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Abstract. In this article we investigate the natural domain of definition of a holonomy map asso-
ciated to a singular holomorphic foliation of the complex projective plane. We prove that germs
of holonomy between algebraic curves can have large sets of singularities for their analytic con-
tinuation. In the Riccati context we provide examples with natural boundary and maximal sets of
singularities. In the generic case we provide examples having at least a Cantor set of singularities
and even a nonempty open set of singularities. The examples provided are based on the presence of
sufficiently rich contracting dynamics in the holonomy pseudogroup of the foliation. This gives an-
swers to some questions and conjectures of Loray and Ilyashenko, which follow up on an approach
to the associated ODE’s developed by Painlevé.

1. Introduction

In the theory of real foliations on real manifolds, a standard approach to understanding
the winding of the leaves of a foliation F within the ambient manifold is to consider a
real (not necessarily connected or compact) submanifold T (whose codimension is the di-
mension of the leaves) which intersects every leaf transversely, and to study the holonomy
relation, the equivalence relation on T whose classes are the intersections with each leaf.
In this setting one has a refined construction whereby leafwise paths with endpoints in T
determine, by lifting to nearby leaves, a pseudogroup acting on T , called the holonomy
pseudogroup, whose orbits are the holonomy classes. The study of this pseudogroup is
central in foliation theory, insofar as it provides the dynamics of the foliation, as well as
some useful geometric information.

In the complex context, in the setting of algebraic foliations of the complex projective
plane, a very natural choice for T is to consider an algebraic curve, with finite tangency
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to F . In fact, a generic curve T intersects every leaf, as follows from the maximum prin-
ciple of [6]. In this context, holonomy classes are no longer orbits of a pseudogroup of
diffeomorphisms, due to the tangency of T to the leaves. However, the situation is not so
bad: the equivalence classes of the holonomy relation can still be described in terms of a
set of local holomorphic correspondences on T , the algebroid class of Painlevé (see [30],
[27], [10]).

In the more particular context of Riccati foliations, holomorphic foliations in complex
surfaces adapted to a rational fibration (in the sense that almost every fibre is everywhere
transverse to the foliation), a natural choice for T is one of the generic fibres. In this case,
the holonomy classes are orbits of a finitely generated group of automorphisms of P1,
known as the monodromy group, which governs the dynamics of the foliation.

We cannot hope, for a general algebraic foliation of the plane, that the holonomy rela-
tion can be realized as a genuine group of automorphisms of some Riemann surface trans-
verse to the foliation, even after allowing for some (algebroid) ramified semi-conjugacy.
Indeed, such a group necessarily preserves a projective structure on the surface (by uni-
formization), and it is well-known that the holonomy pseudogroups of generic plane al-
gebraic foliations are not this rigid (see, for example, [3]).

In order to understand the nature and large scale behaviour of the holonomy corre-
spondence between algebraic curves in a holomorphic foliation, one of the first problems
is to determine the maximal domain where this correspondence is defined. Given a folia-
tion and two curves T1 and T2 meeting a leaf transversely we obtain a germ of biholomor-
phism from T1 to T2 that is, a priori, analytic. It is thus natural to consider the problem
of analytic extension of holonomy germs. The extension problem may be expressed in
terms of determining the maximal domain of a holonomy correspondence. This domain
is a curve, equipped with a projection into (not necessarily onto) T1, where the analytic
continuation of the germ is well-defined. Its boundary projects onto a subset of T1, the set
of singularities or singular set of the analytic continuation (see [27, Proposition 1.3] for
details on this construction).

In this article, we investigate the set of singular points of the germ of a holonomy
map, with domain and range lying within algebraic curves, and which is associated to a
given singular algebraic foliation F of the complex projective plane P2. The nature of
the set of singular points is tightly linked to other problems in the study of holomorphic
foliations.

Firstly, it is possibly interesting, for the geometry and dynamics of foliations, to con-
sider weaker analogues of product covering structures, with respect to an algebraic fibra-
tion P2

→ P1. In other words, to find a correspondence analogous to “lifting”, between
leafwise paths, with good extension properties, and thereby view a foliation as if it were
Riccati. The group of Möbius transformations would be replaced here by analytic continu-
ation of holonomy germs (in which case, the dynamics of the foliation would be governed
by the semigroup generated by the branches of a multivalued map, as studied in [7]).

In his presentation of Painlevé’s Theorems (and in connection with them), Loray con-
jectured that the analytic continuation of such a germ is possible along any path in T that
avoids a countable set of points, the singularities [27, Conjecture 1]. Loray comments
that, if this conjecture were true, the monodromy pseudogroup could be replaced by a
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very consistent monodromy group, and this would open the door to a Galois theory of
such foliations.

In connection with the problem of simultaneous uniformization of the leaves of a fo-
liation, Ilyashenko proved that some geometric objects in foliations (including holonomy
maps) having a simultaneous uniformization have many good extension properties [18].
Any foliation where these extension properties fail thus exhibits an obstruction for the
foliation to be simultaneously uniformizable. For example, the appearance of natural
boundaries in the domain where the holonomy is defined is such an obstruction (see [18]
for definitions and details). In this spirit, Ilyashenko asked [17, Problem 8] whether the
analytic continuation of a given holonomy germ between rational curves is defined along
most real rays (see also Problems 8.7 and 8.8 in [16]).

Our results show that, in the presence of rich contracting dynamics, there are special
choices of the algebraic curve T such that some holonomy correspondence has a max-
imal domain of definition whose boundary projects onto a large subset of T (the set of
singularities). We produce here examples of transversals in foliations where the analytic
continuations of the holonomy germs have natural boundaries, where the singularities of
these germs contain Cantor sets of positive dimension, and even open sets (Theorems 2
through 5). No examples with uncountably many singularities were previously known. On
the opposite side of the spectrum, we prove that Loray’s Conjecture holds in the absence
of such rich dynamics (Theorem 1).

While our examples show that Loray’s conjecture, as stated in [27], is false, the very
interesting PhD thesis of Hussenot (see [15]) has appeared since our article was submitted.
He proves that a modified version of Loray’s conjecture in the context of Riccati foliations
holds true: given a generic Riccati foliation of P1

× P1, and two generic algebraic curves
C,D ⊂ P1

×P1, any holonomy germ from C toD extends along a.e. Brownian path in C.
This leads to ask if Loray’s conjecture could be correct in this weaker form, replacing “the
paths that avoid a countable set of points in C” by “a.e. Brownian path in C”.

In order to state our results, let us recall some standard definitions. Let (C0, p0) and
(C1, p1) be two pointed algebraic curves in P2 such that p0 and p1 belong to the same
leaf L of the holomorphic foliation F . We suppose that for i = 0, 1, pi does not belong
to the singular set, Sing(F), of F , and that the curve Ci is transverse to F at pi . Consider
a leafwise path γ : [0, 1] → L such that γ (0) = p0 and γ (1) = p1. Then one can
find a continuous family of leafwise paths γ p, parametrized by a point p ∈ C0 close
enough to p0, such that γ p(0) = p, γ p(1) belongs to C1, and γ p0 = γ . The germ of
the map p 7→ hγ (p) = γ

p(1) is uniquely determined by the relative (i.e. with endpoints
fixed) homotopy class of γ under the above conditions, and is called the holonomy germ
associated to γ . We will call such a germ between algebraic curves an admissible germ
for F .

Let (C0, p0) and (C1, p1) be two pointed complex curves and let h : (C0, p0) →

(C1, p1) be the germ of a holomorphic map. A point q ∈ C0 is called a singularity of h
if there exists a path τ : [0, 1] → C0 such that τ(0) = p0, τ(1) = q and h admits an
analytic continuation along τ([0, 1)) by germs of holomorphic maps from C0 to C1 but
not along τ([0, 1]) (see [27]). In all our examples, the singularities we will encounter are
of a topological nature: h will not even admit a continuous extension along τ([0, 1]). The
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set of singularities for h could, in principle, be any subset of C0. If it is the whole of
C0 we will say that h has full singular set. There may also exist an open set D ⊂ C0
containing p0 such that for any path τ : [0, 1] → C0 starting at p0 and such that τ(1) ∈
∂D, τ−1(D) = [0, 1), the function h has an analytic continuation along τ([0, 1)) but does
not have an analytic continuation along τ([0, 1]). In the case where ∂D is a topological
circle, the analytic extension of h is said to have ∂D as its natural boundary.

Our first result shows that the phenomena discovered by Marı́n [29] in some particular
foliations extend to all foliations given by closed meromorphic forms:

Theorem 1. Let F be a singular foliation given by a closed meromorphic 1-form on P2.
Then the set of singularities of an admissible germ for F between rational curves is at
most countable.

In other words, these foliations satisfy Loray’s Conjecture. Loray conjectured that the
same is true for any admissible germ associated to a holomorphic singular foliation
of P2 [27]. The following result exhibits examples where the property fails:

Theorem 2. There exist holomorphic foliations of P2:

(1) having an admissible germ between lines with a natural boundary;
(2) having an admissible germ between lines with full singular set.

Although (1) seems to be a quantitatively weaker result than (2), they are qualitatively
different: the points in the natural boundary are singular for any path leading to them
whereas this is certainly not the case for all singularities in (2). Examples of (1) will be
defined by a Riccati equation with a Fuchsian monodromy group. The natural boundary
appears as the limit set of the monodromy group, and it is topological in nature: it is not
possible to extend the holonomy germ continuously to any of its points. The examples
of (2) are defined by using Riccati equations with monodromy group dense in Aut(P1).

Our next result states that part of the phenomena displayed by the foliations in Theo-
rem 2(1) are well behaved under small perturbations of the transversal curves where the
germs are defined, and in particular permits constructing such an admissible germ (i.e.
from a line to itself) with a large singular set:

Theorem 3. There exists a foliation F in P2 and an open subset of pairs of lines, P ⊂
(P2)∗ × (P2)∗, intersecting the diagonal, such that for every (L0, L1) ∈ P there is an
admissible germ from L0 to L1 whose analytic extension has a curve of singularities (in
particular, an uncountable set).

Being Riccati equations, the foliations in Theorems 2 and 3 are very special examples
(they are special even within Riccati equations and are constructed from some particular
projective structures on complex curves). By employing the underlying topological ma-
chinery of these examples, we are able to exhibit large singular sets for admissible germs
in most algebraic foliations of the plane: we prove that for a generic foliation, it is al-
ways possible to find an admissible germ from an algebraic curve to itself, whose set of
singularities for the analytic continuation is a large set, i.e. of positive dimension, and in
particular uncountable.
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Theorem 4. Let F be a singular holomorphic foliation of P2 whose singularities are of
hyperbolic type and with no invariant algebraic curve. Then there exists an admissible
germ from a line to an algebraic curve whose singularity set for the analytic continuation
contains a Cantor set.

It is also possible to construct an open set of foliations with admissible germs whose
singular set has nonempty interior, thus extending the case of the foliation constructed
in Theorem 2(2). Loray and Rebelo [28] exhibit, for every integer d ≥ 2, a nonempty
open set Ud in the parameter space of degree d plane algebraic foliations such that every
foliation belonging to Ud has dense leaves, and other strong ergodic properties.

Theorem 5. For every d ≥ 2 and every singular holomorphic foliation belonging to a
nonempty open subset of Ud , there is an admissible germ from a line to an algebraic
curve whose singularity set contains a nonempty open set.

We notice that the algebraic curve in Theorems 4 and 5 can be made rational. A small
perturbation of the union of the line with the original algebraic curve would provide a
nonsingular rational curve, and after a birational change of coordinates, an example of
an admissible germ from a line to itself with the same conclusions. We will however not
provide the details here. We finish by mentioning that Theorems 4 and 5 are also still true
for small perturbations of the curves where the admissible germs are defined. The proof
of this statement essentially follows the ideas used to prove Theorem 3 and will not be
included in this work. Also, the same results most likely hold in the more general context
of generic foliations on any complex algebraic surface, but we will not attempt to present
things here at that level of generality.

The article is organized as follows. In Section 2 we discuss the case of foliations de-
fined by closed meromorphic 1-forms, and prove Theorem 1. The method is quite differ-
ent from that of [29] and uses arguments involving Painlevé’s Theorem I. We also prove
that, in some special cases, the analytic extension of a holonomy germ is still a holonomy
germ. This section is essentially independent of what follows. Theorems 2 and 3 are
proved in Section 3. Introductory material for the proofs is developed in Subsection 3.1,
where it is proved that the inverse of the developing map of certain projective structures
on curves has large sets of singularities. We also provide explicit polynomial forms for
Theorems 2 and 3 in Subsection 3.4 and prove that the constructed foliations fail to admit
a continuous bounded simultaneous uniformization in Subsection 3.6. In Section 4 we
prove Theorems 4 and 5. This section can be read independently. Following the proofs,
some problems left open are suggested in an afterword (Section 5), and some geometric
discussion/explanation of the main ideas is added.

2. Foliations defined by closed 1-forms

In this section we exhibit a class of foliations for which admissible germs between rational
curves possess small singular sets for their analytic continuation. In his thesis [29], Marı́n
found explicit examples where Loray’s Conjecture can be verified. In fact, his family
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can be extended to the family of all foliations defined by meromorphic closed 1-forms
on P2. These admit a multivalued holomorphic first integral whose monodromy preserves
a Riemannian metric, and which allows one to define, on each noninvariant algebraic
curve T , a singular metric invariant under the holonomy pseudogroup. The problem of
analytic continuation then reduces to the completeness of this metric. Since our argument
only uses the codimension, we obtain:

Proposition 6. Let F be a codimension one holomorphic singular foliation defined by
a meromorphic closed 1-form ω on a compact complex manifold M . Suppose that L0
and L1 are rational curves in M and hγ : (L0, p0) → (L1, p1) is an admissible germ
for F associated to a leafwise path γ . Then the set of singularities of hγ is an at most
countable set in L0.

In particular, this is true for germs of holonomy associated to meromorphic fibrations
f : M 99K CP 1. Theorem 1 is a direct consequence of Proposition 6. As we will see in
Sections 3.2 and 4 the hypothesis dω = 0 is crucial. Notice that it allows one to define
a transversely Euclidean structure for the foliation on a Zariski open subset. A question
that this leaves open is whether Proposition 6 extends to foliations that admit a transverse
Riemannian structure on an invariant (Zariski) open set.

Proof of Proposition 6. Let ωi (i = 0, 1) be the meromorphic 1-form on the rational
curve Li defined by restriction of ω to Li . We claim that the germs of 1-forms h∗γ (ω1)

and ω0 coincide at p0. To prove the claim, let U be the Zariski open set where ω is
holomorphic. For any path c in U starting at p0 = γ (0), the formula F(c) =

∫
c
ω defines

a multivalued holomorphic first integral of F|U on U that forces the pole set (ω)∞ to be
invariant by F . Hence, up to replacing γ by its lift in a nearby leaf, we can suppose that γ
is contained in U . Let q ∈ L0 be a point sufficiently close to p0 ∈ L0. Consider a foliated
homotopy H : [0, 1] × [0, 1] → U such that for all s, t ∈ [0, 1]:

• H(s, 0) = γ (s),
• τ0(t) := H(0, t) ∈ L0,
• τ0(1) = q,
• H(s, t) belongs to the leaf of F through τ0(t),
• τ1(t) := H(1, t) = hγ (τ0(t)) ∈ L1.

Since ω is closed on U an application of Stokes’ Theorem shows that the integral of ω on
the path described by going once around the boundary of the square defined byH is zero.
On the other hand for any path c in a leaf of F , we have c∗ω ≡ 0. Hence∫

τ0

ω0 =

∫
τ0

ω =

∫
τ1

ω =

∫
hγ ◦τ0

ω1 =

∫
τ0

h∗γ (ω1).

The equality implies that h∗γ (ω1) = ω0 as germs at p0. Since meromorphic 1-forms
on rational curves are rational, we can write the 1-forms in coordinates to find rational
functions R, S such that ω0(x) = R(x)dx and ω1(y) = S(y)dy. The germ y = hγ (x) is
a solution to the differential equation

dy

dx
=
R(x)

S(y)
.
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Painlevé’s Theorem I (see the Introduction and Deuxième Leçon in [30] and Loray’s sur-
vey [27, Théorème (I), p. 14]) states that the solutions of rational differential equations
admit analytic extensions along any path avoiding a countable set in the x variable, i.e.
in L0. Hence the result. ut

2.1. Admissible analytic extension of an admissible germ; the examples of Marı́n
revisited

In general it is not clear whether the analytic continuation of a holonomy germ is holo-
nomic, and some care is needed even in the case of foliations defined by global ra-
tional functions. For instance consider the foliation F = {d(xy) = 0} and the lines
L0 = {y = y0}, L1 = {x = x0}, for fixed x0, y0 6= 0 close to 0. The linear map
(x, y0) 7→ (x0, xy0/x0) is a holonomy germ (L0, (x1, y0)) → L1 for x1 6= 0 close to 0
but not for x1 = 0.

Nevertheless, in his thesis, D. Marı́n [29] proved that for α /∈ R the foliation defined
by dy − y(y − 1)(y − α)dx = 0 in P1

× P1, which is Riccati with respect to dy = 0,
satisfies that any holonomy germ h from a noninvariant fibre F of dx = 0 to itself can
be analytically extended along any path avoiding a countable set in the fibre (we could
use Proposition 6 here), and moreover the extension is still a holonomy map. He further
proves that any two such germs of holonomy (different from the identity) can be obtained
from each other by analytic continuation along paths in the fibre. We are going to adapt
this example to the present setting and generalize it.

Proposition 7. Given a meromorphic 1-form η on P1 consider the foliation F defined by
the meromorphic closed 1-form ω on P1

× P1 whose expression in a chart is

ω(x, y) = dx − η(y), (x, y) ∈ C2,

and an admissible germ h for F between fibres of {dx = 0}. If the analytic extension of h
along a path τ in the fibre that avoids (η)∞ is the germ of a biholomorphism at τ(1), then
it is also an admissible germ for F .

Proof. Let 6 = P1
\ {p0, . . . , pd} be the set where η is holomorphic. Denote by P :

6̃ → 6 a fixed universal covering map. By integration of η along paths we can define a
holomorphic mapping that corresponds to a branched projective structure (see definition
in Section 3.1) D : 6̃ → C with critical points at the zero divisor P−1((η)0) and with
monodromy ρ : π1(6)→ PSL(2,C). Furthermore its monodromy group 0 = Im(ρ) is
a subgroup of translations of C.

Notice that (ω)∞ is invariant under F and contains the set Sing(F), so F is regular
on P1

×P1
\ (ω)∞ = C×6. The map (id, P ) : C× 6̃→ C×6 is a universal covering

map, and thanks to the closedness of ω, the pullback of F is a regular foliation F̃ on
C× 6̃ defined by the holomorphic 1-form

d(x −D(y)) = 0 where (x, y) ∈ C× 6̃.

Let γ be a leafwise path such that hγ = h and τ as in the statement of the proposition.
Lift them to paths in C× 6̃ with common basepoint and, by abuse of language, reuse the
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names γ and τ . We have γ (0) = (x0, y0) and γ (1) = (x1, y1) and suppose that both are
transversality points of F̃ with the respective fibres of dx = 0. The path τ is contained
in the fibre F0 = {x0} × 6̃ and satisfies τ(0) = γ (0). Suppose hγ admits an analytic
extension along τ (this is the case for most paths thanks to Proposition 6). We claim that
the extended germs are still holonomy germs of F̃ at the points of τ where F0 is transverse
to F̃ .

We have γ (s) = (γ1(s), γ2(s)) and τ(t) = (x0, τ0(t)). Let c(t) = x0−D(τ0(t)) ∈ C.
The path hγ (τ (t)) =: (x1, τ1(t)) ∈ F1 satisfies τ1(0) = γ2(1) = y1 and x1 − D(τ1(t))

= c(t) for small values of t , hence for all t ∈ [0, 1]. Choose a homotopyH : [0, 1]×[0, 1]
→ 6̃ such that for each (s, t) ∈ [0, 1]2,

• H(0, t) = τ0(t),
• H(1, t) = τ1(t),
• H(s, 0) = γ2(s).

Then the map F(s, t) = (D(H(s, t))+ c(t),H(s, t)) ∈ C× 6̃ defines for each t ∈ [0, 1]
a path γt in a leaf of F̃ with an endpoint at τ(t) ∈ F0 and the other at hγ (τ (t)) ∈ F1. If
neither of the endpoints belongs to Tang(F̃ , dx = 0), the holonomy germ associated to
γt realizes the analytic extension of the holonomy germ hγ along τ . Finally we need to
project the homotopy back to F . It is enough to consider the composition (id, P ) ◦ F :
[0, 1]2 → C×6. ut

3. Riccati foliations on the plane

In this section we prove Theorems 2 and 3. We begin by some introductory material
concerning projective structures on curves.

3.1. Projective maps between surfaces

We will now introduce the main material which will serve to prove Theorems 2 and 3.
We consider branched projective structures on Riemann surfaces 6i for i = 0, 1, and a
germ of projective map (i.e. a composition of charts of the branched projective structures)
between 60 and 61. We aim to provide examples of such germs whose analytic contin-
uation has a large set of singularities. We begin with some classical facts on projective
structures.

Let 6 be a Riemann surface. A branched projective structure on 6 =
⋃
Uj is a

collection {Dj } of nonconstant holomorphic maps Dj : Uj ⊂ 6 → P1 such that the
changes of coordinates (where defined) are Möbius transformations, i.e. Dj ◦D−1

k (z) has
the form (az + b)/(cz + d). In fact any of the functions Dj can be extended analytically
to a map D : 6̃ → P1 defined on the universal cover 6̃ of 6. These developing maps D
are thus uniquely defined up to post-composition by a Möbius map, and they satisfy a
formula of the form

D(γ (p)) = ρ(γ )D(p)
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for every p ∈ 6̃ and every γ ∈ π1(6), where ρ : π1(6) → PSL(2,C) is a certain
representation associated to D, called the monodromy representation. The monodromy
representation, and hence its image, is well-defined up to conjugacy by a Möbius map, and
we will refer to the conjugacy class of 0 := ρ(π1(6)) in PSL(2,C) as the monodromy
group of the branched projective structure D. The term branched comes from the fact that
the maps Di may have critical points. In fact the Dj define an orbifold structure on6 with
projective changes of coordinates. If there are no critical points, they define a Riemann
surface atlas with projective changes of coordinates and will be simply called a projective
structure.

A projective structure on a punctured sphere 6 = P1
\ {p1, . . . , pn} can be compared

to the projective structure given by its natural embedding6 ↪→ P1 in the Riemann sphere,
via the Schwarzian derivative defined for any function f by {f, z} = f ′′′/f ′− 3

2 (f
′′/f ′)2.

More precisely, to any projective structure D on 6 is canonically associated a quadratic
form q(z)dz2 by the formula

q(z)dz2
:= {D, z}dz2,

which is independent of the chosen developing map. The quadratic form can also be
defined in the case of a branched projective structure, but in this case it is meromorphic.

We will restrict our attention to parabolic type projective structures on 6. Namely,
in some coordinate w around any puncture pi , some developing map of our projective
structure is given by

D =
1

2πi
log(w − w(pi)).

This property is equivalent to the following Laurent series expansion of the quadratic
differential q(z)dz2:

{D, z}dz2
=

(
1

2(z− z(pi))2
+ · · ·

)
dz2

in the neighbourhood of any puncture pi (see [14, Chapter 10]). The set P of parabolic
type projective structures on 6 is a complex affine space directed by the vector space
of meromorphic quadratic differentials on the sphere having at most simple poles at the
punctures and being holomorphic in their complement. This space has positive dimension
as soon as the number of punctures is at least 4.

Examples of parabolic type projective structures on punctured spheres are given by
uniformizations. For our constructions, we will need projective structures of parabolic
type on punctured spheres with monodromy groups dense in PSL(2,C):

Lemma 8. If 6 is the sphere punctured by at least four points, then there exists a para-
bolic type projective structure on 6 with dense monodromy.

Proof. Let us first assume that the monodromy of any parabolic type projective structure
on 6 is nonelementary, i.e. it is not conjugate to either a subgroup of the affine group, a
subgroup of SU(2), or the group which preserves a nonoriented geodesic in H3. As we
will see in Lemma 10 this is always the case.
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Let γ ∈ π1(6) and consider the map Tγ : P → C defined as Tγ (σ ) = Tr2 ρσ (γ ),
where ρσ is the monodromy of the projective structure σ . This map is holomorphic. We
claim that there exists a nontrivial element γ in π1(6) such that Tγ is not constant. But if
it were constant, a well-known fact is that the representation ρσ would be constant up to
conjugation (see [8, Proposition 1.5.2, p. 120]), equal to some representation ρ. Consider
the P1-bundle constructed in Section 3.2 using the representation ρ, the compactification
being given by the choice of integers np = 0 for all cusps p of 6. Then the compactifi-
cations 1σ of the diagonals defined by the projective structures σ define a holomorphic
family of different compact holomorphic curves, whose self-intersection is negative, by
equation (3.3) in Section 3.2; this is impossible since holomorphic curves intersect non-
negatively. This proves the claim.

Then, because P is an affine complex space, Tγ must take one of the values 2 cosα
for an irrational real number α, by Picard’s Theorem. The monodromy ρσ (γ ) of the cor-
responding projective structure is conjugate to an irrational rotation, and thus the image
of the monodromy representation is not discrete. Because the monodromy of a parabolic
type projective structure is nonelementary, this implies that up to conjugation, either the
monodromy is dense in PSL(2,R), or it is dense in PSL(2,C).

If it is dense in PSL(2,R), then by perturbing the projective structure, the image of
the monodromy will still be nondiscrete. Indeed, by Zassenhaus’s lemma [21, Theorem
4.52, p. 85], a nonabelian subgroup generated by elements close enough to the identity is
nondiscrete. Hence, by perturbing the projective structure so that Tr2(γ ) is not real, the
image of ρσ will be dense in PSL(2,C). ut

We will fix a hyperbolic Riemann surface6 with a branched projective structure, a devel-
oping map D, and study the analytic continuation of the inverse D−1. We will prove that
the singular set for the analytic continuation of this map is the limit set of the monodromy
group, when either the projective structure is the uniformizing one, or the monodromy
group is dense (in which case the limit set is the whole Riemann sphere).

Proposition 9. Let 6 be a hyperbolic Riemann surface equipped with a branched pro-
jective structure and D be a developing map. Denote by h a germ with extension the
multivalued map D−1.

(1) If the projective structure is that given by uniformization, then h has natural boundary
for its analytic continuation.

(2) If the monodromy group is dense in PSL(2,C), then h has full singular set.

Before proceeding to the proof let us remark that we are going to find singularities of
the inverse h−1 based on an analysis of the asymptotic values of the germ h. Given a
holomorphic germ h : (60, p0) → (61, z0) between complex curves, we say z ∈ 61 is
an asymptotic value for h if there exists a path τ : [0, 1)→ 60 such that τ(0) = p0, the
analytic continuation of h along τ exists and is a germ of biholomorphism at each point
of τ ,

z = lim
t→1

h(τ(t)) but lim
t→1

τ(t) does not exist.

Hence h−1 does not admit continuous extension to z along h ◦ τ , which is enough for z
to be a singularity of h−1.
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Proof of Proposition 9. (1) By the uniformization theorem for Riemann surfaces, 6 is
biholomorphic to the quotient of D by the action of a Fuchsian group preserving D. The
hypothesis states that, modulo conjugation by a Möbius map, h−1 is a germ of the uni-
versal covering map D → 6, hence it does not extend continuously to any point in the
boundary of D.

(2) Fix a point p0 in 6̃ over 0 ∈ 6, and denote z0 = D(p0). On the sphere P1, we
consider the spherical metric of constant positive curvature given in affine coordinates w
by |ds| = |dw|/(1+ |w|2). We denote byDh the derivative of a Möbius map h acting on
the sphere, and by |Dh|(w) its spherical norm at the point w. If w is a point of the sphere,
we denote by w′ the antipodal point.

For each point z ∈ P1 we will construct a finite set A in π1(6), and an infinite
sequence α1, . . . , αn, . . . of elements of A, which have the following properties. Denoting
An := α1 . . . αn (i.e. the group product), for every positive integer n, the diameter of the
set (for the spherical metric)

Bn := {w ∈ P1
| |D(ρ(An))|(w) ≥ 1/2n}

tends to 0 exponentially fast as n → ∞, and the image ρ(An)(P1
\ Bn) is contained

in B(z, cst/2n), where cst is a universal constant. Moreover, neither z0 nor ρ(αn+1)(z0)

belongs to Bn (observe that this implies in particular that ρ(An)z0 converges to z as
n→∞).

Before proving the existence of such a sequence αn, let us explain why it implies
the conclusion. The idea is to consider, for every nonnegative integer n, a smooth path
an : [0, 1] → 6̃, which begins at p0 and ends at αn(p0), of length bounded by a con-
stant independent of n (depending only on A), and such that for every sufficiently large
integer n, D ◦ an does not take any value in the ball Bn−1. The reason why these paths an
exist is the following. Consider in 6̃ a large ballD containing all the points α(p0), where
α ranges over A. If n is large enough, Bn−1 is a set in P1 with small diameter |Bn−1|, so
that the set D ∩ D−1(Bn−1) is a disjoint union of topological balls of diameter bounded
by cst · |Bn−1|, and their number is bounded by the degree of D|D . To construct an, it
suffices to follow the geodesic [p0, αn(p0)] between p0 and αn(p0) in 6̃, and to make
a detour around the components of D−1(Bn−1) ∩ D each time the geodesic hits one of
them.

We are ready to construct the path c : [0,∞)→ 6̃. This is an infinite concatenation
of the paths cn := An−1an, which starts at An−1(p0) and ends at An(p0); namely, we
define c(t) = cn(t − n + 1) for every nonnegative integer n and every t ∈ [n, n + 1].
Notice that D ◦ cn = ρ(An−1) ◦D ◦ an, so that because D ◦ an does not take any value in
the ball Bn−1, the length of D ◦ cn goes to 0 exponentially fast. We deduce that D ◦ c(t)
converges to a point in P1 as t → ∞; this point must be z since c(n) = ρ(An)(z0)

converges to z as n→∞, and thus z is an asymptotic value of D.
It remains to prove the existence of the set A and of the sequence (αn). Let δ > 0 be

a small real number. We claim that it is possible to find a finite subset B of π1(6) such
that, for every pair of points {u, v} in P1 with d(u, v′) ≤ δ, there is an element β ∈ B
such that
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• ρ(β) maps u and v to points δ/2-close to z0 and z′0 respectively,
• |D(ρ(β))|(u) ≥ 4 and |D(ρ(β))|(v) ≤ 1/4.

Indeed, for every pair {u, v} of points of the sphere such that d(u, v′) ≤ δ, there is
a Möbius map h in PSL(2,C) such that d(h(u), z0) < δ/2, d(h(v), z′0) < δ/2 and
|Dh|(u) > 4, |Dh|(v) < 1/4. Because ρ(π1(6)) is dense in PSL(2,C), we can sup-
pose that the Möbius map h belongs to the image of ρ. But then, the four preceding
conditions will be satisfied if we move u and v a little. Thus, the claim is a consequence
of the compactness of the set of pairs {u, v} such that d(u, v′) ≤ δ.

We construct a sequence of elements βn in B in the following way. The element β1
is the element β ∈ B corresponding to the choice u = z, v = z′. The element β2 is the
element of B corresponding to the choice u = β1(z) and v = β1(z

′), etc. By construction,
βn . . . β1 maps z and z′ to points δ/2-close to z0 and z′0 respectively, and moreover

|D(βn . . . β1)|(z) ≥ 4n and |D(βn . . . β1)|(z
′) ≤ 4−n.

Then we define A = B−1 and αn = β−1
n . We will prove that this sequence satisfies the

required conditions.
We need to analyze the behaviour of the function |D(ρ(An))|. Consider a Möbius

map R which sends z and z′ to ρ(An)−1(z) and ρ(An)−1(z′) respectively, and which is 2-
bilipschitz. Such a map certainly exists since the points ρ(An)−1(z) and ρ(An)−1(z′)

are almost antipodal: more precisely, they are δ/2-close to z0 and z′0, so we have
d(ρ(An)

−1(z)′, ρ(An)
−1(z′)) ≤ δ. We will study the derivative of the Möbius map

ρ(An) ◦ R instead of ρ(An). Observe that |D(ρ(An) ◦ R)| = |DR| · (|D(ρ(An))| ◦ R),
and thus |D(ρ(An))| is the same as |D(ρ(An)◦R)| ◦R−1 up to a multiplicative constant.
Changing affine coordinate if necessary without changing the expression of the spherical
metric, we can suppose that z′ = 0, hence z = ∞. Because ρ(An) ◦ R fixes z and z′, it is
a homothety: ρ(An) ◦ R(w) = λ · w. A direct computation shows that

|D(ρ(An) ◦ R)|(w) =
1+ |w|2

|λ| · |w|2 + |λ|−1 .

Observe that for every nonnegative integer n,

|λ| = |D(ρ(An) ◦ R)|(0) ≥ cst · |D(ρ(An))|(ρ(An)−1(z′)) ≥ cst · 4n.

Thus, the derivative of ρ(An) ◦ R is larger than cst · 2−n if and only if |w| ≤ cst · 2−n/2.
Hence, Bn ⊂ R({|w| ≤ cst · 2−n/2}) and the diameter of Bn tends exponentially fast to 0.

It remains to prove that neither z0 nor ρ(αn+1)(z0) belongs to Bn. We see that
|D(ρ(An)◦R))|(w) ≤ cst·|λ|−1

≤ cst·4−n ifw 6∈ B(z′, δ). This implies that |D(ρ(An))|
is bounded by cst · 4−n outside the ball R(B(z′, δ)) ⊂ B(z′0, 3δ). Because z0 6∈ B(z

′

0, 3),
we have |DAn|(z0) ≤ cst · 4−n. Moreover,

|D(ρ(An))|(ρ(αn+1)(z0)) =
|D(ρ(An+1))|(z0)

|D(ρ(αn+1))|(z0)
≤ cst · 4−n.

Hence, for n sufficiently large, neither z0 nor ρ(αn+1)(z0) belongs to Bn. Item (2) is
proved. ut
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3.2. Riccati foliation associated to a projective structure

Given any parabolic type projective structure on a punctured sphere 6, we proceed to
the construction of some associated transversely projective foliations on rational complex
surfaces. Fix a developing map D of the projective structure and the corresponding mon-
odromy representation ρ. Consider the quotient of 6̃ × P1 by the action of π1(6) on it
given by deck transformations on the first factor and ρ on the second one. There are three
holomorphic structures invariant under this action:

• the vertical fibration π : 6̃ × P1
→ 6̃,

• the horizontal foliation F , transverse to the fibration π ,
• the section 1 := {(x,D(x)) : x ∈ 6̃}, which is transverse to both π and the foliation

at every point.

The quotient S = (6̃× P1)/π1(6) is a noncompact surface equipped with a P1-fibration
π : S → 6, a smooth holomorphic foliation F transverse to π , and a holomorphic
section 1 of π transverse to F (for branched projective structures this has to be modified
by considering tangencies between1 and F , but this does not affect the compactifications
that follow). This construction is usually called the graph of the projective structure [12,
Section 2].

Our goal is to compactify (S, π,F ,1), where π compactifies as a rational fibration
over P1, namely a Hirzebruch surface (see [2]), but with a singular foliation. Above a
neighbourhood of a cusp pi , we have seen that the developing map D is given in some
coordinates by D(w) = 1

2πi logw, wherew induces a biholomorphism from a neighbour-
hood Di of pi to the unit disc. Thus, the fibration π restricted to π−1(Di) is defined as
the quotient of H2

× P1 by the action (x, z) 7→ (x + 1, z+ 1), where x := 1
2πi logw, the

foliation is the quotient of the horizontal foliation, and the curve 1 is the quotient of the
diagonal {z = w}.

There exist local models of P1-bundles over a disc with a meromorphic flat connection
with a pole at 0, and parabolic monodromy (see [5, p. 53]): for any nonnegative integer n,
they are defined by the differential equation

wdt + (wn − nt)dw = 0 (3.1)

in the coordinates (w, t) belonging to D × P1. These foliations have either one or two
singularities on the invariant fibre w = 0, according to whether n = 0 or n > 0 respec-
tively. In the x-coordinates, (3.1) reads dt

dx
= −enx + nt modulo 2iπ , and the solutions

are given by t (x) = (cst − x) · enx . Thus, the map (x, z) 7→ (x, t = (z − x)enx) in-
duces a biholomorphism between π−1(Di) and D∗ × P1, sending the vertical fibration to
itself, the foliation F to the foliation defined by (3.1), and the curve1 to the curve whose
equation is {t = 0}.

Gluing the model (3.1) to the surface S for each cusp of 6, we obtain a compact

complex surface S. It is equipped with a rational fibration P1
→ S

π
→ P1, and a singular

holomorphic foliation F transverse to π except at the fibres over each cusp of 6, where
by the models (3.1) the fibre is invariant under the foliation F . Moreover, the section 1
compactifies to a section1 of π which passes through each singularity of F of type (3.1)
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corresponding to a cusp p with np > 0, and such that1 is transverse to F at each point of
intersection, of a fibre over a cusp p of 6, iff np = 0. We deduce (see [5, Proposition 2,
p. 23]) that the number of tangencies counted with multiplicities is

Tang(F ,1) =
∑
p

np. (3.2)

We claim that the self-intersection of 1 is

1
2
= 2+

∑
p

(np − 1). (3.3)

To prove this, observe that the normal bundle of 1 is canonically isomorphic to the
tangent bundle of the fibration π restricted to 1, because 1 is everywhere transverse
to π . Consider the morphism P : T1 → T F |1, from the tangent bundle of 1 ⊂ 1 to
the tangent bundle of the fibration F , defined as the projection along the tangent bundle
of F . In the coordinates (w, t) over a neighbourhood of the cusp p, the projection P has
the form

P

(
∂

∂w

)
= wnp−1 ∂

∂t
.

This means that P extends meromorphically from T1 to T F |1 ' N1, with a 0 of order
np − 1 at the cusp p, and we get the desired formula.

We recall here that by deforming the conformal structures of the punctured sphere,
associated to base or fibre, we obtain foliations that are holomorphically different, and it
has been remarked in [9, p. 821 after (1)] (see also [1, III.D, pp. 53–62], and note as well
the beginning of our proof of Lemma 8) that only a very special subset of these admit
holomorphic diagonals.

This provides some motivation to consider smooth real two-dimensional transversals,
with the conformal structure they inherit from the foliation.

The previous construction allows us to prove the following lemma, which was used
in the proof of Lemma 8.

Lemma 10. If 6 is a sphere punctured at least at four points, then the monodromy of
any parabolic type projective structure on 6 is nonelementary.

Proof. Because the monodromy around the cusps is parabolic, it suffices to show that the
monodromy is not conjugate to a subgroup of the affine group. But if it were, then the
previously constructed foliation F associated to the parabolic type projective structure
would have a leaf that gives a section of the fibration S → 6 (the leaf through a fixed
point of the monodromy in P1, the point at infinity for the affine action). Taking the
compactification corresponding to the integers np = 0, one shows by a computation that
this leaf would compactify as an invariant algebraic curve passing through each saddle-
node singularity of F . By the Camacho–Sad formula [5, Theorem 2, p. 37], the self-
intersection of such an invariant curve vanishes. This would imply that the P1-bundle S
would be biholomorphic to the product P1

× P1, and would contradict the fact that there
is a holomorphic section, 1, of negative self-intersection. ut
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3.3. Proof of Theorem 2

Choose d ∈ {2, 3, . . .}. Consider the Riemann sphere punctured at d + 1 points, together
with its parabolic type uniformizing projective structure: take a curvilinear (d + 1)-sided
polygon in the unit disc D ⊂ P1 with vertices in the unit circle S1 and consecutive sides
Ci , i = 0, . . . , d , that are subarcs of circular arcs perpendicular to S1 at the vertices. Let
ri be the hyperbolic reflection with respect to the circle containing Ci and letG denote the
(Fuchsian) group of Möbius transformations whose generators are the compositions ρi =
ri ◦ ri+1 for i = 0, . . . , d where rd+1 := r0. By Poincaré’s theorem (see for instance [32,
Théorème VI.1.10, p. 211]), G leaves D invariant and acts freely discontinuously there.
The quotient map D → D/G =: 6 is a universal covering map of the curve 6, which
is biholomorphic to a (d + 1)-punctured sphere, and we consider the projective structure
given by the canonical equivariant embedding D : 6̃ = D ↪→ P1. By construction D is a
parabolic type projective structure and by Proposition 9 a germ of its inverse D−1 has the
unit circle S1 as natural boundary.

For the proof of item (2) consider a parabolic type projective structure D on a d + 2-
punctured sphere 6 with dense monodromy, which exists by Lemma 8. Proposition 9
guarantees that a germ of the inverse D−1 has full singular set.

Construct the holomorphic foliation F associated to the pair (6,D), using the method
at the beginning of this section, by choosing one p0, setting np0 = 0 and for all other p,
setting np = 1 . Hence the compactification 1 of the diagonal section 1 associated to D
is a smooth rational curve of self-intersection +1. This implies that the rational surface
is the first Hirzebruch surface F1, which has a unique exceptional curve disjoint from 1.
Blowing down gives P2 equipped with a holomorphic foliation G of degree d in the case
of a Fuchsian representation, and of degree d + 1 in the case of dense representation
(by (3.2)). By construction there is an admissible germ for G from a fibre of the rational
fibration (a line in P2) to the image of 1 (another line in P2) that corresponds to the
germ D−1 of F and having the corresponding set of singularities as desired, because the
restriction of the blowdown to a fibre (resp. 1) is biholomorphic onto its image.

By using a different technique we provide, in Section 3.4, explicit polynomial 1-forms
for the foliations constructed here.

3.4. Explicit expressions

In some particular cases, we can obtain birational models for the previously constructed
Riccati foliations. We claim that we can find all the previous phenomena within the family
of degree four foliations of P2 given in an affine chart by the kernel of the form

(y2
[2λx + 1] − 2x3

+ L)ydx + (x4
− 2xy2

[λx − 1] + y4
− Lx)dy, (3.4)

for L = (1+ λ2)y2x2
− 2λy4 and λ ∈ C. Blowing up the origin we pass from P2 to the

first Hirzebruch surface, which is a rational fibration with rational base. In the coordinate
chart x = ty of the blowup we obtain the foliation F given by

[1+ 2t (λ− t2)y + (t2 + t2λ2
− 2λ)y2

]dt − (t4 − 1)dy. (3.5)
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In order to understand the foliation we will consider the foliation F2 that (3.5) induces
in the second Hirzebruch surface F2, by means of the chart (t, y) = (T −1, YT 2). The
rational fibration5 : F2 → P1 determined by5(y, t) = [t : 1] is transverse to F2 except
at the four exceptional fibres {t4 = 1}: the foliation is a Riccati one. In other words, if we
let 6 = P1

\ {1,−1, i,−i} and � = 5−1(6), then 5|� : �→ 6 is a rational fibration
everywhere transverse to F2. There is a section 1 : t 7→ (0, t) of the fibration 5 that can
be compactified to 1 = {y = 0}, which is everywhere transverse to the foliation. Since
we are in a transversely projective foliation, 1 inherits a projective structure that can be
compared to the canonical one:

Proposition 11. The Schwarzian derivative of the projective structure induced by F with
respect to the canonical one in 1 is given by

2
4t2 + λ(t4 − 1)
(t4 − 1)2

dt2. (3.6)

Proof. Recall that if H(t) =
(
a(t) b(t)
c(t) d(t)

)
is a solution to the linear differential equation

d

dt
H(t) =

( 1
2α1 α0
−α2 −

1
2α1

)
H(t), (3.7)

the general solution to the Riccati equation

[α2(t)y
2
+ α1(t)y + α0(t)]

∂

∂y
+
∂

∂t
(3.8)

is given by

h(t)(y0) =
a(t)y0 + b(t)

c(t)y0 + d(t)
.

This implies that the flow of the vector field (3.8) in time s is (y, t)
s
−→

(h(t + s)h−1(t)(y), t + s) and hence (y, t)
t0−t
−−→ (h(t0)h

−1(t)(0), t0). The holonomy
from 1 to the fibre t = t0 is in consequence, up to a Möbius transformation, given
by φ(t) = h−1(t)(0) = −b(t)/a(t). We will now calculate its Schwarzian derivative.
By (3.7), we have

φ′′

φ′
=
α′0
α0
− α1 − 2

c

a
α0.

Developing {φ(s), s} = (φ′′/φ′)′ − 1
2 (φ
′′/φ′)2 using (3.7) and the above formula, we

obtain

{φ(t), t}dt2 =

[
2α0α2 −

1
2
α2

1 − α1
α′0
α0
− α′1 −

3
2

(
α′0
α0

)2

+
α′′0
α0

]
dt2.

This is well-defined even in the presence of multivaluedness for the flow of the vector
field. For equation (3.5), this gives exactly (3.6). ut
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Notice that for every fourth root of unity t0, the expression (3.6) is, at τ = t − t0, of the
form ( 1

2τ
−2
+· · · )dτ 2, and this implies that, at each one of these four points in1\1, the

monodromy is parabolic (the point at t = ∞ is a regular point of the projective structure).
The monodromy representation ρ : π1(1) → PSL(2,C) of the projective structure

is the holonomy of the Riccati equation. If γ : [0, 1] → 1 is a closed path, since the
holonomy from 1 to a generic fibre F is a developing map D of the projective structure
and D(γ · p) = ρ(γ )D(p), the difference of the holonomies is exactly ρ(γ ).

We can pull back the fibration P1
→ � → 6 to 6̃ via π : 6̃ → 6 and ob-

tain in this way a fibration P1
→ �̃ → 6̃ endowed with a foliation F̃2 that is trans-

verse to the fibration. Up to a biholomorphism we can suppose that �̃ = 6̃ × P1, and
that F̃2 is the horizontal foliation in 6̃ × P1. We may recover � by acting diagonally
by π1(6) on 6̃ × P1 by deck transformations in the first factor and by some represen-
tation µ : π1(6) → PSL(2,C) in the second one. This last representation must be
the monodromy. Furthermore, in 6̃ × P1 the section 1 becomes the graph of a func-
tion f : 6̃ → P1, but the projection onto the second coordinate must be the developing
map. We conclude that the foliations considered here belong to the family of previously
constructed foliations. They correspond to the choice of np = 0 at each of the four punc-
tures of 6. The surface F2 appears as a consequence of formula (3.3).

Since the dimension of the space of parabolic type projective structures on a four
punctured sphere is one, equation (3.6) is an affine parametrization of that space in the
case6 = P1

\ {1,−1, i,−i}. For the projective structure corresponding to the (Fuchsian)
uniformization, the quadratic differential must be invariant under automorphisms of 6.
Under the symmetry t 7→ it the quadratic differential (3.6) is the same except for a
change of sign in λ, that is, only λ = 0 may give a quadratic differential which is invariant
under the automorphisms of6 and corresponds thus to the uniformization parameter. For
other values of the parameter λ, we find quasi-Fuchsian representations (for sufficiently
small λ) and dense representations, as was shown in Lemma 8.

3.5. Proof of Theorem 3

We will consider the foliation (3.4) with λ = 0 and the linesCp,ε given by {x−yp−ε = 0}
for |p| < 1/4. After the blowup leading to the foliation (3.5), the strict transform of Cp,ε
becomes the curve y = ε(t − p)−1. This curve does not intersect 1. Let K ⊂ 1 be the
annulus 1/2 < |t | < 2. The complement of K in 1 is a compact set free of singularities
of the projective structure (the four punctures are contained in K). If ε is small enough,
Cp,ε is close to 1 along K and thus, since 1 is transverse to F , we have a holonomy
map f : K → Cp,ε that is a biholomorphism onto its image.

Let q ∈ C, q4
6= 1. We have shown that there exists an open disc D ⊂ {t = q}

and a holonomy map h : D → 1 that realizes the Fuchsian uniformization of 1
and that has ∂D as natural boundary. Notice that, for every z ∈ ∂D we can find a
path γ : [0, 1] → {t = q} such that γ (1) = z and γ (t) ∈ h−1(K) for t < 1. Con-
sider the restriction h|h−1(K) : h

−1(K)→ K . It is still a holonomy map and, through γ ,
has at z a singularity for its analytic continuation. Hence, for every z ∈ ∂D, f ◦ h|h−1(K)

is a holonomy map from {t = q} to Cp,ε for which z is a singularity for its analytic con-
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Fig. 1. Singularities of the holonomy in the perturbed line: through the holonomy relation, the
complement of the shaded part within the circle realizes the universal covering of the annulus. This
covering cannot be extended to the circle.

tinuation (see Figure 1). Notice that, because F is both transverse to 1 and to {t = q} at
the intersection of these curves,1 intersects {t = q} in the interior ofD. Let B ⊂ D be a
small closed ball containing this point of intersection. If ε′ is small enough, F establishes
a holonomy diffeomorphism g : ({t = q} \ B)→ Cq,ε′ defined, in particular, in ∂D. We
have the holonomy f ◦ h|h−1(K) ◦ g

−1 between Cq,ε′ and Cp,ε . The holonomy is defined
along g ◦ γ (t) for every t < 1 but cannot be extended to t = 1. In other words, the points
of the curve g(∂D) are singularities for the analytic continuation of an admissible germ
from Cq,ε′ to Cp,ε . This ends the proof of Theorem 3.

It is worth noticing that if ε is small enough, the projective structure in Cp,ε can be
completely understood: it is a bubbling (see [11]) over the projective structure of1 along
two arcs, one of them close to {t = p} and the other close to {t = ∞}. This is, however,
unnecessary for the proof of the theorem.

3.6. Aside: Simultaneous uniformization

A holomorphic foliation F on a surface S with a given transversal 1 admits a simulta-
neous uniformization if the union M =

⋃
q∈1 L̃q of the universal covering spaces of the

leaves intersecting 1 (with the analytic structure induced by the one in the leaves and the
one in1) admits a holomorphic embedding8 : M → 1×P1 such that, for every q ∈ 1,
8(q) = (q, 0) and for every leaf L the projection of8(L) onto1 is constant (this notion
was introduced in [20]). The simultaneous uniformization is continuous if 8(Lq) varies
continuously with q, and bounded if there exist r, R ∈ R such that 8(Lq) contains the
disc of radius r and is contained in the disc of radius R. In [18], Ilyashenko proved that
if a foliation F admits a continuous simultaneous bounded uniformization with respect
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to the tranversals 11 and 12, the holonomy map from 11 to 12 does not have a natural
boundary.

By Ilyashenko’s Theorem, the foliations related to the first part of Theorem 2 (where
there is a natural boundary for the holonomy map) do not admit a continuous bounded
simultaneous uniformization. Since, at first sight, it may seem striking that some Riccati
foliations fail to exhibit good uniformization properties (boundedness in this case), we
decided to include a direct proof of the absence of a continuous bounded uniformization
for the foliations constructed for Theorem 2 (the ones corresponding to the projective
structure associated to the uniformization).

Our setting is the following one: Let D be the unit disc in C, 6 an n-punctured sphere
(n ≥ 3), 5 : D → 6 the uniformization. Let F be the foliation in D × D given by the
fibres of the projection onto the first factor and let 1 ⊂ D× D be the diagonal. Let S be
the surface obtained by the quotient of D× D by the diagonal action of π1(6), F and 1
the corresponding foliation and transversal in S.

Proposition 12. With respect to the transversal1, the above constructed foliation F in S
admits a continuous simultaneous uniformization but does not admit a bounded one.

Proof. The covering M =
⋃
q∈1 Lq identifies to S, since every leaf of F is simply

connected and intersects 1 once and only once. We have a projection 5 : M → 1 and a
section σ : 1→ M . They are given, in D× D, by the projection onto the first factor and
by the embedding of the diagonal (before quotient).

We claim that there is no other section of 5. In fact, any section comes from a
map i : D → D × D of the form z 7→ (z, f (z)) that must be preserved by the diag-
onal action of π1(6), that is, for every g ∈ π1(6), (g(z), g(f (z))) = (g(z), f (g(z))),
that is, f ◦ g = g ◦ f (in particular, f is not constant). The mapping f induces a map-
ping f [ : 6 → 6. We will consider 6 with its natural hyperbolic metric, where the
punctures are cusps of infinite length and have neighbourhoods of arbitrarily small area.
By the Schwarz–Pick Lemma ([22, Theorem 1.2]), f [ is (hyperbolic) distance-decreasing
and (hyperbolic) area-contracting. If we think of 6 as embedded in P1 then, at the punc-
tures of 6, f [ cannot have an essential singularity for, in such a case, by Picard’s Big
Theorem, a neighbourhood of a puncture of arbitrarily small hyperbolic area would be
mapped to a set whose hyperbolic area is (at least) that of6. Hence, f [ is meromorphic at
the punctures and is thus the restriction of a rational function R : P1

→ P1. Under R, the
preimage of any puncture of 6 is a puncture of 6 for otherwise the distance-contracting
property would be violated. Hence, R maps the punctures of 6 to the punctures of 6.
The rational function R must have degree one by the area-contracting property of f [ and
is thus a Möbius transformation. Hence, f : D → D is a biholomorphism (given in
fact by a Möbius transformation of P1 preserving ∂D) that commutes with every element
of π1(6). If g ∈ π1(6) is hyperbolic, it has two fixed points in ∂D that must also be fixed
points of f . Since π1(6) has at least two hyperbolic elements with different fixed points,
f (z) = z and the section given by i is 1.

Suppose now that we have a continuous uniformization 8 : M → 1 × P1 that is
bounded from below, that is, that there exists some r ∈ R such that a disc of radius r is in
the image of Lq for every q ∈ 1. This implies that z 7→ (z, r/2) is a section of S (after
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embedding it in 1 × P1). This contradiction proves that there is no continuous bounded
simultaneous uniformization.

We will now show that the compactification constructed in Section 3.2 actually gives
a continuous uniformization. We embedded the quotient of D×D (through its embedding
into D×P1) into a Hirzebruch surface, by adding some lines. We may take a chart C×P1

within the complement of one of these lines in the Hirzebruch surface and, within this
chart, after removing the other P1-fibres that were added, we find 6 × P1, where we
might embed S. One of the foliations in S (they are both perfectly equivalent) is now
tangent to the P1-fibres: we have a continuous simultaneous uniformization. In each fibre
the boundary of D is a circle, which approaches the singularities of the foliation as we
move away from 6 and into the punctures, and in this way we can see how this particular
simultaneous uniformization fails to be bounded (see [13, § 4.3] for more details on the
structure of these foliations near these points). ut

4. Generic foliations

4.1. Proof of Theorem 4

The holonomy map with natural boundary (Theorem 2) was constructed using the quo-
tient map of the domain of discontinuity of a Fuchsian group. Analogous maps, closely
related to Schottky groups, can in fact be seen as the holonomy of generic foliations of the
complex projective plane. The existence of rich dynamics in the holonomy pseudogroup
will underlie their construction.

Before proceeding to an explanation, we need to introduce the concept of F-homo-
topy, and to discuss a subtlety in the definition of the holonomy map. Given a com-
pact topological space X, an algebraic foliation F of P2, and continuous maps F0, F1 :

X → P2, an F-homotopy between F0 and F1 is a continuous family of leafwise paths
0x : [0, 1] → P2 such that 0x(i) = Fi(x) for i = 0, 1 and every x ∈ X. Sometimes
the F-homotopy will be denoted by 0(s, x) = 0x(s). Now, define a holonomy tube be-
tween two open sets U,V contained in algebraic curves to be an F-homotopy between
idŪ and some map h : Ū → V̄ . Of course, the map h associated to a holonomy tube is a
holonomy map, but strictly speaking tubes have more structure, the reason being that in
a holonomy map the homotopy class of the leafwise path is not uniquely determined (see
[33] for more details on the consequences of this nonuniqueness).

Lemma 13. Under the hypotheses of Theorem 4 there exists a line L, an open disc
B ⊂ L and a pair of holonomy tubes between B and the pair of subsets, hi(B) ⊂ B,
where the associated holonomy maps h1, h2 : B → B are injective and such that

h1(B) ∩ h2(B) = ∅.

Proof. Let T be an algebraic curve such that Sing(F) ∩ T = ∅, and let M be a closed
union of leaves of F such that M∩T is minimal, for the holonomy relation on T defined
in the Introduction, over all such closed subsets. Note that M may accumulate on p ∈
Sing(F). Furthermore, by an application of the maximum principle of [6], these are the
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only possible nontrivial F-invariant subsets. Thus M is a quasi-minimal set for F , that
is, a nonempty closed invariant subset of P2

\ Sing(F) such that every leaf Fx ⊂ F is
dense in M.

We will now produce a closed leafwise path γ : [0, 1] → Fx →M, based at some
point x ∈M, and an open disc B in a line of P2 containing x and transverse to F such
that the holonomy map hγ is defined on B and satisfies hγ (B) b B.

Suppose that M contains a singularity p of F . By hypothesis p is hyperbolic, so
restricting to the domain of linearization of F at p, a leaf of M accumulates in a sepa-
ratrix S of p, so S ⊂M. There is then a loop γ ⊂ S and a transverse disc B producing
the hyperbolic holonomy germ hγ (B) b B as desired. On the other hand, if M does not
contain a singularity of F , then M is an exceptional minimal set and the existence of the
germ hγ was proven in [4]. In any case hγ has a fixed point 0 (in a coordinate z : B → D)
and by the Schwarz Lemma hnγ (B)→ 0 uniformly in n. Shrinking B if necessary, we can
construct a holonomy tube from B to hγ (B), which we denote by 0′ : [0, 1] × B → P2.

Since F has no invariant algebraic curves, M is transversely a perfect set. We can
choose open sets (by increasing n as needed) U,V ⊂ B such that z = 0 ∈ U b U b
h(B), V b B \ h(B), and there exists a holonomy diffeomorphism ψ : U → V with
ψ(0) ∈ V . Shrinking U if necessary, we consider a holonomy tube 0′′ : [0, 1]×U → P2

from U to V whose associated map is ψ . Now for sufficiently large n ∈ N, hnγ (B) b

U ∩ ψ−1(V ), so by defining h1 = hγ and h2 = ψ ◦ h
n
γ , we get two injective holonomy

maps h1, h2 : B → B of F satisfying

h1(B) ∩ h2(B) = ∅.

We define the tubes 01 = 0′ and 02 = (0′)∗n ∗ 0′′, whose associated holonomy maps
are respectively h1 and h2. ut

We denote by H = 〈h1, h2〉 the semigroup generated by the two holonomy maps of
Lemma 13. The action ofH on B is a local semigroup version of the action of a Schottky
group on P1. In particular there exists a unique closed H -invariant set, and it is contained
in the closure of every H -orbit. This limit set is

3H :=
⋂
n∈N∗

( ⋃
(i1,...,in)∈{1,2}n

hi1 ◦ · · · ◦ hin(B)

)
.

The following fairly standard lemma is included for lack of a suitable reference:

Lemma 14. Under the hypothesis of Lemma 13, the set 3H is a Cantor set in B. More-
over, H acts freely discontinuously on UH = B \3H .

Proof. Let N be a natural number and for each finite ordered set I = (in)n≤N ∈ {1, 2}N

define hI = hi1 ◦ · · · ◦ hiN ∈ H , and say it has length N . By a trivial induction, each
hI : B → B is an injective holomorphic mapping. We need to analyze the set of points
where orbits of the action accumulate, i.e., 3H =

⋂
k

⋃
N(I)=k hI (B). For each I the set

B \ hI (B) is conformally equivalent to a unique annulus

AI = {z ∈ C : rI < |z| < 1},
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of modulus
m(B \ hI (B)) = − log(rI ).

Set 0 < c < min{m(B \ h1(B)),m(B \ h2(B))}. We claim that m(B \ hI (B)) > cN .
Indeed, this can be proved by induction on the length. For N = 1 it is obvious. Suppose
I ′ has lengthN−1 and satisfiesm(B \hI ′(B)) > c(N−1). Let I = I ′iN . Then by using
superadditivity of moduli (see [23, Lemmas 6.3, 6.4, pp. 35–36], or use [1, pp. 10–16],
especially Example 3, Theorem 4(b) and Theorem 2) we have

m(B \ hI (B)) ≥ m(B \ hI ′(B))+m(hI ′(B) \ hI (B)).

On the other hand

m(hI ′(B) \ hI (B)) > m(B \ hiN (B)) > c,

and therefore m(B \ hI (B)) > cN .
Hence for an infinite sequence, I = (in)n∈N ∈ {1, 2}N, if we consider its truncation IN

of length N we find that limN→∞m(B \ hIN (B)) = ∞ and there exists a unique point
kI ∈

⋂
n∈N hi1 ◦ · · · ◦ hin(B) ∈ B. It is then clear that the limit set of H ,

3H =
⋃

I∈{1,2}N
kI ,

is a totally disconnected, perfect set in B, hence a Cantor set. ut

We now proceed to the proof of Theorem 4. Suppose that we could find an algebraic
curve C and a holonomy map h : B \3H → C which is invariant under the action of the
semigroup H . Then the map h would not extend continuously to any point of 3H , and
Theorem 4 would follow. While this seems to be asking too much, a slight weakening
of this property, by restricting h to an H -invariant tree in B \ 3H , is sufficient for our
purposes. The tree structure is already implicit in the multi-indices used to parametrize
points of 3H in the proof of Lemma 14. We proceed to constructions of such h based
on suspensions using semigroup actions, and containing trees as diagonals. We hope this
also provides some understanding of the link to our results in the previous sections.

Consider the bouquet of two oriented circles Q = S1 ∨ S2, with basepoint ∗, and let
π1(Q)

+
⊂ π1(Q) be the positive semigroup generated by the classes [Si], i = 1, 2, in

the fundamental group. Denote by T the Cayley graph of π1(Q)
+ associated to the set of

generators [S1], [S2]; this is a dyadic rooted tree and π1(Q)
+ acts on T by the restriction

of the π1(Q) action on its Cayley graph. We will denote by ρ : π1(Q)
+
→ H the rep-

resentation defined by sending [Si] to hi , which clearly gives a semigroup isomorphism.
The next proposition provides in particular the tree in B \3H , on which our suspension
analogy will be built.

Proposition 15. There exist two continuous maps Fi : T → P2, i = 1, 2, such that

(1) F0 takes values in UH = B \3H and is ρ-equivariant,
(2) F1 takes values in a smooth algebraic curve C of P2 and is π1(Q)

+-invariant, thus
giving an immersed image of Q,

(3) F0 and F1 are F-homotopic.
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Assuming this proposition, let us prove Theorem 4. Denote by h : U ⊂ B → V ⊂ C

a germ of holonomy map defined by the F-homotopy between F0 and F1. Note that by
equivariance each point q ∈ 3H can be approached by an infinite path in F0(T ) that,
apart from continuity, has very little regularity at q (it is essentially log-fractal, i.e. fractal
with respect to the log(r) transformation of polar to cylindrical coordinates). Neverthe-
less, along such a path, the holonomy h will not have any limit, since it is a curve winding
infinitely many times around the two circles of the bouquet F1(T ). (Recall the discus-
sion of asymptotic values following Proposition 9.) Thus 3H is a subset of the set of
singularities for the topological continuation of h, reducing the proof of Theorem 4 to
Proposition 15, which we will now consider. For the proof of the latter we will first pro-
duce a pair F0, F1 with all the desired properties except that F1 does not take values in an
algebraic curve. A basic approximation method will allow us to correct this easily.

To guarantee the continuity of some of the constructions we will repeatedly use the
fact that, by work of Lins-Neto [25, Theorem 1, p. 353], for the class of foliations in
Theorem 4, the leaves of F are of hyperbolic type and the unique complete metric of
constant negative curvature in each leaf is continuous in P2

\Sing(F) (the two conclusions
hold as soon as the foliation has degree greater than 2 and nondegenerate singularities).
This allows one, given a leafwise path, to homotope it, fixing endpoints, to the unique
geodesic representative in its class.

Let p be a point of UH = B \3H . The basic technical device is a pair γ = (γ 1, γ 2)

of continuous families γ i = {γ it (s)}t∈[0,1] of s-leafwise paths satisfying

• γ i0 is the constant path at p,
• γ it (0) ∈ UH and γ i1(0) = hi(p),
• γ i1 is the leafwise geodesic path starting at hi(p) and ending at p, and carrying the

holonomy map h−1
i .

To ensure existence of such families, for i = 1, 2, we add the special condition:

{γ it (1) : t ∈ [0, 1]} ⊂ {γ it (0) : t ∈ [0, 1]} ∪ {γ i1(s) : s ∈ [0, 1]},

i.e. start with the constant path at p, and begin moving continuously to the constant path
at hi(p) in the space of UH -valued constant paths. Then, we construct a homotopy (with
one free extremity) between the constant path at hi(p) and the leafwise geodesic path
going from hi(p) to p.

Given γ , we now indicate how to construct associated continuous maps F γj : T→P2,
for j = 0, 1. For i = 1, 2, denote by τi : [0, 1] → UH the path τi(t) = γ it (0) going
from p to hi(p). We extend the τi’s as a continuous ρ-equivariant map F γ0 : T → B. We
refer to its image as the tree generated by τ1 ∨ τ2. Notice that for each point q ∈ F γ0 (T )
there exist unique i ∈ {1, 2}, t ∈ [0, 1) and a finite composition hq of h1 and h2’s of
maximal length such that

hq(τi(t)) = q. (4.1)

ParametrizeQ by [0, 1]t[0, 1] with all endpoints identified. Now, define for i = 1, 2,
σi : [0, 1] → P2 as the map σi(t) = γ it (t). Obviously σi(0) = σi(1) = p. Thus, we can
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Fig. 2. The F-homotopy between τi and σi is realized by the finer paths.

define a map σ1 ∨ σ2 from Q to P2, which will be referred to as the diagonal. Then we
obtain a π1(Q)

+-invariant continuous map F γ1 : T → P2 by composing σ1 ∨ σ2 with the
restriction to T of the universal covering map of Q.

The family γ provides an F-homotopy between generators τ1 ∨ τ2 of the tree and the
generators σ1 ∨ σ2 of the diagonal (see Figure 2). We will now extend this homotopy and
get an F-homotopy between F γ0 and F γ1 . The basic idea is that, by using (4.1), any point
q in the tree can be joined by a leafwise path in the tube of h−1

q (a concatenation of the
geodesic tubes of h−1

1 and h−1
2 ) to its corresponding point τi(t). Note that we follow the

tubes in the expanding direction of the holonomy. By this procedure we obtain a family
of leafwise paths parametrized by T which is continuous only outside the vertices of T .
At the vertices of the tree the number of tubes of h−1

1 or h−1
2 that we follow changes by 1

because of the conditions defining hq . However, if for each q in the tree instead of con-
sidering the leafwise path following the expanding tubes until τi(t) we go a little further
by concatenating the path γ it , the family will also be continuous at the vertices, since γ i1
and the leafwise path in the tube of h−1

i are both the same geodesic. The endpoints of the
new family will be in the diagonal instead of being in B.

To avoid cumbersome notations of homotopy parametrizations we have preferred to
represent the homotopy between F γ0 and F γ1 by a figure. For each i = 1, 2 consider
the holonomy tube 0i : [0, 1] × hi(B) → P2 whose associated holonomy map is h−1

i ,
given by Lemma 13. To get continuity it is important here to use the leafwise geodesics
for the 0i(·, q)’s. We find those tubes and the family γ in Figure 3 concatenated in the



Singular sets of holonomy maps for algebraic foliations 1091

Fi
g.

3.
T

he
F

-h
om

ot
op

y
be

tw
ee

n
F
γ 0

an
d
F
γ 1

.S
ha

de
d

sq
ua

re
s

fo
llo

w
0

1 ,
th

e
h
−

1
1

-t
ub

e.
W

hi
te

sq
ua

re
s

fo
llo

w
0

2 ,
th

e
h
−

1
2

-t
ub

e.
Sh

ad
ed

tr
ia

ng
le

s
fo

llo
w
γ

1 ,
th

e
le

af
w

is
e

ho
m

ot
op

y
jo

in
in

g
τ 1

w
ith

th
e

di
ag

on
al
σ

1.
W

hi
te

tr
ia

ng
le

s
fo

llo
w
γ

2 ,
th

e
le

af
w

is
e

ho
m

ot
op

y
jo

in
in

g
τ 2

to
th

e
di

ag
on

al
σ

2.



1092 Gabriel Calsamiglia et al.

appropriate way to produce the desired F-homotopy between F γ0 and F γ1 . Formally, the
existence proof uses a straightforward induction on the heights of edges (i.e. lengths of
multiindices) in the tree.

Some remarks are in order at this point:
First, the choice of the pair γ = (γ 1, γ 2) could have been done by using other more

differential–topological conditions instead of using the metric arguments that apply only
under the hypothesis that all leaves are of hyperbolic type. These other choices allow us
to guarantee the continuity of the F-homotopies to more general foliations.

Second, let us relate the diagonal construction of Section 3.2 in the Riccati context
to the present context. In the former case the diagonal can be interpreted in the covering
space, which is a product, as the graph of a holomorphic map from a leaf to a transversal.
The asymptotical values of this map provide singular points for the holonomy germ de-
termined by a germ of its inverse. In other words there are infinite paths in the diagonal
whose projections to the fibre converge, while the projection onto the leaf goes to infinity.
In the present case the diagonal is represented by the map F γ1 : T → P2. The basic point
is that the diagonal can be projected to the tree F γ0 (T ) in the transversal B and also to a
tree in the leaf of F through p, by using the holonomy tubes of h1 and h2 to define lifts.
If we take an infinite path in T to a point in the boundary, its projection from the diagonal
to B converges, while its projection onto the leaf diverges.

The proof is complete except that F γ1 constructed above does not necessarily take
values in an algebraic curve of P2, so we now modify the tubes γ to obtain this latter
condition. For this purpose, we will construct in what follows a perturbation σ̂1 ∨ σ̂2
of σ1 ∨ σ2 in the uniform topology, based at the point p, so that its image is contained
in an algebraic curve. Then the construction of a pair γ̂ = (γ̂1, γ̂2) whose corresponding
diagonal is σ̂1∨σ̂2 follows by a simple perturbation of the construction above. One should
note that the perturbation σ̂1∨σ̂2 determines uniquely a perturbation of τi compatible with
the γ i construction, which then makes the continuous dependence of the γ i quite obvious.

Lemma 16. There exists a continuous mapping σ̂1 ∨ σ̂2 : Q → P2 arbitrarily close to
σ1 ∨ σ2 in the uniform topology, whose image is contained in a smooth algebraic curve
of P2, and both maps share the same basepoint p ∈ P2.

Proof. Let ε > 0. For i = 1, 2 choose a C∞ map σ̃i : S1
→ C2

⊂ P2 in the ε/4-
neighbourhood of σi satisfying σi(1) = σ̃i(1) = p. We can assume that σ̃ ′1(1), σ̃

′

2(1)
are C-linearly independent. The Fourier series of σ̃i (resp. the series’ first derivative)
converges uniformly to σ̃i (resp. σ̃ ′i ) so by truncating the series for some sufficiently large
N > 0 and applying a small translation we get a finite family {ain, b

i
n ∈ C : |n| < N} ⊂ C

and a map

σ̄i(e
2iπt ) =

( ∑
|n|<N

ain(e
2iπt )n,

∑
|n|<N

bin(e
2iπt )n

)
,

which is in the ε/2-neighbourhood of σi and satisfies σ̄i(1) = p. The map σ̄i is the
restriction of a rational map P1

→ P2 to S1
⊂ P1 so its image is contained in an algebraic

curve Ci = {fi = 0} ⊂ P2 that contains p. The noncollinearity of σ̃ ′1(1) and σ̃ ′2(1)
guarantees that p is a normal crossing point of the reducible curve C1∪C2 = {f1f2 = 0}.
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For a generic and sufficiently small δ ∈ C, the curve C̃ = {f1f2 = δ} is smooth and ε/2-
close to C1 ∪ C2. In a neighbourhood of p, C̃ is arc connected (it is biholomorphic to
a disc with a finite number of holes) so we can find a point q ∈ C̃ which is ε/2-close
to p and two loops σ̆1, σ̆2 in C̃ with basepoint at q which are ε/2-close to σ1 and σ2
respectively. By choosing an automorphism ϕ of P2 which is ε/4-close to the identity
sending q to p we conclude that the curve C := ϕ(C̃) and the loops σ̂i := ϕ ◦ σ̆i have the
desired properties. ut

Recall that there is an open and dense set in the quasi-projective manifold of degree d
foliations of P2 such that no foliation belonging to that set has an algebraic curve (see [24,
Theorem B, p. 196]). It is rather classical to show that there is also a dense open set such
that every foliation belonging to this set has only singularities with λ2/λ1 nonreal, where
λ1, λ2 are the eigenvalues (see [26]). Hence, a generic foliation satisfies the hypothesis of
Theorem 4.

4.2. Proof of Theorem 5

A careful analysis of the proof of Theorem 4 shows that if B is a transverse disc to a
holomorphic singular foliation F of P2 having only hyperbolic leaves and h1, . . . , hl :

B → B are holonomy maps such that

• there exists a constant c < 1 satisfying |h′i(x)| < c for all x ∈ B and i ∈ {1, . . . , l},
and
• each hi carries a holonomy tube,

then we can find an algebraic curve C and a germ of holonomy of F from B to C for
which every point in the limit set of the action of the semigroupH generated by h1, . . . , hl
on B, namely

3H =
⋃

(in)∈{1,...,l}N

(⋂
n≥0

hi1 ◦ · · · ◦ hin(B)
)
,

is a singularity for its analytic continuation. In fact we only need to remark that the leaf-
wise Poincaré metric is continuous [25], adapt Proposition 15 by taking T as an l-adic tree
instead of a dyadic tree, Q as a bouquet of l circles, and use an adaptation of Lemma 16
to guarantee that as close to a continuous map Q→ P2 as we wish, there is another such
map with image contained in an algebraic curve.

The plane algebraic foliations that will satisfy Theorem 5 are examples that we learned
from Loray and Rebelo’s paper [28]. To find the admissible germ for such a foliation, we
will construct a semigroup in the holonomy pseudogroup, defined by some holomorphic
maps carried by holonomy tubes, whose limit set has nonempty interior, as above. For
this purpose, we review Loray/Rebelo’s techniques.

The important property satisfied by these foliations is that their pseudogroup is non-
discrete: namely, there exist transverse discs B ⊂ B ′, with B relatively compact in B ′,
and a sequence of holonomy maps gn : B → B ′ which are different from the identity
for every integer n, but nevertheless converge to the identity uniformly in B. The main
ingredient to ensure that a foliation has a nondiscrete pseudogroup is [28, Lemma 3.3]:
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Lemma 17. There is a constant ε0 > 0 such that the following holds. Let f : D → D
be a map defined by f (z) = λz for some complex number λ of modulus |λ| < 1 and
with |λ − 1| ≤ ε0. Let g : D → C be an injective holomorphic map, ε0-close to the
identity, i.e. supz∈D |g(z) − z| ≤ ε0. Then there exists an integer N ≥ 1 such that the
holomorphic maps defined by g0 = g and gk+1 = f

−N
◦ [f, gk] ◦ f

N for every integer
k ∈ N have domain of definition at least the disc D1/3, and converge uniformly to the
identity as k → ∞. Moreover, if g is not an affine map, then gk is different from the
identity for every k.

In what follows, we introduce the set Ud of degree d plane algebraic foliations, whose
pseudogroup contains two maps f and g defined on some transversal B ' D ⊂ B ′ ' C
as in Lemma 17, and such that moreover:

• λ is not real,
• g(0) is different from 0,
• g is not affine in the linearization coordinate of f ,
• there exist holonomy tubes carrying the maps f and g,
• the singularities are of hyperbolic type, and the foliation does not carry any invariant

algebraic curve. In particular, the leaves are hyperbolic, and the Poincaré metric on the
leaves is continuous.

All the above conditions are open (there is a little work to see that after perturbation
g is still not affine in the linearization coordinate of f ; this is due to the fact that this co-
ordinate depends continuously on f ); hence Ud is an open set. Loray/Rebelo [28] proved
that this set is not empty. The idea is to construct a particular foliation satisfying all the
conditions but the last one, and to perturb it so that the singularities become hyperbolic,
and no algebraic curve is invariant. Such foliations are for instance the Riccati foliations
with dense monodromy group: the reader can check that they satisfy all the conditions
except the last one.

At this point, an important thing to observe is that if a foliation belongs to Ud , the
corresponding maps gk defined on D1/3 are carried by holonomy tubes for every k. These
tubes are obtained by concatenating the tubes of the maps f , g, f−1, g−1.

Next, we review another fundamental result proved in Loray/Rebelo’s paper: the ex-
istence of flows in the closure of the pseudogroup of a foliation in Ud . Here is the precise
statement (see [28, Corollary 4.2]):

Lemma 18. Let F be a foliation belonging to Ud and G be the holonomy pseudogroup
of F . Then there is a transversal B isomorphic to the unit disc, and two holomorphic
vector fields X1, X2 defined on D, such that X1(0) and X2(0) are independent over the
real numbers, and such that for every small enough real number t , the map exp(tXi) is
defined on the disc D1/2 (with values in D) and is the uniform limit of a sequence kn
of elements of G on D1/2 (in particular the domain of definition of kn contains D1/2 for
every n). Moreover, the maps kn are associated to holonomy tubes.

Note that Loray/Rebelo’s Corollary 4.2 states that there is at least one vector field X1
satisfying the conclusion of Lemma 18 such thatX1(0) 6= 0. Then, by takingX2 = f∗X1,
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we get another vector field, and these two are as desired. Notice also that the maps kn are
carried by holonomy tubes. Indeed, they are constructed by considering compositions of
the form f−Nk ◦ gk ◦ f

Nk , for some integer Nk , where gk are the maps constructed in
Lemma 17. These maps are as above carried by holonomy tubes: the concatenations of
the holonomy tubes of the maps f , f−1 and gk .

The following lemma (together with the construction sketched above) finishes the
proof:

Lemma 19. Let F be a foliation as in Lemma 18. Then there exist a finite number of
holonomy maps h1, . . . , hl from a transverse disc B ' D to itself, carried by holonomy
tubes, such that the limit set of the action of the semigroup H generated by the hi’s on D
has nonempty interior. Moreover the hi’s can be chosen to be contracting, i.e. there is a
constant 0 < c < 1 such that |h′i(x)| < c for all i = 1, . . . , l and x ∈ D.

Proof. Let h1, . . . , hl : D→ D be some maps and H the semigroup generated by them.
Suppose that there is a point p in D, and an infinite sequence of indices {i1, i2, . . . } ⊂
{1, . . . , l} such that we can define the sequence of points p1 = h−1

i1
(p) and pn =

h−1
in
(pn−1) for every n > 1. If we suppose further that for every i = 1, . . . , l and x ∈ D,

|h′i(x)| < c < 1 then actually p =
⋂
n≥1 hi1 ◦ · · · ◦ hin(D). By definition p is a limit

point of the semigroup. Our goal will be to find such maps h1, . . . , hl in the holonomy
pseudogroup G of F , defined on D, and such that for every point in a nonempty open
set U of D we can find a sequence i1, i2, . . . as above.

Observe that because X1 and X2 are not collinear at 0, there is a neighbourhood
of 0, say Dr with r > 0, and a τ > 0, such that for every point p of Dr , there are
unique real numbers t1, t2 such that |t1|, |t2| < τ and 0 = exp(t1X1) exp(t2X2)(p).
Moreover, we can suppose that the composition exp(t1X1) exp(t2X2), and its inverse
exp(−t2X2) exp(−t1X1), are defined on D1/4 with values in D, for every |t1|, |t2| < τ .

We fix some constants. Denote M > 0 an upper bound for all the derivatives

|(exp(−t2X2) exp(−t1X1))
′(p)|

for every point p in the ball of radius 1/4 and every |t1|, |t2| ≤ τ . Let k be an integer such
that |λ|k < min(r, 1/8, 1/2M).

Given p ∈ Dr , we approximate the maps exp(tjXj ), j = 1, 2, on D1/2 by elements kj
of the pseudogroup defined on D1/2, so that the map g = k1k2 is defined on D1/8 with
derivative bounded by 2M , and g(p) belongs to the disc D|λ|kr . If kj is sufficiently close to
exp(tjXj ), we will also get that g−1 is defined on D1/8, and that its derivative is bounded
by 2M .

By compactness of Dr , we can find a finite number of elements g1, . . . , gl of G defined
on D1/8 such that for every point p in Dr , there is an index i ∈ {1, . . . , l} such that gi(p)
belongs to D|λ|kr . Moreover, the maps gi , together with their inverses, are defined on D1/8
with derivatives bounded by 2M .

Consider the maps hi = g−1
i ◦ f

k for i = 1, . . . , l. Because |λ|k < 1/8, hi is a map
from D to itself. Moreover, the derivative of hi is uniformly bounded by 2M|λ|k < 1.
We have h−1

i = f
−k
◦ gi , i.e. h−1

i = λ
−kg−1

i . Since for every p ∈ U = Dr there is an
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index i ∈ {1, . . . , l} such that gi(p) belongs to D|λ|kr we infer that h−1
i (p) belongs to U .

We define i1 := i and repeat the argument for h−1
i1
(p). By induction we get our sequence

i1, i2, . . . . The proof is complete. ut

5. Afterword

We proved that, in the presence of rich contracting dynamics for a holomorphic folia-
tion F of P2 (which is known to be a generic property), there are special choices of an
algebraic curve T generically transverse to F such that some holonomy correspondence
has a maximal domain of definition with large boundary. We produced examples whose
singular sets contain Cantor sets of positive dimension, and even open sets. This disproves
Loray’s Conjecture, but does not exclude refining the problem to that of finding a better
choice for T .

Our choices of T , which would seem pathological in view of the conjectures cited in
the introduction, reflect the fact that foliations with sufficienly rich holonomy have special
transversals, which we called diagonals, indicating perhaps a hidden duality involving the
holonomy action on a transversal, and the pseudogroup of transition functions along the
leaves. More precisely, we found some part of the foliation which can be described as a
suspension, where the monodromy has a nontrivial domain of discontinuity when acting
on the transverse space, with quotient identifying with the base (and the diagonal). So it is
not yet clear whether the choices of diagonal T should be regarded as counterexamples in
a project aiming at finding fibre-like transversals, or rather viewed as an important aspect
of the structure of F .

Basic examples of these non-fibre-like transverse lines arise notably in the setting
of Riccati equations, where, as explained before, we have a suspension foliation with
linear fibres, and thus no lack of good transverse lines, realizing holonomy as a group of
automorphisms.

The suspension construction behind the first part of Theorem 2 illustrates the nontriv-
ial nature of the choice of T (even when constrained to be linear as in [27]) and suggests
the need for further research.

Recall that this suspension construction, for a circle bundle over a Riemann surface,
is also the most basic source of examples of Levi-flat hypersurfaces. This is no coinci-
dence; the singular sets for holonomy extension in this article are associated to lamina-
tions within the holomorphic foliation (albeit laminations with real 1-dimensional leaves,
modelled on the product of a Cantor set by a tree, in the generic context of Theorem 4).
We recall that such suspensions and diagonals have also been considered from the view-
point of Stein spaces and harmonic sections by [9]. The birational maps that we realize of
such suspensions into P2 thus provide singular Levi-flat hypersurfaces with rich dynam-
ics in P2, as well as interesting examples of Stein spaces, and may provide further insight
into the general properties of Levi-flat hypersurfaces in P2.

Note that the natural boundary here is associated to the Levi-flat boundary of a domain
in P2. The constructions also provide examples of topologically trivial, but analytically
nontrivial deformations of foliations of P2 also admitting Levi-flat hypersurfaces. They
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constitute counterexamples to a conjecture by Scárdua asserting that every holomorphic
foliation of P2 having an invariant line is either Darboux integrable or absolutely rigid (see
[19] for details). Indeed, for each p ∈ C \ {0, 1} we can consider the Riccati foliation Fp
on the Hirzebruch surface F1 associated to the uniformizing structure of the 4-punctured
sphere 6p = C \ {0, 1, p} as in Section 3. The analytical type of Fp changes as the cross
ratio of the position of the invariant fibres, i.e. p, changes. However for sufficiently close
values of p two such foliations are equivalent by a fibred homeomorphism that is close to
the identity.

We point out that we do not know whether or not there exists a holomorphic foliation
of the projective plane and an admissible germ from an algebraic curve to itself which
has a natural boundary. Also, we do not know how many singularities the analytic contin-
uation of the holonomy of two generic lines in a generic foliation may have (taking, for
example, the holonomy along the trivial path at the intersection of the two lines).

Another interesting problem is to determine the difference between the Riemann sur-
face of a holonomy correspondence obtained by analytic continuation, and the maximal
domain where the map is a holonomy map. We found that in foliations defined by closed
1-forms, for any holonomy germ between rational curves, these two domains coincide,
up to a countable number of points. However, it is conceivable that there exists a holon-
omy correspondence whose domain of holonomy is considerably smaller: consider k-fold
coverings ramified along the diagonal, 1 of S+ = (6̃ ×H2)/π1(6) ⊂ S (taking k = the
Euler class of the circle bundle = c1(N1), up to sign, ensures existence) or of any such
suspension type disc bundles with holomorphic diagonal, and extend a bit in S, beyond
the Levi-flat boundary ∂S+. Then the leaf space of the cover over S+ is just the disc; i.e.
the diagonal (in the cover), or the fibre H2 in S+, but on the part of the cover beyond S+
the leaf space of the cover is the k-fold cover of the annulus outside of S1

= ∂H2
⊂ P1.

Unfortunately we are unable at this time to provide such examples in the algebraic con-
text. This non-Hausdorff leaf space structure is closely related to considerations in the real
codimension one case as studied by Palmeira [31], but it is not at all clear what analogous
structures one might find for singular holomorphic foliations of the complex projective
plane.

While one might be tempted by a certain optimism as regards the bridges connecting
analytic holonomy extension to techniques from the topology of real codimension one
foliations, or the PDE theory of holomorphic extensions, we should add that the subject
seems to be fraught with as many hidden traps as temptations, and should be approached
with a certain degree of caution.
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