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Abstract. We prove a stability theorem for the elliptic Harnack inequality: if two weighted graphs
are equivalent, then the elliptic Harnack inequality holds for harmonic functions with respect to one
of the graphs if and only if it holds for harmonic functions with respect to the other graph. As part
of the proof, we give a characterization of the elliptic Harnack inequality.

1. Introduction

A justly famous theorem of Moser [12] says that if L is the uniformly elliptic operator in
divergence form given by

Lf (x) =
d∑

i,j=1

∂

∂xi

(
aij (·)

∂f

∂xj
(·)

)
(x)

acting on functions on Rd , where the aij are also bounded and measurable, then an elliptic
Harnack inequality (EHI) holds for functions that are non-negative and harmonic with
respect to L in a domain. This is one of the more important theorems in the study of
elliptic and parabolic partial differential equations, and is used, for example, in deriving
a priori regularity results for harmonic functions and for heat kernels.

The operator L is associated with the Dirichlet form

EL(f, f ) =
∫
Rd

d∑
i,j=1

aij (x)
∂f

∂xi
(x)

∂f

∂xj
(x) dx.

If the aij are bounded and the matrices a(x) = (aij (x)) are uniformly positive definite,
then EL is comparable to E1, where

E1(f, f ) =
∫
Rd
|∇f (x)|2 dx,

which is the Dirichlet form corresponding to the Laplacian. Thus one could rephrase
Moser’s theorem as saying that whenever the Dirichlet form corresponding to an opera-
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tor L is comparable to the Dirichlet form corresponding to the Laplacian, then the EHI
holds for non-negative functions that are harmonic with respect to L in a domain.

We can view Moser’s theorem as a stability theorem for the EHI. The purpose of this
paper is to generalize this stability property to very general state spaces. We show that
provided some mild regularity holds, then whenever two Dirichlet forms E1 and E2 are
comparable with corresponding operators L1 and L2, the EHI holds for non-negative har-
monic functions with respect to L1 if and only if the EHI holds for non-negative harmonic
functions with respect to L2.

We also provide a characterization of the EHI. Provided the regularity holds, this
characterization can be considered as necessary and sufficient conditions for the EHI.

It is interesting to compare the EHI with the parabolic Harnack inequality (PHI).
The PHI, first proved by Moser in [13] (see [7] for a very different proof), is a Harnack
inequality for non-negative solutions to

∂u

∂t
(x, t) = Lu(x, t)

in a domain. Necessary and sufficient conditions are known for the PHI in quite general
state spaces. If the state space is regular enough to have a large class of nice cut-off func-
tions, then Grigor’yan [9] and Saloff-Coste [14] independently proved that the PHI holds
if and only if both volume doubling and a Poincaré inequality hold. This was extended to
the case where such nice cut-off functions need not exist in [3] and [4]. The latter papers
allow state spaces that have fractal structure or that have large numbers of obstructions.

If the PHI holds, then the EHI holds; this is quite easy to see. The converse is false. In
[2] an example was given where EHI holds, but the PHI in the usual form does not (that
is, with scaling factor r2). Delmotte [6] constructed an example where the EHI holds, but
volume doubling does not, and consequently the PHI cannot hold in any form. See [10]
for more on the relationship between the EHI and PHI. It has been an open problem for
quite some time to find a characterization of the EHI comparable to the one for the PHI.

In this paper we primarily look at infinite graphs rather than continuous state spaces.
All the key ideas are present in the infinite graph case and we avoid some unpleasant
technicalities. It is straightforward to extend our results to metric measure Dirichlet spaces
in a manner very similar to how [4] extended [3]: see Section 7.

We consider infinite graphs where between any two adjacent vertices x and y there is
given a conductance Cxy . If x and y are adjacent, we write x ∼ y. Setting

µx =
∑
z∼x

Cxz,

we can construct a continuous time nearest neighbor Markov chain X with the graph as
the state space. When X is at x, it waits an independent exponential length of time with
parameter µx and then jumps to an adjacent vertex. It chooses a neighboring vertex y
with probability Cxy/µx . We write L for the infinitesimal generator of X. A function h is
harmonic with respect to L in a domain D if

h(x) =
∑
y∼x

h(y)Cxy, x ∈ D.
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Let B(x, r) denote the ball of radius r about x. The elliptic Harnack inequality states
that there exists a constant c not depending on x0 or r such that if h is non-negative and
harmonic in B(x0, 2r), then

h(x) ≤ ch(y), x, y ∈ B(x0, r).

We do require some mild regularity. For example, one of our assumptions is that
volume doubling holds. Whereas the PHI implies volume doubling, the example of Del-
motte [6] shows that the EHI can hold even though volume doubling does not. Since every
known approach to proving an EHI uses volume doubling in an essential way, the prob-
lem of finding necessary and sufficient conditions for the EHI to hold without assuming
any regularity looks very hard.

For most of this paper we consider the case where the process X is transient, that is,
d(Xt , x) → ∞ almost surely as t → ∞ for every point x, where d(·, ·) is the graph
distance. This, for example, allows us to define capacities. The general case, which is
slightly more complicated to state, is given in Section 7.

Let V (x, r) be the volume of B(x, r) with respect to the measure µ(A) =
∑
x∈A µx .

Let C(x, r) be the capacity of B(x, r) (a definition is given in the next section). Finally
define E(x, r) = V (x, r)/C(x, r). It will turn out that E(x, r) is comparable to the
expected time that the process spends in B(x, r) when started at x.

The novel feature of this paper is to introduce the adjusted Poincaré inequality (API):∑
y∈B(x,r)

|f (y)− fB(x,r)|
2 µy ≤ cE(x, r)EB(x,c′r)(f, f ).

Here c′ > 1, fA is the average value of f on the set A with respect to the measure µ, and
EA is the Dirichlet form restricted to the set A. Note that in the usual Poincaré inequality,
E(x, r) is replaced by rβ for β equal to some constant, most often, β = 2.

We will also use another inequality, which we call the cut-off inequality (COI). This
is closely related to the cut-off Sobolev inequality of [3].

Our first main theorem is that if transience and regularity hold, then the EHI holds if
and only if both the COI and API hold. This immediately implies our second theorem,
the stability result, which says that if transience and regularity hold and the EHI holds for
a weighted graph, then the EHI holds for every equivalent weighted graph. These results
are new even when sufficiently many nice cut-off functions exist.

In the next section we give a precise statement of our results. In Section 3 we intro-
duce the cable process and also prepare some preliminary results. Section 4 proves some
estimates that can be obtained from the EHI. We prove that the EHI implies the API in
Section 5, and prove our main theorems in Section 6. In Section 7 we consider the general
case (where X is not necessarily transient). In that section we also consider extensions to
the situation where the state space is a metric measure space rather than a graph.

2. Statement of results

We use the letter c with subscripts to denote finite positive constants whose exact values
are unimportant and may change from place to place.
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Let G be an infinite connected graph consisting of vertices V together with a collection
of edges. We write x ∼ y if x and y are vertices connected by an edge. We suppose
each vertex belongs to at most finitely many edges. For each pair x, y ∈ V we define a
conductance Cxy ≥ 0 such that Cxy = Cyx and also Cxy = 0 unless x ∼ y. The graph G
together with the conductances {Cxy} is called a weighted graph.

Let µx =
∑
y Cxy , and define a measure µ on V by µ(A) =

∑
x∈A µx . We let d(x, y)

be the usual graph distance on G and set

B(x, r) = {y : d(x, y) < r}, V (x, y) = µ(B(x, r)).

We assume throughout this paper that there exists a constant c1 such that

0 < µx ≤ c1, x ∈ V. (2.1)

For f ∈ L2(V, µ), define

EG(f, f ) = 1
2

∑
x∼y

[f (y)− f (x)]2Cxy

and
FG = {f ∈ L

2(V, µ) : EG(f, f ) <∞}.
It is well known (see [8]) that (EG,FG) is a regular Dirichlet form associated with a
strong Markov process (Xt ,Px). The process X is a continuous time nearest neighbor
Markov chain on V which can be described as follows. When X is at a vertex x, it waits
there an independent exponential length of time with parameter µx and then jumps to
a neighboring vertex. It chooses the neighboring vertex y to jump to with probability
Cxy/µx . The infinitesimal generator of X is given by

LGf (x) =
∑
x∼y

[f (y)− f (x)]Cxy .

Except for Section 7 we make a transience assumption.

Assumption 2.1. (EG,FG) is transient in the sense of [8, Sect. 1.5].

An equivalent formulation in our context is that

lim
t→∞

d(Xt , x) = ∞

with probability one for each starting point and each x ∈ V .
Let

C(x, r) = inf{EG(f, f ) : f ∈ FG, f |B(x,r) = 1}

be the capacity of B(x, r). This exists and is finite because (EG,FG) is transient; see [8,
Sect. 2.1]. Define

E(x, r) = V (x, r)/C(x, r). (2.2)

We will see later that E(x, r) is comparable to the expected occupation time of B(x, r)
by Xt when started at x.

Our second main assumption concerns regularity.
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Assumption 2.2. There exist c1 > 0 and ρ ∈ (0, 1) such that the following three in-
equalities hold:

Volume doubling: V (x, 2r) ≤ c1V (x, r), x ∈ V, r ≥ 1, (2.3)
Capacity growth: C(x, r) ≤ ρC(x, 2r), x ∈ V, r ≥ 1, (2.4)
Expected occupation time growth: E(x, r) ≤ ρE(x, 2r), x ∈ V, r ≥ 1. (2.5)

Regarding our assumptions, we make these remarks.

Remark 2.3. See Section 7 for a substitute for Assumption 2.2 when transience is no
longer assumed.

Remark 2.4. We will see in the next section that Assumption 2.2 implies E(x, r) and
E(y, r) are comparable if d(x, y) ≈ r , but gives no useful bounds when d(x, y)� r .

Remark 2.5. We will see in Proposition 4.2 that E(x, r) is comparable to the expected
amount of time spent in the ball B(x, r) when the process is started at x. The expected
occupation time growth condition essentially says that of the time that the process spends
in B(x, 2r), not all of the time is spent in B(x, r) but some percentage of the time is spent
in B(x, 2r)− B(x, r) as well.

Given f ∈ FG and A ⊂ V , define

EG,A = 1
2

∑
x,y∈A

[f (y)− f (x)]2Cxy, (2.6)

the Dirichlet form restricted to A. Set

fA =
1

µ(A)

∑
x∈A

f (x)µx .

We say the adjusted Poincaré inequality (API) holds for G if there exist κ1 > 0 and
κ2 > 1 such that ∑

y∈B(x,r)

[f (y)− fB(x,r)]
2µy ≤ κ1E(x, r)EG,B(x,κ2r)(f, f ) (2.7)

whenever f ∈ L2(V, µ), x ∈ V , and r ≥ 1.

Remark 2.6. If V = Zd with µ being counting measure and d ≥ 3, then V (x, r) ≈ rd ,
C(x, r) ≈ rd−2, andE(x, r) ≈ r2, where “≈” means the ratio of the two sides is bounded
above and below by positive constants. In this case we get the usual Poincaré inequality.
For a large class of nested fractals, including the Sierpiński gasket and the Sierpiński
carpet (see, e.g., [1] and [2]), V (x, r) ≈ rdf , C(x, r) ≈ rdf−dw , and E(x, r) ≈ rdw ,
where df and dw are the fractal and walk dimensions, resp.

We say the cut-off inequality (COI) holds for G if there exist κ3, κ4, and θ such that for
each x0 ∈ V and R ≥ 1 there exists a function ϕ = ϕx0,R with the following properties:
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(1) ϕ(x) ≥ 1 for x ∈ B(x0, R/2) and ϕ(x) = 0 for x /∈ B(x0, R).
(2) For each x, y ∈ V ,

|ϕ(x)− ϕ(y)| ≤ κ3(d(x, y)/R)
θ .

(3) If 1 ≤ s ≤ R and z ∈ V , then∑
x∈B(z,s)

f (x)2
∑
y

|ϕ(y)− ϕ(x)|2Cxy

≤ κ4(s/R)
2θ
(
EG,B(z,2s)(f, f )+ E(z, s)−1

∑
x∈B(z,2s)

f (x)2µx

)
(2.8)

for all f ∈ FG .

Remark 2.7. The COI is very similar to the CS inequality of [3], where an extensive
discussion can be found. See [4] for examples of how the COI can be used to prove
Harnack inequalities for graphs that are in rough isometry to simpler graphs. Further
research on finding conditions equivalent to COI would be highly desirable.

We say a function h on a subset D of V is harmonic if

Lh(x) = 0, x ∈ D.

This is equivalent to
h(x) =

∑
y

h(y)Cxy, x ∈ D.

The elliptic Harnack inequality (EHI) holds for the weighted graph G with conductances
{Cxy} if there exists c1 such that whenever x0 ∈ V , r ≥ 1, and h is non-negative and
harmonic in B(x0, 2r), then

h(x) ≤ c1h(y), x, y ∈ B(x0, r). (2.9)

Our first main theorem is the following.

Theorem 2.8. Suppose (2.1) and Assumptions 2.1 and 2.2 hold.

(a) If the EHI holds for G, then both the API and COI hold for G.
(b) If the API and COI hold for G, then the EHI holds for G.

Suppose we have another set of conductances {C′xy} on the graph G. We say (G, Cxy) and
(G, C′xy) are equivalent weighted graphs if there exists c1 < 1 such that

c1Cxy ≤ C
′
xy ≤ c

−1
1 Cxy, x, y ∈ V.

Our second main theorem is the stability theorem.

Theorem 2.9. Suppose (G, Cxy) and (G, C′xy) are equivalent weighted graphs. Suppose
(2.1) and Assumptions 2.1 and 2.2 hold for (G, Cxy) and for (G, C′xy). If the EHI holds
for (G, Cxy), then the EHI holds for (G, C′xy).

See Section 7 for a statement of these theorems in the context of metric measure spaces
or when Assumption 2.1 does not hold.
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3. Preliminaries

We introduce the cable process. Let C consist of V together with copies of (0, 1), one
for each edge in G. If x ∼ y, we write (x, y) for the corresponding copy, and we call
(x, y) the cable connecting x and y. We identify x with 0 and y with 1 on the cable
connecting x and y. We define µ(dz) by setting it equal to Cxy dz on the cable connecting
x and y, where dz is linear Lebesgue measure. If x and y are two points on the same
cable or one lies on a cable and the other is an endpoint of that cable, then we define
the distance between x and y to be |x − y|. If x and y are on different cables, we use
min{|x − zx | + d(zx, zy) + |zy − y|} for the distance, where the minimum is taken over
all vertices zx, zy ∈ V such that x is on a cable with one end at zx and y is on a cable with
one end at zy . We continue to use the notation d(x, y) for the distance and set

B ′(x, r) = {y ∈ C : d(x, y) < r}, V ′(x, r) = µ(B ′(x, r)).

The cable process is the process that behaves like one-dimensional Brownian motion
sped up deterministically by the factor Cxy on (x, y) and when at a vertex x, picks the
cable along which the next excursion takes place according to the probabilities Cxy/µx .
More precisely, if x ∈ C − V and x lies on the cable (y0, y1), let

∇f (x) = lim
z→x

f (z)− f (x)

d(y0, z)− d(y0, x)
.

If x ∈ V and x ∼ y, let

∇yf (x) = lim
z→x, z∈(x,y)

f (z)− f (x)

d(x, z)
.

Since we only work with |∇f | and |∇yf |, we do not need to be concerned with whether
we use y0 or y1 in the definition of ∇f (x). Let

EC(f, f ) = 1
2

∫
C−V
|∇f (z)|2 µ(dz),

let F0
C be the collection of continuous functions with compact support such that ∇f (z)

exists at every point of C − V , ∇yf (x) exists at every x ∈ V for which y ∼ x, and |∇f |
is bounded. For the domain of EC , we use FC , which is the completion of F0

C with respect
to the norm (∫

C
|f (z)|2 µ(dz)

)1/2

+ EC(f, f )1/2.

The cable process is the symmetric continuous Markov process (Yt ,Px) corresponding
to (EC,FC). Typically when constructing a process via Dirichlet forms, there is a null set
involved, and one has to talk about properties holding quasi-everywhere. However, in our
case Px(Yt ever hits y) > 0 for each x and y, and no null set is necessary.

Let LC be the infinitesimal generator of Y . See [3] for a detailed description of LC
and its domain.
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Proposition 3.1. Suppose (2.1) and Assumptions 2.1 and 2.2 hold. Then (EC,FC) is tran-
sient. Let

C′(x, r) = inf{EC(f, f ) : f |B ′(x,r) = 1, f ∈ FC}

be the capacity of B ′(x, r) and let

E′(x, r) =
V ′(x, r)

C′(x, r)
.

Then there exist c1 > 0 and ρ ∈ (0, 1) such that

V ′(x, 2r) ≤ c1V
′(x, r), (3.1)

C′(x, r) ≤ ρC′(x, 2r), (3.2)
E′(x, r) ≤ ρE′(x, 2r) (3.3)

whenever x ∈ C and r > 0. Moreover there exists a positive integer M not depending on
x or r such that the boundary of B ′(x, r) can be covered by at most M balls of radius
r/8.

Proof. The assertions (3.1), (3.2), and (3.3) follow easily by using the techniques of [3,
Section 3] and we leave the details to the reader. For the assertion about M , see [11,
Lemma 3.1]. ut

Given f ∈ FC and A ⊂ C, define

EC,A = 1
2

∫
A−V
|∇f (x)|2 µ(dx). (3.4)

and set

fA =
1

µ(A)

∫
A

f (x) µ(dx).

We say the adjusted Poincaré inequality (API) holds for C if there exist κ1 > 0 and
κ2 > 1 such that∫

B ′(x,r)

[f (y)− fB ′(x,r)]
2 µ(dy) ≤ κ1E

′(x, r)EC,B ′(x,κ2r)(f, f ) (3.5)

whenever f ∈ FC , x ∈ C.
We say the cut-off inequality (COI) holds for C if there exist κ3, κ4, and θ such that for

each x0 ∈ C and R > 0 there exists a function ϕ = ϕx0,R with the following properties.

(1) ϕ(x) ≥ 1 for x ∈ B ′(x0, R/2) and ϕ(x) = 0 for x /∈ B ′(x0, R).
(2) For each x, y ∈ C,

|ϕ(x)− ϕ(y)| ≤ κ3(d(x, y)/R)
θ .
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(3) If 0 ≤ s ≤ R and z ∈ C, then∫
B ′(z,s)

f (x)2|∇ϕ(x)|2 µ(dx)

≤ κ4(s/R)
2θ
(
EC,B ′(z,2s)(f, f )+ E′(z, s)−1

∫
B ′(z,2s)

f (x)2 µ(dx)

)
(3.6)

for all f ∈ FC .

We say a function h in the domain of LC is harmonic on a subset D of C if

LCh(x) = 0, x ∈ D.

The elliptic Harnack inequality (EHI) holds for C if there exists c1 such that whenever
x0 ∈ C, r > 0, and h is non-negative and harmonic in B ′(x0, 2r), then

h(x) ≤ c1h(y), x, y ∈ B ′(x0, r).

Proposition 3.2. (a) The COI holds for C if and only the COI holds for G.
(b) The API holds for C if and only the API holds for G.
(c) The EHI holds for C if and only the EHI holds for G.

Proof. The proof of (a) is almost identical to that of Propositions 3.3 and 3.4 of [3]. The
same techniques can be used to prove (b). Finally, (c) is [3, Cor. 2.5]. ut

The main work in this paper is to prove the following.

Theorem 3.3. Suppose (2.1) and Assumptions 2.1 and 2.2 hold.

(a) If the EHI holds for C, then both the API and COI hold for C.
(b) If both the API and COI hold for C, then the EHI holds for C.

It will be clear from the context whether we are working with C or G, so henceforth we
will drop the primes and write B(x, r), V (x, r), C(x, r), and E(x, r) in place of B ′(x, r),
V ′(x, r), C′(x, r), and E′(x, r), resp. We write ∂B(x, r) for the boundary of B(x, r).

Lemma 3.4. There exist c1 > 0 and ρ′ ∈ (0, 1) such that volume growth holds:

V (x, r) ≤ ρ′V (x, 2r), x ∈ C, r > 0; (3.7)

capacity doubling holds:

C(x, 2r) ≤ c1C(x, r), x ∈ C, r > 0; (3.8)

and expected occupation time doubling holds:

E(x, 2r) ≤ c1E(x, r), x ∈ C, r > 0. (3.9)
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Proof. Multiplying (3.2) and (3.3) together gives volume growth. Expected occupation
time growth implies

C(x, 2r) ≤ ρC(x, r)
V (x, 2r)
V (x, r)

,

and an application of volume doubling implies capacity doubling. Finally, sinceC(x, r) ≤
C(x, 2r), volume doubling implies

V (x, 2r)
C(x, 2r)

≤ c2
V (x, r)

C(x, r)
,

which is expected occupation time doubling. ut

Lemma 3.5. Let a > 0. There exists c1 depending on a but not on r , x, or y such that if
d(x, y) < ar , then

V (x, r) ≤ c1V (y, r), C(x, r) ≤ c1C(y, r), E(x, r) ≤ c1E(y, r).

Proof. Since B(x, r) ⊂ B(y, (1+ a)r), volume doubling tells us

V (x, r) ≤ V (y, (1+ a)r) ≤ c2V (y, r),

and similarly for V replaced by C. By symmetry, C(y, r) ≤ c2C(x, r), so taking the
ratio, E(x, r) ≤ c2

2E(y, r). ut

In Proposition 3.1 we may without loss of generality assume that the center of each of
theM balls is within r/8 of ∂B(x, r). If we let B1, . . . , BM be balls with the same centers
but radii equal to r/4, then for each j ≥ 2, there exists i < j and a point yj such that
yj ∈ Bi ∩ Bj . If h is non-negative and harmonic in B(x, 2r) − B(x, r/2) and the EHI
holds, then for w ∈ Bi and z ∈ Bj ,

h(w) ≤ c1h(yj ) ≤ c
2
1h(z).

Using this inequality at most M times, where M is given in Proposition 3.1, we find that
there is a constant c2 such that if y, z ∈ ∂B(x, r), then

h(y) ≤ c2h(z). (3.10)

Let G(x, y) be the Green function for the process Yt . The existence of G is an easy
consequence of Assumption 2.1 and the structure of C. For x fixed, h(z) = G(x, z) is
a non-negative function that is harmonic in B(x, 2r) − B(x, r/2) and so we may apply
(3.10) to G(x, ·) and obtain

G(x, y) ≤ c2G(x, z), y, z ∈ ∂B(x0, r). (3.11)

When the EHI holds, harmonic functions are Hölder continuous (see [12]), and so
there exist c3 and β such that if h is harmonic in B(x0, 2r), then

|h(x)− h(y)| ≤ c3

(
d(x, y)

r

)β(
sup

B(x0,2r)
|h|
)
, x, y ∈ B(x0, r). (3.12)
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4. Some consequences of the EHI

In this section we assume the EHI holds for a process Y associated with a Dirichlet form
(E,F).

The first estimate is standard. Let G(x, y) be the Green function for Y .

Proposition 4.1. There exist constants c1 and c2 such that if r = d(x, y), then

c1/C(x, r) ≤ G(x, y) ≤ c2/C(x, r), x ∈ C, r > 0.

Proof. Let x and y be fixed and let r = d(x, y). Let ν be the capacitary measure for
B(x, r). Then we know ν is supported on ∂B(x, r), its total mass is C(x, r), and Gν
equals 1 on B(x, r). (See [5, Section II.5], for example. The proofs there are for Brownian
motion but are valid for any symmetric continuous strong Markov process.) Using (3.11),
we may write

1 = Gν(x) =
∫
∂B(x,r)

G(x, z) ν(dz) ≥ c3G(x, y)

∫
∂B(x,r)

ν(dz) = c3G(x, y)C(x, r).

Rearranging gives the right hand inequality. The left hand inequality is proved in the same
way, replacing “≥” by “≤.” ut

Next we obtain an estimate on the time spent in B(x, r).

Proposition 4.2. There exist constants c1 and c2 such that

c1E(x, r) ≤

∫
B(x,r)

G(x, z) µ(dz) ≤ c2E(x, r).

Proof. Let ρ′ be the constant in Lemma 3.4. Applying (3.11), Proposition 4.1, and (3.7),
we obtain∫
B(x,r)

G(x, z) µ(dz) ≥

∫
B(x,r)−B(x,r/2)

G(x, z) µ(dz)

≥
c3

C(x, r)
(V (x, r)− V (x, r/2)) ≥

c3(1− ρ′)
C(x, r)

V (x, r) = c4E(x, r).

This gives the left hand inequality.
Similarly, we have∫

B(x,r)−B(x,r/2)
G(x, z) µ(dz) ≤ c5

V (x, r)− V (x, r/2)
C(x, r)

≤ c5E(x, r)

for each r > 0. We apply this with r replaced by 2−kr for k = 0, 1, . . . , and sum. Using
the fact that Y spends 0 time at x (locally Y behaves like a deterministic time change of
Brownian motion), we obtain∫

B(x,r)

G(x, z) µ(dz) ≤ c5

∞∑
k=0

E(x, 2−kr). (4.1)
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Using (3.3) repeatedly, we have E(x, 2−kr) ≤ ρkE(x, r), so∫
B(x,r)

G(x, z) µ(dz) ≤ c5E(x, r)

∞∑
k=0

ρk,

which implies the right hand inequality. ut

5. The adjusted Poincaré inequality

Let GD denote the Green function for Y killed on exiting a domain D.

Proposition 5.1. Suppose (2.1), Assumptions 2.1 and 2.2, and the EHI hold. There exist
k0 ≥ 2 and c1 not depending on x0 or r such that if r > 0 and x, y ∈ B(x0, r), then

GB(x0,2k0 r)(x, y) ≥ c1/C(x0, r).

Proof. Let s = d(x, y) and note B(x, s) ⊂ B(x0, 4r). By Proposition 4.1 and (3.8), there
exists a constant c2 such that

G(x, y) ≥ c2/C(x, s) ≥ c2/C(x0, 4r) ≥ c3/C(x0, r). (5.1)

By the strong Markov property,

GD(x, y) = G(x, y)− ExG(YτD , y), (5.2)

where τD is the first time that Y exits D. By (3.11), if D = B(x0, 2kr) for some k ≥ 1
and w ∈ ∂D, then

G(w, y) ≤ c4G(w, x0) ≤ c5/C(x0, 2kr) ≤ c5ρ
k/C(x0, r), (5.3)

where ρ is the constant in Proposition 3.1. If we choose k0 ≥ 2 large enough so that
c5ρ

k0 ≤ c3/2 and combine (5.1)–(5.3), we obtain our proposition with c1 = c3/2. ut

We write (GD)2f for GD(GDf ).

Proposition 5.2. Suppose (2.1), Assumptions 2.1 and 2.2, and the EHI hold. Let k0 be
defined as in Proposition 5.1 and let D = B(x0, 2k0r). There exists c1 not depending on
x0 or r such that

(GD)
2(x, y) ≤ c1E(x0, r)GD(x, y) for all x, y ∈ B(x0, r).

Proof. Write

(GD)
2(x, y) =

∫
GD(x, z)GD(z, y) µ(dz).

We let s = d(x, y) (so that s < 2r) and break the integral on the right into integrals over
B(x, s/2) and over B(x, s/2)c.

For z ∈ B(x, s/2), we have d(z, y) ≥ s/2, and by (3.11),

GD(z, y) ≤ c2GD(x, y).
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Since D ⊂ B(x, 2k0+1r), using Proposition 4.2, (3.9), and Lemma 3.5 yields∫
B(x,s/2)

GD(x, z)GD(z, y) µ(dz) ≤ c2GD(x, y)

∫
D

GD(x, z) µ(dz)

≤ c2GD(x, y)

∫
D

G(x, z) µ(dz) ≤ c3GD(x, y)

∫
B(x,2k0+1r)

G(x, z) µ(dz)

≤ c4GD(x, y)E(x, 2k0+1r) ≤ c5GD(x, y)E(x, r) ≤ c6GD(x, y)E(x0, r).

For z ∈ B(x, s/2)c, we have d(z, x) ≥ s/2, and by (3.11),

GD(x, z) ≤ c2GD(x, y).

As above, using that GD is zero on Dc, we obtain∫
B(x,s/2)c

GD(x, z)GD(z, y) µ(dz) ≤ c2GD(x, y)

∫
D

GD(y, z) µ(dz)

≤ c2GD(x, y)

∫
D

G(y, z) µ(dz) ≤ c2GD(x, y)

∫
B(y,2k0+1r)

G(y, z) µ(dz)

≤ c7GD(x, y)E(y, 2k0+1r) ≤ c8GD(x, y)E(y, r) ≤ c9GD(x, y)E(x0, r).

In the third inequality we used the fact that D ⊂ B(y, 2k0+1r), and we used Lemma
3.5 for the last inequality. Adding the integrals over B(x, s/2) and B(x, s/2)c yields our
result. ut

Let Gα be the α-resolvent for Y , and GαD the α-resolvent for the process killed on exit-
ing D.

Proposition 5.3. Suppose (2.1), Assumptions 2.1 and 2.2, and the EHI hold. Let D be
as in Proposition 5.2. There exist c1, c2 not depending on x0 or r such that if α =
c1/E(x0, r) and x, y ∈ B(x0, r), then

GαD(x, y) ≥ c2/C(x0, r).

Proof. By the resolvent equation, GαD = GD − αGDG
α
D , and so

GαD(x, y) = GD(x, y)− αGDG
α
D(x, y) ≥ GD(x, y)− α(GD)

2(x, y).

From Proposition 5.2 we know

(GD)
2(x, y) ≤ c3E(x0, r)GD(x, y)

for x, y ∈ B(x0, r). By Proposition 5.1 we also know GD(x, y) ≥ c4/C(x0, r). Then

GαD(x, y) ≥ GD(x, y)(1− αc3E(x0, r)) ≥
c4

C(x0, r)
(1− αc3E(x0, r)).

If we take c1 = (2c3)
−1, then since α = c1/E(x0, r), we have 1 − αc3E(x0, r) ≥ 1/2,

and our result follows. ut
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Given a ball D, we let Y r be the process Y reflected on the boundary of D. Since Y
behaves locally like a Brownian motion, it is clear how Y r can be described probabilis-
tically. Using a more analytic approach, Y r is the continuous symmetric strong Markov
process corresponding to ED with domain {f ∈ F :

∫
D
(|f |2 + |∇f |2) <∞}.

Theorem 5.4. Suppose (2.1) and Assumptions 2.1 and 2.2 hold. If the EHI holds for C,
then the API holds for C.

Proof. Fix x0 and r > 0. Let B = B(x0, r) and D = B(x0, 2k0r), where k0 is as in
Proposition 5.1. Let α be as in Proposition 5.3. Let Y r be the process Y reflected on the
boundary of D, and let Gαr be the α-resolvent for Y r . Fix f ∈ L2(D) ∩ F . Take x ∈ B.
Since the quantity

∫
B
(f (y)− c)2 µ(dy) takes its minimum when c = fB , it follows that∫

B

(f (y)− fB)
2 µ(dy) ≤

∫
B

(f (y)− αGαr f (x))
2 µ(dy). (5.4)

For x, y ∈ B, we have

αGαr (x, y) ≥ αG
α
D(x, y) ≥

c1

E(x0, r)C(x0, r)
≥

c1

V (x0, r)
.

For any function h,

αGαr h(x) =

∫
D

h(y)αGαr (x, y) µ(dy) ≥
c1

V (x0, r)

∫
B

h(y)µ(dy).

Using (5.4) and letting h(y) = (f (y)− αGαr f (x))
2, we obtain∫

B

(f (y)− fB)
2 µ(dy) ≤ c2V (x0, r)[αG

α
r ((f (·)− αG

α
r f (x))

2)(x)]

= c2V (x0, r)[αG
α
r (f

2)(x)− (αGαr f (x))
2
]. (5.5)

The right hand side is non-negative. Integrating both sides over the set D with respect to
the measure µ(dx), multiplying by µ(B)−1, and using volume doubling gives∫
B

(f (y)−fB)
2 µ(dy) ≤ c2

[∫
D

αGαr (f )
2(x) µ(dx)−

∫
D

(αGαr f (x))
2 µ(dx)

]
. (5.6)

If 〈·, ·〉 is the inner product with respect to L2(D), then using the symmetry of the resol-
vent, the first integral inside the brackets on the last line is

〈αGαr (f
2), 1〉 = 〈f 2, αGαr 1〉 = 〈f 2, 1〉 = ‖f ‖22,

where we write ‖ · ‖2 for the L2 norm onD. The second integral on the right hand side of
(5.6) is ‖αGαr f ‖

2
2, and we thus have∫

B

(f (y)− fB)
2 µ(dy) ≤ c2[ ‖f ‖

2
2 − ‖αG

α
r f ‖

2
2]. (5.7)
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We now use the spectral theorem for L2(D). Let {Eλ} be the spectral resolution of the
operator Lr , the infinitesimal generator of Y r . Each Eλ is a projection, and we can write

f =

∫
∞

0
dEλf, ‖f ‖22 =

∫
∞

0
d〈Eλf,Eλf 〉.

For f ∈ F , we have

ED(f, f ) =
∫
∞

0
λ d〈Eλf,Eλf 〉.

We also have

αGαr f =

∫
∞

0

α

α + λ
dEλf, ‖αGαr f ‖

2
2 =

∫
∞

0

(
α

α + λ

)2

d〈Eλf,Eλf 〉.

Since

1−
(

α

α + λ

)2

=
2λ(α + λ/2)
(α + λ)2

≤
2λ
α
,

we have

‖f ‖22 − ‖αG
α
r f ‖

2
2 =

∫
∞

0

(
1−

(
α

α + λ

)2)
d〈Eλf,Eλf 〉

≤ c2
2
α

∫
∞

0
λ d〈Eλf,Eλf 〉 = c3E(x0, r)ED(f, f ). (5.8)

Combining (5.7) and (5.8) proves the API. ut

6. Proofs of main theorems

Throughout we assume (2.1) and Assumptions 2.1 and 2.2. We continue the cable system
context unless stated otherwise.

We need two propositions which will be used to show that the COI and API imply the
EHI.

Fix x0 ∈ C, let R ≥ 1, and let ϕ be the cut-off function given by the COI. Let

γ = 1+ E(x0, R)|∇ϕ|
2.

Proposition 6.1. Suppose the API holds for C with constants κ1 and κ2 and also the
COI holds. Let x ∈ B(x0, R), let I = B(x, s) with s ≤ R, and let I ∗ = B(x, 2s),
I ∗∗ = B(x, 2κ2s). Suppose f and its gradient are square integrable over I ∗∗ and let
fA = µ(A)

−1 ∫
A
f dµ. Then∫

I

f 2γ ≤ c1(s/R)
2θE(x0, R)

(∫
I∗
|∇f |2 + E(x, s)−1

∫
I∗
f 2
)

(6.1)

and ∫
I

(f − fI∗)
2γ ≤ c2(s/R)

2θE(x0, R)

∫
I∗∗
|∇f |2. (6.2)
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If J ⊂ I , then

∫
J

f 2γ ≤ c3
(
E(x0, R)(s/R)

2θ ) ∫
I∗∗
|∇f |2 + µ(J )−1

(∫
J

|f |γ

)2

.

Finally, ∫
B(x0,R)

γ ≤ c4V (x0, R).

Proof. The condition (3.3) implies that E(x,R)/E(x, s) ≥ c5(R/s)
β for some β > 0

and c5 > 0 not depending on x,R, or s. Without loss of generality we may assume
2θ < β. Then

(s/R)2θE(x,R)E(x, s)−1
≥ c6

since s ≤ R. Using Lemma 3.5, E(x0, R) ≥ c7E(x,R) and hence∫
I

f 2γ =

∫
I

f 2
+ E(x0, R)

∫
I

f 2
|∇ϕ|2

≤

∫
I

f 2
+ c8(s/R)

2θE(x0, R)

∫
I∗
|∇f |2 + c8(s/R)

2θ E(x0, R)

E(x, s)

∫
I∗
f 2

≤ c9(s/R)
2θE(x0, R)

∫
I∗
|∇f |2 + c9(s/R)

2θ E(x0, R)

E(x, s)

∫
I∗
f 2.

Applying this to f − fI∗ , we have∫
I

(f − fI∗)
2γ ≤ c10(s/R)

2θE(x0, R)

(∫
I∗
|∇f |2 + E(x, s)−1

∫
I∗
(f − fI∗)

2
)
.

Applying the API to B(x, 2s) yields

E(x, s)−1
∫
I∗
(f − fI∗)

2
≤ c11

∫
I∗∗
|∇f |2.

Combining gives (6.2).
The remainder of the proof is exactly as in [3, Prop. 5.2]. ut

Here is a substitute for [3, Prop. 5.7].

Proposition 6.2. Suppose the API holds for C with constants κ1 and κ2 and also the COI
holds. Let S > 0, let u be positive and harmonic in B(x0, 2κ2S) and let w = log u. Then∫

B(x0,2S)
|∇w|2 dµ ≤ c1C(x0, S).
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Proof. Let ϕ1 be the cut-off function for B(x0, 2κ2S) given by the COI. Exactly as in the
proof of [3, Prop. 5.7] we have∫

B(x0,2S)
|∇w|2 dµ ≤

∫
ϕ2

1 |∇w|
2 dµ ≤ c2

∫
|∇ϕ1|

2 dµ.

Applying the COI in B(x0, 2κ2S) with f = 1 and s = 2κ2S yields∫
|∇ϕ1|

2 dµ ≤ c3E(x0, s)
−1
∫
B(x0,2s)

dµ = c3V (x0, 4κ2S)/E(x0, 2κ2S).

Using (3.1) and (3.8) yields our result. ut

Combining with (6.2) tells us that∫
B(x0,R)

|w − wB(x0,R)|
2γ ≤ c4E(x0, R)C(x0, R) = c4V (x0, R). (6.3)

Proof of Theorem 3.3. We proved that the EHI for C implies the API for C in Theorem 5.4.
That the EHI for C implies the COI for C is proved in almost the same way as in

[3, Sect. 4]. We replace the use of ψ(r) there by E(x0, r) and also replace appearances
of rβ by E(x0, r). The analogue of Lemma 4.7(a) of [3] follows from Proposition 4.1.
To prove the analogue of [3, Lemma 4.7(b)], we use Proposition 5.1 and then follow the
proof given in [3].

Away from the diagonal, the Green function is Hölder continuous in each variable by
(3.12). The FVG condition of [3] is implied by our current volume growth condition.

With Propositions 6.1 and 6.2 in place of Propositions 5.2 and 5.7 of [3], we can
follow the argument of [3, Section 5] to show that the API and COI together imply the
EHI. ut

Proof of Theorem 2.8. If (2.1), Assumptions 2.1 and 2.2, and the EHI hold for (G, Cxy),
Propositions 3.1 and 3.2 tell us that the corresponding facts hold for the cable system C.
By Theorem 3.3, the API and COI hold for C, and by Proposition 3.2 again, the API and
COI hold for the weighted graph. This proves (a). The proof of (b) is similar. ut

Proof of Theorem 2.9. Suppose (2.1) and Assumptions 2.1 and 2.2 hold for (G, Cxy) and
for (G, C′xy). Suppose the EHI holds for (G, Cxy). Then by Theorem 2.8 the API and COI
hold for (G, Cxy). Since (G, Cxy) and (G, C′xy) are equivalent weighted graphs, capacities
of balls are comparable, and hence expected occupation times are comparable. Therefore
the API and COI hold for (G, C′xy). By Theorem 2.8, the EHI holds for (G, C′xy). ut

7. Further results

7.1. The general case

We now consider the general case for infinite graphs. Theorem 7.1 can also be used in the
transient case.
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For x ∈ V and r ≥ 1, let C̃(x, r) be the capacity of B(x, r) with respect to the process
killed on exiting B(x, 8r). Thus

C̃(x, r) = inf{EG(f, f ) : f |B(x,r) = 1, f |B(x,8r)c = 0, f ∈ F}.

Let Ẽ(x, r) = V (x, r)/C̃(x, r). We assume (2.1), volume doubling, and expected occu-
pation time growth (for Ẽ). C̃(x, r) is no longer necessarily monotone in r , and so we
must make an additional assumption, that of capacity comparability: there exists c1 not
depending on x, y, or r such that if d(x, y) < 2r , then

c1C̃(x, r) ≤ C̃(y, 2r) ≤ c−1
1 C̃(x, r).

In particular, taking x = y shows that C̃(x, r) and C̃(x, 2r) are comparable. This implies
expected occupation time comparability: there exists c2 such that

c2Ẽ(x, r) ≤ Ẽ(y, 2r) ≤ c−1
2 Ẽ(x, r). (7.1)

Now define the API and COI in terms of Ẽ instead of E.

Theorem 7.1. Suppose that (2.1), volume doubling, expected occupation time growth,
and capacity comparability hold for G.

(a) If the EHI holds, then the API and COI hold.
(b) If the API and COI hold, then the EHI holds.
(c) Let (G, Cxy) and (G, C′xy) be equivalent graphs. Suppose (2.1), volume doubling,

expected occupation time growth, and capacity comparability also hold for (G, C′xy).
If the EHI holds for (G, Cxy), then it holds for (G, C′xy).

Proof. As in the proofs of Theorems 2.8 and 2.9, we immediately transfer to the cable
system. The proof of Proposition 4.1 still applies and we find thatGB(x,r)(x, y) is compa-
rable to 1/C(x, r). The proof of Proposition 4.2 shows that

∫
B(x,r)

GB(x,8r)(x, z) µ(dz)

is comparable to Ẽ(x, r).
For x0 ∈ C and r > 0, let D = B(x0, 8r). Then if x, y ∈ B(x0, r), we have

(GD)
2(x, y) ≤ c1Ẽ(x0, r)GD(x, y).

The proof of this is the same as the proof of Proposition 5.2, but we use (7.1) to compare
Ẽ(x, r) and Ẽ(y, r). We then conclude

GαD(x, y) ≥ c2/C̃(x0, r),

just as in the proof of Proposition 5.3. We then argue that the EHI implies the API as in
the proof of Theorem 5.4. The remainder of the proof is as in Section 6. ut
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7.2. Metric measure spaces

There is no difficulty extending our theorems to more general continuous state spaces. See
[4] for the definitions of all terms introduced in this subsection. Let (X, d, µ) be a metric
measure space such that the metric is geodesic and X has infinite diameter. Examples
of such spaces include Riemannian manifolds, cable systems, Euclidean domains with
smooth boundary, and fractals.

Let (E,F) be a local regular Dirichlet form. Associated to f ∈ F ∩L∞ is a measure
0(f, f )(dx) characterized by∫

X

g̃(x) 0(f, f )(dx) = 2E(f, fg)− E(f 2, g)

for all g ∈ F ∩ L∞, where g̃ is the quasi-continuous modification of g. Define

EA(f, f ) =
∫
A

0(f, f )(dx).

Let B(x, r) be the ball of radius r , and V (x, r) = µ(B(x, r)). Assume (E,F) is
transient, let

C(x, r) = inf{E(f, f ) : f |B(x,r) = 1, f ∈ F},
and E(x, r) = V (x, r)/C(x, r). Assume that Assumption 2.2 holds; the statement in the
present context is the same as the one in Section 3 provided we drop the primes. Again
dropping the primes, define the API, COI, and EHI as in Section 3. We need one more
regularity condition, namely, that the associated continuous symmetric strong Markov
process spends 0 time at any given point, or equivalently, for each x,

G1B(x,r)(x)→ 0 as r → 0, (7.2)

where G is the Green potential operator.
We then have the analogues of Theorems 2.8 and 2.9. We say two Dirichlet forms E

and E ′ are equivalent if they have the same domain F and there exists c1 such that

c1E(f, f ) ≤ E ′(f, f ) ≤ c−1
1 E(f, f ), f ∈ F .

Theorem 7.2. Assume that the analogues of Assumptions 2.1 and 2.2 hold, and (7.2)
holds for (E,F).
(a) If the EHI holds, then the API and COI hold for (E,F).
(b) If the API and COI hold for (E,F), then the EHI holds for (E,F).
(c) Let E and E ′ be equivalent. Assume that the analogues of Assumptions 2.1 and 2.2

hold and (7.2) holds for (E ′,F). If the EHI holds for E , then it holds for E ′.
Proof. We modify the proof of Theorem 3.3 in a manner entirely similar to the way [4]
extended the results of [3] to metric measure spaces. (7.2) comes in when deriving (4.1).
The details are left to the interested reader. ut

Remark 7.3. We can similarly state and prove the analogue of Theorem 7.1.
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[14] Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. No-
tices 1992, no. 2, 27–38 Zbl 0769.58054 MR 1150597

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0916.60069&format=complete
http://www.ams.org/mathscinet-getitem?mr=1668115
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0945.60071&format=complete
http://www.ams.org/mathscinet-getitem?mr=1701339
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1034.60070&format=complete
http://www.ams.org/mathscinet-getitem?mr=2034316
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1102.60064&format=complete
http://www.ams.org/mathscinet-getitem?mr=2228569
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0817.60001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1329542
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1081.39012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1881595
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0652.35052&format=complete
http://www.ams.org/mathscinet-getitem?mr=0855753
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0838.31001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1303354
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0776.58035&format=complete
http://www.ams.org/mathscinet-getitem?mr=1098839
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0988.58007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1860672
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1086.60052&format=complete
http://www.ams.org/mathscinet-getitem?mr=2161694
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0111.09302&format=complete
http://www.ams.org/mathscinet-getitem?mr=0159138
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0149.06902&format=complete
http://www.ams.org/mathscinet-getitem?mr=0159139
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0769.58054&format=complete
http://www.ams.org/mathscinet-getitem?mr=1150597

	Introduction
	Statement of results
	Preliminaries
	Some consequences of the EHI
	The adjusted Poincaré inequality
	Proofs of main theorems
	Further results

