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Abstract. Dirac-harmonic maps are a mathematical version (with commuting variables only) of
the solutions of the field equations of the non-linear supersymmetric sigma model of quantum field
theory. We explain this structure, including the appropriate boundary conditions, in a geometric
framework. The main results of our paper are concerned with the analytic regularity theory of such
Dirac-harmonic maps. We study Dirac-harmonic maps from a Riemannian surface to an arbitrary
compact Riemannian manifold. We show that a weakly Dirac-harmonic map is smooth in the inte-
rior of the domain. We also prove regularity results for Dirac-harmonic maps at the boundary when
they solve an appropriate boundary value problem which is the mathematical interpretation of the
D-branes of superstring theory.
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1. Introduction

In [6], a variational problem has been introduced that is an analogue for ordinary, that is,
commuting fields of the non-linear supersymmetric sigma model of quantum field theory.
Of course, this model is no longer supersymmetric, but it does share the other symmetries
of the sigma model, in particular conformal invariance. Also, this model has a surprisingly
subtle geometric and analytic structure. In the present paper, we explore some further
geometric and analytic aspects. In particular, we look at boundary conditions that are
of the type of the D-branes of superstring theory and involve the chirality operator of
a spin structure. After a careful geometric derivation of these boundary conditions, we
shall provide the analytic regularity theory for solutions of the field equations at such a
boundary.
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Let us now describe the model in some more detail. For the non-linear supersymmetric
sigma model of quantum field theory (see e.g. [8] or [21] for mathematical background),
one considers a map

Y. M > N (1.1)

from a (2|2)-dimensional supermanifold M* to some Riemannian manifold N. With local
even coordinates x!, x2 and odd (i.e., anticommuting) coordinates o 92, the action is

S = / 1e*P(DyY, DgY) dd*x dd6* ddo' (1.2)

where € is the usual antisymmetric tensor, the brackets (-, -) denote the Riemannian metric
on N (by conformal invariance, we may assume that the domain metric is flat), and d6
indicates that a Berezin integral has to be taken.

The map Y has the following expansion:

Y = ¢(x) + Yo (x)0% + F(x)0'6>. (1.3)

Here, ¢ is an ordinary map from the ordinary manifold M underlying the supermanifold
M?* into N; in fact, M, being 2-dimensional, is considered as a Riemann surface. More-
over ¥ is an anticommuting spinor with values in the pull-back tangent bundle ¢ ' T'N.
In fact, ¥ is a real Euclidean Majorana spinor with respect to a real 2-dimensional Eu-
clidean representation of the Clifford algebra CI(2, 0). The field F is needed to close
the supersymmetry algebra off-shell, but will not be of importance for our subsequent
purposes.

Using this expansion and carrying out the 6-integration, the Lagrangian density in
(1.2) becomes

Saol? + Yy, By) — Le®P e’ (Yo, R(Yp, ¥y)¥s). (1.4)

D is the Dirac operator along the map ¢; it involves the ordinary Dirac operator § of M
and the Levi-Civita connection of N (see e.g. [6, 21]). || - || indicates again the metric
of N, and R is its curvature. In fact, the curvature term arises from the Berezin integration
of the F'-term, and again, we shall not need it below.

The reason why the spinor field v is taken as odd is that for ¥ even, (¥, IDv) would
vanish upon integration by parts. This in turn results from the fact that we are working
with a Clifford algebra (CI(2, 0) in the present case) with a real representation. Were the
representation imaginary, in contrast, the integral of (y, Dv) would vanish for ¥ odd,
but no longer for ¥ even. Of course, CI(2, 0) does not have such a representation, but the
Clifford algebra CI(0, 2) does. This is the basis of the model of [6].

To be concrete, consider the representation of CI(0, 2) with

0 i 0 1
eu»sz @, @Hn=<4 Q, (15)

acting on spinors. For a spinor field w : R> — C2, we then have the Dirac operator

_ (0 i dwi/0x1 0 1\ (dwi/ox)\ _ . (0w2/dz
Jo = (i o) (3w2/3x1> + <_1 o) (3w2/8x2> = 2i <8w1/82) : (1.6)
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that is, the Cauchy—Riemann operator. Let @ and ¢ be two spinor fields with compact
support on R?; we then have the integration by parts formula

/<w, Iy = f<aw, ¥, (1.7)

that is, # is formally self-adjoint.

We can thus introduce the model of [6]. Let M be a Riemann spin surface, ¥ M the
spinor bundle over M, and N a compact Riemannian manifold without boundary. Let ¢
be a map from M to N, and ¥ a section of the bundle =M ® ¢~ 'TN. Let V be the
connection induced from those on XM and ¢~ 'TN. The Dirac operator ) along the
map ¢ is defined by Dy := y, - V,, ¥, where y, is a local orthonormal frame on M. We
consider the functional

L, ¥) = /I‘W(Ild¢llz+<w, Dy). (1.8)

Except for the curvature term (which we do not need as we are not concerned with su-
persymmetry), the Lagrangian density here is formally the same as in (1.4). However, in
(1.8), all fields are commuting.

The critical points (¢, ¥) of (1.8) are called Dirac-harmonic maps from M to N.
They constitute the object of our study in this paper.

The focus of our paper is on boundary conditions and boundary regularity for such
maps. The first issue is the identification of the correct boundary conditions. In a certain
sense, we are translating the boundary conditions of the non-linear supersymmetric sigma
model (see [1, 2]), into a geometric framework. Our Riemannian geometric perspective
will clarify some geometric aspects. Let thus M be a Riemann surface with boundary 9 M.
This boundary should be mapped to a D-brane. Geometrically, this means that we have
a submanifold S of N, and ¢ (dM) should be contained in S in such a way that it is
critical for (1.8) with respect to to all such boundary values. This simply means that, in
the absence of the field ¥, ¢ (dM) should meet S orthogonally. In the harmonic map
literature, this is called a free boundary condition with support S. In analytic terms, this
is a combination of Dirichlet and Neumann boundary conditions. Analytically, this is
usually treated by some reflection method (see e.g. [13, 20, 26]). That is, one doubles M
to M by reflection across the boundary d M and extends ¢ to M by reflection across the
submanifold S. This clarifies the geometric meaning of the tensor R utilized in [1, 2], as
we shall explain in more detail below. In any case, the reflection across S is particularly
well controlled when S is a totally geodesic submanifold of N. This condition is also
required (in different terminology) in [1, 2]. In fact, we shall not need this condition for
the formulation of the boundary condition, nor for the proof of continuity of our solutions,
but we shall need it to get higher regularity of solutions at the boundary.

As our model couples the harmonic map equation to a Dirac type equation, besides
the regularity theory for harmonic maps, also the one for solutions of Dirac equations,
in the interior and at the boundary, is relevant. Some pertinent references are [3, 4, 5, 9,
23]. In our setting, for the spinor ¥ we shall need a chirality boundary condition (first in-
troduced by Gibbons—Hawking—Horowitz—Perry [10]). We explain this here only for the
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linear case. The coupling between the boundary conditions for the fields ¢ and ¢ in the
non-linear case will be worked out in detail below. Mathematically, the chirality condition
is explained in [16]. We consider the chirality operator G = iy;)», and we can decom-
pose the spinor bundle ¥ M of M into the eigensubbundles of G for the eigenvalues +1.
Restricting to the boundary, we have the decomposition S := T M|yy = VT @ V. With
7 being the outward unit normal vector field on 9 M, the orthogonal projection onto the
eigensubbundle V¥,

B LXS) —» L2 (VH), vy U £iG)y,

defines a local elliptic boundary condition for the Dirac operator # (see [16]). We say a
spinor Y € WH43(S M) satisfies the boundary condition BT if

B* ¥|sum = 0. (1.9)

Our main analytical results are then concerned with weak solutions of the field equa-
tions with (1.8), that is, for weakly Dirac-harmonic maps (again, see the main text, e.g.
Definition 2.1, for a precise definition) with such boundary conditions. We shall prove

Theorem 1.1. Let M be a compact Riemann spin surface with boundary oM, N be any
compact Riemannian manifold, and S be a closed submanifold of N. Let (¢, V) be a
weakly Dirac-harmonic map from M to N with free boundary on S. Then for any a €
0, 1),

¢ € CO%(M, N).

Theorem 1.2. Let M be a compact Riemann spin surface with boundary oM, N be any
compact Riemannian manifold, and S be a closed, totally geodesic submanifold of N.
Let (¢, ¥) be a weakly Dirac-harmonic map from M to N with free boundary on S and
suppose that ¢ € cOe(M, N) for any o € (0, 1). Then there exists B € (0, 1) such that

peCPM,N), yecP(=M®¢ 'TN).

In fact, we shall start by showing the regularity of weakly Dirac-harmonic maps in
the interior of M. This was shown independently by Wang—Xu [28] by a different method
inspired by [24, 25]. Our methods will also utilize the general strategy of Riviere [24]
who had achieved an important generalization of the earlier results of Wente [27] and
Hélein [14, 15]. Riviere’s approach has been adapted to Dirichlet boundary regularity by
Miiller—Schikorra [22], and this work will also be useful for our purposes.

2. Interior regularity

Let M be a Riemann surface equipped with a conformal metric, which by conformal in-
variance of our functionals can then be assumed to be Euclidean, and with a fixed spin
structure, ¥ M the spinor bundle, and let ¢ be a smooth map from M to another Rieman-
nian manifold (N, g) of dimension d > 2. Denote by ¢! T'N the pull-back bundle of TN
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by ¢ and consider the twisted bundle EM @ ¢~ 'TN.On M ®¢ ' TN thereis a metric
induced from the metrics on XM and ¢~ ' T N. Also we have a natural connection V on
M ® ¢~ 'T N induced from those on £ M and ¢! T N. In local coordinates, the section
¥ of ©M ® ¢! T N can be expressed as

d

Y =) 9 () @y (g,

j=1

where v/ is a spinor and {dy/} is the natural local basis on N. Then V can be expressed
as

d d
Ve =) VY 0@y @)+ Y Th@@)Ve! (x) - v () ® 9y (¢ (x).

i=1 i,jk=1
Now we define the Dirac operator along the map ¢ by

DY = yy - %yaw

=D I @) @y () + T (@ () Vo & ()Y - P (x) ® 3y (p(x)),

d
i,j.k=1

where y1, y» is the local orthonormal frame on M and § := Zi: 1 Ya = Vy, is the usual
Dirac operator.
Set

XM,N):={(¢p,¥)|¢dp € C®M,N)and ¥ € C°°(EM®¢71TN)}.
On X (M, N), we consider the following functional

0’ )

0xq 0Xy

L(p,¥) = fM[|d<¢>|2 + (¥, DY) = fM [gij(@ + gij ()W, IDW)}

(Recall that the domain metric can be taken to be Euclidean.) The Euler-Lagrange equa-
tions of L(-, -) are

(@) = SR @OW VYY) =0, m=1,....d, (2.10)
BY' =iy + T @)’ ve - ¥* =0, i=1.....d, @11

where t(¢) is the tension field of the map ¢. Solutions (¢, ¥) to (2.10) and (2.11) are
called Dirac-harmonic maps from M to N.

Let (N’, g’) be another Riemannian manifold and f : N — N’ a smooth map. For
any (¢, ) € X(M, N) we set

¢'=fo¢ and ¥ = fiy.
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It is clear that v’ is a spinor along the map ¢’. Let A be the second fundamental form
of f,ie., A(X,Y) = (Vxdf)(Y) forany X,Y € I'(T N). The tension fields of ¢ and ¢’
are related by

2
t'(¢) = Z Ado(Ya), dP(va)) +df (T(9)). (2.12)
a=1

It is also easy to check that the Dirac operators I and p" corresponding to ¢ and ¢’
respectively are related by

DY = fu(DY) + AdP(Va), Vo - V), (2.13)

where A(d¢ (Vo) Vo - ¥) i= L Ve - ¥/ ® A(Dy', dy/). Furthermore, if £ : N — N’ is
an isometric immersion, then A(., -) is the second fundamental form of the submanifold
N in N’, and

ViE = —P(& X) + VxE,  Vy¥ =VxY +A(X,Y),

forall X,Y € I'(TN) and & € [(TLN), where P(&; ) denotes the shape operator.
We can rewrite equations (2.10) and (2.11) in terms of A and the geometric data of the
ambient space N'.

Denote

R(¢,¥) == 3R} (Y', Vo' - /) @ ay™.
By the equation of Gauss, we have (see [6, 7, 19, 29])
R(¢, V) =Re P(AdP (Vo) Vo - V): V) + R($. V), (2.14)

where P(AWA} (Vo). Yo - ¥); ¥) = P(A@Y', 3y7); 3y) (¥, yu - ¥7)@],. Therefore, by
using (2.12) and (2.13), and identifying ¢ with ¢’ and  with v/, we can rewrite (2.10)
and (2.11) as follows:
7' (¢) = Add (Vo). dd(Va)) + Re P(AWAP (Vo). Vo - ¥); ¥) + R'(P, ¥),  (2.15)
DY =Add V), Yo - V). (2.16)

In order to introduce the notion of weak solutions of the Euler—Lagrange equations, we
embed N isometrically into some N’ = RX via the Nash-Moser embedding theorem.
Then the above equations become

—Ap = A(dp,d¢) + Re P(AdP(Va), Vo - V) V), (2.17)
IV = Add (Vo). Vo - V). (2.18)

Denote

H'M,N):={¢p € H(M,RX) | ¢(x) € N ae. x € M},
W3 (EsM ® ¢ 'TN)

= {I/f eN(EIM®¢™'TN) ‘/ |V |43 <oo,/ |w|4<oo}.
M M
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Here, € I'(SM ® ¢~ T N), the spinor field along the map ¢, should be understood as
a K -tuple of spinors (!, ..., ¥X) satisfying

K

Z viwi =0 for any normal vector v = Z v E; at ¢ (x),
i i=1

where {E; | i = 1, ..., K} is the standard basis of RX. Denote

X\t 3(M,N) = {(¢, ¥) € H' (M, N) x WH3(EM @ ¢! TN)}.

Critical points (¢, ¥) € Xll Qf/3 (M, N) of the functional L(-, -) are called weakly Dirac-
harmonic maps from M to N (see [7]); equivalently, we have

Definition 2.1. We call (¢, V) € Xll’fﬂ (M, N) a weakly Dirac-harmonic map from M
to N if

/M[<d¢, dn) + (A(d¢. d¢) + Re P(A(dP (Va): Yo - ¥): %), 1)1 =0, (2.19)

/M[wf, 9E) — (AW (e, u - 1) E)] = O, (2.20)

forall n € Hl N L®(M,RX) and & € W,** N L®(=M @ RK).

Let us recall the following regularity result for two-dimensional conformally invariant
variational problems by Riviére [24]. Denote by By := {(x1, x2) € R? | x% +x§ < 1} the
unit disk in R? and write z = x; + ixa.

Theorem A. Let u € H'(B1, RX) be a weak solution of
—Au=Q-Vu (2.21)
where Q = (Q;)lf,»,jSK € L%(By, so(K) @ R?). Then u is continuous.

To prove the smoothness of weakly Dirac-harmonic maps, it is sufficient to show the
continuity of the map (see [7]):

Theorem B. Let (¢, V) : By — N be a weakly Dirac-harmonic map. If ¢ is continuous,
then (¢, V) is smooth.

When N = S¢, the continuity of weakly Dirac-harmonic maps was proved by Chen—Jost—
Li—Wang [7], using Wente’s Lemma [27]. Zhu [29] extended this result to the case that
N is a compact hypersurface in the Euclidean space R?*!. The case of a general target N
was shown independently by Wang—Xu [28], where Hélein’s technique of moving frame
[14, 15] and the Coulomb gauge construction, due to Riviere [24] and Riviere—Struwe
[25], are combined.

Here, following the notations in [29], we show that the extrinsic equations (2.17) in
the case of a general compact target can also be written in the same form as (2.21) and
hence can be used to prove the continuity of weakly Dirac-harmonic maps.
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Theorem 2.1. Let M be a Riemann spin surface, N be any compact Riemannian mani-
fold, and (¢, ) a weakly Dirac-harmonic map from M to N. Then ¢ is continuous in the
interior of M, and consequently (¢, ) is smooth.

Proof. We follow the approach in [29]. We assume without loss of generality that
M = Bj and take the orthonormal basis y; = dy,, Y2 = 0dx,. Fix a canonical coordi-
nate (yl, e, yK) of RE. Letv;,l =d+1,..., K, be an orthonormal frame field for
the normal bundle TN to N (the target N considered is always assumed to be oriented).
Denote by v; the corresponding unit normal vector field along the map ¢. We write

p=9¢'0, v=y/ @,
and denote ¢y = P« (Vo) = ¢x,, @ = 1,2. Then, we proceed as in [29] to write (2.17)

and (2.18) in the following extrinsic form in terms of the orthonormal frame field vy,
l=d+1,...,K, for T*N:

- A¢" —¢a(¢aa’j —%aj ;)

) . av v T,m av' v T,m
1 k . J 1 [ l l 222

a l
Jym = a—’ M Ve - (2.23)

Here T denotes the orthogonal projection RX — TyN and (-)! denotes the i-th compo-
nent of a vector in RX. Note that ¢o € TN and (avl/ayJ)J- € T1N, hence

9
Zq&’(a;’i) —0, Va,lj, (2.24)

where L denotes the orthogonal projection RX — TyLN . Decomposing the vector
dv;/dy/ into its tangent part and normal part and then applying (2.24), we get

3\)[ av; av; T av; L i v T’ii
= = — — =|— . (225
8yf¢°‘ <8y1)¢“ <<3yf> oy a=\oyi) 22
Thus, the equations (2.22) and (2.23) become
— A m _ i ]_ i
¢ =9, <¢ By </) oyl 1)
) 8 v T,m v T,i v T,m
RUULIRYRRYY A i et ! (2 au
Ay ((a ) ) G () 7) e

8 l
Jym = a_l "ol ve Y. (2.27)
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Denote
m
Q =<A’}n), iim=1,...,K,
i
where
v " . .
A = —l.vlm— l.vll ¢
ay/ ay’

N 31)1 T,i 81)] T,m 31)] T,i 81)[ T,m <wk I//])
dyJ ayk ayk dy/ N ’

ov! v\
m . L m [ J
L= —V; — —V
i <8y1 Loyl 1)%

N 81)[ T,i 31)1 T,m 31)] T,i avl T,m <wk 1//])
oy/ ayk ayk oyJ 2 '
Then we can write (2.26) in the form
— AP™ = Q" - V'

It is easy to verify that @ = (7)< m<k € L*(Bi,s0(K) ® R?). By Theorem A, we
have ¢ € C O(B1, N), and consequently (¢, ¥) is smooth. O

3. Free boundary problem for Dirac-harmonic maps

In this section, we shall study the free boundary problem for Dirac-harmonic maps.

First, we impose the free boundary condition for the map in the classical sense,
namely, the boundary of the domain is mapped freely into a submanifold of the target.
Next, motivated by the supersymmetric sigma model with boundaries (see Albertsson—
Lindstrom—Zabzine [1, 2]), we impose the boundary condition for the spinor field using
a chirality operator.

To begin, let us recall the chirality boundary conditions for the usual Dirac operator
(see [16]).

Chirality boundary conditions for the Dirac operator §

Let M be a compact Riemannian spin surface with boundary dM # (. Then M admits
a chirality operator G = y (w2), the Clifford multiplication by the complex volume form
w2 = iy1y2. The operator G is an endomorphism of the spinor bundle ¥ M satisfying

G*=1, (Gy,Gg) = (¥, ¢), (3.28)
Vx(GY)=GVxy, X -Gy =-G(X- ), (3.29)

forall X € I'(TM) and ¢, ¢ € I'(XM). Here I denotes the identity endomorphism
of TM.
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Denote by
S =XM|ym

the restricted spinor bundle with induced Hermitian product.
Let 7 be the outward unit normal vector field on dM. One can verify that iG :
I'(S) — I'(S) is a self-adjoint endomorphism whose square is the identity:

NGy, ¢) = (Y, nGy), (3.30)
(HG)? = I. (3.31)

Hence, we can decompose S = V* @ V~, where V¥ is the eigensubbundle correspond-
ing to the eigenvalue £1. One verifies that the orthogonal projection onto the eigensub-
bundle V¥,

BE:L*S) > L*(VH), ¢ U £rG)y,

defines a local elliptic boundary condition for the Dirac operator § (see [16]). We say a
spinor Y € WH43(S M) satisfies the boundary condition B if

BEY|ym = 0. (3.32)

The following proposition was shown in [16]. For completeness, we present the proof
using our notations.

Proposition 3.1. If ¢, v € WL4/3(Z M) satisfy the boundary condition B* then
n-Y,0) =0 ondM. (3.33)

In particular,

/ (-, @) =0. (3.34)
oM

Proof. Let ¢, € WU4/3( M) satisfy the boundary condition B¥, i.e., BXy/ |y =
B=¢|3 = 0. Then

nGy =Ty, nGo=TFg.
Hence, applying the properties (3.28)—(3.31) of G, we get
(i . p) = (Gii - . Go) = (=i, —iiiGo) = (=D F D (Y 7ig) = (i - ¥, ¢).
Now (3.33) and (3.34) follow immediately. ]

Let M be the upper-half Euclidean space Ri. We identify the Clifford multiplication by
the orthonormal frame dx1, dx; with the following matrices:

(0 i (0 1
n=\.: o) »=\_1 o)
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Then we can take the chirality operator G := iy1y> = (} %) Note that 7i = —dx, =

—y2=(97,'). and hence we can calculate BX = J(I +7 - G) = )

By the standard chirality decomposition, we can write ¢ = (gj) then the boundary
condition (3.32) becomes

Yy =FyY_ onoM.
Next, we will extend the chirality boundary condition to the Dirac operator along a

map.

Chirality boundary condition for the Dirac operator Ip along a map ¢

When M # @, the Dirac operator I) along a map ¢ is in general not formally self-adjoint.
In fact, we have the following property analogous to one for the usual Dirac operator 4.

Proposition 3.2.

fMW, o) =/M<1Dw, ¢>—/3M<ﬁ-w, 0)

forall yr, ¢ € C*(EM ® ¢~'TN), where (, ) = gij (@) (Y', ¢/).

Proof. Choose a local orthonormal frame {y, }3:1 on M. Given ¥,¢ € C®(ZM ®
¢_1TN), define

=0 ¥ o)V

then f is independent of the choice of such a frame y,, and hence is globally defined. We
calculate

/Mw, De) = /Muﬁw, o) — /M Ve (Ve - Yo 0} = /Mupw, o) — /Mdivf
=/ <1251/f,<0>—/ f-ﬁ=/ <w,¢>—/ Yo - Vs @) (Var 11)
M oM M oM

=/ w)w,w—/ v ).
M oM

Here in the last step we have used the fact that 7 = (y,, 1)V |

To extend the chirality boundary condition to the Dirac operator /) along a map from M
to N, we need some geometric structure on the target N.

Given a submanifold S of N, we assume that there is an endomorphism R(y) :
TyN — TyN forall y € S. The (1, 1) tensor R is called compatible if it preserves
the metric on T N, that is,

RV, RHW) =(V,W), VV,WeT,N,VyeS



1008 Qun Chen et al.

and it squares to the identity, more precisely,
R(Y)R(Y)V =V, VVeT,N,VyeS.

Such compatible (1, 1) tensors on S always exist. For instance, we can take R = =+id,
where
id: TyN - T,N, VyeS,

denotes the identity endomorphism.

Let S be a closed submanifold of N with a compatible (1, 1) tensor R and consider a
map ¢ € C*°(M, N) satisfying the free boundary condition in the classical sense, that is,
¢(0M) C S. We denote by

Sp = (EM ¢ 'TN)|sm

the restricted (twisted) spinor bundle with the induced metric.

Let v € C*°(Sy). Given x € dM, we have ¢(x) € S. Choose a local orthonormal
frame {V;} on a neighborhood of ¢ (x) (still denote by {V;} the corresponding orthonormal
frame along the map ¢). Locally, we can write

I/fZZI/fi(X)Vi-

Denote by Id the identity endomorphism acting on C®(¢~'T N|357). Then, one can
verify that the endomorphism 7iG ® R : C*®(Sy) — C*°(Sy) defined by

(G ® Ry =) iGY' ®RVi. Yy =) ' ®V;eCxSy). (333

is self-adjoint and its square is the identity:

(MG @ R, @) = (¥, (G ® R)p), Yy, ¢ € CP(Sy), (3.36)
HG® R)?* = I ®Id. (3.37)

Hence, we can decompose the twisted bundle Sy as V¢,+ V., where V(bjE is the eigensub-
bundle corresponding to the eigenvalue +1. One verifies that the orthogonal projection
onto the eigensubbundle Vi,

BT : C®(Sy) — c°°(v;), V> (I ®d+iG ® R)Y,

defines an elliptic boundary condition for the Dirac operator I along the map ¢. We say a
spinor field € C*°(XM ® ¢! T N) along a map ¢ satisfies the boundary condition Bf;
if

By v lam = 0. (3.38)

The following proposition generalizes the results of Proposition 3.1 to the case of
spinor fields along a map:
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Proposition 3.3. If ¢,y € C®(EM ® ¢~ 'TN) satisfy the chirality boundary condi-
tion Bj, then

n-v,0)=0 ondM. (3.39)

In particular,

/ (n-y,9)=0. (3.40)
oM

Proof. Let, ¢ € C®°(SM ® ¢~ T N) satisfy the chirality boundary condition B(:;, that

is, B(:;}HaM = Bf;wla m = 0. Choosing a local orthonormal frame {V;} on a neighborhood
of ¢(x) for x € dM, we can write

Y= YRV 9=> ¢ V.
i J
Then the chirality boundary conditions qu for ¥ and ¢ read
Y=Y Y @Vi=F) iGY' @RV, ¢=) ¢/ ®@Vi=%) iiGy/ @ RVj.
i i J J

At the point x, we can calculate

(i -y 9) = (FD*)_(inGy' ® RVi,iGe’/ ® RV;) = ) _(iiGy',iGe’)(RV;, RV;)
i,j iJ
=Y (=YL o)WV, V) =)~y @ V.ol @ V) =) —(i - ¥, ).
i,j i

i.j ij

Since the point x € M is arbitrary, we obtain (3.39) and (3.40). ]

Free boundary conditions for Dirac-harmonic maps

Let S be a closed p-dimensional submanifold of N. It turns out that one can associate to
it a natural (1, 1) tensor R that is compatible.

To see this, we consider a tubular neighborhood Us := {z € N | dist¥(z, S) < 68}
of S in N, where § > 0 is a constant small enough such that for any z € Us, there exists
a unique minimal geodesic y, connecting z and 7z’ € S which attains the distance from z
to the submanifold S.

On Us, we can define the geodesic reflection o as follows:

0:Us = Us, z:=expyvi> 0(2):=expy(—v),

where v € TN is uniquely determined by z. Clearly, 0> = id : Us — Us, and for
& small enough, the map o is a diffeomorphism. Associated to this o, there is a (1, 1)
tensor R on S defined by

R(z) := Do(z), VzeS.
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The (1, 1) tensor R is well defined on S, since o|s = id and hence R(z) : T,N —
TN is an endomorphism for z € S. To show the compatibility of R, it is most convenient
to take the adapted coordinates {y'};—1

.....

.....

normal to S and
SNU={yeU|yl=... =y =0).
In what follows, the index ranges are:
1<a,b,...<p, p+1=<xipu,...<d, 1<i,j,k,...<d.

Note that the adapted coordinates {y"},-zlmd are exactly the geodesic parallel co-
ordinates for the submanifold S. These coordinates also go under the name of Fermi
coordinates in the literature. We refer to [12] for more details. In such coordinates, the
diffeomorphism o |y : U — U is given by

p+1 p+1
9

0:(y1,...,y1’,y ...,yd)—>(y1,...,y1’,—y ,...,—yd).

Consequently, we have

Da(ayk)zayk, k=1,...,p,
Do (0y™) = —-0y", m=p+1,...,d.

The tensor R and the metric g take the forms

840 gap 0
R: b ) = @ .
(O —8ﬁ> 8 < 0 gku)

It is easy to verify that R is compatible. Moreover, R has the following additional prop-
erty:
R(2)|r,s = id, R(Z)|TZJ-$ =—id, VzeS,

where id denotes the identity endomorphism and TZLS is the subspace of T, N that is
normal to 7,S.

Given a closed p-dimensional submanifold S of N, we will always associate to it the
compatible (1, 1) tensor R constructed via the geodesic reflection o for S. It turns out
that this tensor is the most natural one from a geometrical and analytical point of view.

Let ¢ € C°(M, N) satisfy the boundary condition ¢(dM) C S and let ¥ €
C®(EM ® ¢~'TN). We impose the free boundary condition for v to be the chirality
boundary condition corresponding to S,

B(:;IME)M =0,
or in local form

Y =F R AGYy/, i=1,....,d, ondM.
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When M = Ri, we identify the Clifford multiplication by dx1, dx with the matrices
y1, ¥2, take the chirality operator G := iy, and decompose i = (gf) Then the

chirality boundary condition B;f corresponding to S becomes

vl =FRiy/ i=1...d ondM. (3.41)
Remark 3.1. In the physics literature (see [1]), the above coordinate system { yi Yi=1...d
is said to be adapted to the brane S. And (3.41) is the fermionic boundary condition
considered in [1], where it is a priori assumed that there exists some compatible (1,1)

tensor R defined on some region including S.

Set

X(M,N;S)
=1{(@,¥) | ¢ € C¥(M,N), $(0M) C S; ¥ € C*(EM®¢'TN), By |am = 0}.

Definition 3.1. (¢, V) € X(M, N; S) is called a Dirac-harmonic map from M to N with
free boundary on S if it is a critical point of L(-, -) in X (M, N; S).

Let (¢, ¥) be a Dirac-harmonic map from M to N with free boundary on S C N.
First, we consider a family of (¢;, V) € X(M, N; S) with ¢, = ¢ and % |t:0 =E£.

Then we calculate
d
=f d—<1//z,lDlﬂt> =/ (&, lﬁtﬁ>+/ (V, &)
=0 M at =0 M M

dL (e, )
—z/ Re<s,mw>—/ v, ).
M oM

dt
Note that ¢, & satisfy the boundary condition Bf;, hence Proposition 3.3 shows that

faM ¥, §) =0.
Next, we consider a family of (¢, ¥;) € X(M, N; S) with d"” o = nand ¥ =

I/ft ® 3y (1), W, = . Then

_ / (. dn) + <w M)
t=0 M

=/M2<d¢,dn>+ 2<R<¢>,w>,n>+/ (W, DO @ Vardy'))

dL (¢, Y1)
dt

=/M —t@) )+ / (R, ¥, ) [WﬁW@Vazay)

+/ 2pi / R Y ® Vardy).
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Here ¢;; = ¢/ on. Note that, for simplicity, we used the local expression of ¥, namely,
¥ = ¢'®0dy’, where y' is alocal coordinate of N. By using the expression y' @ Vy;dy' =
n’ Fj].‘ilﬁ’ ® dy* and requiring the vanishing of the boundary integral, we have

0=/ 2<¢a,n>—/ <ﬁ-w,w"®vatayf>=f om0 — g™ G-y YT g’
oM oM oM

Since 11 = 5t

is arbitrary, it follows that
Qep — " -y YT gk dm L S: (3.42)

here and below, for simplicity, we write 9; := 8/8yi, 0y = 8/8y)‘, 0y 1= 0/0y“ etc.
From the free boundary conditions for the spinor fields,

¥ =FRiAGY!  ondM,

: 8¢ 0
where R = (R}) = ( o 5 ) one easily verifies that
-y yhy=0, @i-y* y*y=0, ondM,
fora,b=1,...,pandA, u=p+1,...,d.
Let us continue to consider (3.42). We note that

¢ gu Tk i -yl wly = g™ guTh (i - !,y + g™ gu T8, (i - ¥, ¥

= gM gy Tk (i - Uk, ) + g™ gy T8 (i - Y,y
= g"" g T, (it - U, W) + g™ gap T, (i - w2, Yt
= g"" g Dy (it - U, ) + g™ g i (Wl i -y,

so that
g"" g (i - Wl ') = 28" g Ul i Y YY), m=1,....d.

Using this we have
Qop — g (i - Y YT g)dm LS & (¢S — " (i - ' ¥ )TE gu)de = 0

& 2050 — g% (i -y Y )T ygrde =0

ap\ " R

A <E) - ngrédgk/L(n : W‘, 1/;“)36 =0.
On the other hand, for the second fundamental form Ag(:,-) of S in N, we have
As(94, 9q) = (Vy, )t = r;‘dau; using this in (3.42), we obtain

QT — g" (i - ', YT gi)dm L S
ap\ " . -
& <—¢> = gUASBa, ), ) (71 - Y, Y1) = g“UAs(W T, 8a), 71 - Y ) o

on
=8/ (Psi- Y ¥ ). 0a)dc = PsGi -y sy ).
Here Ps(-; -) is the shape operator of S in N. Therefore, we have
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Proposition 3.4. The condition (3.42) is equivalent to
ap\ " R
(—J = Ps(i- Yy
on
in particular, if S is a totally geodesic submanifold in N, this reads

9
— 1S
ai O

Remark 3.2. The condition % L S is exactly the orthogonality condition in the theory
of minimal surfaces with free boundaries (see the survey paper by Hildebrandt [17] and
the references therein). In the case of Dirac-harmonic maps with free boundaries, the
orthogonality condition appears when the supporting submanifold S is totally geodesic
or the spinor field vanishes, i.e. ¥ = 0.

The above discussion leads to the following equivalent definition of Dirac-harmonic
maps with a free boundary on S.

Definition 3.2. (¢, V) € X(M, N; S) is called a Dirac-harmonic map from M to N with
free boundary S C N if (¢, ¥) is Dirac-harmonic in M, i.e.,

() =R, ¥), Dy =0,
and satisfies the following free boundary conditions:
o agnT -
() (%) =PsGi-y*yT)onaM,
(i) By lom =0.

Weakly Dirac-harmonic maps with free boundary on S

In order to define the free boundary conditions for weakly Dirac-harmonic maps, we shall
use the isometric embedding N — RX. Making use of the orthogonal decomposition
Rf =T,N® TyJ-N for any y € N, we can consider the bundles M ® ¢~'TN and

S¢ = (EM ® ¢~ 'TN)|yy as subbundles of EM ® ¢~'RK and (M ® ¢~ 'RK)|5y,
respectively. Moreover, we denote

L*Sy) == (Vlom | ¥ € W3 (EM @ ¢~ ' TN)).

Let V5N be a tubular neighborhood of N in RX with a projection P : VsN — N (see
[15]). We define

R(y):=D( o P)(y), yE€S.

For y € S, since R(y) = Do (y), we have ﬁ(y) = D(o o P)(y) = Do(y) o (DP)(y) =
R(y) o (DP)(y). Moreover, forall V, W € TyN and y € S, we have DP(y)V =V and
hence
(RO)V.R)W)gg = (RMIDPYMVL ROUDP)()W)gg
=(RMV, ROMW)r,y =(V, W)r,n = (V, W)Rg-
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On the other hand, since (0 o P)o (0o P)=cocoP =P =idonUs C N, we get
R(Y)R()V =V, VVeT,N, VyeS.
Therefore, we can define, in analogy to the case of smooth sections, an endomorphism
iG ® R : L*(Sg) — L*(Sy),
which is self-adjoint and squares to the identity. Also, we can decompose Sy = Vdj' SV
and define an elliptic boundary condition
B : L2(Sy) > LA(V))

for Ip . For convenience, we still denote ﬁj by Bf;.
One easily verifies that the results in Proposition 3.3 hold for W!4/3 sections of the
bundle EM ® ¢~ ' TN with ¢ € H' (M, N). More precisely, we have

Proposition 3.5. If g, v € W4/3(EM ® ¢~ ' T N) satisfy the chirality boundary condi-
tion B(:;, then

(n-Y,0)=0 ae. ondM.
In particular, [, (it - ¥, @) = 0.

Now we introduce the class X]I”fB(M , N; 8) of admissible fields (¢, ¥) with free bound-
ary on the supporting submanifold S C N as follows:

X3 (M N S) = {($,¥) | ¢ € H' (M, N), p(OM) C S;
v e W EM@¢TITN), By law =0)

where “¢(dM) C S” means that the L>-trace ¢y of ¢ maps H'-almost all of dM
into S, and “BiWaM = 0” means that the L2-traces ija » vanish on H!-almost all
of oM.

Definition 3.3. An element (¢, ) of Xllf/3(M ,N;S) is called a weakly Dirac-har-
monic map with free boundary on S if it is a critical point of the action functional L(-, -)
in X} 5(M, N; S).

One verifies, similarly to Wang—Xu [28], that a Dirac-harmonic map with free bound-
ary on § is invariant under a totally geodesic, isometric embedding of the target. There-
fore, adapting Hélein’s enlargement argument (see [14, 15]), we can assume that there
exists a global orthonormal frame {V }d pon N. Set Vi(x) = V (Pdx), i =1,...,d;
then {V;} is an orthonormal frame along the map ¢. The spinor field ¢ along qj can be
written as

d
Y= ZW ® V.
iz

Using the frame {f/\,-};izl, it is not difficult to derive (similarly to the calculations in
[6, 28]) the following two propositions (proofs omitted):
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Proposition 3.6. Let (¢, ) € Xll’fﬁ (M, N) be a weakly Dirac-harmonic map. Then

/d¢~VV+/ W' Yo - ) Vi, ROV, puva))Vj) =0, f(lﬂ,lﬁé):O,
M M M

for all compactly supported V€ H' N L (M, ¢~'T N) and for all compactly supported
EeWHBNL®(EM Q¢ ITN).

Proposition 3.7. Let (¢, V) € Xllfﬁ (M, N; S) be a weakly Dirac-harmonic map with
free boundary on S. Then

/d¢-VV+/ W' Yo ) (Vi ROV, puva))Vj) =0, f(lﬁ, pg) =0,
M M M

forallV.e H' N L®(M, ¢~ 'TN) such that V (x) € Tyx)S fora.e. x € IM and for all
£ e W43 NLO(SM ® ¢~ TN) such that By &y = 0.

The rest of this section will be devoted to studying the regularity of weakly Dirac-har-
monic maps with free boundary on S. For simplicity, we will set our problem in a small
neighborhood of a boundary point. To this end, we consider the case that the domain M
is Bl+ = {(x1,x2) € R2 | x12 + x% < 1,xp > 0} and the free boundary portion is
I :={(x1,0) € R2 | —1 < x1 < 1}. Moreover, we identify dx, with y,, ¢ = 1, 2.

The reflection principle

The following lemma, analogous to Lemma 3.1 in [26], shows that the image of ¢ over
a sufficiently small neighborhood of a boundary point is contained in a tubular neighbor-
hood of the supporting submanifold S. Therefore, we can use the geodesic reflection o to
reflect the two fields (¢, ¥) across S when restricted to a sufficiently small domain.

Lemma 3.1. Let N be a compact Riemannian manifold, isometrically embedded in RX
and S a closed submanifold in N. Then there is an g = €o(N) > 0 such that for all
weakly Dirac-harmonic maps (¢, ) € Xll’f/?,(B*', N; S) with free boundary on S and

/B (dglP + 191" < e, (3.43)
1
we have dist(¢(x), S) < Ceé/2 forall x € BIJF/4 with a constant C = C(N). Moreover,

thereisa Q € S suchthat ¢ (x) € BC€1/2(Q)f0r allx € BTM, with a constant C = C(N).
0

Proof. To prove this lemma, it is sufficient to prove an interior estimate for Dirac-har-
monic maps on surfaces. More precisely, let xg € Bl+/ 2\ 8Ri and set R:= % dist(xo, aRi).

Given x € Bygr(xg), one can verify that Bgr(x) C Bl+. Define

$(z):=¢(x+R2), ¥(2):=R"y(x+Rz), zeB.
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Then by assumption (3.43), we have
(|d$|2+|1Z|4>=[ (|d¢|2+|¢|4)sf (Idp)* + [ |*) < eo.
By Br(x) Br

Provided that € is sufficiently small, we can apply the e-regularity for Dirac-harmonic
maps from surfaces (see [7, Theorem 3.2] or [6, Theorem 4.3]) to get

Il B, < ClldPl 125,y < C /0.

where C > 0 is a constant depending only on the geometry of N. Note that da(O) =
R -d¢(x). Hence,

dgO) _ CY&
R — R

ld(x)| =

for all x € Byr(xp).

Now we can use the same arguments as in the proof of [26, Lemma 3.1] to obtain

|6 (x0) — ¢| < C/eo

and

1/2
dist(¢p, S) < C[Rz_” f |d¢|2} < Ce, where ¢ := ][ .
B B3, (x1)

e (x1)

Furthermore, since S is compact, there is a point Q € S such that dist(¢, S) =dist(¢, Q).
Hence

dist(¢ (x0), Q) < | (x0) — @] + dist(¢, Q) < C/eq. O
The above lemma shows that

$(Bfy) C Us =z € N | dist" (2, S) < 8)

for some § > 0, provided that the energy of ¢ over the half-disk is sufficiently small.

Let (¢,¢) e X 11”42 /3(B T N;S)bea weakly Dirac-harmonic map with free boundary
on S. By the conformal invariance of weakly Dirac-harmonic maps from surfaces, we can
assume that ¢(Bl+) c Us.

Denote

X(x):= Do(¢(x)), x€ B,
Define a morphism T, : W'4/3(SBf @ ¢~ ! TN) — W'4/3(ZBf ® (0 0¢) ' TN) by
Ty =+iy1 ® Z.

Here Tf; corresponds to Bf;. Below, we will only consider the case of (BT, T;f) and omit
the symbol “ + 7, because the case of (B;, T;) is analogous.
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For x = (x1, x2), denoting x* := (x, —x2), we extend the fields ¢, ¥ to the lower
half-disk B] := {(x1, x2) € R? | x} +x3 < 1, xo < 0} as follows (and still denote them
by ¢, ¥):

P (x*) := o (p(x)), x* € B,
Y () i=Te()Y(x), x*€By.

This extension is well defined. To see this, we verify that for a.e. x € I,

p(x) =0(@(x), V&) =(-iG®R))YX) = (iy1 ® )Y (x) = Te(x)y (x).

1

Using the extended map ¢, we can extend X (x) to By. Since ¢ = o~ ', one verifies

that (see also [26])
27 x) = Do(¢p(x)™! = Do(o($(x)) = Do (p(x*) = T(x*),  (3.44)

s0 X(x) X (x*) = Id(¢ (x)). Moreover, we can extend Ty to some morphism (still denoted
by Tg) WH/3(SB) @ ¢7'TN) — W'*3(ZB; @ (0 0 ¢)"'TN). Note that for ¢ €
WL4B(Z By ® ¢~ TN), if we write ¥ (x) = ¥ (x) ® V;(x), x € By, then

Y (x*) = Ty()Y (x) = iy’ (x) ® T(x)Vi(x), x* € By.
One checks that Ty (x)Ty (x*) ¥ (x*) = ¢ (x*) forany € WH43(ZB; @ ¢! TN).

Remark 3.3. We note that our reflection for Dirac-harmonic maps is a natural general-
ization of the one for harmonic maps considered by Gulliver—Jost [13] and Scheven [26].

Using the geodesic reflection o, we are able to extend the metric on the bundle
¢~ 'TN — BI" to some metric 4 on the bundle ¢~ !TN — B; with the extended map ¢
as follows:

(V). W), x € Bf,

(V(x), W(x))p == {(Z(x)V(x), T(x)W(x)), xe€B,

where V, W € I'(Bj, qb’lTN). Consequently, the induced metrics on EBfr ® qb’lTN,
TB ® $7'TN and T*B} ® ¢! TN extend to metrics (with respect to /) on B ®
¢ 'TN,TBi® ¢ 'TNand T*B, ¢ ' TN.

Lemma 3.2. Fory, 9 € WH43(ZB; ® ¢7'TN),

(W), p())h = (TP (x), Te(x)p(x)), Vx € B .
Proof. Giyen V.o € WH3(ZB, ® ¢~ 'TN), we write ¥ (x) = ¥'(x) ® V;(x) and
p(x) = ¢’ (x) ® V;(x). Then forx € B,
(W), e())n = (Y (), o/ ONHZ @) V; (x), T(x)V;(x))
= (iy1¥' (), i1 )N E @) Vi (), Z(x)V;(x))
= (T ()Y (x), T(X)p(x)). O
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Note that given a vector field V(x) € Ty)N for x € By, we have Z(x)V(x) =
Do (¢(x))V(x) € Tyopx)N. We define the covariant derivative vh with respect to h
as follows (see also [26]):

h
VX(X)V(x)
— {Vm(X(x))V(x), x € B},
Z(X)Vop),xx) (Z(X) V(X)) = Z(X") Ve w)g.x ) (Z(x)V(x)), x € By .

where X € I'(TB;), V € I'(B1,¢ 'TN) and V is the Levi-Civita connection on N
(also denote the induced connection for ¢_1 TN by V). One easily verifies that vh is
compatible with A:

d((V(x), W) = (V'V(x), W) + (V&), VIW@)),  x € Bl (3.45)

Moreover, we define the tensor R” (¢) (with symmetries similar to the Riemann curvature
tensor R(¢)) by

RM(@)(V (x), W)U (x)

— {R(cb)(V(X), W)U (x), x € B,
ZEHR@OIEX)V(x), ZOWE))(EX)U(x), x € By

Recall that the Dirac operator along the map ¢ can be written as

m = a®ld + Yo ® V(P*()/a)‘

Now we define the Dirac operator along the extended map ¢ with respect to the extended
metric i as follows:

" :=«3®Id+ya®vﬁa.

The following lemma gives a relation between P" and B:

Lemma 3.3. Forany & € W'*/3(ZB; ® ¢~ TN), denote £*(x) := Ty (x™)Ex™) for
x € By. Then

Plexr) = Ty(x) P E*(x), Vx € By.
Proof. Write & = £/ ® V;. Then, for all x € By,

Ty (x) PrE*(x) = Te(x) Py (iy1E (x*) @ T Vi (x*))
= Ty {F: (71E" () ® T(E*) Vi (x*) + va (i yDE (%) ® Vg, (ax,) (B () V; (x*)) }
= (i) ¥ (iy1E () ® T (x*) Vi (x*)
+ (YD) Va(YDE () ® Z(x) Vi, (9g) (E () Vi (x¥))
= & () @ Vi(x™) + 7af' (%) ® T(x) Vi ey, ax) (Z () V; (). (3.46)
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Here, we have used the fact that
(D015 () = F8' (")
and the following identities (which can be verified using ¢ (x) = o (¢ (x*))):
¢P:(0x1) = T(x")P(0x)), P4 (dx2) = =X (x™) 4 (3x7).

On the other hand, by the definition of Dh, we see that for all x* € By,
DLEGR™) = PE (6) ® V(™) + vok' () ® VJ (Vi ()

= & () @ Vi (x") + Y (%) ® D) Vreng, ) (EEHVi(x%).  (347)
Combining (3.46) and (3.47) proves the lemma. m]

Theorem 3.1. Let (¢, V) € Xll”2/3(B+, N; S) be a weakly Dirac-harmonic map with
free boundary on S. Extend the fields ¢, ¥ to the whole disk By as before. Then

/Bd¢~hth+/Bwf",ya.wf><v,-,R"<¢><v,¢*(axa>)vj>h=o,
1 1

| w.nten=o

By

for all compactly supported V.€ H' N L>®(By, =T N) and all compactly supported
EeWH3NL®(EB Q¢ 'TN).

Proof. First, given a compactly supported vector field V € H' N L>®(By, ¢~ 'TN), we
proceed as in [26] to decompose the vector field V into the equivariant and the antiequiv-
ariant part with respect to the diffeomorphism o, namely, V = V,+V,, where for x € By,

Ve(x) 1= 3[V() + TEHVEH]L Valx) = 5[V(E) — SV (]
Since X (x) X (x*) = Id(¢(x)), one checks that
Vo) = Z(V(X),  Valx*) = —Z(x) Va ().
By (3.44), we have, for xo € I,
Ve(x0) = 5[V (x0) + Z(x0)V (x0)] € Tp(xp)S-

Hence, V,| B} is an admissible variation vector field for ¢ with respect to the free bound-
ary condition ¢ (/) C S. It follows from Proposition 3.7 that

J

RLENAZ +/ W' Ve W) (Vi RO) Ve, ¢4 (3xa)) V) = 0. (3.48)

+
1 Bl
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Applying the equivariance of V, and the symmetry properties of V" (see its definition),
one verifies

/ de -, V'V, = f d¢ - VV,. (3.49)
By B
In view of the antiequivariance of V,,, we analogously obtain
/ de - V'V, = —f d¢ - VV,. (3.50)
By B

1

Recall that ¥ (x*) = (i y) ¥ (x) ® Z(x)V;(x). We claim that the following two iden-
tities hold:

/ Bi<<iy1>w"(x), Yo - (Y)Y (N @)Vi ), R" (@) (Ve, (3 Z(X)Vj (X))
x*e 1

=/ B+<W(X),Va~W(x))(Vi(X),R(¢)(Ve(X),¢*(8xa))Vj(x)), (3.51)
xe

1

f Bi((im)l/fi(X), Ve - GyDY ONE@) Vi (1), R" (@) (Va, ¢4 (3x) T (x) Vi ()
x*€B,;

=— f B+<w"(x),ya-w-/<x)><w<x),R(¢>(Va,¢*(axa)>w(x>>. (3.52)

1

If the claim is true, then combining (3.48)—(3.52) gives
/ dg -, V"V + / W va - N Vi, RN @) (V. $4(3x0)) Vi)i = 0.
B B

Now it is sufficient to prove the claim. Let x = (x, x3) € Bl+; then x* = (x1, —x2)
€ B, . Since ¢ (x*) = o (¢(x)), we have

P+ (9x7) = Z()P«(9x1),  $«(0x7) = —E(x)P«(3x2).

Hence,

(GyDV (), Yo - (Y)Y ONE @) Vi(x), R (9) (Ve (x¥), ¢ (0x5) = (x) Vi (X))
= ((yD¥ @), y1 - GyDy! ()
X (Z(X)V; (x), R (@) (Z(x) Ve (x), T () (dx1)) T (x) V; (X))
+ (Y)Y (), 2 - Gy ¥ (1))
X (Z(@)V; (x), RN () (Z(x) Ve (x), —Z (%) (322)) B (X) V; (X))
= (Y (%), Yo - ¥ ONS @) Vi (), RN (@) (S () Ve (x), Z(x)(3x6)) Z(X) V; (X))
= (Y (%), Yo - ¥ ONE@) Vi (%), SE)R(D) (Ve (x), ¢ (3x0)) Vi (X))
= (Y (), Yo - ¥ ) (Vi (), R(@) (Ve (), ¢4 (3xa)) V; (x)).
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Integrating the above identity for x* € B, and changing variables x* > x, we have
(3.51). Similarly, using the fact that V,(x*) = —X(x) V,(x), one checks (3.52).

Next, given a compactly supported & € WH4/3NL>®(Z B ®¢~ ' T N), we have (recall
that 7 = —y»)

| wensi= [ wes- [1om v,
B; B; I
By Lemmas 3.2 and 3.3,

/ (W), PhEC)), = f (T ()Y (), Ty (x*) Ph-£(x™))
x*eB,; x*eB,;
= / (Y (x), Pr*(x)
xeBr

=f B+(lD1//(X),§*(X)) —/[<(—Vz)-1/f(x),$*(X))-

1

Hence,
- (v, ey, = /N(ll)lﬂ,é +£%) — fl((—yz) YL &+ ET). (3.53)

For x € I, one verifies that

By +£9)(0) =3I @M —iy @ D)E+£9) =3I @Id— iy @ D) + iy @ §)
=3l ®1d)§ — ((iy)* ® THE] = 0.

Therefore, & + £* satisfies the following chirality boundary condition on /:

By(5+ &%) =0.

Recall that, by assumption, i satisfies the same chirality boundary condition. Hence, by
Proposition 3.5,

/I<ﬁ~w,s+s*>=/1<<—y2>-w,s+s*>=o.

Noting that D = 0 in BFL’ we conclude from (3.53) that fBl (r, Dhg)h =0. |

Continuity of weakly Dirac-harmonic maps at a free boundary

Starting with the global orthonormal frame V;(x) = f/\,-(tb(x)), i=1,...,d,on ¢>’1 TN,
we can apply the Gram—Schmidt orthonormalization procedure to construct an H'-tan-
gent frame ¢; (x) € Ty ()N that is orthonormal with respect to & (see [26]). This construc-
tion gives the estimate

sup |Ve;(x)] < Cldp(x)l, x € By, (3.54)

1<i<d

where C = C(S, N) is a constant.
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Define
Rim = Y (U @), va - ¥/ )i, R" (@) (er, em)ejnda.

i,j,a
Then, by the symmetry properties of R"(¢), one can verify (similarly to [28]) that 0;,, =
—R, and Ry, = Ry, for 1 < I, m < d. Moreover, we get
Proposition 3.8. We have R = (Ry) € L2(By, so(d) @ \' R?).

Using Ry, we can write

(W), v - V7 () ers R (D) (er, p(3x4))e) )
= (Y1 (X), Yo - ¥ (X)) (ei, R" (@) (e, (x(3xe) h em)em)ejdn
= (¢ (x0) - em) (Y (X), Yo - ¥ (X)) (e, R" (D) (et em)ejdn = Rum - (A -1 em).-

Note that here d¢p = ¢, (0xy)dxy and dop -, e, = (P (0Xy) 1 € )dXqy.
Given any ¢ € Cgo(Bl), fix 1 <i <d andtake V = ¢@e; in Theorem 3.1 to get

0= /B do -» V' (per) + fB (W), Yo - U ()1, R (D) ((9er), bu(xa))em)n
1 1

= [ (d¢-nhe)dy +[ (Vi - e)(dd -4 ei)g +f Rij - (dd -n ej)o.
B B, By
Since ¢ € C§°(By) is arbitrary, we have

d*(dp - e) = (Ve -n ej) +Rij)(dp -1 ¢)). (3.55)

Noting that ¢;(x) € TN is an H 1—tangent frame that is orthonormal with respect
to 4 and V" is compatible with /, one verifies that (V’e; -, ej) is antisymmetric with
respect to the indices i and j. Moreover, we have

Proposition 3.9. We have (V'e; -, ej)i,j € L?(By, so(d) ® /\1 R?).

To proceed, let us recall the Coulomb gauge construction theorem due to Riviere [24]
and Riviere-Struwe [25] (we only need to consider the case that the domain is two-
dimensional and hence we use the norm L? instead of M%2).

Lemma 3.4. There exist €, > 0 and C > 0 such that if @ € L*(B1,so(d) ® /\l R?)
satisfies
€20l 25,y < €1,

then there exist P € H'(By, SO(d)) and ¢ € H'(By, so(d) ® N> R?) such that
P~ YdP + PT'QP =d*ct in By,
d; =0 in By,
=0 on dBj.
Moreover, VP and V belong to L*(B1) with
IVPI 2,y +IIVEl28) = ClIR 25,y < Cer.
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The above lemma can be applied to study the regularity of weakly Dirac-harmonic maps
with free boundary when the two fields are extended to the whole disk.

Lemma 3.5. There exists €2 > 0 such that if (¢, ¥) € Xll f/3 (B, N; S) is a weakly
Dirac-harmonic map with free boundary on S satisfying

149155y + 1V 7a gy < €
then ¢ € CO’O‘(B{"/z, N) for any a € (0, 1). Moreover,
[¢]C0,a(31+/2) = C||d¢||L2(31+)

Remark 3.4. The scheme of proof will be similar to the ones of [25, 28], but we need to
present the details here in order to set up our framework for the extended metric 4.

Proof. First we extend the fields ¢, ¥ to the whole disk B; as before. Then, combining
Propositions 3.8 and 3.9 gives Q = (£;;) 1= ((Vhei~h¢/)+9‘iij) e L*(By, so(d)(X)/\1 R?).
Moreover, (3.54) gives

1201225 = CUAP I 253, + 1V 14 0] < Cer < 1,

where €; > 0 is as in Lemma 3.3 and € > 0 is chosen to be sufficiently small. Hence,
Lemma 3.4 yields P € H' (B}, SO(d)) and ¢ € H'(By, so(d) ® /\* R?) satisfying
P~ ldP+ PTIQP =d*t inB,
dc =0 in By, (3.56)
=0 on 0By,
and

IVPIl 2,y + IIVEl28) = ClIR 25,y = Cer.

We write P = (P;;), P~' = (P};), and { = (¢;;). Since P € H'(B;, SO(d)) and
hence P~'P = PTP = I;, we have dP~! = —P~'dPP~!. Using (3.55) and (3.56),
we calculate

de¢ -, el de -, e
as| p! : =@dP'P+PlQP). P! :
do -peq do ped
de -p e
— —d*é' . P—l ;
d¢ -peq

Equivalently, we have

—d*(Pji(d$ -ne)) =d"Gi- (Pu(dp -nem)), i=1,....d, inBi. (3.57)
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For any 0 < R < 1/4, let Bg C Bj,2 be an arbitrary disk of radius R and 7 €
Cgo(Bl/z) satisfying 0 < 7 < 1,7 = 1 in Bg, T = 0 outside By, and |V1| < 4/R.
Denote ¢ := T(¢ — pg), where pp 1= 5, -

Foreach 1 <i <d, the 1-form Y_7_, Pji(d -4 ¢j) € L*(R?, \' R?), extended by 0
outside of Byg, admits a Hodge—de Rham decomposition of the form

d
> Pii(dg nej) =dfi +d*gi + hi, (3.58)
j=1
where f; € H(}(BR), gi € HOI(BR, /\2 Rz) is a closed 2-form, i.e., dg; = 0 in Bg, and
h; € Lz(BR, /\] RZ) is a harmonic 1-form (we refer to Iwaniec—Martin [18] for more
details on the Hodge decomposition of forms in Sobolev spaces).

Taking first d* and then d of both sides of (3.58) and applying (3.57) gives in Bg, for
1 <i<d,

—Afi =d*5(Py(d¢ -nej), Agi =dPji A(d¢ -y ej) + Pjidgp Ap dej.

For1 < p < 2,let ¢ = p/(p — 1) be the conjugate exponent. By the duality
characterization of ||V f||1r(gg) for f € Wé’p(BR), we get

IV FllLrn < C Sup{/ VFoVeds
B

R

1,
o € W BR). IVollLasn < 1}. (3.59)

Since g > 2, by the Sobolev embedding theorem, we have Wol’q (Br) — C%1=2/4(Bp),
and for ¢ € Wol’q (Br) with |[VollLa(Bz) < 1 the following estimates hold:

Il < CR'™4,  ||Voll 25, < CR'™1. (3.60)

For any such ¢, we can estimate f; (similarly to Riviere—Struwe [25] and Wang—Xu
[28]) as follows:

/ dfi -de = —/ Afi'§0=f d*tip - (Pj(de - €))) - @
Br Bg Br
= /B d*gir - (Pj(dg - ¢))) - ¢ = —/ d* g - d(Pjié;0)$
R

Bpg
< Cl\d*&ir - d(Pj1¢j @)l 31 g2)[P1BMO(BR)

= CIVE 2 (19 P2 + Y IV 28,0 ) 1980 [ 1mMO(51)
J

+ClIVEl 2B IVOl 128 [@1BMOBR)

= C”V{||L2(BR)(||VP||L2(BR) + ||d¢||L2(BR))||<P||L°°(BR)[¢]BMO(BR)
+ClIVEl 2 IVOl 128 [@1BMOBR)

= Cellleli=Bg) + IVl 28l [@]BMOBR)

< CeaRY P~ [@lemo(By)
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where we have used the notations d¢ -, e¢; = d¢ - (hjie), &j = hje;, (3.54) and the
estimates
DIl =CY lejls Y Ve lrape < Cllddll gy
J J J
By (3.59), we get
5 1/p
(Rp / |Vfi|p> < Cez[dlBmMO(BR)- (3.61)
Bgr
Similarly, for any ¢ € W(i “1(Bg) satisfying (3.60), we can estimate g; as follows

/ dgi-dp = —/ Agi-¢ = —/ [dPji A(d@ - ) + Pjide Ay dejle
Br Br Br

=— | [dPji A(d¢-¢é;)+ Pjidp A (hjide)]p
Bg

- / [dP;i A d(gé)) +d(Piihjig) A deld
Br
< Cllld Pji A d(pej) 1 w2y + Id(Pjihjip) A derllqgr w2 l[@lBMO(BR)
< CIIVPHLZ(BR)(||V§0||L2(3R) + Z ”Véj||L2(BR)||(P||L°°(BR))[¢]BMO(BR)
J

n C(Z ||Vel||L2(BR))
l

X (||V§0||L2(BR) + (||VP||L2(BR) + ||Vh||L2(BR))||€0||L°°(BR))[¢]BMO(BR)
< CIVPI L2y IVl 28 + 1dDl L2(Be) 1€11 L (BR)) [PlBMO(BR)
+ Cllddll 28, IVl L2y + IV P23y 1@l Lo (BR) + 1@l Lo (BR)) [P lBMO(BR)

< Ce&xRY?7[pleMo(Br)-

Again, using (3.59), we have
1/p
(RP_Z/ |Vgi|p) < Ces[plBMO(BR)- (3.62)
Bpr

To estimate the harmonic 1-form %;, we apply the classical Campanato estimates for
harmonic functions (see Giaquinta [11]) , (3.61) and (3.62) to get, forany 0 < r < R,

p
P2l < c(i) (Rf’—2 / |h,-|f’)
B, R

p ~
< (%) (Rp 2 |1’ji(d¢'h€j)—dﬁ—d*gi|p)
p
<c(3) (v 2/ (091 + 1917 +195:1"))
<c(L) (wr- 2 | 1ol + sl
= R 2 191emosR) |-
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To proceed, we note that by the definition of the extended metric 4, we have (we may
need to take § > 0 small enough so that the tubular neighborhood Uy is sufficiently close
to S)

dg| < C(N.S)) " |d 1 eil.
i
Then using d$ -nej = Pjdfi+d*gi+hi)and P HY(B1, SO(d)), we can estimate
rl’*/ ldg|? < Cer (V£IP +|Vgil?) + CVH/ |hi|P
B, Br B,

B r P —
<cri? (IVfiI”+|Vgi|”)+C<§) (R" 2/ Id¢l”+e£’[¢1§Mo<BR>>
Br Br

r\? p—2 P i 72’7 L
< C<E) {R /BR ldg|” + (E) € [¢]BMO<BR>}'

An iteration argument (see [25, 28] for more details), combined with Morrey’s decay
lemma (see [11]), implies that ¢ € CO'“(Bl/z) for any o € (0, 1), and [¢]C0,a(31/2)
Clldoll 2p,)- Since ¢ is extended to B; by reflection, it follows that [gb]co,a(BlJr/z)

Clldgll 2,y < Clddl 207,

o IAIA

Theorem 3.2. Let M be a compact Riemann spin surface with boundary oM, N be
any compact Riemannian manifold, and S be a closed submanifold of N. Let (¢, V)
be a weakly Dirac-harmonic map from M to N with free boundary on S. Then ¢ €
C%(M, N) for any a € (0, 1).

Proof. Apply Lemma 3.5 and rescale the fields ¢, ¥ if necessary. O

Higher regularity of continuous weakly Dirac-harmonic maps at a free boundary

Let (¢, V) be a weakly Dirac-harmonic map from M to N with free boundary on S C N
and suppose that ¢ € C%*(M, N) for any a € (0, 1). For simplicity, we assume that
M = BIJr and consider the higher regularity of ¢ at the boundary point 0 € I. As before,
we take the adapted coordinates { yi }i=1,....a in some neighborhood U C Us of the point
¢(0) € S. By conformal invariance and continuity of ¢, we can assume that qb(B]Jr ) C
U c Us. Denote

)L i=1,...,p,
TEN1-1, i=p+1,....d.

Then the extended fields ¢, ¥ can be written as follows fork =1, ..., d:
sy = [P0, xeBl,
et (x*), x €Bl,
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and
ko [vhe.  xeByf. v« [vk@).,  xeBf,
Vi) = {n:l/ff(x*), x e B:’, =0 = {nkwi(x*), x e B?’.
One can verify that
I (@) = ne Do (¢ (x))dy* (¢ (x))
=S (px), xeBy, k=1,..., d.

For convenience, we shall henceforth also denote the extended metric 4 by g.
Now we define some geometric data associated to the extended metric g, for x € By:

i (P () == (3 (B (x)), 3y’ (B (x)))z,

B () o= |8 @O Vayio0 0 (@(0). B @GNy xeBy,
v FUG N Vrayi (o Y (@), 0y (@), x€By,

Routij (9(x)) := (37 (¢ (x)), R" (@) (0y™ ((x)), 8y’ (¢ (x)))dy' (¢ (x)))7,
R (¢ () := " (@ (X)) Rijir (¢ (x)).

where (3" (¢ (x)))mx is the inverse matrix of (Zux (¢ (x)))mk. Then we have

Lemma 3.6.
o = (o, ve glf
M () = ;ﬁffg}j@,(ﬁ)), e i?
Ruij (9 (x)) = i”,;%l((s:;g);}ij(q)(x*)), ;c 2 i;:
R0 = széfn%@j@p(x*)), e 2?

Proof. By definition of & and R"(¢), it is sufficient to consider the case of x € B, . For
such x,

Zij(p(x) = (Y (9(x)), 3y (p(x)))z = (Z(x)3Y' (P(x)), Z(x)dy’ (p(x)))
= (i 0y (¢ (x*)), m;dy! (B (x))) = min;gij (P (x¥)).
It is easy to verify that §if (@ (x)) = nin; gij (¢ (x*)). Moreover,
T (@ (1)) = 3 (0 () (Z ) D™ Vi yayi (60 @)Y (6 (1)), D)y (6 (x)))

= mem g @ N ninini(Vayi gy 07 (9 (x*)), 3y (¢ (x*)))
= Uiﬁjnkr‘f»‘j@(x*)),
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Rintij (6(0)) = (357 (¢(x)), R" (@) (@Y™ (@ (x)), 3y (¢ (x))dy ($()))7

= (Z(®)y ($(x)), TE)ZEFR(D)(Z ()™ (p(x)), 1)y (¢ ()T (x)dy' (¢ (x)))
= (107 (¢ (x*)), R(®)(m Y™ (@ (x*)), m1dy ($(x*)))n; 0y (¢ (x*)))

= 10i0j MNm Rmiij (¢ (x™)),

and

§'7,»j (@ () = T (P ) Rijik (@ (X)) = nmmmemunin; €™ (@ () Rijix (@ (x*))
=i njnlnmRrZ'j (¢ (x™)). O
Remark 3.5. In the adapted coordinates {y'}, we have g; i(y) = 0,fory € U,i €

{1,...,p}, j € {p+1,...,d}. Hence, both g;;(¢) and g"/ (¢) are continuous (they are
in fact Lipschitz; see also [13]).

_ Now we can write the equations of the extended fields ¢, ¥ in terms of the data Sij»

1"1(‘. and R
J ij

Proposition 3.10. With the assumptions and notations as before, the extended fields ¢,

satisfy, in By,

AQ" + T GLb] — SR (W Ve Yy =0, m=1,....d,
T @0t vyt =0, i=1d,
Proof. Noting that ¢(Bf“) C U, the proposition follows by applying Lemma 3.6 and
Theorem 3.1 with Vi(x) = 9y (¢(x)), V(x) = g™ (#(0))n;(x) ® 3y (¢(x)), § =

" (p (x))E(x) ® dy™ (¢ (x)), where 1; € H) N L®(By) and & € Wy** N L™®(£By)
are arbitrarily chosen. o

Proposition 3.11. With the assumptions and notations as before, if in addition we assume
that S is totally geodesic, then for allm, i, j € {1,...,d}and any y € (0, 1),

I7(¢) € C*7 (By).

Proof. By definition, we have Fl’.’}(zﬁ(x)) = ninj anf'; (p(x™)) for x € B]+. Note that
both Flf’} and ¢ are continuous, hence, to prove the continuity of 1:1"} (@), it is sufficient to
show that the terms

I+, I, T1, (3.63)
vanish on S. Here and below, T denotes the tangential index {1, ..., p} and L denotes
the normal index {p + 1, ..., d}. To verify this, firstly we note that (see [12])

gi1=1 onU, g1 =0 onU. (3.64)

It follows that
gl1,1 =811, T=g8T11L,1 =811, 71=0 onU.
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Next, we calculate

I = %glL(gJ_T,T +8IT.T—&TT.1) = _%gLLgTT,J_ onU,
i, = %gTT(gTi,T +8TT,L —&TLT) = %gTTgTT,L onU,

I, =1¢tg11,1=0 onU.

Since S is totally geodesic, we have I’-Ll--r = 0 on S. Therefore,
F-Jr‘—r = —%gJ_J_gTT’J_ =0 onS.
By (3.64), it follows that
M, =1¢""grr..=0 onS.
Now we have verified that all the terms in (3.63) vanish on S and hence Fl”; (¢) € CY.
Moreover, we can write

IP(¢(x), xe€ B,

Iij @) = D G("). x € By

Note that ¢ (B;") C U, I e C'(U) and ¢ € CO7(B) for any y € (0, 1). Therefore,
forany y € (0, 1), we have [T} (@) llco.r () < 21T} (@)l o (gt < 00 O

Theorem 3.3. Let M be a compact Riemann spin surface with boundary oM, N be any
compact Riemannian manifold, and S be a closed, totally geodesic submanifold of N.
Let (¢, V) be a weakly Dirac-harmonic map from M to N with free boundary on S and
suppose that ¢ € c%*(M, N) for any a € (0, 1). Then there exists B € (0, 1) such that
¢ CYP(M,N)yand y € CYB(EM @ ¢~'TN).

Proof. Combining Lemma 3.6, Proposition 3.10, Proposition 3.11 and applying argu-
ments similar to the proof of [7, Theorem 2.3], we get ¢ € CLB(M,N) and /S
CHP(EM ® ¢~'TN) for some B € (0, 1). o

Remark 3.6. Following the same strategy as in the proof of [7, Theorem 2.3], take G
(G, ..., G%), where

G"(x, ¢, d) =7 ($)pLe] — SR}, @) (W', Vo' - ).

Then using the formulas Lemma 3.6, we have the following pointwise estimate (used in
[7, (2.41), p. 70]):

IVG| < C(N,S)(Id¢ + |¥| VY| Ido| + [ 2 lde > + [V2pllde| + IVl 1]

a.e.in Bj.

4. Dirichlet boundary problem for Dirac-harmonic maps

In this section, we shall study the Dirichlet boundary problem for weakly Dirac-harmonic
maps.
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To proceed, we recall that the regularity up to the boundary for weak solutions satis-
fying (2.21) with continuous boundary trace was established by Miiller—Schikorra [22].
More precisely, they proved

Theorem C. Let D C R? be a simply connected domain with C? boundary 9D. Let
ue H(D,RX)and f € L*(D,RK), s > 1, satisfy

—Au=Q-Vu+f, ulygp € C°,
where Q = (Q})lg,./g( € L*(D, so(K) ®R?). Then u is continuous up to the boundary.

In view of the extrinsic equation (2.26) in the proof of Theorem 2.1, we can apply The-
orem C to obtain the following Dirichlet boundary regularity for weakly Dirac-harmonic
maps:

Theorem 4.1. Let (¢, ) be a weakly Dirac-harmonic map from B; to a compact Rie-
mannian manifold N. If ¢ satisfies the Dirichlet boundary value condition ¢|yp, € C 0
then ¢ is continuous up to the boundary.

Proof. We proceed as in the proof of Theorem 2.1. Recall that the equations for the map ¢
can be written in the form

_ A¢m — Q?l . Vd)l

with some Q = (Q")1<im<k € L%(Bi, so(K) ® R?). Theorem C implies that ¢ is
continuous up to the boundary. g
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