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Abstract. The paper studies fiber type morphisms between moduli spaces of pointed rational
curves. Via Kapranov’s description we are able to prove that the only such morphisms are for-
getful maps. This allows us to show that the automorphism group ofM0,n is the permutation group
on n elements as soon as n ≥ 5.
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Introduction

The moduli space M0,n of smooth n-pointed stable rational curves, and its completion,
the Knudsen-Mumford compactification M0,n, is a classical object of study that reflects
many properties of families of rational pointed curves.

Already for small n, the moduli spaces M0,n are quite intricate objects deeply rooted
in classical algebraic geometry. Kapranov showed in [Ka] that M0,n is identified with
the closure of the subscheme of the Hilbert scheme parametrizing rational normal curves
passing through n points in linearly general position in Pn−2. Via this identification, given
n− 1 points in linearly general position in Pn−3, M0,n is isomorphic to an iterated blow-
up of Pn−3 at the strict transforms of all the linear spaces spanned by subsets of the points
in order of increasing dimension (see Section 1).

The aim of this paper is to study automorphisms ofM0,n via Kapranov’s construction.
It is easy and well known that M0,4 ∼= P1 and that any permutation of the markings
induces an automorphism of M0,n; we will refer to such automorphisms as permutation
automorphisms. Moreover, if n = 5,M0,5 is a del Pezzo surface and again it is a classical
result that its automorphism group is S5. This suggests the following conjecture:

Conjecture 1. Aut(M0,n) ∼= Sn for n ≥ 5.

As already said, our idea to attack the conjecture is to study the elements in Aut(M0,n)

via fibrations of M0,n. To do this we identify base point free linear systems on M0,n with
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linear systems on Pn−3 having special base locus. From this point of view, for instance,
the modular forgetful map φI : M0,n → M0,n−|I |, which forgets points indexed by
I ⊂ {1, . . . , n}, corresponds, up to standard Cremona transformations, to a projection
from a linear space.

A permutation automorphism has to permute the forgetful maps ontoM0,n−1 as well.
Hence to a permutation is associated a special birational map of Pn−3 that switches lines
through n − 1 points in general position and rational normal curves. The idea of our
approach is that if one can show that an automorphism of M0,n preserves forgetful maps,
then one obtains major restrictions on the corresponding birational map on the projective
spaces.

Hence to achieve our goal we have to study fibrations on M0,n. In this direction a
crucial result is the following.

Theorem 1. Any dominant morphism f : M0,n → M0,4 ∼= P1 factors as a composition
of forgetful maps.

Theorem 1 is proved by studying pencils of hypersurfaces on Pn−3 induced by base point
free pencils on M0,n. The possibility of classifying such pencils (see Definition 1.7)
comes from the fact that their base locus cannot be too complicated (see Lemma 1.8).
Sean Keel [Ke] proved that the intersection ring ofM0,n is the polynomial ring generated
by the classes of the boundary divisors, modulo relations generated by forgetful maps to
P1 ∼= M0,4. Theorem 1 is closely related to Keel’s result, and might be seen as a new
perspective on it.

Pushing further these techniques via an inductive argument we are able to extend
Theorem 1 to the following setting (see Definition 1.1).

Theorem 2. Let f : M0,n → M0,r1 × · · · ×M0,rh be a dominant morphism with con-
nected fibers. Then f is a forgetful map.

As expected, this together with some computation on certain birational endomorphisms
of Pn−3, is enough to describe the automorphism group ofM0,n. So finally this yields the
desired result.

Theorem 3. Assume that n ≥ 5. Then Aut(M0,n) = Sn, the symmetric group on n ele-
ments.

Theorem 3 has a natural counterpart in the Teichmüller-theoretic literature on automor-
phisms of moduli spacesMg,n developed in a series of papers by Royden, Earle–Kra, and
others ([Ro], [EK], [Ko]), but we do not see a straightforward way to go from one to the
other.

In this paper we study “modular” fibrations on M0,n via the study of linear systems
on Pn−3. This program has been recently pursued also by Bolognesi [Bo] in his descrip-
tion of birational models of M0,n. In a forthcoming paper [BM], we plan to study fibra-
tions of M0,n onto either low dimensional varieties or with low n or with general linear
fiber.

In the appendix we present an alternative proof, suggested by James McKernan and
Jenia Tevelev, of Theorem 1, as well as an example and suggestions of Rahul Pandhari-
pande for Mg,n.
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1. Preliminaries

We work over the field of complex numbers. An n-pointed stable curve of arithmetic
genus 0 is the datum (C; q1, . . . , qn) of a tree of smooth rational curves and n ordered
points on the nonsingular locus of C such that each component of C contains at least
three points which are either marked or singular points of C. If n ≥ 3,M0,n is the smooth
(n−3)-dimensional scheme constructed by Knudsen–Mumford, which is the fine moduli
scheme of isomorphism classes [(C; q1, . . . , qn)] of stable n-pointed curves of arithmetic
genus 0.

For any i ∈ {1, . . . , n} the forgetful map

φi : M0,n→ M0,n−1

is the surjective morphism which associates to the isomorphism class [(C; q1, . . . , qn)]

of a stable n-pointed rational curve (C; q1, . . . , qn) the isomorphism class of the (n− 1)-
pointed stable rational curve obtained by forgetting qi and, if necessary, contracting to
a point each component of C containing only qi , one node of C and another marked
point, say qj . The locus of such curves forms a divisor, which we will denote by Ei,j .
The morphism φi also plays the role of the universal curve morphism, so that its fibers
are all rational curves transverse to n − 1 divisors Ei,j . The divisors Ei,j are the im-
ages of n − 1 sections si,j : M0,n−1 → M0,n of φi . The section si,j associates to
[(C; q1, . . . , q

∨

i , . . . , qn)] the isomorphism class of the n-pointed stable rational curve
obtained by adding at qj a smooth rational curve with marking of two points, labeled by
qi and qj . Analogously, for every I ⊂ {1, . . . , n}, we have well defined forgetful maps
φI : M0,n → M0,n−|I |. From our point of view the important part of a forgetful map is
the set of forgotten indices, more than the actual marking of the remaining. For this we
slightly abuse the language and introduce the following definition.

Definition 1.1. A forgetful map is the composition of φI : M0,n → M0,r with an auto-
morphism g ∈ Aut(M0,r).

In order to avoid trivial cases we will always tacitly consider φI only if n− |I | ≥ 4.
Besides the canonical class KM0,n

, on M0,n are defined line bundles 9i for each i ∈
{1, . . . , n} as follows: the fiber of 9i at a point [(C; q1, . . . , qn)] is the tangent line TC,pi .
Kapranov [Ka] proves the following:

Theorem 1.2. Let p1, . . . , pn ∈ Pn−2 be points in linear general position. Let Hn be the
Hilbert scheme of rational curves of degree n−2 in Pn−2. ThenM0,n is isomorphic to the
subschemeH ⊂ Hn parametrizing curves containing p1, . . . , pn. For each i ∈ {1, . . . , n}
the line bundle 9i is big and globally generated and it induces a morphism fi : M0,n→

Pn−3 which is an iterated blow-up of the projections from pi of the given points and of all
strict transforms of the linear spaces they generate, in the order of increasing dimension.

We will use the following notions:
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Definition 1.3. A Kapranov set K ⊂ Pn−3 is an ordered set of n − 1 points in linear
general position, labeled by a subset of {1, . . . , n}. For any J ⊂ K, the linear span of
points in J is said to be a vital linear subspace of Pn−3. A vital cycle is any union of vital
linear subspaces.

To any Kapranov set, labeled by {1, . . . , i − 1, i + 1, . . . , n}, is uniquely associated
a Kapranov map fi : M0,n → Pn−3, with 9i = f ∗i OPn−3(1), and to a Kapranov map is
uniquely associated a Kapranov set up to projectivity.

Definition 1.4. Given a subset I = {i, i1, . . . , is} ⊂ {1, . . . , n} and the Kapranov map
fi : M0,n→ Pn−3, let I ∗ = {1, . . . , n} \ I . Then we indicate with

H i∨
I∗ :=: V

i
I\{i} :=: V

i
i1,...,is

:= 〈pi1 , . . . , pis 〉 ⊂ Pn−3

the vital linear subspace generated by the pij ’s, and with

EI := Ei,i1,...,is := f
−1
i (V iI )

the divisor associated on M0,n.

Notice that H h∨
ij is the hyperplane missing the points pi and pj and the set

K′ = (K \ {pi, pj }) ∪ (H∨ij ∩ 〈pi, pj 〉)

is a Kapranov set in H h∨
ij .

In particular for any i ∈ {1, . . . , n} and Kapranov set K = {p1, . . . , p
∨

i , . . . , pn} the
divisors Ei,j = f−1

i (pj ) are defined and this notation is compatible with the one adopted
for the sections Ei,j of φi . More generally, for any i ∈ I ⊂ {1, . . . , n} the divisor EI has
the following property: its general point corresponds to the isomorphism class of a rational
curve with two components, one with |I |+1 marked points, the other with |I ∗|+1 marked
points, glued together at the points not marked by elements of {1, . . . , n}. It follows from
this picture that EI = EI∗ and that EI is abstractly isomorphic to M0,|I |+1 ×M0,|I∗|+1.
The divisorsEI parametrise singular rational curves, and they are usually called boundary
divisors. A further property of EI is that for each choice of i ∈ I , j ∈ I ∗, EI is a section
of the forgetful morphism

φI\{i} × φI∗\{j} : M0,n→ M0,|I∗|+1 ×M0,|I |+1.

This morphism is surjective and all fibers are rational curves. With our notations, fi(EI )
is a vital linear space of dimension |I | − 2 if i ∈ I , and a vital linear space of dimension
|I ∗| − 2 if i /∈ I .

Definition 1.5. A dominant morphism f : X→ Y is called a fiber type morphism if the
dimension of the general fiber is positive, i.e. dimX > dimY . A fibration is a fiber type
morphism with connected fibers.

We are interested in describing linear systems on Pn−3 that are associated to fibrations
on M0,n. For this purpose we introduce some definitions.
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Definition 1.6. A linear system on a smooth projective variety X is defined to be a pair
(L, V ), where L ∈ Pic(X) is a line bundle and V ⊆ H 0(X,L) is a vector space. If
no confusion is likely, we will let L = (L, V ). In this case we will also abuse notation
and write A ∈ L to mean A ∈ P(V ), or in other words, to say that A is an effective
divisor defined by some member of the linear system. Let g : Y → X be a birational
morphism between smooth varieties. Let A ∈ L be a divisor and AY the strict transform
on Y . Then g∗L = AY + 1A for some effective g-exceptional divisor 1A. For A ∈ L
general, 1A = 1L does not depend on A. This allows one to define the strict transform
of L = (L, V ) via g as

LY :=: g−1
∗ L := (g∗L−1L, VY )

where VY is the vector space spanned by the strict transform of a base of general elements
in V .

Definition 1.7. Let K ⊂ Pn−3 be a Kapranov set and fi : M0,n → Pn−3 the associated
map. An MK-linear system on Pn−3 is a linear system L ⊆ |OPn−3(d)|, for some d, such
that f−1

i∗ L is a base point free linear system.

Let L be an MK-linear system, and fix a Kapranov map f1 : M0,n→ Pn−3. To better
understand the properties ofMK-linear systems let us look closer at f1. Let ε : Y → Pn−3

be the blow-up of p2 ∈ K with exceptional divisor E. Then Kapranov’s map f1 can be
factored as follows:

M0,n

f1
��

g // Y

ε~~
Pn−3

with a birational morphism g : M0,n → Y . The map g is obtained by blowing up, in the
prescribed order, the strict transform of every vital cycle of codimension at least 2 in Y .
In particular it is an isomorphism on every codimension 1 point of E ⊂ Y . With this
observation we are able to weakly control the base locus of LY , the strict transform linear
system.

Lemma 1.8. Let L be an MK-linear system without fixed components, associated to the
Kapranov map fi : M0,n → Pn−3. Let ε : Y → Pn−3 be the blow-up of the Kapranov
point pj ∈ K with exceptional divisor E. Let LY be the strict transform. Then the linear
system LY |E has no fixed components.

Proof. Let

M0,n

fi
��

g // Y

ε~~
Pn−3

be the commutative diagram as above, with exceptional divisor E ⊂ Y . We noticed that
g is an isomorphism on every codimension one point of E. That is, g is an isomorphism
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outside of a codimension two locus of E. By hypothesis L and hence LY have no fixed
components. By construction g is a resolution of BsLY . This yields

codE(BsLY ∩ E) ≥ 2,

and LY |E has no fixed components. ut

A further property inherited from Kapranov’s construction is the following.

Remark 1.9. Let H h∨
ij be the hyperplane missing the points pi and pj and

K′ = (K \ {pi, pj }) ∪ (H∨ij ∩ 〈pi, pj 〉)

the associated Kapranov set. Then L|H∨ij is an MK′ -linear system.

Basic examples of fibrations are forgetful maps. Consider any set I ⊂ {1, . . . , n} and
the associated forgetful map φI . If j /∈ I a typical diagram we will consider is

M0,n

fj
��

φI // M0,n−|I |

fh
��

Pn−3 πI // Pn−3−|I |

where the fj and fh are Kapranov maps and πI is the projection from V
j
I . In this case an

MK-linear system associated to 8I is given by |O(1)⊗ I
V
j
I

| and if FI is any fiber of φI ,
then fj (FI ) is a linear space of codimension |I |.

It is important for what follows to explicitly understand the rational map πI when
j ∈ I . For this we use Cremona transformations.

2. Cremona transformations and MK-linear systems

Definition 2.1. Let K be a Kapranov set with Kapranov map fi : M0,n → Pn−3. Then
let

ωKj : P
n−3 99K Pn−3

be the standard Cremona transformation centered on K \ {pj }. It is the map induced by
forms of degree n− 3 with points of multiplicity n− 4 at K \ {pj }.

Remark 2.2. Via Kapranov’s construction we may associate a Kapranov set labeled by
{1, . . . , n}\{j} to the right hand side Pn−3, and in this notation Kapranov [Ka, Proposition
2.14] proved that

ωKj = fj ◦ f
−1
i

as birational maps. By a slight abuse of notation we may define ωKj (V
i
I ) := fj (EI,i),

even if ωj is not defined on the general point of V iI .



The automorphism group of M0,n 955

Remark 2.3. Let ωKh be the standard Cremona transformation centered on K \ {ph},
and K′ the Kapranov set associated to the hyperplane H i∨

jk . Then for h 6= j, k we have

ωK
h|H i∨

jk

= ωK
′

h . This extends to arbitrary vital linear spaces. It follows from the definitions

that ωKh (V
i
I ) = V

h
I\{h},i if h ∈ I and ωKh (V

i
I ) = V

h
(I∪{i})∗\{h} if h ∈ I ∗.

Let us start with the special case of forgetful maps onto M0,4 ∼= P1. Let

φI : M0,n→ P1 ∼= M0,4

be a forgetful map and M = φ∗IO(1). Choose a Kapranov map fi : M0,n → Pn−3 with
L := fi∗M ⊂ |O(1)|. As already noticed, this is equivalent to choosing i 6∈ I . Then
BsL = P is a codimension 2 linear space and we may assume, after reordering the
indices, that

K \ (BsL ∩K) = {p1, p2, p3} and i = 4.

To understand what is the linear system L5 := f5∗M we use Kapranov’s description
of the map ωK5 (see Definition 2.1).

This is well known but we decided to write it down for readers less familiar with the
classical subject of Cremona transformations. The map is the standard Cremona transfor-
mation centered on {p1, p2, p3, p6, . . . , pn}. Let

ωK5 : P
n−3 99K Pn−3

=: P

be the map given by the linear system∣∣∣OPn−3(n− 3)⊗
⊗

i∈{1,2,3,6,...,n}
In−4
pi

∣∣∣.
Let

Z

p

}}

q

��
Pn−3

ωK
5 // P

be the usual resolution obtained by blowing up, in dimension increasing order, all lin-
ear spaces spanned by points in {p1, p2, p3, p6, . . . , pn}. Let l ⊂ P be a general line;
then q−1 is well defined on l and p(q−1(l)) is a rational normal curves passing through
{p1, p2, p3, p6, . . . , pn}. Let Ei ⊂ Z be the exceptional divisor corresponding to the
blow-up of the points pi . Then q−1(l)·Ei = 1, for i ∈ {1, 2, 3, 6, . . . , n}, while q−1(l)·F

vanishes for any other p-exceptional divisor. This description allows us to easily compute
the degree of L5:

degL5 = degωK5 (L) = (n− 3)−
∑
h6=5

multph L = 2.

This yields ωK5 (L) ⊂ |O(2)|.
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To complete the analysis we have to understand the base locus of this system of
quadrics. Let K5 be the Kapranov set labeled by {1, 2, 3, 4, 6, . . . , n}.

In our convention (see Remark 2.2), for {i, j} ⊂ {1, 2, 3} we have

ωK5 (V
4
i,j ) = V

5
{i,j,4}∗\{5}.

That is, this line is sent to a codimension two linear space. Let Ph = ωK5 (V
4
i,j ) for

{i, j, h} = {1, 2, 3}. The general element in L intersects a general point of V 4
i,j and

therefore its transform via ωK5 has to contain Ph. The hypothesis 5 ∈ I tells us that
the map ωK5 is well defined on the general point of P = V 4

I . Let P4 = ωK5 (P ) and
S := ωK5 (〈p1, p2, p3〉). Then P4 has to be contained in BsL5 and

S =

4⋂
i=1

Pi .

In conclusion we have:

• BsL4 =
⋃4
i=1 Pi ⊃ K5,

• Sing(L5) = S.

Hence the linear system L5 is a pencil of quadrics with four codimension two linear
spaces in the base locus. It is the cone, in Pn−3, over a pencil of conics through four
general points and with vertex V 5

I\{5}.
To study fibrations from M0,n it is important to control the base locus of MK-linear

systems. The easiest base loci are those of forgetful maps φI : M0,n→ M0,r . For this we
introduce the following definitions.

Definition 2.4. Let πi : Pr−2
→ Pr−3 be the projection from a Kapranov point pi , and

L = |OPr−2(1)⊗ Ipi |. Define

Cir−3 := ω
K
i (L) ⊂ |OPr−2(r − 2)|

to be the transform of hyperplanes through the point pi . We say that an MK-linear sys-
tem M on Pn−3 has base locus of type 8r if Supp(BsM) is either a codimension r − 2
linear space or the cone over Bs Cir−3 with vertex a linear space of codimension r − 1.
Equivalently M has base locus of type 8r if it is an MK-linear system with base locus
supported on a linear space of codimension r−2 up to standard Cremona transformations.

In this notation Ci1 is a pencil of plane conics through four fixed points. The above
construction shows that to a forgetful map φI : M0,n → M0,4 are associated MK-linear
systems with base locus of type84. This is actually the main motivation of our definition.
We will use and improve this observation first in Proposition 2.5 and further in Lemma
3.5. The main point in our construction is that the base locus of MK-linear systems is
enough to characterise linear systems inherited by forgetful maps.

The special case of forgetful maps onto P1 is the one we use in this paper. Nonethe-
less we would like to stress that a similar behavior applies to an arbitrary forgetful map
onto M0,r , for r < n.



The automorphism group of M0,n 957

Proposition 2.5. Let φI : M0,n → M0,r be a forgetful morphism. Assume that 1 ∈ I
and let

M0,n

f1
��

φI // M0,r

fi
��

P n−3 πI // Pr−3

be the usual diagram. Then πI is given by a sublinear system L1 ⊂ |O(r−2)|, the general
fiber of πI is a cone, with vertex V 1

I\{1} ⊂ Pn−3, over a rational normal curve of degree
n− 2− |I |, and L1 has base locus of type 8r .

Proof. The morphism 8I can be factored as follows:

M0,n

φI
��

φI\{1} // M0,r+1

φ1{{
M0,r

Hence we have the induced diagram

M0,n

f1 ##
φI
��

φI\{1} // M0,r+1

f1

##

φ1

{{
M0,r

fr

##

Pn−3

πI

��

πI\{1} // Pr−2

ϕ{{
Pr−3

where πI\{1} is a linear projection and ϕ is the map induced by C2
r . The claim follows. ut

3. Base point free pencils on M0,n

A base point free pencil L on M0,n is the datum of a couple (L, V ) on M0,n, where L is
a line bundle onM0,n and V ⊂ H 0(M0,n, L) is a two-dimensional subspace. The natural
map V ⊗OM0,n

→ L is surjective and this datum is equivalent to a surjective morphism

f : M0,n→ P1 such that L = f ∗(O(1)).
Fix a Kapranov map fi : M0,n → Pn−3 and let Li := f∗L. Then the linear system

Li is an MK-linear system, inducing a birational map π i : Pn−3 99K P1. By definition
of MK-linear system, L = f−1

i∗ Li and f is a, not necessarily minimal, resolution of the
indeterminacy of the map π i . To the map f we therefore associate a diagram
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M0,n

fi
��

f // P1

∼=

��
Pn−3 π i // P1

where π i := f ◦ f−1
i . The rational map π i is uniquely associated to a pencil Li ⊂

|OPn−3(di)| free of fixed divisors on Pn−3. We have Li = (OPn−3(di),Wi) where Wi ⊂

H 0(Pn−3,O(di)) has dimension two, and any element of V is the strict transform of an
element of Wi , i.e. the strict transform map f−1

i∗ : Wi → V is an isomorphism and the
support of the cokernel of the evaluation map

evi : Wi ⊗OPn−3 → Li

on Pn−3 does not have divisorial components. In particular the support of the cokernel of
evi is the base locus BsLi of Li .

The most important example of dominant maps f : M0,n → P1 is given by the
forgetful maps already described in Section 2. The goal of this section will be to prove
that in fact any surjective map with connected fibers f : M0,n→ P1 is in fact a forgetful
map. The criterion we are going to use in order to understand whether a morphism f :

M0,n→ P1 is a forgetful map is the following:

Proposition 3.1. Let f : M0,n → X be a surjective morphism. Let A ∈ Pic(X) be a
base point free linear system and Li = fi∗(f ∗(A)). Assume that multpj Li = degLi for
some j . Then f factors through the forgetful map φj : M0,n→ M0,n−1.

Let f : M0,n → M0,r be a surjective morphism and π : Pn−3 99K Pr−3 the induced
map. Let Li = fi∗(f

∗(g−1
j∗ (O(1)))) and assume that Li ⊂ |OPn−3(1)|. Then f is a

forgetful map.

Proof. Let φj : M0,n → M0,n−1 be the forgetful morphism and Fj a general fiber. We
already noticed that fi(Fj ) is a line through the point pj , for i 6= j . If multpj Li =
degLi then the restriction of Li to each such line has a trivial moving part. This gives
f ∗(A) · Fj = 0. The linear system f ∗(A) is base point free hence f ∗(A) is numerically
trivial relatively to the morphism φj , i.e. f ∗(A) · C = 0 for any curve C contracted
by φj . By construction, fibers of φj : M0,n → M0,n−1 are rational curves. This yields
the vanishing R1φj∗OM0,n

= 0, and it is enough to conclude that any φj -numerically

trivial linear system is the pull-back of a linear system in M0,n−1. Hence fibers of φj are
contracted by f .

For any h 6= i, j the map φj has a section sj,h : M0,n−1 → Ej,h ⊂ M0,n described in
Section 1, and then a morphism g := f ◦sj,h : M0,n−1 → X is given such that f = g◦φj .
Notice that g does not depend on the choice of h 6= i, j .

Assume that Li = |OPn−3(1) ⊗ IV iI | for some vital cycle V iI ⊂ Pn−3. Then for any

vital point pk ∈ V iI we have multpk Li = degLi . Hence by the first statement we infer
that f factorizes through φk for any k ∈ I . Then there is a map g : M0,r → M0,r such
that f = g ◦ φI . Let γ : Pr−3 99K Pr−3 be the induced map. Then γ is associated to a
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linear system of hyperplanes and it is therefore a projectivity that possibly permutes the
Kapranov set on Pr−3 (keep in mind our Definition 1.1). ut

Definition 3.2. Let Li := (Li,Wi) be an MK-linear system on Pn−3 and Ai ∈ Li a
general element. Let H = H i∨

h,k be a vital hyperplane. We say that the restriction of Li
to H is dominant if the restriction map resH : Wi → H 0(H,Li|H ) is injective. Let
pj ∈ K be a Kapranov point. Let εj : Yj → Pn−3 be the blow-up of pj with exceptional
divisor Ej . Assume that ε∗j Ai = AiY +mEj . Then

Li,Yj := (ε
∗

j Li −mEj ,W
Y
i )

is the strict transform of Li . We say that Li is dominant at the first order of pj if the
pull-back map ε∗j : Wi → H 0(Ej , (ε

∗

j Li − mEj )|Ej ) is injective and Li,Yj |Ej is without
fixed divisors.

We sketch here the ideas underlying our argument in order to characterise base point
free pencils on M0,n.

We proceed by induction on n and assume that all base point free pencils on M0,n−1
inducing a surjective map f : M0,n−1 → P1 with connected fibers are forgetful maps.
The result in Lemma 3.5 makes induction perfectly suitable for n ≥ 7. Hence we prefer to
leave as initial steps both the easy and well known case of the del Pezzo surfaceM0,5 (see
also [BM]) and M0,6. The latter has been fully studied in [FG] and from our viewpoint is
slightly more complicated than the others. Hence we decided to lean on [FG] instead of
giving a direct proof; the interested reader can consult the arXiv version of our paper for
this, [BMx].

According to Proposition 3.1, for the induction step it is enough to show that there
exists a Kapranov map fi and a Kapranov point pj such that

multpj Li = degLi .

To produce this point we find a vital hyperplane H such that the restriction of Li to
H is dominant. Then the hyperplane H has a Kapranov set and it is the image under a
Kapranov map of M0,n−1 (see Remark 1.9). By induction we may find the required point
for Li|H and then lift it to the linear system Li . Here is a list of concerns in applying this
idea:

• How can we find a vital hyperplane H such that the restriction of Li to it is dominant?
• How to compare multpj Li|H with multpj Li?
• What if the restricted morphism has either disconnected fibers or fixed components?

As a matter of fact, even if (Li,Wi) is free of fixed divisors and if it induces a map with
connected fibers, this may not be the case for the restricted linear system on any vital
hyperplane H ⊂ Pn−3. Keep in mind that there are only finitely many such hyperplanes.

The desired hyperplane H is produced in Lemmas 3.3 and 3.4. The basic idea is that
the base locus of Li cannot be empty because Pn−3 does not carry base point free pencils
so that there exists some point pj contained in the base locus of Li . Notice that this does
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not mean that such a point is an isolated component of BsLi . Thanks to Lemma 1.8 we
can prove that the MK-linear system (Li,Wi) is dominant at the first order of pj . To
apply induction on the exceptional divisor over the point pj we have to study pencils
with possibly disconnected fibers. This is done in Lemma 3.5. With this and induction
hypothesis we know that the pencil induced on the exceptional divisor has base locus of
type 84. Hence we may apply induction and find a hyperplane H such that Li restricted
to H is dominant.

Finally, we use Lemma 3.6 in order to show that we can in fact exclude the presence
of fixed divisors on the restricted linear systems, so that we can really infer properties of
(Li,Wi) from properties of the restriction to some hyperplane H .

We now prove the above mentioned lemmas. Let us fix a pencil Li , without fixed
components, together with the usual diagram

M0,n

fi
��

f // P1

∼=

��
Pn−3 π i // P1

Let pj ∈ K ∩ BsLi be a point and εj : Yj → Pn−3 the blow-up of pj with exceptional
divisor Ej . Let Li,Yj = ε∗j Li −mjEj be the strict transform of Li , for some positive mj .

Lemma 3.3. The linear system Li = (Li,Wi) is dominant at the first order of pj and for
any A1, A2 ∈ Li we have

multpj A1 = multpj A2.

Let H = H i∨
hk be a vital hyperplane containing pj , and A ∈ Li a general element. Then

multpj A = multpj A|H .

Proof. In the above notation we know, by Lemma 1.8, that Li,Yj |Ej has no fixed com-
ponents. Hence the image of the pull-back map ε∗j : Wi → H 0(Ej ,Li,Yj |Ej ) is not
one-dimensional. Since dimWi = 2 we conclude that ε∗j is injective as required. The
injectivity of ε∗j forces every element in Li to have the same multiplicity at pj .

Let HYj be the strict transform of H on Yj . Then again by Lemma 1.8 we know
that BsLi,Yj 6⊃ E ∩ HYj . Therefore the general element A ∈ Li satisfies multpj A =
multpj A|H . ut

Lemma 3.4. Let H = V iI ⊂ Pn−3 be a vital hyperplane such that pj ∈ H . If f (Ei,I )
is a point and if Hj is the strict transform of H under εj , then Li,Yj |Ej is trivial along
Hj ∩ Ej .

Proof. The morphism fi is a resolution of indeterminacies of π i and fi factors through εj .
Hence the result follows. ut

In Section 2 we proved that every forgetful map onto P1 induces an MK-linear system
of degree at most 2 with base locus of type 84. One cannot expect that all morphisms
to P1 have bounded degree. On the other hand, under suitable hypothesis, the base locus
of MK-linear systems is unaffected by connectedness of fibers.
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Lemma 3.5. Assume that every dominant morphism g : M0,n→ P1 with connected
fibers is a forgetful map. Then BsLi is of type 84. If moreover n ≥ 6 there are vital
points pj satisfying multpj Li = degLi .

Proof. Let h : M0,n → C be the Stein factorization of f . Let ν : C̃ → C be the
normalization. Then there is a unique map f ′ : M0,n → C̃ such that h = ν ◦ f ′.
The variety M0,n is rational, therefore C̃ ∼= P1 and |f ∗O(1)| ⊂ |f ′∗O(γ )| for some
integer γ . By hypothesis f ′ is a forgetful map, so we may choose i in such a way that
|fi∗f

′∗O(1)| ⊂ |OP n−3(1)| satisfies

Bs |fi∗f ′∗O(1)| = V jI ,

where V jI is a codimension two irreducible vital space. Then elements in the linear sys-
tem Li are unions of γ hyperplanes containing V jI . Hence

Supp(BsLi) := Supp(Bs |fi∗f ∗O(1)|) = Supp(Bs |fi∗f ′∗O(1)|) = V jI
and mult

V
j
I

Li = γ . To conclude it is enough to apply standard Cremona transformations
to this configuration as described in Section 2. In particular if n ≥ 6 all linear systems of
type 84 are cones with nonempty vertex and therefore there is at least one point pj with
multpj Li = degLi . ut

We conclude this technical part by taking into account possible fixed divisors.

Lemma 3.6. Let H = H i∨
h,k be a vital hyperplane in Pn−3, with j 6= h, k. Assume that

Li = (Li,Wi) has a dominant restriction to H . Assume that F is a fixed divisor of the
restricted system Li|H and that pj 6∈ F . Then

F = 〈pl | l 6= h, k, j 〉 = V
i
{i,h,k,j}∗ .

Proof. The fixed divisor F ⊂ H is in the base locus of (Li,Wi). By hypothesis, Li has no
fixed divisors. Hence the support of F must be an irreducible component of BsLi . In par-
ticular F does not contain ph, pk , and therefore cannot intersect the line 〈ph, pk〉 = V ih,k .
By hypothesis, pj 6∈ F . Hence the only possibility left is F = 〈pl | l 6= h, k, j 〉. ut

We are ready for the proof of the following:

Theorem 3.7. Let f : M0,n→ P1 ∼= M0,4 be a fibration. Then f is a forgetful map.

Proof. We use induction on n. The result is known for n ≤ 6 [FG]. Let fn : M0,n →

Pn−3 be a Kapranov map with K = {p1, . . . , pn−1}. Let Ln = (Ln, Vn) = fn(f ∗(O(1)))
be the associated linear system. Then the linear system Ln is a pencil of hypersurfaces,
without fixed components, say Ln = {A1, A2}, and it is an MK-linear system.

From Lemma 3.3 we know that there exists p1 ∈ K∩BsLn such that Ln is dominant
at the first order of p1. From Lemma 3.3 we get

m = multp1 A1 = multp1 A2 and multp1 L = multp1 L|H n∨
h,k

for h, k 6= 1. (1)

Let εj : Yj → Pn−3 be the blow-up of pj with exceptional divisor Ej , for j =
1, . . . , n− 1. By induction and Lemma 3.5, the base locus BsLn,Y1 |E1 is of type 84.
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Claim 1. We may assume that Supp(BsLn,Y1 |E1) is a codimension two linear space,
obtained by intersecting the ε1-strict transform of V n1,...,n−4 with E1.

Proof of Claim 1. Since BsLn,Y1 |E1 is of type 84, if its support is not a codimension
two linear space, it is the intersection with E1 of the strict transform of the union of four
codimension two spaces Pn−i for i = 1, . . . , 4, containing a codimension three linear
space S. Let us assume that S = V n1,...,n−5, and that Pn−i = V n1,...,n−5,n−i for i = 1, . . . , 4.

In particular K ⊂ BsLn and we apply Lemma 3.3 to all points of K. Let us focus
on the point pn−4. If Supp(BsLn,Yn−4 |En−4) is not a codimension two linear space, it
consists of the strict transform of four codimension two linear spaces intersecting at a
codimension three space, obtained by removing a point from V n1,...,n−5,n−4. By hypothe-
sis, n ≥ 7, hence we may assume that this point is not p1. This produces new components
in Supp(BsLn,Y1 |E1), and contradicts the type 84. ut

LetH be a vital hyperplane containing p1 but not containing V n1,...,n−4. Then Claim 1 and
Lemma 3.4 imply that the restriction of Ln to H is dominant.

Claim 2. We may choose H in such a way that Ln|H is free of fixed divisors.

Proof of Claim 2. Let H1 = H n∨
n−4,n−3 and H2 = H n∨

n−5,n−2 be two vital hyperplanes.
Assume that the restriction of Ln to Hi has a nonempty fixed divisor Fi for i = 1, 2.
Then from Lemma 3.6 the supports of F1 and of F2 are respectively V n2,...,n−5,n−2,n−1
and V n2,...,n−6,n−4,n−3,n−1.

Lemma 3.3 applied to the point pn−1 shows that Ln dominates pn−1 at first order.
Let Kn−1 be the induced Kapranov set on En−1. Then Supp(BsLn,En−1 |En−1) has two
irreducible components meeting in codimension 4. This is not possible for a linear system
with base locus of type 84. ut

Let H be a vital hyperplane such that the restriction of Ln to H is dominant and Ln|H is
free of fixed divisors. Then by Lemmas 3.5 and 3.3 there is a Kapranov point ph ∈ H
such that

multph Ln = multph Ln|H = degLn|H = degLn

so that

multph Ln = degLn.

We conclude by Proposition 3.1 that f factors via the forgetful map φh. That is, f = g◦φh
for some morphism g : M0,n−1 → P1 with connected fibers. By induction hypothesis, g
is a forgetful map. Hence f is forgetful. ut

Corollary 3.8. Let f : M0,n → P1 ∼= M0,4 be a nonconstant morphism. Then f factors
through a forgetful map and a finite morphism.

Proof. Taking the Stein factorization and the normalization, as in Lemma 3.5, we reduce
the claim to Theorem 3.7. ut
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4. Morphisms to M0,r

In this final section we apply Theorem 3.7 to deduce that in fact any fibration f : M0,n→

M0,r is a forgetful map. Note that f is dominant, hence r < n. As a corollary, we compute
the automorphism group of M0,n.

Theorem 4.1. Let f : M0,n→ M0,r be a fibration. Then f is a forgetful map.

Proof. We use induction on r . The first step, for r = 4, is the content of Theorem 3.7.
Let us fix a Kapranov map fr : M0,r → Pr−3 and consider the forgetful map

φr−1 : M0,r → M0,r−1,

the Kapranov map fr−1 : M0,r−1 → Pr−4 and the projection π : Pr−3 99K Pr−4

given by the linear system 3r−1 = |OPr−3(1) ⊗ Ipr−1 |. Then by induction hypothesis
φr−1 ◦ f : M0,n → M0,r−1 is dominant and with connected fibers, hence a forgetful
map. This means that we may choose a Kapranov map fn : M0,n→ Pn−3 such that

fn∗((fr ◦ f )
−1
∗ (3r−1)) ⊂ |OPn−3(1)|.

Recall that, from Proposition 3.1, we obtain the conclusion if we show that

fn∗((fr ◦ f )
∗(OPr−3(1))) ⊂ |OPn−3(1)|.

By construction we have 3r−1 = |OPr−3(1) ⊗ Ipr−1 | and f−1
r (pr−1) = Er,r−1. To

conclude it is enough to show that f ∗(Er,r−1) is fn-exceptional.
The following diagram will help us along the proof:

M0,n

fn
��

f // M0,r

fr
��

φr−1 // M0,r−1

fr−1
��

Pn−3 ϕ // Pr−3 π // Pr−4

Let L be the linear system associated to the map

π ◦ ϕ = fr−1 ◦ φr−1 ◦ f ◦ f
−1
n .

By induction hypothesis we may assume that fn is such that L = |O(1) ⊗ IP |, where
P = 〈pr−1, . . . , pn−1〉. We fix notations in such a way that (π◦ϕ)(pj ) = pj for j < r−1,
and π(pj ) = pj for j < r − 1.

For any Ej,r 6= Er−1,r the map φr−1|Ej,r : M0,r−1 → M0,r−1 is a forgetful map onto
M0,r−2. Then for any Ei,r ⊂ M0,r with i < r − 1, we have

f ∗(Ei,r) = (φr−1 ◦ f )
∗(Ei,r−1) = Ei,n.

This shows that f ∗(Ei,r) is fn-exceptional for i < r − 1.
Notice that, once we fix fr and choose the forgetful map φr−1, we have fn such that

f ∗(Ei,r) = Ei,n for i < r − 1.
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We are assuming r ≥ 5, hence, once we fix the Kapranov map fr : M0,r → Pr−3

there are at least four possible forgetful maps φi : M0,r → M0,r−1 with i < r . To
any such φi we may associate a Kapranov map fni : M0,n → Pn−3 in such a way that
f ∗(Ej,r) = Ej,ni for j 6= i. On the other hand, the divisor Ei,j ⊂ M0,n is sent to a
point only by fi and fj . We may assume that n1 = n2 = n. The image of the divisor
Ei,r via fn∗f ∗ does not depend on the map φi . Therefore fn∗f ∗(Ei,r) is a point for any
i = 1, . . . , r − 1.

By definition
f ∗r (O(1)) = f−1

r∗ 3r−1 + Er−1,r ,

hence

L = fn∗((fr ◦ f )∗(O(1))) = fn∗((fr ◦ f )∗(3r−1)) ⊂ |OPn−3(1)|,

and ϕ is given by a linear system of hyperplanes. This is equivalent to our statement by
Proposition 3.1. ut

This easily extends to morphisms onto products of M0,ri .

Corollary 4.2. Let f : M0,n→ M0,r1 × · · · ×M0,rh be a dominant fibration. Then f is
a forgetful map.

Proof. It is enough to compose f with projections onto factors. ut

From Theorem 4.1 an automorphism ofM0,n must preserve all forgetful maps. This gives
a very strong condition on the induced linear system of Pn−3. We are ready to prove the
main result on Aut(M0,n). This is classical for n = 5.

Theorem 4.3. Assume that n ≥ 5. Then Aut(M0,n) = Sn, the symmetric group on n
elements.

Proof. Let g ∈ Aut(M0,n). Let φi : M0,n → M0,n−1 be the i-th forgetful map. Then by
Theorem 4.1, g ◦ φi is a map forgetting an index ji ∈ {1, . . . , n}.

This means that we can associate to g the permutation {j1, . . . , jn} ∈ Sn. Let χn :
Aut(M0,n) → Sn be the associated map. It can be easily checked that χn is a surjec-
tive morphism. A simple transposition is realized, for instance, by the standard Cremona
transformations we recalled in Definition 2.1.

The main point is to determine the kernel. Assume that χn(g) = 1. That is, g ◦ φi
forgets the i-th index for any i ∈ {1, . . . , n}. Fix a Kapranov map fn : M0,n → Pn−3.
The automorphism g induces a Cremona transformation γn on Pn−3 that stabilizes the
lines through the Kapranov points and also the rational normal curves through K. Let
Hn ⊂ |O(d)| be the linear system associated to γn. Let li ⊂ Pn−3 be a general line
through pi and 0n a general rational normal curve through K. Then

deg(γn(li)) = d −multpi Hn = 1

for any i ∈ {1, . . . , n− 1}, and

deg(γn(0n)) = (n− 3)d −
n−1∑
i=1

multpi Hn = n− 3.
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These yield
n− 3 = (n− 3)d − (n− 1)(d − 1)

and finally d = 1. That is, γn is a projectivity that fixes n − 1 points. Therefore γn and
hence g are the identity. ut

Appendix

In this appendix we collect results which came out of conversations and help to improve
and clarify the content of this paper. We start by reporting a nice proof of Theorem 3.7
kindly suggested by James McKernan and Jenia Tevelev [McT]. We thank James and Jenia
for their help in translating our projective arguments into a better known terminology and
also for producing a proof that best shows the “almost toric” nature of M0,n.

Proof of Theorem 3.7 ([McT]). We proceed by induction on n. We may assume that
n ≥ 7. Let fij be the restriction of f to Ei,j ' M0,n−1. There are two cases:

(1) fij is never constant.
(2) fij is constant for at least one pair {i, j}.

Suppose we have (1). We will derive a contradiction. By induction, we know that
each fij is a composition of a forgetful map f ′ij : Eij → P1 and a finite morphism
gij : P1

→ P1. Notice that the forgetful maps f ′ij and f ′kl agree on the intersections
Eij ∩ Ekl each time these divisors have a nonempty intersection, i.e. when {i, j} and
{k, l} do not contain common elements. Indeed, both f ′ij and f ′kl restrict to some forgetful
maps Eij ∩ Ekl ' M0,n−2 → M0,4 ' P1. But

(f ′ij )
∗OP1(a) ' (fij )

∗OP1(1) ' (fkl)∗OP1(1) ' (f ′kl)
∗OP1(b)

for some positive integers a and b, and a forgetful mapM0,n−2 → M0,4 ' P1 is uniquely
determined by the pull-back of OP1(1) (up to a multiple).

There are two cases, up to the obvious symmetries:

f ′12 =

{
π3,4,5,6,

π{1,2},3,4,5.

Consider f67. Up to even more symmetries, we must have

f ′67 =

{
π3,4,5,{6,7} if f ′12 = π3,4,5,6,

π2,3,4,5 if f ′12 = π{1,2},3,4,5.

Possibly switching {1, 2} and {6, 7} we might as well assume that

f ′12 = π{1,2},3,4,5 and f ′67 = π2,3,4,5.

It follows that f restricted to both δ12∩δ34 and δ34∩δ67 is constant. But then f ′34 = π1267
and so f ′15 = π{1,5},2,6,7. On the other hand f ′15 = π{1,5},2,3,4, a contradiction.
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So we must have (2). Assume that f contracts, say, E1n. Let fn : M0,n → Pn−3 be
the Kapranov map associated to the Kapranov set {p1, . . . , pn−1}, that is, the map that
blows up n − 1 points {p1, . . . , pn−1} in linear general position, and every linear space
spanned by these points. Then fn contracts E1,n to the point p1. Let ψ : Ln → Pn−3 be
the birational morphism which blows up every linear space blown up by π , except those
which contain p1. Notice that Ln is a toric variety, and there is a birational morphism
ϕ : M0,n → Ln which factors fn = ψ ◦ ϕ. This yields an induced rational map g =
f ◦ ϕ−1

: Ln 99K P1. Then the rational map g : Ln 99K P1

(a) is regular at p1;
(b) has a base locus of codimension 2 (as for any rational pencil);
(c) has a base locus contained in the indeterminacy locus of the birational map

ϕ−1
: Ln 99K M0,n. The latter is the union of linear subspaces passing through p1

(in the Kapranov model).

It follows that the map g : Ln 99K P1 is actually regular. As for any morphism to P1 with
connected fibers, it is given by a complete linear series. Therefore it is a toric morphism.
To conclude, we prove that it is one of the forgetful maps by studying the induced map of
fans.

The fan Fn of Ln is obtained by taking the standard fan for Pn−3 (with rays
R1, . . . , Rn−2, of which the first n − 2 correspond to coordinate hyperplanes) followed
by its barycentric subdivision. A toric morphism Ln → P1 corresponds to a linear map
g : Rn−3

→ R that sends each cone of Fn to either {0}, the positive ray R+, or the negative
ray R−. We may assume without loss of generality that g(R1) = R+ and g(R2) = R−.
The fan of Ln contains the ray C = R1+R2 and we should have g(C) = 0. Therefore, g
sends primitive generators of R1 and R2 to opposite vectors v1 and v2 in R.

We claim that g(Ri) = 0 for i > 2. Assuming the claim, we then have v1, v2 = ±1
and the toric morphism is a resolution of the linear projection from the intersection of the
first two coordinate hyperplanes, which corresponds to one of the forgetful maps.

Back to the claim, suppose for contradiction that g(R3) = R+. Then g(−R3) = R−.
But−R3 is the barycenter of the top-dimensional cone of Fn spanned by all Ri for i 6= 3.
Hence Fn contains a cone with rays R1 and −R3, which does not map to any cone. ut

Remark A.1. It is interesting to note that the space Ln is a moduli space in its own right,
introduced by Losev and Manin [LM], and the morphism of M0,n to Ln has a natural
modular interpretation.

Recall that [GKM, Corollary 0.10] proves that for g ≥ 2 and n ≥ 1 any fibration
of Mg,n factors via a forgetful map. Pandharipande [Pa2] observed that this could be the
starting point to compute the automorphism group of this moduli space (see [Ma]). We do
not dwell on this here but simply report a clever example of Pandharipande in genus 1 (see
also [Pa1] for similar constructions). Quite surprisingly, this is the only genus in which
there are fiber type morphisms that do not factor via forgetful maps.

Example A.2 (Pandharipande). If [(E, p)] is any stable 1-pointed elliptic curve, the
complete series OE(2p) is a pencil and induces a map ip : E → P 1. The map which
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associates to [E,p] the fourtuple of its ramification points gives an isomorphism

f : M1,1 → M0,4/S3 = P1,

where the symmetric group S3 acts by permuting three of the marked points, in such a
way that the distinguished point in f ([E,p]) is ip(p).

Take a nonsingular elliptic curve [E,p, q] with p 6= q. Let x, y, z be the three points
in P1 over which ip ramifies and distinct from ip(p). We can associate to [(E;p, q)] the
fourtuple [ip(q); x, y, z] ∈ M0,4/S3 = P1. This defines a rational map

φ : M1,2 99K M0,4/S3 = P1.

Claim. The rational map φ extends to a dominant morphism which does not factor
through any forgetful map.

Proof of the Claim. The map φ surely is surjective when restricted to fibers of the forget-
ful maps φq and φp; in particular this shows that φ does not factor through any forgetful
map. Moreover, this implies that φ extends to the section F ∼= M1,1 of both φp and φq as
the map f defined above. ut
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briche” MUR.

References

[Bo] Bolognesi, M.: Forgetful linear systems on the projective space and rational normal
curves over MGIT

0,2n. Bull. London Math. Soc. 43, 583–596 (2011) Zbl 1229.14026
MR 2820147

[BM] Bruno, A., Mella, M.: On some fibrations of M0,n. arXiv:1105.3293

[BMx] Bruno, A., Mella, M.: The automorphisms group of M0,n. arXiv:1006.0987
[EK] Earle, C. J., Kra, I.: On isometries between Teichmüller spaces. Duke Math. J. 41, 583–591

(1974) Zbl 0293.32020 MR 0348098
[FG] Farkas, G., Gibney, A.: The Mori cones of moduli spaces of pointed curves of small genus.

Trans. Amer. Math. Soc. 355, 1183–1199 (2003) Zbl 1039.14008 MR 1938752
[Gi] Gibney, A.: Fibrations ofMg,n. Phd thesis, Univ. of Texas at Austin (2000) MR 2701178

[GKM] Gibney, A., Keel, S., Morrison, I.: Towards the ample cone of Mg,n. J. Amer. Math. Soc.
2, 273–294 (2001) Zbl 0993.14009 MR 1887636

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1229.14026&format=complete
http://www.ams.org/mathscinet-getitem?mr=2820147
http://arxiv.org/abs/1105.3293
http://arxiv.org/abs/1006.0987
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0293.32020&format=complete
http://www.ams.org/mathscinet-getitem?mr=0348098
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1039.14008&format=complete
http://www.ams.org/mathscinet-getitem?mr=1938752
http://www.ams.org/mathscinet-getitem?mr=2701178
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0993.14009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1887636


968 Andrea Bruno, Massimiliano Mella

[Ka] Kapranov, M.: Veronese curves and Grothendieck–Knudsen moduli spacesM0,n. J. Alge-
braic Geom. 2, 239–262 (1993) Zbl 0790.14020 MR 1203685

[Ke] Keel, S.: Intersection theory of moduli space of stable n-pointed curves of genus zero.
Trans. Amer. Math. Soc. 330, 545–574 (1992) Zbl 0768.14002 MR 1034665

[KM] Keel, S., McKernan, J.: Contractible extremal rays of M0,n. arXiv:alg-geom/9607009
[Ko] Korkmaz, M.: Automorphisms of complexes of curves on punctured spheres and on punc-

tured tori. Topology Appl. 95, 85–111 (1999) Zbl 0926.57012 MR 1696431
[LM] Losev, A., Manin, Y.: New moduli spaces of pointed curves and pencils of flat connections.

Michigan Math. J. 48, 443–472 (2000) Zbl 1078.14536 MR 1786500
[Ma] Massarenti, A.: The automorphisms group of Mg,n. arXiv:1110.1464 [math.AG]
[McT] McKernan, J., Tevelev, J.: Private communication
[Mo] Morrison, I.: Mori Theory of Moduli Spaces of Stable Curves. Projective Press, New York

(2007)
[Pa1] Pandharipande, R.: A geometric construction of Getzler’s elliptic relation. Math. Ann. 313,

715–729 (1999) Zbl 0933.14035 MR 1686935
[Pa2] Pandharipande, R.: Private communication
[Ro] Royden, H. L.: Automorphisms and isometries of Teichmüller spaces. In: Advances in the

Theory of Riemann Surfaces, L. V. Ahlfors et al. (eds.), Ann. of Math. Stud. 66, Princeton
Univ. Press, 369–383 (1971) Zbl 0218.32011 MR 0288254

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0790.14020&format=complete
http://www.ams.org/mathscinet-getitem?mr=1203685
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0768.14002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1034665
http://arxiv.org/abs/alg-geom/9607009
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0926.57012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1696431
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1078.14536&format=complete
http://www.ams.org/mathscinet-getitem?mr=1786500
http://arxiv.org/abs/1110.1464
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0933.14035&format=complete
http://www.ams.org/mathscinet-getitem?mr=1686935
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0218.32011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0288254

	Preliminaries
	Cremona transformations and M_K-linear systems
	Base point free pencils on M_0,n
	Morphisms to M_0,r

