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Abstract. Let F be any field of characteristic p. It is well-known that there are exactly p inequiv-
alent indecomposable representations V1, . . . , Vp of Cp defined over F. Thus if V is any finite-
dimensional Cp-representation there are non-negative integers 0 ≤ n1, . . . , nk ≤ p − 1 such that
V ∼=

⊕k
i=1 Vni+1. It is also well-known that there is a unique (up to equivalence) d+1-dimensional

irreducible complex representation of SL2(C) given by its action on the space Rd of d-forms. Here
we prove a conjecture, made by R. J. Shank, which reduces the computation of the ring of Cp-
invariants F[

⊕k
i=1 Vni+1]

Cp to the computation of the classical ring of invariants (or covariants)
C[R1 ⊕

⊕k
i=1 Rni ]

SL2(C). This shows that the problem of computing modular Cp-invariants is
equivalent to the problem of computing classical SL2(C)-invariants. This allows us to compute for
the first time the ring of invariants for many representations of Cp . In particular, we easily obtain
from this generators for the rings of vector invariants F[mV2]

Cp , F[mV3]
Cp and F[mV4]

Cp for all
m ∈ N. This is the first computation of the latter two families of rings of invariants.

Keywords. Modular invariant theory, cyclic group, classical invariant theory, Roberts’ isomor-
phism

1. Introduction

Let B be a domain and G a finite group. Consider a BG-module V which is a free B-
module of rank n. We write B[V ] to denote the symmetric algebra Sym•B(V

∗) on the
dual V ∗. If we fix a basis {x1, . . . , xn} for V ∗ we may identify B[V ] with the polynomial
ring B[x1, . . . , xn]. The action of G on V induces an action of G on V ∗. Extending this
action algebraically we get a natural action of G on B[V ]. We write B[V ]G to denote the
subring of invariants:

B[V ]G := {f ∈ F[V ] | g · f = f ∀g ∈ G}.

Emmy Noether [33, 34] proved that the ring B[V ]G is always finitely generated when B
is a field (and G is finite).

We are concerned here with finding generators for the ring of invariants when B = F
is a field of characteristic p and G = Cp is the cyclic group of order p. We want to
describe generating sets for F[V ]Cp not just for certain values of p but rather for arbitrary
primes p.
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The group Cp has, up to equivalence, exactly p indecomposable representations
over F. There is one indecomposable representation Vn of dimension n for every n =
1, . . . , p. The representation V1 is the trivial representation and Vp is the regular repre-
sentation. If V contains a copy of V1 as a summand, say V = V1⊕V

′, then it is easy to see
that F[V ]Cp = F[V1] ⊗ F[V ′]Cp . For this reason it suffices to consider representations V
which do not contain V1 as a summand. Such a representation is called reduced. In order
to simplify the exposition we will assume that our representations of Cp are reduced.

In 1913, L. Dickson [22] computed the rings of invariants F[V2]
Cp and F[V3]

Cp . In
1990, David Richman [36] conjectured a set of generators for F[V2 ⊕ · · · ⊕ V2]

Cp (for
any number of copies of V2). Campbell and Hughes [18] proved in 1997 that Richman’s
conjectured set of generators was correct.

In 1998, Shank [40] introduced a new method exploiting SAGBI bases and found
generating sets for the two rings of invariants F[V4]

Cp and F[V5]
Cp . In 2002, Shank

and Wehlau [42] extended Shank’s method to find generators for F[V2 ⊕ V3]
Cp . Since

then, Shanks’s method has been used to find generators for F[V3 ⊕ V3]
Cp ([17]) and for

F[V2 ⊕ V2 ⊕ V3]
Cp ([23]). Limitations of the method using SAGBI bases imply that

it seems infeasible to use the method to compute invariants for any further representa-
tion of Cp except probably F[V2 ⊕ V4]

Cp . See [41] and [17] for discussions of some
of these limitations. Thus F[V ]Cp is known (for general p) only for the infinite family
V = mV2 =

⊕m
V2 and for seven other small representations.

There is a deep connection between the invariants of Cp in characteristic p and the
classical invariants of SL2(C). This connection was pointed out and studied extensively
by Gert Almkvist. See [2–7, 9].

Here we prove a conjecture of R. J. Shank which reduces the computation of genera-
tors for F[V ]Cp to the classical problem of computing C[W ]SL2(C). HereW is a represen-
tation of SL2(C)which is easily obtained from V and with dimCW = dimF V+2. The in-
variant ring C[W ]SL2(C) is called a ring of covariants (definition below). Since generators
for F[V ]Cp yield generators for C[W ]SL2(C), our proof of this conjecture demonstrates
the equivalence of these two problems.

After giving our proof of the conjecture we use the computation of C[W ]SL2(C) by
classical invariant-theorists (and others) for a number of rings of covariants to give gen-
erators for the corresponding rings F[V ]Cp . This greatly extends the above list of repre-
sentations of Cp whose rings of invariants are known.

2. Preliminaries

We consider the n × n matrix with all eigenvalues equal to 1 and consisting of a single
Jordan block:

σn(B) :=


1 0 0 . . . 0 0
1 1 0 . . . 0 0
0 1 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 1 1


n×n

where the entries of the matrix are elements of the ring B. Thus σn(B) ∈ GLn(B).
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The matrix σn(B) generates a cyclic subgroup of GLn(B). If the characteristic of B
is 0 then σn(B) has infinite order and so generates a group isomorphic to Z. It is not too
hard to see that if the characteristic of B is p > 0 then the order of σn(B) is pr where r
is the least non-negative integer such that pr ≥ n.

2.1. Certain Z-modules

We write Mn to denote the n-dimensional Q-vector space which is a Z-module where
1 ∈ Z is represented by the matrix σn(Q). It is easy to see that this Z-module satisfies
M∗n
∼= Mn.
We fix a basis of Mn with respect to which the matrix takes its given form. We write

Mn(Z) to denote the rank n lattice inMn generated by integer linear combinations of this
fixed basis. Thus Mn(Z) ⊗Z Q = Mn. The action of Z on Mn restricts to an action of Z
on Mn(Z). We write σ to denote σn(Z) and 1 to denote σ − 1, an element of the group
algebra.

Note that the one-dimensional Q-vector space MZ
n is the kernel of the map 1 :

Mn → Mn. Given W ∼=
⊕s

i=1Mni and ω ∈ WZ we say that the length of ω is r
and write `(ω) = r to indicate that r is maximal such that ω ∈ 1r−1(W).

2.2. Cp-modules in characteristic p

The book [20] includes a description of the representation theory of Cp over a field of
characteristic p. We use σ to denote a generator of the group Cp. We also consider 1 :=
σ − 1, an element of the group algebra of Cp. Whether σ is a generator of Z or Cp will
be clear from the context. Similarly the meaning of 1 will be clear from the context.

Up to isomorphism, there is one indecomposable Cp-module of dimension n for each
1 ≤ n ≤ p. We denote this module by Vn. Note that Vn ∼= V ∗n . Also Vn is projective if
and only if it is free if and only if n = p.

Since the group Cp is generated by a single element all of whose eigenvalues are 1, it
follows that every Cp-module V is in fact defined over the prime field Fp ⊆ F. Thus if we
let V (Fp) denote the Fp-points of V we have V = V (Fp)⊗Fp F. Since F[V ]Cp is the ker-
nel of the linear operator1 : F[V ] → F[V ]we see that F[V ]Cp = (Fp[V (Fp)]Cp )⊗Fp F.
Therefore it suffices to work over the prime field Fp. We do this from now on.

Usually Vn is defined as the n-dimensional Fp-module with the action of σ given by
the matrix σn(Fp). We will use an equivalent description that is somewhat less common.
We will realize Vn as the quotient ring Fp[t]/(tn) equipped with a Cp-action by declaring
that σ acts via multiplication by 1 + t . Of course with respect to the basis of monomials
in t , the matrix representation of multiplication by 1+ t is σn(Fp). We use this description
of Vn since it has an obvious grading given by polynomial degree. More precisely, given
an element of Fp[t]/(tn) we use its unique representation as a linear combination of
{1, t, t2, . . . , tn−1

} in order to give it a well-defined degree. We will use this polynomial
degree to realize a filtration of Vn. We define Fr(Vn) := {h ∈ Fp[t]/(tn) | deg(h) ≥ r}
for 0 ≤ r ≤ n. Then {0} = Fn(Vn) ⊂ Fn−1(Vn) ⊂ · · · ⊂ F0(Vn) = Vn.
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Any element of Vn \1(Vn) generates the cyclic Cp-module Vn. Let α denote such a

generator and define ω := 1n−1(α). Then V
Cp
n , the socle of Vn, is spanned by ω. Given

a Cp-module W and ω ∈ WCp we define `(ω) to be the maximum integer r such that
ω ∈ 1r−1(W). This integer `(ω) is called the length of ω.

2.3. Reduction modulo p

Let p be a prime integer. Since Mn(Z) is a free Z-module of rank n, reduction modulo p
yields a surjective map ρ : Mn(Z)→ V := Fnp. The action of Z on Mn(Z) (generated by
the action of σn(Z)) induces an action on V (generated by the action of σn(Fp)). Suppose
now that 1 < n ≤ p so that σn(Fp) has order p and so gives an action of Cp on V .
This action of Cp on V is indecomposable and therefore V ∼= Vn as a Cp-module. Thus
reduction modulo p yields a surjective map ρ : Mn(Z)→ Vn. Both Mn and Vn are self-
dual and thus reduction modulo p is also surjective on the duals: ρ : M∗n(Z)→ V ∗n . This
map of duals in turn induces a surjective map of coordinate rings

ρ : Sym•Z(M
∗
n(Z)) = Z[Mn(Z)] → Fp[Vn] = Sym•F(V

∗).

More generally, reduction modulo p gives a surjection

ρ : Z
[ k⊕
i=1

Mni (Z)
]
→ Fp

[ k⊕
i=1

Vni

]
.

Since ρ ◦ σn(Q) = σn(Fp) ◦ ρ we see that

ρ
(
Z
[ k⊕
i=1

Mni (Z)
]Z)
⊆ Fp

[ k⊕
i=1

Vni

]Cp
.

Since Cp is not linearly reductive (over Fp) this may in fact be a proper inclusion. We
call the elements of ρ(Z[

⊕k
i=1Mni (Z)]Z) integral invariants. We caution the reader that

Shank [40, 41] calls elements of Z[
⊕k

i=1Mni (Z)]Z integral invariants and elements of
ρ(Z[

⊕k
i=1Mni (Z)]Z) rational invariants.

2.4. Invariants of Cp

Let V be a Cp-representation. For each f ∈ Fp[V ] we define an invariant called the
transfer or trace of f , denoted Tr(f ), by

Tr(f ) :=
∑
τ∈Cp

τf.

Similarly we define the norm of f , denoted NCp (f ), by

NCp (f ) :=
∏
τ∈Cp

τf.

Consider a representation V = Vn1 ⊕ · · · ⊕Vnr of Cp. For each summand Vni choose
a generator zi of the dual cyclic Cp-module V ∗ni , i.e., choose zi ∈ V ∗ni \ 1(V

∗
ni
). Define

Ni := NCp (zi) for i = 1, . . . , r . Later we will study Cp-invariants using a term order.
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For a summary of term orders see [21, Chapter 2]. We will always use a graded reverse
lexicographic order with zi > 1(zi) > · · · > 1ni−1(zi) for all i = 1, . . . , r . We denote
the lead term of an element f ∈ Fp[V ] by LT(f ) and the lead monomial of f by LM(f ).
We follow the convention that a monomial is a product of variables.

3. The conjecture

Let V = Vn1 ⊕ · · · ⊕ Vnr be a Cp-module. We have seen three ways to construct Cp-
invariants: norms, traces and integral invariants. R. J. Shank [40, Conjecture 6.1] con-
jectured that Fp[V ]Cp is generated by the norms N1, . . . , Nr together with a finite set
of integral invariants and a finite set of transfers. Originally Shank stated his conjecture
only for V indecomposable but he later asserted it for general Cp-modules ([41, §3]). Our
main result here is to prove this conjecture. We then apply the result to obtain generating
sets for a number of Cp-modules V .

4. Classical invariant theory of SL2(C)

Here we consider representations of the classical group SL2(C). There are many good
introductions to this topic. For our purposes the book by Procesi [35] is especially well
suited since it emphasizes an invariant-theoretic approach. The results of this section are
well-known.

Let R1 denote the defining representation of SL2(C) with basis {X, Y }. Define Rd :=
Symd(R1) to be the space of homogeneous forms of degree d in X and Y . The action of
SL2(C) on R1 induces an action on Rd . This action1 is given by(

a b

c d

)
· f (X, Y ) = f (aX + cY, bX + dY ).

Gordan [28] showed that the algebra C[W ]SL2(C) is finitely generated for any finite-
dimensional representation W of SL2(C). The algebra (Sym•(R1) ⊗ C[W ])SL2(C) is
known as the ring of covariants of W . This ring was a central object of study in clas-
sical invariant theory. Since the representations R1 and R∗1 are equivalent, it follows that
(Sym•(R1) ⊗ C[W ])SL2(C) ∼= C[R1 ⊕W ]

SL2(C). We will also refer to this latter ring as
the ring of covariants of W . Classical invariant-theorists found generators for the rings of
covariants of a number of small representations W of SL2(C).

We work with the basis {x, y} of R∗1 which is dual to the basis {Y,X} of R1. Then
σ(x) = y − x and σ(y) = y. We also use

{(
d
i

)
ai | i = 0, 1, . . . , n

}
as a basis for R∗d

where {a0, a1, . . . , ad} is dual to {Xd ,−Xd−1Y, . . . , Xd−i(−Y )i, . . . , Y d}. We choose
these bases in order that the homogeneous d-form

f =

n∑
i=0

(
d

i

)
aix

d−iyi ∈ (R1 ⊕ Rd)
∗

1 In fact, classically the formula used was
(
a b
c d

)
·f (X, Y ) = f (aX+ bY, cX+ dY ). This yields

a right action and since we prefer left actions we use the other formula. It is clear the two actions
are equivalent and have the same ring of invariants.
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is invariant under the action of SL2(C). Putting f =
∑n
i=0

(
d
i

)
a1x

d−iyi into the above
formula for the action we find that σ = σ2(C) acts on R∗d via σ(ar) =

∑r
j=0

(
r
j

)
aj for

r = 0, 1, . . . , d . From this it is easy to see that σ acts irreducibly on R∗d . It can be shown
thatRd andR∗d are equivalent as representations of SL2(C). In fact, ifW is any irreducible
representation of SL2(C) of dimension d + 1 then W is equivalent to Rd . Since σ acts
irreducibly on Rd , it follows that the action of σ on Rd is given (with respect to a Jordan
basis) by σd+1(C).

Given two forms g ∈ Rm = Symm(R1) and h ∈ Rn = Symn(R1), their r th transvec-
tant is defined by

(g, h)r :=
(m− r)!(n− r)!

m!n!

r∑
i=0

(−1)i
(
r

i

)
∂rg

∂Xr−i∂Y i

∂rh

∂Xi∂Y r−i

for r = 0, 1, . . . ,min{m, n}. It has degree (traditionally called order)m+n−2r inX, Y ,
i.e., (g, h)r ∈ Rm+n−2r .

The Clebsch–Gordan formula [35, §3.3] asserts that

Rm ⊗ Rn ∼=
min{m,n}⊕
r=0

Rm+n−2r .

If g ∈ Rm and h ∈ Rn then the projection of Rm⊗Rn onto its summand Rm+n−2r carries
g ⊗ h onto (g, h)r .

Example 4.1. The ring of covariants of W = R2 ⊕ R3 was computed by classical
invariant-theorists. In this example, we concentrate on C[R1 ⊕ R2 ⊕ R3]

SL2(C)
(∗,1,1) . In [29,

§140] it is shown that the ring C[R1 ⊕ R2 ⊕ R3]
SL2(C) is generated by 15 generators.

Following the notation there, we use φ to denote an element of R2 (the quadratic) and f
to denote an element of R3 (the cubic). Examining the multi-degrees of the 15 generators
we find that four of them are relevant to understanding C[R1 ⊕ R2 ⊕ R3]

SL2(C)
(∗,1,1) . These

are (φ, f )1 of degree (3, 1, 1), (φ, f )2 of degree (1, 1, 1) and the two forms φ of degree
(2, 1, 0) and f of degree (3, 0, 1). Thus C[R1 ⊕ R2 ⊕ R3]

SL2(C)
(∗,1,1) is 3-dimensional with

basis {(φ, f )1, (φ, f )2, φf }.

5. Roberts’ isomorphism

Given a covariant g = g0Y
d
+ g1XY

d−1
+ · · · + gdX

d , the coefficient g0 of Y d is called
the source of g and is also known as a semi-invariant.

Let W be any representation of SL2(C). Roberts’ isomorphism (see [37]) is the iso-
morphism which associates to a covariant its source:

ψ : C[R1 ⊕W ]
SL2(C)→ C[W ]H

given by ψ(f (·, ·)) = f (Y, ·) where R1 has basis {X, Y } and H is the subgroup

H := SL2(C)Y = {α ∈ SL2(C) | α · Y = Y } =
{(

1 0
z 1

) ∣∣∣∣ z ∈ C
}
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which fixes Y . For a modern discussion and proof of Roberts’ isomorphism see [16] or
[35, §15.1.3, Theorem 1].

ClearlyH contains a copyK of the integers Z as a dense (in the Zariski topology) sub-
group: K :=

{(
1 0
m 1

) ∣∣ m ∈ Z
}
. This is just the subgroup of GL2(C) generated by σ2(C).

SinceK is dense inH , we have C[W ]H = C[W ]K and thus C[R1⊕W ]
SL2(C) ∼= C[W ]K .

Since the action of K on W is defined over Z ⊂ Q we have

W ∼= W(Q)⊗Q C ∼= W(Z)⊗Z C

where W(Z) denotes the integer points of W and W(Q) ∼= W(Z) ⊗Z Q denotes the
Q-points of W .

Thus
C[R1 ⊕W ]

SL2(C) ∼= C[W ]H = C[W ]K

As above, C[W ]K is the kernel of the linear operator 1 : C[W ] → C[W ] and thus

C[W ]K ∼= Q[W(Q)]K ⊗Q C ∼= (Z[W(Z)]K ⊗Z Q)⊗Q C ∼= Z[W(Z)]K ⊗Z C.

Clearly Rd(Q) is isomorphic to the Z-module Md+1 considered above. Thus we may
identify Md+1 with the Q-points of Rd and Md+1(Z) with the Z-points of Rd . Writing
W ∼=

⊕k
i=1 Rdi we have

C
[
R1 ⊕

k⊕
i=1

Rdi

]SL2(C)
∼= Q

[ k⊕
i=1

Mdi+1

]Z
⊗Q C ∼= Z

[ k⊕
i=1

Mdi+1(Z)
]Z
⊗Z C.

(Here we are writing Z for the group K .) Furthermore

ρ : Z
[ k⊕
i=1

Mdi+1(Z)
]Z
→ Fp

[ k⊕
i=1

Vdi+1

]Cp
where the kernel of ρ is the principal ideal generated by p.

6. Periodicity

Let V be a Cp-module and write V as a direct sum of indecomposable Cp-modules: V =
Vn1 ⊕· · ·⊕Vnr . This decomposition induces an Nr -grading on Fp[V ] which is preserved
by the action of Cp. As above we choose a generator zi ∈ V ∗ni for each i = 1, . . . , r
and put Ni := NCp (zi). We further define Fp[V ]] to be the ideal of Fp[V ] generated by
N1, . . . , Nr .

The following theorem (see for example [42, §2]) is very useful.

Theorem 6.1 (Periodicity). The ideal Fp[V ]] is a summand of the Cp-module Fp[V ].
Denoting its complement by Fp[V ][ we have the decomposition Fp[V ] = Fp[V ]] ⊕
Fp[V ][ as Cp-modules. Taking the multi-grading into account we have

Fp[V ](d1,...,dr ) = Fp[V ]](d1,...,dr )
⊕ Fp[V ][(d1,...,dr )

.

Moreover if there exists i such that di ≥ p−ni+1 then Fp[V ][(d1,...,dr )
is a freeCp-module.
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Remark 6.2. More can be said: in fact,

Fp[V ](d1,...,di−1,di+p,di+1,...,dr )
∼= Fp[V ](d1,...,dr ) ⊕ kVp

for some positive integer k. This explains why the previous theorem is known by the name
periodicity.

The decomposition given by the periodicity theorem obviously yields a vector space
decomposition of the multi-graded ring of invariants:

Fp[V ]
Cp
(d1,...,dr )

= (Fp[V ]
Cp
(d1,...,dr )

)] ⊕ (Fp[V ]
Cp
(d1,...,dr )

)[.

Here
(Fp[V ]

Cp
(d1,...,dr )

)] = (Fp[V ]](d1,...,dr )
) ∩ Fp[V ]Cp

is the ideal of Fp[V ]Cp generated by N1, . . . , Nr and

(Fp[V ]
Cp
(d1,...,dr )

)[ = (Fp[V ][(d1,...,dr )
) ∩ Fp[V ]Cp .

7. Outline of the proof

We are now in a position to outline the main steps of our proof. We want to show that
the cokernel of the reduction mod p map ρ : Z[

⊕r
i=1Mni (Z)]Z → Fp[

⊕r
i=1 Vni ]

Cp is
spanned by products of transfers and the norms N1, . . . , Nr . We consider a fixed multi-
degree (d1, . . . , dn). Using the Periodicity Theorem we may reduce to the case where
di < p for each i. Then we may exploit the fact that for such values of di the homoge-
neous component Fp[

⊕r
i=1 Vni ](d1,...,dn) is a summand of

⊗r
i=1

⊗di Vni . Thus we may
consider the reduction mod p map ρ :

⊗r
i=1

⊗di Mni (Z) →
⊗r

i=1
⊗di Vni . For this

map we will show that for any summand Vk of
⊗r

i=1
⊗di Vni with k < p, there exists a

corresponding summand Mk of
⊗r

i=1
⊗di Mni with ρ(Mk(Z)) = Vk . In particular V

Cp
k

lies in the image of ρ. By induction we reduce to ρ : Mm(Z)⊗Mn(Z)→ Vm⊗Vn where
m, n ≤ p. By carefully examining explicit decompositions ofMm⊗Mn and Vm⊗Vn we
are able to show that any summand Vk of Vm ⊗ Vn is contained ρ(Mm(Z)⊗Mn(Z)).

The following example is instructive as regards both dependence on the prime p and
our solution to the last step in the above outline of the proof.

Example 7.1. We consider the Z-module M3 ⊗ M4. We realize M3 as Q[s]/(s3) and
M4 as Q[t]/(t4) with 1(si) = si+1 and 1(tj ) = tj+1. By (8.1) we have M3 ⊗M4 ∼=

M2 ⊕M4 ⊕M6. We can also see this decomposition explicitly as follows. Let α0 := 1,
α1 := 3s − 2t and α2 := 3s2

− 2st + t2 + 2t3. Then

α0 := 1,
1(α0) = s + t + st,

12(α0) = s
2
+ 2st + t2 + 2s2t + 2st2 + s2t2,
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13(α0) = 3s2t + 3st2 + t3 + 6s2t2 + 3st3 + 3s2t3,

14(α0) = 6s2t2 + 4st3 + 12s2t3,

15(α0) = 10s2t3,

16(α0) = 0,
α1 := 3s − 2t,

1(α1) = 3s2
+ st − 2t2 + 3s2t − 2st2,

12(α1) = 4s2t − st2 + 2t3 + 2s2t2 − 4st3 + 2s2t3,

13(α1) = 3s2t2 − 3st3 − 3s2t3,

14(α1) = 0,

α2 := 3s2
− 2st + t2 + 2t3,

1(α2) = s
2t − st2 + t3 − 2s2t2 + 3st3,

12(α2) = 0.

Thus spanQ{α2,1(α2)} ∼= M2, spanQ{1
j (α1) | 0 ≤ i ≤ 3} ∼= M4 and spanQ{1

j (α0) |

0 ≤ i ≤ 5} ∼= M6. Hence we have an explicit decomposition:M3⊗M4 ∼= M2⊕M4⊕M6.
We put ω0 := s

2t3, ω1 := s
2t2− st3− s2t3 and ω2 := s

2t − st2+ t3− 2s2t2+ 3st3.
Thus ω0 := 15(α0/10), ω1 := 13(α1/3) and ω2 := 11(α2). Therefore `(ω0) = 6,
`(ω1) = 4 and `(ω2) = 2.

Take p ≥ 5. Reduction modulo p gives the map ρ : M3(Z) ⊗M4(Z) → V3 ⊗ V4.
From Proposition 8.4 we have

V3 ⊗ V4 ∼=

{
V2 ⊕ V4 ⊕ V6 if p ≥ 7,
V2 ⊕ 2V5 if p = 5.

Again we may see this decomposition explicitly by considering the action of Cp on
V3 ⊗ V4 as follows.

Put ωi := ρ(ωi) and αi := ρ(αi) for i = 0, 1, 2.
First suppose that p ≥ 7. Take µ0, µ1 ∈ Z with 10µ0 ≡ 1 (modp) and 3µ1 ≡

1 (modp). Then from the above computations we have spanFp {α2,1(α2)} ∼= V2,
spanFp {1

j (µ1α1) | 0 ≤ i ≤ 3} ∼= V4 and spanFp {1
j (µ0α0) | 0 ≤ i ≤ 5} ∼= V6.

In particular, 15(µ0α0) = ω0, 13(µ1α1) = ωi and 1(α2) = ω2 and therefore
`(ω2) = 2 = `(ω2), `(ω1) = 4 = `(ω1) and `(ω0) = 6 = `(ω0).

Now we consider the case p = 5. Then 15(α0) = 0 and from this we can show that
ω0 /∈ 1

5(V3 ⊗ V4). Hence `(ω0) ≤ 5. Here we may define β0 := ρ(s), β1 := 3α0 and
β2 := ρ(α)2. Then spanF5

{β2,1(β2)}
∼= V2, spanF5

{1j (µ1β1) | 0 ≤ i ≤ 4} ∼= V5

and spanF5
{1j (µ0β0) | 0 ≤ i ≤ 4} ∼= V5. Then 14(β0) = ω0, 14(β1) = ω1 and

1(β2) = ω2. Thus `(ω0) = `(ω1) = 5 and `(ω2) = 2.
Comparing this with Example 4.1 we see that (up to choice of bases) ψ((φ, f )1) =

ω1, ψ((φ, f )2) = ω2 and ψ(φf ) = ω0.
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8. Representation rings

8.1. Complex representations of SL2(C)

Let RepCSL2(C) denote the representation ring of complex representations of SL2(C).
Then

RepCSL2(C)
∼= Z[R̃1] ∼=

∞⊕
d=0

ZR̃d .

Here R̃d is a formal variable corresponding to the representation Rd for all d ≥ 1 and
R̃0 = 1 ∈ RepCSL2(C) corresponds to the one-dimensional trivial representation. Multi-
plication in RepCSL2(C) is given by the Clebsch–Gordan rule (see [35, §3.3])

R̃m · R̃n =

min{m,n}∑
k=0

R̃|n−m|+2k.

This formula can be used to inductively derive a formula expressing R̃d as a polynomial
in Z[R̃1]. Almkvist [6, Theorem 1.4(a)] showed that in fact R̃d = Ud+1(R̃1/2) where
Un(x) is the nth Chebyshev polynomial of the second kind.

8.2. Certain rational representations of Z

Let Rep′QZ denote the subring of the representation ring of Z given by

Rep′QZ := Z[M̃2] ∼=
∞⊕
d=1

ZM̃d .

Here M̃d is a formal variable corresponding to the representation Md for all d ≥ 2 and
M̃1 = 1 ∈ Rep′QZ corresponds to the one-dimensional trivial representation. The multi-
plication in Rep′QZ is given by a Clebsch–Gordan type formula:

M̃m · M̃n =

min{m,n}⊕
k=1

M̃|n−m|+2k−1. (8.1)

This result is an immediate consequence of the Clebsch–Gordan formula for
Rm−1 ⊗ Rn−1, after restricting from SL2(C) to the subgroup K ∼= Z and using Roberts’
isomorphism as above. Alternatively, this result follows from the Jordan form of the Kro-
necker (or tensor) product of two matrices in Jordan form. Such a decomposition was
given independently by Aiken [1] and Roth [38] in 1934. The proof by Aiken contains
an error (the same error occurs in the treatment of this problem by Littlewood [31]). The
proof by Roth has been criticized for not providing sufficient details for the so-called
“hard case” when both matrices are invertible. This is precisely the case which may be
settled by exploiting Roberts’ isomorphism. Marcus and Robinson [32] gave a complete
proof extending the ideas of Roth. In the words of Brualdi [15], “the difficult case (. . .)
constitutes the most substantial part of [Marcus and Robinson’s] proof”. Brualdi [15]
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gave a proof based on Aiken’s method. Brualdi’s article also includes a good discussion
of the history of this problem. The approach via Roberts’ isomorphism appears to have
been overlooked by people studying this problem.

Again this formula can be used to inductively derive a formula expressing M̃d as a
polynomial in Z[M̃2]. Once again the answer is given by a Chebyshev polynomial of the
second kind: M̃d = Ud(M̃2/2).

8.3. Characteristic p representations of Cp

Let RepFp Cp denote the representation ring of Cp over the field Fp.
The multiplication here is determined by

Ṽ2 ⊗ Ṽn ∼=


Ṽ2 if n = 1,
Ṽn−1 ⊕ Ṽn+1 if 2 ≤ n ≤ p − 1,
2Ṽp if n = p.

Here Ṽd is a formal variable corresponding to the representation Vd for all 2 ≤ d ≤ p,
and Ṽ1 = 1 ∈ RepFp Cp corresponds to the one-dimensional trivial representation. For an
especially simple proof of this formula see the proof of [30, Lemma 2.2].

From this it follows that Ṽd = Ud(Ṽ2/2) for d ≤ p, a fact also shown by Almkvist
[3, Theorem 5.10(b)]. It is convenient to define Ṽd := Ud(Ṽ2/2) ∈ RepFp Cp for d > p.

The above formula implies that

RepFp Cp
∼= Z[Ṽ2] ∼= Z[T ]/q(T ) ∼=

p⊕
d=1

ZṼd

where q is a certain polynomial of degree p. For details see Almkvist’s paper [6]. The
polynomial q is determined by the fact that Ṽp+1 − 2Ṽp + Ṽp−1 = 0. Thus q(T ) =
Up+1(T /2)− 2Up(T /2)+ Up−1(T /2).

Reduction modulo p carries the lattice Md(Z) to the representation Vd of Cpr where
pr−1 < d ≤ pr . In particular, reduction modulo p carriesMd(Z) to the representation Vd
of Cp for all d ≤ p. Thus the map ρ, defined above, induces a map φ : Rep′QZ →

RepFp Cp given by φ(M̃2) = Ṽ2. Also φ(M̃d) = Ṽd for all d = 1, . . . , p. In fact φ(M̃d) =

Ṽd for all d ≥ 1 since M̃d = Ud(M̃2/2) for all d ≥ 1.
With this convention the multiplication rule may be expressed in a form similar to the

Clebsch–Gordan formula:

Ṽm · Ṽn =

min{m,n}∑
k=1

Ṽ|n−m|+2k−1. (8.2)

It is clear that the map φ is a surjection whose kernel is the principal ideal generated
by q(M̃2).

We wish to derive a more enlightening and explicit formula for the product Ṽm · Ṽn
for the cases corresponding to actual (indecomposable) representations, i.e., when
1 ≤ m, n ≤ p. More precisely, we want to express such a product in terms of the el-
ements Ṽd with d ≤ p.
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We prove the following.

Proposition 8.4. Let 1 ≤ m ≤ n ≤ p. Then

Ṽm · Ṽn =



m∑
i=1

Ṽm+n−2i+1 =

m∑
s=1

Ṽn−m+2s−1 if m+ n ≤ p + 1,

m∑
i=m+n−p+1

Ṽm+n−2i+1 + (m+ n− p)Ṽp

=

p−n∑
s=1

Ṽn−m+2s−1 + (m+ n− p)Ṽp if m+ n ≥ p.

Proof. If m+ n ≤ p + 1 then the result follows from the Clebsch–Gordan type formula
(8.2) above.

Now we suppose that m+ n ≥ p+ 2. For this case, the proof is by induction on m. If
m = 2 then we must have n = p since m+ n ≥ p + 2. Hence Vn = Vp is projective and
therefore so is Vm⊗ Vn. This implies Vm⊗ Vp ∼= mVp. Thus the result is true for m = 2.

Suppose then that the result holds for m = 2, . . . , r − 1 and we will prove it for
m = r . Again, using projectivity, the result is clear if m = p so we may suppose that
m = r ≤ p − 1. Consider Ṽ2 · Ṽr−1 · Ṽn. We have

(Ṽ2 · Ṽr−1) · Ṽn = (Ṽr + Ṽr−2) · Ṽn = (Ṽr · Ṽn)+ (Ṽr−2 · Ṽn)

= (Ṽr · Ṽn)+
(p−n∑
s=1

Ṽn−r+2s+1

)
+ (r + n− p − 2)Ṽp

since r + n− 2 ≥ p. On the other hand,

Ṽ2 · (Ṽr−1 · Ṽn) = Ṽ2 ·
(p−n∑
s=1

Ṽn−r+2s + (r + n− p − 1) Ṽp
)

since r − 1 ≥ p − n+ 1 > p − n

=

p−n∑
s=1

Ṽn−r+2s+1 +

p−n∑
s=1

Ṽn−r+2s−1 + 2(r + n− p − 1) Ṽp.

Therefore Ṽr · Ṽn =
∑p−n

s=1 Ṽn−r+2s−1 + (r + n− p) Ṽp. ut

Remark 8.5. Note that if m ≤ n ≤ p then dim (Vm ⊗ Vn)
Cp = m for both of the cases

m+ n ≤ p and m+ n > p.

9. Explicit decompositions

The formulae in the previous section describe the decomposition of tensor products of
representations abstractly. We will require more explicit decompositions including not
just a list of the representations occurring in a product but also some information about
how these subrepresentations lie in the tensor product. We will use the formulae from the
representation rings to help in determining this extra information.
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9.1. Decomposing Mm ⊗Mn

We begin by considering the productMm⊗Mn. Supposem ≤ n. From the representation
ring formula we know that

Mm ⊗Mn
∼=

m⊕
s=1

Mn−m+2s−1. (9.1)

For our purposes we need an explicit description of the submodules occurring in this
decomposition. We write

Mm ⊗Mn
∼=

Q[s]
(sm)

⊗
Q[t]
(tn)
∼=

Q[s, t]
(sm, tn)

,

which we identify with spanQ{s
i tj | 0 ≤ i < m, 0 ≤ j < n}. Z acts on Mm ⊗Mn via

σ = (1+ s)(1+ t) = 1+ s + t + st and 1 = σ − 1 = s + t + st .
We filter Mm ⊗Mn by total degree writing Fr(Mm ⊗Mn) := {h ∈ Q[s, t]/(sm, tn) |

deg(h) ≥ r}. For h ∈ Mm⊗Mn, we write gr(h) = hd where h = hd+hd+1+· · ·+hm+n−2
with hd 6= 0 and hr ∈ (Mm ⊗ Mn)r . For 0 6= h ∈ Mm ⊗ Mn, we define deg∗(h) =
deg(gr(h)). We consider the Hilbert function of Mm ⊗Mn defined by

H(Mm ⊗Mn, j) := dim (Mm ⊗Mn)j

The Hilbert series ofMr is the polynomial 1+ λ+ λ2
+ · · · + λr−1

=
1−λr
1−λ . Thus the

Hilbert series ofMm⊗Mn is given by 1−λm
1−λ

1−λn
1−λ . Hence the Hilbert function ofMm⊗Mn

is given by

H(Mm ⊗Mn, j) =


j + 1 if 0 ≤ j ≤ m− 1,
m if m− 1 ≤ j ≤ n− 1,
m+ n− j − 1 if n− 1 ≤ j ≤ n+m− 2,
0 otherwise.

Proposition 9.2. Let 1 ≤ m ≤ n. For r = 0, 1, . . . , m − 1 there exists an element
ωr ∈ Mm(Z)⊗Mn(Z) such that 1(ωr) = 0 with deg∗(ωr) = m + n − r − 2 and
gr(ωr) =

∑r
i=0(−1)i+1sm−1−i tn−r+i−1.

Proof. We begin by showing that the homomorphism of Z-modules

1 : Fq(Mm(Z)⊗Mn(Z))→ Fq+1(Mm(Z)⊗Mn(Z))

is surjective for all q = n − 1, n, . . . , m + n − 2. We do this using downward induction
on q. For q = m + n − 2 the codomain Fm+n−1(Mm ⊗Mn) is 0 and so the result is
trivially true.

Now suppose that 1 : Fq(Mm(Z)⊗Mn(Z)) → Fq+1(Mm(Z)⊗Mn(Z)) is sur-
jective and consider the map 1 : Fq−1(Mm(Z)⊗Mn(Z)) → Fq(Mm(Z)⊗Mn(Z)).
It is easy to verify that (s + t)

∑m−i−1
k=0 (−1)ksi+ktq−i−k−1

= si tq−i in Mm ⊗Mn for
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q − n+ 1 ≤ i ≤ m− 1. Therefore gr(1(
∑m−i−1
k=0 (−1)ksi+ktq−i−k−1)) = si tq−i . By the

induction hypothesis,

1(Fq−1(Mm(Z)⊗Mn(Z))) ⊇ 1(Fq(Mm(Z)⊗Mn(Z))) = Fq+1(Mm(Z)⊗Mn(Z)).

Furthermore,

Fq(Mm(Z)⊗Mn(Z)) =
( m−1⊕
i=q−n+1

Zsi tq−i
)
⊕ Fq+1(Mm(Z)⊗Mn(Z)).

Thus 1(Fq−1(Mm(Z)⊗Mn(Z))) = Fq(Mm(Z)⊗Mn(Z)) as claimed.
Put ω′r :=

∑r
k=0(−1)ksm−r+k−1tn−k−1

∈ Fm+n−r−2(Mm(Z)⊗Mn(Z)). It is
easy to check that (s + t)ω′r = 0 and thus deg∗(1(ω

′
r)) ≥ deg∗(ω

′
r) + 2. Thus

we have 1(ω′r) ∈ Fm+n−r(Mm(Z)⊗Mn(Z)). By the above, there exists ω′′r ∈
Fm+n−r−1(Mm(Z)⊗Mn(Z)) such that 1(ω′′r ) = −1(ω

′
r). Taking ωr := ω′r + ω

′′
r ∈

Mm(Z)⊗Mn(Z) we have 1(ωr) = 0 with gr(ωr) = ω′r as required. ut

Remark 9.3. Note that MZ
q = (the kernel of 1 : Mq → Mq ) is one-dimensional for all

q ≥ n − 1. Since the direct sum decomposition of Mm ⊗Mn into indecomposables has
m summands, this implies that the kernel of 1 : Mm ⊗Mn → Mm ⊗Mn has dimen-
sion m and thus {ω0, ω1, . . . , ωm−1} is a basis for this kernel. Furthermore, this kernel is
contained in Fn−1(Mm ⊗Mn).

Theorem 9.4. There exist elements α0, α1, . . . , αm−1 ∈ Mm ⊗Mn such that for all r =
0, 1, . . . , m− 1 we have

(1) deg∗(1
j (αi)) = i + j for all 0 ≤ i ≤ r and 0 ≤ j ≤ m+ n− 2i − 2.

(2) {gr(1j (αi)) | i ≤ r, j ≤ m+ n− 2i − 2, i + j ≤ r} is linearly independent.
(3) {1j (αi) | 0 ≤ i ≤ r, m + n − i − r − 2 ≤ j ≤ m + n − 2i − 2} is a basis for

Fm+n−r−2(Mm ⊗Mn).
(4) 1m+n−2r−2(αr) = ωr and `(ωr) = m+ n− 2r − 1.

Proof. We proceed by complete induction on r . For r = 0 we take α0 = 1/
(
m+n−2
m−1

)
.

Then 1m+n−2(α0) = s
m−1tn−1

= ω0. Clearly this implies that `(ω0) = m+ n− 1. It is
also clear that {ω0} is a basis for the one-dimensional space Fm+n−2(Mm ⊗Mn). Since
deg∗(1

m+n−2(α0)) = m + n − 2 we must have deg∗(1
j (α0)) = j for all 0 ≤ j ≤

m+ n− 2. Finally, {gr(α0)} = {α0} is linearly independent.
Assume then that the four assertions hold for all values less than or equal to r and

consider these four assertions for the value r + 1. By the Clebsch–Gordan formula,
Mm ⊗Mn contains a summand isomorphic to Mm+n−2r−3. Thus there exists ω ∈ ker1
with `(ω) = m + n − 2r − 3. Take α such that 1m+n−2r−4(α) = ω. Since `(ωk) >
m + n − 2r − 3 for all k ≤ r , we may write ω =

∑m−1
k=r+1 ckωk for some ck ∈ Q.

Therefore deg∗(ω) ≤ deg∗(ωr+1) = m+ n− r − 3. This implies that deg∗(α) ≤ r + 1.
Combining (1) and (2) we see that {gr(1j (αi)) | i ≤ r, i + j ≤ r} is a basis for⊕r
d=0(Mm ⊗Mn)d . Therefore we may write α =

∑
i+j≤r aij1

j (αi) + αr+1 where
αr+1 ∈ Fr+1(Mm ⊗Mn) and aij ∈ Q for all i, j .
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Now

0 = 1(ω) = 1m+n−2r−3(α) =
∑
i+j≤r

aij1
m+n−2r+j−3(αi)+1

m+n−2r−3(αr+1).

We consider this last expression in each degree d = 0, 1, . . . , m+n− r− 3. The compo-
nent in degree d for d = 0, 1, . . . , m+n−2r−4 is trivially 0. In degree d = m+n−2r−3
we find only a001

m+n−2r−3(α0) and thus a00 = 0. In degree d = m+n−2r−2 we find
a011

m+n−2r−3(α1)+ a101
m+n−2r−2(α0). Therefore (using (3)) we have a01 = a10 = 0.

Continuing in this manner up to degree d = m+n− r−3 we find that aij = 0 for all i, j .
Therefore α = αr+1 and deg∗(α) ≥ r+1. We already observed that deg∗(α) ≤ r+1 and
therefore deg∗(αr+1) = r + 1. Since deg∗(1

m+n−2r−4(αr+1)) = m+ n− r − 3 we must
have deg∗(1

j (αr+1)) = j + r+1 for all j = 0, 1, . . . , m+n−2r−4, which proves (1).
In particular, deg∗(ω) ≥ m + n − r − 3 and so we must have ω = cr+1ωr+1. Take

αr+1 = c
−1
r+1α. Then 1m+n−2r−4(αr+1) = ωr+1, which proves (4).

Now {1j (αi) | 0 ≤ i ≤ r+1, 0 ≤ j ≤ m+n−2i−2} is a basis for
⊕r+1

i=0 Mm+n−2i−1
and so in particular is linearly independent. Counting dimensions implies that {1j (αi) |
i + j ≥ m + n − r − 1, 0 ≤ i ≤ r + 1, 0 ≤ j ≤ m + n − 2i − 2} is a basis for
Fm+n−r−3(Mm ⊗Mn), which proves (3).

Finally we prove (2). Assume there exists a linear relation∑
i+j=d

bij gr(1j (αi)) = 0

with scalars bij ∈ Q where d ≤ r + 1. This linear relation (together with (1)) implies that∑
i+j=d

bij1
m+n−r−d+j−3(αi)) ∈ Fm+n−r−2(Mm ⊗Mn)

= spanQ{1
k(αi) | 0 ≤ i ≤ r, i + k ≥ m+ n− r − 2, k ≤ m+ n− 2k − 2}.

By (3) this means we may write∑
i+j=d

bij1
m+n−r−d+j−3(αi) =

∑
i+j>m+n−3

b′ij1
j (αi).

But we have already seen that {1j (αi) | i+ j ≥ m+ n− r − 1, 0 ≤ i ≤ r + 1, 0 ≤ j ≤
m+ n− 2i − 2} is linearly independent. Therefore each bij is 0, which proves (2). ut

9.5. Decomposing Vm ⊗ Vn

Next we want to determine an explicit decomposition of a tensor product of indecompos-
able Cp-modules, Vm ⊗ Vn. Proposition 8.4 gives an abstract decomposition of Vm ⊗ Vn.
We want to obtain a more explicit description of this decomposition. To do this we con-
sider the integer lattices Mm(Z) and Mn(Z) and the surjection ρ : Mm(Z) ⊗Mn(Z) →
Vm ⊗ Vn given by reduction modulo the prime p.

The following well-known result and its proof are included for the reader’s conve-
nience.
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Lemma 9.6. Let U be an n-dimensional Q-vector space U ∼= Qn and suppose W is an
r-dimensional subspace of U . Let U(Z) = Zn be the natural lattice in U . Let p be prime
and let ρ denote the reduction modulo p map. Then W(Z) := W ∩ U(Z) is a rank r
lattice and ρ(W(Z)) ∼= Frp.

Proof. The lattice K0 := pU(Z) is the kernel of the map ρ, and W(Z) ∩ K0 is a free
abelian group whose rank equals its minimal number of generators. Choose a vector space
basis {v1, . . . , vr} ofW . Scaling the vi we may suppose that vi ∈ K0 and ui := (1/p)vi ∈
U(Z) \ K0. Thus W(Z) ∩ K0 has rank at least r . If W(Z) ∩ K0 required more than r
generators we would find a relation among them from the Q-linear dependence among
them. Thus the rank of the latticeW(Z)∩K0 is r and this lattice is generated by v1, . . . , vr .

Furthermore {u1, . . . , ur} is a basis of W(Z). To see this, take any w ∈ W(Z). Then
pw ∈ W(Z) ∩ K0 and so we may write pw =

∑r
i=1 civi where ci ∈ Z for each i.

Then w =
∑r
i=1 ciui . This implies that the index of W(Z) ∩ K0 in W(Z) is pr and

ρ(W(Z)) ∼= W(Z)/(W(Z) ∩K0) ∼= (Z/pZ)r . ut

Theorem 9.7. Suppose 1 ≤ m ≤ n ≤ p with m + n ≥ p + 1. Then `(ρ(ωr)) = p for
all r = 0, 1, . . . , m+ n− p − 1.

Proof. By Proposition 8.4, the kernel of 1 on Vm ⊗ Vn is an m-dimensional Fp-vector
space. Since {ρ(ω0), ρ(ω1), . . . , ρ(ωm−1)} is a linearly independent subset of ker1, it
must be a basis for ker1. Thus

1p−1(Vm ⊗ Vn) ⊆ ker1 ∩ Fp−1(Vm ⊗ Vn)

= spanFp {ρ(ω0), ρ(ω1), . . . , ρ(ωm−1)} ∩ Fp−1(Vm ⊗ Vn)

= spanFp {ρ(ω0), ρ(ω1), . . . , ρ(ωm+n−p−1)}.

By Proposition 8.4, 1p−1(Vm ⊗ Vn) has dimension m + n − p, which implies that the
above inclusion is an equality. In particular `(ρ(ωr)) = p for r = 0, 1, . . . , m+n−p−1.

ut

Proposition 9.8. There exist β0, β1, . . . , βm+n−p−1 ∈ Vm ⊗ Vn such that 1p−1(βr) =

ρ(ωr) and deg∗(βr) = m+ n− p − r − 1 for r = 0, 1, . . . , m+ n− p − 1 .

Proof. By the above theorem there must exist β ′0, β
′

1, . . . , β
′

m+n−p−1 ∈ Vm ⊗ Vn such

that1p−1(β ′r) = ρ(ωr) for r = 0, 1, . . . , m+n−p−1. Since deg∗(ρ(ωr)) = m+n−r−2
we have deg∗(β

′
r) ≤ m+n−p−1−r for such r . This implies that deg∗(β

′

m+n−p−1) = 0

and so we may take β0 = β
′

0.
Assume, by downward induction, that we have chosen βi with 1p−1(βi) = ρ(ωi)

and deg∗(βi) = m + n − p − i − 1 for i = r + 1, r + 2, . . . , m + n − p − 1 (where
r ≥ 0). The set

Ar+1 := {1
j (βi) | r + 1 ≤ i ≤ m+ n− p − 1, 0 ≤ j ≤ i − r − 1}

is linearly independent and consists of elements x satisfying deg∗(x) ≤ r + 1. Since the
cardinality of Ar+1 is
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m+n−p−1∑
i=r+1

(i − r) =

(
m+ n− p − 1− r

2

)
= dim((Vm ⊗ Vn)/Fm+n−p−r−1(Vm ⊗ Vn)),

the natural image ofAr+1 forms a basis for (Vm⊗Vn)/Fm+n−p−r−1(Vm⊗Vn). Choose γ
with deg∗(γ ) = m + n − p − r − 1 such that the set {γ } t {1j (βi) | r + 1 ≤ i ≤

m+n−p−1, 0 ≤ j ≤ i−r} similarly yields a basis for (Vm⊗Vn)/Fm+n−p−r(Vm⊗Vn).
Write β ′r = c0γ +

∑m+n−p−1
i=r+1

∑i−r
j=0 cij1

j (βi) + γ
′ where c0, cij ∈ Fp and γ ′ ∈

Fm+n−p−r(Vm ⊗ Vn). Then

ρ(ωr) = 1
p−1(β ′r) = 1

p−1(c0γ )+

m+n−p−1∑
i=r+1

ci0ρ(ωm+n−p−i−1)+1
p−1(γ ′)

where deg∗(1
p−1(γ ′)) > deg∗(ρ(ωm+n−p−i−1)) for all i ≥ r + 1. Therefore ci0 = 0

for all i = r + 1, r + 2, . . . , m + n − p − 1 and ρ(ωr) = 1p−1(c0γ + γ ′). Setting
βr = c0γ +γ ′ yields deg∗(βr) = m+n−p− r−1 and1p−1(βr) = ρ(ωr) as required.

ut

We have seen that Mm ⊗ Mn
∼=
⊕m−1

r=0 Mm+n−2i−1 and that we may arrange this de-
composition so that the socle of the summandMm+n−2i+1 is spanned by ωi . Furthermore
αi is a generator of the summand Mm+n−2i+1 with deg∗(αi) = i and 1m+n−2i(αi) = ωi
for i = 0, 1, . . . , m − 1. Moreover, by clearing denominators, we may assume that
αi ∈ (Mm ⊗Mn)(Z) with ρ(αi) = aiωi 6= 0 for some ai ∈ Z.

Theorem 9.9. Suppose 1 ≤ m ≤ n ≤ p withm+n ≥ p+1. Form+n−p ≤ r ≤ m−1,
`(ρ(ωr)) = m+ n− 2r − 1. Furthermore,

Vm ⊗ Vn =
m−1⊕

r=m+n−p

Vm+n−2r−1 ⊕ (m+ n− p)Vp

where
Vm+n−2r−1 = spanFp {1

j (ρ(αr)) | 0 ≤ j ≤ m+ n− 2r − 2}

for m+ n− p ≤ r ≤ m− 1. In particular

ρ(Mm+n−2r−1(Z)) = Vm+n−2r−1

for m + n − p ≤ r ≤ m − 1 where Mm+n−2r−1 and Vm+n−2r−1 are indecomposable
summands of Mm ⊗Mn and Vm ⊗ Vn generated by αr and ρ(αr) respectively.

Proof. It suffices to show that 1m+n−2r−2(ρ(αr)) 6= 0 for all r ≥ m + n − p. Fix such
an r . Let KMr denote the kernel of 1m+n−2r−2

: Mm ⊗Mn→ Mm ⊗Mn. Then KMr is
a Q-vector space and we write KMr(Z) := KMr ∩ (Mm(Z)⊗Mn(Z)). Observe that the
set

{1j (αi) | 0 ≤ i ≤ r, 2r − 2i + 1 ≤ j ≤ m+ n− 2i − 2}

t {1j (αi) | r + 1 ≤ i ≤ m− 1, 0 ≤ j ≤ m+ n− 2i − 2}
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is a basis for KMr . Either from this or by (9.1) we have

dimQKMr =

r∑
i=0

(m+ n− 2r − 2)+
m−1∑
i=r+1

(m+ n− 2i − 1)

= (r + 1)(m+ n− 2r − 2)+
m−1∑
i=r+1

(m+ n− 2i − 1).

Let KVr denote the kernel of 1m+n−2r−2
: Vm ⊗ Vn → Vm ⊗ Vn. By Proposition 8.4,

we see that dimFp KVr = (r + 1)(m + n − 2r − 2) +
∑m−1
i=r+1(m + n − 2i − 1) =

dimQKMr . Therefore, applying Lemma 9.6, we see that ρ(KMr(Z)) = KVr . Since αr /∈
KMr , this implies that ρ(αr) /∈ KMr , i.e., 1m+n−2r−2(ρ(αr)) 6= 0 as required. Thus
1m+n−2r−2(ρ(αr)) is a non-zero multiple of ρ(ωr) and so `(ρ(ωr)) ≥ m+ n− 2r − 1.
Since this is true for all r = m + n − p,m + n − p + 1, . . . , m − 1, comparing with
Proposition 8.4 shows that `(ρ(ωr)) = m+ n− 2r − 1 as required. ut

Remark 9.10. Since ρ(1m+n−2r−2(αr)) 6= 0 we may replace αr by an integer multiple
of itself in order to arrange that 1m+n−2r−2(ρ(αr)) = ρ(ωr) for r = m + n − p,

m+ n− p + 2, . . . , m− 1.

Remark 9.11. One component of our proofs of Theorems 9.4 and 9.9 involves showing
that the multiplication maps

(s + t)m+n−2r−2
· : (Mm ⊗Mn)r → (Mm ⊗Mn)m+n−r−2

for r = 0, 1, . . . , m− 1 and

(s + t)m+n−2r−2
· : (Vm ⊗ Vn)r → (Vm ⊗ Vn)m+n−r−2

for r = m+ n− p,m+ n− p + 1, . . . , m− 1 are surjective. Another way to show this
is to consider the matrix associated to these maps with respect to the basis of monomials
in s and t . This matrix is given by

Dr+1(m+ n− 2r − 2, m− r − 1) :=
((

m+ n− 2r − 2
m− r − 1+ i − j

))
1≤i≤r+1
1≤j≤r+1

.

Srinivasan [44] shows that this matrix is row equivalent to her Pascal matrix

Pr+1,r+1(m+ n− 2r − 2, m− r − 1) :=
((
m+ n− 2r − 3+ i
m− r − 2+ j

))
1≤i≤r+1
1≤j≤r+1

.

Moreover this row equivalence may be obtained using only determinant preserving row
operations. Srinivasan shows that this latter matrix has determinant

1! 2! · · · r!
(m− r)r(m− r + 1)r−1 · · · (m− 1)

r∏
c=0

(
m+ n− 2r − 2+ c

m− r − 1

)
.

This determinant is always non-zero, and is non-zero modulo p if and only if m + n −
r − 2 < p.
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Theorem 9.12. Suppose 1 ≤ mi ≤ p for i = 1, . . . , r . Write Vn1 ⊗ · · · ⊗ Vnr
∼=⊕p

i=1 aiVi . Then Mn1 ⊗ · · · ⊗Mnr contains a summand N with N ∼=
⊕p−1

i=1 aiMi such
that ρ(N(Z)) = W where W is a summand of

⊗n−1
k=1 Vnk with W ∼=

⊕p−1
i=1 aiVi . More

explicitly, we may decompose N andW into indecomposable summands, N =
⊕

α∈0 Nα
and W =

⊕
α∈0Wα , with dimQMα = dimFp Wα and ρ(Mα(Z)) = Wα for all α ∈ 0.

Proof. The proof is by induction on r . The result is trivial for r = 1.
Decompose

⊗r−1
k=1 Vnk into a direct sum of indecomposables Cp-modules:

Vn1 ⊗ · · · ⊗ Vnr−1 =
⊕
α∈A

Wα.

Define A′ := {α ∈ A | dimWα < p} and A′′ := A\A′ = {α ∈ A | dimWα = p}. Define
W ′ :=

⊕
α∈A′ Wα and W ′′ :=

⊕
α∈A′′ Wα so that

⊗r−1
k=1 Vnk = W

′
⊕W ′′.

By inductionMn1⊗· · ·⊗Mnr−1 contains a summand U ′ with U ′ =
⊕

α∈A′ Nα where
Nα ∼= Mθ(α) with θ(α) = dimQNα = dimFp Wα < p and ρ(Nα(Z)) = Wα for all
α ∈ A′. Thus ρ(U ′(Z)) = W ′.

Decompose Wα ⊗ Vnr =
⊕

β∈Bα
Wα,β and define B ′α := {β ∈ Bα | dimWα,β < p}

and B ′′α := Bα \ B
′
α . By Theorem 9.9 and Remark 9.10, Mα ⊗Mnr contains a summand⊕

β∈B ′α
Nα,β with Nα,β ∼= Mθ(β) where θ(β) = dimQNα,β = dimFp Wα,β < p and

ρ(Nα,β(Z)) = Wα,β for all β ∈ B ′α and all α ∈ A′. Thus we have

r⊗
k=1

Vnk
∼= (W

′
⊗ Vnr )⊕ (W

′′
⊗ Vnr ) =

( ⊕
α∈A′

Wα ⊗ Vnr

)
⊕ (W ′′ ⊗ Vnr )

=

( ⊕
α∈A′

⊕
β∈Bα

Wα,β

)
⊕ (W ′′ ⊗ Vnr )

=

( ⊕
α∈A′

⊕
β∈B ′α

Wα,β

)
⊕

( ⊕
α∈A′

⊕
β∈B ′′α

Wα,β

)
⊕ (W ′′ ⊗ Vnr )

where (
⊕

α∈A′
⊕

β∈B ′′α
Wα,β) ⊕ (W ′′ ⊗ Vnr ) is a free Cp-module and W ∼=⊕

α∈A′
⊕

β∈B ′α
Wα,β .

Taking N to be the summand N :=
⊕

α∈A′
⊕

β∈B ′α
Nα,β of

⊗r
k=1Mnk we have

ρ(Nα,β(Z)) = Wα,β for all α ∈ A′ and all β ∈ B ′α and ρ(N(Z)) = W as required. ut

Corollary 9.13. Suppose 1 ≤ n1, . . . , nk ≤ p. Every invariant f ∈ (
⊗r

k=1 Vnk )
Cp may

be expressed as a sum f = f0 + f1 where f0 is integral (i.e., f0 = ρ(F0) for some
F0 ∈ (

⊗r
k=1Mnk (Z))Z) and f1 is a transfer.

We now apply this to symmetric algebras.

Theorem 9.14. Let 1 < n1, . . . , nr ≤ p and 0 ≤ d1, . . . , dr ≤ p − 1. Every invariant
f ∈ Fp[Vn1⊕· · ·⊕Vnr ]

Cp
(d1,...,dr )

may be written as f ′+f ′′ where f ′ is integral and f ′′ is a
transfer, i.e., f ′ = ρ(F ′) for some F ′ ∈ Z[Mn1⊕· · ·⊕Mnr ]

Z
(d1,...,dr )

and f ′′ = TrCp (F ′′)
for some F ′′ ∈ Fp[Vn1 ⊕ · · · ⊕ Vnr ](d1,...,dr ).
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Proof. Let d < p. The symmetric group on d letters, 6d , acts on
⊗d

V ∗n by permuting
factors. Furthermore Symd V ∗n = (

⊗d
V ∗n )

6d . Since d < p, the group6d is non-modular
and therefore Symd V ∗n has a 6d -stable complement:

⊗d
V ∗n = Symd V ∗n ⊕U . Since the

actions of Cp (in fact all of GL(V ∗n )) and 6d commute, the complement U is also a Cp-
module (in fact a GL(V ∗n )-module). Therefore Symd V ∗n is a summand of

⊗d
V ∗n as a

Cp-module.
Similarly Symd M∗n is a summand of the Z-module

⊗d
M∗n . The projection of

⊗d
V ∗n

onto Symd V ∗n is given by the Reynolds operator 56d = (1/d!)
∑
τ∈6d

τ . The same
formula gives the projection of

⊗d
M∗n onto Symd M∗n .

In the same manner, Fp[Vn1 ⊕ · · · ⊕ Vnr ](d1,...,dr ) = Symd1 V ∗n1
⊗ · · · ⊗ Symdr V ∗nr

is a summand of the Cp-module
⊗r

i=1
⊗di V ∗ni , and Q[Mn1 ⊕ · · · ⊕ Mnr ](d1,...,dr ) =

Symd1 M∗n1
⊗ · · · ⊗ Symdr M∗nr is a summand of the Z-module

⊗r
i=1

⊗di M∗ni . The pro-
jection onto these summands is given by the Reynolds operator5 associated to the Young
subgroup 6d1,...,dr := 6d1 × · · · ×6dr where

5 = 56d1,...,dr
=

1
d1! · · · dr !

∑
τ∈6d1,...,dr

τ.

By Corollary 9.13, every invariant f ∈ Fp[Vn1 ⊕ · · · ⊕ Vnr ]
Cp
(d1,...,dr )

can be written

as a sum f = f0 + f1 where f0 = ρ(F0) for some F0 ∈ (
⊗r
j=1

⊗dj M∗nj (Z))
Z and

f1 = TrCp (F1) for some F1 ∈
⊗r
j=1

⊗dj V ∗nj . Therefore

f = 5(f ) = 5(f0 + f1) = 5(f0)+5(f1) = 5(ρ(F0))+5(TrCp (F1)).

Clearly5(ρ(F0))=ρ(5(F0)). Since the actions of6d1,...,dr and of Cp on
⊗r

i=1
⊗di V ∗ni

commute, we have 5(TrCp (F1)) = TrCp (5(F1)). Similarly the actions of 6d1,...,dr and
of Z on

⊗r
i=1

⊗di M∗ni commute and thus 5(F0) is a Z-invariant since F0 is. Therefore
f = ρ(5(F0))+TrCp (5(F1))where5(F0) ∈ Q[Mn1⊕· · ·⊕Mnr ]

Z
(d1,...,dr )

and5(F1) ∈

Fp[Vn1 ⊕ · · · ⊕Vnr ](d1,...,dr ). Hence we have written f as the sum of an integral invariant
and a transfer.

Also note that Roberts’ isomorphism implies that 5(F0) = ψ(h) for some h ∈
C[R1 ⊕ Rn1−1 ⊕ · · · ⊕ Rnr−1]

SL2(C). ut

Combining Therem 9.14 with the Periodicity Theorem we have a proof of the conjecture:

Theorem 9.15. Let V =
⊕r

i=1 Vni . For each i = 1, . . . , r , choose a generator zi of the
cyclic module Cp-module V ∗ni , i.e., choose zi ∈ V ∗ni \ 1(V

∗
ni
). Put Ni := NCp (zi). Then

Fp[V ]Cp is generated by N1, . . . , Nr together with a finite set of integral invariants and
a finite set of transfer invariants.

Proof. Given f ∈ Fp[V ]Cp we may use the decomposition from the Periodicity Theorem
to write f = f ] + f [ with f ] =

∑r
i=1 fiNi where each fi is in Fp[V ]Cp and f [ ∈

(Fp[V ]Cp )[. Thus we may choose a generating set for Fp[V ]Cp consisting of elements of
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(Fp[V ]Cp )[ together with the r norms N1, . . . , Nr . Of course, we can and will choose the

elements (Fp[V ]Cp )[ to be multi-graded. Given such a generator f ∈ (Fp[V ]
Cp
(d1,...,dr )

)[

we see by the Periodicity Theorem that if there exists an i with di > p−ni then `(f ) = p,
i.e., f = 1p−1(F ) for some F ∈ Fp[V ][. Since 1p−1(F ) = (σ − 1)p−1(F ) = (1 +
σ + σ 2

+ · · · + σp−1)(F ) = Tr(F ), we see that di > p − ni forces f to be in the image
of the transfer. Note that the degree conditions di ≤ p − ni ensure that the vector space
spanned by the integral non-transfer invariants is finite-dimensional.

Following [40, Theorem 6.2], we see that there is a homogeneous system of parame-
ters for Fp[V ]Cp consisting of N1, . . . , Nr together with a number of transfers of degree
p − 1. Let A denote the polynomial algebra generated by this homogeneous system of
parameters. Since Fp[V ] is Cohen–Macaulay we have the Hironaka decomposition

Fp[V ] =
q⊕
k=1

Ahk

where hk ∈ Fp[V ] for all k. Since the transfer is an A-module map, {Tr(hk) | k =
1, . . . , q} forms a set of A-module generators for the ideal Tr(Fp[V ]). These q transfers
together with the dimV many elements in the homogeneous system of parameters and
the finitely many integral non-transfer invariants form a finite algebra generating set for
Fp[V ]Cp . ut

The following more explicit formulation of the above theorem is useful.

Corollary 9.16. Let V =
⊕r

i=1 Vni . For each i = 1, . . . , r , choose a generator zi of the
cyclic module Cp-module V ∗ni , i.e., choose zi ∈ V ∗ni \ 1(V

∗
ni
). Put Ni := NCp (zi) and

zij = 1j (zi) for all 1 ≤ i ≤ r and 0 ≤ j ≤ ni − 1. Suppose there exist invariants

fij ∈ F[V ]G and positive integers dij such LT(fij ) = z
dij
ij for all 1 ≤ i ≤ r and

1 ≤ j ≤ ni − 1. Put d0j = p (since LT(Ni) = z
p
i ). Then Fp[V ]Cp is generated by the

following invariants:

• N1, . . . , Nr ;
• fij with 1 ≤ i ≤ r and 1 ≤ j ≤ ni − 1;
• a finite set of integral invariants;
• Tr(

∏r
i=1

∏ni−1
j=0 z

aij
ij ) with 0 ≤ aij < dij for all 1 ≤ i ≤ r and 1 ≤ j ≤ ni − 1.

Proof. The hypotheses imply (by [20, Lemma 6.2.1]) that the set

{N1, . . . , Nr} ∪ {fij | 1 ≤ i ≤ r, 1 ≤ j ≤ ni − 1}

forms a homogeneous system of parameters. Let A denote the polynomial algebra gen-
erated by these dimV many invariants. By Theorem 9.15, Fp[V ]Cp is generated by A
together with a finite set of integral invariants and some transfers. Consider the set of
monomials 0 = {

∏r
i=1

∏ni−1
j=0 z

aij
ij | 0 ≤ aij < dij }. Then

Fp[V ] =
⊕
γ∈0

Aγ.

Thus {Tr(γ ) | γ ∈ 0} is a set of A-module generators for the ideal Tr(F[V ]). ut
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10. Applications

We use Corollary 9.16 to give generators for the invariant ring of a number of representa-
tions of Cp.

10.1. The invariant ring F[V2 ⊕ V4]
Cp

We mentioned in the introduction that theCp-representation V2⊕V4 is the only remaining
reduced representation whose ring of invariants is likely to be computable by the SAGBI
basis method originally developed by Shank. Here we will find generators for this ring
much more easily by using the proof of the conjecture.

We need to find the ring of covariants of R1 ⊕ R3. A method to find generators for
this ring is given in [29, §138A]. Letting L denote the linear form and f the cubic form
we have the following 13 generators for this ring of covariants.

Table 1. Covariants of R1 ⊕ R3

Covariant Order Bi-degree LM LM(Source)

L 1 (1, 0) a0x x1

f 3 (0, 1) b0x
3 x2

H := (f, f )2 2 (0, 2) b2
1x

2 y2
2

T := (f,H)1 3 (0, 3) b3
1x

3 y3
2

1 := (H,H)2 0 (0, 4) b3
1b3 y2

2z
2
2

(f, L)1 2 (1, 1) a1b0x
2 x1y2

(f, L2)2 1 (2, 1) a2
1b0x x2

1z2

(f, L3)3 0 (3, 1) a3
1b0 x3

1w2

(H,L)1 1 (1, 2) a1b
2
1x x1y2z2

(H,L2)2 0 (2, 2) a2
1b

2
1 x2

1z
2
2

(T , L)1 2 (1, 3) a1b
3
1x

2 x1y
2
2z2

(T , L2)2 1 (2, 3) a2
1b

3
1x x2

1y2z
2
2

(T , L3)3 0 (3, 3) a3
1b

3
1 x3

1z
3
2

Here we are using {x, y} as a basis for the dual of the first copy of R1, {a0, a1} as a
basis for the dual of the second copy of R1, and {b0, 3b1, 3b2, b3} as the basis for R∗3 .
Thus L = a0x + a1y and f = b0x

3
+ 3b1x

2y + 3b2xy
2
+ b3y

3. As in Section 4, these
bases are chosen so that both L and f are invariant. In the column labelled “LM” we give
the lead monomial of the covariant and in the final column we give the lead monomial of
the corresponding source.

Examining these lead terms we easily see that no one of these 13 covariants can be
written as a polynomial in the other 12. Thus these 13 covariants minimally generate
C[R1 ⊕ R1 ⊕ R3]

SL2(C). Applying Roberts’ isomorphism and reducing modulo p yields
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13 integral invariants in F[V2 ⊕ V4]
Cp . Here {x1, y1} is a basis of V ∗2 and {x2, y2, z2, w2}

is a basis of V ∗4 . We use the graded reverse lexicographic ordering with w2 > z2 >

y2 > y1 > x2 > x1. The lead terms of these 13 Cp-invariants are given in the final
column of Table 10.1. We have integral invariants with lead terms x1, x2 and y2

2 . The lead
monomial of Tr(wp−1

2 ) is zp−1
2 . Thus F[V2⊕V4]

Cp is generated by 13 integral invariants,
the two norms NCp (y1), N

Cp (w2), and the family of transfers Tr(wd2
2 z

c2
2 y

b2
2 y

b1
1 ) with

0 ≤ d2 ≤ p − 1, 0 ≤ c2 ≤ p − 2, 0 ≤ b2 ≤ 1, 0 ≤ b1 ≤ p − 1.

10.2. The invariant ring F[V3 ⊕ V4]
Cp

Here we complete the computations discussed in Examples 4.1 and 7.1 by finding genera-
tors for F[V3⊕V4]

Cp . Let φ = a0x
2
+2a1xy+a2y

2 and f = b0x
3
+3b1x

2y+3b2xy
2
+

b3y
3 denote the quadratic and cubic forms respectively. Here we are using {x, y} as a

basis for R∗1 , {a0, 2a1, a2} as a basis for R∗2 , and {b0, 3b1, 3b2, b3} as a basis for R∗3 . As
in Section 4, these bases are chosen so that both φ and f are invariant. In the column
labelled “LM” we give the lead monomial of the covariant.

Generators for the ring of covariants C[R1 ⊕ R2 ⊕ R3]
SL2(C) are given in [29, §140].

There are 15 generators as follows:

Table 2. Covariants of R2 ⊕ R3

Covariant Order Bi-degree LM LM(Source)

φ 2 (1, 0) a0x
2 x1

f 3 (0, 1) b0x
3 x2

H := (f, f )2 2 (0, 2) b2
1x

2 y2
2

T := (f,H)1 3 (0, 3) b3
1x

3 y3
2

1 := (H,H)2 0 (0, 4) b2
1b

2
2 y2

2z
2
2

D := (φ, φ)2 0 (2, 0) a2
1 y2

1

(φ, f ) 3 (1, 1) a1b0x
3 x1y2

(φ, f )2 1 (1, 1) a2b0x x1z2

(φ2, f )3 1 (2, 1) a1a2b0x x2
1w2

(φ3, f 2)6 0 (3, 2) a3
2b

2
0 x3

1w
2
2

(φ,H) 2 (1, 2) a1b
2
1x

2 x1y2z2

(φ,H)2 0 (1, 2) a2b
2
1 x1z

2
2

(φ, T )2 1 (1, 3) a2b
3
1x x1y2z

2
2

(φ2, T )3 1 (2, 3) a1a2b
3
1x x2

1z
3
2

(φ3, f T )6 0 (3, 4) a3
2b0b

3
1 x3

1z
3
2w2

Examining their lead terms we see that these 15 covariants minimally generate the
ring C[R1 ⊕ R2 ⊕ R3]

SL2(C). Applying Roberts’ isomorphism and reducing modulo p
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yields 15 integral invariants in F[V3 ⊕ V4]
Cp . Here {x1, y1, z1} is a basis of V ∗3 and

{x2, y2, z2, w2} is a basis of V ∗4 . We use the graded reverse lexicographic order with
w2 > z2 > z1 > y2 > y1 > x2 > x1. The lead terms of these 15 Cp-invariants are given
in the final column of Table 10.2. We have integral invariants with lead terms x1, x2, y

2
1

and y2
2 . Since LM(Tr(wp−1

2 )) = z
p−1
2 we see by Corollary 9.16 that F[V3 ⊕ V4]

Cp is
generated by the 15 integral invariants, the two norms NCp (z1), N

Cp (w2) and the family
of transfers Tr(wd2

2 z
c2
2 y

b2
2 z

c1
1 y

b1
1 ) with 0 ≤ d2 ≤ p − 1, 0 ≤ c2 ≤ p − 2, 0 ≤ b2 ≤ 1,

0 ≤ c1 ≤ p − 1 and 0 ≤ b1 ≤ 2.

10.3. Vector invariants of V2

Here we take an arbitrary positive integer m and find generators for Fp[mV2]
Cp . Suppose

the dual of the ith copy of V2 is spanned by {xi, yi} where 1(yi) = xi and 1(xi) = 0. As
discussed in the introduction, this ring of invariants was first computed by Campbell and
Hughes [18]. Recently Campbell, Shank and Wehlau [19] gave a simplified proof. Here
we give a shorter proof. Importantly, the proof in [19] yields the stronger and computa-
tionally very useful result that the minimal generating set for Fp[mV2]

Cp is also a SAGBI
basis with respect to a certain term order.

The integral invariants Fp[mV2]
Cp lift via the Roberts’ isomorphism to invariants of

C[(m + 1)R1]
SL2(C). By the first fundamental theorem for SL2(C) (see [35, §11.1.2,

Theorem 1] for example), this ring is generated by
(
m+1

2

)
quadradic determinants Ui,j

with 0 ≤ i < j ≤ m. Applying Roberts’ isomorphism (and reducing modulo p) yields the
integral invariants u0j = xj for j = 1, . . . , m and ui,j = xiyj − xjyi for 1 ≤ i < j ≤ m.
Thus applying Corollary 9.16 we see that Fp[mV2]

Cp is generated by

• xj for j = 1, . . . , m;
• NCp (yi) = y

p
i − x

p−1
i yi for i = 1, . . . , m;

• ui,j = xiyj − xjyi for 1 ≤ i < j ≤ m;
• Tr(ya1

1 · · · y
am
m ) where 0 ≤ a1, . . . , am < p.

This set is not a minimal generating set. Shank and Wehlau [43] showed that it becomes
a minimal generating set if all the transfers of degree less than 2p − 1 are omitted.

10.4. Vector invariants of V3

Here we take an arbitrary positive integer m and find generators for Fp[mV3]
Cp . This is

the first computation of this ring of invariants. It is possible to adapt the technique used
in [19] to give a SAGBI basis for Fp[mV3]

Cp (cf. [46]).
Suppose the dual of the ith copy of V3 is spanned by {xi, yi, zi} where 1(zi) = yi ,

1(yi) = xi and 1(xi) = 0.
The integral invariants here lift via Roberts’ isomorphism to invariants of the ring

C[R1 ⊕mR2]
SL2(C), i.e., to covariants of mR2.

Generators for this ring were found classically. See for example [29, §139A]. This ring
is generated by the

(
m+1

2

)
quadradic determinants Ui,j = (φi, φj )1 with 0 ≤ i < j ≤ m
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together with
(
m+1

2

)
further quadratic polynomials Di,j = (φi, φj )2 with 1 ≤ i ≤ j ≤ m

and
(
m
3

)
determinant invariants Deti,j,k with 1 ≤ i < j < k ≤ m. Applying Roberts’

isomorphism we get

ψ(Ui,j ) = ui,j = xiyj − xjyi if i 6= 0,
ψ(U0,j ) = xj ,

ψ(Di,j ) = di,j = 2yiyj − 2zixj − 2xizj − xiyj − yixj ,
ψ(Deti,j,k) = deti,j,k = xiyjzk − xizjyk + zixjyk − yixjzk + yizjxk − ziyjxk.

Since LM(di,i) = y2
i we have the following theorem.

Theorem 10.5. Fp[mV3]
Cp is generated by

• NCp (zi) for i = 1, . . . , m;
• xi for i = 1, . . . , m;
• ui,j with 1 ≤ i < j ≤ m;
• di,j with 1 ≤ i ≤ j ≤ m;
• deti,j,k with 1 ≤ i < j < j ≤ m;
• Tr(

∏m
i=1 y

bi
i z

ci
i ) with 0 ≤ bi ≤ 1 and 0 ≤ ci ≤ p − 1.

10.6. Vector invariants of V4

Here we give generators for Fp[mV4]
Cp . This is the first computation of this ring of

invariants. Suppose the dual of the ith copy of V4 is spanned by {xi, yi, zi, wi} where
1(wi) = zi , 1(zi) = yi , 1(yi) = xi and 1(xi) = 0.

Here we need to know generators for C[R1⊕mR3]
SL2(C), the covariants ofmR3. The

answer for m = 2, taken from von Gall [24], is given in Table 10.3.
F. von Gall [27] found generating covariants for 3R3. However by results of Schwarz

[39, (1.22), (1.23)] (see also [47]) we may obtain all the generators of C[R1⊕mR3]
SL2(C)

from the generators of C[R1 ⊕ 2R3]
SL2(C) by the classical process of polarization. For a

description of polarization see for example [35, Chapter 3, §2] or [47, p. 5]. Grace and
Young [29, §257] also describe another procedure for finding generators for the covariants
of mR3.

It is straightforward to verify that polarization commutes with reduction modulo p.
This implies that all the integral invariants of Fp[mV4]

Cp are obtained from polarizing the
26 integral invariants in Fp[2V4]

Cp . In summary, if we let wi, zi, yi, xi denote a basis of
the dual of the ith copy of V4 where 1(wi) = zi , 1(zi) = yi , 1(yi) = xi , 1(xi) = 0 we
have the following.

Theorem 10.7. Fp[mV4]
Cp is generated by

• NCp (wi) for i = 1, . . . , m;
• integral invariants arising from the polarizations of the 26 sources of the SL2(C)-

invariants listed in Table 10.3.
• Tr(

∏m
i=1 y

bi
i z

ci
i w

di
i ) with 0 ≤ bi ≤ 1, 0 ≤ ci ≤ p − 1 and 0 ≤ di ≤ p − 1.



800 David L. Wehlau

Table 3. Covariants of R3 ⊕ R3

Covariant Order Bi-degree LM LM(Source)

f1 3 (1, 0) a0x
3 x1

f2 3 (0, 1) b0x
3 x2

(f1, f2)
3 0 (1, 1) a3b0 x1w2

H20 2 (2, 0) a2
1x

2 y2
1

H11 2 (0, 2) a2b0x
2 x1z2

H02 2 (1, 1) b2
1x

2 y2
2

U12 := (f1, f2)
1 4 (1, 1) a1b0x

4 x1y2

(f1, H20)
1 3 (3, 0) a3

1x
3 y3

1

(f2, H02)
1 3 (0, 3) b3

1x
3 y3

2

P := (f2, H20)
2 1 (2, 1) a2

2b0x y2
1z2

π := (f1, H02)
2 1 (1, 2) a2b

2
1x x1z

2
2

(f1, H02)
1 3 (1, 2) a1b

2
1x

3 x1z2y2

(f2, H20)
1 3 (2, 1) a1a2b0x

3 y2
1y2

(H20, H20)
2 0 (4, 0) a2

1a
2
2 z2

1y
2
1

(H02, H02)
2 0 (0, 4) b2

1b
2
2 z2

2y
2
2

(H20, H02)
2 0 (2, 2) a2

3b
2
0 x2

1w
2
2

(H20, H11)
2 0 (3, 1) a3

2b0 y3
1w2

(H02, H11)
2 0 (1, 3) a3b

3
1 x1z

3
2

(f1, P )
1 2 (3, 1) a1a

2
2b0x

2 y2
1x1w2

(f2, π)
1 2 (1, 3) a3b0b

2
1x

2 x1z
2
2y2

(H20, H02)
1 2 (2, 2) a1a2b

2
1x

2 y2
1z2y2

(H20, P )
1 1 (4, 1) a1a

3
2b0x y4

1w2

(H20, π)
1 1 (3, 2) a1a

2
2b

2
1x y3

1z
2
2

(H02, P )
1 1 (2, 3) a2

2b
3
1x y2

1z
2
2y2

(H02, π)
1 1 (1, 4) a3b

4
1x x1z

3
2y2

(P, π)1 0 (3, 3) a2
2a3b0b

2
1 y2

1x1w2z
2
2

Remark 10.8. Shank [40, Theorem 3.2] showed that LT(Tr(wp−1
i )) = z

p−1
i . Thus we

may use Tr(wp−1
i ) in the role of fi1 when we apply Corollary 9.16 and hence we have

di1 = p− 1 for all i = 1, . . . , m. This implies that we may restrict the values of the ci to
the range 0 ≤ ci ≤ p − 2 in the third family of generators in the above theorem.
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10.9. Other representations of Cp

There are a number of other SL2(C)-representations for which generators of the ring of
covariants are known and thus for which we may compute the ring of invariants for the
corresponding representation of Cp. Here we list some of these representations.

In 1869, Gordan [28] computed generators for the covariants of the quintic R5 and
the sextic R6. Grace and Young [29, §116, §134] list these generators. In the 1880s F. von
Gall gave generators for the covariants of the septic R7 [26] and the octic R8 [25]. Re-
cently L. Bedratyuk computed generators for the covariants of the octic [11] and minimal
generators for the covariants of the septic [10]. Thus we may list generators for the invari-
ants of V6, V7, V8 and V9. Although Sylvester [45] published a putative list of generators
for the covariants of the nonic R9, a recent computation of the invariants of the nonic by
A. Brouwer and M. Popoviciu [13] has shown Sylvester’s table to be incorrect. The same
two authors have also shown [14] that the ring of invariants of the decimic is generated by
106 invariants which they have constructed. Grace and Young [29, §138, §138A] give a
method for obtaining generating covariants for W ⊕R1 and W ⊕R2 from the generating
covariants of any representation W .
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