) = ((Ĵ r̂)× s̃)(t)+

∫
∂�̂S (t)

(x − b̂(t))× (σ (w̃, q̃)n)(t, x) dγ + F3(t),

w̃|t=0 = 0 in �F (0), c̃(0) = 0, ˙̃c(0) = 0, s̃(0) = 0,

(46)
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with

G0 := −θF0 − (û · ∇θ)w + µ(2(∇θ · ∇)w +1θw)− q∇θ.

Here, we have used that (1− θ)v∗1O2 ≡ 0. Using (12), the properties of θ , (44) and (45),
we have

supp(G0) ⊂ O4, ‖G0‖L2(H 1) ≤ Ĉ(‖u0‖H 2(�F (0)) + |b0| + |b1| + |r0|). (47)

Let us now lift the divergence term. This term satisfies

supp(∇θ · w) ⊂⊂ O4,

∫
O4

∇θ · w dx = 0, ∇θ · w ∈ L2(H 2) ∩H 1(L2).

By [2, Theorem 2.4, p. 72 with m = r = 2], there exists a lifting U ∈ H 1(H 1
0 (O4))

∩ L2(H 3
0 (O4)) satisfying

∇ · U = ∇θ · w in O4, ‖U‖H 1(H 1) + ‖U‖L2(H 3) ≤ Ĉ(‖w‖H 1(L2) + ‖w‖L2(H 2)). (48)

Moreover, since w|t=0 = wt=T = 0 in O4, we have U|t=0 = U|t=T = 0 in O4. Let us
still denote by U its extension by zero to �. We now consider the system satisfied by
(W := w̃ − U, q̃, c̃, s̃):

Wt (t, x)+ (û · ∇)W)(t, x)−∇ · σ(W, q̃)(t, x) = F0(t, x)+G1(t, x), x ∈ �̂F (t),

∇ ·W(t, x) = 0, x ∈ �̂F (t),

W(t, x) = 0, x ∈ ∂�,

W(t, x) = ˙̃c(t)+ s̃(t)× (x − b̂(t)), x ∈ ∂�̂S(t),

m ¨̃c(t) =

∫
∂�̂S (t)

(σ (W, q̃)n)(t, x) dγ + F2(t),

(Ĵ ˙̃s)(t) = ((Ĵ r̂)× s̃)(t)+

∫
∂�̂S (t)

(x − b̂(t))× (σ (W, q̃)n)(t, x) dγ + F3(t),

W|t=0 = 0 in �F (0), c̃(0) = 0, ˙̃c(0) = 0, s̃(0) = 0,

(49)

with

G1 := G0 − Ut − (û · ∇)U + µ1U.

From the definition of θ , (47), (48) and the fact that û ∈ Ẑ, it is clear that

supp(G1) ⊂ O4, ‖G1‖L2(H 1) ≤ Ĉ(‖u0‖H 2(�F (0)) + |b0| + |b1| + |r0|).

Consequently, we have G1 = ζG1 and v := G1 satisfies (41). Finally, (u, p, b, r) :=
(W + η0ū, q̃ + η0p̄, c̃ + η0b̄, s̃ + η0r̄) with the control force v solves system (13), and
since r = r∗ and Q(T ) = Q∗(T ) = Id, (40) holds.
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4. Local null controllability

To prove Theorem 1, we perform a fixed-point argument for a multivalued map (see [20,
Theorem 9.B, p. 452]):

Theorem 6. Assume that a multivalued map 3 : K → 2K satisfies:

• 3 is upper semicontinuous.
• K is a nonempty, compact, convex set in a locally convex space X.
• The set 3(x) is nonempty, closed and convex for all x ∈ K .

Then 3 has a fixed point.

We are going to apply this theorem in the fixed domain �F (0). More precisely, let

K := {(z, b, r) ∈ (L2(0, T ;W2,6(�F (0))) ∩H
1(0, T ;L6(�F (0))))×H

2(0, T )×H 1(0, T )

such that ∇ · z = 0 in �F (0), z = 0 on ∂�F (0) and

‖z‖L2(0,T ;W 2,6(�F (0))) + ‖z‖H 1(0,T ;L6(�F (0))) + ‖b‖H 2(0,T ) + ‖r‖H 1(0,T ) ≤ R} (50)

for some small R > 0, and

X := L2(0, T ;H 1(�F (0)))× C1([0, T ])× C0([0, T ]).

In order to define 3, we consider (ẑ, b̂, r̂) ∈ K . We define the associated flow in the
solid domain:

χ̂(t, y) = b̂(t)+ Q̂(t)Q−1
0 (y − b0) ∀y ∈ �S(0). (51)

Then the solid domain is given by �̂S(t) := χ̂(t, �S(0)) for each t > 0. Observe that
condition (11) is satisfied for R small enough. Next, we define the eulerian velocity ûS ∈
H 1(H 3) as the solution, together with q̂S , of

−µ1ûS +∇q̂S = 0 in �̂F (t),

∇ · ûS = 0 in �̂F (t),

ûS(t, x) =
˙̂
b(t)+ r̂(t)× (x − b̂(t)) on ∂�̂S(t),

ûS = 0 on ∂�.

(52)

It satisfies

‖ûS‖H 1(H 3) + ‖q̂S‖H 1(H 2) ≤ C(‖b̂‖H 2(0,T ) + ‖r̂‖H 1(0,T )) (53)

for some C > 0.
Now, we extend the flow χ̂ to the fluid domain:

∂χ̂(t, y)

∂t
= (ûS ◦ χ̂)(t, y) ∀y ∈ �F (0),

χ̂(0, y) = y ∀y ∈ �F (0).
(54)
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This flow satisfies

‖χ̂ − id‖H 2(H 3) ≤ C(‖b̂‖H 2(0,T ) + ‖r̂‖H 1(0,T )) ≤ CR (55)

for some C > 0.
Next, we consider û ∈ Ẑ defined by

û(t, x) := ûS(t, x)+ (∇χ̂(t, χ̂
−1(t, x)))ẑ(t, χ̂−1(t, x)) ∀x ∈ �̂F (t).

This vector field satisfies ∇ · û = 0 in �̂F (t), û = 0 on ∂�. Moreover, there exists C > 0
such that

‖û‖
Ẑ
≤ C(‖ẑ‖L2(0,T ;W 2,6(�F (0)))∩H 1(0,T ;L6(�F (0))) + ‖b̂‖H 2(0,T ) + ‖r̂‖H 1(0,T )).

This velocity vector field being given, according to Proposition 5 we can construct a
control v ∈ L2(0, T ;H 1(�)) and a solution (u, p, b, r) of system (13) which satisfy
(40) and (41). From Proposition 7 (with g0 = g2 = g3 = 0 and g1 = vζ(x)), we infer
(u, p, b, r) ∈ Ŷ0 × L

2(H 1)×H 2(0, T )×H 1(0, T ) and

‖(u, p, b, r)‖
Ŷ0×L2(H 1)×H 2(0,T )×H 1(0,T )

≤ Ĉ(‖v‖L2((0,T )×�) + ‖u0‖H 1(�F (0)) + |b0| + |b1| + |r0|). (56)

Let (uS, qS) be defined by (52) with the boundary condition on ∂�̂S(t) replaced by
ḃ(t) + r(t) × (x − b̂(t)). Then (uS, qS) satisfies (53) with (b̂, r̂) replaced by (b, r) and
(u− uS, p − qS) is the solution of the following system:

(u− uS)t (t, x)−∇ · σ(u− uS, p − qS)(t, x)

= vζ(x)− (û · ∇)u(t, x)− uS,t (t, x), x ∈ �̂F (t),

∇ · (u− uS)(t, x) = 0, x ∈ �̂F (t),

(u− uS)(t, x) = 0, x ∈ ∂�̂F (t),

(u− uS)(0, x) = u0(x)− uS(0, x), x ∈ �F (0).

(57)

Since v ∈ L2(0, T ;H 1(�)), û ∈ Ẑ, u ∈ Ŷ0 and uS satisfies (53), the right-hand side of
this system belongs to L2(L6).

Finally, we define

z(t, y) := (∇χ̂)−1(t, y)(u− uS)(t, χ̂(t, y)) ∀y ∈ �F (0)

and h(t, y) := (p − qS)(t, χ̂(t, y)) for y ∈ �F (0). We notice that (z, h) satisfies
zt −∇ · σ(z, h) = F in (0, T )×�F (0),
∇ · z = 0 in (0, T )×�F (0),
z = 0 on (0, T )× ∂�F (0),
z(0, x) = u0(x)− uS(0, x) in �F (0),

(58)
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where

‖F‖L2(0,T ;L6(�F (0)))

≤ C(‖v‖L2(0,T ;H 1(�)) + ‖∇χ̂ − Id‖C0([0,T ]×�F (0))(‖z‖K1 + ‖∇h‖L2(0,T ;L6(�F (0)))))

+ Ĉ(‖u‖
Ŷ0
+ ‖p‖L2(H 1) + ‖b‖H 2(0,T ) + ‖r‖H 1(0,T )).

Here, K1 stands for the first component of the space K , which was defined in (50). Now,
we decompose F = F1 + ∇F2 with F1 ∈ L

2(0, T ;L6(�F (0))) satisfying ∇ · F1 = 0 in
(0, T )×�F (0), F1 · n = 0 on (0, T )× ∂�F (0), F2 ∈ L

2(0, T ;W 1,6(�F (0))) and

‖F1‖L2(0,T ;L6(�F (0))) + ‖∇F2‖L2(0,T ;L6(�F (0))) ≤ C‖F‖L2(0,T ;L6(�F (0))).

Then, we apply [11, Theorem 2.8] to (z, h− F2) with right-hand side F1 to obtain

‖(z,∇h)‖K1×L2(0,T ;L6(�F (0))) ≤ C(‖F‖L2(0,T ;L6(�F (0))) + ‖u0 − uS(0, ·)‖H 2(�F (0))).

Using now that (û, b̂, r̂) belongs to K , and (55) and (56), we deduce that

‖(z,∇h)‖K1×L2(0,T ;L6(�F (0))) ≤ ĈR‖(z,∇h)‖K1×L2(0,T ;L6(�F (0)))

+ Ĉ(‖v‖L2(0,T ;H 1(�)) + ‖u0‖H 2(�F (0)) + |b0| + |b1| + |r0|).

Thanks to (41) and (56), we obtain

‖(z, b, r)‖K ≤ C(‖u0‖H 2(�F (0)) + |b0| + |b1| + |r0|). (59)

With all these ingredients, we define

3(ẑ, b̂, r̂) = {(z, b, r) ∈ K : (u, p, b, r) satisfies (13) for some p and v, (40) and (41)}.

•We directly see that 3 : K → 2K from (59) and taking δ in (9) sufficiently small.

• Let us now prove that 3 is upper semicontinuous. For this, let A ⊂ K be a closed
subset. We have to prove that 3−1(A) is also closed.

Let (ẑn, b̂n, r̂n) ⊂ 3−1(A) be such that (ẑn, b̂n, r̂n) → (ẑ, b̂, r̂) in X. We intend to
prove that (ẑ, b̂, r̂) ∈ 3−1(A), that is, there exists (z, b, r) ∈ A such that (z, b, r) ∈
3(ẑ, b̂, r̂). Let (zn, bn, rn) ∈ 3(ẑn, b̂n, r̂n) ⊂ A. From the definition of K , there exists a
subsequence (zψ(n), bψ(n), rψ(n)) such that

(zψ(n), bψ(n), rψ(n)) ⇀ (z, b, r) in K and (zψ(n), bψ(n), rψ(n))→ (z, b, r) in X.
(60)

Since A is closed, we see (z, b, r) ∈ A. It remains to prove that (z, b, r) ∈ 3(ẑ, b̂, r̂).
First, we observe that χ̂ψ(n) → b̂ + Q̂Q−1

0 (y − b0) in C1([0, T ];H 3(�S(0))) (see
(51)). Let us prove that

χ̂ψ(n)→ χ̂ in C1([0, T ];H 3(�F (0))). (61)

For this, we consider the Stokes system satisfied by

(ûS,ψ(n) ◦ χ̂ψ(n), q̂S,ψ(n) ◦ χ̂ψ(n))− (ûS ◦ χ̂ , q̂S ◦ χ̂). (62)
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Since (zψ(n), bψ(n), rψ(n)) belongs to K , ûS,ψ(n) satisfies (53) and χ̂ψ(n) satisfies (55),
one can see that theH 1(�F (0))-norm of the right-hand side and theH 2(�F (0))-norm of
the divergence term of this system can be estimated by

CR(‖ûS,ψ(n) ◦ χ̂ψ(n) − ûS ◦ χ̂‖H 3(�F (0)) + ‖q̂S,ψ(n) ◦ χ̂ψ(n) − q̂S ◦ χ̂‖H 2(�F (0))

+ ‖χ̂ψ(n) − χ̂‖H 3(�F (0))).

As far as the boundary term is concerned, we have

ûS,ψ(n) ◦ χ̂ψ(n) − ûS ◦ χ̂

=
˙̂
bψ(n) −

˙̂
b + (r̂ψ(n) − r̂)× (Q̂(y − b0))+ r̂ψ(n) × (Q̂ψ(n) − Q̂)(y − b0), (63)

which tends to zero strongly in C0([0, T ];H 5/2(∂�S(0))) . Consequently, thanks to (54),
we obtain

ûS,ψ(n) ◦ χ̂ψ(n) − ûS ◦ χ̂ → 0 in C0([0, T ];H 3(�F (0)))

and (61). Taking a look again at the Stokes system satisfied by (62), we see that the
H 1(0, T ;H 1(�F (0)))-norm of the right-hand side and the H 1(0, T ;H 2(�F (0)))-norm
of the divergence are estimated by

CR(‖ûS,ψ(n)◦χ̂ψ(n)−ûS◦χ̂‖H 1(0,T ;H 3(�F (0)))+‖q̂S,ψ(n)◦χ̂ψ(n)−q̂S◦χ̂‖H 1(0,T ;H 2(�F (0)))

+ ‖χ̂ψ(n) − χ̂‖H 1(0,T ;H 3(�F (0)))).

For the boundary term (63), we deduce that itsH 1(0, T ;H 5/2(∂�S(0)))-norm is bounded
independently of n. As a consequence, up to a subsequence, we obtain

ûS,ψ(n) ◦ χ̂ψ(n) − ûS ◦ χ̂ ⇀ 0 in H 1(0, T ;H 3(�F (0))).

In the same way, one can prove that

uS,ψ(n) ◦ χ̂ψ(n) − uS ◦ χ̂ → 0 in C0([0, T ];H 3(�F (0))),

uS,ψ(n) ◦ χ̂ψ(n) − uS ◦ χ̂ ⇀ 0 in H 1(0, T ;H 3(�F (0))).
(64)

We recall the definition of uψ(n):

uψ(n) ◦ χ̂ψ(n) = uS,ψ(n) ◦ χ̂ψ(n) + (∇χ̂ψ(n))zψ(n) in �F (0).

Thanks to (60), (61) and (64), one can pass to the limit in the system satisfied by

(uψ(n) ◦ χ̂ψ(n), pψ(n) ◦ χ̂ψ(n), bψ(n), rψ(n))

and deduce that (u, p, b, r) satisfies system (13).

• For each (ẑ, b̂, r̂) ∈ K , 3(ẑ, b̂, r̂) is closed in X. Indeed, let (zn, bn, rn) ∈ 3(ẑ, b̂, r̂)
be such that (zn, bn, rn) → (z, b, r) in X. Then, arguing as above, one can show that
(z, b, r) ∈ 3(ẑ, b̂, r̂). In fact, the same convergences can be proved in a simpler way
since the domains do not depend on n.

Thus, we can apply Theorem 6 to obtain the existence of a fixed point to 3. This
concludes the proof of Theorem 1.
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Appendix

In this Appendix, we will establish some regularity results for a fluid-structure system
similar to (13):

wt (t, x)+ (û · ∇)w(t, x)−∇ · σ(w, q)(t, x) = g1(t, x), x ∈ �̂F (t),

∇ · w(t, x) = 0, x ∈ �̂F (t),

w(t, x) = 0, x ∈ ∂�,

w(t, x) = ċ(t)+ s(t)× (x − b̂(t))+ g0(t, x), x ∈ ∂�̂S(t),

mc̈(t) =

∫
∂�̂S (t)

(σ (w, q)n)(t, x) dγ + g2(t),

(Ĵ ṡ)(t) = ((Ĵ r̂)× s)(t)+

∫
∂�̂S (t)

(x − b̂(t))× (σ (w, q)n)(t, x) dγ + g3(t),

w|t=0 = w0 in �F (0), c(0) = c0, ċ(0) = c1, s(0) = s0.

(65)

Proposition 7. Assume that (w0, c0, c1, s0) satisfies (8) and let (û, b̂, r̂) satisfy (10) (with
(b0, b1, r0) replaced by (c0, c1, s0)) and (11)–(12). Moreover, suppose that g0 ∈ L

2(H 2),
the trace of g0 belongs to H 1(0, T ;L2(∂�̂S(t))), g1 ∈ L

2(L2), g2 ∈ L
2(0, T ) and g3 ∈

L2(0, T ). Then there exists Ĉ (depending on �, δ0 and ‖û‖
Ẑ
, ‖b̂‖H 2(0,T ), ‖r̂‖H 1(0,T ))

such that the solution of (65) satisfies

(w, q, c, s) ∈ Ŷ0 × L
2(H 1)×H 2(0, T )×H 1(0, T )

and

‖(w, q, c, s)‖
Ŷ0×L2(H 1)×H 2(0,T )×H 1(0,T )

≤ Ĉ(‖g0‖L2(H 2) + ‖g0‖H 1(0,T ;L2(∂�̂S (t)))
+ ‖g1‖L2(L2) + ‖g2‖L2(0,T )

+ ‖g3‖L2(0,T ) + ‖w0‖H 1(�F (0)) + |c0| + |c1| + |s0|). (66)

Proof. First, we prove that w ∈ L2(H 1) ∩ C0(L2) together with c ∈ W 1,∞(0, T ), s ∈
L∞(0, T ). Then, we will prove (w, q, c, s) ∈ Ŷ0 × L

2(H 1)×H 2(0, T )×H 1(0, T ).

First step: We multiply the equation for w in (65) by w and we integrate over �̂F (t).
After an integration by parts and using the equations of the solid, this yields

1
2
d

dt

∫
�̂F (t)

|w|2 dx + µ

∫
�̂F (t)

|∇w|2 dx +
m

2
d

dt
|ċ|2 +

1
2
d

dt
(Ĵ s · s)

=

∫
�̂F (t)

w g1 dx + ċ · g2 + s · g3 +
1
2
˙̂
J s · s −

∫
∂�̂S (t)

(σ (w, q)n) · g0 dγ.

We integrate in t and use Ĵ s · s ≥ C|s|2 for some C > 0 to obtain

‖w‖L2(H 1) + ‖w‖L∞(L2) + ‖c‖W 1,∞(0,T ) + ‖s‖L∞(0,T )

≤ Ĉε(‖g0‖L2(H 2) + ‖g1‖L1(L2) + ‖g2‖L1(0,T ) + ‖g3‖L1(0,T ) + ‖w0‖L2(�F (0))

+ |c0| + |c1| + |s0|)+ ε‖(w, q)‖Ŷ0×L2(H 1) (67)

for any ε > 0.
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Second step: We multiply the equation for w by wt and we integrate over �̂F (t). After
some computations, we obtain∫
�̂F (t)

|wt |
2 dx +

1
2
d

dt

∫
�̂F (t)

|∇w|2 dx +m|c̈|2 + Ĵ ṡ · ṡ

= −

∫
�̂F (t)

wt · (û · ∇)w dx +
1
2

∫
�̂F (t)

û · ∇|∇w|2 dx +

∫
�̂F (t)

wt · g1 dx

−

∫
∂�̂S (t)

[s × (r̂ × (x − b̂))−∇w(
˙̂
b + r̂ × (x − b̂))]σ(w, q)n dγ

+ ṡ · (Ĵ r̂ × s + g3)+ c̈g2 −

∫
∂�̂S (t)

(σ (w, q)n) · (g0,t + (û · ∇)g0) dγ.

Using the continuity of the trace operator, we obtain∫
�̂F (t)

|wt |
2 dx +

d

dt

∫
�̂F (t)

|∇w|2 dx + |c̈|2 + |ṡ|2

≤ ε(‖w‖2
H 2(�̂F (t))

+ ‖q‖2
H 1(�̂F (t))

)+ Ĉε

(∫
�̂F (t)

|∇w|2 dx +

∫
∂�̂S (t)

|g0,t |
2 dγ

+ ‖g0‖
2
H 2(�̂F (t))

+

∫
�̂F (t)

|g1|
2 dx + |g2|

2
+ |g3|

2
+ |s|2

)
(68)

for ε > 0 small enough. Now, we regard the equations for w as a stationary system:
−∇ · σ(w, q)(t, x) = g1(t, x)− wt (t, x)− (û · ∇)w(t, x), x ∈ �̂F (t),

∇ · w(t, x) = 0, x ∈ �̂F (t),

w(t, x) = 0, x ∈ ∂�,

w(t, x) = ċ(t)+ s(t)× (x − b̂(t))+ g0(t, x), x ∈ ∂�̂S(t).

We can show that for a.e. t ∈ (0, T ), we have

‖w‖H 2(�̂F (t))
+ ‖q‖H 1(�̂F (t))

≤ Ĉ(‖g0‖H 2(�̂F (t))
+ ‖g1‖L2(�̂F (t))

+ ‖wt‖L2(�̂F (t))
+ ‖∇w‖L2(�̂F (t))

+ |ċ| + |s|). (69)

Indeed, let χ̂e ∈ C1([0, T ];C2(�)) be such that
χ̂e(t, y) = b̂(t)+ Q̂(t)Q

−1
0 (y − b0) ∀y ∈ �S(0),

χ̂e(t, y) = y ∀y ∈ ∂�,

∃χ̂−1
e ∈ C

1([0, T ];C2(�)) : χ̂e(t, χ̂
−1
e (t, x)) = x, ∀t ∈ (0, T ), ∀x ∈ �,

‖χ̂e − id‖C1([0,T ];C2(�)) ≤ C(‖b̂‖W 1,∞(0,T ) + ‖r̂‖L∞(0,T )).

Then (w ◦ χ̂e, q ◦ χ̂e) satisfies a stationary Stokes system in �F (0). Here, we can apply
classical estimates for the Stokes operator (see, for instance, [19]). For the right-hand side
of the Stokes problem, we take into account that the terms of the form

(∇χ̂e − Id)(D2w ◦ χ̂e +∇q ◦ χ̂e),
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can be estimated in L2 by ε(‖w ◦ χ̂e‖H 2(�F (0)) + ‖q ◦ χ̂e‖H 1(�F (0))) in (0, T0)×�F (0)
provided that T0 is chosen small enough in terms of ‖b̂‖W 1,∞(0,T ) + ‖r̂‖L∞(0,T ).

On the other hand, the divergence term equals (∇w◦χ̂e(∇χ̂e−Id)), which is estimated
in H 1 by ε‖w ◦ χ̂e‖H 2(�F (0)). Repeating this process [T/T0] + 1 times allows us to
establish (69).

Finally, combining (69) with (67)–(68) and applying Gronwall’s Lemma, we obtain
the desired estimate (66).

Let us now establish the existence of more regular solutions when g0 ≡ 0. In order
to do this, we suppose that w0 ∈ H

ς (�F (0)) for ς > 5/2 and we define some new
functions. Set J0 = J|t=0 and

q1 := −(û|t=0 · ∇)(c1 + s0 × (x − b0))1∂�S (0) +1w0 + g1|t=0 on ∂�F (0).

Then, we first define a triplet (c̃1, s̃0, q0) by

c̃1 :=
1
m

∫
∂�S (0)

σ(w0, q0)n dγ +
1
m
g2(0),

s̃0 := J
−1
0

[
(J0r0)× s0 +

∫
∂�S (0)

(x − b0)× σ(w0, q0)n dγ + g3(0)
]

and 1q0 = −∇ · [(û|t=0 · ∇)w0] + ∇ · g1|t=0 in �F (0),
∂q0

∂n
= −(c̃1 + s̃0 × (x − b0)) · n1∂�S (0) + q1 · n on ∂�F (0).

Using the fact that J0 is positive definite, one can easily check that this system has a
unique solution (c̃1, s̃0, q0) satisfying

|c̃1| + |s̃0| + ‖q0‖H 2(�F (0))

≤ Ĉ(|s0| + |c1| + ‖w0‖H 3(�F (0)) + ‖g1‖Ŷ0
+ ‖g2‖H 1(0,T ) + ‖g3‖H 1(0,T )). (70)

Finally,
w̃0 := g1|t=0 +∇ · σ(w0, q0)− (û|t=0 · ∇)w0.

Let us introduce the following compatibility condition:

w̃0(x) = (c̃1+ s̃0× (x− b0)+[c2 · ∇](c2−w0(x)))1∂�S (0)(x), x ∈ ∂�F (0), (71)

where we have denoted c2 := c1 + s0 × (x − b0).

Proposition 8. Let g0 ≡ 0, g1 ∈ Ŷ0 and g2, g3 ∈ H 1(0, T ). Assume that w0 ∈

H 3(�F (0)), (w0, c0, c1, s0, g1, g2, g3) satisfy (8) and (71) and let (û, b̂, r̂) satisfy (10)
(with (b0, b1, r0) replaced by (c0, c1, s0)) and (11)–(12). Then, there exists Ĉ (depending
on �, δ0 and ‖û‖

Ẑ
, ‖b̂‖H 2(0,T ), ‖r̂‖H 1(0,T )) such that the solution of (65) satisfies

(w, q, c, s) ∈ Ŷ2 × (L
2(H 3) ∩H 1(H 1))×H 3(0, T )×H 2(0, T )
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and

‖(w, q, c, s)‖
Ŷ2×(L2(H 3)∩H 1(H 1))×H 3(0,T )×H 2(0,T )

≤ Ĉ(‖g1‖Ŷ0
+ ‖g2‖H 1(0,T ) + ‖g3‖H 1(0,T ) + ‖w0‖H 3(�F (0)) + |c0| + |c1| + |s0|). (72)

Proof. Let us differentiate system (65) with respect to the time variable. This yields

wt t (t, x)+ (û · ∇)wt (t, x)−∇ · σ(wt , qt )(t, x) = g̃1(t, x), x ∈ �̂F (t),

∇ · wt (t, x) = 0, x ∈ �̂F (t),

wt (t, x) = 0, x ∈ ∂�,

wt (t, x) = c̈(t)+ ṡ(t)× (x − b̂(t))+ g̃0(t, x), x ∈ ∂�̂S(t),

m
...
c (t) =

∫
∂�̂S (t)

(σ (wt , qt )n)(t, x) dγ + g̃2(t),

(Ĵ s̈)(t) = ((Ĵ r̂)× ṡ)(t)+

∫
∂�̂S (t)

(x − b̂(t))× (σ (wt , qt )n)(t, x) dγ + g̃3(t),

wt |t=0 = w̃0 in �F (0), ċ(0) = c1, c̈(0) = c̃1, ṡ(0) = s̃0,

(73)

where

g̃1 := g1,t − (ût · ∇)w, g̃0 := (û · ∇)(ċ + s × (x − b̂)− w),

g̃2 := g2,t +

∫
∂�̂S (t)

(û · ∇)σ (w, q)n dγ +

∫
∂�̂S (t)

σ(w, q)(r̂ × n) dγ,

g̃3 := g3,t −
˙̂
J ṡ − s ×

d

dt
(Ĵ r̂)+

∫
∂�̂S (t)

(r̂ × (x − b̂))× σ(w, q)n dγ

+

∫
∂�̂S (t)

(x − b̂)× (û · ∇)σ (w, q)n dγ +

∫
∂�̂S (t)

(x − b̂)× σ(w, q)(r̂ × n) dγ.

Observe now that, thanks to (12) and (71), we have

wt |t=0 = (c̈(0)+ ṡ(0)× (x − b0)+ g̃0|t=0)1∂�S (0) on ∂�F (0).

This allows us to apply estimate (66) to (73):

‖(wt , qt , ċ, ṡ)‖Ŷ0×L2(H 1)×H 2(0,T )×H 1(0,T )

≤ Ĉ(‖g̃0‖L2(H 2) + ‖g̃0‖H 1(0,T ;L2(∂�̂S (t)))
+ ‖g̃1‖L2(L2) + ‖g̃2‖L2(0,T )

+ ‖g̃3‖L2(0,T ) + ‖w̃0‖H 1(�F (0)) + |c1| + |c̃1| + |s̃0|). (74)

Then, from classical estimates for the stationary Stokes system, we find

‖(w, q, c, s)‖
Ŷ2×(L2(H 3)∩H 1(H 1))×H 3(0,T )×H 2(0,T )

≤ Ĉ(‖g̃0‖L2(H 2) + ‖g̃0‖H 1(0,T ;L2(∂�̂S (t)))
+ ‖g̃1‖L2(L2) + ‖g̃2‖L2(0,T )

+ ‖g̃3‖L2(0,T ) + ‖w̃0‖H 1(�F (0)) + |c1| + |c̃1| + |s̃0|). (75)
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Let us now estimate g̃i (0 ≤ i ≤ 3).

• Estimate of g̃0. First,

‖g̃0‖L2(H 2) ≤ C‖û‖L2(H 2)(‖ċ‖L∞(0,T ) + ‖s‖L∞(0,T ))+ ‖(û · ∇)w‖L2(H 2). (76)

For the last term in this inequality, we have, for 0 < δ < 1/2,

‖(û ·∇)w‖L2(H 2) ≤ C(‖û‖L2(H 2)‖∇w‖C0(C0)+‖û‖C0(H 1)‖∇w‖L2(W 1,∞)

+‖û‖C0(H 1)‖∇w‖L2(W 2,3))

≤ C‖û‖
Ŷ0
(‖w‖C0(H 5/2+δ)+‖w‖L2(H 7/2+δ)+‖w‖L2(H 7/2)

≤ ε(‖w‖C0(H 3)+‖w‖L2(H 4))+ Ĉε(‖w‖C0(H 2)+‖w‖L2(H 2)) (77)

for any ε > 0. Then, we use

g̃0,t (t, x) = [(û · ∇)(ċ + s × (x − b̂)− w)]t (t, x), x ∈ �̂F (t).

Taking traces in this identity and using (12), for 0 < δ < 1/2 we deduce

‖g̃0‖H 1(0,T ;L2(∂�̂S (t)))

≤ C‖û‖H 1(0,T ;L2(∂�̂S (t)))
(‖ċ‖L∞(0,T ) + ‖s‖L∞(0,T ) + ‖w‖C0([0,T ];L∞(∂�̂S (t))))

+ C‖û‖C0([0,T ];L∞(∂�̂S (t)))(‖ċ‖H 1(0,T ) + ‖s‖H 1(0,T ) + ‖w‖H 1(H 3/2+δ))

≤ Ĉε(‖c‖H 2(0,T ) + ‖s‖H 1(0,T ) + ‖w‖L∞(H 1) + ‖w‖H 1(L2))

+ ε(‖w‖C0(H 3) + ‖w‖H 1(H 2)) (78)

for any ε > 0.

• Estimate of g̃1. For 0 < δ < 1/2 we have

‖(ût · ∇)w‖L2(L2) ≤ ‖ût‖L2(L2)‖∇w‖C0(C0) ≤ Ĉ‖w‖C0(H 5/2+δ)

≤ Ĉε‖w‖C0(H 1) + ε‖w‖C0(H 3) (79)

for any ε > 0.

• Estimate of g̃2. Using (12), we obtain

‖g̃2‖L2(0,T ) ≤ (‖û‖C0([0,T ];L∞(∂�̂S (t))) + ‖r̂‖L
∞)(‖w‖L2(H 5/2+δ)

+ ‖q‖L2(H 3/2+δ))+ ‖g2‖H 1(0,T )

for any 0 < δ < 1/2. Thus,

‖g̃2‖L2(0,T ) ≤ Ĉε(‖w‖L2(H 2) + ‖q‖L2(H 1) + ‖g2‖H 1(0,T ))

+ ε(‖w‖L2(H 4) + ‖q‖L2(H 3)) (80)

for any ε > 0.
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• Estimate of g̃3. Analogously as for g̃2, we easily obtain

‖g̃3‖L2(0,T ) ≤ Ĉε(‖w‖L2(H 2) + ‖q‖L2(H 1) + ‖g3‖H 1(0,T ) + ‖s‖H 1(0,T ))

+ ε(‖w‖L2(H 4) + ‖q‖L2(H 3)) (81)

for any ε > 0.

Reassembling estimates (76)–(81), and combining them with (75), we find

‖(w, q, c, s)‖
Ŷ2×(L2(H 3)∩H 1(H 1))×H 3(0,T )×H 2(0,T )

≤ Ĉε(‖w‖Ŷ0
+ ‖q‖L2(H 1) + ‖c‖H 2(0,T ) + ‖s‖H 1(0,T ) + ‖g1‖Ŷ0

+ ‖g2‖H 1(0,T )

+ ‖g3‖H 1(0,T ) + ‖w0‖H 3(�F (0)) + |c1| + |c̃1| + |s̃0|)+ ε‖(w, q)‖Ŷ2×(L2(H 3)∩H 1(H 1))

for any ε > 0. Applying Proposition 7 in order to estimate the first four terms and taking
ε small enough, we obtain the desired inequality (72).

Corollary 9. Let k0 ∈ [0, 2] \ {1/2}. Let g0 ≡ 0, g1 ∈ L
2(H 2−k0) ∩ H 1−k0/2(L2) and

g2, g3 ∈ H
1−k0/2(0, T ). Assume that w0 ∈ H

3−k0(�F (0)), (w0, c0, c1, s0, g1, g2, g3)

satisfy (8) and condition (71) if k0 < 1/2. Furthermore, let (û, b̂, r̂) satisfy (10) (with
(b0, b1, r0) replaced by (c0, c1, s0)) and (11)–(12). Then there exists Ĉ (depending on
�, δ0 and ‖û‖

Ẑ
, ‖b̂‖H 2(0,T ), ‖r̂‖H 1(0,T )) such that the solution of (65) satisfies

(w, q, c, s) ∈ Ŷ2−k0 × (L
2(H 3−k0) ∩H 1−k0/2(H 1))×H 3−k0/2(0, T )×H 2−k0/2(0, T )

and

‖(w, q, c, s)‖
Ŷ2−k0×(L

2(H 3−k0 )∩H 1−k0/2(H 1))×H 3−k0/2(0,T )×H 2−k0/2(0,T )

≤ Ĉ(‖g1‖Ŷ−k0
+‖g2‖H 1−k0/2(0,T )+‖g3‖H 1−k0/2(0,T )+‖w0‖H 3−k0 (�F (0))+|c0|+|c1|+|s0|).

The proof of this corollary is classical and it relies on interpolation arguments between
Proposition 7 (with parameter k0/2) and Proposition 8 (with parameter 1 − k0/2) (we
refer to [18] and [1]).
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