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Abstract. We provide a rigorous justification of the classical linearization approach in plasticity.
By taking the small-deformations limit, we prove via 0-convergence for rate-independent processes
that energetic solutions of the quasi-static finite-strain elastoplasticity system converge to the unique
strong solution of linearized elastoplasticity.

Keywords. Finite-strain elastoplasticity, linearized elastoplasticity, 0-convergence, rate-indepen-
dent processes

1. Introduction

This paper is devoted to the rigorous justification of the classical linearization approach
in finite-strain elastoplasticity. When restricting to the small-deformation realm it is in-
deed customary to leave the nonlinear finite-strain framework and resort to linearized
theories instead. This reduction is usually motivated by means of heuristic Taylor expan-
sion arguments. Here, we aim at complement these formal motivations by providing a
rigorous linearization proof by means of an evolutionary 0-convergence analysis of rate-
independent processes. In particular, we address the general time-dependent case, which
e.g. allows for cyclic loading.

In the stationary framework, the pioneering contribution in this context goes back to
Dal Maso, Negri, & Percivale [DNP02] who devised a proof of convergence of finite-
strain elasticity to linearized elasticity. Later, the argument was refined by Agostini-
ani, Dal Maso, & DeSimone [ADD12] and extended to multi-well energies by Schmidt
[Sch08] and to residually stressed materials by Paroni & Tomassetti [PT09, PT11]. The
reader is also referred to [GN11, MN11, Neu10] for some related results on homoge-
nization, to [AD11] for an application to the study of nematic elastomers, to [BSV07,
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Sch09] in the context of convergence of atomistic models, and to [SZ11] in relation with
dislocation theory.

To our knowledge, this is the first result in the evolutionary case. Compared to the
stationary case of [DNP02], the evolution situation is quite more involved. Indeed, the
argument in [DNP02] relies on the 0-convergence of the small-deformation energy func-
tional to its linearization limit. Here, we are instead forced to cope with the occurrence
of dissipative plastic evolution by means of a delicate recovery sequence construction
relating energy and dissipation. We emphasize that finite-strain elastoplasticity is based
on a multiplicative decomposition of strain tensors. Moreover, the plastic tensor is to
be considered as an element of a multiplicative matrix group. We have to control these
noncommutative multiplicative structures in linear function spaces and to establish their
convergence to the corresponding linear additive structures. In order to give some details
in this direction we cannot avoid introducing some minimal notation.

Finite-strain elastoplasticity is usually based on the multiplicative decomposition
∇ϕ = FelFpl [Lee69]. Here ϕ : � → Rd is the deformation of the body with respect
to the reference configuration � ⊂ Rd (d = 2, 3) while Fel, Fpl ∈ SL(d) stand for the
elastic strain and the plastic strain, respectively. Then, the energy stored in the body is
written as ˆ

�

Wel(∇ϕF
−1
pl ) dx +

ˆ
�

Wh(Fpl) dx

where Wel is a frame-indifferent elastic stored-energy density and Wh describes harden-
ing. The plastic flow rule is expressed by means of a suitably defined dissipation distance
D : SL(d) × SL(d) → [0,∞]. In particular D(Fpl, F̂pl) represents the minimal dissi-
pated energy for an evolution from the plastic strain Fpl to F̂pl and is given by means of a
positively 1-homogeneous dissipation function R by

D(Fpl, F̂pl) = D(I, F̂plF
−1
pl ) = inf

ˆ
�

ˆ 1

0
R(ṖP−1) dt dx,

the infimum being taken over all smooth trajectories P : [0, 1] → Rd×d connecting
Fpl to F̂pl. Starting from these functionals, by specifying loadings, and boundary and
initial conditions, suitably weak solutions of the quasi-static finite-plasticity system (see
Section 2) can be defined. We refer to [Mie03] for more information on the mathematical
modeling of finite-strain elastoplasticity. There also models with additional hardening
variables are given. Here we refrain from maximal generality in order to emphasize the
main features of the limiting process.

Let now the deformation and the plastic strain be small. In particular, for ε > 0
let ϕε = id + εu and Fpl,ε = I + εz where u is interpreted as the displacement and
z is the linearized plastic strain. Correspondingly, we have Fel,ε = ∇ϕεF

−1
pl,ε = (id +

ε∇u)(I + εz)−1 and we are led to consider of the rescaled finite-strain elastoplasticity
energy and dissipation functionals

1
ε2

ˆ
�

Wel
(
(I + ε∇u)(I + εz)−1) dx + 1

ε2

ˆ
�

Wh(I + εz) dx,
1
ε
D(I + εz, I + ε̂z).
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Note that the rescalings above are such that, by assuming that Wel and Wh admit a
quadratic expansion around identity, one can check that

1
ε2

ˆ
�

Wel
(
(I + ε∇u)(I + εz)−1) dx → 1

2

ˆ
�

(∇u− z) :C(∇u− z) dx,

1
ε2

ˆ
�

Wh(I + εz) dx →
1
2

ˆ
�

z :Hz dx

1
ε
D(I + εz, I + ε̂z) →

ˆ
�

R(̂z− z) dx.

This pointwise convergence is the classical justification of linearization in plasticity. On
the other hand, it is not sufficient alone for proving that finite-strain elastoplasticity tra-
jectories actually converge to a solution of the linearized-plasticity system.

Before going on let us mention that the solution concept which is here under consider-
ation is that of energetic solutions. Starting from [MT04], this notion has been extensively
applied in many different rate-independent contexts. We record, however, that one of the
main motivations for introducing energetic solutions was exactly that of targeting exis-
tence theories for finite-strain elastoplasticity. In this respect, note that the only available
existence result for finite-strain elastoplastic evolution has been recently obtained within
the energetic solvability framework in [MM09] after adding the regularizing term |∇Fpl|

r

for r > 1 (see also [MM06] for some preliminary result),
Our result consists in proving the convergence of energetic solutions of the finite-

strain elastoplasticity system to linearized-plasticity solutions. In order to prove this con-
vergence we follow the abstract evolutionary 0-convergence theory for energetic solu-
tions of rate-independent processes developed in [MRS08]. We mention that this evo-
lutionary 0-convergence method has recently attracted attention and has been success-
fully considered in connection with numerical approximations [KMR05, MR09, GP06a],
damage [BRM09, TM10], fracture [GP06b], delamination [RSZ09], dimension reduction
[FPZ10, LM11], homogenization [Tim09], and optimal control [Rin08, Rin09].

According to [MRS08], the convergence of the trajectories (uε, zε) follows by proving
two separate 0-liminf inequalities for energy and dissipation, and constructing a mutual
recovery sequence relating both. Note that separate 0-convergence for energy and dissipa-
tion is not sufficient to pass to the limit within rate-independent processes. Apart from the
additional technicalities due to the presence of the plastic strain and the dissipation func-
tional, it is the delicate construction of the mutual recovery sequence that distinguishes
our argument from all the already developed stationary analyses in the spirit of [DNP02].

2. Problem setup and results

Let the reference configuration � ⊂ Rd be an open, bounded, and connected set with
Lipschitz boundary. Moreover, let 0 ⊂ ∂� be relatively open with Hd−1(0) > 0. We
define the state space as

Q := U × Z := {u ∈ H1(�;Rd) | u = 0 on 0} × L2(�;Rd×d).
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Note that the choice of the homogeneous Dirichlet condition on the displacement u is just
for simplicity. In particular, different boundary conditions may be considered as well.

For each given A ∈ Rd×d we denote its symmetric and antisymmetric parts as
Asym

:= (A + A>)/2 and Aanti
= A − Asym. We indicate by Rd×dsym and Rd×danti the

subspaces of symmetric and antisymmetric tensors, respectively, whereas Rd×ddev stands
for the subspace of symmetric and trace-free tensors, also called deviatoric tensors. The
standard Euclidian tensor norm is denoted by | · | and, for all A ∈ Rd×d and τ > 0, Bτ (A)
indicates the ball {B ∈ Rd×d | |A− B| < τ }. Moreover, | · |T stands for the seminorm

|A|2T :=
1
2A :TA

where the 4-tensor T ∈ Rd×d×d×d is symmetric (Tijk` = Tk`ij ) and positive semidefi-
nite. For finite-strain elastoplasticity we use the classical notations

SL(d) := {P ∈ Rd×d | detP = 1},

SO(d) := {R ∈ SL(d) | R>R = RR> = I },

GL+(d) := {Q ∈ Rd×d | detQ > 0}.

We assume that the elastic energy density functional Wel satisfies

Wel : Rd×d → [0,∞], Wel ∈ C1(GL+(d)), Wel ≡ ∞ on Rd×d \ GL+(d), (2.1a)
∀F ∈ GL+(d) ∀R ∈ SO(d) : Wel(RF) = Wel(F ), (2.1b)

∀F ∈ GL+(d) : Wel(F ) ≥ c1dist2(F,SO(d)), (2.1c)

∀F ∈ GL+(d) : |F>∂FWel(F )| ≤ c2(Wel(F )+ 1), (2.1d)

∃C ≥ 0 ∀δ > 0 ∃cel(δ) > 0 ∀A ∈ Bcel(δ)(0) :
∣∣Wel(I + A)− |A|

2
C
∣∣ ≤ δ|A|2C, (2.1e)

for some positive c1, c2. Assumption (2.1b) is nothing but frame indifference, and the
nondegeneracy requirement (2.1c) is quite classical. Assumption (2.1d) entails the con-
trollability of the Mandel tensor F>∂FWel(F ) by means of the energy. This is a crucial
condition in finite-strain elastoplasticity (cf. [Bal84b, Bal02]) and was used in the con-
text of rate-independent processes in [FM06, MM09]. Condition (2.1e) encodes the local
quadratic character of Wel around the identity. More precisely, (2.1e) states that | · |C is
the second order Taylor expansion of Wel at I , and may be reformulated by saying that
A 7→ Wel(I + A) is locally restrained between two multiples of | · |2C, namely,

∀δ > 0 ∀A ∈ Bcel(δ)(0) : (1− δ)|A|2C ≤ Wel(I + A) ≤ (1+ δ)|A|2C.

Moreover, (2.1e) entails

Wel(I ) = 0, ∂FWel(I ) = 0, ∂2
FWel(I ) = C, (2.2)

which, in particular, implies that the reference state is stress free. On the other hand, by
assuming (2.2) and letting Wel ∈ C2 in a neighborhood of I , relation (2.1e) follows.
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Note that the symmetry of the elastic tensor C (implicitly assumed in the notation
| · |C) may be directly obtained from the last condition of (2.2) by assuming additional
smoothness of Wel. Moreover, letting A ∈ Rd×d be given, as we have exp(Aanti) ∈

SO(d), the frame indifference (2.1b) entails that the function t 7→ ∂FWel(exp(tAanti)) is
constantly equal to ∂FWel(I ) = 0. Hence, by taking its derivative with respect to t and
evaluating it at t = 0 we get CAanti

= 0. Thus, C necessarily also has the so called minor
symmetries Cijk` = Cjik` = Cij`k and we have

∀A ∈ Rd×d : CA = CAsym. (2.3)

On the other hand, as a consequence of the nondegeneracy (2.1c) and assumption
(2.1e) we deduce that C is positive definite on Rd×dsym . Indeed, by linearizing d(·,SO(d))
around identity we have [FJM02, (3.21)]

∀B ∈ Rd×d : d(B,SO(d)) = |Bsym
− I | +O(|B − I |2). (2.4)

Hence, given A ∈ Rd×d and η, δ > 0, by choosing B = I + ηA above we have

c1|A
sym
|
2 (2.4)
= lim

η→0

c1

η2 d
2(I + ηA,SO(d))

(2.1c)
≤ lim

η→0

1
η2Wel(I + ηA)

(2.1e)
≤ (1+ δ)|A|2C,

so that, by taking δ→ 0, we have

∀A ∈ Rd×d : c1|A
sym
|
2
≤ |A|2C = |A

sym
|
2
C. (2.5)

Note that all assumptions (2.1a)–(2.1e) are consistent with the usual polyconvexity
framework

F 7→ Wel(F ) polyconvex, Wel(F )→∞ as detF → 0.

Our assumptions on the hardening functional Wh : Rd×d → [0,∞] read

Wh(P ) :=

{
W̃h(P ) if P ∈ K,
∞ if P ∈ Rd×d \K, (2.6a)

K is compact in SL(d) and contains a neighborhood of I , (2.6b)

W̃h : Rd×d → R is locally Lipschitz continuous, (2.6c)

∃H ≥ 0 ∀δ > 0 ∃ch(δ) > 0 ∀A ∈ Bch(δ)(0) :
∣∣W̃h(I + A)− |A|

2
H
∣∣ ≤ δ|A|2H, (2.6d)

∃c3 > 0 ∀A ∈ Rd×d : Wh(I + A) ≥ c3|A|
2. (2.6e)

Note that by assumption (2.6b) we can find a constant cK > 0 such that

P ∈ K ⇒ |P | + |P−1
| ≤ cK , (2.7)

P ∈ SL(d) \K ⇒ |P − I | ≥ 1/cK . (2.8)

The rather strong technical assumption onWh that its effective domainK = {P ∈ SL(d) |
Wh(P ) < ∞} satisfies (2.7) is crucial as it will provide L∞-bounds that are essential in
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order to control the multiplicative terms (I + ε∇u)(I + εz)−1. Moreover, by combining
(2.6d) and (2.6e) we check that

∀A ∈ Rd×d : c3|A|
2
≤ |A|2H. (2.9)

As for the dissipation we assume that

Rdev
: Rd×ddev → [0,∞) is convex and positively 1-homogeneous, (2.10a)

∀P ∈ Rd×ddev : c4|P | ≤ R
dev(P ) ≤ c5|P |, (2.10b)

R : Rd×d → [0,∞], R(z) :=

{
Rdev(z) if z ∈ Rd×ddev ,

∞ else,
(2.10c)

for positive c4, c5. Moreover, we define

D : Rd×d × Rd×d → [0,∞], with D(P, P̂ ) = D(I, P̂ P−1) given by

D(I, P̂ ) := inf
{ˆ 1

0
R(ṖP−1) dt

∣∣∣∣ P ∈ C1(0, 1;Rd×d), P (0) = I, P (1) = P̂
}
.

(2.11)

If P is not invertible, we setD(P, P̂ ) = ∞. Note in particular thatD(I, P ) <∞ implies
detP = 1. Moreover, there exists c6 > 0 such that

∀P,Q ∈ K ⊂ SL(d) : D(P,Q) ≤ c6, D(I, P ) ≤ c6|P − I |. (2.12)

For the first estimate the continuity of D and the compactness of K are sufficient. For the
second, we need to establish the estimate only for P close to I , where it follows from
D(I, P ) ≤ Rdev(logP) ≤ c5|logP | ≤ c6|P − I |, since the matrix logarithm is well-
defined and Lipschitz continuous in a neighborhood of I . See also [MM09, Ex. 3.2] and
the references given there for global bounds on D.

The quasistatic evolution of the finite-strain and linearized elastoplasticity systems are
driven by the energy functionals Wε,W0 : Q→ (−∞,∞] given by

Wε(u, z) :=
1
ε2

ˆ
�

Wel
(
(I + ε∇u)(I + εz)−1) dx + 1

ε2

ˆ
�

Wh(I + εz) dx,

W0(u, z) :=

ˆ
�

|∇usym
− zsym

|
2
C dx +

ˆ
�

|z|2H dx.

Note that if the second integral in the definition of Wε(u, z) is finite, then I + εz ∈ K
almost everywhere by (2.6a). Hence, the inverse (I + εz)−1 exists and the first integral is
well defined.

We prescribe the generalized loading as

` ∈ W 1,1(0, T ;U ′) (2.13)
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and, by letting `ε := ε`, we introduce some notation for the total energy functionals
Eε, E0 : [0, T ] ×Q→ (−∞,∞] as

Eε(t, u, z) :=Wε(u, z)−
1
ε
〈`ε(t), u〉 =Wε(u, z)− 〈`(t), u〉,

E0(t, u, z) :=W0(u, z)− 〈`(t), u〉.

Finally, the dissipative character of the evolution is encoded into the dissipation functions
Dε,D0 : Rd×d × Rd×d → [0,∞] and functionals Dε,D0 : (L

1(�;Rd×d))2 → [0,∞]
given by

Dε(z1, z2) :=
1
ε
D(I + εz1, I + εz2), D0(z1, z2) := R(z2 − z1),

Dε(z1, z2) :=

ˆ
�

Dε(z1, z2) dx, D0(z1, z2) :=

ˆ
�

D0(z1, z2) dx.

The total dissipation of the process over the time interval [0, t] ⊂ [0, T ] will be given by

DissDε
(z; [0, t]) := sup

{ N∑
i=1

Dε(z(t i), z(t i−1))

∣∣∣ 0 = t0 < · · · < tN = t
}

where the sup is taken over all partitions of [0, t].
We define a Rate-Independent System (RIS) to be the triple (Q, Eε,Dε) given by

the choice of the state space Q and the energy and dissipation functionals Eε and Dε.
The term evolutionary 0-convergence refers to a suitable notion of convergence for rate-
independent systems in the spirit of [MRS08], which in particular entails the convergence
of the respective energetic solutions.

A crucial structure in the energetic formulation of RIS is the set Sε(t) of stable states
at time t ∈ [0, T ], which is defined to be

Sε(t) := {(u, z) ∈ Q | Eε(t, u, z) <∞ and
Eε(t, u, z) ≤ Eε(t, û, ẑ)+Dε(z, ẑ) ∀(̂u, ẑ) ∈ Q}.

Our assumption on the initial data reads

Sε(0) 3 (u0
ε, z

0
ε)→ (u0

0, z
0
0) weakly in Q, z0

0 ∈ L2(�;Rd×ddev ),

Eε(0, u0
ε, z

0
ε)→ E0(0, u0

0, z
0
0). (2.14)

Note that the latter assumption is not empty as it is satisfied at least by the natural choice
(u0, z0) = (0, 0) if `(0) = 0.

Definition 2.1 (Energetic solutions). Let ε ≥ 0. We say that a trajectory qε : [0, T ] →
(uε, zε) ∈ Q is an energetic solution (related to the RIS (Q, Eε,Dε)) if (uε(0), zε(0)) =
(u0
ε, z

0
ε), the map t 7→ 〈 ˙̀, uε〉 is integrable, and, for all t ∈ [0, T ],

(uε(t), zε(t)) ∈ Sε(t), (2.15)

Eε(t, uε(t), zε(t))+ DissDε
(zε; [0, t]) = Eε(0, u0

ε, z
0
ε)−

ˆ t

0
〈 ˙̀, uε〉 ds. (2.16)
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An energetic solution will be called a finite-plasticity solution if ε > 0, and a linearized-
plasticity solution for ε = 0.

Note that linearized-plasticity solutions (u0, z0) are unique in view of the quadratic
and uniformly convex character of W0. Moreover, from assumption (2.13) we find that
(u0, z0) ∈W1,1(0, T ;Q) and

∀t ∈ [0, T ] : DissD0(z0; [0, t]) =
ˆ t

0
R(ż0) ds.

The reader is referred to [Hil50, Lub90, Mar75] for a general introduction to plastic-
ity and to [HR99, Joh76, Suq81] for the classical well-posedness theory for linearized
elastoplasticity.

Our main result reads as follows and will be proved in Section 3 as a special instance
of the general theory of [MRS08].

Theorem 2.2 (Finite plasticity 0-converges to linearized plasticity). Assume (2.1)–
(2.6), (2.10), and (2.13)–(2.14). Let (uε, zε) be a finite-plasticity solution. Then
(uε(t), zε(t))→ (u0(t), z0(t)) weakly in Q for all t ∈ [0, T ] where (u0, z0) is the unique
linearized-plasticity solution.

Theorem 2.2 is exclusively a convergence result. In particular, we assume that finite-
plasticity solutions exist. Note however that the existence of finite-plasticity solutions
is presently not known within our minimal assumptions. A possibility here would be to
consider directly some more regular situations including extra compactifying terms like
|∇Fpl|

r (r > 1) ensuring that finite-plasticity solutions exist [MM09]. We shall not follow
this line here but rather present a second result based on approximate minimizers of the
related incremental problems. Indeed, given time partitions 0 = t iε < · · · < t

Nε
ε = T

with diameters τε := maxi=1,...,Nε (t
i
ε − t

i−1
ε )→ 0 as ε → 0, the (iterative) incremental

problem

(uiε, z
i
ε) ∈ Arg min

(u,v)∈Q

(
Eε(t iε, u, z)+Dε(zi−1

ε , z)
)

for i = 1, . . . , Nε

may not be solvable (cf. [CHM02]; see also [Mie04, MM06] for some additional dis-
cussion). Hence, following [MRS08, Sec. 4] we fix a sequence 0 < αε → 0 in order
to control the tolerances for the minimizations and consider the following approximate
incremental problem:

Find iteratively (uiε, z
i
ε) ∈ Q such that

Eε(t iε, uiε, ziε)+Dε(zi−1
ε , ziε) ≤ (t

i
ε − t

i−1
ε )αε + inf

(u,v)∈Q

(
Eε(t iε, u, z)+Dε(zi−1

ε , z)
)
.

(2.17)

By the definition of infimum the latter always admits solutions and we will show the
following convergence result.
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Theorem 2.3 (Convergence of approximate incremental minimizers). Under the
assumptions of Theorem 2.2 let (uiε, z

i
ε) be approximate incremental minimizers and

(uε, zε) be the corresponding right-continuous, piecewise-constant interpolants on the
time partitions. Then (uε(t), zε(t))→ (u0(t), z0(t)) weakly in Q for all t ∈ [0, T ] where
(u0, z0) is the unique linearized-plasticity solution.

In the finite-elasticity case (stationary), using ideas from [DNP02] the convergence of
approximate minimizers has been considered in [PT09].

3. Proofs

The argument basically follows the lines of the abstract analysis of [MRS08]. Still, our
setting cannot be completely recovered from the application of the above-mentioned ab-
stract theory as extra care is needed for the treatment of multiplicative nonlinearities. We
hence provide here an independent proof. After establishing the coercivity of the energy
in Subsection 3.1, the proof strategy relies on providing two separate 0-liminf inequali-
ties for Eε and Dε and a mutual recovery sequence argument relating both. This is done in
Subsections 3.2 and 3.3 below. Finally, the proofs of Theorems 2.2 and 2.3 are outlined
in Subsections 3.4 and 3.5, respectively.

A caveat on notation: henceforth the symbol c stands for any positive constant inde-
pendent of ε and δ but possibly depending on the fixed data. In particular, note that c may
change from line to line. Moreover, in the following we use the short-hand notation, for
all A ∈ Rd×d ,

W ε
el(A) :=

1
ε2Wel(I + εA), W ε

h (A) :=
1
ε2Wh(I + εA), W̃ ε

h (A) :=
1
ε2 W̃h(I + εA).

3.1. Energy coercivity

We start by providing a uniform coercivity result for the energy. It follows the ideas in
[DNP02] and relies on the Rigidity Lemma [FJM02, Thm. 3.1].

Lemma 3.1 (Coercivity). There exists c > 0 such that, for all (u, z) ∈ Q,

‖∇u‖2L2 + ‖z‖
2
L2 + ‖εz‖

2
L∞ ≤ c(1+Wε(u, z)). (3.1)

Proof. Let us assume with no loss of generality that Wε(u, z) <∞, so that I + εz ∈ K
almost everywhere by assumption (2.6a). Hence, |I + εz| ≤ cK almost everywhere
from property (2.7), and the inverse (I + εz)−1 exists almost everywhere. Thus, we have
‖εz‖L∞ ≤ c. Moreover, one readily checks from the coercivity (2.6e) that

c3‖z‖
2
L2 ≤

ˆ
�

W ε
h (z) dx ≤Wε(u, z). (3.2)
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For the displacement u we follow ideas from [DNP02]. Given any Q ∈ SO(d) by
letting ϕ = id+ εu and Fel = ∇ϕ(I + εz)

−1 we have

|∇ϕ −Q|2 = |∇ϕ −Q(I + εz)+ εQz|2 = |(Fel −Q)(I + εz)+ εQz|
2

≤ c(|Fel −Q|
2
|I + εz|2 + ε2

|z|2) ≤ c(|Fel −Q|
2
+ ε2
|z|2).

In particular, by passing to the infimum over Q ∈ SO(d) we conclude that

dist2(∇ϕ,SO(d)) ≤ c
(
dist2(Fel,SO(d))+ ε2

|z|2
)
.

By taking the integral in space and using the nondegeneracy condition (2.1c) we obtainˆ
�

dist2(∇ϕ,SO(d)) dx ≤ c
ˆ
�

dist2(Fel,SO(d)) dx + cε2
ˆ
�

|z|2 dx
(3.2)
≤ ε2cWε(u, z).

Hence, the Rigidity Lemma [FJM02, Thm. 3.1] ensures that

‖∇ϕ − Q̂‖2L2 ≤ ε
2cWε(u, z)

for some constant rotation Q̂ ∈ SO(d). Finally, using [DNP02, Prop. 3.4] and ϕ|0 = id
as u ∈ U , we conclude |Q̂− I |2 ≤ ε2cWε(u, z). Therefore

‖∇u‖2L2 =
1
ε2 ‖∇ϕ − I‖

2
L2 ≤

2
ε2 ‖∇ϕ − Q̂‖

2
L2 +

2
ε2 ‖Q̂− I‖

2
L2 ≤ cWε(u, z),

and the bound (3.1) follows. ut

3.2. 0-liminf inequalities

Next, we turn our attention to the proof of the separate 0-liminf inequalities for energy
and dissipation. Let us start with a statement concerning the energy densities.

Lemma 3.2. Under assumptions (2.1e) and (2.6d), we have

W ε
el → | · |

2
C and W̃ ε

h → | · |
2
H locally uniformly. (3.3)

Moreover,
|z|2H ≤ inf

{
lim inf
ε→0

W ε
h (zε)

∣∣∣ zε → z
}
. (3.4)

Proof. Let K0 b Rd×d , fix δ > 0 and find the corresponding cel(δ) > 0 from condition
(2.1e). As εK0 ⊂ Bcel(δ)(0) for ε sufficiently small, we have

lim sup
ε→0

sup
K0

∣∣W ε
el − | · |

2
C
∣∣ ≤ δ sup

K0

| · |
2
≤ δc,

and local uniform convergence follows from δ > 0 being arbitrary. The same argument
applies to W̃ ε

h .
As for the 0-liminf inequality (3.4), let zε → z and assume with no loss of generality

that supεW
ε
h (zε) < ∞. Hence, W ε

h (zε) = W̃ ε
h (zε) and the inequality follows from the

uniform convergence proved above. ut

We are now in a position to prove the 0-liminf estimate for the energy. It follows indeed
from (3.3) and the lower-semicontinuity result of Lemma 4.2 below.
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Lemma 3.3 (0-liminf for energy). For all (u, z) ∈ Q we have

W0(u, z) ≤ inf
{

lim inf
ε→0

Wε(uε, zε)

∣∣∣ (uε, zε)→ (u, z) weakly in Q
}
.

Proof. Let (uε, zε) → (u, z) weakly in Q. We can assume with no loss of general-
ity that supεWε(uε, zε) < ∞. Owing to the 0-liminf inequality (3.4) and the lower-
semicontinuity Lemma 4.2 we readily conclude thatˆ

�

|z|2H ≤ lim inf
ε→0

ˆ
�

W ε
h (zε) dx = lim inf

ε→0

1
ε2

ˆ
�

Wh(I + εzε) dx. (3.5)

Moreover, Wε(uε, zε) < ∞ implies εzε ∈ K − I almost everywhere. In particular,
εzε are bounded in L∞. The same holds for (I + εzε)−1 as

(I + εzε)
−1
= cof(I + εzε)/det(I + εzε) = cof(I + εzε).

We define the auxiliary tensors

wε :=
1
ε

(
(I + εzε)

−1
− I + εzε

)
= ε(I + εzε)

−1z2
ε, (3.6)

so that (I + εzε)−1
= I − εzε+ εwε. By the first equality in (3.6) we have ‖εwε‖L∞ ≤ c,

while the second gives

‖wε‖L1 = ε‖(I + εzε)
−1z2

ε‖L1 ≤ cε‖zε‖
2
L2 ≤ cε

where we have also used the boundedness in L2 of zε from (3.1). Thus, by interpolation,
wε is bounded in L2 as well, so that wε → 0 weakly in L2.

Given Aε := (Fel,ε − I )/ε we want to show the weak L2 convergence Aε → ∇u− z.
From

Aε =
1
ε

(
(I + ε∇uε)(I + εzε)

−1
− I

)
(3.7)

we find I + εAε = (I + ε∇uε)(I + εzε)−1 and compute that

Aε =
1
ε

(
(I + ε∇uε)(I − εzε + εwε)− I

)
= ∇uε − zε + wε − ε(∇uεzε −∇uεwε).

Hence, as ∇uε − zε → ∇u − z and wε → 0 weakly in L2, we have to show vε :=

∇uε(εzε − εwε)→ 0 weakly in L2 as well. Indeed, the boundedness in L2 of vε follows
from ‖∇uε‖L2 ≤ c (see (3.1)) and the L∞ boundedness of εzε and εwε. Moreover, since
zε and wε are bounded in L2 we have ‖vε‖L1 ≤ cε and conclude vε → 0 weakly in L2.

Eventually, owing to Lemma 3.2, we can exploit the lower-semicontinuity Lemma 4.2
to obtainˆ
�

|∇u− z|2C ≤ lim inf
ε→0

ˆ
�

W ε
el(Aε) dx = lim inf

ε→0

1
ε2

ˆ
�

Wel
(
(I + ε∇uε)(I + εzε)

−1) dx.
Finally, by recalling relation (2.3) and the already established (3.5), the assertion follows.

ut

Before moving to the 0-liminf inequality for the dissipation functionals Dε, we prepare
here a preliminary result on the functions Dε.
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Lemma 3.4 (0-convergence of Dε). Dε → D0 in the sense of 0-convergence.

Proof. 0-liminf inequality. Let (zε, ẑε) → (z, ẑ) and assume with no loss of generality
that supεDε(zε, ẑε) <∞. In particular, (I + ε̂zε)(I + εzε)−1

∈ SL(d). By defining

ζε :=
1
ε

(
(I + ε̂zε)(I + εzε)

−1
− I

)
= ẑε − zε + wε − ε̂zεzε + ε̂zεwε

where wε is given in (3.6), we readily check that I + εζε ∈ SL(d) and ζε → ẑ− z.
Let now t 7→ Pε(t) ∈ C1(0, 1;Rd×d) be such that Pε(0) = I , Pε(1) = I + εζε, and

D(I, I + εζε) ≥ (1− ε)
ˆ 1

0
R(ṖεP

−1
ε ) dt.

Such a function Pε exists by the very definition ofD. By possibly reparametrizing Pε and
using assumption (2.10b) and bound (2.12) we can assume that

c4|Ṗε(t)P
−1
ε (t)|

(2.10b)
≤ R(Ṗε(t)P

−1
ε (t)) ≤ 2D(I, I + εζε)

(2.12)
≤ cε. (3.8)

Hence,

|Pε(t)− I | ≤

ˆ t

0
|ṖεP

−1
ε | |Pε| ds ≤ cε

ˆ t

0
|Pε| ds ≤ cε

(
1+
ˆ t

0
|Pε − I | ds

)
so that Pε → I uniformly by the Gronwall Lemma.

By defining P̂ε(t) = I + (Pε(t) − I )/ε one has P̂ε(0) = I and P̂ε(1) = I + ζε.
Moreover, as ε ˙̂Pε = Ṗε and R is positively 1-homogeneous (2.10a), we have

1
ε
D(I, I + εζε) ≥ (1− ε)

ˆ 1

0
R( ˙̂PεP

−1
ε ) dt.

Owing now to bound (3.8), by possibly extracting not relabeled subsequences, we deduce
that ˙̂Pε → Q weakly-star in L∞(0, 1;Rd×d) and

lim inf
ε→0

Dε(zε, ẑε) = lim inf
ε→0

1
ε
D(I, I + εζε) ≥ lim inf

ε→0

ˆ 1

0
R( ˙̂PεP

−1
ε ) dt ≥

ˆ 1

0
R(Q) dt

≥ R(Q̃)

where we have exploited the lower-semicontinuity tool of Lemma 4.2 and Jensen’s in-
equality with Q̃ =

´ 1
0 Qdt .

Finally, by integrating we have

Q̃ =

ˆ 1

0
Qdt = lim

ε→0

ˆ 1

0

˙̂Pε dt = lim
ε→0

ζε = ẑ− z

so that we have checked

lim inf
ε→0

Dε(zε, ẑε) ≥ R(̂z− z).
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Recovery sequence. Given ζ ∈ Rd×ddev we have exp(ζ ) ∈ SL(d) and, by taking P(t) :=
exp(tζ ) in the definition of D, we readily check that D(I, exp(ζ )) ≤ R(ζ ).

Let now z, ẑ ∈ Rd×ddev be given and define

ẑε =
1
ε

(
exp(ε(̂z− z))(I + εz)− I

)
.

As (I + ε̂zε)(I + εz)−1
= exp(ε(̂z− z)), we have

lim sup
ε→0

Dε(z, ẑε) = lim sup
ε→0

1
ε
D(I, exp(ε(̂z− z))) ≤ R(̂z− z) = D0(z, ẑ)

so that (z, ẑε) is a recovery sequence. ut

Owing to Lemma 3.4, it suffices now to apply the lower-semicontinuity result in Lemma
4.2 in order to establish the 0-liminf inequality for the dissipation functionals. More pre-
cisely, we have the following.

Lemma 3.5 (0-liminf for dissipation).

D0(z, ẑ) ≤ inf
{

lim inf
ε→0

Dε(zε, ẑε)
∣∣∣ (zε, ẑε)→ (z, ẑ) weakly in (L2(�;Rd×d))2

}
.

(3.9)

3.3. Mutual recovery sequence

We now come to the construction of a mutual recovery sequence. Let us recall from
[MRS08] that indeed two separate 0-limsup inequalities for energy and dissipation gen-
erally do not suffice for passing to the limit in RIS. In particular, the construction of
recovery sequences for energy and dissipation has to be mutually coordinated.

Lemma 3.6 (Mutual recovery sequence). Let t ∈ [0, T ], (uε, zε) → (u0, z0) weakly
in Q, and

sup
ε

Eε(t, uε, zε) <∞. (3.10)

Moreover, let (̂u0, ẑ0) := (u0, z0) + (ũ, z̃) with (ũ, z̃) ∈ C∞c (�;Rd) × C∞c (�;R
d×d
dev ).

Then there exist (̂uε, ẑε) ∈ Q such that (̂uε, ẑε)→ (̂u0, ẑ0) weakly in Q and

lim sup
ε→0

(
Eε(t, ûε, ẑε)− Eε(t, uε, zε)+Dε(zε, ẑε)

)
≤ E0(t, û0, ẑ0)− E0(t, u0, z0)+D0(z0, ẑ0). (3.11)

Proof. For the sake of clarity, we decompose the argument into several steps. The general
strategy of the proof is to choose (̂uε, ẑε) and show convergence to (̂u0, ẑ0),

lim sup
ε→0

Dε(zε, ẑε) ≤ D0(z0, ẑ0) = R(z̃),
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and
lim sup
ε→0

(
Eε(t, ûε, ẑε)− Eε(t, uε, zε)

)
≤ E0(t, û0, ẑ0)− E0(t, u0, z0).

Note that in order to establish the latter we cannot argue on individual terms but rather aim
at exploiting certain cancellations. This resembles the situation of the so-called quadratic
trick (see, e.g., [MT05]) and crucially uses (2.1d) as well as the smoothness of (ũ, z̃). In
particular, note that within this proof the constant c may depend on ũ and z̃ as well.

Step 1: Choice of the mutual recovery sequence. By defining the functions ψε := id+εũ
and ϕε := id+ εuε and the set

�ε := {x ∈ � | exp(εz̃(x))(I + εzε(x)) ∈ K},

the proof of the lemma follows by checking that the choices

ûε :=
1
ε
(ψε ◦ ϕε − id),

ẑε :=

{ 1
ε

(
exp(εz̃)(I + εzε)− I

)
on �ε,

zε else,

satisfy (3.11) and, in particular, (̂uε, ẑε)→ (̂u0, ẑ0) weakly in Q. The construction of ûε
via a composition and of ẑε via matrix exponential and multiplication is necessary in
order to deal with the multiplicative nature of finite-strain elastoplasticity.

Note that the construction of the mutual recovery sequence is compatible with the
constraint det(I + ε∇ûε) > 0 considered in (2.1a). Indeed, by letting ε be small enough
we see that I+ε∇ũ is everywhere positive definite, hence det(I+ε∇ũ) > 0. In particular,
as det(I + ε∇uε) > 0 almost everywhere by (2.1a) and (3.10), we have

det(I + ε∇ûε) = det(∇ψε(ϕε)∇ϕε) = det(I + ε∇ũ(ϕε)) det(I + ε∇uε) > 0

almost everywhere as well. That is, I + ε∇ûε ∈ GL+(d) almost everywhere.
From the bound (3.10) we readily see that I+εzε ∈ SL(d) almost everywhere. Hence,

upon noting that

I + ε̂zε =

{
exp(εz̃)(I + εzε) on �ε,
I + εzε else,

we immediately check that I + ε̂zε ∈ K ⊂ SL(d) almost everywhere and is bounded
in L∞. Using the fact that tr z̃ = 0 we have det exp(εz̃) = exp(ε tr z̃) = 1 and hence
exp(εz̃)(I + εzε) ∈ SL(d) almost everywhere.

Next, note that the measure of the complement of �ε can be controlled by means of a
Chebyshev estimate. Indeed, (2.8) gives

|� \�ε| =

ˆ
�\�ε

1 dx ≤ c2
K

ˆ
�

|exp(εz̃)(I + εzε)− I |2 dx

= c2
K

ˆ
�

|exp(εz̃)− I + ε exp(εz̃)zε|2 dx ≤ cε2
(

1+
ˆ
�

z2
ε dx

)
≤ cε2.
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Now, one finds that

ẑε − zε =
1
ε

(
exp(εz̃)(I + εzε)− I

)
− zε =

1
ε
(exp(εz̃)− I )(I + εzε) on �ε,

ẑε − zε = 0 on � \�ε,

|� \�ε| → 0, and ẑε and zε are bounded in L2. Hence, we readily check that

ẑε − zε → z̃ strongly in L2(�;Rd×d). (3.12)

This implies that ẑε → ẑ0 = z0 + z̃ weakly in L2, hence

ẑε + zε → ẑ0 + z0 weakly in L2(�;Rd×d). (3.13)

From the energy bound (3.10) and the coercivity Lemma 3.1 we infer that uε is
bounded in H1 and εuε → 0 strongly in L2. Hence, ‖ϕε − id‖L2 = ε‖uε‖L2 ≤ cε

and, by the Lipschitz continuity of ∇ũ, we conclude that

‖∇ũ(ϕε)−∇ũ‖L2 ≤ c‖ϕε − id‖L2 = cε‖uε‖L2 ≤ cε. (3.14)

Moreover, by computing

∇ûε =
1
ε

(
∇ψε(ϕε)∇ϕε − I

)
=

1
ε

(
(I + ε∇ũ)(ϕε)∇ϕε − I

)
=

1
ε

(
∇ϕε + ε∇ũ(ϕε)∇ϕε − I

)
= ∇uε +∇ũ(ϕε)+ ε∇ũ(ϕε)∇uε

we obtain

‖(∇ûε −∇uε)−∇ũ‖L2 ≤ ‖∇ũ(ϕε)−∇ũ‖L2 + ‖ε∇ũ(ϕε)∇uε‖L2

(3.14)
≤ cε + cε‖∇uε‖L2 ≤ cε, (3.15)

and this implies that ûε → û0 = u0 + ũ weakly in H1.
The tensors Aε = (Fel,ε − I )/ε and Âε = (F̂el,ε − I )/ε satisfy

Aε =
1
ε

(
(I + ε∇uε)(I + εzε)

−1
− I

)
, Âε =

1
ε

(
(I + ε∇ûε)(I + ε̂zε)

−1
− I

)
and hence are both bounded in L2 by (2.7).

Fix now δ and let cel(δ) and ch(δ) be given by conditions (2.1e) and (2.6d), respec-
tively. For all ε > 0 we define the sets

U δε := {x ∈ � | |εAε(x)| + |εÂε(x)| ≤ cel(δ)},

Zδε := {x ∈ � | |εzε(x)| + |ε̂zε(x)| ≤ ch(δ)}.

We refer to the latter as good sets, because strains are there under control and we can
replace the nonlinear densities Wel and Wh by their quadratic expansions via (2.1e) and
(2.6d). In particular, on the good sets the quadratic character of the expansions will entail
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the control of the difference of the energy contributions by means of a suitable cancel-
lation (quadratic trick). On the other hand, we term bad sets the corresponding comple-
ments� \U δε and� \Zδε where the quadratic expansions are a priori not available. Using
some nontrivial cancellations, we will show that the difference of the energy contributions
on the bad sets is infinitesimal. Note preliminarily that the integrands on the bad sets blow
up while the bad sets have small measure. Indeed,

|� \ U δε | =

ˆ
�\U δε

1 dx ≤
ε2

c2
el(δ)

ˆ
�

(|Aε| + |Âε|)
2 dx ≤

cε2

c2
el(δ)

, (3.16)

|� \ Zδε | =

ˆ
�\Zδε

1 dx ≤
ε2

c2
h(δ)

ˆ
�

(|zε| + |̂zε|)
2 dx ≤

cε2

c2
h(δ)

. (3.17)

Step 2: Treatment of the dissipation term. As ẑε = zε on � \�ε, one has

Dε(zε, ẑε) =
1
ε

ˆ
�ε

D(I, exp(εz̃)) dx ≤
1
ε

ˆ
�

D(I, exp(εz̃)) dx. (3.18)

In the construction of the recovery sequence in the proof of Lemma 3.4 we have
proved that

lim sup
ε→0

1
ε
D(I, exp(εz̃)) ≤ R(z̃). (3.19)

Finally, by taking the lim sup in (3.18) and using (3.19) we conclude that

lim sup
ε→0

Dε(zε, ẑε) = lim sup
ε→0

1
ε

ˆ
�

D(I, exp(εz̃)) dx ≤
ˆ
�

R(z̃) dx

= D0(z0, ẑ0). (3.20)

Step 3: Limsup for the differences of the elastic energy terms. Let us start by rewriting
the tensors Aε as

Aε = ∇uε − zε + wε − ε∇uεzε + ε∇uεwε

where wε is given by (3.6). On the other hand, we have

Âε =
1
ε

(
(I + ε∇ûε)(I − εzε + εwε) exp(−εz̃)− I

)
= (∇ûε − zε + wε − ε∇ûεzε + ε∇ûεwε) exp(−εz̃)

+
1
ε
(exp(−εz̃)− I ) on �ε,

Âε =
1
ε

(
(I + ε∇ûε)(I − εzε + εwε)− I

)
= ∇ûε − zε + wε − ε∇ûεzε + ε∇ûεwε on � \�ε.
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Hence, one can compute that

Âε − Aε = (∇ûε −∇uε)(I − εzε + εwε)+
1
ε
(exp(−εz̃)− I ),

+ (∇ûε − zε + wε − ε∇ûεzε + ε∇ûεwε)(exp(−εz̃)− I ) on �ε,

Âε − Aε = (∇ûε −∇uε)(I − εzε + εwε) on � \�ε.

In particular, owing to convergence (3.15) and the L∞ bounds for εzε and εwε (see the
discussion after (3.6)) we see that (∇ûε−∇uε)(I − εzε+ εwε) converges to ∇ũ strongly
in L2. Thus, by recalling that wε → 0 weakly in L2 it is a standard matter to check that

Âε + Aε → (∇û0 − ẑ0)+ (∇u0 − z0) weakly in L2(�;Rd×d), (3.21)

Âε − Aε → ∇ũ− z̃ strongly in L2(�;Rd×d). (3.22)

On the good set U δε we will use the assumption (2.1e) to deduce that

W ε
el(Âε)−W

ε
el(Aε) ≤ |Âε|

2
C − |Aε|

2
C + δ(|Âε|

2
C + |Aε|

2
C)

=
1
2 (Âε − Aε) :C(Âε + Aε)+ δ(|Âε|

2
C + |Aε|

2
C). (3.23)

Let us now argue on the bad set � \ U δε by defining

G1,ε := (I + ε∇ûε)(I + ε∇uε)
−1,

G2,ε := (I + εzε)(I + ε̂zε)
−1.

The energy bound (3.10), together with assumption (2.1a), implies that I + ε∇uε is
invertible almost everywhere. Note that G1,ε and G2,ε are chosen in such a way that
F̂el,ε = G1,εFel,εG2,ε. We readily compute that

G1,ε − I = ∇ψε(ϕε)∇ϕε(I + ε∇uε)
−1
− I = ∇ψε(ϕε)− I = ε∇ũ(ϕε)

so that ‖G1,ε − I‖L∞(�\U δε ;Rd×d ) = ε‖∇ũ(ϕε)‖L∞(�\U δε ;Rd×d ) ≤ cε. Moreover,

G2,ε =

{
exp(−εz̃) on (� \ U δε ) ∩�ε,

I on � \ (U δε ∪�ε).

Hence, ‖G2,ε − I‖L∞(�\U δε ;R
d×d
dev )
≤ cε as well.

Next, estimate (4.1) and bound (3.10) allow us to control the elastic part of the energy
on the bad set � \ U δε (where ∇uε and zε are not under control) by cancellation. For this
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we employ the multiplicative estimate (2.1d) provided in (4.1):
ˆ
�\U δε

(W ε
el(Âε)−W

ε
el(Aε)) dx =

1
ε2

ˆ
�\U δε

(Wel(F̂el,ε)−Wel(Fel,ε)) dx

=
1
ε2

ˆ
�\U δε

(Wel(G1,εFel,εG2,ε)−Wel(Fel,ε)) dx

(4.1)
≤

c7

ε2

ˆ
�\U δε

(Wel(Fel,ε)+ c8)(|G1,ε − I | + |G2,ε − I |) dx

≤ c7

(
1
ε2

ˆ
�

Wel(Fel,ε) dx +
c8

ε2 |� \ U
δ
ε |

)
(‖G1,ε − I‖L∞ + ‖G2,ε − I‖L∞)

(3.10)&(3.16)
≤ c

(
1+

1
c2

el(δ)

)
ε. (3.24)

Thus, we can control the difference of the energy contributions in the bad set � \ U δε
where the gradients are large.

Finally, by using convergences (3.21)–(3.22), inequality (3.23) on the good set U δε ,
(3.24) on the bad set � \ U δε , and the L2 boundedness of Âε and Aε, we conclude that

lim sup
ε→0

(ˆ
�

W ε
el(Âε) dx −

ˆ
�

W ε
el(Aε) dx

)
(3.23)
≤ lim sup

ε→0

(
1
2

ˆ
U δε

(Âε − Aε) :C(Âε + Aε) dx + cδ

+

ˆ
�\U δε

(W ε
el(Âε)−W

ε
el(Aε)) dx

)
(3.24)
≤ lim sup

ε→0

(
1
2

ˆ
U δε

(Âε − Aε) :C(Âε + Aε) dx + cδ + c
(

1+
1

c2
el(δ)

)
ε

)
≤

1
2

ˆ
�

(∇ũ− z̃) :C(∇ (̂u0 + u0)− (̂z0 + z0)) dx + cδ

=

ˆ
�

|∇û
sym
0 − ẑ

sym
0 |

2
C dx −

ˆ
�

|∇u
sym
0 − z

sym
0 |

2
C dx + cδ (3.25)

where we have made use of relation (2.3).

Step 4: Upper bound on the hardening energy term. Let us now turn our attention to the
hardening part of the energy. On the good set Zδε we have

W ε
h (̂zε)−W

ε
h (zε) ≤ |̂zε|

2
H − |zε|

2
H + δ(|̂zε|

2
H + |zε|

2
H)

=
1
2 (̂zε − zε) :H(̂zε + zε)+ δ(|̂zε|

2
H + |zε|

2
H). (3.26)

As regards the bad set � \ Zδε one has

W ε
h (̂zε)−W

ε
h (zε) =


1
ε2 W̃h(exp(εz̃)(I + εzε))−

1
ε2 W̃h(I + εzε) on (� \ Zδε) ∩�ε,

0 on � \ (Zδε ∪�ε).
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Hence, by exploiting the local Lipschitz continuity of W̃h we have
ˆ
�\Zδε

(W ε
h (̂zε)−W

ε
h (zε)) dx ≤

c

ε2

ˆ
�\Zδε

|exp(εz̃)− I | |I + εzε| dx

≤
c

ε2 |� \ Z
δ
ε |

cε

c2
h(δ)

(3.17)
≤

cε

c2
h(δ)

. (3.27)

Finally, owing to convergences (3.12)–(3.13) we compute that

lim sup
ε→0

(ˆ
�

W ε
h (̂zε) dx −

ˆ
�

W ε
h (zε) dx

)
(3.26)
≤ lim sup

ε→0

(ˆ
Zδε

1
2
(̂zε − zε) :H(̂zε + zε) dx + cδ

+

ˆ
�\Zδε

(W ε
h (̂zε)−W

ε
h (zε)) dx

)
(3.27)
≤ lim sup

ε→0

(ˆ
Zδε

1
2
(̂zε − zε) :H(̂zε + zε) dx + cδ +

cε

c2
el(δ)

)
=

ˆ
�

1
2
z̃ :H(̂z0 + z0) dx + cδ =

ˆ
�

|̂z0|
2
H dx −

ˆ
�

|z0|
2
H dx + cδ. (3.28)

Step 5: Conclusion of the proof. By collecting (3.25) and (3.28), and recalling that
〈`(t), uε − ûε〉 → 〈`(t), u0 − û0〉 we deduce that

lim sup
ε→0

(
Eε(t, ûε, ẑε)− Eε(t, uε, zε)

)
≤ E0(t, û0, ẑ0)− E0(t, u0, z0)+ cδ.

Finally, the assertion (3.11) follows by taking δ→ 0 and employing (3.20). ut

3.4. Proof of Theorem 2.2

Owing to the above 0-liminf and mutual-recovery-sequence results, the proof of Theorem
2.2 now follows along the lines of the general theory of [MRS08]. We just sketch the main
points of the argument and refer the reader to [MRS08] for the details.

Let (uε, zε) be a sequence of finite-plasticity solutions. The coercivity of the energy
(3.1) entails an a priori bound on (uε, zε). In particular, we have the following.

Corollary 3.7 (A priori bound). There exists c > 0 such that all finite-plasticity solu-
tions (uε, zε) satisfy

∀t ∈ [0, T ] : ‖uε(t)‖H1 + ‖zε(t)‖L2 + ‖εzε(t)‖L∞ +DissDε
(zε; [0, t]) ≤ c. (3.29)

Proof. We exploit the energy balance (2.16) and the bound (3.1) to deduce that, for all
t ∈ [0, T ],
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‖∇uε(t)‖
2
L2 + ‖zε(t)‖

2
L2 + ‖εzε(t)‖

2
L∞ + DissDε

(zε; [0, t])
(3.1)
≤ c

(
1+Wε(uε(t), zε(t))

)
+ DissDε

(zε; [0, t])

≤ c
(
1+ Eε(t, uε(t), zε(t))+ 〈`(t), uε(t)〉 + DissDε

(zε; [0, t])
)

(2.16)
= c

(
1+ Eε(0, u0

ε, z
0
ε)+ 〈`(t), uε(t)〉 −

ˆ t

0
〈 ˙̀, uε〉 ds

)
≤ c

(
1+ Eε(0, u0

ε, z
0
ε)+ ‖`(t)‖H−1‖uε(t)‖H1 +

ˆ t

0
‖ ˙̀‖H−1‖uε‖H1 ds

)
so that the assertion follows by the Gronwall Lemma. ut

Owing to the a priori bound (3.29), we may now exploit the generalized version of Helly’s
Selection Principle in [MRS08, Thm. A.1] (consider also the comments thereafter) and
deduce that, at least for some nonrelabeled subsequence, and all s, t ∈ [0, T ] with s < t ,

δ0(t) := lim
ε→0

DissDε
(zε; [0, t]),

zε(t)→ z0(t) weakly in Z,
DissD0(z0; [s, t]) ≤ δ0(t)− δ0(s).

Moreover, letting t ∈ [0, T ] be fixed we may extract a further subsequence (still not
relabeled, possibly depending on t) such that uε(t) → u∗ weakly in U . We now check
that indeed (u∗, z0(t)) ∈ S0(t). To this end, by density it suffices to consider competitors
(̂u0, ẑ0) = (u∗, z0(t))+ (ũ, z̃) with (ũ, z̃) smooth and compactly supported. By applying
Lemma 3.6 we find a mutual recovery sequence (̂uε, ẑε) such that

E0(t, û0, ẑ0)− E0(t, u∗, z0(t))+D0(z0(t), ẑ0)

≥ lim sup
ε→0

(
Eε(t, ûε, ẑε)− Eε(t, uε(t), zε(t))+Dε(zε(t), ẑε)

)
≥ 0 (3.30)

where the last inequality follows from the stability (2.15) of (uε(t), zε(t)). Hence, we
have proved that (u∗, z0(t)) ∈ S0(t). Note that, given z0(t) ∈ Z , as the functional u ∈
U 7→ E0(t, u, z0(t)) is uniformly convex, there exists a unique u0(t) ∈ U such that
(u0(t), z0(t)) ∈ S0(t). From the fact that (u∗, z0(t)) ∈ S0(t) we conclude that u∗ ≡
u0(t). In particular uε(t)→ u0(t) weakly in U for all t ∈ [0, T ] and the whole sequence
converges.

Let now a partition 0 = t0 < t1 < · · · < tN = t be given. By passing to the lim inf in
the energy balance (2.16) and using Lemmas 3.3 and 3.5 we get

E0(t, u0(t), z0(t))+

N∑
i=1

D0(z0(ti), z0(ti−1))

≤ lim inf
ε→0

(
Eε(t, uε(t), zε(t))+

N∑
i=1

Dε(zε(ti), zε(ti−1))
)

≤ lim inf
ε→0

(
Eε(0, u0

ε, z
0
ε)−

ˆ t

0
〈 ˙̀, uε〉 ds

)
= E0(0, u0

0, z
0
0)−

ˆ t

0
〈 ˙̀, u0〉 ds
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where for the last equality we have used (2.14) and the convergence of uε. Hence, the up-
per energy estimate follows by taking the sup over all partitions of the interval [0, t]. The
lower energy estimate can classically be recovered from stability as in [Mie05, Prop. 2.7].
This proves that (u0, z0) is a linearized-plasticity solution. In particular, as linearized-
plasticity solutions are unique, the whole sequence (uε, zε) converges and no extraction
of subsequences is actually needed.

Along the lines of the proof of Theorem 2.2 (see also [MRS08, Thm. 3.1]) we also
obtain the following convergences.

Corollary 3.8 (Improved convergences). Under the assumptions of Theorem 2.2 we
have, for all t ∈ [0, T ],

ˆ
�

(W ε
el(Aε)+W

ε
h (zε)) dx →

ˆ
�

(|∇u0 − z0|
2
C + |z0|

2
H) dx, (3.31)

DissDε
(zε; [0, t])→

ˆ t

0
R(ż) ds. (3.32)

In particular, owing to the energy convergence (3.31) we can deducing some strong con-
vergence of finite-plasticity solutions to linearized-plasticity solutions.

Corollary 3.9 (Strong convergence). Under the assumptions of Theorem 2.2 for all t ∈
[0, T ] we have (uε(t), zε(t))→ (u0(t), z0(t)) strongly in W1,p(�;Rd) × Lp(�;Rd×d)
for all p ∈ [1, 2).

Proof. Let ν denote the Young measure generated by the sequence (Aε, zε) and define
the measure νsym(As, Z) := ν(As⊕Rd×danti , Z) for all Borel sets (As, Z) ⊂ Rd×dsym ×Rd×d .
Note that νsym is indeed the Young measure generated by (Asym

ε , zε). By using the lower-
semicontinuity Lemma 4.2 and the energy convergence (3.31) we deduce that

ˆ
�

(ˆ
Rd×dsym ×Rd×d

(|Asym
|
2
C + |z|

2
H) dν

sym
x (Asym, z)

)
dx

=

ˆ
�

(ˆ
Rd×d×Rd×d

(|A|2C + |z|
2
H) dνx(A, z)

)
dx

≤ lim inf
ε→0

ˆ
�

(W ε
el(Aε)+W

ε
h (zε)) dx

(3.31)
=

ˆ
�

(|∇u0 − z0|
2
C + |z0|

2
H) dx. (3.33)

Recall from (3.7) that

A
sym
ε = ∇u

sym
ε − z

sym
ε − ε(∇uεzε −∇uεwε)

sym

where the remainder term ε(∇uεzε − ∇uεwε)
sym converges strongly to 0 in Lp for all

p ∈ [1, 2). Hence, the barycenter of νsym is clearly (∇usym
0 − z

sym
0 , z0).
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We readily check that the measure νsym is concentrated in its barycenter. Indeed, if
this were not the case, by uniform convexity we would have

ˆ
�

(|∇u
sym
0 − z

sym
0 |

2
C + |z0|

2
H) dx

<

ˆ
�

(ˆ
Rd×dsym ×Rd×d

(|Asym
|
2
C + |z|

2
H) dν

sym
x (Asym, z)

)
dx,

contradicting (3.33). Here we have used positive definiteness from (2.5) and (2.9). As
νsym is concentrated, we exploit [AGS08, Thm. 5.4.4.iii, p. 127] and deduce that
ˆ
�

f (x,A
sym
ε (x), zε(x)) dx →

ˆ
�

(ˆ
Rd×dsym ×Rd×d

f (x,Asym, z) dν
sym
x (Asym, z)

)
dx

along with the choice

f (x,Asym, z) := |(∇u
sym
0 (x)− z

sym
0 (x), z

sym
0 (x))− (Asym

− zsym, z)|p.

Hence, (Asym
ε , zε) → (∇u

sym
0 − z

sym
0 , z0) strongly in Lp(�;Rd×dsym ) × Lp(�;Rd×d) for

all p ∈ [1, 2). In particular,

∇u
sym
ε = A

sym
ε + z

sym
ε + ε(∇uεzε −∇uεwε)

sym
→ ∇u

sym
0 strongly in Lp

for all p ∈ [1, 2), and the assertion follows by Korn’s inequality. ut

3.5. Sketch of the proof of Theorem 2.3

The argument for Theorem 2.2 can be adapted to prove Theorem 2.3 as well. The only
notable difference is that one has to cope with the fact that the piecewise constant inter-
polants (uε, zε) of the approximate incremental minimizers need not be stable but rather
just approximately stable. More precisely, from (2.17) and the triangle inequality we have

∀(̂u, ẑ) ∈ Q : Eε(t, û, ẑ)− Eε(t, uε(t), zε(t))+Dε(zε(t), ẑ) ≥ −τεαε.

By coordinating with the sequence (uε(t), zε(t)) a mutual recovery sequence (̂uε, ẑε)
via Lemma 3.6 (with (uε(t), zε(t)) instead of (uε(t), zε(t))) the lower bound (3.30) still
follows as τεαε → 0. Hence, the stability of the limit can be recovered. Finally, improved
and strong convergences in the spirit of Corollaries 3.8 and 3.9 can be established as well.

4. Appendix

4.1. Estimate on left and right multiplication

In the proof of Theorems 2.2–2.3 we have made use of the following estimate combining
left and right multiplication.
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Lemma 4.1. Assume (2.1a) and (2.1d). Then

∃c7, c8, γ > 0 ∀G1,G2 ∈ Bγ (I ) ∀F ∈ GL+(d) :
|Wel(G1FG2)−Wel(F )| ≤ c7(W(F)+ c8)(|G1 − I | + |G2 − I |). (4.1)

Proof. Following [Bal02, Lemma 2.5], we find positive constants c0, ĉ0, γ such that, for
all G ∈ Bγ (I ) and all F ∈ GL+(d),

Wel(GF) ≤ ĉ0Wel(F )+ c0, Wel(FG) ≤ ĉ0Wel(F )+ c0, (4.2)

|∂FW(GF)F
>
| ≤ ĉ0Wel(F )+ c0, (4.3)

|F>∂FW(FG)| ≤ ĉ0Wel(F )+ c0. (4.4)

For s ∈ [0, 1], let now Hj (s) := (1− s)I + sGj for j = 1, 2, and note that Hj ∈ Bγ (I ).
As the derivative H ′j = Gj − I is constant we can compute that

Wel(G1FG2)−Wel(F ) =

ˆ 1

0

d

ds
Wel(H1(s)FH2(s)) ds

=

ˆ 1

0
∂FWel(H1FH2) :(H

′

1FH2 +H1FH
′

2) ds

=

ˆ 1

0
∂FWel(H1FH2)(FH2)

> ds : H ′1 +

ˆ 1

0
(H1F)

>∂FWel(H1FH2) ds : H
′

2.

We control the above right-hand side as∣∣∣∣∣
ˆ 1

0
∂FWel(H1FH2)(FH2)

> ds : H ′1

∣∣∣∣∣ (4.3)
≤

(ˆ 1

0
(̂c0Wel(FH2)+ c0) ds

)
|G1 − I |

(4.2)
≤ (̂c2

0Wel(F )+ c0ĉ0 + c0)|G1 − I |,∣∣∣∣∣
ˆ 1

0
(H1F)

>∂FWel(H1FH2) ds : H
′

2

∣∣∣∣∣ (4.4)
≤

(ˆ 1

0
(̂c0Wel(H1F)+ c0) ds

)
|G2 − I |

(4.2)
≤ (̂c2

0Wel(F )+ c0ĉ0 + c0)|G2 − I |,

whence the assertion follows. ut

4.2. Lower-semicontinuity tool

In Section 3 the following lower-semicontinuity lemma is used.

Lemma 4.2 (Lower semicontinuity). Let f0, fε : Rn → [0,∞] be lower semicontinu-
ous,

∀v0 ∈ Rn : f0(v0) ≤ inf
{

lim inf
ε→0

fε(vε)

∣∣∣ vε → v0

}
,
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and wε → w0 weakly in L1(�;Rn). Denoting by ν the Young measure generated by wε
we have ˆ

�

(ˆ
Rn
f0(w) dνx(w)

)
dx ≤ lim inf

ε→0

ˆ
�

fε(wε) dx.

In particular, if f0 is convex we have
ˆ
�

f0(w0) dx ≤ lim inf
ε→0

ˆ
�

fε(wε) dx.

This lemma is in the same spirit of the results by Balder [Bal84a, Thm. 1] and Ioffe
[Iof77] and can be proved via augmenting the variables by including the parameter ε. The
reader is referred to [Ste08, Thm. 4.3, Cor. 4.4] or [MRS09, Lemma 3.1] for a proof in
the case d = 1. In the case of local uniform convergence, a proof can be found in [Li96].
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941–964 (2011) Zbl pre05992248 MR 2859933

[HR99] Han, W., Reddy, B. D.: Plasticity. Mathematical Theory and Numerical Analysis.
Springer, New York (1999) Zbl 0926.74001 MR 1681061

[Hil50] Hill, R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)
Zbl 0041.10802 MR 0037721

[Iof77] Ioffe, A. D.: On lower semicontinuity of integral functionals. I. SIAM J. Control Optim.
15, 521–538 (1977) Zbl 0361.46037 MR 0637234

[Joh76] Johnson, C.: Existence theorems for plasticity problems. J. Math. Pures Appl. 55, 431–
444 (1976) Zbl 0351.73049 MR 0438867
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