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Abstract. We show that the action of the mapping class group on bordered Floer homology in the
second to extremal spinc-structure is faithful. This paper is designed partly as an introduction to the
subject, and much of it should be readable without a background in Floer homology.
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1. Introduction

Two long-standing, and apparently unrelated, questions in low-dimensional topology are
whether the mapping class group of a surface is linear and whether the Jones polyno-
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mial detects the unknot. In 2010, Kronheimer–Mrowka gave an affirmative answer to
a categorified version of the second question: they showed that Khovanov homology, a
categorification of the Jones polynomial, does detect the unknot [KM11]. (Previously,
Grigsby and Wehrli had shown that any nontrivially-colored Khovanov homology detects
the unknot [GW10].) In this paper, we give an affirmative answer to a categorified version
of the first question. That is, while we do not know if the mapping class group of a surface
(with boundary) acts faithfully on a finite-dimensional linear space, we are able to give an
explicit faithful action on a finitely-generated linear (in fact, triangulated) category.1 The
decategorification of this action is the standard action of the mapping class group on H1;
see Theorem 4 in Section 5.

In more detail, the structure is as follows. To a surface F with boundary and a marked
point on each boundary component, we associate a finite-dimensional algebra B(F ) over
F2 = Z/2. (There is some choice in the definition of B(F ); see Section 2.) To a mapping
class φ : F → F , fixing the boundary, we associate a quasi-isomorphism class of finite-
dimensional differential B(F )-bimodules ĈFDA(φ). These have the property that

ĈFDA(ψ ◦ φ) ' ĈFDA(φ)⊗B(F ) ĈFDA(ψ).2 (1.1)

Moreover,

ĈFDA(I) ' B(F )B(F )B(F ), (1.2)

where B(F )B(F )B(F ) denotes the algebra B(F ) viewed as a bimodule over itself.
Let B(F )Mod denote the category of finitely-generated left B(F )-modules. For each

mapping class φ we have a functor 8φ : B(F )Mod → B(F )Mod given by 8φ(·) =
ĈFDA(φ)⊗B(F ) ·. Equations (1.1) and (1.2) almost imply that this is an action; the main
defect is that (1.1) only gives homotopy equivalences, not isomorphisms (or equalities).
To rectify this, we replace B(F )Mod with the associated derived category Db(B(F )Mod)
of finitely-generated modules. (This is quite concrete: since finite-dimensional modules
over our algebras admit finite-dimensional projective resolutions, Db(B(F )Mod) is just the
homotopy category of finitely-generated projective modules over B(F ).) Equations (1.1)
and (1.2) then imply that tensoring with the modules ĈFDA(ψ) gives an action of the
mapping class group on Db(B(F )Mod). (There are some subtleties related to group ac-
tions on categories. See for example [LOT10a, Section 8] for a review of the relevant
definitions.)

The bimodules ĈFDA(φ) carry geometric information. In particular, the rank of the
homology of ĈFDA(φ) is given by a certain intersection number. This turns out to be
enough to prove that

ĈFDA(φ) 6' ĈFDA(I) if φ � I. (1.3)

1 Because in this paper we do not discuss gradings, which are somewhat subtle, the categories
will actually be ungraded analogues of triangulated categories. See, e.g., [LOT10a, Section 2.5] for
more on the gradings in bordered Floer theory.

2 More honestly, here ⊗ should be interpreted as the derived, or A∞, tensor product, though it
is possible to work with models for ĈFDA for which this agrees with the ordinary tensor product.
Later, we will use ⊗̃ for the A∞-tensor product to keep track of this distinction.
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As a corollary, we have:

Theorem 1. The action of the mapping class group MCG0(F ) on Db(B(F )Mod) given
by tensoring with the bimodules ĈFDA(φ) is faithful.

In fact, there are two different ways we can do this construction combinatorially. One
leads to somewhat simpler algebras, but more complicated (A∞) bimodules; the other
leads to more complicated (differential) algebras but simpler (differential) bimodules. Al-
though these two actions are equivalent in a certain sense—see Proposition 3.27 below—
we will give both approaches.

Experts in bordered Floer theory are warned that throughout this paper we are working
in the second to extremal spinc-structure. In the notation of [LOT08], the algebras B(F )
(respectively C(F )) in this paper are A(F,−g + 1) (respectively A(F, g − 1)), where g
is the genus of F , and the bimodules ĈFDA(φ) are the corresponding summands of the
bimodules ĈFDA(φ) from [LOT10a].

This paper has two main goals. The first goal is to prove faithfulness of the mapping
class group action (Theorem 1). The proof of faithfulness itself is short, and the reader
familiar with the bordered Floer package may wish to skip directly to Section 4 (perhaps
after perusing some of the pictures earlier in the paper), where the proof is given. The
second goal is to give a combinatorial description of this mapping class group action (in
the second to extremal spinc-structure). This paper is partly intended as an introduction to
the subject. So, we include a complete description of the relevant algebras and modules.
The proof of faithfulness is also elementary, and both the modules and the faithfulness
proof are closely related to familiar tools in mapping class group theory. We do not give
self-contained proofs that the bimodules associated to mapping classes are well-defined,
or that tensoring with them gives a well-defined action; these results draw on [LOT10a],
which uses the theory of pseudoholomorphic curves. Since the first version of this paper
was written, Kyler Siegel has given direct combinatorial proofs of these facts; see [Sie11].

In this paper, we treat mapping class groups of any surface with non-empty boundary.
The case of actions of braid groups on triangulated categories (unlike the more general
case) has received substantial attention in the literature. See in particular [KS02], and
also [KT07] and the references contained therein. Another triangulated category on which
the mapping class group acts is the Fukaya category of a surface; a theorem of Seidel
[Sei02, Theorem 1], together with a folk conjecture relating the Hochschild homology
of functors on the Fukaya category and Floer homology of symplectomorphisms, should
imply this action is faithful for a closed surface. The argument in Section 4, which was
inspired by [KS02], can be adapted to give a more direct proof of faithfulness of the action
on the Fukaya category of a surface; this is presumably well-known in certain circles. In
contrast with the Fukaya category, the triangulated categories constructed in this paper
are purely algebraic, and have finiteness properties which are not apparent for the Fukaya
category. There is, however, a direct relation between the constructions in this paper and
a variant of the Fukaya category; see [Aur10].

This paper is structured as follows. In Section 2 we define the algebras B(F ); these
are more general than the algebras from [LOT08], since we allow F to have more than
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one boundary component, but are special cases of definitions from [Zar09]. In Section 3
we define the bimodules. In Section 4 we prove faithfulness of the action. In Section 5 we
discuss a sense in which these categories are finitely generated, and the decategorification
of our action. We conclude, in Section 6, with some further questions.

2. The algebras

In the present section, we define two algebras associated to an arc diagram Z , denoted
B(Z) (Section 2.2) and C(Z) (Section 2.3). The second of these, C(Z), is equipped with
a differential, while the first, B(Z), is not. These are both subalgebras of a more general
algebra A(Z), which we introduce in Section 2.3. These algebras can be endowed with
further structure (notably, a kind of grading), which we will not need here; see [LOT08].

Before defining the algebras, we recall a convenient way of representing surfaces.

2.1. Arc diagrams

Consider a connected, oriented surface F of genus g with b > 0 boundary components
Z1, . . . , Zb, and suppose that each Zi is divided into two closed arcs, S+i and S−i (over-
lapping at their endpoints); write S+ =

⋃
i S
+

i and S− =
⋃
i S
−

i . Choose a collection of
pairwise-disjoint, embedded paths αi in F with ∂αi ⊂ S+ so that F \

⋃
i αi is a union of

disks, and the boundary of each disk contains exactly one S−i . This implies that we have
exactly 2(g + b − 1) α-curves. Place a basepoint zi in each S−i .

Let {ai, a′i} = ∂αi . We call

Z = (
Z︷ ︸︸ ︷

(Z1, . . . , Zb),

M︷ ︸︸ ︷
({a1, a

′

1}, . . . , {an, a
′
n}),

z︷ ︸︸ ︷
(z1, . . . , zb))

an arc diagram for F . Write a = {a1, a
′

1, . . . , a2(g+b−1), a
′

2(g+b−1)}. Here, the Zi are
viewed as oriented circles. For each i, the points ai and a′i are called a matched pair.

From Z we can build a standard model surface as follows. Thicken the circles Zi in
Z to annuli [0, 1] × Zi and attach strips (2-dimensional 1-handles) to each pair of points
in M in the outer boundaries {1} ×Zi of the annuli. Call the result F ◦(Z). The basepoint
zi inZi gives an arc γzi = [0, 1]×{zi} ⊂ [0, 1]×Zi . Let F(Z) denote the result of cutting
F ◦(Z) along the γzi . Let S+(Z) be the part of ∂F (Z) coming from

⋃
i{0}×Zi , together

with the part corresponding to the γzi , and let S−(Z) be the part of ∂F (Z) coming from⋃
i{1} × Zi (and the handles attached to it). See Figure 1.

The choice of the αi identifies F and F(Z) canonically (up to isotopy).

Remark 2.1. Let Z = (Z,M, z) be an arc diagram for F . By definition, each circle in
Z contains one point zi ∈ z. Moreover, performing surgery on Z along the pairs of points
inM gives a collection of circles each of which also contains a single zi . Conversely, any
triple (Z,M, z) satisfying this condition comes from a surface.
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Fig. 1 (Arc diagrams and their associated surfaces). Left: an arc diagram specifying a once-
punctured torus. Right: an arc diagram specifying the 3-times punctured sphere. In each case, the
subsurface F(Z) ⊂ F ◦(Z) is shaded.

Remark 2.2. We are considering a special case of Zarev’s definition of arc diagrams
[Zar09]: he allows each Zi to be divided into 2ni arcs for any ni ∈ N.

2.2. The algebra B(Z)

The algebras of interest are associated to arc diagrams. The algebra B(Z) has a basis
over F2 consisting of:

• One element Ii for each pair of points {ai, a′i} ∈ M .
• One element ρ for each nontrivial interval in each Zi \ {zi} with endpoints in a. We

will call these elements chords. Given a chord ρ, let ρ− denote the initial point of ρ
(with respect to the orientation on Zi), and let ρ+ denote the terminal point of ρ.

The product on the algebra is given as follows:

• The Ii are orthogonal idempotents, so I 2
i = Ii and IiIj = 0 if i 6= j .

• Iiρ = ρ if ρ− is ai or a′i ; otherwise, Iiρ = 0. Similarly, ρIj = ρ if ρ+ is aj or a′j ;
otherwise, ρIj = 0.
• For chords ρ and σ , ρσ = 0 unless ρ+ = σ−. If ρ+ = σ− then ρσ is the chord from
ρ− to σ+.

Example 2.3. There is a unique arc diagram Z for the once-punctured torus, which is
illustrated in Figure 1. The algebra B(Z) is 8-dimensional, with basis

{I1, I2, ρ1,2, ρ2,3, ρ3,4, ρ1,3, ρ2,4, ρ1,4}
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and multiplication table

× I1 I2 ρ1,2 ρ2,3 ρ3,4 ρ1,3 ρ2,4 ρ1,4

I1 I1 0 ρ1,2 0 ρ3,4 ρ1,3 0 ρ1,4
I2 0 I2 0 ρ2,3 0 0 ρ2,4 0
ρ1,2 0 ρ1,2 0 ρ1,3 0 0 ρ1,4 0
ρ2,3 ρ2,3 0 0 0 ρ2,4 0 0 0
ρ3,4 0 ρ3,4 0 0 0 0 0 0
ρ1,3 ρ1,3 0 0 0 ρ1,4 0 0 0
ρ2,4 0 ρ2,4 0 0 0 0 0 0
ρ1,4 0 ρ1,4 0 0 0 0 0 0

(When reading this table, the third entry in the top row, e.g., means that I1ρ1,2 = ρ1,2.)
We can encode this algebra more succinctly as

I1 I2

ρ1,2, ρ3,4

ρ2,3

/
(ρ2,3ρ1,2 = ρ3,4ρ2,3 = 0).

Example 2.4. Let F be a genus g surface with one boundary component. One arc dia-
gram for F is obtained as follows. Label 4g + 1 points on a circle Z, in order, by

z, a1, . . . , a2g, a
′

1, . . . , a
′

2g.

The algebra B(Z) associated to this arc diagram Z has idempotents I1, . . . , I2g . For con-
venience, define Ii+2g = Ii . Then B(Z) is generated over F2 by I1, . . . , I2g and elements
ρi,j for 1 ≤ i < j ≤ 4g, with the relations:

Iiρi,j Ij = ρi,j ,

Iiρj,k = ρj,kIi = 0 (in cases not covered above),

ρi,jρk,l =

{
ρi,l if j = k,

0 otherwise.

Graphically, this is:

I1 I2 · · · I2g

ρ1,2, ρ2g+1,2g+2 ρ2,3, ρ2g+2,2g+3 ρ2g−1,2g , ρ4g−1,4g

ρ2g,2g+1

/(
ρi,i+1ρ2g+i,2g+i+1 = 0
ρ2g+i,2g+i+1ρi,i+1 = 0

)
.

See also [AGW11], where this algebra is related to the algebras in [KS02].
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Example 2.5. There is an arc diagram for the complement of k > 0 disks in S2 that
generalizes Figure 1 (right). On one circle Z1, label 3k − 2 points by

z1, a1, b1, a
′

1, a2, b2, a
′

2, . . . , ak−1, bk−1, a
′

k−1.

On each remaining Zi (i = 2, . . . , k) place two points zi and b′i . This represents a rela-
beling from Figure 1; see Figure 2.

Fig. 2 (Arc diagram for a thrice-punctured sphere). This is a relabeling of the diagram from Figure 1
(right).

The associated algebra has idempotents Ii (i = 1, . . . , k − 1) corresponding to the
{ai, a

′

i} and Ji (i = 1, . . . , k − 1) corresponding to the {bi, b′i}. The algebra is given by

I1

J1

I2

J2

· · · Ik−1

Jk−1

ρa1,b1
ρb1,a

′

1

ρa′1,a2

ρa2,b2
ρb2,a

′

2

ρa′2,a3 ρa′
k−2,ak−1

ρak−1,bk−1
ρbk−1,a

′

k−1
/(

ρbi ,a′i
ρai ,bi = 0

ρa′i ,ai+1
ρa′

i+1,ai+2
= 0

)
.

The following observation will be useful later:

Lemma 2.6. Let Z be an arc diagram and −Z the arc diagram obtained by reversing
the orientation of each circle Zi in Z . Then B(−Z) is the opposite algebra to B(Z).
Proof. This is immediate from the definitions. ut

2.3. The algebra C(Z)

Next we turn to the algebra C(Z). As mentioned in the introduction, we give two different
constructions, with B(Z) and with C(Z); either one gives a faithful action. Therefore, this
section may be skipped at first reading.

Let Z be an arc diagram for a surface of genus g with b boundary components. Let
n = 2(g + b − 1), so in particular the set a of marked points has 2n elements.

Consider [0, 1] × (Z \ z). For each i we can identify [0, 1] × (Zi \ zi) with [0, 1] ×
(−1, 1). The points a∩Zi give points {0}×ai ⊂ {0}×(−1, 1) and {1}×ai ⊂ {1}×(−1, 1).

A strand diagram for Z is a map s :
∐k
i=1[0, 1] → [0, 1] × (Z \ z) (for some k), the

components of which we call strands, considered up to reordering the strands, so that:
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• s maps
∐k
i=1{0} to {0} × a ⊂ {0} × Z and

∐k
i=1{1} to {1} × a ⊂ {1} × Z.

• On each component of the source, s is linear and has nonnegative slope.
• The map s|∐k

i=1{0}
is injective, as is the map s|∐k

i=1{1}
.

• For each matched pair {ai, a′i}, if there is a slope-zero strand (component of s) start-
ing at (0, ai) (respectively (0, a′i)) then there is a slope-zero strand starting at (0, a′i)
(respectively (0, ai)).
• For each matched pair {ai, a′i}, if there is a positive-slope strand starting at (0, ai)

(respectively (0, a′i)) then there is no strand starting at (0, a′i) (respectively (0, ai)).
• For each matched pair {ai, a′i}, if there is a positive-slope strand ending at (1, ai) (re-

spectively (1, a′i)) then there is no strand ending at (1, a′i) (respectively (1, ai)).

Consider the F2-vector space A(Z) generated by the strand diagrams. Define a product
on this vector space as follows. Given s, t ∈ A(Z), the product of s and t is zero if

• there is a positive-slope strand in s whose terminal endpoint is not the initial endpoint
of a strand in t ;
• there is a positive-slope strand in t whose initial endpoint is not the terminal endpoint

of a strand in s;
• there is a pair of slope-zero strands in s neither of whose terminal endpoints is the

initial endpoint of a strand in t ;
• there is a pair of slope-zero strands in t neither of whose initial endpoints is the terminal

endpoint of a strand in s; or
• concatenating s and t end-to-end, there is a pair of piecewise-linear paths intersecting

in two points (or equivalently, intersecting nonminimally).

See Figure 3. In other cases, s ·t is gotten by concatenating s and t , deleting any horizontal
strands from s (respectively t) which do not match with strands in t (respectively s), and
pulling the resulting piecewise-linear paths straight (fixing their endpoints). See Figure 4.

Fig. 3 (Examples of 0 products in A). The picture on the left illustrates the first two reasons the
product can be zero, the picture in the middle illustrates the third and fourth reasons, and the picture
on the right illustrates the last reason. When drawing elements of A, we typically draw horizontal
strands as dashed. This figure also appears in [LOT10b].

Define a differential on A(Z) as follows. Given a strand diagram s and a pair of inter-
secting strands a, b in s, there is a unique (up to isotopy) way to resolve the intersection
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Fig. 4 (Two nontrivial products). Both take place in C(Z) ⊂ A(Z) for Z the arc diagram from
Example 2.4. We have drawn the strands slightly curved, rather than straight, for artistic effect.

between a and b so that each resulting strand connects {0} × Z to {1} × Z. If this resolu-
tion creates double-crossings between any pair of strands, let s′a,b = 0; otherwise, let s′a,b
be the result of pulling straight the strands in the resolution and, if a (respectively b) had
slope 0, deleting the slope-zero strand at a′ (respectively b′). Now, define

∂(s) =
∑

a,b intersect
s′a,b.

See Figure 5.

Fig. 5 (A differential). Left: an algebra element in C(Z), for Z the arc diagram from Example 2.4,
and its differential. Right: a term which does not appear in the differential, because of a double-
crossing. Again, we have drawn the strands slightly curved.

It is easy to verify that this multiplication and differential make A(Z) into a differen-
tial algebra. The minimal idempotents for C(Z) are strand diagrams in which all of the
strands have slope 0, and so correspond to subsets of the matched pairs in M .

Remark 2.7. It is easy to turn this geometric definition of A(Z) into a combinatorial
one; see, for instance, [LOT08].
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The weight of a strand diagram s is the number of positive-slope strands in s plus half
the number of slope-zero strands in s. Let A(Z, k) be the subalgebra of A(Z) generated
by strand diagrams of weight k + n/2. Then

A(Z) =
n/2⊕

k=−n/2

A(Z, k).

Lemma 2.8. The algebra B(Z) is A(Z,−n/2+ 1).

Proof. This is immediate from the definitions. ut

Remark 2.9. The algebra A(Z,−n/2) is F2 (generated by the empty strand diagram).
The algebra A(Z, n/2) is quasi-isomorphic to F2; compare Remark 2.14.

Definition 2.10. Let C(Z) = A(Z, n/2− 1).

In particular the algebra C(Z) has n minimal idempotents, corresponding to the
choices of n− 1 of the n matched pairs in M .

Given a chord ρ in Z , let c(ρ) ∈ C(Z) be the sum of all ways of adding horizontal
strands to ρ to get an element of C(Z). (There are either n− 1 such ways if the endpoints
of ρ are matched, or a single such choice if the endpoints of ρ are not matched.)

Example 2.11. For Z the unique pointed matched circle for the torus, C(Z) ∼= B(Z),
which is described explicitly in Example 2.3.

Example 2.12. Let Z be the arc diagram from Example 2.5 for the complement of k
disks in S2. The algebra C(Z) is quite large. However, as we will see, C(Z) is formal; in
fact, there is a map of algebras f : C(Z) → H∗(C(Z)) such that f takes cycles to their
homology classes. This means that in practice we can work with H∗(C(Z)), which we
describe explicitly below, instead of C(Z).

To computeH∗(C(Z)) (and see that C(Z) is formal), we use a little more terminology.
Given a strand diagram s ∈ C(Z), the support supp(s) of s is the element of H1(Z, a)
gotten by projecting s to Z and viewing the result as a 1-chain.

As a first step towards understanding H∗(C(Z)), let M ⊂ C(Z) be the F2-subspace
generated by strand diagrams s such that supp(s) has multiplicity > 1 somewhere. Then
M is a differential ideal in H∗(C(Z)). Further, M is contractible, as in any arc diagram—
see [LOT10a, Theorem 9]. So, it suffices to show that C′(Z) = C(Z)/M is formal.

Let D be the F2-subspace of C′(Z) generated by all strand diagrams s ∈ C′(Z) such
that the interior of the supp(s) contains some point bi ∈ a which is occupied in the initial
(and hence also in the terminal) idempotent. Then D is a differential ideal in C(Z). We
claim that D is contractible. To see this, consider a strand diagram s ∈ D. Such strand
diagrams have one of two forms: either s has some strand starting at a point bi (and hence
also a strand ending at bi) or it does not. The generators of the two types cancel in pairs:
each generator of the first type occurs in the differential of a unique generator of the
second type.
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Thus, we have reduced to considering C′′(Z) = C′(Z)/D. It is now easy to see that
the homology of C′′(Z) is given by:

I1

J1

I2

J2

· · · Ik−1

Jk−1

ρa1,b1
ρb1,a

′

1

ρa′1,a2

ρa2,b2
ρb2,a

′

2

ρa′2,a3 ρa′
k−2,ak−1

ρak−1,bk−1
ρbk−1,a

′

k−1

/ρa′i ,ai+1
ρbi ,a′i

= 0
ρai ,biρa′i−1,ai

= 0
ρbi ,a′i

ρai ,bi = 0

 .

(Here, Ii corresponds to {ai, a′i} not occupied, and Ji corresponds to {bi, b′i} not occupied.
Each ρi,j in the diagram actually stands for the homology classes of ρi,j in H∗(C(Z)).)
Further, the map C(Z)→ H∗(C(Z)) sending strand diagrams appearing in this homology
to themselves and all other strand diagrams to 0 is a map of algebras.

The following generalization of Lemma 2.6 will be used implicitly below:

Lemma 2.13. Let Z be an arc diagram and −Z the arc diagram obtained by reversing
the orientation of each circle Zi in Z . Then A(−Z, i) is the opposite algebra to A(Z, i).

Proof. This is immediate from the definitions. ut

Remark 2.14. It is not a coincidence that the algebra C(Z) from Example 2.12 is formal:
it follows from [LOT11, Theorem 9] that C(Z) is always quasi-isomorphic to B(Z ′),
where Z ′ denotes the dual arc diagram to Z , as defined in Section 3.1. (The reader may
also notice a similarity between B(Z) and B(Z ′); it follows from results in [LOT11] that
these algebras are Koszul dual; see also Remark 3.26.)

Remark 2.15. Computations in B(Z) and C(Z) tend to be finite. In particular, both B(Z)
and C(Z) are finite-dimensional. If we grade B(Z) and C(Z) by the total length (sup-
port) of an element, then all nonidempotent basic generators have positive grading. Thus,
there is a number N , depending on Z , so that for any nonidempotent basic generators
a1, . . . , aN in B(Z) (respectively in C(Z)), we have a1 · · · aN = 0.

3. The bimodules

Let MCG0(F ) denote the mapping class group of F fixing the boundary of F pointwise.
Our goal is to associate a bimodule ĈFDA(φ) to each element φ ∈ MCG0(F ). The defi-
nitions of the bimodules ĈFDA(φ) in [LOT10a] and [Zar09], even in the special case of
interest to this paper, use holomorphic curves in a high symmetric product of a Riemann
surface. We can work instead in the first symmetric product, making the whole story com-
binatorial, by taking advantage of a duality discussed in [LOT11]. (In fact, there are two
ways to do so, corresponding to using type DD or type AA modules; we explain these in
Sections 3.2 and 3.3, respectively.)
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3.1. Diagrams for elements of the mapping class group

Fix an arc diagram Z , with n pairs of matched points. As discussed in Section 2, Z spec-
ifies a surface with boundary F ◦(Z) and a collection of arcs αi in F ◦(Z), whose comple-
ment is a union of disks. There is a dual set of curves ηi in F ◦(Z) so that

• ηi is contained in the handle of F ◦(Z) corresponding to αi and
• ηi intersects αi in a single point.

(See Figure 6.) Notice that {ηi ∩ ∂F (Z)} is another arc diagram; we will call this the dual
arc diagram to Z and denote it Z ′.

Fig. 6 (Diagrams for mapping classes). Left: a diagram for the identity map of the linear pointed
matched circle. Right: a diagram for a (particular) Dehn twist. In each case, the subsurface F(Z) ⊂
F ◦(Z) is shaded.

Lemma 3.1. Up to isotopy, the ηi are the unique curves in F(Z) with boundary on S−

and such that ηi intersects αi once and is disjoint from αj for i 6= j .

Proof. By definition, cutting along the αi gives a disjoint union of disks. The boundary
of each resulting disk will be divided into arcs coming from the original S− boundary,
the original S+ boundary, and from the cut-open α-curves. The conditions on a pointed
matched circle guarantee that there is a unique S− interval on the boundary of each disk,
so the S+ and α intervals necessarily alternate with each other. The image of the ηi
in these disks are arcs in the interior that meet S− and one of the α-curves. These are
uniquely characterized, up to isotopy. The result follows. ut

Given φ ∈ MCG0(F (Z)), viewing F(Z) as a subsurface of F ◦(Z), we can act by φ on
the η-curves, giving a new set of curves βi . Write α = α1∪· · ·∪αn and β = β1∪· · ·∪βn.
Let D(φ) = (F ◦(Z),α,β). Again, see Figure 6. We will always assume that α t β; this
is easy to arrange by deforming φ or {αi} slightly.
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The definitions of the bimodules will involve polygons in D(φ). Assume, for conve-
nience, that all of the intersections between α and β are right angles. Let

D2
= {x + iy ∈ C | x ≥ 0, x2

+ y2
≤ 1},

γR = ∂D2
∩ {x + iy ∈ C | x ≥ 0},

γL = ∂D2
∩ {x + iy ∈ C | x = 0}.

Orient γR and γL from −i to i.

Definition 3.2. Given chords ρ1, . . . , ρn in Z and σ1, . . . , σm in −Z ′, and points x, y ∈
α ∩ β, a polygon in D(φ) connecting x to y through (ρ1, . . . , ρn) and (σ1, . . . , σm) is a
map u : D2

→ D(φ) such that:

• u(γL) ⊂ β ∪ ∂D(φ) and u(γR) ⊂ α ∪ ∂D(φ).
• There are points p1, . . . , p2n ∈ γR (respectively q1, . . . , q2m ∈ γL), appearing in that

order as one traverses γR (respectively γL) from −i to i, so that u is an orientation-
preserving immersion onD2

\{p1, . . . , p2n, q1, . . . , q2m}. In particular, the image must
(locally) make a right angle at u(i) and u(−i).
• u(−i) = x and u(i) = y.
• For each i, u([p2i+1, p2i+2]) = ρi and u([q2i+1, q2i+2]) = σi ; and except for these

intervals, u maps to the interior of D(φ).

See Figure 7 for some sample polygons. Note that the sequence (σ1, . . . , σm) or
(ρ1, . . . , ρn) (or both) may be empty. If both sequences are empty, we are counting the
number of bigons between x and y.

Fig. 7 (Some polygons). These are local pictures, that is, only a part of the diagram is shown (the
boundary of which is indicated with dashed lines). Left: two polygons contributing to n(x, y, (), ()),
i.e., bigons. In the lower of the two, the darker region is covered with multiplicity two. Center: a
polygon contributing to n(x, y, (ρ1), (σ1)). Right: a polygon contributing to n(x, y, (ρ1, ρ2), (σ1)).

Call polygons u and v (connecting x to y and through (ρ1, . . . , ρn) and (σ1, . . . , σm))
equivalent if there is a diffeomorphism w : D2

→ D2 so that v = u ◦ w. Let n(x, y,
(σ1, . . . , σm), (ρ1, . . . , ρn)) ∈ Z/2 denote the number of equivalence classes of polygons
connecting x to y and through (ρ1, . . . , ρn) and (σ1, . . . , σm). (It is straightforward to
check that the number of such polygons is always finite.)
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Lemma 3.3. Let M(x, y, (σ1, . . . , σm), (ρ1, . . . , ρn)) be the moduli space of pseudo-
holomorphic curves as in [LOT10a] and [LOT11] connecting x to y with asymptotics
specified by the sequences (σ1, . . . , σm), (ρ1, . . . , ρn). If this moduli space is 0-dimen-
sional then

n(x, y, (σ1, . . . , σm), (ρ1, . . . , ρn)) ≡ #M(x, y, (σ1, . . . , σm), (ρ1, . . . , ρn)) (mod 2).

Otherwise, n(x, y, (σ1, . . . , σm), (ρ1, . . . , ρn)) = 0.

Proof. This follows from the definitions and the Riemann mapping theorem. ut

Remark 3.4. Counting immersed polygons in D(φ) is combinatorial, and boils down to
the combinatorics of gluing together components of D(φ) \ (α ∪ β).

3.2. Type D modules

The goal of this section is to associate a (differential) C(Z)-bimodule Q(φ) to a strongly
based mapping class φ : F(Z) → F(Z). We first define a C(Z ′)-C(Z)-bimodule P(φ)
associated to φ, and then define Q(φ) in terms of P(φ).

Given a point x ∈ α ∩ β define ID(x) to be the idempotent in C(Z ′) corresponding to
the β-curves not occupied by x, and JD(x) to be the idempotent in C(Z) corresponding
to the α-curves not occupied by x. Let

P(φ) =
⊕
x∈α∩β

C(Z ′)ID(x)⊗F2 JD(x)C(Z).

This is a C(Z ′)-C(Z)-bimodule. Abusing notation imperceptibly, we let x denote the
generator for P(φ) corresponding to the intersection point x. Define a differential on
P(φ) by

∂(x)

=

∑
y∈α∩β

∑
(ρ1,...,ρn),
(σ1,...,σm)

n(x, y, (σ1, . . . , σm), (ρ1, . . . , ρn))c(σ1)·· · ··c(σm)·y·c(ρn)·· · ··c(ρ1),

and extending via the Leibniz rule ∂(axb) = (∂(a))xb + a(∂(x))b + ax(∂(b)).

Lemma 3.5. The bimodule P(φ) agrees with the bimodule ĈFDD(D(φ), n/2 − 1) as
defined in [LOT10a], [Zar09] and [LOT11].

Proof. This is straightforward from the definitions and Lemma 3.3. (Note that in [LOT11]
we would have thought of P(φ) as a left module over C(−Z) and a right module over
C(−Z ′); using the fact that C(−Z) ∼= C(Z)op we are viewing P(φ) as a right module
over C(Z) and left module over C(Z ′).) ut

Proposition 3.6. If φ is isotopic relative to the boundary of F(Z) to ψ then P(φ) is
homotopy equivalent to P(ψ).
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Proof. This follows from the identification P(φ) ∼= ĈFDD(D(φ), n/2−1) (Lemma 3.5)
and the corresponding invariance property of ĈFDD(D(φ), n/2 − 1). (It should also be
possible to give a direct proof, since all of the objects involved are topological.) ut

The bimodules P(φ) are not the ones promised in the introduction; indeed, they are bi-
modules over two different algebras. We perform one further algebraic operation on them.
Let IZ denote the identity map of F(Z). Then for φ ∈ MCG0(F (Z)) define

Q(φ) = MorC(Z ′)(P (IZ ), P (φ)),

where Mor denotes the chain complex of left module maps P(IZ ) → P(φ), which is a
C(Z)-bimodule.3

Proposition 3.7. The bimodule Q(φ) defined above agrees with the bimodule
ĈFDA(φ, n/2− 1) defined in [LOT10a] (or [Zar09]).

Proof. The diagram D(φ) is an α-β-bordered Heegaard diagram. as in [LOT11]. On the
other hand, D(I−Z )

⋃
Z ′ D(φ) is an α-α-bordered Heegaard diagram for φ, in the sense

of [LOT10a]. Thus, the pairing theorem for bordered Floer homology expresses the bor-
dered invariant ĈFDA(φ) as the A∞ tensor product

ĈFDA(φ) ' ĈFAA(D(I−Z )) ⊗̃A(Z ′) ĈFDD(D(φ)). (3.8)

(See [LOT10a, Section 7] for the pairing theorem and, for instance, [Kel01] for a discus-
sion of the A∞ tensor product.) In particular, taking φ = I, the bimodules ĈFDD(D(IZ ))
and ĈFAA(D(I−Z )) are quasi-inverses to each other (in the sense of [LOT10a, Defini-
tion 2.4.7]. So,

MorA(Z ′)(ĈFDD(D(IZ )),A(Z ′))

' MorA(Z ′)(ĈFAA(D(I−Z )) ⊗̃ ĈFDD(D(IZ )), ĈFAA(D(I−Z )))

' ĈFAA(D(I−Z )). (3.9)

Combining (3.8) and (3.9) and using the fact that ĈFDD(D(φ), n/2 − 1) ∼= P(φ) gives
the result. ut

Corollary 3.10. The bimodules Q(φ) satisfy Q(φ) ⊗ Q(ψ) ' Q(ψ ◦ φ) and Q(I) '
C(Z)C(Z)C(Z). In particular, they give an action of MCG0(F (Z)) on the derived category
of right differential modules over C(Z).

Proof. This follows from Proposition 3.7 and the corresponding facts for ĈFDA(φ),
which are proved in [LOT10a]. ut

3 That is, MorC(M,N) is generated by maps fromM toN which respect the left module structure
but not the right module structure or differential. The differential of such a map f is given by
d(f )(x) = ∂(f (x))+ f (∂(x)). The right action on MorC(M,N) is given by (f · b)(x) = f (x) · b.
The left action on MorC(M,N) is given by (b · f )(x) = f (x · b).
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Remark 3.11. The bimodules Q(φ) are left- and right-projective (compare [LOT10a,
Corollary 2.3.25]), so the ordinary tensor product in Corollary 3.10 agrees with the de-
rived tensor product.

Example 3.12. Figure 8 (left) shows a diagram for the identity map of the torus. There
are three polygons (shown with different shadings in Figure 8 in the middle), contributing

∂x1 = σ2,3x2ρ2,3, ∂x2 = σ1,2x1ρ1,2 + σ3,4x1ρ3,4

to the differential on P(I). No other polygons contribute to the differential: for polygons
to contribute in this case, their boundaries must contain a single connected segment in
each of Z and Z ′, with multiplicity one. Any polygon whose image is the union of two
components of D(I) \ (α ∪ β) cannot contribute for idempotent reasons. The union of all
three regions in D(I) \ (α ∪β) is represented by two different polygons, one contributing
to n(x2, x1, (σ1,4), (ρ3,4, ρ2,3, ρ1,2)) and one contributing to n(x2, x1, (σ1,2, σ2,3, σ3,4),

(ρ1,4)). These cancel algebraically (each contributes σ1,4x1ρ1,4 to ∂x2).
Next, to compute Q(I), we consider MorC(Z ′)(P (I), P (I)). As a left C(Z ′)-module,

P(I) is generated by

S = {x1, x1ρ1,2, x1ρ1,3, x1ρ1,4, x1ρ3,4, x2, x2ρ2,3, x2ρ2,4}.

Let x be any element of S1 = {x1, x1ρ1,2, x1ρ1,3, x1ρ1,4, x1ρ3,4}. Then there is an ele-
ment in MorC(Z ′)(P (I), P (I)) sending x to any element of

{x1, x1ρ1,2, x1ρ1,3, x1ρ1,4, x1ρ3,4, σ2,4x1, σ2,4x1ρ1,2, σ2,4x1ρ1,3, σ2,4x1ρ1,4,

σ2,4x1ρ3,4, σ2,3x2, σ2,3x2ρ2,3, σ2,3x2ρ2,4}

and sending all other elements of S to 0.
Similarly, for y any element of S2 = {x2, x2ρ2,3, x2ρ2,4} there is an element of

MorC(Z ′)(P (I), P (I)) sending y to any of

{x2, x2ρ2,3, x2ρ2,4, σ1,3x2, σ1,3x2ρ2,3, σ1,3x2ρ2,4, σ1,2x1, σ1,4x1,

σ3,4x1, σ1,2x1ρ1,2, σ1,4x1ρ1,2, σ3,4x1ρ1,2, σ1,2x1ρ1,3, σ1,4x1ρ1,3, σ3,4x1ρ1,3,

σ1,2x1ρ1,4, σ1,4x1ρ1,4, σ3,4x1ρ1,4, σ1,2x1ρ3,4, σ1,4x1ρ3,4, σ3,4x1ρ3,4}

and sending all other elements of S to 0.
The next step in computing Q(I) is to compute the differential and module structure

on MorC(Z ′)(P (I), P (I)). This is cumbersome, although explicit. Some examples of this
form can be found in [LOT11, Section 7] and [LOT10b, Section 8]. In Section 3.4 we will
give a more practical way of working with one of our algebra actions.
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Fig. 8 (The identity map of the torus and a Dehn twist). Left: a diagram for the identity map of
the torus. Center: three different polygons (rectangles) in the diagram, drawn with three different
shadings. Right: a diagram for a Dehn twist around a particular essential curve in the torus.

Example 3.13. Figure 8 on the right also shows a diagram for a particular Dehn twist of
the torus. The associated module P(φ) has three generators, x1, x2 and x3, with differen-
tials

∂(x1) = σ2,3x3,

∂(x2) = σ3,4x1ρ3,4 + x3ρ1,2,

∂(x3) = σ1,2x1ρ1,3 + σ1,3x2ρ2,3.

Unlike Example 3.12, where ∂2
= 0 was forced by products in the algebra being zero,

one of the cases of ∂2
= 0 here involves cancellation:

∂2(x3) = ∂(σ1,2x1ρ1,3 + σ1,3x2ρ2,3) = σ1,2σ2,3x3ρ1,3 + σ1,3x3ρ1,2ρ2,3 = 0.

3.3. Type A modules

Let M(φ) be the F2-vector space generated by S(φ) = α ∩ β. We will make M(φ)
into an A∞-bimodule over B(Z ′) and B(Z). To start, define a left action of B(Z ′) and a
right action of B(Z) on M(φ) as follows. Given x ∈ S(φ) and idempotents I ∈ B(Z ′),
J ∈ B(Z) corresponding to arcs αi and βj respectively, we have

I · x · J =

{
x if x ∈ αi ∩ βj ,

0 otherwise.

Next, given a chord ρ in B(Z), define

x · ρ =
∑

y∈S(φ)

n(x, y, (), (ρ))y.

Similarly, given a chord σ in B(Z ′) and another point y ∈ S(H), define

σ · x =
∑

y∈S(φ)

n(x, y, (σ ), ())y.
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We will also denote σ ·x bym1,1,0(σ, x) and x ·ρ bym0,1,1(x, ρ); the reason will become
clear presently.

Example 3.14. In the diagram for a Dehn twist of the torus in Figure 8, x2ρ1,2 = x3.

In general, the action we have defined so far may not be associative; see Figure 9. As
the notation suggests, we should really think ofM(φ) as an A∞-bimodule. As a warm-up,
define a differential on M(φ) by counting bigons:

∂(x) =
∑

y∈S(φ)

n(x, y, (), ())y.

It is straightforward to verify that ∂2
= 0, and the reader to whom this is unfamiliar is

encouraged to do so. We will also denote ∂(x) as m0,1,0(x).

Fig. 9 (Nonassociativity of the action on M(φ)). This is a local example; only part of the diagram
is drawn. There are products x · ρ1 = v and v · ρ2 = w, given by the shaded regions in the second
and third pictures, respectively. However, x · (ρ1ρ2) = 0: there is (obviously) no rectangle giving
a nontrivial operation of this form. The resolution is that ∂(x) = y and m3(y, ρ1, ρ2) = w; these
operations are given by the darkly and lightly shaded regions in the fourth picture, respectively.

More generally, given a sequence of chords σ1, . . . , σn in B(Z ′) and ρ1, . . . , ρn in
B(Z), and generators x, y ∈ S(φ), define

mm,1,n(σm, . . . , σ1, x, ρ1, . . . , ρn) =
∑

y∈S(φ)

n(x, y, (σ1, . . . , σm), (ρ1, . . . , ρn))y.

Extend this multi-linearly to a map

mm,1,n :

m copies︷ ︸︸ ︷
B(Z ′)⊗ · · · ⊗ B(Z ′) ⊗M(φ)⊗

n copies︷ ︸︸ ︷
B(Z)⊗ · · · ⊗ B(Z)→ M(φ).

Lemma 3.15. These mi,1,j endow M(φ) with the structure of an A∞-bimodule.

Proof. This is not too hard to prove combinatorially, but also follows from the analysis
in [LOT08] and the Riemann mapping theorem. ut
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Remark 3.16. Even if m0,1,0 = 0, so that m1,1,0 and m0,1,1 make M(φ) into an honest
bimodule, there is a lot of additional information in the higher A∞-operations. See, for
instance, Example 3.20.

As with the bimodules P(φ) in Section 3.2, the bimodules M(φ) are not the ones
promised in the introduction. Let IZ denote the identity map of F ◦(Z). Then for φ ∈
MCG0(F (Z)) define

N(φ) = MorB(Z ′)(M(IZ ),M(φ)), (3.17)

where Mor denotes the chain complex of left A∞-module morphisms (whose cycles are
the A∞-homomorphisms); see, for instance, [LOT10a, Chapter 2]. Note that the right
actions by B(Z) onM(I) andM(φ) give N(φ) the structure of an (A∞) B(Z)-bimodule.

Proposition 3.18. The bimodule N(φ) defined above agrees with ĈFDA(φ,−n/2 + 1)
defined in [LOT10a] (or [Zar09]).

Proof. The proof is essentially the same as the proof of Proposition 3.7. ut

Corollary 3.19. The bimodules N(φ) satisfy N(φ) ⊗̃ N(ψ) ' N(ψ ◦ φ) (where ⊗̃ de-
notes the A∞ tensor product) and N(I) ' B(Z)B(Z)B(Z). In particular, the bimod-
ules N(φ) give an action of MCG0(F (Z)) on the A∞-homotopy category of right A∞-
modules over B(Z).

Proof. Similarly to Corollary 3.10, this follows from Proposition 3.18 and the corre-
sponding facts for ĈFDA(φ), which are proved in [LOT10a]. ut

Example 3.20. For the identity map I of the torus, using the diagram from Figure 8,
M(I) has two generators x1 and x2. The differential and ordinary product are both trivial.
There are, however, obvious higher products given by the rectangles in Figure 8, of the
forms:

m3(σ1,2, x2, ρ1,2) = x1,

m3(σ3,4, x2, ρ3,4) = x1,

m3(σ2,3, x1, ρ2,3) = x2.

This is not the end of the story; indeed, with only these products, M(I) would not satisfy
the A∞-relations. For instance, there is an operation

m4(σ2,3, σ1,2, x2, ρ1,3) = x2.

To see this, consider the union of the regions abutting ρ1,2 and ρ2,3. Make a cut in this
region from x2 along the β-curve to the boundary. The result is a polygon, from x2 to
itself, through the chord ρ1,3 on one boundary component and the chords σ2,3 and σ1,2 on
the other boundary component. (This operation is also forced by the A∞-relation.)
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Similarly, there are higher products:

m5(σ1,3, σ1,2, x2, ρ1,3, ρ1,2) = x1,

m6(σ2,3, σ1,3, σ1,2, x2, ρ1,3, ρ1,3) = x2,

m7(σ1,3, σ1,3, σ1,2, x2, ρ1,3, ρ1,3, ρ1,2) = x1,

...

m5(σ3,4, σ2,3, σ1,2, x2, ρ1,4) = x1,

m6(σ2,4, σ2,3, σ1,2, x2, ρ1,4, ρ2,3) = x2,

m7(σ1,4, σ2,3, σ1,2, x2, ρ1,4, ρ2,3, ρ1,2) = x1,

...

as well as several more infinite families, and similar infinite families starting from x1.
It would be natural to compute N(I) next, via (3.17). This is tedious (and infinite); we

will give a better method for computingN(φ) fromM(φ) in the next section. In particular,
by Corollary 3.25, we have written down enough of M(φ) to characterize N(φ) (as well
as M(φ)).

3.4. Practical computations

As Example 3.12 illustrates, computing the bimodulesQ(φ) and N(φ) from the modules
P(φ) andM(φ) is quite cumbersome, and computing the tensor productsQ(φ1)⊗Q(φ2)

or N(φ1) ⊗̃ N(φ2) would be even more so. In this section, we give a reformulation of
the bimodules N(φ) which is better suited for computations. The key tool is the type DD
bimodule associated to the diagram D(I) in the second to lowest spinc-structure. (The type
DD bimodules we have worked with so far are in the second to highest spinc-structure.)

Call a chord in B(Z) short if it connects adjacent points in a. Let SC(Z) denote the
set of short chords in Z . The diagram D(IZ ) sets up a correspondence between SC(Z)
and SC(Z ′) as follows: two chords correspond if they lie on the boundary of a single
connected component of D(IZ ) \ (α ∪ β). Given a short chord ξ ∈ SC(Z) let ξ ′ be the
corresponding short chord in SC(Z ′).

Definition 3.21. Given an arc diagram Z , let DD
( I

2

)
denote the B(Z)-B(Z ′)-bimodule

defined as follows. The bimodule DD
( I

2

)
has one generator xi for each matched pair

{ai, a
′

i} in M . Let I (xi) be the idempotent in B(Z) corresponding to {ai, a′i}, and J (xi)
the idempotent in B(Z ′) corresponding to {ai, a′i}. Let

DD
( I

2

)
=

⊕
i

B(Z)I (xi)⊗ J (xi)B(Z ′).

Abusing notation, we also let xi denote a generator of the summand corresponding to xi .
Define a differential on DD

( I
2

)
by

∂(xi) =
∑
j

∑
ξ∈SC(Z)

I (xi) · ξ · xj · ξ
′
· J (xi),



Faithful linear-categorical mapping class group action 1299

and extending via the Leibniz rule. (Note that most terms in the sum defining ∂(xi) vanish
for idempotent reasons.)

Proposition 3.22. The bimodule DD
( I

2

)
is homotopy equivalent to the bimodule

ĈFDD(D(I−Z ),−n/2+ 1).

Proof. The identification of generators is given as follows: the generator xi for DD
( I

2

)
corresponding to the matched pair {ai, a′i} corresponds to the generator x ⊂ α ∩ β for
ĈFDD(D(I−Z )) consisting of {αj ∩ βj | j 6= i}. Each term in the differential on DD

( I
2

)
corresponds to an embedded hexagon in D(I−Z ), and hence corresponds to a term in the
differential on ĈFDD(D(I−Z ),−n/2+ 1). So, it remains to show that there are no other
terms in the differential on ĈFDD(D(I−Z ),−n/2+ 1). We will do this by showing that
there are no other index 1 positive domains whose boundaries in Z and Z ′ are such that
they can contribute to the differential.

Writing D(I−Z ) = (F ◦(Z),α,β), each component of F(Z) \ (α ∪ β) is a hexagon,
with two sides contained in α, two sides contained in β, one side in Z and one side in Z ′.

For a domain B to contribute a′ · y · a to ∂x we must have

e(B)+ nx(B)+ ny(B)− ι(a)− ι(a
′) = −1.

For generators a ∈ B(Z), we have ι(a) = 0 if a is an idempotent and−1/2 if a is not. All
nontrivial domains in D(I−Z ) intersect both Z and Z ′, so ι(a) = ι(a′) = −1/2. Thus,
for a domain B to contribute, it must have

e(B)+ nx(B)+ ny(B) = 0.

Fix generators x = {x1, . . . , x2n−1} and y = {y1, . . . , y2n−1} for DD
( I

2

)
. Reordering

x and y if necessary, we may assume xi = yi for i < 2n− 1. There are two cases: either
x2n−1 = y2n−1 or x2n−1 6= y2n−1. For simplicity, we will treat these two cases separately.

Case 1: x2n−1 = y2n−1. There is one point p ∈ α ∩ β not appearing in x = y. Let
R1, . . . , R4 denote the four components of F ◦(Z) \ (α ∪ β) which have p as a corner.
Note that Ri 6= Rj for i 6= j unless Ri contains a basepoint.

If R is some component of F ◦(Z) \ (α ∪ β) other than R1, . . . , R4 then

e(R)+ nx(R)+ ny(R) = −1/2+ 1 = 1/2.

By contrast, for the regions R1, . . . , R4,

e(Ri) = −1/2+ 1/2 = 0.

Thus, for any positive domain B, e(B)+ nx(B)+ ny(B) ≥ 0, with equality if and only if
B is a linear combination of R1, . . . , R4. Thus, for grading reasons, the only domains that
could contribute in this case are linear combinations of R1, . . . , R4. Because the algebra
element on each side must be a single, connected chord, the multiplicity of each Ri must
be 0 or 1. So, the rest of the argument boils down to the combinatorics of gluing together
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≤ 4 hexagons, each with two boundary components labeled α, two labeled β, one labeled
Z and one labeled Z ′, and gluing allowed along the α- and β-boundary components.

If we number the Ri counter-clockwise around p, say, with R1 separated from R2 by
a β-arc, then the only such linear combinations which could give domains in π2(x, y) are
R1+R2, R2+R3, R3+R4, R4+R1 and R1+R2+R3+R4. If R1+R2 gives a domain
then the chords in Z corresponding to R1 and R2 must be consecutive. Such a domain
has no holomorphic representative compatible with the idempotents, as in Example 3.12.
The cases R2 + R3, R3 + R4 and R4 + R1 are similar. For R1 + R2 + R3 + R4, it is not
possible for the domain to have connected boundary in Z (or Z ′).

Thus, no domains from this case contribute to the differential on ĈFDD(D(I−Z )).

Case 2: x2n−1 6= y2n−1. As before, all regions have e(R)+ nx(R)+ ny(R) ≥ 0. More-
over, equality only occurs for regions containing both x2n−1 and y2n−1 on their bound-
aries. There can be at most three such regions not containing basepoints; Figure 8 (on
the left) is the essentially unique case in which there are three. Let R1, R2, R3 denote the
three such regions (if three exist). The only linear combinations of R1, R2, R3 giving do-
mains in π2(x, y) with multiplicities 0 or 1 everywhere in Z and Z ′ are R1, R2, R3, and
R1 +R2 +R3. The cases R1, R2 and R3 contribute terms that occur in the differential on
DD

( I
2

)
. If R1 + R2 + R3 exists then its geometry is exactly as in the genus 1 case (Fig-

ure 8). Thus, as in Example 3.12, there are two cancelling holomorphic representatives.
This concludes the proof of Proposition 3.22. ut

Corollary 3.23. The bimodule DD
( I

2

)
⊗̃B(Z ′) M(φ) is A∞-homotopy equivalent

to N(φ).

Proof. This follows from Proposition 3.22 and the definitions, similarly to the proof of
Proposition 3.18. ut

We have been using the notation ⊗̃ to denote the A∞ tensor product. The resulting chain
complexes are almost always infinite-dimensional. For cases under consideration, how-
ever, there is a smaller model for the A∞ tensor product, which we denote �. We refer
the reader to [LOT10a] for the definition.

Example 3.24. Continuing Example 3.20, we are now in a position to compute the bi-
module N for the identity map of the torus. In this case, the bimodule DD

( I
2

)
has gener-

ators w1 and w2, with

∂w1 = ρ2,3w2σ2,3 ∂w2 = ρ1,2w1σ1,2 + ρ3,4w1σ3,4.

(This is, not coincidentally, the same as the bimodule P(I) from Example 3.12.) Taking
the� tensor product with the bimoduleM(I) from Example 3.20, we get a bimodule with
generators w1 ⊗ x1 and w2 ⊗ x2, and operations:

m2(w2 ⊗ x2, ρ1,2) = ρ1,2w1 ⊗ x1, m2(w2 ⊗ x2, ρ3,4) = ρ3,4w1 ⊗ x1,

m2(w1 ⊗ x1, ρ2,3) = ρ2,3w2 ⊗ x2, m2(w2 ⊗ x2, ρ1,3) = ρ1,3w2 ⊗ x2,

m2(w1 ⊗ x1, ρ2,4) = ρ2,4w1 ⊗ x1, m2(w2 ⊗ x2, ρ1,4) = ρ1,4w1 ⊗ x1.

This is exactly the B(Z)-bimodule B(Z)—as we expected.
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(The module is projectively generated on the left, like the typeD cases above. On the
right, it is an A∞-module, like the type A cases.)

We show a few examples of how these operations arise.
The operationm2(w2⊗x2, ρ1,4) = ρ1,4w1⊗x1 comes from a diagram of the following

form:
w2 x2

∂

m3

w1 x1

ρ 1,2

σ1,2

ρ 1,2

using the higher product m3(σ1,2, x2, ρ1,2) = x1.
The operation m2(w2 ⊗ x2, ρ1,2) = ρ1,2w1 ⊗ x1 comes from a diagram of the form

w2 x2

∂

∂

∂

m5multiply

w1 x1

ρ 1,2

ρ2,3

ρ3,4

σ1,2
σ2,3

σ3,4
ρ 1
,4

ρ 1,4

using the higher product m5(σ3,4, σ2,3, σ1,2, x2, ρ1,4) = x1. See [LOT10a] for more de-
tails.

Note that although the bimodule M(I) had infinitely many nontrivial operations, the
bimodule N(I) has only finitely many. This will be true in general; see the discussion of
boundedness in [LOT10a]. (In the terminology there, all of the bimodules in this paper
are left and right bounded.)

Corollary 3.25. The module N(φ) is determined by the higher products

mm,1,n(σi1 , . . . , σim , x, ρj1 , . . . , ρjn)

onM(φ) where σi1 , . . . , σim are short chords such that σ ′im · · · σ
′

i1
6= 0. (In particular, the

σik are distinct and their union is connected.)

Proof. In the bimodule DD
( I

2

)
� M(φ), these are the only higher products which can

lead to nonzero terms in the differential. ut

Remark 3.26. The bimodule DD
( I

2

)
corresponds to the Koszul duality between the al-

gebras A(Z) and A(Z ′). See [LOT11, Section 8].
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3.5. Equivalence of the two actions

The reader might wonder if the two actions we have defined are genuinely different. They
are not:

Proposition 3.27. There is an equivalence of categories

F : Db(B(Z)Mod)→ Db(C(Z)Mod)

intertwining the actions of the mapping class group of F(Z), in the sense that the diagram

Db(B(Z)Mod) Db(B(Z)Mod)

Db(C(Z)Mod) Db(C(Z)Mod)

F(·) F(·)

· ⊗̃N(φ)

· ⊗Q(φ)

commutes.
Proof. In [LOT10a], we construct bimodules B(Z)ĈFDD(I)C(Z) and C(Z)ĈFAA(I)B(Z)
such that for any mapping class φ of F(Z),

C(Z)ĈFAA(I)B(Z) ⊗̃ B(Z)N(φ)B(Z) ⊗̃ B(Z)ĈFDD(I)C(Z) ' C(Z)Q(φ)C(Z),

B(Z)ĈFDD(I)C(Z) ⊗ C(Z)Q(φ)C(Z) ⊗̃ C(Z)ĈFAA(I)B(Z) ' B(Z)N(φ)B(Z),

B(Z)ĈFDD(I)C(Z) ⊗̃ C(Z)ĈFAA(I)B(Z) ' B(Z)B(Z)B(Z),

C(Z)ĈFAA(I)B(Z) ⊗̃ B(Z)ĈFDD(I)C(Z) ' C(Z)C(Z)C(Z).

So, tensoring with ĈFAA(IZ ) gives the desired functor. ut

4. Faithfulness of the action

To verify that the action is faithful, we start by giving a geometric interpretation of the
rank of H∗(M(φ)) for φ ∈ MCG0(F ). By definition, the rank of H∗(M(φ)) in the idem-
potent corresponding to αi and βj is the Floer homology of αi with βj . This Floer homol-
ogy has a well-known geometric interpretation in terms of intersection numbers:

Lemma 4.1. Let α and β be nonisotopic, essential curves in a surface F , so that ∂α ⊂
∂F , ∂β ⊂ ∂F , ∂α ∩ ∂β = ∅, and α intersects β transversely. Let HF(α, β) denote the
Floer homology of the pair (α, β). That is, HF(α, β) is the homology of the chain complex
CF(α, β) generated (over F2) by α∩β and whose differential counts pseudoholomorphic
bigons (or, equivalently, equivalence classes of immersed bigons) between α and β. Then
dimF2(HF(α, β)) = i(α, β).

Here i(α, β) is the geometric intersection number of α and β: the minimal number of
intersections between any two curves isotopic (relative to the boundary) to α and β. This
minimal number is achieved by any curves α′ and β ′ intersecting transversely with no
bigons between them.
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Proof. The Floer homology group HF(α, β) is an isotopy invariant of α and β. If α′

and β ′ are isotopic to α and β and arranged so that the are no bigons between α′ and β ′

then CF(α′, β ′) has no differential. Thus,

dimF2(HF(α, β)) = dimF2(CF(α′, β ′)) = |α′ ∩ β ′| = i(α, β),

as desired. ut

To prove faithfulness of the mapping class group action, it suffices to prove:

Theorem 2. The bimodule N(φ) (respectively Q(φ)) is quasi-isomorphic to the bimod-
ule B(Z)B(Z)B(Z) (respectively C(Z)C(Z)C(Z)) if and only if φ is isotopic to the identity.

Proof. We discuss N(φ) first. The functor MorB(−Z ′)(M(IZ ), ·) gives an equivalence of
categories, so it suffices to show that M(φ) ' M(I) implies φ ∼ I. Let Ii denote the
idempotent corresponding to ηi (or βi) and Ji the idempotent corresponding to αi . Then
IiH∗(M(φ))Jj is the Floer homology group HF(βi, αj ) so, by Lemma 4.1,

dimF2 IiH∗(M(φ))Jj = i(βi, αj ).

Thus, if M(φ) ' M(I) then i(βi, αj ) = δi,j By Lemma 3.1, this implies that {βi} is
isotopic to the set of dual curves {ηi} (which are also the β-curves for the identity map).
Thus, φ fixes the curves ηi (up to isotopy). Since the complement of the ηi is a union
of disks, and φ does not permute these disks (since φ fixes the boundary of F(Z)), this
implies that φ ∼ I.

The statement about Q(φ) follows formally, since Q(φ) ' ĈFAA(IZ ) ⊗̃ N(φ) ⊗̃
ĈFDD(IZ ), and tensoring with ĈFAA(I) and ĈFDD(I) give equivalences of categories.
Alternatively, we can give essentially the same proof as above. Let I(Z) denote the sub-
ring of idempotents in C(Z). Then

IiH∗(I(−Z ′)⊗C(−Z ′) P(φ)⊗C(Z) I(Z))Jj ∼= HF(βi, αj ).

(Here, I(Z) is a C(Z)-algebra via the augmentation map C(Z) → I(Z) sending any
non-idempotent element to 0.) The rest of the proof is then the same. ut

Proof of Theorem 1. This is immediate from Theorem 2, together with the identification
between N(φ) and ĈFDA(φ,−n/2+ 1) (Proposition 3.18). ut

As a corollary, when we iterate a map, the ranks of the homology of the bimodules grow
like the dilatation of a pseudo-Anosov map.

Corollary 4.2. For φ a pseudo-Anosov mapping class with dilatation λ,

lim
n→∞

n
√

dimF2 H∗(N(φ
n)) = lim

n→∞

n
√

dimF2 H∗(Q(φ
n)) = λ.
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Proof. First consider the similar statement for M(φn). By Lemma 4.1,

dimF2 IiH∗(M(φ
n))Jj = i(βi, αj ) = i(φ

n(ηi), αj ).

It is well-known that the intersection numbers in pseudo-Anosov maps grow exponen-
tially with the iteration. More precisely,

lim
n→∞

i(φn(ηi), αj )

λn
= µs(ηi)µu(αj ) (4.3)

where µs and µu are, respectively, the transverse measures on the stable and unstable
foliations of φ, suitably normalized. (See, e.g., [FLP79, Theorem 12.2] for the theorem
for surfaces with no boundary, or [FLP79, Theorem 11.5] for a related theorem in the case
of a surface with boundary.)

For the statement of the corollary, we do not need the precise constants on the right-
hand side of (4.3), just that they are nonzero. Butµs(ηi) 6= 0 for any pseudo-Anosov map,
as otherwise the simple closed curve formed by connecting the endpoints of ηi along ∂F
would be a reducing curve. (If ηi connects two different boundary components, consider
instead the curve formed by taking two copies of ηi and connecting the endpoints the
long way around ∂F .) Similarly, µu(αj ) 6= 0, so by (4.3), i(φn(ηi), αj ) grows as λn. The
dimension dimF2 H∗(M(φ

n)) is a sum of such terms, so dimF2 H∗(M(φ
n)) grows as λn

as well.
By definition, N(φn) ' MorB(−Z ′)(M(IZ ),M(φn)). Since B(−Z ′) and M(IZ )

are finite-dimensional, dimF2 H∗(N(φ
n)) ≤ K dimF2 H∗(M(φ

n)) for some constant K .
Since MorB(−Z ′)(M(IZ ), ·) is an equivalence of categories (with inverse given by taking
Mor with another bimodule), we also have a similar bound the other direction, proving
the statement in the corollary for N(φn).

The statement about Q(φ) follows similarly, since Q(φ) ' ĈFAA(IZ ) ⊗̃ N(φ) ⊗̃
ĈFDD(IZ ), and both ĈFAA(IZ ) and ĈFDD(IZ ) are finite-dimensional, and tensoring
with ĈFAA(IZ ) (respectively ĈFDD(IZ )) gives an equivalence of categories (where ten-
soring with ĈFDD(IZ ) (respectively ĈFAA(IZ )) gives the inverse equivalence). ut

Remark 4.4. A similar statement holds if φ is reducible; then the growth rate of the rank
of the homology is given by the maximum dilatation of any pseudo-Anosov component
of φ, as at least one αi and one ηj must intersect the pseudo-Anosov component. If φ has
no pseudo-Anosov components (i.e., some power of φ is a composition of Dehn twists
along pairwise-disjoint curves), the rank of the homology grows only linearly.

5. Finite generation

In this section, we briefly review the sense in which the module categories on which the
mapping class group is acting are finitely generated.

Definition 5.1. Given objects {Mi} in a triangulated category C , the subcategory gener-
ated by {Mi} is the smallest triangulated subcategory of C containing all of the Mi . We
say that {Mi} generate C if the subcategory generated by {Mi} is, in fact, C . We say that
C is finitely generated if there is a finite set of objects {Mi} which generate C .
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Although the definition of finite generation is rather abstract, our proof that our mod-
ule categories are finitely generated will be satisfyingly concrete. Fix an arc diagram Z ,
and let B = B(Z), C = C(Z). Before giving the proof, we develop a little more algebra.
Let C+ be the ideal in C+ generated by all strand diagrams s in which not all strands
are horizontal (so as an F2-vector space, C is the direct sum of C+ and the subring of
idempotents of C). Observe that C+ is nilpotent; for instance, this follows from the facts
that C is finite-dimensional, the total length gives a grading on C, and C+ is the positively
graded part of C with respect to this grading (compare Remark 2.15). In particular, for
any C-module M , the module C+ ·M is a proper submodule of M .

A simple module over C is a module M which is 1-dimensional over F2 (and so has
trivial differential). The simple modules are in bijective correspondence with the 2n min-
imal idempotents in C.

Theorem 3. The derived categories Db(BMod) and Db(CMod) are finitely generated.

Proof. We start by proving the statement for Db(CMod); one can give a similar proof
for B, but since we have been working with A∞-modules over B a little extra verbiage is
required.

We prove that C is generated by the simple modules. Our proof is by induction on
the dimension over F2 of a differential module M ∈ Db(CMod). There is a short exact
sequence

0→ C+M → M → M/C+M → 0.

Further,M/C+M is a direct sum of simple modules and C+M has strictly smaller dimen-
sion than M . By induction, we can assume that C+M is in the triangulated subcategory
generated by the simple modules; it follows that M is in this subcategory as well.

The statement for Db(BMod) now follows from the statement for Db(CMod) and the
fact that tensoring with ĈFAA(I) gives an equivalence between the two categories. ut

Remark 5.2. If we prefer to think of elements of Db(CMod) as projective modules, we
can give a similar proof using the elementary projective modules C · I (for I one of the n
minimal idempotents).

It is not hard to extend the proof of Theorem 3 to give the following:

Theorem 4. The modulo 2 Grothendieck group G(BMod) of differential B-modules is
isomorphic to H1(F (Z);Z/2). The action of the mapping class group on BMod de-
fined in this paper decategorifies to the standard action of the mapping class group on
H1(F (Z);Z/2). The corresponding statements also hold for CMod, as well as for the
Grothendieck groups of projective differential modules K0(BMod) and K0(CMod).

Proof. The proof of Theorem 3 shows that the n elementary modules generateG(CMod).
To see that they are linearly independent, consider the algebra map

C → C/C+ =
n⊕
i=1

F2.

This maps the n generators of G(CMod) to a basis for G(C/C+Mod) = (F2)
n.
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To understand the induced mapping class group action, let α1, . . . , αn be the basis of
curves for F(Z) specified by the pairs of points in M , and let γ1, . . . , γn be dual curves.
Then, for idempotents Ii and Ij , the number of generators gij of IiĈFDA(φ,−n/2+1)Ij
(as a type DA bimodule) is equal (modulo 2) to the number of intersections between
φ(αi) and γj . (To see this, note that each generator of N(φ) can be promoted uniquely
to a generator of ĈFDA(φ,−n/2 + 1).) Use the αi to give a basis [α1], . . . , [αn] for
H1(F (Z)). With respect to this basis,

φ∗[αi] = (αi · γ1, . . . , αi · γn) ≡ (gi,1, . . . , gi,n) (mod 2).

This implies that the induced action on Grothendieck groups agrees with the action on
H1(F (Z)).

The results for G(BMod), K0(BMod) and K0(CMod) follow similarly; alternatively,
they follow from the fact that all of these triangulated categories are equivalent. ut

Remark 5.3. Since we have been working with ungraded differential modules, we are
forced to use the modulo 2 Grothendieck groups in Theorem 4.

Remark 5.4. The proof of Theorem 4 immediately extends to show that the action of
the mapping class group onG(A(Z)Mod) ∼= 3∗H1(F (Z);Z/2) is the standard action on
3∗H1(F (Z);Z/2).

Remark 5.5. In light of Auroux’s reformulation of bordered Floer theory in terms of
partially-wrapped Fukaya categories [Aur10], it is natural to compare Theorem 4 with
Abouzaid’s computation of the Grothendieck group of modules over the Fukaya cate-
gory of a closed surface [Abo08]: for the Fukaya category of a closed surface F , the
Grothendieck group is H1(SF ;Z)⊕ R, where SF is the unit tangent bundle to F .

6. Further questions

The results of this paper suggest several natural questions. Most prominent among them
is whether knowing that the mapping class group has a faithful representation on a linear
category has group-theoretic consequences. A faithful action of a group on a vector space
has many consequences (like the Tits alternative [Tit72] and residual finiteness), and many
of these consequences are known to hold for mapping class groups. It seems plausible that
some of these could be explained by the linear-categorical actions of the mapping class
groups.

A second natural question is whether one can give a similar linear-categorical action
of the mapping class group of a closed surface.

A question more internal to Heegaard Floer homology is whether the actions on bor-
dered Floer homology in spinc-structures between the (−n/2 + 1)st and (n/2 − 1)st are
faithful. It seems likely that they are, but the techniques of this paper do not apply directly.

Finally, there are many known categorical actions of braid groups. It would be inter-
esting to know which, if any, of these admit extensions to mapping class group actions;
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in particular, this would be a step towards extending Khovanov-type knot invariants to
3-manifold invariants.
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