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Abstract. The isoperimetric inequality for Steiner symmetrization of any codimension is investi-
gated and the equality cases are characterized. Moreover, a quantitative version of this inequality is
proven for convex sets.
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1. Introduction

The present paper analyses the Steiner symmetrization of any codimension. Let n ≥ 2
and 1 ≤ k ≤ n− 1. For every set E ⊂ Rn and every x′ ∈ Rn−k we define

Ex′ := {y ∈ Rk : (x′, y) ∈ E} and L(x′) := Lk(Ex′),

where Lk stands for the outer Lebesgue measure in Rk . We denote by r(x′) the radius of
a k-dimensional ball in Rk having Lk-measure equal to L(x′), and we set

π(E)+ := {x′ ∈ Rn−k : L(x′) > 0}.

Then, the Steiner symmetral of E (of codimension k and with respect to the subspace
y = 0) is defined as

ES := {(x′, y) ∈ Rn : x′ ∈ π(E)+, |y| ≤ r(x′)}.

The importance of Steiner symmetrization has been assessed by several authors, and re-
lies upon the fact that it acts monotonically on many geometric and analytic quantities
associated with subsets of Rn, e.g. the perimeter. A characterization of the sets whose
perimeter is preserved under symmetrization of codimension 1 was given by Chlebı́k,
Cianchi and Fusco [5].
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In this paper we tackle the general case 1 ≤ k ≤ n−1 using a new approach, based on
the regularity properties of the barycenter of the sections Ex′ as x′ varies in π+(E). The
advantage of this approach is twofold. Firstly, we recover and extend the result proved
in [5] for k = 1 to any codimension, with a new and simpler proof. Secondly, we are able
to obtain a quantitative isoperimetric estimate for convex sets which, to the best of our
knowledge, is the first result of this kind in the framework of Steiner symmetrization.

We now provide a detailed account of the content of the paper. Our first result reads
as follows.

Theorem 1.1. Let E be a set of finite perimeter in Rn. Then

P(ES;B × Rk) ≤ P(E;B × Rk) (1.1)

for every Borel set B ⊂ Rn−k . Moreover, if P(ES) = P(E), then either E is equivalent
to Rn, or Ln(E) <∞ and for Ln−k-a.e. x′ ∈ π(E)+,

(a) Ex′ is equivalent to a k-dimensional ball and Hk−1(∂∗Ex′ 4 (∂
∗E)x′) = 0;

(b) the functions νE
x′
(x′, ·) and |νEy |(x

′, ·) are constant Hk−1-a.e. in ∂∗Ex′ .

Here, P(E;B × Rk) denotes the perimeter of E in B × Rk , and P(E) stands for the
perimeter of E in the whole Rn. The reduced boundary of E is indicated with ∂∗E, and
its generalized inner normal with νE (see Section 2). Moreover, νE

x′
and νEy denote the

first n − k and the last k components of νE respectively. Finally, Hd is the Hausdorff
measure of dimension d .

Inequality (1.1) was already proved in [4] by approximating ES through a sequence
of simple rearrangements (polarizations). However, the proof of properties (a)–(b) when
P(E) = P(ES) requires a direct approach. We highlight that for k > 1 the proof is more
delicate than in the case k = 1 studied in [5]. The reason of this extra difficulty lies in the
fact that the Radon measure

B ⊂ Rn−k 7→ µ(B) :=

∫
∂∗E∩(B×Rk)∩{νEy =0}

νEx′(x
′, y) dHn−1(x′, y)

has a different behavior depending on whether k = 1 or k > 1. In fact, when k = 1,
µ is purely singular with respect to the Lebesgue measure Ln−1, while, if k > 1, it
may contain a non-trivial absolutely continuous part. A somewhat surprising example by
Almgren and Lieb (see Remark 3.2) shows that when k > 1 it may even happen that µ
is absolutely continuous with respect to Ln−k . In other words, when k = 1 the projection
of {x ∈ ∂∗E : νEy (x) = 0} (the “vertical part” of the boundary) on Rn−k is a set of zero
Lebesgue measure, while if k > 1 this projection may be smeared out on a set of positive
Ln−k measure.

As observed in [5], the equality P(E) = P(ES) does not imply that E and ES are
equivalent. In fact, if the boundary of ES contains vertical parts, one can easily find a
set E having the same perimeter of ES and not equivalent to (any translate of) ES (see
Figure 1).
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Fig. 1. Here n = 2, k = 1. On the left, the boundary of ES contains vertical parts, thus violating
(1.2). Instead, for ES on the right, L∗(x) = 0, violating (1.4).

Therefore, in order to characterize the equality cases, at least in a local form, we shall
assume that, given an open set � ⊂ Rn−k , ES satisfies the condition

Hn−1({x ∈ ∂∗ES : νE
S

y (x) = 0} ∩ (�× Rk)) = 0. (1.2)

This is equivalent to the requirement L ∈ W 1,1(�) (see Proposition 3.5). Note that, for
any set E of finite perimeter, L ∈ BV(Rn−k) (see Lemma 3.1). Therefore, the presence
of singular parts in the measure DL is equivalent to having vertical parts in the boundary
of ES . Furthermore, (1.2) is weaker than the corresponding condition on the set E,

Hn−1({x ∈ ∂∗E : νEy (x) = 0} ∩ (�× Rk)) = 0. (1.3)

However, (1.2) and (1.3) are equivalent when P(E;� × Rk) = P(ES;� × Rk) (see
Proposition 3.6).

Condition (1.2), together with the equality of the perimeters, is not yet sufficient to
conclude that E and ES are equivalent. As shown even through simple examples (see
Figure 1), this is due to the fact that the set ES may not be connected in a proper sense.
That is, the Lebesgue representative L∗ of L may vanish in a set of positive Hn−k−1-
measure. Therefore, we are led to assume

L∗(x′) > 0 for Hn−k−1-a.e. x′ ∈ �. (1.4)

Then the analogue of [5, Theorem 1.3] can be established for every 1 ≤ k ≤ n− 1.

Theorem 1.2. Let� ⊂ Rn−k be a connected open set, and let E be a set of finite perime-
ter such that P(ES;� × Rk) = P(E;� × Rk). If (1.2) and (1.4) are satisfied, then
E ∩ (�× Rk) is equivalent to (a translate along Rk of ) ES ∩ (�× Rk).

Our proof of this result significantly simplifies the one given in [5] for the case of codi-
mension 1, which was based on a delicate density argument and on the heavy use of
the notion of polarization. We have devised a different approach, based on the regularity
properties of the barycenter b : Rn−k → Rk of the k-dimensional sections of E (see
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Definition 4.1). The role played by the barycenter can be easily understood, observing
that the sets enjoying property (a) of Theorem 1.1 are completely characterized by the
functions L and b.

We start by observing that for these sets assumptions (1.3) and (1.4) imply that the
barycenter b is an absolutely continuous function on almost every 1-dimensional section
of the set� (see Theorem 4.3). Note, however, that no regularity for the barycenter can be
expected if (1.3) and (1.4) are not satisfied (see Example 4.2). Using the explicit expres-
sion of the derivatives of b (see (4.1)) we show that, if E and ES have the same perimeter,
these derivatives are all zero, thus proving that b is constant in �. This gives that E is
equivalent to a translation of ES .

The regularity of the barycenter is an essential tool also in dealing with the sec-
ond issue addressed in the present paper, namely a quantitative version of the inequality
P(ES) ≤ P(E). In recent years quantitative isoperimetric and related functional inequal-
ities have attracted the interest of several authors ([8, 11, 12, 13, 14, 15], to name but
a few). Let us just recall here the result proved in [13]. To this end, given a set of finite
perimeter E, we define the asymmetry index A(E) and the isoperimetric deficit δ(E) of E
as

A(E) := min
{
Ln(E 4 Br(x))

Ln(E)
: x ∈ Rn

}
, δ(E) :=

P(E)− P(Br)

P (Br)
,

where Br(x) is the ball of radius r centered at x with Ln(E) = Ln(Br(x)), and Br stands
for Br(0).

Theorem 1.3. There exists a constant γn > 0 such that for every set E ⊂ Rn of finite
perimeter,

A(E) ≤ γn
√
δ(E). (1.5)

In other words, if the perimeter of E is close to the one of the ball with the same volume,
then there exists an optimal ball which overlaps with E with the exception of a set whose
measure is controlled by the square root of the difference P(E)− P(Br).

In this paper we prove an analogue of Theorem 1.3 for Steiner symmetrization. To
state our result precisely, let us recall that the eccentricity of a bounded convex set C is
defined as the ratio between the outer and inner radii of C, i.e., the radius of the smallest
ball containing C and of the largest ball contained in C, respectively.

Let us also introduce the asymmetry index and the isoperimetric deficit of E relative
to its Steiner symmetral ES :

λ(E) := inf
{
Ln(ES 4 (E + (0, y)))

Ln(ES)
: y ∈ Rk

}
, D(E) :=

P(E)− P(ES)

P (ES)
.

We start with the case k = 1.

Theorem 1.4. Let k = 1. There exists a constant c = c(n) such that, if ES is a Steiner
symmetric bounded convex set with eccentricity ES , then

λ(E) ≤ cE2
S

√
D(E) (1.6)

for every set E ⊂ Rn of finite perimeter satisfying (1.3), whose 1-dimensional sections
Ex′ are segments, and whose Steiner symmetral is ES .
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An interesting feature of inequality (1.6) is that it applies with the same constant to a
large class of sets ES . On the other hand, in light of the characterization of the equality
cases, it is clear that we cannot have a quantitative estimate of this kind if we allow the
boundary of ES to have even “almost” vertical parts (see Figure 2). Similarly, it is also
clear that Theorem 1.4 cannot hold, should the vertical sections shrink in an arbitrary way
(see Figure 3). Therefore, the convexity assumption on ES seems a natural geometric
compromise to avoid both these phenomena, even though Theorem 1.4 may be proven
under weaker assumptions (see Remark 5.7). Anyway, the set E is not required to be
convex. Note also that inequality (1.6) cannot hold with a constant not depending on
the eccentricity (see Example 5.5). Finally, considering that the exponent 1/2 in (1.5) is
optimal, it is hardly surprising that also in our inequality we cannot replace the exponent
on the right-hand side with any number larger than 1/2 (see Example 5.6).

y

x′

ES

Fig. 2. When ES is as in the figure, the quantitative inequality λ(E) ≤ c
√
D(E) holds with a

constant c which goes to infinity as the slope of the two dotted segments becomes larger and larger.

Fig. 3. Here n = 3, k = 1, and x′ varies in the horizontal plane. Let ESε be given by the union of
two balls, connected by a narrow neck whose surface measures ε. By lifting one of the two balls,
we obtain a set Eε as in the figure, such that λ(Eε) ≈ 1/2, whileD(Eε)→ 0 as ε→ 0. Therefore,
for every ε > 0 a quantitative isoperimetric inequality λ(E) ≤ cε

√
D(E) can only hold with a

constant cε →∞.

In higher codimension our result is slightly weaker, since we have to assume that the
set E is convex.
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Theorem 1.5. Let 2 ≤ k ≤ n− 1. There exists a constant c = c(n, k) such that, if ES is
a Steiner symmetric bounded convex set with eccentricity ES , then

λ(E) ≤ cE2n
S

√
D(E) (1.7)

for every convex set E ⊂ Rn whose Steiner symmetral is ES .

By way of conclusion, a short overview of the proof of Theorems 1.4 and 1.5 is provided.
Concerning the case k = 1, note that the convexity assumption on ES implies that one
can estimate |νE

S

y (x′)| by dist(x′, ∂�). Using this estimate, the key point of the proof is
to derive the inequality ∫

�

|νE
S

y (x′)| |∇b(x′)| dx′ ≤ c
√
D(E),

from which (1.6) follows, thanks to a weighted Poincaré inequality (see Corollary 5.2) ap-
plied to the barycenter b. The case k ≥ 2 is then obtained via a symmetrization argument,
by applying estimate (1.6) k times.

2. Preliminary results

In this section we recall some classical results of geometric measure theory, which will
be instrumental in the forthcoming arguments. We refer the reader to the monograph [1]
for a comprehensive illustration of the subject.

We first give some notation. Let n ≥ 2 and 1 ≤ k ≤ n − 1. For x ∈ Rn, we write
x = (x′, y), with x′ ∈ Rn−k and y ∈ Rk . Similarly, when v = (v1, . . . , vn) is a vector
in Rn, we set

vx′ = (v1, . . . , vn−k) ∈ Rn−k, vy = (vn−k+1, . . . , vn) ∈ Rk.

If Du is the distributional gradient of a function u ∈ L1
loc, we write Dx′u =

(D1u, . . . ,Dn−ku) and Dyu = (Dn−k+1u, . . . ,Dnu). We shall indicate by Br(x) the
open ball in Rn of radius r centered at x. Occasionally, when balls of different dimensions
come into play, we shall specify the dimension d of a ball by writing Bdr (x). Finally, we
simply write Bdr if the center of the ball is the origin. The measure of the unit ball in Rd
will be denoted by ωd .

Let � be an open set in Rn. We recall that a function u ∈ L1(�) is said to be of
bounded variation if its distributional derivative Du is a vector-valued Radon measure
in � with finite total variation. The set of all functions of bounded variation in � will
be denoted by BV(�). The space BVloc(�) of functions of locally bounded variation is
defined accordingly. If u ∈ BV(�), its distributional gradient can be split into the sum of
an absolutely continuous part∇uLn and a singular partDsu, with respect to the Lebesgue
measure. That is,

Du = ∇uLn +Dsu.
If u ∈ BV(�) andDsu = 0, then u belongs to the Sobolev spaceW 1,1(�). We recall that
in this case the Lebesgue representative u∗ exists for Hn−1-a.e. point in �.
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If E is a Borel set, we say that it has locally finite perimeter in � if its characteristic
function χE belongs to BVloc(�). If the total variation |DχE |(�) is finite, E is said to be
a set of finite perimeter in �, or simply a set of finite perimeter if � = Rn. For a set of
finite perimeter, we define the reduced boundary ∂∗E of E as the set of all points x ∈ Rn
such that

νE(x) := lim
r→0+

DχE(Br(x))

|DχE |(Br(x))
exists and belongs to Sn−1.

We shall refer to the vector νE(x) as the (generalized) inner normal to ∂∗E at x. From
the Besicovitch derivation theorem and [1, Theorem 3.59], it follows that ∂∗E is (n− 1)-
rectifiable and

DχE = ν
EHn−1

b∂∗E. (2.1)

Given any Borel set B ⊂ Rn, the perimeter of E in B is defined as

P(E;B) := |DχE |(B) = Hn−1(∂∗E ∩ B), (2.2)

where the second equality follows from (2.1). When B = Rn, we shall simply write
P(E), the perimeter of E. In the following, given a measurable set E, and 0 ≤ a ≤ 1,

E(a) :=

{
x ∈ Rn : lim

r→0+

Ln(E ∩ Br(x))
ωnrn

= a

}
will denote the set of points with density a with respect to E. The next result establishes
the connection between reduced boundary and densities (see [1, Theorem 3.61]).

Theorem 2.1. Let E ⊂ Rn be a set of finite perimeter. Then

∂∗E ⊂ E(1/2), Hn−1(E(1/2) \ ∂∗E) = 0, Hn−1(Rn \ (E(0) ∪ E(1) ∪ E(1/2))) = 0.

The next proposition is a special case of the coarea formula (see [1, Theorem 2.93]).

Proposition 2.2. Let E be a set of finite perimeter in Rn and let g : Rn → [0,∞] be a
Borel function. Then∫

∂∗E

g(x)|νEy (x)| dHn−1(x) =

∫
Rn−k

dx′
∫
(∂∗E)x′

g(x′, y) dHk−1(y).

The following proposition gives a link between the k-dimensional sections y 7→ ux′(y)

and the total variation of the vector measure Dyu. Its proof can be obtained as in [1,
Theorem 3.103].

Proposition 2.3. Let � ⊂ Rn be open, and let u ∈ L1
loc(�). For every x′ ∈ Rn−k set

ux′(·) := u(x
′, ·). Then

|Dyu|(�) =

∫
Rn−k
|Dux′ |(�x′) dx

′.

Finally, we prove an enhanced version of a result by Vol’pert [17]. We consider this result
to be of some interest in itself, regardless of its applications.
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Theorem 2.4 (Vol’pert). Let E be a set of finite perimeter in Rn. Then, for Ln−k-a.e.
x′ ∈ Rn−k ,

(i) Ex′ is a set of finite perimeter in Rk;
(ii) Hk−1(∂∗(Ex′)4 (∂

∗E)x′) = 0;
(iii) For Hk−1-a.e. s such that (x′, s) ∈ (∂∗E)x′ ∩ ∂∗(Ex′):

(a) νEy (x
′, s) 6= 0;

(b) νEy (x
′, s) = νEx′ (s)|νEy (x

′, s)|.

In particular, there exists a Borel set GE ⊂ π(E)+ such that Ln−k(π(E)+ \ GE) = 0
and (i)–(iii) are satisfied for every x′ ∈ GE .

Proof. By Proposition 2.3, for every open set � ⊂ Rn we have∫
Rn−k
|DχEx′ |(�x′) dx

′
= |DyχE |(�). (2.3)

SinceE has finite perimeter, this relation with� = Rn gives
∫
Rn−k |DχEx′ |(R

k) dx′ <∞

and of course this implies (i).
To prove (ii), let us set

M := {B ⊂ Rn : B is a Borel set such that (2.3) holds with � replaced by B}.

One can check that

(a) {Bh}h∈N ⊂M, Bh ↗ B ⇒ B ∈M;
(b) B,B ′, B ∪ B ′ ∈M⇒ B ∩ B ′ ∈M;
(c) B ∈M⇒ Rn \ B ∈M.

Since M contains all the open subsets of Rn, from [1, Remark 1.9] we know that M
coincides with the Borel σ -algebra in Rn, that is, (2.3) holds true for all Borel sets. Thus,∫
∂∗E

χB(x)|ν
E
y (x)| dHn−1(x) = |DyχE |(B) =

∫
Rn−k
|DχEx′ |(Bx′) dx

′

=

∫
Rn−k

Hk−1(∂∗(Ex′) ∩ Bx′) dx
′
=

∫
Rn−k

dx′
∫
∂∗(Ex′ )

χB(x
′, y) dHk−1(y). (2.4)

On the other hand, by Proposition 2.2,∫
∂∗E

χB(x)|ν
E
y (x)| dHn−1(x) =

∫
Rn−k

dx′
∫
(∂∗E)x′

χB(x
′, y) dHk−1(y). (2.5)

Let {Ch}h∈N be a countable base for the Borel σ -algebra in Rk and A any Borel set
in Rn−k . By comparing (2.4) and (2.5) with B = A × Ch, for every h ∈ N and for
Ln−k-a.e. x′ ∈ Rn−k we get∫

∂∗(Ex′ )

χCh(y) dHk−1(y) =

∫
(∂∗E)x′

χCh(y) dHk−1(y),

and then the arbitrariness of Ch immediately implies (ii).
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By applying (2.4) to the Borel set Z := {x ∈ ∂∗E : νEy (x) = 0}, taking into account
(ii), we get∫

Rn−k
dx′

∫
∂∗(Ex′ )

χZ(x
′, y) dHk−1(y) =

∫
Rn−k

dx′
∫
(∂∗E)x′

χZ(x
′, y) dHk−1(y) = 0.

Hence, Hk−1(Zx′) = 0 for Ln−k-a.e. x′ ∈ Rn−k , which is (iiia).
To show (iiib), we first prove that

DyχE = Ln−k ⊗DχEx′ . (2.6)

Let φ ∈ C1
c (Rn). Using the Fubini Theorem and integrating by parts, we obtain∫

Rn
φ(x) dDyχE(x) = −

∫
Rn
∇yφ(x

′, y)χE(x
′, y) dx

= −

∫
Rn−k

dx′
∫
Rk
χEx′ (y)∇yφ(x

′, y) dy =

∫
Rn−k

dx′
∫
Rk
φ(x′, y) dDχEx′ (y).

This equality leads to (2.6).
Now, by Proposition 2.2, condition (ii), and relation (2.6), for any Borel set B ⊂ Rn,∫
Rn−k

dx′
∫
∂∗(Ex′ )

χB(x
′, y)χRk\Zx′ (y)ν

Ex′ (y) dHk−1(y)

=

∫
Rn−k

DχEx′ ((B \ Z)x′) dx
′
= DyχE(B \ Z)

=

∫
∂∗E

χB\Z(x
′, y)νEy (x

′, y) dHn−1(x′, y)

=

∫
Rn−k

dx′
∫
∂∗(Ex′ )

χB(x
′, y)χRk\Zx′ (y)

νEy (x
′, y)

|νEy (x
′, y)|

dHk−1(y).

Again by the arbitrariness of B, (iiib) follows. ut

Remark 2.5. Since ES is symmetric about Rn−k , it is easily checked from the defini-
tion of reduced boundary that if (x′, y) ∈ ∂∗ES and R : Rk → Rk is a rotation, then
(x′, Ry) ∈ ∂∗ES and

νE
S

x′ (x
′, Ry) = νE

S

x′ (x
′, y), νE

S

y (x′, Ry) = R(νE
S

y (x′, y)).

Therefore, (i)–(iii) of Theorem 2.4 hold in a stronger form: for every x′ ∈ GES ,
(i)S ES

x′
is a k-dimensional ball;

(ii)S ∂(ES
x′
) = (∂∗ES)x′ ;

(iii)S for every y such that (x′, y) ∈ ∂(ES
x′
):

(a) νE
S

y (x′, y) 6= 0;

(b) νE
S

y (x′, y) = ν
ES
x′ (y)|νE

S

y (x′, y)|.
Moreover,

Ln−k(B0) = 0, (2.7)
where B0 := {x

′
∈ Rn−k : ∃y ∈ Rk such that (x′, y) ∈ ∂∗ES and νE

S

y (x′, y) = 0}.



1254 M. Barchiesi et al.

In view of the above theorem, for every set E of finite perimeter we will use the same
notation ∂∗Ex′ to indicate the sets (∂∗E)x′ and ∂∗(Ex′)when they coincide modulo Hk−1.
Occasionally, we will write pE(x′) := Hk−1(∂∗Ex′) to denote their common measure.

The following result is a straightforward variant of [1, Lemma 2.35].

Lemma 2.6. Let B ⊂ Rn be a Borel set, and let ϕh, ϕ : B → R, h ∈ N, be summable
Borel functions such that |ϕh| ≤ |ϕ| for every h. Then∫

B

sup
h

ϕh dx = sup
{∑
h∈H

∫
Ah

ϕh dx

}
,

where the supremum ranges over all finite sets H ⊂ N and all finite partitions {Ah}h∈H
of B into Borel sets.

3. Properties of the function L

This section is a collection of several properties of the function L, which will be used to
prove Theorem 1.1. We recall that for every set E ⊂ Rn, L : Rn−k → [0,∞] is defined
as

L(x′) := Lk(Ex′) for every x′ ∈ Rn−k.

The first important property is that when E is a set of finite perimeter in Rn, then either
ES is equivalent to Rn, or L is a function of bounded variation in Rn−k . When L ∈
BV(Rn−k), the measureDLbGES is absolutely continuous with respect to Ln−k , and it is
possible to provide the explicit expression of its corresponding density.

Lemma 3.1. LetE be any set of finite perimeter in Rn. Then either L(x′) = ∞ for Ln−k-
a.e. x′ ∈ Rn−k , or L(x′) < ∞ for Ln−k-a.e. x′ ∈ Rn−k and Ln(E) < ∞. Moreover, in
the latter case, L ∈ BV(Rn−k) and

|DL|(B) ≤ P(E;B × Rk) for every Borel set B ⊂ Rn−k. (3.1)

In addition, for any Borel set B ⊂ Rn−k ,

DL(B) =

∫
∂∗E∩(B×Rk)∩{νEy =0}

νEx′(x
′, y) dHn−1(x)

+

∫
B

dx′
∫
(∂∗E)x′∩{ν

E
y 6=0}

νE
x′
(x′, y)

|νEy (x
′, y)|

dHk−1(y), (3.2)

DLbGES = ∇LLn−k , and for Ln−k-a.e. x′ ∈ GES ,

∇L(x′) = Hk−1(∂∗ESx′)
νE

S

x′
(x′)

|νE
S

y (x′)|
= kωkr

k−1(x′)
νE

S

x′
(x′)

|νE
S

y (x′)|
, (3.3)

where we dropped the variable y for functions that are constant in ∂∗ES
x′

.
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Proof. By arguing as in [5, Lemma 3.1] we obtain the first assertion and (3.1), while by
arguing as in [5, Lemma 3.2] we find that for any Borel set B ⊂ Rn−k ,

DL(B) =

∫
∂∗E∩(B×Rk)

νEx′(x
′, y) dHn−1(x).

Then formula (3.2) is easily obtained by splitting the integral on the right-hand side above
into integrals over ∂∗E ∩ (B × Rk) ∩ {νEy = 0} and over ∂∗E ∩ (B × Rk) ∩ {νEy 6= 0}.
The latter is then evaluated using the coarea formula.

Finally, as pointed out in Remark 2.5, y 7→ νE
S

x′
(x′, y) and y 7→ |νE

S

y (x′, y)| are

both constant in ∂ES
x′

. Moreover, |νE
S

y (x′)| > 0 for all x′ ∈ GES . Therefore, ∂∗ES ∩

(GES × Rk) ∩ {νESy = 0} = ∅, and from (3.2),

DL(B) =

∫
B

Hk−1(∂∗ESx′)
νE

S

x′
(x′)

|νE
S

y (x′)|
dx′ for all Borel sets B ⊂ GES ,

thus proving that DLbGES is absolutely continuous with respect to Ln−k . Since by The-
orem 2.4, L(x′) = 0 for Ln−k-a.e. x′ ∈ Rn−k \ GES , we have ∇L = 0 in Rn−k \ GES .
Then, we conclude that DLbGES = ∇LLn−k and that formula (3.3) holds true. ut

Remark 3.2. As hinted in the Introduction, if k > 1 the measure

µ(B) =

∫
∂∗E∩(B×Rk)∩{νEy =0}

νEx′(x) dH
n−1(x) (3.4)

may contain a non-vanishing absolutely continuous part. As an example, consider the
special case where n ≥ 3 and E = {(x′, y) ∈ R × Rn−1

: 0 < x′ < u(y)}, with
u : Rn−1

→ [0,∞) a C1 function with compact support. Then the Steiner symmetral ES

of codimension n − 1 of E is ES = {(x′, y) ∈ R × Rn−1
: 0 < x′ < u#(y)}, where u#

is the decreasing rearrangement of u (see [7, Section 2.1]). In this case, the measure µ in
(3.4) reduces to

µ(B) = −Ln−1(u−1(B) ∩ {∇u = 0}). (3.5)

A surprising example given in [2, Section 5.1] shows that, for every 0 < α < 1, one can
always find a Cn−2,α function u with compact support in the unit cube Q such that the
measure in (3.5) is absolutely continuous with µ(Q) arbitrarily close to 1. Interestingly,
if u ∈ Cn−2,1, then µ is purely singular [2, Theorem 5.2].

Observe that, if k = 1, the measure µ in (3.4) is purely singular. In fact, by the
Vol’pert Theorem, for Ln−1-a.e. x′ ∈ Rn−1, we have νEy (x

′, y) 6= 0 for all y such that
(x′, y) ∈ ∂∗E. Therefore, the projection of {x ∈ ∂∗E : νEy (x) = 0} on Rn−1 has zero
Lebesgue measure.

The following lemma shows that if E has finite perimeter, the same is true for ES .
Moreover, it provides a first estimate of P(ES).
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Lemma 3.3. Let E be any set of finite perimeter in Rn having finite measure. Then ES

also has finite perimeter and

P(ES;B × Rk) ≤ |DL|(B)+ |DyχES |(B × Rk) (3.6)

for every Borel set B ⊂ Rn−k .

Proof. The proof is based on the same argument of [5, Lemma 3.5]. Consider a sequence
{Lj }j∈N of non-negative functions belonging to C1

c (Rn−k) such that Lj → L Ln−k-a.e.
in Rn−k and |DLj |(Rn−k) → |DL|(Rn−k). Next, denote by ESj and rj the set and the
function defined as ES and r , respectively, with Lj in place of L. Let � ⊂ Rn−k be an
open set and let φ = (φ1, . . . , φn) ∈ C

1
c (�×Rk,Rn). Define π(suppφ) as the projection

of suppφ on the subspace y = 0. First of all, let us show that for every j ∈ N we have

n−k∑
i=1

∫
�×Rk

χ(ESj )x′
(y)

∂φi

∂xi
(x′, y) dx ≤ |DLj |(π(suppφ)) (3.7)

whenever ‖φ‖∞ ≤ 1. Define the function V : �→ Rn−k by

Vi(x
′) :=

∫
Bk
rj (x
′)

φi(x
′, y) dy, i = 1, . . . , n− k,

and observe that Vi is Lipschitz continuous with compact support. In fact, for every
x′, x′′ ∈ �,

|Vi(x
′′)− Vi(x

′)|

=

∣∣∣∣∫
Bk
rj (x
′′)

[φi(x
′′, y)− φi(x

′, y)] dy +

∫
Bk
rj (x
′′)

φi(x
′, y) dy −

∫
Bk
rj (x
′)

φi(x
′, y) dy

∣∣∣∣
≤ c|x′′ − x′| + c|Lk(Bkrj (x′′))− Lk(Bkrj (x′))| ≤ c|x

′′
− x′| + c|Lj (x

′′)− Lj (x
′)|.

Thus, if x′ ∈ Aj := {x′ ∈ � : Lj (x′) > 0}, by differentiating Vi with respect to xi and
using spherical coordinates (ρ, σ ),

∂Vi

∂xi
(x′) =

∂

∂xi

∫ rj (x
′)

0

[∫
Sk−1

φi(x
′, ρσ ) dσ

]
ρk−1 dρ

= [rj (x
′)]k−1 ∂rj

∂xi
(x′)

∫
Sk−1

φi(x
′, rj (x

′)σ ) dσ

+

∫ rj (x
′)

0
ρk−1 ∂

∂xi

[∫
Sk−1

φi(x
′, ρσ ) dσ

]
dρ

=
∂Lj

∂xi
(x′)

1
kωk

∫
Sk−1

φi(x
′, rj (x

′)σ ) dσ +

∫
Bk
rj (x
′)

∂φi

∂xi
(x′, y) dy, (3.8)

since rkj = Lj (x
′)/ωk . On the other hand, if x′ ∈ � \ Aj , we have Lj (x′) = Vi(x′) = 0

and then ∂Lj/∂xi = ∂Vi/∂xi = 0 a.e. in � \Aj , so that (3.8) still holds. By applying the
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classical divergence theorem,
∫
�

divV dx′ = 0. Thus, adding (3.8) for i = 1, . . . , n− k,
and integrating over �, yields

n−k∑
i=1

∫
�×Rk

χ(ESj )x′
(y)

∂φi

∂xi
(x′, y) dx

= −

∫
π(suppφ)

n−k∑
i=1

∂Lj

∂xi
(x′)

1
kωk

[∫
Sk−1

φi(x
′, rj (x

′)σ ) dσ

]
dx′

= −

∫
π(suppφ)

1
kωk

[∫
Sk−1

n−k∑
i=1

∂Lj

∂xi
(x′)φi(x

′, rj (x
′)σ ) dσ

]
dx′

≤

∫
π(suppφ)

|∇Lj (x
′)|

kωk

[∫
Sk−1
‖φ(x′, rj (x

′)σ )‖L∞ dσ

]
dx′.

If ‖φ‖∞ ≤ 1, (3.7) is obtained. Hence,∫
�×Rk

χESj
divφ dx =

∫
�

[∫
Rk
χ(ESj )x′

divx′ φx′ dy
]
dx′ +

∫
�×Rk

χESj
divy φy dx

≤ |DLj |(π(suppφ))+
∫
�×Rk

χESj
divy φy dx. (3.9)

Integrating by parts gives∫
�×Rk

χESj
divy φy dx =

∫
�

dx′
∫
∂Bk

rj (x
′)

φy(x
′, y) ·

y

rj (x′)
dHk−1(y)

≤

∫
�

Hk−1(∂Bkrj (x′)) dx
′.

Then, by the isoperimetric inequality and coarea formula,

lim sup
j

∣∣∣∣∫
�×Rk

χESj
divy φy dx

∣∣∣∣≤ ∫
�

Hk−1(∂Bkr(x′)) dx
′
≤

∫
�

Hk−1(∂∗Ex′) dx
′
≤ P(E).

Moreover, since χESj → χES Ln-a.e. by the definition of ESj , and π(suppφ) is a compact
subset of �, passing to the limsup in (3.9) as j →∞ we have∫

�×Rk
χES divφ dx ≤ |DL|(π(suppφ))+ P(E), (3.10)

thus proving that ES has finite perimeter. Having obtained (3.10), we can go back to (3.9)
and, passing to the limit again, we conclude that∫

�×Rk
χES divφ dx ≤ |DL|(π(suppφ))+

∫
�×Rk

χES divy φy dx

≤ |DL|(�)+ |DyχES |(�× Rk).

From this, we infer that (3.6) holds whenever B is an open set, and hence when B is any
Borel set. ut
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Proof of Theorem 1.1. If L = ∞ Ln−k-a.e. in Rn−k , then ES is equivalent to Rn; it
follows that P(ES;B × Rk) = 0 for every Borel set B ⊂ Rn−k and (1.1) is trivially
satisfied. Otherwise, by Lemma 3.1, we may assume that L <∞ Ln−k-a.e. in Rn−k . Let
GES be the set associated withES as in Theorem 2.4, and let B be a Borel subset of Rn−k .
We shall prove inequality (1.1) when either B ⊂ Rn−k \GES , or B ⊂ GES . The general
case is obtained by splitting B into B \GES and B ∩GES .

Firstly assume that B ⊂ Rn−k \ GES . Observe that, by (2.1), Proposition 2.2 and
Theorem 2.4(ii),

|DyχES |(B × Rk) =
∫
∂∗ES∩(B×Rk)

|νE
S

y | dHn−1(x) =

∫
B

Hk−1(∂∗ESx′) dx
′.

Since Ln−k(π(E)+ ∩ B) = Ln−k(GES ∩ B) = 0, the last integral equals∫
(Rn−k\π(E)+)∩B

Hk−1(∂∗ESx′) dx
′,

and vanishes. Therefore, by (3.1) and (3.6), we obtain (1.1):

P(ES;B × Rk) ≤ |DL|(B) ≤ P(E;B × Rk). (3.11)

Suppose now that B ⊂ GES . Since Ln−k(GE 4 GES ) = 0 and since νEy (x
′, y) 6= 0

Hk−1-a.e. in ∂∗Ex′ for all x′ ∈ GE , we have

P(E;B × Rk) = P(E; (B × Rk) ∩ {νEy = 0})+ P(E; (B × Rk) ∩ {νEy 6= 0})

= P(E; (B × Rk) ∩ {νEy = 0})+
∫
∂∗E∩(B×Rk)∩{νEy 6=0}

dHn−1(x)

= P(E; (B × Rk) ∩ {νEy = 0})+
∫
B

dx′
∫
∂∗Ex′

1
|νEy (x

′, y)|
dHk−1(y)

= P(E; (B × Rk) ∩ {νEy = 0})+
∫
B

dx′
∫
∂∗Ex′

√√√√1+
n−k∑
i=1

(
νEi (x

′, y)

|νEy (x
′, y)|

)2

dHk−1(y),

where the second equality is due to (2.2), the third to Proposition 2.2 applied to
χB×Rk (x)/|ν

E
y (x)|, and the fourth to the fact that νE is a unit vector. Now, applying

Jensen’s inequality to the strictly convex function

f (z) :=

√
1+ |z|2, z ∈ Rn−k, (3.12)

we get

P(E;B × Rk) ≥ P(E; (B × Rk) ∩ {νEy = 0})

+

∫
B

√√√√(∫
∂∗Ex′

dHk−1
)2

+

n−k∑
i=1

(∫
∂∗Ex′

νEi (x
′, y)

|νEy (x
′, y)|

dHk−1(y)

)2

dx′

= P(E; (B × Rk) ∩ {νEy = 0})+
∫
B

√
p2
E(x
′)+ |g(x′)|2 dx′, (3.13)
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where we have set, for Ln−k-a.e. x′ ∈ B,

g(x′) :=

∫
∂∗Ex′

νE
x′
(x′, y)

|νEy (x
′, y)|

dHk−1(y).

Note that since B ⊂ GES , from Lemma 3.1 it follows that DLbB is absolutely continu-
ous. We claim that∫

B

√
p2
E(x
′)+ |∇L(x′)|2 dx′

≤ P(E; (B × Rk) ∩ {νEy = 0})+
∫
B

√
p2
E(x
′)+ |g(x′)|2 dx′. (3.14)

To prove this claim note that, by duality, we can write the function f in (3.12) as

f (z) =

√
1+ |z|2 = sup

h

{
z · wh +

√
1− |wh|2

}
, z ∈ Rn−k,

where {wh}h is a countable dense set in Bn−k1 . Let now {Ah}h∈H be a finite partition of B
into Borel sets. Recalling (3.2), we have

∑
h∈H

∫
Ah

(
∇L(x′) · wh + pE(x

′)

√
1− |wh|2

)
dx′

=

∑
h∈H

(∫
∂∗E∩(Ah×Rk)∩{νEy =0}

wh · ν
E
x′(x
′, y) dHn−1(x)

+

∫
Ah

(
g(x′) · wh + pE(x

′)

√
1− |wh|2

)
dx′

)
≤

∑
h∈H

(∫
∂∗E∩(Ah×Rk)∩{νEy =0}

|νEx′(x
′, y)| dHn−1(x)

+

∫
Ah

pE(x
′)

(
g(x′)

pE(x′)
· wh +

√
1− |wh|2

)
dx′

)

≤

∑
h∈H

(
P(E; (Ah × Rk) ∩ {νEy = 0})+

∫
Ah

pE(x
′)

(√
1+
|g(x′)|2

p2
E(x
′)

)
dx′

)
= P(E; (B × Rk) ∩ {νEy = 0})+

∫
B

√
p2
E(x
′)+ |g(x′)|2 dx′.

From this, applying Lemma 2.6 to the functions

ϕh(x
′) = pE(x

′)

(
∇L(x′)

pE(x′)
· wh +

√
1− |wh|2

)
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we have (3.14). Note that when E = ES , Remark 2.5 and Lemma 3.1 lead to

P(ES;B × Rk) =
∫
B

dx′
∫
∂∗ES

x′

√√√√1+
n−k∑
i=1

(
νE

S

i (x′, y)

|νE
S

y (x′, y)|

)2

dHk−1(y)

=

∫
B

dx′
∫
∂∗ES

x′

√√√√1+
|∇L(x′)|2

|Hk−1(∂Bk
r(x′)

)|2
dHk−1(y)

=

∫
B

√
p2
ES
(x′)+ |∇L(x′)|2 dx′. (3.15)

Owing to the isoperimetric inequality in Rk , we have pES (x
′) ≤ pE(x

′) for Ln−k-a.e.
x′ ∈ Rn−k . Hence, combining (3.13)–(3.15) yields

P(ES;B × Rk) ≤
∫
B

√
p2
E(x
′)+ |∇L(x′)|2 dx′

≤ P(E; (B × Rk) ∩ {νEy = 0})+
∫
B

√
p2
E(x
′)+ |g(x′)|2 dx′ ≤ P(E;B × Rk),

proving (1.1).
Now, we move on to the case of equality. If P(E) = P(ES), then inequality (1.1)

implies
P(ES;B × Rk) = P(E;B × Rk)

for every Borel set B ⊂ Rn−k . On the other hand, as shown above, by taking B = GES ,
we have

P(ES;GES × Rk) =
∫
G
ES

√
p2
ES
(x′)+ |∇L(x′)|2 dx′

≤

∫
G
ES

√
p2
E(x
′)+ |∇L(x′)|2 dx′

≤ P(E; (GES × Rk) ∩ {νEy = 0})+
∫
G
ES

√
p2
E(x
′)+ |g(x′)|2 dx′

≤ P(E;GES × Rk).

All inequalities in this chain must therefore be equalities. The first of these entails that
pE(x

′) = pES (x
′) for Ln−k-a.e. x′ ∈ Rn−k , implying that Ex′ is equivalent to a k-

dimensional ball of radius r(x′).
The fact that the second inequality is also an equality implies that the Jensen inequality

in (3.13) is an equality too. By the strict convexity of the function in (3.12), this also
implies that for Ln−k-a.e. x′ ∈ GES ,

y 7→
νE
x′
(x′, y)

|νEy (x
′, y)|

is Hk−1-a.e. constant in ∂∗Ex′ .
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Since νE is a unit vector, we also see that for Ln−k-a.e. x′ ∈ GES ,

y 7→ |νEy (x
′, y)| is Hk−1-a.e. constant in ∂∗Ex′ ,

so that (b) follows. ut

An inspection of the above proof leads to the following result, which, regardless of its
relation to Theorem 1.1, is of some independent interest.

Proposition 3.4. Let E ⊂ Rn be a set of finite measure and perimeter, and let f :
Rn−k → [0,∞] be a Borel function. Then∫

∂∗E

f (x′) dHn−1(x)

≥

∫
Rn−k

f (x′)

√
p2
E(x
′)+ |∇L(x′)|2 dx′ +

∫
Rn−k

f (x′) d|DsL|(x′), (3.16)

with equality if E = ES .

Proof. It is enough to show (3.16) for f = χB with B ⊂ Rn−k an arbitrary Borel set.
In the case B ⊂ Rn−k \GES , thanks to Lemma 3.1,

|DL|(B) = |DsL|(B). (3.17)

Therefore, (3.16) follows from (3.1), on observing that pE vanishes Ln−k-a.e. in B. Con-
versely, when B ⊂ GES , by Lemma 3.1 we have |DsL|(B) = 0, and (3.16) follows from
(3.13) and (3.14).

In the case E = ES , the opposite of inequality (3.16) follows from (3.15) when
B ⊂ GES , and from (3.11) and (3.17) when B ⊂ Rn−k \GES . ut

We conclude this section by providing two additional results related to conditions (1.2)
and (1.3), which extend [5, Propositions 1.2 and 4.2], respectively. The proof of Propo-
sition 3.5 below uses arguments similar to the ones in [5]. However, the proof of Propo-
sition 3.6 requires a different idea, due to the phenomena occurring when k > 1 and
described in the Introduction.

Proposition 3.5. Let� be an open subset of Rn−k and letE be any set of finite perimeter
in Rn, with Ln(E ∩ (�× Rk)) <∞. Then the following conditions are equivalent:

(i) Hn−1({x ∈ ∂∗ES : νE
S

y (x) = 0} ∩ (�× Rk)) = 0;
(ii) L ∈ W 1,1(�);

(iii) P(ES;B × Rk) = 0 for every Borel set B ⊂ � such that Ln−k(B) = 0.

Proof. (i)⇒(ii). This follows by observing that, by (3.2), DL(B) = 0 if B ⊂ Rn−k is a
Borel set with zero Ln−k-measure.
(ii)⇒(iii). This is a consequence of the fact that for ES equality holds in (3.16).
(iii)⇒(i). From (2.7) it follows that

Hn−1({x ∈ ∂∗ES : νE
S

y (x) = 0} ∩ (�× Rk)) ≤ P(ES;B0 × Rk) = 0. ut
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Proposition 3.6. Let E and � be as in Proposition 3.5. If

Hn−1({x ∈ ∂∗E : νEy (x) = 0} ∩ (�× Rk)) = 0, (3.18)

then

Hn−1({x ∈ ∂∗ES : νE
S

y (x) = 0} ∩ (�× Rk)) = 0. (3.19)

Conversely, if E satisfies P(E;�×Rk) = P(ES;�×Rk) and (3.19) holds, then so does
(3.18).

Proof. If (3.18) holds, then arguing as in the proof of (i)⇒(ii) in Proposition 3.5, we find
that L ∈ W 1,1(�). Therefore, (3.19) follows by Proposition 3.5 again.

Let us now show that (3.19) implies (3.18) when P(E;�× Rk) = P(ES;�× Rk).
First, we recall that this implication is proven in [5, Lemma 4.2] when k = 1. So, we have
only to deal with the case k > 1.

We start by proving that if F ⊂ Rn is a set of finite perimeter satisfying (1.3) and
such that almost every section Fx′ is a k-dimensional ball, then

Hn−1({x ∈ ∂∗F : νFyi (x) = 0} ∩ (�× Rk)) = 0, i = 1, . . . , k. (3.20)

Set Bi := {x ∈ ∂∗F : νFyi (x) = 0} ∩ (� × Rk). From Theorem 2.4, Bi
x′
= {y ∈ ∂∗Fx′ :

ν
Fx′
yi (y) = 0} up to an Hk−1-negligible set. Since Fx′ is (equivalent to) a k-dimensional

ball, Hk−1(Bi
x′
) = 0. From (1.3) and using the coarea formula, we have

Hn−1(Bi) = Hn−1(Bi ∩ {x ∈ ∂∗F : νFy (x) 6= 0}) =
∫
Rk
dx′

∫
∂∗Fx′∩B

i
x′

dHk−1(y)

|νFy (x
′, y)|

= 0.

Set ES0 = E and for every i = 1, . . . , k, denote by ESi the (1-codimensional) Steiner
symmetral of ESi−1 with respect to the hyperplane yi = 0. Observe now that, by The-
orem 1.1, almost every section Ex′ of E is a k-dimensional ball. Then, clearly, ESk is
equivalent toES in�×Rk . By applying repeatedly Theorem 1.1 (for the 1-codimensional
Steiner symmetrization) we get

P(ES;�× Rk) = P(ESk−1;�× Rk) = · · · = P(ES1;�× Rk) = P(E;�× Rk).

From assumption (3.19) and (3.20), Hn−1(
{x ∈ ∂∗ES : νE

S

yk
(x) = 0} ∩ (� × Rk)

)
= 0.

Therefore, since the assertion is true for k = 1, we deduce that Hn−1({x ∈ ∂∗ESk−1 :

νE
Sk−1

yk
(x) = 0} ∩ (� × Rk)) = 0 and, a fortiori, Hn−1({x ∈ ∂∗ESk−1 : νE

Sk−1
y (x) = 0}

∩ (�× Rk)) = 0. Iterating this argument yields (3.18). ut
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4. Regularity of the barycenter of the sections

The next definition has an important role in describing the properties of a set of finite
perimeter.

Definition 4.1. The barycenter of the sections of a set E ⊂ Rn is the function b :
Rn−k → Rk defined as

b(x′) :=


1

L(x′)

∫
Ex′

y dy if 0 < L(x′) <∞ and |y| ∈ L1(Ex′),

0 otherwise.

The following example shows that in general b is not summable, even ifE is a set of finite
perimeter.

Example 4.2. Let n = 3, k = 2. Set

E = {(x′, y) ∈ R× R2
: |y − b(x′)| < r(x′), x′ ∈ (−1, 1)},

where b(x′) = (0, 1/|x′|) and r(x′) = |x′|2. Then

P(E; (−1, 1)× R2) = 2
∫ 1

0
r(x′) dx′

∫ 2π

0

√
1+ |b′(x′) · (cos θ, sin θ)+ r ′(x′)|2 dθ

= 2
∫ 1

0
r(x′) dx′

∫ 2π

0

√
1+

∣∣∣∣− 1
|x′|2

sin θ + 2x′
∣∣∣∣2 dθ <∞.

Therefore, E is a set of finite perimeter in (−1, 1) × R2. Nevertheless, b /∈

L1
loc((−1, 1);R2).

The next result is the key point of the paper, and concerns the regularity of the
barycenter. First, we introduce some notation. Given i = 1, . . . , n− k, for all x′ in Rn−k
we write x̂i := (x1, . . . , xi−1, xi+1, . . . , xn−k). If � ⊂ Rn−k is an open set, �i denotes
its projection on xi = 0. Moreover, if f is a function defined in�, we set fx̂i := f |�∩Rx̂i ,
where Rx̂i is the straight line passing through (x1, . . . , xi−1, 0, xi+1, . . . , xn−k) and or-
thogonal to the hyperplane xi = 0. In order to simplify the notation, we shall drop the
subscript i when it is clear from the context.

Theorem 4.3. Let E ⊂ Rn and let � ⊂ Rn−k be an open set such that E has finite
perimeter in �×Rk , and Ex′ is equivalent to a k-dimensional ball for Ln−k-a.e. x′ ∈ �.
Assume that conditions (1.3) and (1.4) hold, and fix i ∈ {1, . . . , n−k}. Then, for Hn−k−1-
a.e. x̂i ∈ �i , bx̂i ∈ W

1,1
loc (� ∩ Rx̂i ,R

k) and for L1-a.e. xi ∈ � ∩ Rx̂i ,

b′
x̂i
(xi) =

1
L∗
x̂i
(xi)

∫
∂∗Ex′

(y − bx̂i (xi))
νEi (x

′, y)

|νEy (x
′, y)|

dHk−1(y). (4.1)

In addition, when k = 1, b ∈ W 1,1
loc (�) and ‖∇b‖L1(�;Rn−1) ≤ P(E;�× R)/2.
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Proof. Since our argument is local, we may assume that � is bounded and E has finite
perimeter. Note that L ∈ W 1,1(�), by Propositions 3.5 and 3.6. We divide the proof into
several steps and we consider only the case i = 1, the other cases being analogous.

Step 1. Assume k = n− 1 and b is locally bounded.
With no loss of generality, we may also assume that L coincides with its Lebesgue

representative. By (1.4), L is a strictly positive, absolutely continuous function in �.
Therefore, since b is locally bounded, for any interval I compactly contained in � the set
E ∩ (I × Rn−1) is essentially bounded.

Let us introduce the auxiliary function f (x′) :=
∫
Ex′
y dy ∈ Rn−1. Let φ ∈ C1

c (I ),

and let {ψj }j∈N be a sequence in C1
c (Rn−1, [0, 1]) pointwise converging to 1. Using (2.1)

and (1.3), by the dominated convergence theorem and the coarea formula we obtain

−

∫
I

φ′(x′)f (x′) dx′ = − lim
j→∞

∫
I×Rn−1

yφ′(x′)ψj (y)χE(x
′, y) dx′ dy

= lim
j→∞

∫
I×Rn−1

yφ(x′)ψj (y) dD1χE(x) =

∫
I×Rn−1

yφ(x′) dD1χE(x)

=

∫
∂∗E∩(I×Rn−1)

yφ(x′)νE1 (x
′, y) dHn−1(x)

=

∫
I

φ(x′) dx′
∫
∂∗Ex′

y
νE1 (x

′, y)

|νEy (x
′, y)|

dHn−2(y). (4.2)

Since I and φ are arbitrary, f belongs to W 1,1
loc (�;R

n−1).
Consequently, b = f/L belongs to W 1,1

loc (�;R
n−1), and by (3.2) and (4.2) we get

b′(x′) =

(
1
L
f

)′
(x′) = −

L′(x′)

|L(x′)|2
f (x′)+

1
L(x′)

∫
∂∗Ex′

y
νE1 (x

′, y)

|νEy (x
′, y)|

dHn−2(y)

= −
b(x′)

L(x′)

∫
∂∗Ex′

νE1 (x
′, y)

|νEy (x
′, y)|

dHn−2(y)+
1

L(x′)

∫
∂∗Ex′

y
νE1 (x

′, y)

|νEy (x
′, y)|

dHn−2(y)

=
1

L(x′)

∫
∂∗Ex′

(y − b(x′))
νE1 (x

′, y)

|νEy (x
′, y)|

dHn−2(y).

Step 2. In order to remove the boundedness condition on b, we first examine the case
n = 2, k = 1.

Our strategy is to shrink the set E in a suitable way: given M > 0, we translate every
segment Ex′ contained in the half-plane y > M (resp. in y < −M) until it touches
the line y = M (resp. y = −M). To be more precise, defining the truncation bM :=
(b ∧ (L/2+M)) ∨ (−L/2−M), we set

EM :=
⋃
x′∈�

(bM(x′)− L(x′)/2, bM(x′)+ L(x′)/2).

We want to show that EM has finite perimeter and satisfies condition (1.3). This, thanks
to Step 1, will imply that bM ∈ W 1,1

loc (�).



Stability of the Steiner symmetrization of convex sets 1265

M

Fig. 4. The sets E and FM
+

. Fig. 5. The set FM
+
∪ F̃M
+

.

Fig. 6. The set G. Fig. 7. The sets GM
+

and EM .

We set FM+ := {(x
′, y) ∈ E : y > M} (Figure 4) and consider its reflection with

respect to the line y = M , i.e., F̃M+ := {(x
′, y) ∈ R2

: (x′, 2M − y) ∈ FM+ } (Figure 5).
LetG be the set obtained from FM+ ∪ F̃

M
+ through Steiner symmetrization with respect to

y = M (Figure 6), and let GM+ := {(x
′, y) ∈ G : y > M} (Figure 7).

Observing that (FM+ ∪ F̃
M
+ )

(1/2)
∩ {y = M} ⊂ E(1/4) and that by Theorem 2.1,

H1(E(1/4)) = 0, we have P(FM+ ∪ F̃
M
+ ) ≤ 2P(E). Bearing in mind that Steiner sym-

metrization decreases the perimeter, we get P(G) ≤ 2P(E). Since all sections Gx′
of G are segments, it is easy to verify that ∂∗GM+ ∩ {y = M} is contained (up to
an H1-negligible set) in the projection of ∂∗G ∩ {y > M} on {y = M}. Therefore,
P(GM+ ) ≤ P(G) ≤ 2P(E).

Let us now repeat the same procedure on the set FM− := {(x
′, y) ∈ E : y < −M} in

a symmetric way with respect to the line y = −M , thus obtaining another set GM− such
that P(GM− ) ≤ 2P(E). Since by construction

EM = (E \ (FM+ ∪ F
M
− )) ∪G

M
+ ∪G

M
− ,

we infer that P(EM) ≤ 5P(E) and condition (1.3) is still satisfied thanks to Proposi-
tion 3.6.
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Define now the functions

h±(x
′) := b(x′)± L(x′)/2 and hM± (x

′) := bM(x′)± L(x′)/2.

From the Poincaré–Wirtinger inequality in W 1,1(I ),∫
I

∣∣∣∣hM± − −∫
I

hM±

∣∣∣∣ dx′ ≤ c(I ) ∫
I

|(hM± )
′
| dx′,

and the bound
∫
I
|(hM+ )

′
| + |(hM− )

′
| dx′ ≤ P(EM) ≤ 5P(E), we see that, up to a (not

relabeled) subsequence, hM± − −
∫
I
hM± converges in BV(I ) as M →∞. Considering that

hM± → h± pointwise, h± belong to BV(I ), and so does b. Since b is locally bounded, by
Step 1 we conclude that b ∈ W 1,1

loc (�) and (4.1) holds.

Step 3. Now we turn to the case n > 2, k = n − 1. Here our strategy is to rearrange
the set E, keeping fixed the (n − 1)-th component of the barycenter, so that the (n − 1)-
dimensional balls Ex′ are all centered in the plane y1 = · · · = yn−2 = 0.

We keep the same definition of ESi used in the proof of Proposition 3.6. A pictorial
example of ES1 is given in Figure 8. From (3.20) and Proposition 3.6 we deduce that
Hn−1({x ∈ ∂∗ES1 : νE

S1
y1
= 0} ∩ (� × Rn−1)) = 0 and a fortiori (1.3) holds with ES1

in place of E. Moreover, for L1-a.e. x′ ∈ � the section (ES1)x′ is a ball obtained by
translating Ex′ . This fact implies in particular that moreover ES1 satisfies (1.4) and that
for a.e. x′ ∈ � the barycenter of the section (ES1)x′ is given by (0, b2(x

′), . . . , bn−1(x
′)).

Fig. 8. The sets E (left) and ES1 (right)

Iterating this procedure with respect to the n− 3 variables y2, . . . , yn−2 we obtain the
set ESn−2 , which is equivalent in �× Rn−1 to

F :=
{
(x′, y) ∈ �× Rn−1

: x′ ∈ �, y ∈ Bn−1
r(x′)

(
(0, . . . , 0, bn−1(x

′))
)}
,

with Hn−1({x ∈ ∂∗F : νFyn−1
(x) = 0} ∩ (�×Rn−1)) = 0. From Theorem 2.4, for Ln−2-

a.e. y′= (y1, . . . , yn−2) ∈ Rn−2 the section Fy′ := {(x′, yn−1)∈R2
: (x′, y′, yn−1)∈F }
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has finite perimeter. Moreover,

H1({(x′, yn−1) ∈ ∂
∗Fy′ : ν

Fy′
yn−1(x

′, yn−1) = 0} ∩ (�× R)) = 0. (4.3)

Indeed, setting A := {x ∈ ∂∗F : νFyn−1
(x) = 0} ∩ (� × Rn−1), by the coarea formula

we have H1(Ay′) = 0 for Ln−2-a.e. y′, while again by Theorem 2.4 the section Ay′ is

equivalent to {(x′, yn−1) ∈ ∂
∗Fy′ : ν

Fy′
yn−1(x

′, yn−1) = 0} ∩ (�× R).
Let I be an interval compactly included in �. Since r = r(x′) is continuous, there

exists a ρ > 0 such that I × Bn−2
ρ is included in the projection of F on the hyperplane

yn−1 = 0. For all y′ ∈ Bn−2
ρ and x′ ∈ I the 1-dimensional section (Fy′)x′ of Fy′ is a

segment of L1-measure equal to 2
√
r(x′)2 − |y′|2 > 0 and its barycenter coincides with

bn−1(x
′). Therefore, bn−1 ∈ W

1,1
loc (�) by Step 2 and (4.1) holds by Step 1.

Step 4. The remaining case, i.e., k < n−1, will be addressed through a slicing argument.
Let Q =

∏n−k
i=1 Ii be a cube compactly included in �. For any x̂ ∈

∏n−k
i=2 Ii set Ex̂ =

{(x1, y) ∈ Rk+1
: (x1, x̂, y) ∈ E}. Let us now prove that for Ln−k−1-a.e. x̂ ∈

∏n−k
i=2 Ii the

slice Ex̂ ⊂ Rk+1 satisfies the same assumptions of the sets considered in Steps 2 and 3.
Indeed, the section Ex̂ has finite perimeter in Rk+1 thanks to Theorem 2.4, and (Ex̂)x1 =

E(x1,x̂) is a k-dimensional ball for L1-a.e. x1 ∈ I1. Moreover, the same argument used
to prove (4.3) shows that Hk({(x1, y) ∈ ∂

∗Ex̂ : ν
Ex̂
y (x1, y) = 0} ∩ (I1 × Rk)) = 0.

Finally, by [1, Theorem 3.108], (L∗)x̂ is the Lebesgue representative of Lx̂ . Therefore,
(L∗)x̂ > 0 in I1, given that the projection on

∏n−k
i=2 Ii of the set {x′ ∈ � : L∗(x′) = 0} is

Ln−k−1-negligible.
By Steps 2 and 3 we conclude that bx̂ ∈ W 1,1(I1;Rk). Using again Theorem 2.4 we

get (4.1):

b′
x̂
(x1) =

1
L∗
x̂
(x1)

∫
∂∗(Ex̂ )x1

(y − bx̂(x1))
ν
Ex̂
1 (x1, y)

|ν
Ex̂
y (x1, y)|

dHk−1(y)

=
1

L∗(x1, x̂)

∫
(∂∗E)(x1,x̂)

(y − b(x1, x̂))
νE1 (x1, x̂, y)

|νEy (x1, x̂, y)|
dHk−1(y).

Step 5. We shall now consider the special case k = 1, to prove that b ∈ W 1,1
loc (�) and

‖∇b‖L1(�;Rn−1) ≤ P(E;�× R)/2 . From (4.1), we get∫
∏n−1
i=2 Ii

dx̂

∫
I1

|b′
x̂
(x1)| dx1 ≤

1
2

∫
Q

dx′
∫
(∂∗E)x′

|νE1 (x
′, y)|

|νEy (x
′, y)|

dH0(y)

≤
1
2
P(E;Q× R). (4.4)

Clearly, the same bound holds if we consider the slices of b with respect to all the remain-
ing directions. Fix now T > 0 and consider the truncated function bT := (b∧T )∨ (−T ).
From (4.4) we have ∫

Q

|(bT
x̂
)′| dx1 dx̂ ≤

1
2
P(E;Q× R).
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The same holds for the other directions. As a consequence of [1, Theorem 3.105], bT

belongs to W 1,1(Q). Therefore, by using the Poincaré–Wirtinger inequality as in Step 2
and letting T → ∞, we get b ∈ W 1,1(Q). Finally, from [1, Theorem 3.107] it follows
that for Ln−1-a.e. x′ ∈ �,

∇b(x′) =
1

L(x′)

∫
∂∗Ex′

(y − b(x′))
νE
x′
(x′, y)

|νEy (x
′, y)|

dH0(y).

In particular, this implies ‖∇b‖L1(�;Rn−1) ≤ P(E;�× R)/2. ut

The next example shows that in general the regularity of the barycenter is only local.

Example 4.4. Let n = 3, k = 2. Let � = π+(E) = (0, 1), and let

E = {(x′, y) ∈ R× R2
: |y − b(x′)| < r(x′), x′ ∈ (0, 1)},

where r(x′) = |x′|2 and b : (0, 1)→ R2 is given by

b(x′) := (0, sin(1/x′)), x′ ∈ (0, 1).

We observe that L(x′) = π |x′|4 is strictly positive in (0, 1). Moreover,

P(E; (0, 1)× R2) =

∫ 1

0
r(x′) dx′

∫ 2π

0

√
1+ |b′(x′) · (cos θ, sin θ)+ r ′(x′)|2 dθ

≤ 2π
∫ 1

0
r(x′)

√
1+ 2|b′(x′)|2 + 2|r ′(x′)|2 dx1 <∞,

so that E is of finite perimeter in (0, 1)×R2. In addition, L ∈ W 1,1(0, 1) and conditions
(1.3) and (1.4) are satisfied. Nevertheless, b /∈ W 1,1((0, 1);R2).

The next example shows that in codimension higher than 1, despite being absolutely
continuous on almost every 1-dimensional section of �, the barycenter may not be in
W

1,1
loc (�;R

2).

Example 4.5. Let n = 4, k = 2. Let L : B2
1 → [0,∞) be a continuous function

vanishing only at the origin, and such that L ∈ W 1,1(B2
1 ), while

√
L does not belong

to BV(U) for any neighborhood U of the origin. For example, one can take L(x′) =
|x′|5/4[2+ sin(1/|x′|2)]. Set

E = {(x′, y) ∈ R2
× R2

: |y − b(x′)| < r(x′), x′ ∈ B2
1 },

where r(x′) =
√
L(x′)/π and b(x′) := (0, r(x′)). Then

P(E;B2
1 × R2) =

∫
B2

1

r(x′) dx′
∫ 2π

0

√
1+ |∇r(x′)|2(1+ sin θ)2 dθ <∞,

so that E is of finite perimeter. Note that conditions (1.3) and (1.4) are satisfied. Never-
theless, b /∈ BVloc(B

2
1 ;R

2).

Once Theorem 4.3 is established, Theorem 1.2 follows at once.
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Proof of Theorem 1.2. By Theorem 1.1, for Ln−k-a.e. x′ ∈ � the section Ex′ is a k-
dimensional ball, and νE

x′
(x′, ·) and |νEy |(x

′, ·) are constant Hk−1-a.e. in ∂∗Ex′ . Moreover,
condition (1.3) holds due to Proposition 3.6. Let i = 1, . . . , n− k. By (4.1), for Hn−k−1-
a.e. x̂i ∈ �i and for L1-a.e. xi ∈ � ∩ Rx̂i ,

b′
x̂i
(xi) =

1
L∗
x̂i
(xi)

νEi (x
′)

|νEy (x
′)|

∫
∂∗Ex′

(y − bx̂i (xi)) dH
k−1(y) = 0,

where we dropped the variable y for functions that are constant in ∂∗Ex′ . Arguing as in
Step 5 of the proof of Theorem 4.3, we conclude that b ∈ W 1,1

loc (�;R
k), ∇b = 0 in �,

and therefore b is constant in �. ut

5. Quantitative estimates in the convex case

The present section focuses on a quantitative version of inequality (1.1) in the case of con-
vex sets, in the spirit of [8, 11, 13]. Firstly, we need a Poincaré type inequality, a particular
case of a more general one proved in [9]. We provide the proof for completeness.

Proposition 5.1 (Weighted Poincaré inequality). Let � ⊂ Rn, n ≥ 1, be an open set,
and let x, x̃ ∈ � and 0 < r ≤ R <∞ be such that Br(x) ⊂ � ⊂ BR (̃x). Assume that �
is star-shaped with respect to Br(x). Then∫
�

|f (x)− fBr/2(x)| dx ≤

(
4R
r

)n+1 ∫
�

|∇f (x)|dist(x, ∂�) dx for all f ∈ W 1,1(�),

where fBr/2(x) denotes the average of f on Br/2(x).

Proof. Without any loss of generality, we can assume that x = 0. We can also assume
that f ∈ C1, since the general case can be obtained by a density argument. For every
y ∈ � and z ∈ Br/2 we have

f (z)− f (y) =

∫ 1

0
∇f ((1− s)y + sz) · (z− y) ds.

Multiplying by 1
Ln(Br/2)χBr/2(z) and integrating over z gives

fBr/2 − f (y) =
1

Ln(Br/2)

∫
�

∫ 1

0
∇f ((1− s)y + sz) · (z− y)χBr/2(z) ds dz.

Making the change of variable

x = (1− s)y + sz,

we get

fBr/2 − f (y) =
1

Ln(Br/2)

∫
�

∫ 1

0
∇f (x) ·

x − y

s
χBr/2

(
x − (1− s)y

s

)
1
sn
ds dx.
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Passing to the absolute value and integrating with respect to y yields∫
�

|f (y)− fBr/2 | dy

≤
1

Ln(Br/2)

∫
�

∫
�

∫ 1

0
|∇f (x)|χBr/2

(
x − (1− s)y

s

)
|x − y|

sn+1 ds dx dy.

Let us show that

|x − y| ≤
4R
r

dist(x, ∂�).

This inequality is trivial when n = 1. Otherwise, if y /∈ Br/2(z), letting C be the convex
hull of Br/2(z) ∪ {y}, we have

|x − y| =
2|z− y|

r
dist(x, ∂C) ≤

4R
r

dist(x, ∂�),

because C ⊂ �. Conversely, if y ∈ Br/2(z), we have |x − y| ≤ dist(x, ∂�) ≤
4R
r

dist(x, ∂�). Therefore, setting A(x) := {y ∈ � : |x − y| ≤ 4R
r

dist(x, ∂�)} and
interchanging the order of integrations yields∫

�

|f (y)− fBr/2 | dy

≤
1

Ln(Br/2)

∫
�

|∇f (x)|

∫
A(x)

∫ 1

0
χBr/2

(
x − (1− s)y

s

)
|x − y|

sn+1 ds dy dx.

Also, for x and y fixed, the only values of s which contribute are such that

|x − y|

s
− |y| ≤

|x − (1− s)y|
s

≤
r

2
, and so s ≥

|x − y|

r/2+ |y|
≥
|x − y|

2R
.

Hence,∫
�

|f (y)− fBr/2 | dy ≤
1

Ln(Br/2)

∫
�

|∇f (x)|

∫
A(x)

|x − y|

∫ 1

|x−y|/(2R)

1
sn+1 ds dy dx

=
1

nLn(Br/2)

∫
�

|∇f (x)|

∫
A(x)

1
|x − y|n−1 [(2R)

n
− |x − y|n] dy dx

≤
(2R)n

nLn(Br/2)

∫
�

|∇f (x)|

∫
A(x)

1
|x − y|n−1 dy dx

=
(2R)n

Ln(Br/2)

∫
�

|∇f (x)|

∫ 4R
r

dist(x,∂�)

0
ωn dρ dx

=

(
4R
r

)n+1 ∫
�

|∇f (x)| dist(x, ∂�) dx. ut
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Corollary 5.2 (see also [6, Theorem 1.1]). Let� ⊂ Rn be an open, bounded and convex
set with eccentricity E , and let S be the ellipsoid with maximum volume included in �.
Then there is a positive constant c = c(n) such that∫

�

|f (x)− fS̃ | dx ≤ cE
∫
�

|∇f (x)| dist(x, ∂�) dx for all f ∈ W 1,1(�),

where fS̃ denotes the average of f on the ellipsoid S̃ := x+ (S− x)/2, with x the center
of S.

Proof. Up to a roto-translation, we can assume that S = {x ∈ Rn :
∑n
i=1(xi/li)

2 < 1}
for certain l1, . . . , ln > 0. Let φ : Rn→ Rn be an affine transformation mapping the unit
ball B1 onto S. The matrix associated to φ is (δij li). We set f̂ = f ◦ φ and �̂ = φ−1(�).

By John’s ellipsoid theorem (see [3, Theorem 2.4]) the inclusions S ⊂ � ⊂ nS hold.
In particular, with r and R denoting the inner and the outer radius of � respectively, we
have max{li} ≤ R and min{li} ≥ r/n. Moreover B1 ⊂ �̂ ⊂ Bn. Taking into account that
det∇φ = Ln(S)/Ln(B1), a change of variables provides

fS/2 :=
1

Ln(S/2)

∫
S/2
f dx =

1
Ln(S/2)

∫
B1/2

f̂ det∇φdy = f̂B1/2 .

The following estimates hold:

|∇f (φ(y))| = |∇f̂ (y)(∇φ(y))−1
| =

√∑
i

l−2
i (∂i f̂ (y))2 ≥

|∇f̂ (y)|

max{li}
≥
|∇f̂ (y)|

R
,

dist(φ(y), ∂�) = inf
z∈∂�̂

√∑
i

l2i (yi − zi)
2 ≥ min{li} dist(y, ∂�̂) ≥

r

n
dist(y, ∂�̂).

Then, by using Proposition 5.1, we get∫
�

|f (x)− fS/2| dx =

∫
�̂

|f̂ (y)− f̂B1/2 | det∇φ dy

≤ (4n)n+1
∫
�̂

|∇f̂ (y)| dist(y, ∂�̂) det∇φ dy

≤ n(4n)n+1E
∫
�̂

|∇f (φ(y))| dist(φ(y), ∂�) det∇φ dy

= c(n)E
∫
�

|∇f (x)| dist(x, ∂�) dx. ut

Corollary 5.3. Let � ⊂ Rn be a bounded and connected Lipschitz domain. Given an
open and non-empty set S ⊂⊂ �, there is a positive constant cP , depending only on �
and S, such that∫

�

|f (x)− fS | dx ≤ cP

∫
�

|∇f (x)| dist(x, ∂�) dx for all f ∈ W 1,1(�), (5.1)

where fS denotes the average of f on S.
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Proof. We decompose the domain� into a finite number of domains�i , each star-shaped
with respect to an open ball Bi ⊂⊂ �i (see [16, Section 1.1.9, Lemma 1]). We also
consider a connected open set U ⊂⊂ �, having the cone property and such that S ⊂ U
and Bi ⊂ U for every i.

By the Poincaré–Wirtinger inequality in W 1,1(U) (see [16, Lemma 1.1.11]),

|fS − fBi | =

∣∣∣∣ 1
Ln(S)

∫
S

(f − fBi ) dx

∣∣∣∣ ≤ 1
Ln(S)

∫
U

|f − fBi | dx

≤
ci

Ln(S)

∫
U

|∇f | dx ≤
ci

Ln(S) dist(U, ∂�)

∫
�

|∇f | dist(x, ∂�) dx

for suitable constants ci = ci(Bi, U). Then Proposition 5.1 leads to∫
�

|f − fS | dx ≤
∑
i

[∫
�i
|f − fBi | dx + Ln(�i)|fS − fBi |

]
≤ cP

∫
�

|∇f | dist(x, ∂�) dx. ut

Lemma 5.4. Let E ⊂ Rn be an open, bounded and convex set with inner radius r , outer
radius R and eccentricity E . Then

n−2nLn(E)r−1
≤ P(E) ≤ n2nLn(E)r−1

; (5.2)

P(E) ≥ n−2nLn(E)
n−2
n−1R

1
n−1 ; (5.3)

P(E) ≥ n−2nLn(E)
n−1
n E

1
n . (5.4)

Proof. Let S be the maximum ellipsoid included in E. Up to a roto-translation, we can
assume that S = {x ∈ Rn :

∑n
i=1(xi/li)

2 < 1} with l1 ≤ · · · ≤ ln. Let also F :=∏n
i=1(−li, li). By John’s ellipsoid theorem, the inclusions (1/

√
n)F ⊂ S ⊂ E ⊂ nS ⊂

nF hold. In particular, by convexity, (
√
n)1−nP(F) ≤ P(E) ≤ nn−1P(F). Moreover,

l1 ≤ r ≤ nl1 and R ≤ nln.
Trivially we have 2n

∏n
i=2 li ≤ P(F) ≤ n2n

∏n
i=2 li and therefore

1
n2nr

≤
1

nn(
√
n)n−1r

≤
1

nn(
√
n)n−1l1

≤
(
√
n)1−n

nn

P(F)

Ln(F )

≤
P(E)

Ln(E)
≤

nn−1

(
√
n)−n

P(F)

Ln(F )
≤
(n
√
n)n

l1
≤
nn+1(

√
n)n

r
≤
n2n

r
.

Let � :=
∏n−1
i=1 (−li, li). By the isoperimetric inequality, we get P(�) ≥

(n− 1)ω
1
n−1
n−1L

n−1(�)
n−2
n−1 . Therefore

P(E)

Ln(E)
n−2
n−1
≥
(
√
n)1−n

n
n(n−2)
n−1

P(F)

Ln(F )
n−2
n−1
≥

2lnP(�)

n2n−1(2lnLn−1(�))
n−2
n−1
≥

l
1
n−1
n

n2n−1 ≥
R

1
n−1

n2n .

Finally, by writing (5.3) as P(E)n−1
≥ n2n(1−n)Ln(E)n−2R, and by using the first

inequality in (5.2), we obtain (5.4). ut

We can now prove Theorem 1.4.
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Proof of Theorem 1.4. For simplicity, we set � = π+(
◦

ES), and denote by r and R the
inner radius and the outer radius of ES respectively. We shall prove that

inf
y∈R

Ln(ES 4 (E + (0, y))) ≤ c(n)RES
√
P(E)− P(ES)

√
P(E). (5.5)

First of all, observe that b ∈ W 1,1(�) by Theorem 4.3. Moreover, by taking into account
that |νE

S

y |
−2
= 1+ 1

4 |∇L|
2 by (3.3), a simple computation shows that√(

1+ 1
4 |∇L|

2 + |∇b|2
)2
− |∇L|2|∇b|2 ≥ 1+ 1

4 |∇L|
2
+ (2|νE

S

y |
2
− 1)|∇b|2.

Therefore, the difference P(E)− P(ES) is greater than or equal to∫
�

[√
1+

∣∣∇b + 1
2∇L

∣∣2 +√1+
∣∣∇b − 1

2∇L
∣∣2 − 2

√
1+ 1

4 |∇L|
2
]
dx′

= 2
∫
�

√(
1+ 1

4 |∇L|
2 + |∇b|2

)2
− (∇L · ∇b)2 −

(
1+ 1

4 |∇L|
2
− |∇b|2

)√
1+

∣∣∇b + 1
2∇L

∣∣2 +√1+
∣∣∇b − 1

2∇L
∣∣2 + 2

√
1+ 1

4 |∇L|
2

dx′

≥ 4
∫
�

|νE
S

y |
2
|∇b|2

D
dx′, (5.6)

where D denotes the denominator of the second integrand. Also, observe that, by the
convexity of ES ,

|νE
S

y (x′)| ≥
dist(x′, ∂�)
√

2R
for x′ ∈ �. (5.7)

Indeed, since |νE
S

y (x′)|/|νE
S

x′
(x′)| ≥ dist(x′, ∂�)/R, if |νE

S

x′
(x′)| ≥ 1/

√
2 then (5.7)

follows. On the other hand, if |νE
S

y (x′)| ≥ 1/
√

2, then (5.7) is trivial. Using the Hölder
inequality we get

√
P(E)− P(ES)

√
P(E)+ P(ES) =

√
P(E)− P(ES)

(∫
�

D dx′
)1/2

≥ 2
∫
�

|νE
S

y (x′)| |∇b(x′)| dx′ ≥

√
2
R

∫
�

|∇b(x′)| dist(x′, ∂�) dx′.

Let S denote the maximum ellipsoid in �, and let b0 denote the average of b in S̃ :=
x + (S − x)/2, with x the center of S. Since the eccentricity of � is smaller than that
of ES , by using Corollary 5.2, we have√

P(E)− P(ES)
√
P(E)+ P(ES) ≥

c(n)

RES

∫
�

|b − b0| dx
′

≥
c(n)

RES

∫
�

L1(ESx′ 4 (Ex′ − b0)) dx
′
=
c(n)

RES
Ln(ES 4 (E − (0, b0))),

thus obtaining (5.5).
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To conclude the proof, observe that if D(E) > 1 then λ(E) < 2
√
D(E), since we

always have λ(E) < 2. On the other hand, if D(E) ≤ 1, since P(E) ≤ 2P(ES), from
(5.2) and (5.5) we obtain

λ(E) ≤ c(n)RES
√
D(E)

P (ES)

Ln(ES)
≤ c(n)E2

S

√
D(E). ut

Example 5.5. Let Em be a right-angle triangle with basis 1/m and height 2m as in Fig-
ure 9. It can be computed that λ(Em) = 2/5 for every m ∈ N. On the other hand,
D(Em) → 0 as m → ∞. This shows that the dependence on the eccentricity of the
constant on the right-hand side of (1.6) cannot be avoided.

y

m

x′

ESm

Em

Fig. 9

x′

ES

ε

Eε

y

Fig. 10

Example 5.6. Consider the rectangle ES := (0, a) × (−b/2, b/2) and, for ε > 0, the
parallelogram Eε as in Figure 10. One can compute that λ(Eε) = ε/(2b), and D(Eε) ≈
ε2/(2a2

+ 2ab). This shows that the exponent 1/2 in (1.4) is optimal.

Remark 5.7. We can weaken the convexity assumption on ES in Theorem 1.4 by merely
requiring that |νE

S

y | ≥ c
′ dist(·, ∂�) for some c′ = c′(ES), and (using Corollary 5.3) that

� = π+(ES) is a bounded and connected Lipschitz domain. In this case we get a generic
constant c = c(n,ES) instead of c(n)E2

S on the right-hand side of (1.6). In the example
shown in Figure 2 the constant c blows up because c′ does, as the slope of the dotted
segments increases. On the other hand, in the example in Figure 3, the constant cP in
(5.1) blows up when the neck in � = π+(E) (the area colored black) shrinks.
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Remark 5.8. Note that the first integral in (5.6) is equal to P(E;�×R)−P(ES;�×R),
with� = π+(

◦

ES). Therefore, (1.6) holds in a slightly stronger form, withD(E) replaced
by

1
P(ES)

[P(E;�× R)− P(ES;�× R)].

Following the terminology introduced in [13], we say that a set E ⊂ Rn is n-sym-
metric if it is symmetric with respect to the n coordinate hyperplanes. The next lemma
shows that for a convex n-symmetric set E the asymmetry index A(E) can be obtained
by choosing the ball centered at the origin.

Lemma 5.9. Let E ⊂ Rn, n ≥ 1, be an n-symmetric bounded convex set with Ln(E) =
Ln(Br) for some r > 0. Then

min
x∈Rn

Ln(E 4 Br(x)) = Ln(E 4 Br).

Proof. Given F,G ⊂ Rn, by comparing their sections it is easy to prove Ln(F S ∩ GS)
≥ Ln(F ∩G) for any k-codimensional Steiner symmetrization.

Note now that E is stable for the 1-dimensional Steiner symmetrizations with respect
to x1 = 0, . . . , xn = 0. Hence

Ln(E ∩ Br(x)) ≤ Ln(E ∩ Br(x1, . . . , xn−1, 0)) ≤ · · · ≤ Ln(E ∩ Br). ut

We can finally prove the quantitative estimate for Steiner symmetrization in the case 2 ≤
k ≤ n− 1.

Proof of Theorem 1.5.

Step 1. Define ESi as in the proof of Proposition 3.6. Let also r , R and E be the inner
radius, the outer radius and the eccentricity of E respectively. Since Steiner symmetriza-
tion decreases the outer radius, while increasing the inner radius, by (5.5) we deduce that
for every i = 1, . . . , k,

Ln(ESi−1 4 ESi ) ≤ c(n)RE
√
P(ESi−1)− P(ESi )

√
P(ESi−1),

up to a suitable translation in the direction of the yi axis. By the triangle inequality

Ln(E 4 ESk ) ≤
k∑
i=1

Ln(ESi−1 4 ESi ) ≤ c(n)RE
√
P(E)

k∑
i=1

√
P(ESi−1)− P(ESi )

≤ c(n)RE
√
P(E)

√
P(E)− P(ES). (5.8)

Step 2. We now estimate the measure of the symmetric difference of ES and ESk . To this
end, for Ln−k-a.e. x′ ∈ Rn−k we set

fk(x
′) := p2

ESk
(x′)+ |∇L(x′)|2, f (x′) := p2

ES
(x′)+ |∇L(x′)|2.
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Using Proposition 3.4, setting � = π+(ES) and using the Hölder inequality, the differ-
ence P(ESk )− P(ES) can be estimated by∫

�

(√
fk(x′)−

√
f (x′)

)
dx′ =

∫
�

p2
ESk
(x′)− p2

ES
(x′)√

fk(x′)+
√
f (x′)

dx′

≥

(∫
�

√
p2
ESk
(x′)− p2

ES
(x′) dx′

)2∫
�

(√
fk(x′)+

√
f (x′)

)
dx′

≥

(∫
�

√
p2
ESk
(x′)− p2

ES
(x′) dx′

)2
2P(ESk )

.

Thus,√
2P(ESk )

√
P(ESk )− P(ES) ≥

∫
�

√
p2
ESk
(x′)− p2

ES
(x′) dx′

=

∫
�

√
pESk (x

′)− pES (x
′)

pES (x
′)

√
pES (x

′)(pESk (x
′)+ pES (x

′)) dx′

≥
√

2
∫
�

pES (x
′)

√
pESk (x

′)− pES (x
′)

pES (x
′)

dx′

=
√

2 kωk

∫
�

rk−1(x′)

√
pESk (x

′)− pES (x
′)

pES (x
′)

dx′.

Thanks to Lemma 5.9, for Ln−k-a.e. x′ ∈ � we can use the quantitative isoperimetric
inequality (1.5) in dimension k to get

√
P(E)

√
P(E)− P(ES) ≥

kωk

γk

∫
�

rk−1(x′)
Ln(ESk

x′
4 ES

x′
)

Ln(ES
x′
)

dx′

=
k

γk

∫
�

1
r(x′)

Ln(ESk
x′
4 ESx′) dx

′
≥

k

γkR
Ln(ESk 4 ES).

Combining this estimate with (5.8) and arguing as in the final part of the proof of Theorem
1.4 we obtain

λ(E) ≤ c(n, k)E2
√
D(E). (5.9)

Step 3. Let rS and RS be the inner and the outer radii of ES respectively. From (5.2),
(5.4) and Ln(ES) ≤ ωnRnS we obtain

P(E)

P (ES)
≥

Ln(E)(n−1)/nE1/nrS

n4nLn(ES)
≥

E1/nE−1
S

n4nω
1/n
n

.

Therefore, if E ≥ 2nn4n2
ωnEnS , we have P(E) ≥ 2P(ES) and so λ(E) ≤ 2

√
D(E).

Otherwise, by (5.9), λ(E) ≤ c(n, k)E2n
S

√
D(E). ut

Finally, we highlight that for convex sets the measure of the symmetric difference E4ES

is equivalent to the Hausdorff distance dH(E,ES) between E and ES . In the spirit
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of [12], by combining the quantitative isoperimetric inequalities (1.6) and (1.7) with [10,
Lemma 4.2], we have the following corollary. Here diam(E) is the diameter of the set E.

Corollary 5.10. Let 1 ≤ k ≤ n − 1. There exists a constant c = c(k, n) such that, if
ES is a Steiner symmetric convex set with eccentricity ES , then, up to a translation in y
direction,

dH(E,E
S) ≤ c diam(E)E2

S (D(E))
1/(2n)

for every convex set E ⊂ Rn whose Steiner symmetral is ES .
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