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Abstract. Let us consider a projective manifold Mn and a smooth volume form � on M . We de-
fine the gradient flow associated to the problem of �-balanced metrics in the quantum formalism,
the �-balancing flow. We prove that at the limit of the quantization, the �-balancing flow con-
verges towards a natural flow in Kähler geometry, the �-Kähler flow. We also prove the long time
existence of the �-Kähler flow and its convergence towards Yau’s solution to the Calabi problem
of prescribing the volume form in a given Kähler class (see Theorem 2). We derive some natural
geometric consequences of our study.

1. The �-balancing flow

In this first section we give some definitions and recall some natural moment map con-
siderations relating to �-balanced metrics. Then we introduce the two main flows of this
paper, the�-balancing flow and the�-Kähler flow, and state our main results, Theorems 1
and 2.

Assume that M is a smooth polarized manifold of complex dimension n, and L an
ample line bundle. We consider a smooth volume form � on M such that

∫
M
� =

VolL(M) := c1(L)
n, the volume of M with respect to L.

In [Don09], S. K. Donaldson introduced the notion of �-balanced metric, adapted
to the Calabi problem of fixing the volume of a Kähler metric in a given Kähler class.
These metrics are algebraic metrics coming from Kodaira’s embedding of the manifold
in PH 0(Lk)∨ for k sufficiently large. More precisely, given a (smooth) hermitian metric
h ∈ Met(Lk), one can consider the Hilbertian map

Hilb� = Hilbk,� : Met(Lk)→ Met(H 0(Lk))

such that
Hilb�(h) =

∫
M

h(·, ·)�
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is the L2 metric induced by the fibrewise h and the volume form �. On the other hand,
one can consider the Fubini–Study maps

FS = FSk : Met(H 0(Lk))→ Met(Lk)

such that for H ∈ Met(H 0(Lk)), {Si} an H -orthonormal basis of H 0(Lk) and for all
p ∈ M ,

dimH 0(Lk)∑
i=1

|Si(p)|
2
FS(H) =

dimH 0(Lk)

VolL(M)
,

thus fixing pointwise the metric FS(H) ∈ Met(Lk). One of the main results of [Don09]
asserts that the dynamical system

Tk = FS ◦ Hilb�

has a unique attractive fixed point.

Definition 1.1. Let (M,L) be a polarized manifold, and � a smooth volume form. Then
for any sufficiently large k, there exists a unique fixed point hk of the map Tk : Met(Lk)
→ Met(Lk) which is called �-balanced. The metric Hilb�(hk) ∈ Met(H 0(Lk)) and
the Kähler form c1(hk) ∈ 2πc1(L), given by the curvature of hk , will also be called
�-balanced.

When k tends to infinity, one obtains from [Don09] and [Kel09, Theorem 3] the fol-
lowing result.

Theorem 1.1. As k → ∞, the sequence of normalized �-balanced metrics h1/k
k ∈

Met(L) converges to a hermitian metric h∞ in smooth topology and its curvature is a
solution to the Calabi problem of prescribing the volume form1 in a given Kähler class,

c1(h∞)
n
= �.

Let us denote N + 1 = Nk + 1 = dimH 0(Lk). Another way of presenting the notion of
�-balanced metric is to introduce a moment map setting. Let us consider firstµ : CPN →
iu(N + 1) which is a moment map for the U(N + 1) action and the Fubini–Study metric
ωFS on CPN . Note that here we identify implicitly the Lie algebra u(N + 1) with its dual
using the bilinear form (A,B) = − tr(AB). Given homogeneous unitary coordinates, one
sets explicitly µ = (µ)α,β as

(µ([z0, . . . , zN ]))α,β =
zαzβ∑
i |zi |

2 . (1)

Then, given a holomorphic embedding ι : M ↪→ PH 0(Lk)∨, we can consider the integral
of µ over M with respect to the volume form

µ�(ι) =

∫
M

µ(ι(p))�(p),

1 Note that in the rest of the paper we shall ignore the normalization factor 1/n! in front of the
Monge–Ampère mass c1(h∞)

n.
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which induces a moment map for the U(N + 1) action over the space of all bases of
H 0(Lk).

Let us give some details on that point. On the space M of smooth maps from M to
PH 0(Lk)∨, we have a natural symplectic structure $ defined by

$(a, b) =

∫
M

(a, b)�

for a, b ∈ TιM and (·, ·) the Fubini–Study inner product induced on the tangent vectors.
Let ζ ∈ u(N + 1) and Xζ ∈ H 0(PN∨, T PN∨) be the induced holomorphic vector field
on PN∨ = PH 0(Lk)∨. For all Y ∈ 0(M, T PN∨

|M ) we have

$(Xζ |M , Y ) =

∫
M

iY (iXζωFS)� = −

∫
M

tr(dµ(Y ) · ζ )�

= − tr(dµ�(Y ) · ζ ) = (dµ�(Y ), ζ ),

and µ� is Ad-equivariant as the integral of the Ad-equivariant moment map µ. Thus,
U(N + 1) acts isometrically on M with the moment map given by

ι 7→ −
√
−1
(
µ�(ι)−

tr(µ�(ι))
N + 1

IdN+1

)
∈ isu(N + 1).

Note that if one defines a hermitian metricH onH 0(Lk), one can consider an orthonormal
basis with respect to H and the associated embedding, and thus it also makes sense to
speak of µ�(H). As we shall see, in the Bergman space B = Bk = GL(N+1)/U(N+1),
we have a preferred metric associated to the volume form� and the moment map we have
just defined, and this is precisely an �-balanced metric.

Definition 1.2. The embedding ι is �-balanced if

µ0
�(ι) := µ�(ι)−

tr(µ�(ι))
N + 1

IdN+1 = 0.

An �-balanced embedding corresponds (up to SU(N + 1)-isomorphisms) to an �-bal-
anced metric ι∗ωFS by pull-back of the Fubini–Study metric from PH 0(Lk)∨, so our
two definitions actually coincide (see [Don09]). Note that for H ∈ Met(H 0(Lk)), it also
makes sense to consider µ�(h) where h = FS(H) ∈ Met(Lk), i.e. when h belongs to the
space of Bergman type fibrewise metrics that we identify with B.

On the other hand, seen as a hermitian matrix, µ0
�(ι) induces a vector field on CPN .

Thus, inspired from [Fin10], we study the flow

dι(t)

dt
= −µ0

�(ι(t)),

which we call the �-balancing flow. To fix the starting point of this flow, we choose a
Kähler metric ω = ω(0) and we construct a sequence of hermitian metrics hk(0) such
that ωk(0) := c1(hk(0)) converges smoothly to ω(0) providing a sequence of embeddings
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ιk(0) for k � 0. Such a sequence of embeddings is known to exist thanks to Theorem 2.1.
For technical reasons, we decide to rescale this flow by considering the ODE

dιk(t)

dt
= −kµ0

�(ιk(t)), (2)

which we call the rescaled�-balancing flow. Of course, we are interested in the behaviour
of the sequence of Kähler metrics ωk(t) = (1/k)ιk(t)∗(ωFS)when t and k tend to infinity.
Here is one of the main results of this paper.

Theorem 1. For any fixed t , the sequence ωk(t) converges inC∞ topology to the solution
ω +
√
−1 ∂∂̄φt of the Monge–Ampère equation

∂φt

∂t
= 1−

�

(ω +
√
−1 ∂∂̄φt )n

(3)

with φ0 = 0 and ω = limk→∞ ωk(0). Furthermore, the convergence is C1 in the vari-
able t .

We call the flow given by (3) the�-Kähler flow. The proof of this theorem will be done in
several steps. First we study the limit of a convergent sequence of rescaled �-balancing
flows to identify the limit (Section 2), which we shall call the �-Kähler flow. Then, in
Section 3, we study in detail the behaviour of the �-Kähler flow in any Kähler class and
prove our second main result.

Theorem 2. Let φt be the solution to (3) on the maximal time interval 0 ≤ t < Tmax. Let

vt = φt −
1

VolL(M)

∫
M

φt
ωn

n!
.

Then the C∞ norm of vt is uniformly bounded for all 0 ≤ t < Tmax and consequently
Tmax = +∞. Moreover, as t → ∞, vt converges to v∞ in smooth topology and ∂φt/∂t
converges to a constant in smooth topology.

Finally, inspired by [Don01] and especially [Fin10] for the Calabi flow, we will prove
Theorem 1 in Section 4. In Section 5, we give a moment map interpretation of the �-
Kähler flow and draw some possible generalizations.

2. The limit of the rescaled �-balancing flow

In this section, we assume that the sequence ωk(t) is convergent and we want to relate its
limit to (3). The goal of this section is to prove the following result.

Theorem 3. Suppose that for each t ∈ R+, the metric ωk(t) induced by (2) converges in
smooth topology to a metric ωt and that this convergence is C1 in t ∈ R+. Then the limit
ωt is a solution to the flow (3) starting at ω0 = limk→∞ ωk(0).
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Given a matrixH in Met(H 0(Lk)), we obtain a vector fieldXH which induces a perturba-
tion of any embedding ι : M ↪→ PH 0(Lk)∨. The induced infinitesimal change in ι∗ωFS is
pointwise given by the potential tr(Hµ) where µ is given by (1). Thus, the corresponding
potential in the case of the rescaled �-balancing flow is

−k tr(µ0
�µ).

Since we are rescaling the flow in (2) and considering forms in the class 2πc1(L), we are
led to understand the asymptotic behaviour as k→∞ of the potentials

βk = − tr(µ0
�µ). (4)

We will need the following key result. Let us fix a Kähler form ω ∈ 2πc1(L) and
write ω = c1(h). Let us define a different Hilbertian map

Hilb : Met(Lk)→ Met(H 0(Lk))

by setting

Hilb(h) =
∫
M

h(·, ·)ωn =

∫
M

h(·, ·)c1(h)
n.

Theorem 2.1 (Asymptotic expansion of the Bergman kernel). The Bergman function as-
sociated to hk has the pointwise asymptotic expansion

ρk(h)(p) :=

N+1∑
i=1

|si |
2
hk
(p) = kn +

∑
i≥1

kn−iai(h),

where (si)N+1
i=1 is a Hilb(hk)-orthonormal basis of H 0(Lk). Here the ai(h) depend on the

curvature and its covariant derivatives and are uniformly bounded on M . If h is varying
in a compact set (in smooth topology) in the space of hermitian metrics with positive
curvature, then ∥∥∥ρk(h)− kn + m∑

i=1

kn−iai(h)

∥∥∥
Cr
≤

C

km+1 ,

where C is uniform and only depends on r .
A direct consequence is the convergence of the sequence of Bergman metrics

(1/k)c1(FS(Hilb(hk))) to ω in smooth topology, i.e. for all r ≥ 0,∥∥∥∥1
k
c1(FS(Hilb(hk)))− ω

∥∥∥∥
Cr
= O(1/k).

Theorem 2.1 is nowadays usually called the Tian–Yau–Zelditch expansion. S.-T. Yau con-
jectured the convergence of the Bergman metrics in [Yau86, Section 6.1], while G. Tian
proved it in [Tia90] for C2 topology (and Y.-D. Ruan for C∞, see [Rua98]) and identi-
fied a0 = 1. The existence of the asymptotic expansion was proved S. Zelditch [Zel98]
(and independently by D. Catlin [Cat99]) using Boutet de Monvel–Sjöstrand techniques.
The uniformity of the coefficients ai appeared in [Lu00] and will be crucial in the rest of
the paper. We refer to [MM07] for a general survey on this topic, which also provides a
historical perspective.
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Remark 2.1. The function ρk(h) is the restriction to the diagonal of the kernel of the
orthogonal L2-projection (with respect to h and Hilb(hk)) from the space of smooth sec-
tions ofLk to the subspace of holomorphic sections. It is usually referred as the “Bergman
function”. Note that away from the diagonal, the kernel

∑N+1
i=1 〈si(p1), ·〉hk si(p2) van-

ishes asymptotically, so the geometric information is carried only by ρk(h).

In other words, the holomorphic embedding ιk induced by the metric Hilb(h) gives a
sequence of metrics by pull-back of the Fubini–Study metric ι∗k(ωFS), and this sequence
converges to the initial metric ω as k → ∞. We will also use the following technical
result that can be proved with similar arguments to Theorem 2.1. See [Zel98, Cat99] and
[Bou90] where the first term of the asymptotic expansion is identified.

Proposition 2.1. Let (M,L) be a projective polarized manifold. Let h ∈ Met(L) be a
metric whose curvature c1(h) = ω > 0 is a Kähler form. Assume� > 0 is a volume form
with continuous density. Then for k→∞ we have the asymptotic expansion

N+1∑
i=1

|si |
2
hk
= kn

ωn

�
+O(kn−1), (5)

where (si) is an orthonormal basis with respect to the L2 inner product
∫
M
hk(·, ·)� =

Hilb�(hk). Here by O(kn−1) we mean that for r ≥ 0,∥∥∥N+1∑
i=1

|si |
2
hk
− kn

ωn

�

∥∥∥
Cr
≤ crk

n−1

where cr remains bounded if h varies in a compact set (in smooth topology) in the space
of hermitian metrics with positive curvature.

We will also need the following important technical result (see [LM07, Theorem 1],
[Fin10, Theorem 7 & 8], [MM10, Section 6]).

Theorem 2.2. Consider h ∈ Met(L) with positive curvature and the operator on
C∞(M) given by

Qk(f )(p) =
1
kn

∫
M

∑
a,b

〈sa, sb〉hk (q)〈sa, sb〉hk (p)f (q)�(q)

which approximates the operator ωn

�
exp(− 1

4πk ) in the following sense. For any integer
r > 0, there exists C > 0 such that for all k � 0 and any function f ∈ C∞(X),∥∥∥∥(1k

)r(
Qk(f )−

ωn

�
exp

(
−
1

4πk

)
f

)∥∥∥∥
L2
≤
C

k
‖f ‖L2 , (6)∥∥∥∥Qk(f )−

ωn

�
f

∥∥∥∥
Cr
≤
C

k
‖f ‖Cr+2 , (7)

where the norms are taken with respect to the induced Kähler form obtained from the
fibrewise metric on the polarization L, and 1 is the Laplace operator for the induced
Kähler metric. The estimate is uniform when the metric varies in a compact set of smooth
hermitian metrics with positive curvature.
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We have the following first consequence.

Proposition 2.2. Let hk ∈ Met(Lk) be a sequence of metrics such that ωk :=
(1/k)c1(hk) is convergent in smooth topology to the Kähler form ω. Then the potentials
βk = − tr(µ0

�µ) (induced by the embeddings given by Hilb�(hk)) converge in smooth
topology to the potential 1−�/ωn.

Note that given a Kähler form ω, a sequence of Bergman metrics hk is known to exist by
the previous theorem.

Proof. Let (si) be an orthonormal basis of H 0(Lk) with respect to the metric Hk :=
Hilb�(hk). By the discussion at the beginning of Section 2, the balancing potential at
p ∈ M for the rescaled balancing flow is

βk(Hk) = −

∫
M

∑
a,b

(
〈sa, sb〉(q)∑N+1
i=1 |si(q)|

2
−

δab

N + 1

)
〈sa, sb〉(p)∑N+1
i=1 |si(p)|

2
�(q),

where 〈·, ·〉 stands for the fibrewise metric hk . By the Riemann–Roch theorem, N + 1 =
kn VolL(M)+O(kn−1). From Proposition 2.1, the fact that ωk is convergent to ω and the
uniformity of the estimates, we obtain

βk(Hk) = 1−
kn∑N+1

i=1 |si(p)|
2

∫
M

∑
a,b

〈sa, sb〉(q)〈sa, sb〉(p)

kn

(
1

ωn

�
(q)+O(1/k)

)
�(q)

= 1−
�

ωn

∫
M

〈sa, sb〉(q)〈sa, sb〉(p)

kn

(
(1+O(1/k))

�

ωn
(q)

)
�(q)+O(1/k).

But now, from Theorem 2.2, one knows the asymptotic behaviour of the quantification
operator Qk(f )(p) = k

−n
∫
M

∑
a,b 〈sa, sb〉(q)〈sb, sa〉(p)f (q)�(q).

Then, for k→∞, from (7) and the uniformity of the constants, one obtains

βk(Hk)(p) = 1−
�

ωn
Qk

(
�

ωn
+O(1/k)

)
+O(1/k).

The convergence ofQk(�/ω
n
+O(1/k)) to 1+O(1/k) follows from the same arguments

as in [Fin10, pp. 10–11] and is a consequence of (6). This finally gives the desired result.
ut

Independently of the flows considered, we also have a general result that complements
Theorem 2.1.

Proposition 2.3. Let h(t) ∈ Met(L) be a path of hermitian metrics on L with
c1(h(t)) > 0. Let hk(t) = FS(Hilb�(h(t)k))1/k be the path of induced Bergman metrics.
Then ∂hk(t)/∂t converges to ∂h(t)/∂t in C∞ topology as k → ∞. This convergence
is uniform if h(t) belongs to a compact set in the space of positively curved hermitian
metrics on L.
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Proof. The proof is essentially given in a discussion at the end of [Fin10, Section 1.4.1]
for the sequence FS(Hilb(h(t)k))1/k . Assume that h(t) = h0e

φt and that φ̇eφth0 is the
infinitesimal change of the fibrewise metric, say at t = 0. An infinitesimal change of
the L2 inner product corresponds to the hermitian matrix in the tangent space of the
Bergman metrics

A =

∫
M

kφ̇〈sa, sb〉�,

and thus the potential associated to that infinitesimal change is, after rescaling to Met(L),

1
k

tr(Aµ) =
1
k

∫
M

kφ̇
∑
a,b

〈sa, sb〉(p)
〈sa, sb〉(q)∑N+1
i=1 |si(p)|

2
�(q),

where (si)N+1
i=1 is an orthonormal basis of holomorphic sections with respect to Hilb�(hk0)

and hk0 = 〈·, ·〉. Thus, using Proposition 2.1, one obtains

1
k

tr(Aµ)(p) =

∫
M
φ̇(q)

∑
a,b〈sa, sb〉(p)〈sa, sb〉(q)�(q)

kn
(ωn0
�
(p)+O(1/k)

)
=

1
ωn0
�
(p)+O(1/k)

Qk(φ̇)(p),

and, as k→∞, this converges, by Theorem 2.2, to φ̇(p) after simplification. ut

Remark 2.2. Thus we have obtained the convergence of the family hk(t) in C1 topology
with respect to the variable t . Note that this result cannot be improved, in the sense that,
by a direct computation, we do not expect convergence in C2 topology. Let us be more
precise. An infinitesimal change at order 2 of the inducedL2 inner product along a smooth
path of the form h0e

φt corresponds to a hermitian matrix

B =

∫
M

((kφ̇)2 + kφ̈)〈sa, sb〉�.

On the other hand, the potential associated to this infinitesimal change at p ∈ M is given
after rescaling by the formula

1
k
(tr(Bµ)− tr(Aµ)2)(p). (8)

Actually, if we write in an orthonormal basis the potential of the metric FS(Hilb(h(t)k)),

ϕ(t) = log
∑
α

λα(t)|sα|
2

with ϕ(0) = log
∑
α |sα|

2, then

ϕ̈(t)|t=0 =

∑
α(λα)

′′(0)|sα|2∑
α |sα|

2 −

(∑
α(λα)

′(0)|sα|2∑
α |sα|

2

)2

,

which shows (8). In order to simplify the computations, assume that h0 is a solution of
the Calabi problem, i.e. c1(h0)

n
= ωn0 = �. Now, using this assumption, Proposition 2.1,
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and [MM07, Theorem 4.1.2], we obtain

1
k

tr(Bµ) =
1

1+ 1
4π

scal(ω0)
2k +O(1/k2)

Qk(kφ̇
2
+ φ̈).

Then we can define an operator on C∞(M) by

Q̃k(f ) =
1

1+ 1
4π

scal(ω0)
2k

Qk(f ).

We write

1
k
(tr(Bµ)− tr(Aµ)2) = Q̃k(φ̈)+ k(Q̃k(φ̇

2)− Q̃k(φ̇)
2)+O(1/k).

Then using Theorem 2.2 and [MM10, Theorem 6.1] which gives the asymptotic expan-
sion of Qk at second order, 1

k
(tr(Bµ)− tr(Aµ)2) is equal to

φ̈ +O(1/k)+
1

1+ 1
4π

scal(ω0)
2k

k

(
φ̇2
+

1
k

(
scal(ω0)

8π
φ̇2
−

1
4π
1ω0 φ̇

2
)
+O(1/k2)

)

−

(
1

1+ 1
4π

scal(ω0)
2k

)2

k

(
φ̇ +

1
k

(
scal(ω0)

8π
φ̇ −

1
4π
1ω0 φ̇

))2

= φ̈ −
1

4π
1ω0 φ̇

2
+ 2φ̇

1
4π
1ω0 φ̇ +O(1/k) = φ̈ −

1
2π
‖∇φ̇‖2,

which is different from φ̈.

We are now ready for the proof of Theorem 3 which identifies the limit of the sequence
of rescaled �-balancing flows for k→∞.

Proof of Theorem 3. We write ωt = ω +
√
−1 ∂∂̄φt . By C1 convergence in t , φ̇t is

continuous and unique up to a constant that we shall fix by setting
∫
M
φ̇tω

n
t = 0. Consider

the potential βk(ιk(t)) induced by the embedding ιk(t) given by the rescaled �-balancing
flow at time t . Thanks to Proposition 2.3 and the fact that

∫
M
βk(ιk(t))ω

n
k (t) → 0 as

k → ∞, this sequence of potentials converges to φ̇t . Moreover, using the balancing
condition, we can apply Proposition 2.2 to get

φ̇t = lim
k→∞

βk(ιk(t)) = 1−�/ωnt . ut

3. The �-Kähler flow and the proof of Theorem 2

3.1. The long time existence

We are now interested in the flow

∂φt

∂t
= 1−

�

(ω +
√
−1 ∂∂̄φt )n

(9)
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over a compact Kähler manifold (not necessarily in an integral Kähler class), where
φ0 = 0 and ω is a Kähler form in a fixed class [α]. Of course, this can be rewritten
as

(ω +
√
−1 ∂∂̄φt )n =

1

1− ∂φt
∂t

efωn (10)

where f is a smooth (bounded) function defined by f = log(�/ωn). We are interested in
the long time existence of this flow and its convergence. We now study this, following the
ideas of [Cao85]. Note that after we wrote this article we have been informed that similar
results were proved recently in [FLM11] , and we would like to thank Prof. Z. Błocki for
pointing out this reference to us.

In this section we will prove the following result.

Theorem 3.1. Let φt be the solution of

∂φt

∂t
= 1−

�

(ω +
√
−1 ∂∂̄φt )n

on the maximal time interval 0 ≤ t < Tmax. Let

vt = φt −
1

VolL(M)

∫
M

φtω
n.

Then the C∞ norm of vt is uniformly bounded for all 0 ≤ t < Tmax, and Tmax = +∞.

We remark that if we look at the formal level of this equation in terms of cohomology
class, we obtain directly

∂(ω +
√
−1 ∂∂̄φt )
∂t

= 0,

which shows that the Kähler form

ωt := ω +
√
−1 ∂∂̄φt

remains in the same class as ω +
√
−1 ∂∂̄φ0, i.e. [α].

Proposition 3.1. The functions ∂φt
∂t

and 1
1−∂φt/∂t

remain (uniformly) bounded inC0 norm
along the flow given by (10).

Proof. Differentiating (9), we obtain

∂

∂t

(
∂φt

∂t

)
=
�

ωnt
1t

(
∂φt

∂t

)
with 1t the normalized Laplacian with respect to the metric ω +

√
−1 ∂∂̄φt . We now

apply the maximum principle for parabolic equations at the point where ∂φt/∂t attains its
maximum (respectively minimum). Plugging this information in (9), we obtain

∂φt

∂t
≤ sup

M

(1− ef )

and moreover
∂φt

∂t
≥ inf

M
(1− ef ).
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On the other hand,

∂

∂t

(
1

1− ∂φt
∂t

)
=
(ω +

√
−1 ∂∂̄φt )n

�
1t

(
∂φt

∂t

)
,

and one applies again the maximum principle to obtain the proposition. ut

We denote by 1 the Laplacian with respect to the Kähler form ω given at t = 0.

Lemma 3.1. One has n+1φt > 0.

Proof. The fact that ω +
√
−1 ∂∂̄φt is a Kähler form implies by taking the trace that

n+1φt > 0. ut

We now show the upper bound for the Laplacian of the potential.

Proposition 3.2. There exist positive constants C1 and C2 such that

0 < n+1φt ≤ C1e
C2(φt−infM×[0,T ) φt ) for all t ∈ [0, T ).

Proof. In the proof we denote φt by φ, omitting the subscript for simplicity. Moreover,
g (resp. gt ) denotes the Riemannian metric associated to the Kähler form ω (resp. ωt =
ω +
√
−1 ∂∂̄φt ).

First of all, using holomorphic normal coordinates at any point p ∈ M , we have

1t (n+1φ) = g
kl̄
t (g

ij̄φij̄ )kl̄ = g
kl̄
t Rij̄ kl̄φj ī + g

kl̄
t g

ij̄φij̄ kl̄ .

Set

~ = log
ωnt

�
= logωnt − logωn − f,

so that e−~ = �/ωnt . The idea of the proof is essentially to apply the maximum principle
to the quantity n+1φ with the operator e−~1t − ∂/∂t .

Now, by using holomorphic normal coordinates and direct computations, we get

1~ = −giq̄t g
pj̄
t φij̄ kφpq̄k̄ + g

ij̄
t (−Rij̄ + φij̄ kk̄)+ R −1f.

Here Rij̄ kl̄ and R = scal(ω) denote the curvature tensor and the scalar curvature of the
metric gij̄ respectively. Then

∂

∂t
(n+1φ) = 1

(
∂φ

∂t

)
= −1(e−~) = e−~(1~− |∇~|2)

= e−~(gij̄t g
kl̄φij̄ kl̄ − g

ij̄
t Rij̄ + R −1f − g

iq̄
t g

pj̄
t φij̄ kφpq̄k̄ − |∇~|

2).

Thus(
e−~1t −

∂

∂t

)
(n+1φ) = e−~[gkl̄t g

ij̄ (φij̄ kl̄ − φkl̄ij̄ )+ g
kl̄
t Rij̄ kl̄φj ī

+ g
ij̄
t Rij̄ − R +1f + g

iq̄
t g

pj̄
t φij̄ kφpq̄k̄ + |∇~|

2
].
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On the other hand, since the covariant derivatives commute, we have

φij̄ kl̄ − φkl̄ij̄ = Riq̄kl̄φqj̄ − Rij̄ kq̄φql̄ .

Hence(
e−~1t −

∂

∂t

)
(n+1φ) = e−~[2gkl̄t Rij̄ kl̄φj ī − g

kl̄
t Rkq̄φql̄

+ g
ij̄
t Rij̄ − R +1f + g

iq̄
t g

pj̄
t φij̄ kφpq̄k̄ + |∇~|

2
].

Moreover, if we choose another coordinate system so that gij̄ = δij̄ and φij̄ = φiīδij̄ ,

gkl̄t Rij̄ kl̄φj ī − g
kl̄
t Rkq̄φql̄ =

∑
i,k

Riīkk̄

(
φiī

1+ φkk̄
−

φkk̄

1+ φkk̄

)

=

∑
i,k

Riīkk̄

φ2
iī
− φiīφkk̄

(1+ φiī)(1+ φkk̄)

=
1
2

∑
i,k

Riīkk̄
(φiī − φkk̄)

2

(1+ φiī)(1+ φkk̄)
,

and

gkl̄t Rij̄ kl̄φj ī + g
ij̄
t Rij̄ − R =

∑
i,k

Riīkk̄

(
φiī

1+ φkk̄
+

1
1+ φkk̄

− 1
)

=
1
2

∑
i,k

Riīkk̄
(φiī − φkk̄)

2

(1+ φiī)(1+ φkk̄)
.

Therefore,(
e−~1t −

∂

∂t

)
(1φ)

= e−~
[∑
i,k

Riīkk̄(φiī − φkk̄)
2

(1+ φiī)(1+ φkk̄)
+1f + g

iq̄
t g

pj̄
t φij̄ kφpq̄k̄ + |∇~|

2
]
. (11)

Now, we assume the curvature tensor Rij̄ kl̄ is bounded below by −C0, for some constant
C0 > 0, so that

Rij̄ kl̄ ≥ −C0(gij̄gkl̄ + gil̄gkj̄ ).

Then, from (11) we obtain(
e−~1t−

∂

∂t

)
(1φ) ≥ e−~

[
−2C0

(∑
i,k

1+ φiī
1+ φkk̄

−n2
)
+1f+g

iq̄
t g

pj̄
t φij̄ kφpq̄k̄

]
. (12)
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Finally, we consider the function e−Cφ(n+1φ) and compute

1t (e
−Cφ(n+1φ)) = C2e−Cφ(n+1φ)g

ij̄
t φiφj̄ − Ce

−Cφg
ij̄
t [φi(1φ)j̄ + (1φ)iφj̄ ]

− Ce−Cφ(n+1φ)1tφ + e
−Cφ1t (n+1φ)

≥ −(n+1φ)−1e−Cφg
ij̄
t (1φ)i(1φ)j̄

− Ce−Cφ(n+1φ)1tφ + e
−Cφ1t (n+1φ)

and
∂

∂t
(e−Cφ(n+1φ)) = −Ce−Cφ(n+1φ)

∂

∂t
φ + e−Cφ

∂

∂t
(n+1φ).

Thus, (
e−~1t −

∂

∂t

)
(e−Cφ(n+1φ)) ≥ −(n+1φ)−1e−(Cφ+~)gij̄t (1φ)i(1φ)j̄

+ e−Cφ
(
e−~1t −

∂

∂t

)
(n+1φ)

− Ce−Cφ(n+1φ)

(
e−~1t −

∂

∂t

)
φ.

Now observe that, by using gij̄ = δij̄ , φij̄ = φiīδij̄ and (12), we have

−(n+1φ)−1g
ij̄
t (1φ)i(1φ)j̄ +

(
1t −

∂

∂t

)
(n+1φ)

≥ −(n+1φ)−1
∑
i

(1+ φiī)
−1
∣∣∣∑
k

φkk̄i

∣∣∣2
+

∑
i,j,k

(1+ φiī)
−1(1+ φkk̄)

−1
|φij̄ k|

2
+1f − 2C0

(∑
i,k

1+ φiī
1+ φkk̄

− n2
)

≥ −2C0

(∑
i,k

1+ φiī
1+ φkk̄

− n2
)
+1f.

Therefore, by taking C = C0 + 1,(
e−~1t −

∂

∂t

)
(e−Cφ(n+1φ)) ≥ e−(Cφ+~)(1f + n2C0)

− Ce−(Cφ+~)(n+1φ)

(
n− e~

∂φ

∂t

)
+ (C − C0)e

−(Cφ+~)(n+1φ)
∑
i

1
1+ φiī

≥ e−(Cφ+~)(1f + n2C0)− Ce
−(Cφ+~)(n+1φ)

(
n− e~

∂φ

∂t

)
+ e−(Cφ+~+f/(n−1))

(
1−

∂φ

∂t

)−1/(n−1)

(n+1φ)n/(n−1), (13)
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where in the last inequality we have used the arithmetic-geometric inequality∑
i

1
1+ φiī

≥

( ∑
i(1+ φiī)

(1+ φ11̄) · · · (1+ φnn̄)

)1/n−1

=

[
e−f

(
1−

∂φ

∂t

)]1/(n−1)

(n+1φ)1/(n−1).

Now the proposition follows from the maximum principle and Proposition 3.1. Actually,
at the point (p, t0) where e−Cφ(n+1φ) achieves its maximum, the left hand side of (3.1)
is nonpositive and hence

(n+1φ(p, t0))
n/(n−1)

≤ C′(1+ (n+1φ(p, t0)))

with C′ independent of t . Finally, n+1φ(p, t0) ≤ C1, which gives the result. ut

Using the fact that we are working with plurisubharmonic potentials, we get the obvious
fact:

Lemma 3.2. Denote

vt = φt −
1

VolL(M)

∫
M

φtω
n

where φt is the solution to (10). Then there exist constants c2, c3 such that

sup
M×[0,T ]

vt ≤ c2, sup
M×[0,T ]

∫
M

|vt |ω
n
≤ c3.

Proposition 3.3. There exists a constant c4 > 0 such that

sup
M×[0,T ]

|vt | ≤ c4.

Sketch of proof. We apply the Nash–Moser iteration argument. The only major difference
with [Cao85, Lemma 3] is that in [Cao85, (1.14)], the right hand side is bounded by the
term

n!

∫
M

(−vt )
p−1

p − 1

(
ef

1− ∂φt
∂t

− 1
)
ωn.

But now, from Proposition 3.1, one can give the following upper bound for this term:

C

∫
M

(−vt )
p−1

p − 1
ωn,

where C is a uniform positive constant. This ensures that one can apply the Nash–Moser
argument to obtain the C0 estimate in a similar way to the computations of [Cao85,
p. 364]. ut

With Propositions 3.3 and 3.2 and Lemma 3.1, one obtains a uniform bound of the quan-
tity n+1φt = n+1vt . This implies, from the Schauder estimates, a first order estimate

sup
M×[0,T ]

|∇vt | ≤ c5

(
sup

M×[0,T ]
|1vt | + sup

M×[0,T ]
|vt |

)
≤ c′5.
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All the second order derivatives of the potential vt are bounded. From the last inequality,
one sees that in normal coordinates, the term 1+ φiī is bounded from above, while from
Proposition 3.3 and (3), the term

∏
i(1+ φiī) is bounded. So finally, 1+ φiī is uniformly

bounded along the time.
From Calabi’s work and similarly to [Yau78, Cao85], it is now standard that this

implies also the third order estimate. Finally, using Schauder’s regularity theory [GT01]
we have proved long time existence of the �-Kähler flow. This concludes the proof of
Theorem 3.1.

3.2. The convergence

In this section, we are interested in the convergence of the �-Kähler flow.

Theorem 3.2. Denote vt = φt − (1/VolL(M))
∫
M
φtω

n where φt is the solution to (10),
the �-Kähler flow. Then as t → ∞, vt converges to v∞ in smooth topology and ∂φt/∂t
converges to a constant in smooth topology.

Note that [FLM11] gives an independent proof of this result. To prove the convergence
of the �-Kähler flow, we need some results of P. Li and S.-T. Yau on positive solutions
of the heat equation on Riemannian compact manifolds [LY86, Section 2]. This takes the
following form.

Proposition 3.4. Let M be a compact manifold of dimension n. Let γij (t) be a family of
Riemannian metrics on M such that

• c0γij (0) ≤ γij (t) ≤ c′0γij (0),

•
∣∣ ∂γij
∂t

∣∣(t) ≤ c1γij (0),
• for the Ricci curvature, Rij (t) ≥ −Kgij (0),

where c0, c
′

0, c1,K are positive constants independent of t . If we denote by 1̃t the Laplace
operator of the metric γij (t), and if φ(p, t) is a positive solution of the equation(

1̃t −
∂

∂t

)
φ(p, t) = 0

on M × [0, T ), then one has the following Harnack type inequality for any α > 1:

sup
p∈M

φ(p, t1) ≤ inf
p∈M

φ(p, t2)

(
t2

t1

)n/2
exp

(
c3

t2 − t1
+ c4(t2 − t1)

)
where c3 depends on c′0 and the diameter of M with respect to γij (0), and c4 depends on
α, K , n, c′0, c1, sup ‖∇2 logφ‖ and 0 < t1 < t2 < T .

With Theorem 3.1 in hand, we shall apply Proposition 3.4 with γij (t) = (ωnt /�)gij̄ (t)

where gij̄ (t) is the metric associated with the Kähler form ω +
√
−1 ∂∂̄φt . Thus, 1̃t =

�

(ω+
√
−1 ∂∂̄φt )n

1t and the potential φt solving (3) satisfies(
1̃t −

∂

∂t

)
∂φt (p)

∂t
= 0.
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The same reasoning as in [Cao85, Section 2] shows that the quantity

E(t) =

∫
M

(
∂φt

∂t
−

1
VolL(M)

∫
M

∂φt

∂t
ωnt

)2

ωnt

is decreasing to 0 (at least exponentially fast). The only difference with the computation in
[Cao85] is that we need to show that the γij (t) are uniformly equivalent to γij (0). But this
is clear because the metrics gij̄ (t) and gij̄ (0) are uniformly equivalent thanks to Theorem
3.1, and the same holds for their respective volume forms. So the first eigenvalue of the
Laplacian 1̃t is under control.

Similarly to [Cao85, Proposition 2.2], we now obtain Theorem 3.2. Note that a conse-
quence of Theorem 3.1 is the existence of a sequence v(p, tn) (with tn→∞ as n→∞),
converging to a smooth function v∞ in smooth topology.

3.3. Corollaries

A direct consequence of Theorem 3.2 is the convergence of the �-Kähler flow to the
solution of the Calabi conjecture. Actually, the limit v∞ satisfies

(ω +
√
−1 ∂∂̄v∞)n = (ω +

√
−1 ∂∂̄φ∞)n = �.

In other words, one can prescribe the volume form in a given Kähler class. This was first
proved by S.-T. Yau in [Yau78] and our proof uses essentially the same type of estimates.
Of course, if M has first Chern class trivial, then the limit metric is a Calabi–Yau metric.

We also remark that one can modify (9) slightly if the manifold M has first Chern
class negative. In that case, it is natural to introduce the following flow:

(ω +
√
−1 ∂∂̄φt )n =

1

1− ∂φt
∂t

ef+φtωn (14)

where ω ∈ −2πc1(M) > 0, and f is the deviation of the Ricci curvature of ω, that is,

Ric(ω)+ ω =
√
−1 ∂∂̄f and

∫
M

1

1− ∂φt
∂t

ef+φtωn = VolKM (M).

In that case computations similar to Section 3.1 will involve the operator 1t − Id since
by differentiating (14), one obtains

∂

∂t

(
∂φt

∂t

)
=
ef+φtωn

ωnt

(
1t

(
∂φt

∂t

)
−
∂φt

∂t

)
.

The uniform bound of the term 1
1−∂φt/∂t

can be proved in a similar way to Section 3.1
(Proposition 3.1), and by the maximum principle, there is a uniform bound of the poten-
tials φt . Thus, one obtains the convergence of φt as t → ∞, and ω +

√
−1 ∂∂̄φ∞ is a

smooth Kähler–Einstein metric with negative curvature.
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4. Proof of Theorem 1

In this section, (M,L) is a polarized manifold and we are only considering integral Kähler
classes. The techniques we use to prove Theorem 1 are inspired by the techniques of
[Fin10].

4.1. First order approximation

From the results of Section 3 we know that from any starting point ω = ω0, there exists a
solution

ωt = ω +
√
−1 ∂∂̄φt

to the �-Kähler flow. We can write ωt = c1(ht ) where ht is a sequence of hermitian met-
rics on the line bundle L. Furthermore, we can construct a natural sequence of Bergman
metrics

ĥk(t) = FS(Hilb�(hkt ))
1/k

by pulling back the Fubini–Study metric using sections which are orthonormal with re-
spect to the inner product

1
kn

∫
M

ht (·, ·)
k�.

Using Proposition 2.1 we obtain the asymptotic behaviour

ĥk(t) =

(
knc1(ht )

n

�
+O(1/k)

)1/k

ht

for k � 1. Thus, the sequence ĥk(t) converges to ht as k→∞.
On the other hand, the rescaled �-balancing flow provides a sequence of metrics

ωk(t) = c1(hk(t)) which are solutions to (2). Note that by construction, we fix hk(0) =
ĥk(0) for the starting point of the rescaled �-balancing flow.

In this section, we wish to evaluate the distance between the two metrics hk(t) and
ĥk(t). Since we are dealing with algebraic metrics, we have the (rescaled) metric on her-
mitian matrices given by

dk(H0, H1) =

(
tr (H0 −H1)

2

k2

)1/2

on Met(H 0(Lk)) which induces a metric on Met(L), denoted by distk .

Proposition 4.1. One has

distk(hk(t), ĥk(t)) ≤ C/k

for some constant C > 0 independent of k.



1050 H.-D. Cao, J. Keller

Proof. The proof is similar to [Fin10, Proposition 10]. Let eφ(t)h0 be a family of hermi-
tian metrics with positive curvature, and denote

ωt = c1(e
φ(t)h0).

The infinitesimal change at t in the L2 inner product induced by this path and the volume
form � is given by

Ûα,β(t) =
1
kn

∫
M

〈sα, sβ〉kφ̇(t)�

for (sα) an orthonormal basis of H 0(Lk) with respect to the L2 inner product

1
kn

∫
M

ekφ(t)�.

The formula is obtained by noticing that the variation occurs with respect to the fibrewise
metric. Now, if furthermore φ(t) is a solution to the �-Kähler flow, this infinitesimal
change is given at ĥk(t) as

Ûα,β(t) =
1
kn

∫
M

〈sα, sβ〉

(
k

(
1−

�

ωnt

))
�, (15)

with (sα) satisfying the same assumption as above.
On the other hand, the tangent (at the same point ĥk(t)) to the rescaled �-balancing

flow (2) is given directly by the moment map µ0
�, and we write the infinitesimal change

of the L2 metric as

Uα,β(t) = k

∫
M

(
δαβ

N + 1
−
〈sα, sβ〉∑N+1
α=1 |sα|

2

)
�. (16)

Again, from Proposition 2.1, one has asymptotically

Uα,β(t) = Ûα,β(t)+
1
kn

∫
M

〈sα, sβ〉O(1)�.

Here O(1) stands implicitly for a (smooth) function which is bounded independently of
the variables t and k. Thus, one has

tr (Ûα,β(t)− Uα,β(t))2

k2 =

〈
1
k
O(1),Qk

(
1
k
O(1)

)〉
L2
.

We can use inequality (6) of Theorem 2.2 to obtain

tr (Ûα,β(t)− Uα,β(t))2

k2 = O(k−2).

This shows that dk(Ûα,β(t), Uα,β(t))) = O(1/k). If we denote by h̃k(t) the rescaled
balancing flow passing through ĥk(t0) at t = t0, we have just proved that h̃k(t) and ĥk(t)
are tangent up to an O(1/k) error term at t = t0. On the other hand, it is clear that h̃k(t)
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and hk(t) are close when t →∞, because they are obtained through the gradient flow of
the same moment map and this gradient flow converges to the unique �-balanced metric
(this is a consequence of [Don09]). Thus dist(h̃k(t), hk(t)) = O(1/k). This finally proves
the result. ut

4.2. Higher order approximations

In this section, we improve the result of the last section by constructing a new time-
dependent function

ψ(k, t) = φt +

m∑
j=1

1
kj
ηj (t)

which is obtained by deforming the solution to the�-Kähler flow and which has the prop-
erty of being “as close as we wish” to the�-balancing flow. We will need to compare this
metric to the Bergman metric hk(t). Thus, we introduce the Bergman metric associated
to h0e

ψ(k,t), i.e.

hk(t) = FS(Hilb�(hk0e
kψ(k,t)))1/k.

We wish to minimize the quantity distk(hk(t), hk(t)) by showing an estimate of the form
distk(hk(t), hk(t)) < C/km+1, withC > 0 a constant independent of k � 0 and t . This is
the parameter version of [Don01, Theorem 26], and Proposition 4.1 shows that the result
holds for m = 0. One needs to choose inductively the functions ηj , and this is done by
linearizing the Monge–Ampère operator.

Let us give some details for the first step of the induction, that is, to find η1. Similarly
to (15), the tangent to the path hk(t) can be written as

T αβ(t) =
1
kn

∫
M

k〈sα, sβ〉

(
1−

�

ωnt
+
η̇1

k
+O(1/k)

)
�,

where ωt = ω +
√
−1 ∂∂̄φt and (sα) is L2 orthonormal with respect to eφth0 and the

volume form �. On the other hand, the tangent to the rescaled balancing flow at the point
hk(t) is given, similarly to (16), by

Tαβ(t) =
1
kn

∫
M

k〈sα, sβ〉

(
1−

�

c1(hk(t))n
+O(1/k)

)
�. (17)

But now,
�

c1(hk(t))n
=
�

ωnt
−
�

ωnt
1t

(
1
k
η1

)
+O(1/k2),

and we can write the error term kO(1/k) from (17) as

kO(1/k) =
∑
i≥0

γ1,ik
−i
= γ1,0 +O(1/k)
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with γ1,i smooth real-valued functions depending on the metric and obtained from the
Bergman function asymptotics, so

Tαβ(t) =
1
kn

∫
M

〈sα, sβ〉

(
k

(
1−

�

ωnt
+
�

ωnt
1t

(
1
k
η1

)
+
γ1,0

k

)
+O(1/k)

)
�.

If we wish to force dk(T αβ(t), Tαβ(t)) to be of sizeO(1/k2), we need to find η1 such that

∂η1(t)

∂t
−
�

ωnt
1tη1(t) = γ1,0 (18)

for all t ≥ 0 and η1(0) = 0. But, by standard parabolic theory (see, e.g., [Bak11, Section
3.1] for a detailed exposition), a smooth solution η1 to the above initial-value problem
exists and is unique. Hence

tr (T αβ(t)− Tαβ(t))2

k2 = 〈O(1/k2),Qk(O(1/k2))〉L2

and we can conclude with similar arguments to Section 4.1: there exists a constant C > 0
independent of t such that

tr (T αβ(t)− Tαβ(t))2

k2 ≤
C

k4 . (19)

This implies, by the same arguments as at the end of the proof of Proposition 4.1, that

distk(hk(t), hk(t)) ≤ C/k2.

Now, for higher order expansions, one considers higher order asymptotics in the ex-
pressions above. The same reasoning can be applied to construct higher order approxi-
mation. Knowing the terms η1, . . . , ηm one has to find ηm+1 solving a similar equation
to (18), where the (nonconstant) RHS will depend on the functions ηj (1 ≤ j ≤ m)
computed at the previous step:

∂ηm+1(t)

∂t
−
�

ωnt
1tηm+1(t) = γm+1,0(η1, . . . , ηm). (20)

Again, it is possible to solve (20) by inverting the operator �
ωnt
1t −

∂
∂t

. Finally, we have
obtained

Theorem 4. Given the solution φt to the �-Kähler flow (3) and k � 0, there exist func-
tions η1, . . . , ηm, m ≥ 1, such that the deformation of φt given by the potential

ψ(k, t) = φt +

m∑
j=1

1
kj
ηj (t)

satisfies
distk(hk(t), hk(t)) ≤ C/km+1.

Here hk(t) = FS(Hilb�(hk0e
kψ(k,t)))1/k ∈ Met(L) is the induced Bergman metric from

the potential ψ , hk(t) ∈ Met(L) is the sequence of metrics obtained by the rescaled
balancing flow (2), and C is a positive constant independent of k and t .
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Proof. The only point that we did not explain earlier is that C is independent of t ∈ R+.
This comes from the following facts. On one hand, the expansion of the Bergman function
of a family of metrics ht is uniform if the metrics ht belong to a compact subset of
hermitian positive metrics in Met(L) (see Theorem 2.1). On the other hand, we have
seen that the metrics involved in the �-Kähler flow are in a bounded set, since ωt is
convergent in smooth topology as t → ∞ thanks to Theorem 3.2. This completes the
proof of Theorem 4. ut

Furthermore, one can slightly improve this result by showing that one hasC1 convergence
in t .

Proposition 4.2. Under the same assumptions and notations of the previous theorem,
one has

distk

(
∂hk(t)

∂t
,
∂hk(t)

∂t

)
≤
C

km
,

where C is a constant uniform in k and t .

Proof. One needs essentially to give an estimate of the quantity

tr
(
∂T αβ(t)

∂t
−
∂Tαβ(t)

∂t

)2

.

Assume that we have fixed η1 as in the proof of Theorem 4, that is, m = 1. Then, as the
first step, we are led to estimate

1
kn

∫
M

〈sα, sβ〉k

(
∂

∂t

(
�

ωnt
1t (η1/k)− η̇1/k + γ1,0/k +O(1/k2)

))
� (21)

+
1
kn

∫
M

k

(
k
∂φt

∂t

)
〈sα, sβ〉

(
�

ωnt
1t (η1/k)− η̇1/k + γ1,0/k +O(1/k2)

)
�. (22)

In (21), the term O(1/k2) stands for a smooth function r(p, k, t), where p ∈ M , uni-
formly bounded over M and in the variable t . But we know that the asymptotics of the
Bergman kernel is given by polynomial expressions in the curvature and its covariant
derivative. We can write r(p, k, t) =

∑
i≥2 k

−iri(p, t) where ri(p, t) are smooth in t
and p. Thus ‖r(p, k, t)‖C∞(M) < C1/k

2 and ‖∂r(p, k, t)/∂t‖C∞(M) < C2/k
2, where

C1, C2 do not depend on k, t or p. The independence from t is again obtained from the
fact that the metric ωt along the �-Kähler flow is convergent (Theorem 3.2) and from the
uniformity of the expansion. Moreover, since η1 is a smooth solution of (18) in t , the term
(21) is uniformly bounded by C3/k

2 by the same argument as in the proof of Theorem 4
(inequality (19)) . On other hand, by the same reasoning, (22) is uniformly bounded by
C4/k, where C4 is independent of t and k. This provides the result for m = 1.

The computations for m > 1 are completely similar. Also, higher order derivatives in
t could be treated in a similar way. ut
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4.3. L2 estimates in finite-dimensional set-up

We start this section by fixing some notations and giving some definitions. Let us fix a
reference metric ω0 ∈ 2πc1(L). We denote by ω̃0 = kω0 the induced metric in 2πkc1(L).
We need the notion of R-bounded geometry in Cr [Don01, Section 3.2]. We say that
another metric ω̃ ∈ 2πkc1(L) has R-bounded geometry in Cr if ω̃ > (1/R)ω̃0 and
‖ω̃− ω̃0‖Cr (ω̃0) < R. We say that a basis (si) of H 0(M,Lk) is R-bounded if the Fubini–
Study metric induced by the embedding of M in PH 0(Lk)∨ associated to the (si) has
R-bounded geometry.

The reason for working with R-bounded metrics is to avoid constants depending on k
in the forthcoming estimates. Let us fix

HA =
∑
i,j

Aij (si, sj ) = tr(Aµ) ∈ C∞(M),

where A = (Aij ) is a hermitian matrix, (si) is a basis of H 0(Lk), and (·, ·) denotes the
fibrewise Fubini–Study inner product induced by the basis (si). This function corresponds
to the potential obtained by an A-deformation of the Fubini–Study metric, i.e. when one
is moving the Fubini–Study metric in a Lie(SU(N + 1)) orbit. Moreover, we denote
by ‖A‖op = max |Aζ |/|ζ | the operator norm, given by the maximum modulus of the
eigenvalues of the hermitian matrixA, and by ‖A‖2 = tr(A2) = tr(AA∗) ≥ 0 the Hilbert–
Schmidt norm. We will need the following very general result:

Proposition 4.3 ([Don01, Lemma 24], [Fin10, Proposition 12]). There exists C > 0,
independent of k, such that for any basis (si) of H 0(Lk) with R-bounded geometry in Cr

and any hermitian matrix A,

‖HA‖Cr ≤ C‖µ�(ι)‖op‖A‖

where ι is the embedding induced by (si).

Proof. By definition, µ�(ι) =
∫
M
µ(ι)�. Given a holomorphic section s of L → M ,

one defines a holomorphic section s̃ of L̄∗ → M̄ (here M̄ is just M with the opposite
complex structure) thanks to the bundle isomorphism given by the fibre metric. Then,
for a hermitian matrix A, one can define the section σA =

∑
Aij si ⊗ s̃j and compute

its L2 norm over M × M̄ . This L2 norm is given by tr (Aµ�µ∗�A
∗)1/2. But one has an

obvious upper bound for that term, by a standard inequality: for hermitian matrices G,F ,
tr(FGF) ≤ ‖F‖2‖G‖op. Thus,

‖σA‖ = tr (Aµ�µ∗�A
∗)1/2 ≤ ‖µ�(ι)‖op‖A‖. (23)

On the other hand, for any holomorphic section σ of a hermitian vector bundle L̃ → Y ,
one has the L2 estimate ‖σ‖Cr (Y ′) ≤ C‖σ‖L2(Y ) for a submanifold Y ′ ⊂ Y and some
constant C that depends on Y . This is described in [Don01, Lemma 24]. Hence, applying
this result with Y = M × M̄ and Y ′ = M , together with (23), one obtains the desired
inequality. ut

We will need the following lemma.
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Lemma 4.1. Fix r ≥ 2. Assume that for all t ∈ [0, T ], the family of bases {si}(t) of
H 0(Lk) haveR-bounded geometry. Define by h(t) the family of Bergman metrics induced
by {si}(t). Then the induced family of Fubini–Study metrics ω̃(t) satisfy

‖ω̃(0)− ω̃(T )‖Cr−2 < C sup
t
‖µ�(ι(t))‖op

∫ T

0
dist(h(s), h(0)) ds,

and also∥∥∥∥∂ω̃∂t (0)− ∂ω̃∂t (T )
∥∥∥∥
Cr−2

< C∗ sup
t
‖µ�(ι(t))‖op

∫ T

0
dist

(
∂h

∂s
(s),

∂h

∂s
(0)
)
ds

+C∗ sup
t
‖dµ�(ι(t))‖op

∫ T

0
dist(h(s), h(0)) ds,

where C,C∗ are constants uniform in k.

Proof. Thanks to [Fin10, Lemma 13], we just need to check the second inequality. For
the deformation A(t) of the L2 metric induced along the path from 0 to T , one has∥∥∥∥∂2ω̃(t)

∂t2

∥∥∥∥
Cr−2
=

∥∥∥∥√−1 ∂∂̄
∂

∂t
HA(t)

∥∥∥∥
Cr−2

(24)

≤ ‖∂∂̄ tr(Ȧ(t)µ)‖Cr−2 + ‖∂∂̄ tr(A(t)µ̇(ιt ))‖Cr−2 . (25)

The first term of (25) can be bounded from above by C‖µ�(ι(t))‖op‖Ȧ(t)‖ using directly
Proposition 4.3. For the second term, one needs to adapt the proof of Proposition 4.3, but
this can be done with no major difficulty. Hence, the second term of (25) can be bounded
from above by

‖∂∂̄ tr(A(t)µ̇(ιt ))‖Cr−2 ≤ C

∥∥∥∥ ∫
M

µ̇(ι(t))�

∥∥∥∥
op
‖A(t)‖

≤ C′‖dµ�(ι(t))‖op‖A(t)‖.

Then by integration, one obtains the desired estimate. ut

Corollary 4.1. Let ω̃k be a sequence of metrics with R/2-bounded geometry in Cr+2

such that the norms ‖µ�(ω̃k)‖op are uniformly bounded. Then there is a constant C > 0
independent of k such that if ω̃ has distk(ω̃, ω̃k) < C, then ω̃ has R-bounded geometry
in Cr .

Proof. The proof is completely similar to [Fin10, Lemma 14]. ut

4.4. Projective estimates

In this subsection, we aim to control the operator norm of the moment map in terms of
the Riemannian distance in the Bergman space

B = GL(N + 1)/U(N + 1).
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With this result in hand, we can consider the gradient flow of the moment map and show
its convergence.

We start our investigation with the following result, which is a direct consequence of
Theorem 2.1.

Proposition 4.4. Let h be a hermitian metric on L with curvature ω = c1(h) > 0.
Consider the sequence hk = FS(Hilb(h)) ∈ Met(Lk) of Bergman metrics, approximating
h after renormalization, thanks to Theorem 2.1. Set

I�,k =

∫
M

〈si, sj 〉hk�

for (si) a basis of holomorphic sections of H 0(Lk) with respect to Hilb(h). Then

‖µ�(hk)− I�,k‖op → 0 as k→∞,

and the convergence is uniform for ω in a compact subset of Kähler metrics in 2πc1(L).

Proof. Firstly, the matrix I�,k does not depend on the choice of the orthonormal basis
(si)

N
i=1. Thanks to the asymptotic expansion given by Theorem 2.1,

µ�(hk) =

∫
M

〈si, sj 〉FS(Hilb(h))� =

∫
M

〈si, sj 〉hk (1+O(1/k))�.

Finally, we can deduce the convergence by using [Don01, Lemma 28] which ensures that
for the operator norm,∥∥∥∥∫

M

〈si, sj 〉FS(Hilb(h)) ×O(1/k)�
∥∥∥∥

op
≤

∣∣∣∣ �ωnO(1/k)
∣∣∣∣
L∞
.

The uniformity of the convergence is given by the uniformity of the expansion in the
asymptotics (see Theorem 2.1). ut

Given a tangent vector A ∈ TbB with b ∈ B, we have a vector field ζA on PN∨ and thus
on M , corresponding to A. Of course, the fact that µ� is a moment map (see Section 1)
gives the following fact directly.

Lemma 4.2. For any pair of hermitian matrices A,B ∈ TbB, one has

tr(Bdµ�(A)) =
∫
M

(ζA, ζB)�,

where (·, ·) denotes the Fubini–Study inner product induced on the tangent vectors.

Lemma 4.3 ([Fin10, Lemma 18]). Let A,B ∈ TbB. Pointwise over PN∨,

HAHB + (ζA, ζB) = tr(ABµ).

Lemma 4.4. For any hermitian matrices A,B ∈ TbB,

tr(Bdµ�(A))+ 〈HA, HB〉L2(M,�) = tr(ABµ�).
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Proof. We start from the previous lemma which says that at each point of M ,

HAHB + (ζA, ζB) = tr(ABµ).

Now, we integrate with respect to the volume form � and apply Lemma 4.2. ut

Lemma 4.5. For any hermitian matrix A ∈ TbB,

‖HA‖
2
L2(�)

≤ ‖A‖2‖µ�‖op.

Proof. From the last lemma,

‖HA‖
2
L2(�)

= tr(A2µ�)− tr(Adµ�(A)).

Now, by Lemma 4.2,

tr(Adµ�(A)) =
∫
M

(ζA, ζA)� ≥ 0.

Hence,
‖HA‖

2
L2(�)

≤ tr(A2µ�) ≤ ‖A‖
2
‖µ�‖op. ut

Lemma 4.6. For any hermitian matrix A ∈ TbB,

‖dµ�(A)‖op ≤ ‖dµ�(A)‖ ≤ 2‖A‖ ‖µ�‖op.

Proof. From Lemma 4.4, one has

‖dµ�(A)‖
2
= tr(dµ�(A)2) = tr(Adµ�(A)µ�)− 〈HA, Hdµ�(A)〉L2(�)

≤ ‖A‖ ‖dµ�(A)‖ ‖µ�‖op − 〈HA, Hdµ�(A)〉L2(�).

Then we can conclude by using the fact that

|〈HA, Hdµ�(A)〉L2(�)| ≤ ‖HA‖L2(�)‖Hdµ�(A)‖L2(�),

and the previous lemma. ut

Finally, we obtain

Proposition 4.5. Let b0, b1 ∈ B. Then

‖µ�(b1)‖op ≤ e
2 distk(b0,b1)‖µ�(b0)‖op.

Proof. We know that a geodesic in the space B of Bergman metrics is given by a line, i.e.,
the hermitian metric involved is modified along the geodesic by etA and that dist(b0, b1)

= ‖A‖. This can be rephrased by saying that if (s0
i )
N+1
i=1 (resp. (s1

i )
N+1
i=1 ) is an orthonormal

basis of H 0(Lk) with respect to b0 (resp. b1), then there exists σ ∈ GL(N + 1) such
that σ · s0

= s1 and without loss of generality we can assume σ is diagonal with entries
eλ0 , . . . , eλn . Then the geodesic is just induced by the family of bases σ t ·s0 for t ∈ [0, 1].
Now, we can conclude our proof by using Lemma 4.6 and the fact that the norm ‖ · ‖op
on the space of matrices is controlled from above by the Hilbert–Schmidt norm ‖ · ‖. ut
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We are now ready to give the proof of Theorem 1, that is, to show the smooth convergence
of Kähler metricsωk(t) involved in the rescaled balancing flow (2) towards the solutionωt
to the �-Kähler flow.

Proof of Theorem 1. Using Theorem 4, for any m > 0, we have obtained a sequence of
Kähler metrics

ω(k; t) = c1(h0e
ψ(k,t))

such that ω(k; t) converges, as k → ∞ and in smooth sense, towards the solution ωt =
c1(h0e

φt ) to the �-Kähler flow. Moreover, for k large enough and with hk(t) ∈ B the
Bergman metric associated to h0e

ψ(k,t)
∈ Met(L), one has the estimate

distk(hk(t), hk(t)) ≤ C/km+1, (26)

where hk(t) is the metric induced by the rescaled �-balancing flow. Consequently, in
order to get the C0 convergence in t , all we need to show is that

‖ωk(t)− c1(hk(t))‖Cr (ωt )→ 0. (27)

The idea is to consider the geodesic in the Bergman space between these two points.
Firstly, we will see that along the geodesic from hk(t) to hk(t) in B, ‖µ�‖op is con-

trolled uniformly if we can apply Proposition 4.5. This requires proving that hk(t) is
within a uniformly bounded distance of hk(t) and that ‖µ�(hk(t))‖op is bounded in k.
But this comes from the fact that one can choose precisely m ≥ n + 1 in (26) and apply
Proposition 4.4. For the latter, one needs to notice the estimate

‖I�,k‖op ≤ sup
M

�

ωn

from [Don01, Lemma 28].
Secondly, we show that the points along this geodesic haveR-bounded geometry. This

is a consequence of Corollary 4.1, applied with the reference metric ωt to the sequence
c1(hk(t)). On one hand, ‖µ�(hk(t))‖op is under control as we have just seen. On the other
hand, c1(hk(t)) converge to ωt in C∞ (hence in Cr+4 topology), thus they have R/2-
bounded geometry. Given m ≥ n + 2, one infers, thanks to Corollary 4.1 and inequality
(26), that all the metrics along the geodesic from hk(t) to hk(t) haveR-bounded geometry
in Cr+2.

Thirdly, we are exactly under the conditions of Lemma 4.1. It gives, by renormalizing
the metrics in the Kähler class 2πc1(L) and by (26),

‖kωk(t)− kc1(hk(t))‖Cr (kωt ) ≤ C‖µ�(hk(t))‖opk
n+2 distk(hk(t), hk(t)),

‖ωk(t)− c1(hk(t))‖Cr (ωt ) ≤ C‖µ�(hk(t))‖opk
n+2−m−1+r/2,

where we have used the fact that the geodesic path from 0 to 1 is just a line. Here C > 0
is a constant that does not depend on k. If we choose m > r/2 + 1 + n, we get the de-
sired convergence in Cr topology, i.e. (27). Of course, this reasoning yields uniform C0
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convergence in t for t ∈ R+, because all the Kähler metrics ωt that we are using are uni-
formly equivalent (we have convergence of the�-Kähler flow, Theorem 3.2) and because
we have the uniformity of the expansion in Theorems 2.1 and 2.2.

We now prove that one has C1 convergence in t of the flows ωk(t). Again, we need to
show theC1 convergence of ωk(t) to c1(hk(t)), because we already know the convergence
of c1(hk(t)) to ωt by Proposition 2.3. We are under the conditions of Lemma 4.1 by what
we have just proved above. So we have, using again that our path is a geodesic,∥∥∥∥k ∂ωk(t)∂t

− k
∂c1(hk(t))

∂t

∥∥∥∥
Cr
≤ C∗‖µ�(hk(t))‖op k

n+2 distk

(
∂hk(t))

∂t
,
∂hk(t)

∂t

)
+C∗‖dµ�(hk(t))‖op k

n+2 distk(hk(t), hk(t)).

Here the Cr norm is computed with respect to kωt . If we apply Lemma 4.6, Theorem 4
and Proposition 4.2, we can bound from above the RHS of the last inequality to get∥∥∥∥∂ωk(t)∂t

−
∂c1(hk(t))

∂t

∥∥∥∥
Cr (ωt )

≤ C′‖µ�(hk(t))‖op k
n+2−m−r/2

+C′′‖µ�(hk(t))‖op k
n+2+r/2k−m−1k−m−1

≤ C′′′kn+2−m−r/2.

Finally, we choose m > r/2+ n+ 2 to obtain C1 convergence. This completes the proof
of Theorem 1. ut

Finally, if we apply Definition 1.1 that asserts that an�-balanced metric does always exist
and is a zero of the moment map µ0

�, Theorem 1, and the convergence of the �-Kähler
flow to a solution to the Calabi problem, we directly obtain the following result.

Corollary 4.2. Under the same setting as above, the sequence of balanced metrics
hk(∞)

1/k
∈ Met(L), obtained as the limit of the balancing flow at t = ∞, converges

in smooth topology to h∞, a solution of the Calabi problem,

(c1(h∞))
n
= �.

Note that this is a new proof of Theorem 1.1, but which uses a priori the existence of a
solution to the Calabi problem (compare with [Kel09]).

5. The infinite-dimensional set-up and generalizations

5.1. A symplectic approach to the Calabi problem

In this section we develop the moment map set-up on the infinite-dimensional space of
Kähler potentials related to the �-Kähler flow. Assume that (M,L) is a polarized mani-
fold. Fix ω ∈ 2πc1(L) and � a smooth volume form on M with

∫
M
� = VolL(M). We

introduce M, the infinite-dimensional space of integrable hermitian connections on L
with Kähler form as curvature, with respect to a fixed complex structure. This means that
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we consider unitary connections ∇ on L such that if F∇ ∈ �2(M,End(L)) is the curva-
ture connection, then F 0,2

∇
= F

2,0
∇
= 0 and F 1,1

∇
is a positive form with respect to the

complex structure on M .
Consider the abelian gauge group G of maps L → L that cover the identity on M .

By duality, the Lie algebra Lie(G) can be identified with the space of smooth functions
from M to R with zero integral, since one can identify G with C∞(M, S1). The tangent
space at M is given by the 1-forms with values in End(L). For simplicity, we assume
that M is simply connected and we fix the following symplectic form on M at the point
∇ ∈M:

ν∇(a, b) =

∫
M

a ∧ b ∧ F n−1
∇

,

which is a symplectic form invariant under the action of G.
We have a natural paring Lie(G)× Lie(G)∗→ R given by

(ζ, θ) 7→

∫
M

ζθ =

∫
M

〈ζ, θ〉. (28)

We are in a moment map setting. Actually, we have the following simple proposition
that shows that prescribing the volume form in a Kähler class is related to finding the zero
of a certain moment map. Note that given ∇ ∈M, we let A∇ be the real connection (S1

invariant) 1-form associated to ∇ on the natural S1-principal bundle π : P → M that
we can associate with L→ M . It acts on an element ζ ∈ Lie(G) by decomposing it into
a vertical and horizontal parts and fibrewise this vertical part corresponds to a rotation
which is eventually parametrized by the real function 〈A∇ , ζ 〉 over M .

Proposition 5.1. There is a moment map µ : M → Lie(G)∗ associated to the action
of G on (M, ν) given by

µ(∇) = 〈A∇ , ·〉((F∇)
n
−�).

Proof. We need to check that for any ζ ∈ Lie(G) and any vector field V , we have

〈dµ(∇)(V ), ζ 〉 = ν∇(V ,Xζ ),

whereXζ is the vector field on M defined by the infinitesimal action of ζ ∈ Lie(G). More
explicitly, Xζ is given by Xζ = LζA∇ = d〈A∇ , ζ 〉 + ιζdA = d〈A∇ , ζ 〉 + ιπ∗ζF∇ =

d〈A∇ , ζ 〉, since the elements of G cover the identity on M . Now, we have

ν∇(V ,Xζ ) =

∫
M

V ∧ d〈A∇ , ζ 〉 ∧ F
n−1
∇
=

∫
M

〈A∇ , ζ 〉dV ∧ F
n−1
∇

.

But the change in F∇ by the vector field V is precisely given by dV , so

〈dµ(∇)(V ), ζ 〉 =

∫
X

〈A∇ , ζ 〉dV ∧ F
n−1
∇

,

since the elements of G cover the identity on M . ut



On the Calabi problem: a finite-dimensional approach 1061

Note that the moment map that we have just defined is obviously not unique. As in the
proof above, denote by Xζ the vector field associated to ζ ∈ Lie(G). Now, using the
pairing (28) and the natural G-invariant norm on Lie(G), one can consider µ with values
in Lie(G), which means that we write µ(∇) = (F n

∇
−�)/F n

∇
. Then we consider the

gradient flow
d

dt
‖µ(∇t )‖

2
= −‖Xµ(∇t )‖

2

where the norm on the RHS is computed with respect to ν∇t . This is actually equivalent
to

dA∇t

dt
= IXµ(∇t ), (29)

with I the complex multiplication on the tangent vectors in M. This equation can be
rephrased in terms of flow over 1-forms by

dF∇t

dt
= LIµ(ft )F∇t .

If we use the notations of the previous sections, where ωt = F∇t is an evolving Kähler
form, then this (negative) gradient flow reads

dωt

dt
=
√
−1 ∂∂̄

(
ωnt −�

ωnt

)
.

Then, using the fact that the kernel of the operator
√
−1 ∂∂̄ is given by constants (since

M is compact), one recovers precisely the equation of the �-Kähler flow (9). Finally, we
would like to mention that J. Fine [Fin11] has developed a more general theory that covers
the results presented in this section (see [Fin11, Section 3.2]).

5.2. Integral of a moment map

In this section we deal with a very general set-up. Consider the case of a Kähler manifold
(4, ω) polarized by the line bundle L and a moment map µ associated to the action of
a linear reductive group 0 whose complexification acts holomorphically. To the moment
map µ corresponds canonically a functional

9 : 4× 0C
→ R

that we call the integral of the moment map µ and that has the following two properties:

• For all p ∈ 4, the critical points of the restriction 9p of 9 to {p} × 0C coincide with
the points of the orbit Orb0C(p) on which the moment map vanishes;
• the restriction 9p to the “lines” {eλu : u ∈ R}, where λ ∈ Lie(0C), is convex.

This is well known in the projective case from the seminal work of G. Kempf and L. Ness
[KN79]. We also refer to [MiR00] for a more general setting.

Theorem 5.1. There exists a unique map 9 : 4× 0C
→ R that satisfies:

1. 9(p, e) = 0 for all p ∈ 4;
2. d

du
9(p, eiλu)

∣∣
u=0 = 〈µ(p), λ〉 for all λ ∈ Lie(0).
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Let us sum up some of the main properties of the integral of the moment map.

Proposition 5.2. The functional 9 is 0-invariant (for the left action) and satisfies the
cocyclicity relation

9(p, γ )+9(γp, γ ′) = 9(p, γ ′γ )

for all p ∈ 4, γ, γ ′ ∈ 0C, and the equivariance relation

9(γp, γ ′) = 9(p, γ−1γ ′γ )

for all p ∈ 4, γ ∈ 0, γ ′ ∈ 0C.

Moreover, d2

du29(p, e
iλu) ≥ 0 for all λ ∈ Lie(0), with equality if and only if

Xλ(e
iλup) = 0.

Let us apply the previous results in our set-up. We introduce some classical functionals
on the space of Kähler potentials. The energy functionals I , J , introduced by T. Aubin
[Aub84] (see also [Tia00]), are defined for each pair (ω, ωφ := ω +

√
−1 ∂∂̄φ) by

I (ω, ωφ) =
1
V

∫
M

√
−1 ∂φ ∧ ∂̄φ ∧

n−1∑
i=0

ωi ∧ ωn−1−i
φ =

1
V

∫
M

φ(ωn − ωnφ),

J (ω, ωφ) =
1

V (n+ 1)

∫
M

√
−1 ∂φ ∧ ∂̄φ ∧

n−1∑
i=0

(n− i)ωi ∧ ωn−1−i
φ ,

where we have skipped again the normalization of the volume form by the factor n! for
simplicity. Note that

J (ω, ωφ) =

∫ 1

0

I (ω, ω + s
√
−1 ∂∂̄φ)

s
ds.

It is well known that I, J and I − J are all nonnegative and equivalent. One may
also define these functionals via a variational formula, and they are very natural from this
point of view. We refer to the recent work of [BBGZ09] where this idea is exploited in
detail. If ωφt is a smooth path in the Kähler cone, a direct computation gives

d

dt
J (ω, ωφt ) =

1
V

∫
M

φ̇t (ω
n
− ωnφt ).

We obtain

Proposition 5.3. The integral of the moment map associated to µ : M → Lie(G)∗ is
given by the functional

F 0
�(ω, ωφ) = J (ω, ωφ)+

1
V

∫
M

φ(�− ωn).

In particular, this functional is decreasing along the �-Kähler flow. This can be checked
directly since, along the flow (9), one has

d

dt
F 0
�(ω, ωφt ) =

∫
M

φ̇t (�− ω
n
φt
) = −

∫
M

(ωnφt −�)
2

ωnφt

≤ 0.
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On the other hand, for the second derivative along the �-Kähler flow, one gets

d2

dt2
F 0
�(ω, ωφt ) =

∫
M

φ̇t φ̈t (−2+ φ̇t )
(1− φ̇t )2

� (30)

by using the fact that
dωnφt
dt
=

φ̈t
(1−φ̇t )2

�. The term −2 + φ̇t is always negative from (9),
since�/ωnφt is positive. We can apply the maximum principle to check that the derivative
of (φ̇t )2 is negative. So the right hand side of (30) is actually positive and the functional
t 7→ F 0

�(ω, ωφt ) is convex along the�-Kähler flow. Finally, it is clear that this functional
has the cocyclicity property

F 0
�(ω, ωφ1) = F

0
�(ω, ωφ2)+ F

0
�(ωφ2 , ωφ1).

5.3. The degenerate cases

One can ask if the main results of this paper hold at least partially when one considers
nonample classes or degenerate volume forms. Let us explain which arguments used in
the previous sections can be extended with no major difficulty to show the existence of
the balancing flow and its convergence as k→∞ for nonsmooth volume forms.

First of all, a careful reading of the proof of Proposition 2.1 shows that the asymptotic
expansion of the Bergman function holds when one considers a positive volume form �

that can be written as
� = f�ω

n

with f� > 0 on M and f� ∈ L1
ω(M,R) and ω a smooth Kähler form. Then, the asymp-

totic result for the operator Qk (Theorem 2.2) is valid when applied to the space of func-
tions f ∈ Lpω(M,R) with p > 1. This comes from the techniques of [LM07] that can be
extended from L2 to Lp topology, p > 1. To be more precise, the regularity of the func-
tion f is only needed in [LM07, (27)], and the Cauchy–Schwarz inequality in [LM07,
(28)] can still be applied in Lp spaces. This implies that we get a more general version
of Theorem 3 for � ∈ Lp(M) a positive volume form (p > 1) but with a weaker under-
lying convergence (the error terms are only controlled in Lp norms instead of C∞ norm
for the sequences ωk(t) and ∂ωk(t)/∂t). Finally, when one considers nonsmooth forms
� = f�ω

n with f� ∈ L
p
ω(M), f� > 0 with p > 1, the limit of the balancing flows is

still the�-Kähler flow (3). Note that we do not expect the potential of the metric involved
in (3) to be smooth and we shall speak instead of weak �-Kähler flow. We also remark
that the balancing flow will converge to a balanced metric again. Actually a notion of
balanced metric for Lp volume forms (and even more general) has been studied in detail
in the recent work [BBGZ09, Section 7]. Furthermore the technical results for Section 4
still hold. Thus, we are able to derive an analogue of Theorem 1 as soon as we have an
existence and convergence result for the weak �-Kähler flow in the infinite-dimensional
set-up.

Moreover we expect that this method can be generalized with no major difficulty toLp

semi-positive forms, i.e. f� ≥ 0. This will be studied in a forthcoming paper using the
techniques developed by S. Kołodziej in his generalization of the Calabi problem [Kol98].
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Finally, if one considers L to be a big line bundle and if one assumes the existence
of a semi-positive smooth closed real (1, 1)-form ω0 ∈ c1(L), the results of R. Berman
[Ber09, Theorems 1.1, 1.2] can be applied to derive a version of Proposition 2.1. In that
case, the equilibrium metric corresponds to ω0 and one has the asymptotic expansion (5)
in the sense of measures. In this set-up, we believe that what is happening on the space
of Kähler potentials for the �-Kähler flow is related to the very general version of the
Calabi problem studied by the viscosity method à la P.-L. Lions in [EGZ11, EGZ09]. In
particular we expect the following conjecture to hold.

Conjecture 5.1. Assume that L is a big line bundle, and � > 0 a volume form with Lp

density, p > 1, such that
∫
M
ωn0 =

∫
M
�. Then the �-Kähler flow exists in a weak sense

and converges to a solution of the Calabi problem

(ω +
√
−1 ∂∂̄φ∞)n = �

with φ∞ ∈ C0(M), φ∞ ∈ C1,1(K) for any compact subset K ⊂ M \ B+(L) where
B+(L) is the augmented base locus of L, which is an analytic subvariety of M .
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