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Abstract. This article addresses regularity of optimal transport maps for cost = “squared dis-
tance” on Riemannian manifolds that are products of arbitrarily many round spheres with arbitrary
sizes and dimensions. Such manifolds are known to be non-negatively cross-curved [KM2]. Under
boundedness and non-vanishing assumptions on the transfered source and target densities we show
that optimal maps stay away from the cut-locus (where the cost exhibits singularity), and obtain
injectivity and continuity of optimal maps. Together with the result of Liu, Trudinger and Wang
[LTW] this also implies higher regularity (C!:%/C) of optimal maps for smoother (C%/C)
densities. These are the first global regularity results which we are aware of concerning optimal
maps on Riemannian manifolds which possess some vanishing sectional curvatures, beside the to-
tally flat case of R" [Ca3] and its quotients [Co]. Moreover, such product manifolds have potential
relevance in statistics (see [S]) and in statistical mechanics (where the state of a system consisting
of many spins is classically modeled by a point in the phase space obtained by taking many prod-
ucts of spheres). For the proof we apply and extend the method developed in [FKM1], where we
showed injectivity and continuity of optimal maps on domains in R” for smooth non-negatively
cross-curved cost. The major obstacle in the present paper is to deal with the non-trivial cut-locus
and the presence of flat directions.
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1. Introduction

Let M and M be n-dimensional complete Riemannian manifolds, and let i = p voly,
and v = p vol; be two probability measures whose densities p and o are bounded away
from zero and infinity. Given a cost function ¢ : M x M — R, the optimal transport
problem with cost ¢(x, y) consists in finding a transport map T : M — M which sends
w onto v and minimizes the transportation cost

/ c(x, T(x))du(x).
M

As shown by McCann [M] extending the result of Brenier [Br] on R", if M = M and
¢ = dist? /2 then the optimal transport map (or simply optimal map) exists and is unique.
More generally, the same result holds if the cost is semiconcave and satisfies the twist
condition in Assumption 2.1 below (see for instance [V, Chapter 10]).

The optimal map 7 is uniquely characterized by the relation 7'(x) € 9°¢(x), where ¢
is a c-convex function (called potential) and 9¢¢ denotes its c-subdifferential (see Section
2 for the definitions). Furthermore, the fact that p and p are bounded away from zero and
infinity ensures the existence of a constant A > 0 such that the following Monge—Ampere
type equation holds:

1
AR < 10°9(RQ)] < X|Q| VQ C M Borel,

where 3¢ () = |, cq 9°¢ (x). (See for instance [FKM1, Lemma 3.1].) )

The aim of this paper is to investigate the regularity of optimal maps when M = M are
a multiple product of spheres,i.e, M = M = S} x---xS;¥, and c(x, y) = f(dist(x, y))
for some function f, including the case f(r) = t%/2 of distance squared cost. For k = 1
and f(t) = t>/2, smoothness of optimal maps has been proved by Loeper [L2]. However,
if £ > 1 the structure of the cut-locus (the singular set of the cost function) becomes more
complicated, and due to the product structure, the manifold has both flat and positively
curved directions, thus making the regularity issue much more delicate. Especially, the
powerful Holder regularity estimate of Loeper [L1] (see also [Li]) as well as the a priori
estimates of Ma, Trudinger and Wang [MTW], which are successfully applied to posi-
tively curved manifolds as in [L2, KM2, LV, FR, DG, FRV], are not available any more
in our setting. Our main results (Theorem 5.1 and Corollary 5.3) give the first global reg-
ularity results which we are aware of concerning optimal maps on non-flat Riemannian
manifolds which allow vanishing sectional curvature. For completely flat manifolds (with
¢ = dist? /2) the regularity of optimal maps is known as it reduces to the regularity theory
of the classical Monge—Ampere equation [D1, Cal, Ca2, Ca3, U, Ca4, Co, D2, G].

To describe our result more precisely, first recall that in [MTW] Ma, Trudinger and
Wang discovered a condition (A3) on the cost function, whose weaker variant (A3w)
[TW] turned out to be both necessary [L.1] and sufficient [TW] for regularity when the
solution ¢ is known to be strictly c-convex and the cost function is smooth. When M =
M = S?, the particular structure of the cut-locus (for every point x, its cut-locus Cut(x)
consists of its antipodal point) allowed Delano€ and Loeper [DL] to deduce that optimal
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maps stay away from the cut-locus, namely, 3¢ (x) N Cut(x) = @ for all x € M (see [L2,
DG, KM1, KM1a] for alternative approaches). Loeper [L2] combined this observation
with the fact that ¢ = dist®> /2 satisfies (A3) to show regularity of optimal maps; for
a simpler approach to continuity, see [KM1, KM1a]. His result has been extended to a
variety of positively curved manifolds including the complex projective space [KM2] and
perturbation of the real projective space [LV] and of the sphere [FR, DG, FRV]. In each
of these cases (A3) holds, thus the strong Holder regularity estimate of [L1] as well as
the a priori estimate of [MTW] applies. Note that (A3) (resp. (A3w)) forces the sectional
curvature to be positive (resp. non-negative) [L1], though the converse does not hold [K].

On multiple products of spheres, taking ¢ = dist? /2 leads to two main issues:
first, only a degenerate strengthening of the weak Ma—Trudinger—Wang condition holds
(the so-called non-negative cross-curvature condition in [KM1, KM2]), which although
stronger than (A3w) is not as useful as (A3) for proving regularity due to lack of powerful
estimates (neither non-negative cross-curvature nor (A3) implies the other, though either
one separately implies (A3w)). Moreover, the cut-locus now has a non-trivial structure,
which makes it much more difficult to understand whether the stay-away property holds.
In [FKM1] we showed strict c-convexity and C! regularity of ¢, or equivalently, injec-
tivity and continuity of 7', when the cost is smooth and (A3w) holds. Hence the only
question left is whether 0°¢ avoids the cut-locus or not.

In this paper we answer this question positively: by taking advantage of the fact that
the cut-locus is given by the union of certain subproducts of spheres we prove in Theo-
rem 5.1 the stay-away property that 9°¢ (x) NCut(x) = ¢ for all x € M. By compactness,
these two sets are separated by a uniform distance that depends on A, but is independent
of the particular choice of ¢ and x (see Corollary 5.2). Once stay-away property is shown,
one can localize the argument of [FKM1] to obtain injectivity and continuity of the opti-
mal map; then higher regularity (C>%/C) of ¢, thus C'*/ C*-regularity of T, follows
from [LTW] when the densities are smooth (C*/C°) (see Corollary 5.3).

The multiple products of spheres is a model case for more general manifolds on which
the cost c satisfies the necessary conditions [L.1, FRV] for regularity of optimal transport
maps. The method we develop in this paper demonstrates one approach to handling com-
plex singularities of the cost, especially the stay-away property of optimal maps. More-
over, a general Alexandrov type estimate (Lemma 4.1) is obtained which has applications
beyond the products of spheres.

Our regularity result has potential relevance to statistics and statistical mechanics.
For instance, recently T. Sei applied optimal transport theory for ¢ = dist> to directional
statistics on the sphere. In his main result [S, Theorem 1], he needed the optimal map not
to touch the cut-locus. Now, our stay-away property on multiple products of spheres M
(Theorem 5.1) states that all optimal maps, obtained by transporting densities bounded
away from zero and infinity onto each other, satisfy this assumption. Hence, this provides
a large family of c-convex potentials that could be used to create log-concave likelihood
functions as in [S, Subsection 3.2], extending his theory to multiple products of spheres.
Namely, as a direct consequence of [KM2, FKM2, S], on multiple products of spheres
a convex combination ¢ = Zf'(:l sigi, si > 0,> s; = 1, of c-convex functions ¢; is
again c-convex, thus a crucial requirement in Sei’s theory is satisfied. If each ¢; is the
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c-potential of an optimal map between densities bounded away from zero and infinity,
by Theorem 5.1 one sees 0°¢; stay away from the cut-locus. One can then show that
d°¢ also avoids the cut-locus, thus applying [S, Theorem 1] one obtains the log-concave
Jacobian inequality for this convex combination. To see this, for example, observe that
in the product of spheres the “domain of exponential map” is convex,! and 9¢¢ satisfies
¢ (x) = exp, dp(x) = exp,[Y_; 9¢i(x)] for x € M (see Lemma 2.7). Since each d°¢;
stays away from the cut-locus, d¢;(x) belongs to the domain of the exponential map,
hence so does d¢ (x), showing 3¢ (x) N Cut(x) = @.

Concerning statistical mechanics, let us recall that the state of a spin system is clas-
sically modeled as a point in the phase space M obtained by taking many products of
spheres. In such contexts, optimal transport may provide a useful change of variables.
More precisely, if 1 and v are two smooth densities and T denotes the optimal transport
map from u to v, then

/G(y)dV(y)=/G(T(X))dM(X),

for all bounded measurable functions G : M — R. Then, if x is a “nice” measure for
which many statistical quantities are easily computable, one may hope to exploit some
qualitative/quantitative properties of T in order to estimate the integral [ G (y) dv(y) by
studying [ G(T (x)) du(x). We expect that regularity of optimal maps may play a cru-
cial role in this direction. For instance, in Euclidean spaces this is already the case, as
Caffarelli [Ca5S] used regularity of optimal maps to show that suitable monotonicity and
log-concavity properties of the densities imply monotonicity and contraction properties
for the optimal map, from which correlation and momentum inequalities may be deduced.

Organization of the paper. Section 2 sets up the notation and assumptions used through-
out the paper. In Section 3, a few useful preliminary results regarding convex sets and c-
convex functions are listed. Section 4 is devoted to an Alexandrov type inequality which
is one of the main tools in the proof of our main theorem. Until Section 4, we present
the theory under rather general assumptions. However, from Section 5 we restrict to the
multiple products of spheres. In Section 5 we state our main result about the stay-away
property of optimal maps, and give a sketch of the proof. Moreover we explain how one
can deduce regularity of optimal maps combining this theorem with the results in [FKM1]
and [LTW]. Finally, the details of the proof of the stay-away property are given in Sec-
tion 6.

2. Notation and assumptions

In this section and the next we recall notation and results which will be useful later.
Many of these results originated in or were inspired by the work of Ma, Trudinger, Wang
[MTW] and Loeper [L1]. Though the present paper mainly concerns the Riemannian

! Here and below, we use “domain of exponential map” as a synonym for “injectivity domain”
(see Section 2).
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distance squared cost ¢ = dist? /2 on the product of round spheres, we will present our
work in a rather general framework. This requires only a small additional effort and may
prove useful for further development and applications of the theory.

Let M, M be n-dimensional complete Riemannian manifolds, and let c(x, x) denote a
cost function ¢ : M x M — R. We will assume throughout that ¢ is semiconcave in both
variables, i.e., in coordinate charts it can be written as the sum of a concave and a smooth
function. Let us remark that since dist’ (x, y) is semiconcave on M x M (see for example
[FF, Appendix B]), the above assumption is satisfied for instance by any cost function of
the form f(dist(x, y)) on M x M, with f : R — R smooth, even, and strongly convex
(meaning f(d) = f(—d) and f”(d) > 0 for all d > 0). Here and below, “smooth” is
synonymous with C* (though C* would be enough for all our purposes).

As for ¥ and M, we use the “bar” notation to specify the second variable of the cost
function. Also we write ¢(x, x) := c(x, x). We denote by D, and Dj; the differentials
with respect to the x and x variable respectively. (For instance, D, Dxc(xg, Xo) denotes the
mixed partial derivative of ¢ at (xo, Xp).) Let c-Cut(x) denote the c-cut-locus of x € M,
that is,

c-Cut(x) := {x € M | c is not smooth in a neighborhood of (x, x)},

and let M (x) denote the c-injectivity locus M\ c-Cut(x). Define ¢-Cut(x), M (x) similarly.
These sets are open.

Assumption 2.1 (twist). For each (x,x) € M x M, the maps —Dyc(x,-) : M(x) —
TEM and —Dszc(-, X) : M(x) — T3 M are smooth embeddings (thus injective).

We remark that the above hypothesis from Levin [L] is equivalent to condition (A1) in
[MTW, L1, KM1], which together with the semiconcavity of the cost ensures existence
and uniqueness of optimal maps when the source measure is absolutely continuous with
respect to the volume measure (see for instance [L, FF, F] or [V, Chapter 10]).

The domain of the c-exponential M*(X) in TX*M is defined as the image of M (x)
under the map —D;c(x, -), i.e.,

M*(%) := —Dzc(M(x),X) C TX*M.

Define M*(x) similarly.

Asin [MTW, L1], we define the c-exponential maps c-Exp, : M*(x) C T;M — M
and c-Exp; : M*(%) C TX*M — M as the inverse maps of —D,c(x, -) and —Dxc(-, X)
respectively, i.e.,

p = —Dyc(x,c-Exp,p) for p e M*(x), p = —Dxzc(c-Exp;p,x) forp ¢ M*(X).

Given a set X, we denote by cl(X) its closure. Define the subdifferential of a semi-
convex funciton : M — R at x € M by

da(x) :={p e TX*M | a(exp, v) —a(x) > (p,v) +o(|v]y) asv — 0in T, M}

(This is non-empty at every point.) Here (-, -) denotes the paring of covectors and vectors.
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Assumption 2.2. For each (x,x) € M X M the map c-Exp, (resp. c-Expz) extends to
a smooth map from cl(M*(x)) (resp. cl(M*(x))) onto M (resp. M). If we abuse notation
and use c-Exp,, c-Exp; also for these extensions, then they satisfy

c-Exp, p = c-Exp, (3 (—c(x, c-Exp, p))),  ¥p € cl(M*(x);
c-Exp; p = c-Exp; (8; (—c(c-Exp; p, )E))), Vp e cl(M*(X)).
Here, 0y, 0z denote the subdifferentials with respect to the variables x, x, respectively.

Note that the above assumptions hold for instance when M = M and ¢ = dist> /2 (so that
c-Exp, coincides with the Riemannian exponential map exp, ). However, the following
three assumptions are much more restrictive, and not true for ¢ = dist> /2 in general
[MTW, L1, KM1, LV]. They are all crucial in this paper.

Assumption 2.3 (convexity of domains of c-exponentials). For each (x,x) € M x M
the domains M*(x), M*(X) are convex.

As shown in [FRV], the above assumption is necessary for continuity of optimal transport
maps when the cost function is given by the squared distance.

A c-segment {x(t)}o<:<1 with respect to x is the c-exponential image of a line segment
in cl(M*(x)), i.e.,

x(t) := c-Exp, (1 —t)po +tp1) forsome po, p1 € TSM.

Define similarly a ¢c-segment {x(¢)}o<;<1 With respect to x. The notions of c¢- and c-
segments, due to Ma, Trudinger and Wang, induce a natural extension of the notion of
convexity on sets in M, M, called c-convexity in [MTW]. Let U C M and x € M. The
set U is said to be c-convex with respect to x if any two points in U are connected by
a c-segment with respect to x entirely contained inside U. Similarly we define c-convex
sets in M. It is helpful to notice that ¢, c-convex sets (with respect to x, X, respectively)
are images of convex sets under c-Exp,., c-Exp;, respectively.
Regarding c, c-segments, here comes a key assumption in this paper:

Assumption 2.4 (convex DASM). Forevery (x, x) € MxM, let {x(®)}o<i<1, (x (@) }o<s<1
be ¢, c-segments with respect to x, X, respectively. Define the functions

m; () = —c(, x(#)) + clx, x(1), m() = —cx(),)+cx(@),), 0=<r=<L
Then
m; < (1 —tmog+tmy, m=<{A—-—0my+tm;, 0=<t=<1. 2.1

When, instead of (2.1), only m; < max[mq, m] and m; < max[m, m1] are required, this
property played a key role in the work of Loeper [L1]. In [KM1] we called it Loeper’s
maximum principle (DASM), the acronym (DASM) standing for “Double Mountain
Above Sliding Mountain”, a mnemonic which describes how the graphs of the functions
m;, m; behave as ¢ is varied. For convenience we use this acronym in various places in
the present paper. The stronger property (convex DASM) was proved in [KM2] to be a
consequence of the so-called non-negative cross-curvature condition on the cost c.
We will also need a strict version of Loeper’s maximum principle (DASM):
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Assumption 2.5 (DASM™). With the same notation as in Assumption 2.4,
m(y) < max[mo(y), mi(y)] Yy e M, m(y) <max[mo(y), m(3)] Vye M.

Moreover, when the c-(resp. c-)segment in the definition of m; (resp. m;) is non-constant,
equality holds if and only if y = x (resp. y = X).

Assumptions 2.4 and 2.5 correspond to a “global” version of the non-negative cross curva-
ture assumption and of the (A3) condition on the cost function c, respectively: see [KM1]
and [MTW] for the definition of non-negative cross curvature and (A3), respectively. Al-
though the equivalence between (convex DASM) and non-negative cross curvature (resp.
(DASM™) and (A3)) is not known in general, it holds true for the squared distance cost
function on a Riemannian manifold, as shown in [FV, FRV]. Moreover, Loeper’s maxi-
mum principle (DASM) is a necessary condition for regularity: this is originally shown
[L1] on domains in R” and later extended to the manifold case [FRV].

Given two functions ¢ : M — R and ¢ : M — R, we say that they are c-convex and
dual with respect to each other if

¢(x) = sup{—c(x, X) — p(X)}, (2.2)
xeM

¢(X) = sup{—c(x,X) — ¢p(x)} = sup{—c(x, x) — p(x)}.
xeM xeM

Since by assumption ¢ is semiconcave, both functions above are semiconvex (see for
instance [FF, Appendix A]). This implies in particular that their subdifferentials d¢ (x),
d¢(x) are non-empty at every point.

We define the c-subdifferential 9°¢ at a point x as follows:

P(x) = (X € M| $(y) — ¢p(x) = —c(y, X) + ¢(x, X), Yy € M}. (2.3)

Analogously, we define 8¢ at every point x. (Recall that ¢ denotes the function defined
as ¢(x, x) := c(x, x).) The following well-known reciprocity holds:

Lemma 2.6 (Reciprocity). For c-convex functions ¢, ¢ dual to each other as in (2.2),
FE€PR) & ¢(x)+¢(X) = —c(x, %) & x € IP®). (2.4)
Proof. Suppose X € 9°¢(x). Then, by rearranging the inequality in (2.3) we get

—p(x) = c(x,X) + sup{—c(y, %) —dp(M)},
yeM

and the supremum on the right hand side is exactly ¢(X). On the other hand, from the
definition of ¢ and ¢ we have

¢() +c(x,y) > —p(x) VyeM,

$0 _that combining these two inequalities leads to ¢ (x) + ¢_5()E) = —c(x,x),and x €
3¢ (x). The opposite implication follows by symmetry. O

Loeper [L1] deduced the following fundamental relation to be a consequence of his max-
imum principle (DASM).
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Lemma 2.7 (Loeper’s maximum principle (DASM)). Let Assumptions 2.1-2.3 hold.
Suppose Loeper’s maximum principle (DASM) holds. Let ¢, ¢ be c-convex functions
dual to each other as in (2.2). Then forallx € M,x € M,

c-Exp, (3¢ (x)) = 3°p(x),  E-Expz(dg(¥)) = 0°¢(%).
Proof. The inclusions c-Exp, (3¢ (x)) C 8¢ (x), ¢-Exp; (3¢ (%)) C 8¢ (¥) follow from
the convexity of d¢ (x) and the definition of Loeper’s maximum principle (DASM). The

other inclusions hold in general without Loeper’s maximum principle. Details can be
found in [L1]. O

In the following, we refer to the conclusion of this lemma also as Loeper’s maximum
principle (DASM).
For a set 2 C M, the image 9°¢ (2) is defined as

() = 99 (x).

xeQ

For a c-convex function ¢ and an open set U C M with xg € U, we define
[0°9(U)]y, :=1{x € M| ¢(x) — ¢ (x0) > —c(x, X) + c(xg, ¥) forall x € dU}.

Trivially, 9°¢ (xp) C [0°¢(U)lx,. This definition is justified by the following lemma,
which is also very useful in later discussions.

Lemma 2.8. Let Assumptions 2.1-2.3 hold. Suppose Loeper’s maximum principle
(DASM) holds. Let ¢ be a c-convex function on M. Let U C M be an open set, and
let xg € U. Then:

(1) [0°9(U)]ly, is c-convex with respect to x.
(2) [0°9(U)]x, C 39 (V).
(3) If U — {xo}, then both 3°p(U), [0°¢(U)]x, — ¢ (x0).

Proof. Assertion (1) follows directly from the definitions of Loeper’s maximum principle
(DASM) and of the set [0°¢ (U)]x,-

To prove (2), fix x € [0°¢(U)]lx,, and move first the graph of the function —c(-, X)
down so that it lies below ¢ inside U, and then lift it up until it touches the graph of ¢
inside cl(U). Thanks to the assumption x € [0°¢(U)]y, there exists at least one touching
point x” which belongs to U (indeed, if there is a touching point on dU, then xg is another
touching point), and Lemma 2.7 ensures that X € 3¢ (x').

For (3), the convergence d°¢(U) — 3¢ (xo) follows by continuity, and [0°¢ (U)]y,
— 0°¢(x0) then comes from (2). O

For ¥ € M, let S(X) be the contact set
SE):={x e M|X€dpx)}=0X).

(The last identity follows from reciprocity, see Lemma 2.6.) For any xo € S(x) one can
write

S@x) ={x e M| ¢(x)—¢(xo) = —c(x, x) + c(xo, ¥)}.
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A set Z in M is called a c-section of ¢ with respect to x if there is Az € R such that
Z:={zeM| ¢ = —c(z,X) + Az}
The following simple observation is very useful for studying regularity of c-convex
functions. It was originally made (implicitly) in [FKM1] and independently by Liu [Li].

Lemma 2.9 (c-convex c-sections). Let Assumptions 2.1-2.3 hold. Suppose Loeper’s
maximum principle (DASM) holds. Let ¢ be a c-convex function on M, and fix x € M.
Every c-section Z of ¢ with respect to X is c-convex with respect to Xx.

Proof. This follows from the definition of c-convex functions and of Loeper’s maximum
principle (DASM). O

Given Borel sets V. C M and V C M, we denote by |V| and |V | their volumes (computed
with respect to the given Riemannian metric on M and M, respectively). The following is
our last assumption. As we already remarked in the introduction, it is satisfied whenever ¢
is the potential associated to an optimal transport map and the densities are both bounded
away from zero and infinity.

Assumption 2.10 (bounds on c-Monge—Ampere measure of ¢). There exists A > O such
that

1
AR <10 (R)] < X'Ql for all Borel sets Q C M.

We sometimes abbreviate this condition on ¢ simply by writing |0°¢| € [A, 1/A].

3. Preliminary results

In this section, we list some preliminary results we require later. The first subsection deals
with general convex sets and the second subsection considers the properties of the cost
function under suitable assumptions.

3.1. Convex sets

We first list two properties of convex sets that will be useful later.

Lemma 3.1 (John’s lemma [J]). For a compact convex set S C R”, there exists an affine
transformation L : R" — R" such that By C L=Y(S) c B,. Here, B, and B, denote the
balls of radius 1 and n, respectively, centered at 0.

Lemma 3.2 ([FKM1, Lemma 6.11]). Let S be a convex set in R" = R" x R", and
denote by 7', t” the canonical projections onto R" and R, respectively. Let S' be a
slice orthogonal to the second component, that is,

S'=@NVE)NS  for some X € 7' (S).
Then there exists a constant C (n), depending only onn = n' +n”, such that
CIS| = A" ($SHA™ (1" (5)),

where ¢ denotes the d-dimensional Hausdorff measure.
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The following lemma is important in the last step (Section 6.6) of the proof of the main
theorem.

Lemma3.3. Let X = X! x -+ x Xk, with X! = R%, i =1,...,k and writeapoin_t
xe Xasx = (xl,...,xk), x' e X’. Fo;_’eachi =1,...,k, let U" be a subset of X',
and let s; = (sl.l, ...,sf) € X with s; € U'. Define S; C X as

Si = {sl-l} X -+ X {sf_l} x U; X {sii"’l} X -+ X {slk},
and consider the convex hull co(S1, ..., Sx) of the sets Si, ..., Sk. Then there exists a

constant C(n, k), depending only onn := ny + - - - 4+ ny and k, such that

k
C(n.k)co(St. ... SOl = [ [ 22" (sH.
i=1

Proof. First consider the barycenter b of the set {sq, ..., sk}, that is,
1
b= %(Sl + - s

We will construct sets Sf’ each of which contains b and has Hausdorff measure compar-
able with §;. In addition, these sets are mutually orthogonal. We will finish the proof by

considering the volume of the convex hull of these sets S?, .. ., S,f .
For each i, let b; be the barycenter of the set {s1, ..., s¢} \ {si}, i.e.,
bi := (s1 4+ Ssic1+Sip1+ -+ 86).

k—1
Consider the cone co(b;, S;) C co(Sy, ..., S¢) and let
SP = co(bi, S)N{x e X | x/ =b for j #i).

1
Note that b € Sf’ and these sets S{’ ey S,f are mutually orthogonal, in the sense that, for
each x € Sl.b and y € Sjl? with i # j, we have (x — b) - (y — b) = 0. Now, consider the
convex hull co(Sb, R S,f) C co(Sl, R Sk). The previous orthogonality implies

k
Cm)lco(Sy, ... I = [ [ (s
i=1
for some constant C(n) depending only on ny + - - - 4 ng. (This inequality is obtained for
instance by iteratively applying Lemma 3.2.) To conclude the proof simply observe that
b= %si + ]%lb,', and so

1
S} Z o A (S), O

3.2. Coordinate change

In this subsection we briefly recall the coordinate change introduced in [FKM1, Section 4]
that transforms c-convex functions into convex functions under the condition (convex
DASM), referring to [FKM 1, Section 4] for more details. Throughout this subsection we
let Assumptions 2.1-2.3 hold.
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Let yo be an arbitrary point in M. Then the map x € M(3) — ¢ € T;}M given by

q(x) = —Dzc(x, yo) is an embedding thanks to Assumption 2.1. Recall that M*(50) C
T;) M denotes the image of this map, that this map is by definition the inverse c-exponen-

tial map (c-ExpyO)_l, and the c-exponential map is a diffeomorphism up to the boundary
of M*(yo) (see Assumption 2.2). Denote

c(q,x) :==c(x(g), x) — c(x(q), yo)-

Then the c-convex function ¢ is transformed to a ¢-convex function ¢ defined as

@(q) = ¢(x(q)) + c(x(q), yo)-

If Loeper’s maximum principle (DASM) holds, then Lemma 2.9 shows that ¢-sections
of ¢ are convex. This property was observed independently by Liu [Li], who used it to
derive an optimal Holder exponent for optimal maps under the strict condition (A3) on
the cost, sharpening the Holder continuity result of Loeper [L1]. Furthermore, if (convex
DASM) holds then —¢&(q, %) is convex in g for any X € M, which then implies convexity
of ¢ in g (see [FKMI, Theorem 4.3] for more details). One can easily check that c-
segments with respect to X are transformed via this coordinate change to ¢-segments with
respect to x, and c-segments with respect to x(g) are transformed to c¢-segments with
respect to ¢g. Therefore, Loeper’s maximum principle (DASM) or (convex DASM) for ¢
implies the same for c.

3.2.1. Relation between cotangent vectors in two different coordinates. Here we give
an explicit relation between covectors in the new coordinate variable ¢ (as introduced
above) and the original coordinate variable x. Fix arbitrary yo € M, xo € M (y9), and let
qo = —Dxzc(xp, Yo) € T}-fi)]\;l. For each Z € M (xp), consider the maps

Z> (@) = —Dxc(x, 2) € Ty M,

) i B} ) - 3.1
> p2) == —Dyc(qo, 2) € Ty (T M).

where ¢(q, x) := c(x(g), x) —c(x(q), yo) and the variables x and g are related as ¢ (x) =
—Dsc(x, yo). Denote by M*(xg), M *(go) the embedding of M (xo) under the mappings
Z = n(2), z +— p(z2), respectively. These sets are related by an affine map as we see in
the following lemma. In particular, from Assumption 2.3 both sets are convex in Tz M,
Tg (T M), respectively.

Lemma 3.4. Let Assumptions 2.1 and 2.2 hold. Let n(p) : M* (o) = M*(xp) associate
p(2) to n(2) as in (3.1), and let no = —Dxc(xo, Yo) € M*(xo) C Ty M. Fix local
coordinates. Then for all p € M*(qo), n(p) = (p(p)", ..., n(p)") is given as

n(p)" = p’ (=D, Dg;e(x0, 50) + -

This formula allows the dffine function p — n(p) to be extended to a global map n :
T;:)(T;BM) — TaM.
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Proof. Observe that

1

N = —Dyic(x0,2) = Dyilx=x)[—c(x,2) + c(x, yo) — c(x, Yo)]

= —D,ilg=qolc(x(9), 2) — c(x(9), YDy li=xyq?) + 1y = p’ (Dyilx=xoq”) + .
From the relation qj = —Dy;jc(x(g), yo) we see that
D ilx=xyq = —D,i Dxjc(x0, Yo),

and the assertion follows. O

3.2.2. An estimate on the first derivatives of c. In Section 6.5 we will use the following
simple estimate.

Lemma 3.5 ([FKM1, Lemma 6.3]). Given convex sets 2, A C R", assume that the
Sfunction (q,y) € Q2 x A — c(q,y) € Ris smooth. Then forall q,q € Qand y € A,

[=Dyc(q,y) + Dyc(q, y)| < Clg — G| 1Dgyc(q, y)l, (3.2)

where the constant C depends only on |[c| ¢3qx a) and ||(D§yc)_1 | Lo (@x A)-

4. An Alexandrov estimate: lower bound

In this section we show a key Alexandrov type estimate (4.1) which bounds from below
the “oscillation” of ¢ inside a c-section by the measure of the section. (An estimate that
compares the oscillation of the function with the measure of the section is said to be
of Alexandrov type.) This result is of its own interest, especially because it is proven
under rather general assumptions, and does not rely on the special structure of products
of spheres. In later sections, a companion inequality showing the upper bound will be
obtained for a special choice of a c-section in the particular case of products of spheres
(see Theorem 6.4).

Lemma 4.1 (Alexandrov lower bound). Let M, M be complete n-dimensional Rieman-
nian manifolds. Suppose the cost ¢ - M x M — R satisfies Assumptions 2.1-2.4. Let
¢ be a c-convex function on M and assume 0 < A < |9°¢| for a fixed . € R. Fix
(x0, X0) € M x M such that Xy € 3¢ (xq), and for h > 0 consider the c-section Zj,
defined as

Zn = {x € M | $(x) — ¢(x0) < —c(x, Xo) + c(xo, Xo) + h}.

Assume that —c (-, Xg) is smooth on Zy, so that the function E-Exp;o1 is defined and smooth
on Zy, or equivalently Z, C M (xg). Then

sup  sup |dc-Exp,|,=p |]h”

max, ez, |det(—D, Dzc(x, %0))| T[
X€Zp p'eM*(x)

MZul? < c<n)[ . -
minyez, |[det(—Dx Dzc(x, Xo))|

4.1

with the constant C(n) = (4n)"|B1|%, where |B1| denotes the measure of the unit ball

in R".
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Remark 4.2. In the statement of Lemma 4.1 and its proof, it is important to notice that
by the assumption that —c(-, Xp) is smooth on cl Z;, and by Assumptions 2.1 and 2.2,
the derivatives of E—Expio and its inverse (on Zy), i.e., —DyDxc(x, Xg), X € Zj, are all
nonsingular.

Remark 4.3. For ¢ = dist? /2, Loeper’s maximum principle (DASM) (and so also (con-
vex DASM)) implies that M = M has non-negative sectional curvature (see [L1]). There-
fore in this case c-Expy is a contraction, that is,

sup |dc-Exp,|p=p| < L.
p'eM*(x)

We do not know if this contraction property holds for general non-negatively cross-curved
cost functions.

Remark 4.4. As in [FKM1], for our main results we will later follow the strategy de-
veloped in [Cal] by using renormalization techniques, but only after a suitable change
of coordinates. The main feature of our Alexandrov estimate with respect to the ones in
[Cal, FKM1] is that the only “possibly bad”” dependence on the cost function comes from
the term maxyez, |det(—Dy Dzc(x, Xo))|/minyez, |[det(—Dy Dxc(x, Xo))|, which can be
made as close to 1 as desired, provided one can ensure that the section Zj converges to a
point as &~ — 0. This will play a crucial role in the proof of Theorem 5.1, as it will allow
us to apply this estimate near points arbitrarily close to the cut-locus.

Proof. For globally smooth cost functions (on the products of two bounded domains) a
similar result was proved in [FKMI1, Theorem 6.4]. In the present case where the cost
function has singularities, the previous proof does not work any more and we require the
following subtle argument.

Consider the coordinate change x € Zj — g = —Dxc(x(q), Xo) € Wy, € M*(%o) C
T;;M, i.e., x = c-Expg,q and Z; = c-Expio(Wh), and let

mz () == —c(, X) +c(-, Xo).
As explained in Section 3.2, in these new coordinates the functions
g — mz(x(q)) and g ¢(q) =¢(x(q)) + c(x(q), Xo)
are convex. Moreover the set W), is convex, as
Wi =1{g € TEM | 9(q) — ¢(qo0) < h},

where g is the point corresponding to x¢ in the new coordinates, i.e., c-Expg go = Xo.
It is also important to notice that xg € 3¢ (xg) implies ¢(g) — ¢(qo) > 0. We now use

Lemma 3.1 to find an affine map A : TX’BM ~R" T;)M ~ R such that A(W,) = W,
with B C Wh C B,. Denote g, = A(0) and x;, = c-Exp;qu. Define the renormalized
function ¢(g) := ¢(Aq) for each g € Wi, and denote %Wh = A(%Wh) and %Zh =
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c-Expg, (% W,,), where %Wh denotes the dilation of Wh by a factor 1/2 with respect to the
origin. This 1/2-dilation (any factor in (0, 1) works) will be important in this proof.
Consider the reciprocal expression

9°¢(3Zn) = c-Bxp,, (—Dyc(xp, %o) + V)
where
V= (Dymz(xp) | ¥ € 8°¢(3Z1)) C Ty M.

Here D, m; denotes the differential when m 3 is differentiable, otherwise it means an arbi-
trary covector in the subdifferential dm (x). Notice that — D, c(xp, X9)+V C cl(M*(xp)),
and thus

0031 = ( sup  Ide-Exp,, lpmp| ) VI 4.2)
p'eEM*(xp)

Now, the left-hand side is bounded from below as
10°¢(5Zn)| = A13Zy|  (by the assumption |3°¢| > A)
> A[Ufgivrvlh |det(dE—Exp);0|q:w)|](%)"|Wh| (since 1 Z) = &Expg, (1 W)
minyew, |det(dc-Expg lg=w)|

(H)"1Zal

maxyew, |det(dc-Expg, lg=uw)]
minyez, |det(— Dy Dxzc(x, X0))|

1\n : = = -1
Lymz Dic(-, Xo) = ¢-Expz ). (4.3
——— |det(—DxD,;c(x,io))|(2) |Zn| ~ (since Dxc(-, Xo) = ¢c-Expz ). (4.3)

In the following we will bound |V| from above by

maxyez, |det(— Dy Dxc(x, Xo))| A"
minyez, |det(— Dy Dzc(x, X0))| 1Zn|’

which will finish the proof; here the dilation %Zh plays a crucial role (see (4.5)). Fix
X € 8”¢(%Zh), and let g5 € %Wh be such that ¥ € 3°¢(gz). Here, ¢ is the cost function
modified accordingly with the coordinate changes:

¢(q, y) := c(c-Expg (Aq), ¥) — c(¢-Expg,(AG), Xo).
Consider the function
mz(q) := mz(c-Expg (Aq)) = —¢(q, X). (4.4)
Then
i (§) = mi(Ge) + 9(Gx) < 9(§)  forg € Wi
We observe that mz(-) — mz(gz) is a convex function on W, which vanishes at gi €

%Wh, and mz(-) — mz(gz) < h on dWy,. Since B C W, C B, this easily implies that
mz(0) — mz(gz) > —h, which by convexity gives

|Dgrmz(0)| < 2h. 4.5)
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To get information on D,mj, observe that from (4.4),
(dc-Expg, lg=q, A)* Dxmz (xp) = Dgiz(0), (4.6)

where (d¢-Expg, lg=g,A)" : T;‘;M — TO*(T;] M) is the dual map of the derivative map
dc-Expz A @ To(T; M) — T, M. Here we abuse the notation and A denotes both the
affine map and its derivative. Moreover we use the canonical identification T(;"(T;) M)~
TO(T;;M )~ T;) M. Hence (4.5) and (4.6) imply the key inclusion

V C (de-Expg, l5_,,) " (A") ™' Bay,
so that
V| < |det(dé-Exps,|i_,,) ' | Idet(A*) ™" || By [2"h"

= |det(dc-Expg, lg=g,)| ' Idet A| 71| By [2" A"

(by the identification between vectors and covectors)

n

- _ h . A
|det(dc-Expz, lg=go) 1|Bl|2(2n)"|Wj (since |Wj,| = |det A||Wpy,| < |det A| |B1|n™)

IA

hn
. |B1|*(2n)" ——
|det(dc-Expg, lg=qo )| 1 Zn

(since | Z| < maxuew, |det(de-Expglg—u)l Wil )
_ maxeez, |det(—Dy Dsc(x, %)) "

= —|B1|*(2n)" —  (since Dxc(-, %) = ¢-Exp2).
minyez, |det(— Dy Dxc(x, Xo))| | Zy| x %o

maxyew, |det(dE—Exp,;0 lg=w)I

Together with (4.2) and (4.3), this concludes the proof. O

5. Stay-away property on multiple products of spheres

From now on we restrict our attention to the case M = M = M! x ... x Mk, where
foreachi =1,...,k, M' = Sfii is a round sphere of constant sectional curvature re 2,
Though M = M, we sometimes keep the bar notation to emphasize the distinction be-
tween the source and the target domain of the transportation. Let x = (x!, ..., x¥) and
X = ()El, . ..,)Ek) denote points in M x ... x MK, withx!, %' ¢ M!,i = 1,..., k. As-
sume that the transportation cost ¢ on M is the tensor product of the costs ¢/ on each M',
defined as

k
c(x, x) = Zci(x”,xi). 5.1

i=1

Assume moreover that each ¢’ is of the form f(dist;) (dist; being the distance on M") for
some smooth strongly convex even function f' : R — R, normalized so that f*(0) = 0.
(This normalization assumption can be made with no loss of generality, as one can always
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add an arbitrary constant to the cost function.) Moreover we suppose that each ¢ satisfies
Assumptions 2.1-2.5 in Section 2. As shown in [KM2], under these assumptions the
tensor product cost ¢ also satisfies Assumptions 2.1-2.4 (but not necessarily 2.5). The
reader should have in mind that our model example is ¢ = dist? /2, which as shown in
[KM2] satisfies all the assumptions above. However we prefer to give a proof of the result
with general f' since this will not cost further effort in the proof, and we believe it may
be of interest for future applications.

Let us observe that for any point X we have M(x) = MY x - x Mk(ik)
and M*(X) = M*(x") x --- x M*(x¥). Moreover, since the distance squared func-
tion on a round sphere is smooth except for antipodal pairs, for each x' € M! we
have Cut(x’) = {—x'}, where —x’ denotes the antipodal point of x’. (We also write
—x = (—x',..., —x%).) This implies easily that c-Cut(x) = Cut(x), so that M’ (x') =
M \ {—x'} and ¢-Cut(x) is a union of (totally geodesic) submanifolds, each of which is
an embedding of a product M1 x --- x M [ < k.

The goal of the rest of the paper is to show a stay-away property of optimal transport
maps on products of spheres:

Theorem 5.1 (Stay-away from cut-locus). Let M = M = M' x --- x M, where for
eachi =1,...,k M = S'}f is a round sphere of constant sectional curvature ri_z. Let
c be the cost given in (5.1) with c' of the form f'(dist;), where f' : R — R are smooth
strongly convex even functions such that f(0) = 0. Assume further that each c' satisfies
Assumptions 2.1-2.5, and let ¢ be a c-convex function satisfying Assumption 2.10. Then

°p(x) Nc-Cut(x) =@ Vx e M.
Equivalently, for every X € M the contact set S(X) = 0°p(x) satisfies
S(x) Nc-Cut(x) = 9A.
Before sketching the proof of this result, let us first see its consequences:

Corollary 5.2 (Uniformly stay-away from cut-locus). Under the notation and assump-
tions as in Theorem 5.1, there exists a positive constant C depending only on A (see
Assumption 2.10) and n;, r;, f*, fori =1, ..., k, such that

dist(&ctﬁ(x), c-Cut(x)) >C VxeM.
where dist denotes the Riemannian distance of M.

Proof. The result follows by compactness. Indeed, suppose for a contradiction that there
exists a sequence of c-convex functions ¢; satisfying Assumption 2.10, and x; € M, such
that

dist(acd)[(xl), C-Cut(xl)) -0 asl— oc.

Up to adding a constant, we can also assume that ¢;(x;) = 0. Then, since M is compact
and the functions ¢; are uniformly semiconvex (and so uniformly Lipschitz), applying
Arzela—Ascoli’s Theorem, up to a subsequence there exists a c-convex function ¢, and
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X0 € M such that ¢y — ¢ uniformly and x; — xo0. We now observe that also
doo satisfies Assumption 2.10 (see for instance [FKM1, Lemma 3.1]). Moreover, by the
definition of c-subdifferential we easily obtain

Y € 0°PI(x1), YI = Yoo = Yoo € 3°Poo(Xc0)-

This implies dist(9° oo (Xoo), c-Cut(xoo)) = 0, which contradicts Theorem 5.1, and com-
pletes the proof. O

Corollary 5.3 (Regularity of optimal maps). Let M, M, ¢ be as in Theorem 5.1. Assume
that i and v are two probability measures absolutely continuous with respect to the vol-
ume measure, and whose densities are bounded away from zero and infinity. Then the
unique optimal map T from [ to v is injective and continuous. Furthermore, if both den-
sities are C*/C™, then T is C1%/C®.

Remark 5.4. The C!%-regularity result (C>* for the potential ¢) in this corollary is a
direct consequence of the injectivity and continuity of 7" applied to the theory of Liu,
Trudinger and Wang [LTW]. The higher regularity C* follows from Schauder estimates.

Proof of Corollary 5.3. We recall that, under the assumption that & and v have densities
bounded away from zero and infinity, there exists a c-convex function ¢ such that 7'(x) =
c-Exp, (Vo (x)) a.e., and ¢ satisfies Assumption 2.10 (see for instance [MTW] or [FKM1,
Lemma 3.1]). Hence it suffices to prove that ¢ is C' and strictly c-convex, in the sense
that S(x) = 35</3()E) is a singleton for every x € 9¢p (M) = M.

To this end, we observe that once we know that ¢ is strictly c-convex, then we can
localize the proof of the C! regularity in [FKM1] to obtain the desired result. Thus we
only need to show the strict c-convexity of ¢.

Fix x € M. By Theorem 5.1 we know that S(x) C M (x), so that in a neighborhood of
S(x) we can consider the change of coordinates x + g = —Dc(x, %) € T;M . As shown
in [FKM1, Theorem 4.3], thanks to Loeper’s maximum principle (DASM) the set S(x) is
convex in these coordinates. Moreover, since now the cost is smooth in a neighborhood of
S(x), by [FKM1, Theorem 7.1 and Remark 7.2] the compact convex set S(x) in the new
coordinates has no exposed points on the support of |3°¢|.> Since in our case the support
of |0¢¢| is the whole M, the only possibility left is that S(x) is a singleton, as desired. O

Sketch of the proof of Theorem 5.1. For a contradiction, assume there exists a point xg
such that the contact set S(xo) intersects Cut(xp). First, we find a cut-exposed point xq
in S(xp) N Cut(xp). More precisely we split M as M~ x M™ so that xo = (X, X)),
xo = (x4, Xg)s where Xy = —X, € Cut(xy), x, stays away from the cut-locus of Xy
and x;" is an exposed point in the set " = {y" € M™ | (=x;5,y") € S(x0)} (see
Section 6.1). Near xg, for ¢ € (0,1) and § € [0, 1] we construct a family of points
Xe,s = (X5, X5') such that d (X, X 5) ~ & + 6, so that for § small we have x, 5 € M*(xp),
or equivalently xo € M* (X, s). By suitably choosing the point X;" in order to exploit the
fact that x," is an exposed point for S*°, we can ensure that, if Z, 5, denotes a section

2 Recall that, given a compact convex set Z C R”, z € dZ is an exposed point if there exists a
hyperplane IT C R” such that Z N IT = {z}.
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A dist(-, %)

_ el
—Xg :ﬁv —X

=

Fig. 1. On the sphere, the squared distance function from a point x looks like a cone near —x. So,
if dist(x, x¢) = dist(—x, —Xg) & ¢, the section obtained by cutting its graph with — distz(-, Xg) at
height & has measure ~ h" /s.

obtained by cutting the graph ¢ with —c(-, X, s) at height 4 above xq, then for any fixed
e € (0,1) we have Z; s, — {x0} as 8, h/6 — 0 (see Section 6.2). In particular, for
¢ > 0 fixed we have Z, 5, C M*(X,s) for 8, h/§ small (equivalently, the function
c(+, Xg,5) is smooth inside Z, 5 ;). Now we take advantage of the choice of x,: on the
sphere S" the function — dist?(-, X) looks like a cone near the antipodal point —x, and if
dist(¥, X,) ~ ¢ then the measure of a section obtained by cutting the graph of — dist?(-, X)
with — distz(o, X¢) at height 4 above —x has measure &~ h" /e (see Proposition 6.7). In
our case, since x, = —Xx,), the function ¢ behaves like —c(-, xo) ~ — dist(-, xo) along M~
(see Lemma 6.6). Hence by the argument above we have an improvement of a factor 1/¢
in the measure of Z, 5 (see Proposition 6.7), which allows us to show the following
Alexandrov type inequality:

REMM < o1 Z, s nl 1060 (Zes.)|  for 8 and h/8 sufficiently small,

where < is independent of &, § and & (see Theorem 6.4).3 Thanks to Assumption 2.10,
the above inequality implies

pdimM < ;|z€,5,h|2 for § and h/8 sufficiently small. (5.2)

On the other hand, since Z; 5., C M*(X. ) for § and //§ small enough, we can apply
Lemma 4.1 to Z; 5.5 and have

MZesal*

) - 2
<C(n)[maxxeza'6'h |det(_DXDxC(x’x8’8))|] [ sup sup |dc-Exp,|,— /I] pdimM
- minyez, ;, [det(—Dx Dic(x, Xe s))| | Liez. s, prem*x) wp=r

3 Although this is the informal idea, the actual proof is much more involved. In particular, for
technical reasons, we will also need to split M as M’ x M" so that 3¢ (xo) N ({—xg} x M") # & (M’
corresponds to the “cut-locus components™) and 8¢ (xg) N (M” x {—x(|}) = ¥ (M" corresponds to
the “regular components™); see Section 6.1. Observe that M* C M’. Then, to prove Theorem 6.4,
a different argument has to be used depending on the kind of components (see Sections 6.4 and 6.5
respectively).
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The convergence Z; s, — {xo} as §, h/6 — O further reduces this inequality to
MZesh |2 < RImM - for § and h /3§ sufficiently small,

which contradicts (5.2) as ¢ — 0 and completes the proof. O

The rest of the paper is devoted to fleshing out the details of the above proof.

6. Proof of Theorem 5.1

6.1. Cut-exposed points of contact sets

Assume for a contradiction that there exists xo = ()Eé, e, )Eg) eEM=M=M"x--.
x M¥ such that S(X) N c-Cut(xo) # ¥. To prove Theorem 5.1 a first step is to find a cut-
exposed point of the contact set in the intersection with the cut-locus, which we define in
the present section.

Let y € S(xp) N c-Cut(xp), and note that one of the components of y = (yl, A yk),
say y/, satisfies y/ = —)E(J). Moreover we cannot have y = —Xg. Indeed, it is not difficult
to see that, if X9 € 0°¢(—xp), then 3°¢p(—x9) = M (see for instance Lemma 6.6(1)
below), which contradicts Assumption 2.10.

Among all points y € S(xo) Nc-Cut(xp), choose one such that the number a of its an-
tipodal (or cut-locus) components is maximal, and denote the point by yo. By rearranging
the product M! x --. x M*, we may write without loss of generality that

i i ) ) N .
Yo = (=Fgs e =200, 00T ), ¥ g eCut(R)  Vji=ao+l,.... k. (6.1)

For convenience, write
M=M=M"x---xM% M =M =M x...x M.

The expressions A*, A" will be used to denote things defined for elements in M", M",
respectively. For example,

Y =0y, =00t N,
COLY)=Y 0L, O = ) dOL .
i=1 i=ag+1

Consider the set
ST={y"eM | (=Xp ") € S(xo)}.

Notice that due to maximality of ap, S C M (x;) and it is embedded to M "*()E(')')

the resulting set, say S, is compact too. Moreover S™* is convex since it is the restriction
of the convex set S(Xo) to M"™*(x,"), where S(Xo) is the image of S(Xo) under the map

x — —Dszc(x, xX9). (More precisely, this set S (xp) is defined as the closure of the image
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of §(xo) \ ¢-Cut(xp).) This compact convexity ensures the existence of an exposed point

q for §7, that is, there exists an affine function L on T;‘.. M such that
0

L(gy)=0, and L(g") <0 Vg €38 \{gy} (6.2)

(Incase §° = {gy'} let L = 0.) Note that if L is such an affine function, then so is L for
any ¢ > 0. Let xo € S(xo) be the point corresponding to g, in M, that is,

xo = (=X, Xy ), where g5 = —Dz-c (xy,Xy). (6.3)

We call xq a cut-exposed point of S(xp), since its components are either cut-locus type or
exposed.

e
leO s .
S(Gy)
Yo oo .
1 M
| _ ‘f(;

Fig. 2. Starting from a point yg € S(Xg) such that the number of its antipodal (or cut-locus)
components is maximal, we choose xg = (¥, X)) = (=X, Xy) € M" x M = M so that x is
an exposed point for S* (in some suitable system of coordinates).

One can assume with a further rearrangement of the product M"* = M%T1x ... x M¥
that there exists by € {ay, .. ., k} with the following two properties:
1. Foreachiy € {agp+ 1, ..., by}, there exists y;, € 0°¢ (xp) with
yp—y (64)

\S]

. Forevery y € 9°¢ (xp),

jzj + —xé (or equivalently y/ ¢ E-Cut(xé) = Cut(xé)) forj=bo+1,...,k.
(6.5)

(If bg = ap, {ap+ 1, ...,bo} =0.)
After this rearrangement, define
M =M =M"x--.xMr, M =M =M1 x...xMk

The expressions A’, A” will be used to denote things defined for elements in M’, M”,
respectively. For example,

y=0,Y), y=G.9YeM=M xM' =M xM",
cy, ) =G +"0" ),
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and we have the identification
TEM = T;% M’ x T;:,)/M”, M*(%0) = M™ (X)) x M"*(%().

In the following, n’ = dim M’, n”” = dim M” and =/, =" denote the canonical projections
from M to M’, M”, respectively. This splitting of M as M’ x M" will be important later,
as in the proof of Theorem 6.4 we will need different arguments on M’ and M” (see
Sections 6.4 and 6.5).

6.2. Analysis near the cut-exposed point

In this subsection we construct a family of c-sections Z; 5 5 of ¢ near the cut-exposed
point xo defined in (6.3). Regarding these c-sections, two important results (Proposi-
tions 6.2 and 6.3) are obtained. In later subsections we will show an Alexandrov type
inequality for Z, s 5, which will be paired with the other Alexandrov type inequality (4.1)
to yield a contradiction to the existence of such xgp, thus finishing the proof of Theo-
rem 5.1.

Recall the affine function L on T;.).M " given in (6.2). After modifying L by multi-

plying it by an appropriate positive constant, there exists a geodesic curve [0, 1] 5 § —
X5 € M (xy) starting from X" such that for the linear map VL on 7). M ",

9
VLG~ —qy) = <—

| e qa>. (6.6)

t=0

Consider a ¢’-segment [0, 1] 3 ¢ — X, € M’ with respect to X, connecting the point X,

to its antipodal point x; n= x, and then to x; = x;. (X is nothing else than a closed
geodesic starting from x; and passing through x, = —x; at ¢ = 1/2.) Define
Xes =, Xs)eM=M xM". 6.7)

Obviously xp o = Xp. Two important properties follow:
(a) Since x; € M'(x;) fore € (0, 1) and X, € M (x;’) we have
X0 € M(xe5) =M (x,) x M7 (x5) VY0 <e<1,8>0small
(b) Since ié,a =x, # x,fore € (0, 1), x; = X, and x; = —x, for every ¢ € (0, 1) and
é € [0, 1] we have from Assumption 2.5, for each c,
—c'(x',)Es',B) + ¢’ (x, )Ee;,é) < —c'(x',Xp) ¢ (xg, X5) Yx e M, (6.8)
with equality only when x* = x,;. (See for instance Lemma 6.5 below.)

Consider now the c-section Z, s, obtained by cutting the graph of ¢ by the graph of
—c(+, Xg,8) + c(x0, Xe,5) + h, that is,

Zesni={x € M| p(x) — ¢p(x0) + c(x, Xe 5) — c(x0, Xe,5) < h}. (6.9)
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As can be easily seen by moving down the graph of —c(-, X, s) and lifting it up until it
touches the graph of ¢, x. 5 € d¢(Z, 5 ). Hence, thanks to Loeper’s maximum principle
(DASM) we have

Ko, € 0°P(Zes.n)- (6.10)
Proposition 6.1. The following equality holds:
Ze,0,0 = S(Xe,0) = S(x0) N ({xp} x M7). (6.11)
Proof. From (6.8),
¢(x) — ¢(xo) + c(x, Xe,0) — c(x0, Xe,0)

= ¢(x) — ¢(x0) + c(x, Xo) — c(xo, Xo) = 0.
This, together with the equality case for (6.8), yields (6.11). O

The following two propositions are essential in our proof of Theorem 5.1.
Our first result shows that, for fixed ¢, the sections Z, s , converge to the point xq (in
the sense of Kuratowski) as §, 2/5 — O.

Proposition 6.2. Fix 0 < ¢ < 1. Then, for any sequences §;, hj — 0 with h; /§; — O,

Zes;h, — {xo} asi— oo

Proof. Fix arbitrary sequences §;, h; /8; — 0, and denote

Zoo = lim Zg s, p;, = {20 € M | there exists a sequence z; € Zg 5,
I—> 00
with z; = zoo € M}.

By continuity, zoo € Ze,0,0 for each zo € Zoo, and thus by (6.11), z;, = x;.

To show z, = x;’, we first let § > 0 be sufficiently small and fix a small (closed)
neighborhood, say U, of x( so that all the derivatives (up to the second order) of the func-
tion U x [0, 1] > (x, ) > c(x, X¢s) are uniformly bounded. Then, forx € Z, s, N U
the following inequalities hold:
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VL(g" —qy) = —h/5 — O().
Since L(qy') = O this gives
Lig " —qy) = —h/5—00).

Consider now the sequences d;, #;/8; — 0, and any convergent subsequence of z; €
Zes;h; N U. For the limit zeo, let ¢ = —Dsz-c(z5, X ). Then g5, € S™ (since 700 €
Z¢.0.0 C S(xp) by (6.11)), and from the above inequality we get

L(g5 —q9) = 0,

which forces g5, = g by (6.2). This shows z, = x, and thus Zooc N U = {xo}.
To finish the proof notice that each Z, s is connected, and so is the limit Z,. (The
connectedness can be seen by noticing that the set Z, 5 5 is convex in the coordinates
q(x) = —Dzc(x, Xs5) € T)i‘é]\;I.) Therefore Z,, = {xo}, as desired. O

Proposition 6.3. There exists 8o = 8o(¢) > 0 such that, if 0 < § < 85, 0 < h < &2,
then for each 3 = (3',3") € 0°¢(Ze.s.1) the component ¥ stays away from the cut-
locus of the component 7" of 7 (i.e., 3" € M"(Z")) for every z € Zgs.. Equivalently
7" (Zesn) € Niez, ,, M" @)

Proof. Suppose the statement is false along some sequence §;, h; — 0 with i; < 81.2, and
let x;, z; € Zesn, ¥i € 0°¢(x;) be such that y" € Cut(z}). Since Zg 5, 5, = {xo}, both
Xi, zi tend to xo. Moreover if y, is a cluster point for {y;};cn, then yoo € 9°¢(xp) and
Vo € Cut(x(). This contradicts the choice of M” (see (6.5)) and concludes the proof. 0O

6.3. An Alexandrov type estimate near the cut-exposed point
We state the main theorem to be proved in the rest of the paper.

Theorem 6.4 (Alexandrov upper bound near cut-exposed point). Fix0 < ¢ < 1, and let
Zes.n be asin (6.9). There exists 51 = §1(e) > 0 so that, if 0 < § < 81, then there exists
hi1 = hy(g, 8) such that

RN < 6% Ze sl 10°9(Zes )l YO < h < hu(e, 8), (6.12)
where < is independent of ¢, § and h.

This result concludes the proof of Theorem 5.1, since for ¢ > 0 small enough and
8,h/6 — 0 we have Z; 5, — {xo} (by Proposition 6.2), and (6.12) is in contradiction
with (4.1).

The following subsections are devoted to the proof of Theorem 6.4, which we divide
into three parts. First, in Section 6.4 we get Alexandrov type estimates for the sets ob-
tained by the intersection of Z, s , with the cut-locus components of xp. In Section 6.5, we
analyze the projection 7' (Z, 5.5,) of Z,_5.; onto the regular component M” of xp. We con-
struct a suitable convex set, say C , which has size comparable to the image 9°¢(Z; 5.1),
and we get a version of the estimate (6.12) involving C and " (Ze5.n) (see Proposi-
tion 6.8(3)). Finally in Section 6.6 we combine these results and conclude the proof.
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6.4. Proof of Theorem 6.4: analysis in the cut-locus component M’

The main result of this section is Proposition 6.7 that gives an Alexandrov type estimate
for the intersection of Z s , with the cut-locus components of xo.
We start with a few elementary results.

Lemma 6.5. Let S" be the standard round sphere, and c(x,x) = f(dist(x,x)) for
(x,x) € S" x ", where f is a smooth strictly increasing function f : Ry — Ry.
Assume that c satisfies Assumption 2.5. Then, for every x, x € S",

—c(—x,y) +c(—x,%) > —c(x,y) +c(x,x) VyeS",
where —X denotes the antipodal point of x. Moreover equality holds if and only if y = X.

Proof. For any x,x € S", one can find a c-segment x(s) with respect to X such that

x(0) = x(1) = —x and x(sg) = x for some sy € [0, 1]. The inequality (together with
the characterization of the equality case) then follows from (DASM™) for the function
() = —c(x(s), ) + c(x(s), x). O

Foreachl1 <i <kandz e M, let Mé denote the ith slice of M through z, that is,
Mii={xeM|x) =27/ forj#i}.

The following lemma generalizes the fact that on M = M = S" with ¢ = dist” /2, if
x € S"and —x € 9@ (x), then 0°¢ (x) = S".

Lemma 6.6. Let M, M, ¢ be as in Theorem 5.1. Let ¢ be a c-convex function on M. Fix

2= ..., ) e M= Ml'x- - x M* and an open set U withz € U. Fixi € {1, ...k},

and let 7 € M with 7' = —z'. The following holds:

(1) If 2 € [9° (W) (resp. % € 3°(2)), then Mi C [9°$ (U] (resp. ML C 86 (2)).

(2) Suppose 7 € 3¢ (). Then, for each x € M, ¢p(x) — ¢p(z) = —c' (x', —7)) +
@, —7).

Proof. To prove (1) it is enough to observe that for x € M% andx € M,

—c(x, B) + oz, %) == (" F) +e@ 7)) + ) [l (2] )+ (7, )]
J#i
< -G -+, -2+ Z[—cj !, 72+l (2, 7)) (by Lemma 6.5)
J#i

= —c(x,2) +c(z,7)  (since 7' = —z).

The last line is bounded from above by ¢ (x) — ¢ (z) eitherif x € AU orif z € 3°¢(z).
Let us prove (2). Suppose 7 € 0°¢(z). By duality (Lemma 2.6), z € 3%p(7) for

the dual ¢-convex function ¢. Applying (1) to ¢ we get Mé € 3%9(Z), or equivalently
M! C S(Z). Therefore for all x € M! we have

¢(x) —¢(2) = —c(x,2) +¢(z,2)

=—c'(x!, =) + (', =7 (since x/ = 7/ for j #i). O
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Leti € {1,...,bg},i.e., M'is a component of M’. Recall that x is the cut-exposed point
dgﬁned in (6.3). By definition of bg in (6.4) and (6.5), there 'exists Vi € 0¢¢ (xp) suqh that
y; = —xp. (If i < ag then one can choose y; = Xo.) Let Z 5, := 7' (Z¢ 5, N M, ) for
the canonical projection 7/ : M — M'. Then Lemma 6.6(2) implies
Zé,a,h = {xi eM: | - (xi, —xé) + ci(xé, —xé) + ci(xi, fé,a) —¢ (x(i), fé,a) < h}.
(6.13)
Here comes the main result of this section.

Proposition 6.7. There exist 5, = 82(e) > O such that, if 0 < & < &, then there exists
hy = ha(e, &) such that the set Z;,S,h satisfies the following estimates for 0 < h < hy:

dim M* i . .
pamf < 8|Z’g’5‘h| if 1 <i <ay,
RAmME <z Wl ifag+1<i < by,

where < is independent of ¢, § and h, and |Zé 5 h| denotes the Riemannian volume in the
submanifold M'.

Proof. From (6.13) and Lemma 6.5 we have Zé sh {xé} as h — 0. Thus for suffi-

ciently small # we can embed Zé s INto € Tx*,- Miby x' = ¢'(x") = —D);,-ci (xf, xé).
. o 0

Let W, be its image. Then

Wil = ( max [=DyuDuc x|} 17054 S 12054

ic7i
X GZS,M’

for h sufficiently small. In the following we bound |W;;| from below.
Without loss of generality, assume M’ is the unit sphere. Let qé =q' (xé). By abuse
of notation use ¢! (qi, %%) to denote ¢! (x! (qi ), ¥%), and renormalize this cost function as

ci(q', 1) = o le'(hg' +qp, 3 — ' (g5, X)]-
Then (6.13) implies W;; = hVi/,i + qé, where
Wii=1{q e Tx’zMi | —cj(q", —x}) + (g XL ) < 1}

Recall ¢/ = fi(dist;) for some smooth non-negative uniformly convex function f i
R, — R, such that f7(0) = 0 and %(O) = 0. Thus, as 7 — 0 the renormalized cost
_CZ (4", —xé) converges to the conical function

o df! . . .
] ] 1 * 1
q' — o (m)lq'| forgq' e Tx(,)M.

(Here, we used dist; (x(i), —xé) =7.)

Casel: If1 <i < ag, then fé,a = )Eéi, and so cjl (g, )Eéﬁ) converges to the linear function

q' > Dyci(gh, % -4
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‘l(‘»xé.é)"'l \ /C/"I('-xé,b)"']
) \l%g(.,_x{))

ﬁ\/i

21

Fig. 3. If 1 < i < ag then —x(i) = )E(i) and disti(—xé, )Eé 6) ~ g, so the size of the section is of
order 1/¢ (see also Figure 1). On the other hand, if ag < i < bg then —x(i) # ié, which implies that
dist; (—xé, ié s) is uniformly bounded away from 0, and the size of the section is of order 1.

where ) )
. ) dft dft
1D, (g, 5.1)| = d_];(” —27e) > d_];(”) —Ce

for some constant C > 0. (Here, we used dist(x(i), )"cé") = 7w — 2me.) Therefore one can
easily check that '

lim |W;| > 1/e,

lim W) 2 1/

and thus for 4 > 0 sufficiently small,

Case II: If ay < i < by, then )Eé s = )E(;'i. Similarly to the above case, cz (g, )Eé 5)
converges to the linear function

q' = Dyc'(gh, %5 - ¢

Since x5 € M “(xg) for § > 0 small enough, there exist positive constants C, Cp such
that

S df! df!
|chl(q(l)7x5 Dl < ?(ﬂ -0) < W(”) — Co,

where for the last inequality we used the uniform convexity of f. From this one can check
that limy, ¢ |W,;| 2 1, and thus for sufficiently small 4 > 0,

Wil 2 hém i, o

6.5. Proof of Theorem 6.4: analysis in the regular component M"

The main result of this subsection is Proposition 6.8. Fix 0 < ¢ < 1, and assume that
8 and h/$ are sufficiently small so that, as in Proposition 6.3, the set Z, s is close to
the cut-exposed point xg, and so in particular Z, s, C M (x.s). Consider the change of
coordinates g € T;MM — x(q) € M(x,s) induced by the relation

q = _D)Ec(x(q)rié‘,(s)v (614)



Regularity of optimal transport maps 1157

and let Zg,(s,h € T;‘F aM be the set Z, s, in this chart. The function ¢ and the cost ¢ are
transformed to '

9(q) = ¢(x(q)) + c(x(q), Xe,5),
c(g,y) = c(x(g), y) —c(x(q), Xe,5) for(q,y) € T;*E,BM x M.

Notice that ¢(q, X, 5) = 0, and ¢ is a ¢-convex function on T)g’; , M. Moreover

Zesn =1lq € TE , M | 9(q) — ¢(q0) < I}
where g is the point corresponding to x¢ in this new chart. It is important to recall that,
thanks to Assumption 2.4 (convex DASM), ¢ and ¢ are convex. (See Section 3.2.)

We have the natural decomposition (with obvious notation)

q=1(q'.q") = (—Dpc' (x'(q"). % 5), —Dzrc"(x"(q"), X 5))
€ T;MM = T;Z SM’ x T;;,‘SM”. (6.15)

(Here, one should keep in mind that, by the definition of X, s, the component )Eg sin M"
does not depend on ¢.) The modified cost ¢(g, y) has the decomposition

~!

éq.y» =72, y)+c"q". 3"

where
dq' .y =g y) - (g, x.5) forq’ € Ti*’-sM/’
E//(q//, y//) — C/(.x//(q”), )—}//) _ C//(x//(q//)’ )E;:/’(s) for q// c T;j/aM”~

Let 7/, #” denote the canonical projection from Tit,sM onto T;‘, 5M " and T;‘,/BM 7 re-
spectively. © -

Now, let us construct a convex set C C T;;(Titﬁ]\_d ) that we will use later to estimate
|0¢ (Z¢5.1)| from below (see Proposition 6.9). The strategy of the proof follows the lines
of the one of [FKM1, Proposition 6.10].

Proposition 6.8. Fix 0 < ¢ < 1, and assume that 0 < § < and_O < h < 82, with 8o

as in Proposition 6.3. Then there exists a convex set C € Tz;) (T;;BM ) with the following

properties:

(1) C c {0} x T;:,),(T)EECBM”) c T (Tist’) x TqZ(TX?BM”);

(2) &Exp,,C = {z € M | —0,6(q0,2) N C # B} C [0 (Zesi)]xy C 0“0 (Zes i),
where 0, denotes the subdifferential with respect to the q variable;

3) " (C) " (7" (Ze.s.n) 2 h"" | where > is independent of h, §, ¢.

Proof. In the following, we first construct such a set C and then we show the desired
properties. The set C will be given as the convex hull of certain covectors pi, ..., py»
(see (6.22)). We go through several steps.
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First we ﬁn(~1 some auxiliary covectors Pls---s Pn- From Lemma 3.1 applied to the
convex set 7”(Zg 5.1), there is an ellipsoid E such that

EC#"(Zesy) Ccn'E (6.16)

where the scaling n” E is with respect to the barycenter of the ellipsoid. Let p/’, 1 <

i < n”, denote the unit orthogonal covectors parallel~ to the axes of the ellipsoid E, a£1d
denote by a; the length of the i-th principal axis of E. Find hyperplanes IT/ C 7%, M"
£,8

that are orthogonal to p!’ and touch tangentially the boundary of 7" (Zes.p) at poinfs q/,
1 < i < n". Let g be the point in T, M" corresponding to xo, and denote by ¢; the
£,0

distance from ¢ to IT;. Then, thanks to (6.16) we have

n// n//
[1¢ <[]en"a) <" @ (Zesa). (6.17)
i i

For each g/, there exists ¢; € T}, M’ such that the hyperplane IT; := T M x T C
£, £,8
Tf’:aM tangentially touches the boundary dZ, s , at the point ¢; = (g}, q;"). Let x; =

¢-Expg, ,gi. Since p; = (0, p}) is orthogonal to IT; and Zg,,;,h is a sublevel set of the
convex function ¢, there exists a scalar multiple #; € Ry such that #;p; € d¢(q;). By
Assumption 2.2 and Loeper’s maximum principle (DASM) (Lemma 2.7), the point z; =
E-Equi t; pi satisfies z; € 85g0(q,~) = 0°p(x;). Note that in fact,

zi = ¢-Exp,,ti pi = c-Exp, n(t; pi)

where 7 is the affine map given by Lemma 3.4 (in whose statement we replace x, go and
Yo with x;, ¢; and X, s, respectively). Moreover, using the decomposition

pi =0, p)) € Tp(T3 M) x T(T3 M),
we see that the c-segment (with respect to g;)
[0, 115 ¢ = Zi (1) = ¢-Exp,, ((1 — D)t pi) = ¢-Exp,, (1 — )n(ti pi)),
from z; (0) = z; to z; (1) = X,_s, is of the form
Zi() = (X 5.2/ 1) e M x M".
Observe that by Proposition 6.3 and Assumption 2.3, we have
') e M"(x"), Vtel0,1], Vx € Zcs.p. (6.18)

We use these ¢-segments Z; (r) to define the points p;, i = 1,...,n”. Define the
function

mz; 1 (q) == —&(q, 2i (1)) + €(qi, Zi (1) + ¢(gi).
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mzi(())

Fig. 4. The supporting function mz, () = mz, touches ¢ at g; from below. By interpolating between
mz; = mgz, o) and mg, ; = mz, (1) along the ¢-segment with respect to g;, we can find 7; € [0, 1)

9]

such that mz, (7,)(q0) = @(qo). Then the covector p; used to construct C is defined as pi =
(0, =Dgré" (g, 7} (1) € dmz, (1) (qo)-

Clearly, mz; 0y < ¢ and mz, (1) = ¢(g;) = h+¢(qo). By continuity there exists 7; € [0, 1)
such that

mz; () (qo) = ¢(qo)-
Also, Loeper’s maximum principle (DASM) implies
mz;(m) < maxth +¢(qo), ¢1,
so that in particular mz,; ;) < ¢ on 328,5,;,, hence, by the definition of [0°¢ (Z¢ 5.1)]x)>
Zi(t) € [0°9(Ze s n)lgy = (00 (Ze s )]y, foreveryi=1,....n". (6.19)
For later use, consider the non-zero vectors

pi(t) = (1 — t)tipi = (0, (1 — t)t; p;)
= (0, =Dy c"(q], 7/ (1)) € TqT(TgsM/) X Tq?(T;?BM”), i=1,....,n".

Clearly these vectors are all mutually orthogonal. Moreover, because
pi(ti) € dmz;ry(qi), i=1,....n",
by the convexity of mz, ;) we have

. 9(qi) —¢(qo) _ h
Ipi(zi)| > O 4 (6.21)

To finish the construction of C, let
A ~1 W=l ! ! . "
pi =0, =Dy ¢"(qy. 2/ (1)) € T;Z)(T;Q.SM) x qu/(szaM ), i=1,...,n".
(6.22)
Notice that z; (t;) = (x;’(s, zi(t)") = ¢-Exp,, pi- Let C = co(p1, ..., py) be the convex

hullof py, ..., p,r. We will see that C has the desired properties (1)—(3). First, (1) follows
immediately from (6.22), while (2) is a direct consequence of (6.19) and Lemma 2.8.
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Now, let us show (3). By (6.18) each z;(t;)” stays uniformly away (for small 8, k)
from the cut-locus of 7" (Z, s.,). Hence we can apply Lemma 3.5 to (6.20) and (_6.22)
to see that p; is close to p;(t;) when we use the canonical identification T;; (TX*E ;M) ~

Tq’; (T;jE S M); more precisely,
|pi — pi(t)| < on (D] pil,

where oy, (1) is a quantity which goes to 0 as &~ — 0. Since the vectors {p; (t;)}i=1,. . n"
are all mutually orthogonal, p; are almost mutually orthogonal covectors, which by (6.21)
satisfy

1pil = 1971 Z |pi(t)| = h/¢;.

(Here, for sufficiently small § and %/8, the inequality = and the almost orthogonality are
independent of §, 4 and ¢.) This gives

This estimate combined with (6.17) shows (3), which completes the proof. m]

6.6. Proof of Theorem 6.4: final argument

In this section we finish the proof of Theorem 6.4. Let 0 < ¢ < I, and fix 0 < § <
S1(e) := min{dp(e),b2(e)} and 0 < h < hy(e,$) = min{(Sz, hy (g, 8)}, with §p(e) and
82(8), ha (e, 8) as in Propositions 6.3 and 6.7 respectively. The estimates <, =, ~ in this
section are all independent of ¢, § and h.

To make use of the previous results, we need the following comparison result:

Proposition 6.9. The set C constructed in Proposition 6.8 satisfies
A" (C) S 10 (Zes ).

Note that even with Proposition 6.8(2), this estimate is not obvious because n” < dim M.

Proof. For each ¢, 8, h as in Proposition 6.8, we will find an auxiliary set A = A; s C
D in a fixed (thus independent of ¢, &, i) compact set D C M*(xo) C T\ M such that

c-Exp, (A) C[0°9(Ze.5.n)]xg C 3P (Zes.0)s (6.23)
|Al > 2" (©). (6.24)

Once such a set is constructed, the desired estimate follows from

10°¢(Ze,5,n)| = lc-Exp, (A)| Z | Al (since A C D).



Regularity of optimal transport maps 1161

The construction of .A goes through several steps. First, apply to the set C the (extended)
map p € T;}(T;‘MM) — n(p) € T;;M as in Lemma 3.4 (with yo = X s), and let

n(C' ) C TX’BM denote its image. Notice that by Proposition 6.8(2),
c-Bxp,, (7(C)) = &-Exp, C C [0°9(Ze.5.1)]xg-

Let us compare 2" (n(C)) with 7#""(C). For each p = (0, p”) € C, Lemma 3.4
applies as

n(p) = (M5 . P (=DyrDinc” (x( X)) + 1l 5).
where 1. 5§ = —Dyxc(xp, X¢ 5) (thus, c-Expr(ns,g) = X¢,5). Therefore

n(C) C {ng 5} x Ty M
and
%n//(n(é)) _ |d6t Dx//Dj”CN(X(/)/, féf,sﬂ%ﬂn”(é) A %n/,(é)

Notice that )Eg s is independent of & (see (6.7)) and stays uniformly away from Cut(x)),
so that the above estimate is independent of ¢, § and A.

We now use a convexity argument to construct .A. We will first construct some suitable
sets C!, ..., C™, and C~’0, inside a fixed compact set (independent of ¢, §, k) in M*(xq),
which have the properties of the sets S; in Lemma 3.3. These sets will also satisfy:

c-Bxp, (C') U+ U c-Exp, (C™) U c-Exp,, (Co) C [0°D(Ze.5.1)1xo-
AM(CH >, i=1,..., b,
A" (Co) 2 A" (n(C)).
Then A will be given as the convex hull co(C], ..., Cho, C‘o). By convexity of M*(xp),
A will be in a fixed compact set, say D, independent of ¢, 8, &, and the c-convexity of

[0°¢ (Ze.5.)]xy (see Lemma 2.8) will imply c-Exp, (A) C [9°¢(Ze,5.4)]x,. showing
(6.23). We will then apply Lemma 3.3 to get

Al = " (1(C)) ~ 2" (C),

which gives (6.24). Hence we are led to construct cl,...,ch, C’o.
To construct C!, ..., Cbo, recall that M’ = M! X e X Mbo, apd for every i €
{1,...,bo} there exists y; € 9°¢(xo) with y; = —x;. Moreover M;i C 9% (xp) by

Lemma 6.6. We further observe that the same inclusion holds for all the components yf
of y; that satisfy yf = —x(l). Hence, once y; has a cut-locus component with x¢, one can
change that component arbitrarily, and the resulting point still remains inside 3¢ (xg).
Combining this fact with Loeper’s maximum principle (DASM) we can find a covector
v; and a set C! C dp(xg) C T;’;M , with v; € C! whose components are either vf =0or
vl e M™(x)), and

C'={qgeTiM|2q" € M™*(x}),and g' =] forl #i}.
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Clearly, C' is compact and C' C M*(x). Moreover c-Exp, C' C 9°¢(xg) C
[0°¢ (x0) ]y, and J2 (C') > 1. Also, observe that the construction of cl,... chis
independent of ¢, §, h.

Let us now construct the set Co. From Propositions 6.2 and 6.3 we see that for § and
/8 sufficiently small there exists a compact set C” C M” (xy) (independent of &, 8, h)

with 7”(3°¢(Z¢,5.1)) C C”. Recall the definition of ag, by, X¢,s = (X, X5'), and that
X5 € M (xy). Then we write ne s = (1, n5) € TX*. M x Tx*..M” and we observe that
0 0

ns is uniformly away from the boundary of M"*(x;’). These facts imply that there exists
acompactset C;' C M "*(x(')') (independent of ¢, 8, k) such that

n(C) C {n} x C5.

However, n, — oM '*(x(')) as ¢ — 0, thus n(C’) is not kept in a fixed compact set in
M*(x¢). In particular, we cannot take n(@ ) for Cy, and this motivates the following: Since
X, = —xpand X 5 € [0°¢(Z¢,5,1)]xy> applying Lemma 6.6 as in the previous paragraph
we see that the set M" x {x;'}, in particular (x,, x;'), belongs to [0°¢(Z¢,5,1)]x,- The
point (x,, X5') corresponds to the covector (0, n75°). Consider the cone co((0, ny'), n(@)),
and define

Co := co((0, 7)), n(C) N{(n;/2.4™) € TyM | g~ € T2 M},
By a simple geometric argument
A" (Co) Z A" ((C)),

and moreover, since 1, /2 € %M " (xg), the set Cy is contained in a fixed compact set in
M*(xo) independently of ¢, 8, . By c-convexity of [0°¢ (Zs,s5,1) x>

c-Exp,, (Co) C [3°¢(Ze.5.1)]x,-

Note that by construction this set C’o, together with C L .., C"%, havethe properties of the
sets S; in Lemma 3.3. Furthermore they are in a fixed compact set in M*(x() independent
of €, 8, h. This completes the proof. O

Combining Propositions 6.9 and 6.8(3) we obtain
WS A T (Ze s NP (Ze s 1) (6.25)

We will finish the proof by applying Proposition 6.7. First, we need some preliminary
steps. Using the notation of Section 6.5, let Zé,s,h be the slice of Z 5, in M’ x {x;}, that
is,

Zyspi=1{x"eM | (' x0) € Zes.n).

Then Z;,s,h is embedded via x’ — — Dy’ (x/, ié,a) into Z;,a,h C M’*()Eéﬁ), where
Zisn =14 e M*(x5) | (q',q0) € Zesn}-

Embed in the same way each Zf; s.p (see(6.13)),i =1,..., bo, into Zé sn C M"*(ié,s).
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Proposition 6.10. Assume that0 < § < dgpand0 < h < 82, with 8o as in Proposition 6.3.
Then

(min 1det(DyDec & F )| ZLs gl < 120541
x'eZ .50

5( max |det(D, Dyc’(x', X 5))|>|ngh|

er““

( min  |det(D,; Dxlc(x’,_ég))|)|Z85h|<|Z€5h|

i i
X EZ&M,

5( max |det(D,i Dgic' (x', k! ))|)IZ€5h|

x"EZ’w‘h
where | - | denotes the Riemannian volume (in the appropriate submanifold).
Proof. From (6.14),
Dx’q/ = _Dx’D)?’C/(x/(q/)v )E;,(;),

and so the first inequality follows from

1Z, 50l = // det Dyrq'| dx’.

£,8,h
The proof of the second inequality is analogous. O

By convexity and Lemma 3.3 one has

A" (Z, ,;h>>]"[%"l<z )

i=1

while Propositions 6.10 and 6.7 imply

H%"t(z'(;hp]_[( min |det(D, Dyic (x', 51 ))|>|ZSM|

i=1 =1 X €Z, 5,

bo n'

Z[]_[( min |det(D,i Dyic' (x', & ))l)]h_

i=1 X'€Z 5,
Combining these estimates with (6.25) we get

! " bO . . . _1
P 5800[]_[ min |det(Dxinic’(xl,)_cé5))|]
=15 €Zg 5 ’
H(ZL s ) (" (Zes i) D(Ze 1)
bo S -1 .
5800[]_[ min |det(Dx,-Di,-c’(xl,xw))q | Zes.n 10°(Zes.p)|  (by Lemma 3.2)

[ i
i=1 X' €Z 5

S e Ze s nl10°0(Ze5,1)ls
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where the last inequality follows from

Zesal S (_max dew(DeDre(x, %)) | Zesul

XeZe,S,h
(see Proposition 6.10) and

maxXyez: | det(D,' Dz’ (x, i;,a))

S T <1 s h/8— 0
[12, minczi |det(D,i Dxic (x*, X, 5))|

(see Propositions 6.2 and 6.3). This concludes the proof of Theorem 6.4, and Theorem 5.1
is proved.
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