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Abstract. We construct a natural invariant measure concentrated on the set of square-free numbers,
and invariant under the shift. We prove that the corresponding dynamical system is isomorphic to a
translation on a compact Abelian group. This implies that this system is not weakly mixing and has
zero measure-theoretical entropy.
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Introduction and notations

Let P be the set of prime numbers. By p (with or without indices) we will always denote
an element of P . A positive integer n is square-free if p2 - n for every p. Denote the set of
all square-free numbers by Q (for quadratfrei). The indicator of the set Q is the function
n 7→ µ2(n), where µ is the Möbius function:

µ(n) =


1 if n = 1,
0 if n is not square-free,
(−1)k if n is the product of k distinct primes.

The functions µ and µ2 are of great importance in number theory because of their con-
nection with the Riemann zeta function. For example,

∞∑
n=1

µ(n)

ns
=

1
ζ(s)

,

∞∑
n=1

µ2(n)

ns
=

ζ(s)

ζ(2s)
.

Furthermore, the estimate |
∑
n≤N µ(n)| = Oε(N

1/2+ε) as N → ∞ is equivalent to
the Riemann Hypothesis. P. Sarnak [12] has recently addressed a number of statistical
and ergodic properties of the sequences (µ(n))n and (µ2(n))n.
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0.1. Notations

We shall use the standard notation e(x) = e2πix . For every integer n denote by ω(n) the
number of its distinct prime factors. For example, ω(1) = 0 and ω(2 · 3) = ω(210

· 37) =

ω(7 · 23) = 2. We shall also use the notations

P(n) = {p : p | n}, P2(n) = {p : p
2
| n}.

Notice that if n ∈ Q, then |P(n)| = ω(n), P2(n) = ∅, and P2(n
2) = P(n). For every

finite set A ⊂ P , define
[A] =

∏
p∈A

p.

In particular [∅] = 1. Notice that if A,B are disjoint, then [A ∪ B] = [A][B] and
[A ∩ B] = 1.

1. Formulation of the results

The goal of this paper is to describe a dynamical system ‘naturally’ associated to Q and
study its statistical and ergodic properties.

1.1. Correlation functions

The first step is the construction of correlation functions for Q. Choose r integers 0 ≤
k1 < · · · < kr and consider the set

QN (k1, . . . , kr) = {n ≤ N : µ
2(n) = µ2(n+ k1) = · · · = µ

2(n+ kr) = 1}.

The ratio
EN (k1, . . . , kr) := |QN (k1, . . . , kr)|/N (1)

is the frequency of square-free integers n ≤ N for which n+k1, . . . , n+kr are also square-
free. It also gives the expectation (hence the notation E) of the product µ2(n)µ2(n +

k1) · · ·µ
2(n + kr) with respect to the uniform measure on {1, . . . , N}. Notice, by taking

r = 1 and k1 = 0, that QN (0) is simply the set of all square-free numbers not greater
than N . It is well known that

lim
N→∞

EN (0) = 6/π2
≈ 0.6079271018. (2)

We include the proof of (2) and some of its generalizations in Section 2 (see Theorems
2.1–2.3). The study of EN (k1, . . . , kr) as N → ∞ is also classical: see L. Mirsky [5],
R. R. Hall [2], K. M. Tsang [14], D. R. Heath-Brown [4]. It is known that the limits

cr+1(k1, . . . , kr) = lim
N→∞

EN (k1, . . . , kr) (3)
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exist. We shall refer to cr+1 as the (r + 1)-st correlation function for Q. Various formulæ
for cr+1(k1, . . . , kr) are known (see Section 3). We shall rewrite the one by L. Mirsky [5]
to express the correlation functions as a sum, namely

cr+1(k1, . . . , kr)

=

∑
0≤l′<l′′≤r

∑
µ2(dl′,l′′ )=1
d2
l′,l′′
|kl′−kl′′

∑
m0,m1,...,mr≥0

(−1)
∑r
l=0 ml

∑
Pl⊂P, 0≤l≤r
|Pl |=ml

[Pl′∩Pl′′ ]=dl′,l′′

1
[
⋃r
l=0 Pl]2

. (4)

The above formula, although complicated, plays a role in the spectral analysis of the
correlation functions. Let, for example, r = 1. For every d ∈ Q define

σd =
∑

m0,m1≥0

(−1)m0+m1
∑

P0,P1⊂P
|P0|=m0, |P1|=m1
[P0∩P1]=d

1
[P0 ∪ P1]2

. (5)

Explicit formulæ for σd are given in Section 3. Then

c2(k) =
∑

µ2(d)=1
d2
|k

σd (6)

and the corresponding spectral measure ν on S1 (i.e. satisfying c2(k) = ν̂(k) by Bochner’s
theorem) is pure point, given as a sum of δ-functions at the points e(l/d2), where d ∈ Q.
More precisely,

ν =
∑

µ2(d)=1

σd

d2
−1∑
l=0

δe(l/d2), (7)

where the convergence of the series is guaranteed by Lemma 3.1 below. The spectrum
(i.e. the support of ν) is the group

3 = {e(l/d2) : 0 ≤ l ≤ d2
− 1, µ2(d) = µ2(gcd(l, d2)) = 1} ⊂ S1.

Notice that every element of 3 is represented uniquely. Moreover, every rational number
of the form l/d2 such that d is square-free, 0 ≤ l ≤ d2

− 1, and gcd(l, d2) is also
square-free can be written as

l

d2 =
l1

p2
1
+ · · · +

lr

p2
m

(8)

for some l1, . . . , lm, where {p1, . . . , pm} = P(d). This representation (8) is unique if
one imposes the restriction 0 ≤ lj ≤ p2

m − 1, 1 ≤ j ≤ m. In other words, the group
3 is isomorphic to the direct sum

⊕
p Z/p2Z (where only finitely many coordinates are

non-zero). Therefore, 3 is the Pontryagin dual of the direct product group

G =
∏
p

Z/p2Z, (9)
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which is an Abelian compact group (endowed with the product topology). In other words,
Ĝ ∼= 3. Each element g ∈ G is identified with a sequence (gp2)p∈P indexed by P , where
gp2 ∈ Z/p2Z:

g ≡ (g4, g9, g25, g49, . . .).

Given h ∈ G, denote by Th : G→ G the translation Th(g) = g+ h. Let B be the natural
σ -algebra on G, and let us put the uniform measure on each Z/p2Z. The correspond-
ing product measure P on B is invariant under translations, and therefore it is the Haar
measure.

The ergodic properties of translations on compact Abelian groups (also known as
Kronecker systems) were studied for the first time by J. von Neumann [15]. He showed
that two such ergodic translations with the same spectrum are isomorphic as measure-
preserving dynamical systems. This is true in general for ergodic transformations with
pure point spectrum and it plays an important role in our analysis. Later, P. R. Halmos
and J. von Neumann [3] proved that every ergodic dynamical system with pure point
spectrum is isomorphic to a translation on a compact Abelian group. This implies, for
example, that every ergodic dynamical system with pure point spectrum is isomorphic to
its inverse. For an historical survey on the isomorphism problem see [8].

1.2. A natural dynamical system

Consider the space X of all bi-infinite sequences x = {x(n), −∞ < n <∞} where each
x(n) takes value either 0 or 1. Denote by B the natural σ -algebra generated by cylinder
sets, and introduce the probability measure 5 defined on B as follows: For every r ≥ 0
and every −∞ < k0 < k1 < · · · < kr <∞,

5{x ∈ X : x(k0) = x(k1) = · · · = x(kr) = 1} = cr+1(k1 − k0, . . . , kr − k0), (10)

where cr+1 is the (r + 1)-st correlation function (4). It is clear that (10) determines the
measure 5 uniquely. We call 5 the natural measure corresponding to the set of square-
free numbers.

If T is the shift on X, i.e. T x = x′, x′(n) = x(n + 1), then it follows immediately
from (10) that5 is invariant under T . We can now formulate the main result of this paper:

Main Theorem. (i) The dynamical system (X,B,5, T ) is ergodic and has pure point
spectrum given by 3.

(ii) (X,B,5, T ) is isomorphic to (G,B,P,Tu), where u = (1, 1, . . .).

P. Sarnak [12] states that (G,B,P,Tu) is a factor of (X,B,5, T ). His methods also allow
one to show that the factor map is in fact an isomorphism. Our approach is rather different
and is based on a spectral analysis of the dynamical system (X,B,5, T ). The statement
in the following corollary can also be found in [12].

Corollary. The dynamical system (X,B,5, T ) is not weakly mixing, and its measure-
theoretic entropy is zero.
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It is worth remarking that the main focus of [12] is on the topological dynamical systems
M = (Oµ(n), T ), S = (Oµ2(n), T ) given by the shifts on the orbit closures of (µ(n))n and
(µ2(n))n, respectively. The topological entropy of S is positive, equal to (6/π2) log 2. R.
Peckner [6] recently constructed a measure of maximal entropy for S; he showed that this
measure is unique, and the corresponding dynamical system is isomorphic to the direct
product of (G,B,P,Tu) and a Bernoulli shift with entropy (6/π2) log 2. In particular, the
dynamical system (X,B,5, T ) that we consider is its Pinsker factor.

Our paper is organized as follows. Section 2 includes the classical computation of the
density of square-free numbers and its generalization to square-free numbers avoiding
finite sets of prime factors (the proof is given in Appendix A). The latter will be used
for the computation of certain relevant constants. Section 3 contains various formulæ
for the correlation functions, including the derivation of (6) and (4) from the formula
by L. Mirsky. Section 4 includes several useful lemmata (some of which are proven in
Appendix B) concerning averages and exponential sums for the correlation functions.
These results are crucial for the spectral analysis of the dynamical system (X,B,5, T ).
The analysis is carried out in Section 5 and yields the first part of our Main Theorem. The
analysis of the spectrum for (G,B,P,Tu) is done in Section 6, and the second part of our
Main Theorem follows from it, by means of a theorem by J. von Neumann [15].

2. The density of Q and some of its subsets

Recall that EN (0) = |{n ≤ N : n ∈ Q}|/N . The following theorem is very classical.

Theorem 2.1.
lim
N→∞

EN (0) = 6/π2. (11)

Proof. We can write µ2 as the indicator of the set of square-free numbers by imposing
the condition that its argument avoids all arithmetic progressions modulo p2:

µ2(n) =
∏
p

(1− χp2(n)). (12)

In the above expression χp2(n) is the indicator of the arithmetic progression {p2l : l ∈ Z}.
Let us open the brackets in (12):

µ2(n) = 1−
∑
p

χp2(n)+
∑
p1<p2

χp2
1
(n)χp2

2
(n)−

∑
p1<p2<p3

χp2
1
(n)χp2

2
(n)χp2

3
(n)+ · · · .

We can write

EN (0) =
1
N

∑
n≤N

µ2(n)

= 1−
∑
p

1
p2 +

∑
p1<p2

1
(p1p2)2

−

∑
p1<p2<p3

1
(p1p2p3)2

+ · · · + εN

=

∏
p

(
1−

1
p2

)
+ εN =

1
ζ(2)
+ εN =

6
π2 + εN .

Here and below εN denotes a remainder that tends to zero as N →∞. ut
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The statement of Theorem 1 can actually be refined as follows:

Theorem 2.2.

EN (0) = 6/π2
+O(N−1/2) as N →∞.

In other words, εN in the proof of Theorem 2.1 satisfies the estimate |εN | = O(N−1/2).
This result is also very classical, and is a special case of Theorem 2.3 below. Let us fix a
finite set S ⊂ P and define the set

QS
N (0) = {n ≤ N : µ

2(n) = 1, p ∈ S ⇒ p - n} (13)

of all square-free numbers not greater than N and not divisible by any of the primes
p ∈ S. For example, Q{2}N (0) is the set of odd square-free numbers not greater thanN . No-
tice that when S is empty we get the full set of square-free numbers, i.e. Q∅N (0) = QN (0).
In analogy with (1), let us define

ES
N (0) = |QS

N (0)|/N.

We have the following

Theorem 2.3. For every finite S ⊂ P we have

ES
N (0) =

α(S)
ζ(2)

+OS(N−1/2) as N →∞, where α(S) =
∏
p∈S

p

p + 1

and the constant C(S) implied by the OS -notation can be taken as

C(S) = 4
∏
p∈S

p − 1
p
+

(∏
p∈S

p − 1
)
−

∏
p∈S

(p − 1).

The proof of Theorem 2.3 is presented in Appendix A; it implies the existence of the
asymptotic densities

lim
N→∞

ES
N (0) = α(S)/ζ(2). (14)

For example, the density of the set of odd square-free numbers is 4/π2 (i.e. odd and even
square-free numbers are in 2 : 1 proportion). Analogously, by choosing S = {p}, we see
that the set of square-free numbers not divisible by p is “p times as large” (in the sense
of density) as the set of those divisible by p. If, for instance, we choose S = {2, 3} we
obtain α({2, 3}) = 1/2, and we see that 50% of the square-free numbers are not divisible
by either 2 or 3.
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3. The formulæ for the correlation functions

L. Mirsky [5] proved that

cr+1(k1, . . . , kr) =
∏
p

(
1−

A
(r+1)
p (k1, . . . , kr)

p2

)
, (15)

where A(r+1)
p (k1, . . . , kr) = |{0, k1(modp2), . . . , kr(modp2)}|. Notice that

1 ≤ A(r+1)
p (k1, . . . , kr) ≤ r

for finitely many p and A(r+1)
p (k1, . . . , kr) = r + 1 for infinitely many p. For r = 1, we

have

A(2)p (k) =

{
1, p2

| k,

2, otherwise.

This gives, for instance,

c2(k) =
∏
p2|k

(
1−

1
p2

)∏
p2-k

(
1−

2
p2

)
. (16)

It will be useful for us to write c2(k) (and in general cr+1(k1, . . . , kr)) as a sum. Recall
the definition of σd from Section 1.1. We prove the following formula for σd :

Lemma 3.1.

σd =
1
d2

∏
p -d

(
1−

2
p2

)
. (17)

Proof. Recall that, since d is square-free, |P(d)| = ω(d). By setting m = m1 − ω(d)

and M = m1 +m2 − 2ω(d) in (5) we obtain

σd =
∑

0≤m≤M

(−1)−2ω(d)(−1)M
(
M

m

) ∑
P ′⊂PrP(d)
|P ′|=M

1
d2

1
[P ′]2

=
1
d2

∑
M≥0

∑
P ′⊂PrP(d)
|P ′|=M

(−2)M

[P ′]2 =
1
d2

∏
p-d

(
1−

2
p2

)
. ut

In particular, Lemma 3.1 shows that σd is positive and bounded away from zero and
infinity. More precisely

0 < σ1 ≤ σd < 6/π2,

where σ1 =
∏
p(1− 2/p2) ≈ 0.3226340989. We can also rewrite σd = σ1 ·

∏
p|d

1
p2−2 .
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Proposition 3.2. Let k be an arbitrary integer. Then

c2(k) =
∑

µ2(d)=1
d2
|k

σd . (18)

Proof. Since P2(k) = {p : p
2
| k} and D(k) = {∏p∈P ′ p : P ′ ⊂ P2(k)}, Lemma 3.1

gives

∑
d∈D(k)

σd =
∑

d∈D(k)

1
d2

∏
p-d

(
1−

2
p2

)
=

∏
p

(
1−

2
p2

) ∑
d∈D(k)

1
d2

∏
p|d

(
1−

2
p2

)−1

=

∏
p

(
1−

2
p2

) ∑
d∈D(k)

∏
p|d

1
p2 − 2

=

∏
p

(
1−

2
p2

) ∏
p∈P2(d)

(
1+

1
p2 − 2

)

=

∏
p2|k

(
1−

1
p2

)∏
p2-k

(
1−

2
p2

)
= c2(k)

by (16). ut

In particular, if k = 0, then D(0) = Q and P2(0) = P and we retrieve the known fact

c2(0) =
∑

µ2(d)=1

σd =
∏
p

(
1−

1
p2

)
=

6
π2 .

Remark 3.3. Proposition 3.2 shows that the value of c2(k) depends on the arithmetic
properties of k. This fact is certainly very unusual from the point of view of probability
theory and statistical mechanics. If k is square-free, then the function c2(k) takes the
constant value σ1. Analogously, c2(k) is constant along any subsequence of numbers k
sharing the same set of divisors that are the square of a square-free number. If we define
D(k) := {d : µ2(d) = 1, d2

| k}, then D(k) = D(k′) ⇒ c2(k) = c2(k
′). The opposite

implication follows from (17). Observe that every set D(k) is of the form

D(k) =
{∏
p∈P ′

p : P ′ ⊆ P2(k)
}
, (19)

where P2(k) = {p : p
2
| k}. This means that |D(k)| = 2|P2(k)| and D(k) = D(k′) ⇔

P2(k) = P2(k
′). The set of k such that P2(k) = ∅ is the set of square-free numbers, and

we know that it has positive density (equal to 6/π2, given by (2)). In general, we have the
following

Proposition 3.4 (Density of the level sets of c2). Fix a square-free number d. Then the
density of those k’s such that c2(k) = c2(d

2) exists and is given by

d(d2) := lim
N→∞

1
N
|{k ≤ N : c2(k) = c2(d

2)}| =
6
π2

∏
p|d

1
p2 − 1

. (20)
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Proof. If P(d) = {p1, . . . , pm} then k satisfies c2(k) = c2(d
2) if and only if it is of the

form k = p
a1
1 · · ·p

am
m q, where µ2(q) = 1, aj ≥ 2, and pj - q for every j = 1, . . . , m.

Fix a1, . . . , am ≥ 2. Then

1
N
|{k ≤ N : k = p

a1
1 · · ·p

am
m q, µ

2(q) = 1, pj - q for j = 1, . . . , m}|

=
1

p
a1
1 · · ·p

am
m

E{p1,...,pm}

(N/(p
a1
1 ···p

am
m ))

(0)

and, by Theorem 2.3, the limit as N →∞ is

6
π2

1
p
a1
1 · · ·p

am
m

m∏
j=1

pj

pj + 1
=

m∏
j=1

1

p
aj−1
j (pj + 1)

.

Now, by summing over all aj ≥ 2, we obtain

6
π2

m∏
j=1

1
pj + 1

∑
aj≥2

1

p
aj−1
j

=
6
π2

m∏
j=1

1
(pj + 1)(pj − 1)

=
6
π2

m∏
j=1

1
p2
j − 1

and the proposition is proven. ut

Remark 3.5. The argument in the proof of Proposition 3.4 will also be used in Ap-
pendix B. We can check that∑

µ2(d)=1

d(d2) =
∑
m≥0

∑
P ′⊂P
|P ′|=m

6
π2

∏
p∈P ′

1
p2 − 1

=
6
π2

∏
p

(
1+

1
p2 − 1

)

=
6
π2

∏
p

(
1−

1
p2

)−1

= 1.

Here we present the values of d(d2) for square-free numbers d ≤ 17. The sum of the
corresponding densities is≈ 97.6% and one can check that

∑
d≤42, µ2(d)=1 d(d

2) > 99%.

d 1 2 3 5 6 7 10 11 13 14 15 17 . . .

d(d2)
6
π2

2
π2

3
4π2

1
4π2

1
4π2

1
8π2

1
12π2

1
20π2

1
28π2

1
24π2

1
32π2

1
48π2 . . .

One can also compute the limit

lim
N→∞

1
N

N∑
n=1

c2(n) = (6/π2)2 ≈ 0.3695753612 (21)

by considering the series
∑
µ2(d)=1 d(d

2)c2(d
2) and using Proposition 3.4 and Lemma

3.1. We shall retrieve this fact from the more general result of Lemma 4.4. Figure 1
summarizes the structure of the second correlation function.
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Figure 1: The second correlation function c2(k) and its level sets.

by considering the series
∑

µ2(d)=1 d(d2)c2(d2) and using Proposition 3.4 and Lemma 3.1. We shall
retrieve this fact from the more general result of Lemma 4.4. Figure 1 summarizes the structure
of the second correlation function.

Let us address the case of higher order correlation functions.

Proposition 3.6. Let k1, . . . , kr be such that all the differences kl′ − kl′′, 0 ≤ l′ < l′′ ≤ r are
square-free. Then

cr+1(k1, k2, . . . , kr) =
∑

m0,m1,...,mr≥0

(−1)
Pr
l=0 ml

∑

Pl ⊂ P, 0 ≤ l ≤ r
Pl′ ∩ Pl′′ = ∅ for l′ 6= l′′

1

[
⋃r
l=0Pl]

2 . (22)

For general k1, k2, . . . kr we have

cr+1(k1, . . . , kr) =
∑

0≤l′<l′′≤r

∑

µ2(dl′,l′′ ) = 1
d2
l′,l′′ |kl′ − kl′′

∑

m0,m1,...,mr≥0

(−1)
Pr
l=0 ml

∑

Pl, 0 ≤ l ≤ r
|Pl| = ml

[Pl′ ∩ Pl′′ ] = dl′,l′′

1

[
⋃r
l=0Pl]

2 . (23)

Proof. The case of A
(r+1)
p (k1, . . . , kr) = r+1 corresponds to the case when 0, k1, . . . , kr are distinct

modulo p2 for every prime p. This means that the differences kl′ − kl′′ are not divisible by p2 for
every prime p. In other words, the differences kl′ − kl′′ are all square-free. In this case, by writing
P ′ = ∪rl=0Pl and m = m0 + . . .+mr, the rhs of (22) equals

∑

m≥0

(−1)m
m!

m0!m1! · · ·mr!

∑

P ′ ⊂ P
|P| = m

1

[P ′]2 =
∏

p

(
1− r + 1

p2

)
.

Analogously, one can check that the formula in the rhs (23) equals (15) with no restrictions on
k1, . . . , kr.

10

Fig. 1. The second correlation function c2(k) and its level sets.

Let us address the case of higher order correlation functions.

Proposition 3.6. Let k1, . . . , kr be such that all the differences kl′−kl′′ , 0 ≤ l′ < l′′ ≤ r ,
are square-free. Then

cr+1(k1, . . . , kr) =
∑

m0,m1,...,mr≥0

(−1)
∑r
l=0 ml

∑
Pl⊂P, 0≤l≤r

Pl′∩Pl′′=∅ for l′ 6=l′′

1
[
⋃r
l=0 Pl]2

. (22)

For general k1, . . . , kr we have

cr+1(k1, . . . , kr)

=

∑
0≤l′<l′′≤r

∑
µ2(dl′,l′′ )=1
d2
l′,l′′
|kl′−kl′′

∑
m0,m1,...,mr≥0

(−1)
∑r
l=0 ml

∑
Pl , 0≤l≤r
|Pl |=ml

[Pl′∩Pl′′ ]=dl′,l′′

1
[
⋃r
l=0 Pl]2

. (23)

Proof. The case ofA(r+1)
p (k1, . . . , kr) = r+1 corresponds to the case when 0, k1, . . . , kr

are distinct modulo p2, for every prime p. This means that the differences kl′−kl′′ are not
divisible by p2, for every prime p. In other words, they are all square-free. In this case,
by writing P ′ =⋃r

l=0 Pl and m = m0 + · · · +mr , the rhs of (22) equals

∑
m≥0

(−1)m
m!

m0!m1! · · ·mr !

∑
P ′⊂P
|P |=m

1
[P ′]2 =

∏
p

(
1−

r + 1
p2

)
.

Analogously, one can check that the quantity on the rhs of (23) equals (15) with no re-
strictions on k1, . . . , kr . ut
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Remark 3.7. Notice that the rhs of (22) depends neither on k1, . . . , kr nor on the values
of their differences as long as they all are square-free. Moreover, it is not enough to check
that the consecutive differences k1 − k0, k2 − k1, . . . , kr − kr−1 are square-free in order
for all differences to be square-free. For example, if (k1, k2, k3, k4) = (1, 6, 7, 10), all
consecutive differences are square-free but 22

| k4 − k2 and 32
| k4 − k1.

Notice also that cr+1(k1, . . . , kr)might be zero if r ≥ 3. For example, c4(1, 2, 3) = 0
since there is no n such that n, n + 1, n + 2, n + 3 are all square-free. All cases when
cr+1(k1, . . . , kr) = 0 correspond to constraints modulo p2 for some prime p. This fact is
clearly reflected by the general formula (15) for cr+1(k1, . . . , kr).

Let us point out that the formulæ (18), (22), (23) could be derived directly by in-
clusion-exclusion using arithmetic progressions with step p2. That approach—as pointed
out by the anonymous referee—generates an error term that cannot be estimated elemen-
tarily. We therefore prefer the derivation of the formulæ directly from Mirsky’s.

In Section 4 we shall use the following lemma by R. R. Hall [2].

Lemma 3.8. For every 0 ≤ k1 < · · · < kr we have

cr+1(k1, . . . , kr)

=

∑
s0≥1

· · ·

∑
sr≥1

g(s0) · · · g(sr)
∑

0≤tj≤s2
j −1

µ2(gcd(tj ,s2
j ))=1

0≤j≤r
t0/s

2
0+t1/s

2
1+···+tr/s

2
r ∈Z

e

(
t1

s2
1
k1 + · · · +

tr

s2
r

kr

)
, (24)

where

g(s) =
6
π2µ(s)

∏
p|s

1
p2 − 1

. (25)

Moreover, the series in (24) converges absolutely.

3.1. Spectral analysis of c2

Let us expand slightly the discussion given in Section 1.1. We can rewrite (18) as

c2(k) =
∑

µ2(d)=1

Kd(k), where Kd(k) :=

{
σd if d2

| k,

0 otherwise.
(26)

The function Kd is constant (equal to σd ) along the arithmetic progression {ld2
: l ∈ Z}

and 0 elsewhere. This function is the Fourier transform of a measure on the circle S1, given
by a sum of δ-functions at the points e(l/d2), l = 0, 1, . . . , d2

− 1, with equal weights
σd/d

2. A corollary of this fact is the formula (7) for the spectral measure ν on S1.
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4. Averages of the correlation functions

This section is dedicated to the proof of some results generalizing (21). For instance,
one can restrict the average to those integers belonging to a certain residue class modulo
a square-free d (Lemmata 4.1–4.3). These averages are then used in the analysis of an
exponential sums of the form (1/N)

∑N
n=1 λ

nc2(n), where λ is a complex number of
modulus 1 (Lemma 4.4) in the case when λ ∈ 3. The latter can be further extended to
multiple averages of higher-order correlation functions (Lemma 4.6). These exponential
sums play a crucial role in the spectral analysis of the Koopman operator for the “natural”
dynamical systems (X,B,5, T ) from Section 1.2, whose invariant measure is defined
by means of the correlations cr+1(k1, . . . , kr) (see Section 5). For example, given an
eigenfunction θλ : X→ C with eigenvalue λ ∈ 3 for the Koopman operator, we will see
that its correlation with the projection onto the s-th coordinate x 7→ x(s) ∈ {0, 1}, i.e.
the inner product 〈x(s), θλ〉L2(X,B,5), is given by λs limN→∞(1/N)

∑N
n=1 λ

nc2(n), and
we will use the explicit form of this limit as function of λ to study the set {θλ}λ∈3 of all
eigenfunctions. The proofs of the first three lemmata are given in Appendix B.

Lemma 4.1. Let d be square-free. Then

lim
n→∞

1
N

∑
l≤N

c2(d
2l) =

(
6
π2

)2 ∏
p∈P(d)

p2

p2 − 1
.

Lemma 4.2. Let d be square-free and let 1 ≤ t ≤ d2
− 1, gcd(d2, t) = g ≥ 1, where g

is square-free. Then

lim
n→∞

1
N

∑
l≤N

c2(d
2l + t) =

(
6
π2

)2 ∏
p∈P(d)

p2(p2
− 2)

(p2 − 1)2
.

Lemma 4.3. Let d be square-free, and let 1 ≤ t ≤ d2
− 1, gcd(t, d2) = g ≥ 1. Then

lim
n→∞

1
N

∑
l≤N

c2(d
2l + t) =

(
6
π2

)2 ∏
p∈P(d)

p2(p2
− 2)

(p2 − 1)2
∏

p∈P2(g)

p2
− 1

p2 − 2
.

The following two lemmata deal with exponential sums involving the second and the third
correlation functions. Recall the function g from (25).

Lemma 4.4. Let λ = e(l/d2) ∈ 3. Then the limit

Y2(λ) = lim
N→∞

1
N

N∑
n=1

λnc2(n)

exists and equals g(d)2.
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Proof. We can write n = d2l + t for some l ≥ 0 and 0 ≤ t ≤ d2
− 1 and set

IN (λ) =
1
N

∑
n≤N

λnc2(n) =

d2
−1∑
t=0

I
(t)
N (l, d2), (27)

where

I
(t)
N (λ) =

1
N

∑
m≤(N−t)/d2

e

(
lt

d2

)
c2(d

2m+ t).

Lemma 4.1 gives

lim
N→∞

I
(0)
N (λ) =

1
d2

(
6
π2

)2∏
p|d

p2

p2 − 1
. (28)

For t 6= 0, the value of limN→∞ I
(t)
N (λ) is given by Lemmata 4.2–4.3. It depends only on

P2(g), where g = gcd(t, d2). More explicitly,

lim
N→∞

I
(t)
N (λ) = e

(
lt

d2

)
1
d2

(
6
π2

)2∏
p|d

p2(p2
− 2)

(p2 − 1)2
∏
p2|g

p2
− 1

p2 − 2
. (29)

Let us introduce the notation

τt (d
2) =

∏
p2|gcd(t,d2)

p2
− 1

p2 − 2
.

Notice that τt (d2) = τd2−t (d
2) and therefore the limit limN→∞ IN (λ) is real. Using (28)

and (29) we can write

lim
N→∞

IN (λ) =

(
6
π2

)2∏
p|d

1
p2 − 1

(
1+

∏
p|d

p2
− 2

p2 − 1

d2
−1∑
t=1

cos
(

2πlt
d2

)
τt (d

2)

)
(30)

and, if ω(d) = |P(d)| = r , then

d2
−1∑
t=1

cos
(

2πlt
d2

)
τt (d

2) =
∑

t≤d2
−1

cos
(

2πlt
d2

)
−

∑
p1|d

∑
t≤d2
−1

p2
1 |t

cos
(

2πlt
d2

)(
1−

p2
1 − 1

p2
1 − 2

)

+

∑
p1,p2|d

∑
t≤d2
−1

p2
1p

2
2 |t

cos
(

2πlt
d2

)(
1−

p2
1 − 1

p2
1 − 2

)(
1−

p2
2 − 1

p2
2 − 2

)

−

∑
p1,p2,p3|d

∑
t≤d2
−1

p2
1p

2
2p

3
|t

cos
(

2πlt
d2

)(
1−

p2
1 − 1

p2
1 − 2

)(
1−

p2
2 − 1

p2
2 − 2

)(
1−

p2
3 − 1

p2
3 − 2

)
+ · · ·

+ (−1)r−1
∑

p1,...,pr−1|d

∑
t≤d2
−1

p2
1 ···p

2
r−1|t

cos
(

2πlt
d2

)(
1−

p2
1 − 1

p2
1 − 2

)
· · ·

(
1−

p2
r−1 − 1

p2
r−1 − 2

)
. (31)
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Recall that gcd(l, d2) is square-free, and notice that for every p1, . . . , pm | d , m < r ,∑
t≤d2
−1

p2
1 ···p

2
m|t

cos
(

2πlt
d2

)
= −1.

Now (31) yields

d2
−1∑
t=1

cos
(

2πlt
d2

)
τt (d

2) = (−1)
(

1−
∑
p1|d

−1
p2

1 − 2
+

∑
p1,p2|d

−1
p2

1 − 2
−1

p2
2 − 2

−

∑
p1,p2,p3|d

−1
p2

1 − 2
−1

p2
2 − 2

−1
p2

3 − 2
+ · · · + (−1)r−1

∑
p1,...,pr−1|d

−1
p2

1 − 2
· · ·

−1
p2
r−1 − 2

)

= −

(∏
p|d

(
1−

−1
p2 − 2

)
− (−1)r

∏
p|d

−1
p2 − 2

)
=

∏
p|d

1
p2 − 2

−

∏
p|d

p2
− 1

p2 − 2
,

and (30) becomes

lim
N→∞

IN (λ) =

(
6
π2

)2∏
p|d

1
p2 − 1

(
1+

∏
p|d

1
p2 − 1

− 1
)
=

(
6
π2

)2∏
p|d

1
(p2 − 1)2

= g(d)2. ut

Remark 4.5. Since 3
4p

2
≤ p2

− 1 ≤ p2 for every p, we have

1
d2 ≤

∏
p|d

1
p2 − 1

≤

(
4
3

)ω(d) 1
d2 . (32)

Since d is square-free, if we want to give an upper bound for ω(d) in terms of d as
d → ∞, it is enough to consider the case when d is the product of the first r prime
numbers: d = p1 · · ·pr . In this case ω(d) = r . It is known that log d = r log r(1+ o(1))
as r →∞. This means that in general ω(d) logω(d) ≤ (1+ ε1) log d for every ε1 > 0,
provided that d � 1. This implies ω(d) ≤ log d1+ε

W(log d1+ε1 )
, where W denotes the Lambert

function, i.e. the solution of the equation x = W(x)eW(x). It is known that W(x) ∼ log x
as x →∞. Therefore ω(d) ≤ log d1+ε1

log(log d1+ε1 )1−ε2
for every ε2 > 0 and thus

(
4
3

)ω(d)
= Oε(d

ε) (33)

for every ε > 0 as d →∞. In other words, formulæ (28)–(29) give

lim
N→∞

I
(t)
N (l, d2) = Oε

(
1

d2−ε

)
as d →∞,
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for every t = 0, 1, . . . , d2
− 1. However, the cancellations coming from the different

exponential factors e2πit/d2
in IN (d) are responsible for the higher order of smallness

shown in (30):

lim
N→∞

IN (l, d
2) = O

(
1

d4−ε

)
as d →∞.

Lemma 4.6. Let λ1, λ2 ∈3, λ1= e(l1/d
2
1 ), λ2= e(l2/d

2
2 ), and λ= λ1λ2= e(l/d

2)∈3.
Then the 2-fold limit

Y3(λ1, λ2) = lim
N1→∞
N2→∞

1
N1N2

N1∑
n1=1

N2∑
n2=1

λ
n2
1 λ

n2
2 c3(n1, n2) (34)

exists and equals g(d1)g(d2)g(d).

Proof. Using Lemma 3.8 we can write

Y3(λ1, λ2) = lim
N1→∞
N2→∞

1
N1N2

N1∑
n1=1

N2∑
n2=1

λ
n1
1 λ

n2
2

∑
s0≥1

∑
s1≥1

∑
s2≥1

g(s0)g(s1)g(s2)

·

∑
0≤tj≤s2

j −1

µ2(gcd(tj ,s2
j ))=1

j=0,1,2
t0/s

2
0+t1/s

2
1+t2/s

2
2∈Z

e

(
t1

s2
1
n1 +

t2

s2
2
n2

)
. (35)

Let us bring the limit and the sums over n1, n2 in (35) inside the sum over t0, t1, t2. For
fixed s0, s1, s2 we have

∑
0≤tj≤s2

j −1

µ2(gcd(tj ,s2
j ))=1

j=0,1,2
t0/s

2
0+t1/s

2
1+t2/s

2
2∈Z

(
lim

N1→∞

1
N1

N1∑
n1=1

e

((
t1

s2
1
+
l1

d2
1

)
n1

))(
lim

N2→∞

N2∑
n2=1

e

((
t2

s2
2
n2+

l2

d2
2

)
n2

))

The two sums over n1, n2 can be written as

1
Nj

Nj∑
nj=1

e

((
tj

s2
j

+
lj

d2
j

)
nj

)
=


1
Nj

ξj − ξ
N+1
j

1− ξj
if ξj 6= 1,

1 if ξj = 1,

where ξj = e(tj/s2
j + lj/d

2
j ) and j = 1, 2. Thus, as N → ∞, only the indices t0, t1, t2

such that ξ1 = ξ2 = 1 give a non-zero contribution to (35). This condition means

tj

s2
j

+
lj

d2
j

=

{
1 if λj 6= 1,
0 if λj = 1,
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for j = 1, 2. However, because of the conditions 0 ≤ tj ≤ s2
j −1 andµ2(gcd(tj , s2

j )) = 1,
the index

tj =

{
(s2
j /d

2
j )(d

2
j − lj ) if λj 6= 1,

0 if λj = 1,

will be considered only when sj = dj . The value of t0 is given consequently by

t0

s2
0
=


l/d2 if λ1 6= 1 6= λ2,
l1/d

2
1 if λ1 6= 1 = λ2,

l2/d
2
2 if λ1 = 1 6= λ2,

0 if λ1 = 1 = λ2.

In all cases this means t0/s2
0 = l/d

2, and the condition µ2(gcd(t0, s2
0)) = 1 implies that

s0 = d and t0 = l. In other words, (35) becomes Y3(λ1, λ2) = g(d1)g(d2)g(d), and the
lemma is proven. ut

Remark 4.7. Notice that if λ1 = e(l1/d
2
1 ), λ2 = e(l2/d

2
2 ) ∈ 3 satisfy gcd(d1, d2) = 1,

then

Y3(λ1, λ2) =

(
6
π2

)3

(−1)ω(d1d2)
∏
p|d1d2

1
(p2 − 1)2

.

The product
∏
p|d(p

2
−1) appears in several formulæ above. Concerning this product,

we have the following basic

Lemma 4.8. Let d be square-free. Then∏
p|d

(p2
− 1) = |{1 ≤ l ≤ d2

− 1 : µ2(gcd(l, d2)) = 1}|. (36)

Proof. By standard inclusion-exclusion we can write the rhs of (36) as

d2
−

∑
p1|d

d2

p2
1
+

∑
p1,p2|d

d2

(p1p2)2
−

∑
p1,p2,p3|d

d2

(p1p2p3)2
+ · · · + (−1)ω(d)

= d2
∏
p|d

(
1−

1
p2

)
=

∏
p|d

(p2
− 1). ut

5. The spectrum of the shift operator T

Recall the definition of the dynamical system (X,B,5, T ) given in Section 1.2. Denote
by U the operator on the Hilbert space H = L2(X,B,5) given by

(Uf )(x) = f (T x). (37)

Since T is measure-preserving, the operator U is unitary. The goal of this section is to
prove the following
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Theorem 5.1. The spectrum of the operator U is 3.

Let us show that 3 is contained in the spectrum of U . This fact is given by the following

Theorem 5.2. Let λ = e(l/d2) ∈ 3. Then there exists a function θλ ∈ H such that

(Uθλ)(x) = λ θλ(x) (38)

for 5-almost every x ∈ X.

Proof. Let f0(x) = x(0) and let Uλ be the unitary operator on H defined by

(Uλh)(x) = λ
−1 h(T x).

By the von Neumann Ergodic Theorem, the following limit exists in H:

lim
N→∞

1
N

N∑
n=1

Unλf0(x) = lim
N→∞

1
N

N∑
n=1

λ−nf0(T
nx)

= lim
N→∞

1
N

N∑
n=1

λ−nx(n) =: θλ(x). (39)

The function θλ is Uλ-invariant, i.e. (Uλθλ)(x) = θλ(x) for 5-almost every x ∈ X. This
implies that λ−1θλ(T x) = θλ(x), i.e. (38). ut

Denote by x(s) the function X → {0, 1} given by the projection of x ∈ X onto its s-th
coordinate. Introduce the subspace H ⊆ H,

H =
{∑

s

asx(s)
}
,

i.e. the closure of the set of all complex linear combinations of the x(s)’s. Then H is
invariant under U , and by (39), all the eigenfunctions θλ belong to H . Let us remark that,
since the operator U is unitary, the eigenfunctions θλ are orthogonal to one another for
different λ. Let us write

x(s) =
∑
λ∈3

〈x(s), θλ〉θλ.

Recall (25). We have the following

Theorem 5.3. Let λ = e(l/d2) ∈ 3. Then for every s ∈ Z we have

〈x(s), θλ〉 = λ
sg(d)2. (40)

Proof. Let us use (39) and write

〈x(s), θλ〉 = lim
N→∞

〈
x(s),

1
N

N∑
n=1

λ−nx(n)

〉
= lim
N→∞

1
N

N∑
n=1

λn〈x(s), x(n)〉. (41)
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Notice that 〈x(s), x(n)〉 = c2(n − s), where c2 is the second correlation function given
by Proposition 3.2. Equation (41) becomes

〈x(s), θλ〉 = lim
N→∞

1
N

N∑
n=1

λnc2(n− s) = λ
s lim
N→∞

1
N

N∑
n=1

λnc2(n) = λ
s Y2(λ). (42)

The needed statement follows now from Lemma 4.4. ut

Theorem 5.3 immediately implies the following

Corollary 5.4. All eigenfunctions θλ are non-zero.

Remark 5.5. The formula (39) can be written for an arbitrary measure-preserving map,
but in most cases (e.g. automorphisms with continuous spectrum) it gives zero. Theorem
5.3 shows that in our case it is non-zero.

We can also compute the L2-norm of each eigenfunction explicitly.

Theorem 5.6. Let λ = e(l/d2) ∈ 3. Then

‖θλ‖ = |g(d)|. (43)

Proof. This is a straightforward application of Theorem 5.3:

‖θλ‖
2
= 〈θλ, θλ〉 =

〈
θλ, lim

N→∞

1
N

N∑
n=1

λ−nx(n)

〉
= lim
N→∞

1
N

N∑
n=1

λn 〈x(s), θλ〉

=

(
6
π2

)2∏
p|d

1
(p2 − 1)2

. ut

Proposition 5.7. The set {θλ}λ∈3 of eigenfunctions is a basis for H .

Proof. Since the eigenfunctions are orthogonal it is enough to show that they span the
space of all linear combinations of the x(s)’s. We know that each atom {λ} of the spectral
measure ν (associated to the second correlation function via Bochner’s theorem) corre-
sponds to θλ in the space H generated by linear forms, and these form a set of generators
for H . ut

Let us define the normalized eigenfunctions: for λ ∈ 3 set

θ̃λ = θλ/‖θλ‖,

so that {θ̃λ}λ∈3 is an orthonormal basis for H . Let us write

x(s) =
∑
λ∈3

〈x(s), θ̃λ〉θ̃λ.
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Since {θ̃λ}λ is an orthonormal basis for H , by Lemma 4.8 and Theorem 5.6 we have

‖x(s)‖2 =
∑
λ∈3

|〈x(s), θ̃λ〉|
2
=

(
6
π2

)2 ∑
d∈Q

∏
p|d

1
p2 − 1

=

(
6
π2

)2 ∑
P ′⊂P, |P ′|<∞

∏
p∈P ′

1
p2 − 1

=

(
6
π2

)2∏
p

(
1+

1
p2 − 1

)
=

6
π2 .

The same argument allows us to estimate the size of the error term in the following ap-
proximation of x(s): for D ≥ 1 let

xD(s) =
∑

λ=e(l/d2)∈3
d≤D

〈x(s), θ̃λ〉θ̃λ.

Arguing as in Remark 4.5, we have

‖x(s)− xD(s)‖
2
=

∑
λ=e(l/d2)∈3

d>D

|〈x(s), θ̃λ〉|
2
=

6
π2

∑
d>D

|g(d)| = Oε(D
−1+ε) (44)

for every ε > 0.
Let us consider the product of two eigenfunctions θ̃λ1 and θ̃λ2 . We have the following

Theorem 5.8. Let λ1 = e(l1/d
2
1 ), λ2 = e(l2/d

2
2 ) ∈ 3. Then

θ̃λ1 θ̃λ2 = ε θ̃λ, (45)

where λ = e(l/d2) = λ1λ2 and ε = ε(λ1, λ2) = µ(d1)µ(d2)µ(d) = ±1.

Proof. It is enough to show that for every s ∈ Z we have

〈θ̃λ1 θ̃λ2 , x(s)〉 = 〈θ̃λ, x(s)〉.

Using the definition (39) we can write

θλ1θλ2 = lim
N1→∞
N2→∞

1
N1N2

N1∑
n=1

N2∑
n=2

λ
−n1
1 λ

−n2
2 x(n1)x(n2)

and thus

〈θλ1θλ2 , x(s)〉 = lim
N1→∞
N2→∞

1
N1N2

N1∑
n=1

N2∑
n=2

λ
−n1
1 λ

−n2
2 〈x(n1)x(n2), x(s)〉.
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Notice that 〈x(n1)x(n2), x(s)〉 = c3(n1 − s, n2 − s). Therefore, by Lemma 4.6,

〈θλ1θλ2 , x(s)〉 = lim
N1→∞
N2→∞

1
N1N2

N1∑
n=1

N2∑
n=2

λ
−n1
1 λ

−n2
2 c3(n1 − s, n2 − s)

= λ−s lim
N1→∞
N2→∞

1
N1N2

N1∑
n=1

N2∑
n=2

λ
−n1
1 λ

−n2
2 c3(n1, n2)

= λ−s Y3(λ
−1
1 , λ−1

2 ) = λ−s g(d1)g(d2)g(d).

On the other hand, by Theorem 5.3,

〈θλ, x(s)〉 = e
−λY2(λ) = λ

−s g(d)2.

Therefore

ε = 〈θ̃λ1 θ̃λ2 , x(s)〉〈θ̃λ, x(s)〉
−1
=
g(d1)g(d2)g(d)

|g(d1)| |g(d2)|

|g(d)|

g(d)2
= µ(d1)µ(d2)µ(d). ut

By associativity of multiplication, ε(λ1, λ2)ε(λ1λ2, λ3) = ε(λ2, λ3)ε(λ1, λ2λ3). Theo-
rem 5.8 can be applied iteratively. It allows us to write all polynomial expressions in the
eigenfunctions as linear expressions, and this is a very important fact.

We want to show that the set {θλ}λ∈3 of eigenfunctions is a basis for the whole
space H. We shall need the notion of unitary rings introduced by V. A. Rokhlin (see [10]).

Definition 5.9. A complex Hilbert space H is called a unitary ring if and only if, for
certain pairs of elements, a product is defined satisfying:

(I) If fg is defined, then fg = gf .
(II) If fg, (fg)h and gh are defined, then (fg)h = f (gh).

(III) If f h and gh are defined and α, β ∈ C, then (αf + βg)h = α(f h)+ β(gh).
(IV) There exists e ∈ H such that ef = f for every f ∈ H.
(V) If fng are defined and fn→ f , fng→ h, then fg = h.

(VI) The set M = {f ∈ H : fg is defined for all g ∈ H} is dense in H; moreover if fg
is defined, then there exist fn ∈M such that fn→ f and fng→ fg.

(VII) For every f ∈ H, there exists f̄ ∈ H such that 〈fg, h〉 = 〈g, f̄ h〉 for all f, g ∈M.

An important result by Rokhlin is that every unitary ring can be written as H =
L2(M,M, m), where (M,M, m) is a Lebesgue space (see, e.g., V. A. Rokhlin1 [9]).
In our case we have the unitary ring H = L2(X,B,5) and the subspace H which is a
subring because of Theorem 5.8. In this representation a subring R ⊂ H corresponds to
a σ -subalgebra N of M, i.e. R = L2(M,N , m|N ). Therefore H is a subspace of H,
which is a Hilbert space corresponding to some σ -subalgebra F of B. Let us show that

Proposition 5.10. Up to sets of measure zero, F = B. In other words, H = H.

1 The notion of Lebesgue space used here allows points with positive measure, unlike the classi-
cal case discussed by Ya. G. Sinai [13] in the context of K-systems.
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Proof. Let us use Rokhlin’s technique of measurable partitions (see [11]). According
to it F corresponds to some measurable partition ξ of X. If F ( B, then there exists
a bounded, non-negative function h(x) and a subset A ∈ F such that E(h|Cξ ) ≥ α

for almost all Cξ ∈ A and some positive α. Being a measurable function, h can be
approximated arbitrarily well in L∞(X,F ,5|F ) by a function h′ which is a polyno-
mial in the x(s)’s. Using (44) we can approximate h′ in measure by a finite polynomial
in the eigenfunctions θλ. However, every such polynomial belongs to our Hilbert space
L2(X,F ,5|F ) and it is measurable with respect to F . Therefore the conditional expecta-
tion of h′ with respect to ξ is arbitrarily close to h′, but such a function cannot approximate
h in measure. This shows that H = H. ut

Propositions 5.10 and 5.7 immediately give the following

Corollary 5.11. The set {θλ}λ∈3 of eigenfunctions is a basis in the space H.

This fact, together with Theorem 5.2 and Corollary 5.4, yields Theorem 5.1. It also im-
plies the following

Theorem 5.12. The dynamical system (X,B,5, T ) is ergodic.

Proof. By shift-invariance of 5 we already know that the eigenspace spanned by the
constants is at least one-dimensional. On the other hand, by Theorem 5.1, its dimension
cannot be greater than one. This implies that the only invariant functions are constants
5-almost everywhere, and hence we have ergodicity. ut

Theorems 5.1 and 5.12 give part (i) of our Main Theorem.

Remark 5.13. One could also derive Corollary 5.11 in a different way and without us-
ing Rokhlin’s theory of unitary rings and measurable partitions. The derivation, although
explicit, is rather long. In fact, one can show that for every −∞ < s1 < · · · < sr < ∞

the product x(s1) · · · x(sr) belongs to the span of {θλ}λ∈3. For example, for r = 2, by
Theorems 5.3 and 5.8,

x(s1)x(s2) =
(∑
λ1∈3

〈x(s1), θ̃λ1〉θ̃λ1

)(∑
λ2∈3

〈x(s2), θ̃λ2〉θ̃λ2

)
=

∑
λ1,λ2∈3

λ
s1
1 λ

s2
2 g(d1)g(d2)µ(d)θ̃λ1λ2

=

∑
λ∈3

(
µ(d)

∑
λ1,λ2∈3
λ1λ2=λ

λ
s1
1 λ

s2
2 g(d1)g(d2)

)
θ̃λ,

and one can prove that ∑
λ1,λ2∈3
λ1λ2=λ

|g(d1)g(d2)| = Oε(d
−2+ε)
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for every ε > 0, where λ = e(l/d2). This implies that∑
λ∈3

∣∣∣ ∑
λ1,λ2∈3
λ1λ2=λ

λ
s1
1 λ

s2
2 g(d1)g(d2)

∣∣∣2
is finite.

6. Spectral analysis for (G,B,P,Tu)

Recall the group G defined in (9). Let us consider the space H = L2(G,B,P), and the
unitary operator U on H defined by

(Uf )(g) = f (g+ (1, 1, . . .)).

Theorem 6.1. The spectrum of U is 3.

Proof. Consider the projection πp2 : G→ Z/p2Z, πp2(g) = gp2 . It is immediate to see
that the function ξe(1/p2)(g) = e(πp2(g)/p2) is an eigenfunction for U with eigenvalue
e(1/p2). By taking powers one can get any eigenfunction ξe(t/p2) with any eigenvalue
e(t/p2) for 0 ≤ t ≤ p2

− 1. By multiplying different such eigenfunctions (with differ-
ent p), one can obtain eigenfunctions ξλ with an arbitrary eigenvalue λ ∈ 3. Since 3 is
the character group of G and Tu is a translation in G, there are no other eigenvalues. ut

To conclude the proof of part (ii) of our Main Theorem we need the following

Theorem 6.2 (J. von Neumann, [15]). Two ergodic measure-preserving transformations
with pure point spectrum are isomorphic if and only if they have the same spectrum.

Theorems 6.1 and 6.2 imply that (X,B,5, T ) and (G,B,P,Tu) are isomorphic as mea-
sure-preserving dynamical systems. This concludes the proof of our Main Theorem.

Appendix A. The proof of Theorem 2.3

The proof is based on the identity( ∞∑
n=1

a(n)

ns

)( ∞∑
n=1

b(n)

ns

)
=

∞∑
n=1

(a ∗ b)(n)

ns
, (46)

where a ∗ b is the Dirichlet convolution of a and b:

(a ∗ b)(n) =
∑
d|n

a(d)b(n/d). (47)

We shall be considering only the case of s = 2 and bounded sequences a(n) and b(n),
therefore there will be no question about convergence of the above series. We shall also
use the classical identity ∑

d|n

µ(d) = 0 for n > 1. (48)
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First, let us consider the case of square-free numbers not divisible by a single prime p,
i.e. S = {p}. In this case, we shall prove Theorem 2.3 by means of three lemmata, and
then we shall explain how to generalize this approach to general finite sets S.

Let wp(n) be the indicator of the integers not divisible by p, i.e.

wp(n) =

{
0 if p | n,
1 otherwise.

Lemma A.1.
µ2(n)wp(n) =

∑
d:d2|n

µ(d)wp(d)wp(n/d). (49)

Proof. If p | n, then p | d or p | n/d (possibly both) for every divisor d of n. Thus
wp(n)wp(n/d) = 0 and the sum on the rhs of (49) is 0 (and obviously equals the lhs).
If p - n, then no divisor d of n will be divisible by p and wp(d) = wp(n/d) = 1. The
sum in (49) then becomes

∑
d2|n µ(d). If n is square-free, then d2

= 1 is the only per-
fect square that divides n, and the sum equals 1 (and clearly agrees with the lhs of (49)).
If n is not square-free let us write it as n1n

2
2 where n1 and n2 are defined as follows.

For every prime p let us define l = l(p, n) = max{j : pj | n}; then set n1 =
∏
p: 2-l p

and n2 =
∏
p: 2|l p

l/2
·
∏
p: 2-l p

(l−1)/2. Since n1 is square-free, if d2
| n, then d | n2. This

means that the sum on the rhs of (49) becomes
∑
d|n2

µ(d) and equals 0 by (48) (thus
matching the lhs). This concludes the proof. ut

Lemma A.2.
∞∑
n=1

wp(n)

n2 =
p2
− 1
p2 ζ(2).

Proof. The formula follows from the trivial computation

∞∑
n=1

wp(n)

n2 =

∞∑
n=1

1
n2 −

∞∑
n=1

1
(pn)2

=

(
1−

1
p2

)
ζ(2). ut

Let us denote by {δ1(n)}n≥1 the sequence equal to 1 if n = 1 and 0 otherwise. Then we
have

Lemma A.3.
(µwp) ∗ wp = δ1.

Proof. For n = 1 the statement is obvious since d = 1 is the only divisor of n and we have
µ(1)wp(1)2=1=δ1(1). Let n > 1. Then ((µwp) ∗ wp)(n)=

∑
d|n µ(d)wp(d)wp(n/d).

We can discuss the cases when p | n and p - n separately, and argue as in the proof of
Lemma A.1. In the first case we have wp(n)wp(n/d) = 0 and the sum is 0. In the second
case wp(d) = wp(n/d) = 1 and the sum becomes

∑
d|n µ(d), that is, 0 by (48). In other

words, we have shown that, for n > 1, we have ((µwp) ∗ wp)(n) = 0 = δ1(n), and this
concludes the proof. ut
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Corollary A.4.
∞∑
n=1

µ(n)wp(n)

n2 =
p2

p2 − 1
1
ζ(2)

.

Proof. This is a straightforward application of Lemma A.2 and the formulæ (46)–(47)
with a = µwp, b = wp, and (from Lemma A.3) a ∗ b = δ1. ut

Proof of Theorem 2.3 when S = {p}. Notice that |Q{p}N (0)| =
∑
n≤N µ

2(n)wp(n). By
Lemma A.1, we can write

|Q{p}N (0)| =
∑
n≤N

µ2(n)wp(n) =
∑
n≤N

∑
d2|n

µ(d)wp(d)wp(n/d). (50)

Now we want to exchange the two sums. Let us fix d ≤
√
N . For every n of the form

n = md2 we have wp(n/d) = wp(m)wp(d). Let η{p}d (N) be the number of integers of
the form md2 where m ≤ N/d2 and p - m. Then

|Q{p}N (0)| =
∑
d≤
√
N

η
{p}
d (N)µ(d)wp(d).

We can estimate the number η{p}d (N) as follows. Let bN/d2
c ≡ t (modp), t ∈

{0, 1, . . . , p − 1}. Then

η
{p}
d (N) =

bN/d2
c − t

p
(p − 1)+ t =

N

d2
p − 1
p
+ q
{p}

1 (d,N),

where

|q
{p}

1 (d,N)| ≤
p − 1
p

∣∣∣∣⌊Nd2

⌋
−
N

d2

∣∣∣∣+ t(1−
p − 1
p

)
≤ 2

p − 1
p
=: C′({p}).

This gives

|Q{p}N (0)| = N
p − 1
p

∑
d≤
√
N

µ(d)wp(d)

d2 + q
{p}

2 (N),

where |q{p}2 (N)| ≤ C′({p})
√
N . Now, Corollary A.4 yields

|Q{p}N (N)| =
p

p + 1
1
ζ(2)

N + q
{p}

2 (N)+ q
{p}

3 (N),

where

|q
{p}

3 (N)| ≤ N
p − 1
p

∑
d>
√
N

1
d2 ≤ N

p − 1
p

∫
∞

√
N

dx

(x − 1)2

=
p − 1
p

N
√
N − 1

≤ C′′({p})
√
N
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for everyN ≥ 4, where C′′({p}) = 2(p − 1)/p. This concludes the proof, with α({p}) =
p/(p + 1) and C({p}) = C′({p})+ C′′({p}). ut

Let us now discuss how to adapt the above proof to the case of a general finite set S ⊂ P .
The sequence wp has to be replaced by the indicator of the integers divisible by none of
the primes in S, i.e.

wS(n) =

{
0 if p | n for some p ∈ S,
1 otherwise.

Lemma A.1 is still valid if we replace wp by wS :

Lemma A.5.
µ2(n)wS(n) =

∑
d: d2|n

µ(d)wS(d)wS(n/d). (51)

Lemma A.2 is replaced by an analogous statement given by inclusion-exclusion:

Lemma A.6.
∞∑
n=1

wS(n)
n2 = a(S)ζ(2), where a(S) =

∏
p∈S

p2
− 1
p2 .

Proof. If S = {p1, . . . , pk}, then inclusion-exclusion gives

a(S)

=

(
1−

k∑
i=1

1
p2
i

+

∑
1≤i1<i2≤k

1
(pi1pi2)

2 −
∑

1≤i1<i2<i3≤k

1
(pi1pi2pi3)

2 +· · ·+
(−1)k

(p1 · · ·pk)2

)

=

k∏
i=1

(
1−

1
p2
i

)
. ut

Lemma A.3 also holds for wS :

Lemma A.7.
(µwS) ∗ wS = δ1.

Finally, Corollary A.4 is replaced by

Corollary A.8.
∞∑
n=1

µ(n)wS(n)
n2 =

1
a(S)ζ(2) .

Proof of Theorem 2.3 for general S = {p1, . . . , pk} ⊂ P . Lemma A.5 gives

|QS
N (0)| =

∑
n≤N

∑
d2|n

µ(d)wS(d)wS(n/d). (52)
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Let us fix d ≤
√
N . For every n of the form n = md2 we havewS(n/d) = wS(m)wS(d).

Let ηSd (N) be the number of integers of the form md2 where m ≤ N/d2 and p - m for
every p ∈ S. Then

|QS
N (0)| =

∑
d≤
√
N

ηSd (N)µ(d)wS(d).

The set of numbers not divisible by any p ∈ S has density given by

1−
k∑
i=1

1
pi
+

∑
1≤i1<i2≤k

1
pi1pi2

−

∑
1≤i1<i2<i3≤k

1
pi1pi2pi3

+ · · · +
(−1)k

p1 · · ·pk

=

k∏
i=1

(
1−

1
pi

)
=

∏
p∈S

p − 1
p

.

The estimate of ηSd (N) comes from the following observation. If

bN/d2
c ≡ t (mod [S]) for t ∈ {0, 1, . . . , [S] − 1},

then

ηSd (N) =
bN/d2

c − t

[S]
∏
p∈S

(p − 1)+ t =
N

d2

∏
p∈S

p − 1
p
+ qS1 (d,N),

where

|qS1 (d,N)| ≤
∏
p∈S

p − 1
p

(⌊
N

d2

⌋
−
N

d2

)
+ t

(
1−

∏
p∈S

p − 1
p

)
≤ 2

∏
p∈S

p − 1
p
+

(∏
p∈S

p − 1
)
−

∏
p∈S

(p − 1) =: C′(S).

This gives

|QS
N (0)| = N

∏
p∈S

p − 1
p

∑
d≤
√
N

µ(d)wS(d)
d2 + qS2 (N),

where |qS2 (N)| ≤ C
′(S)
√
N . Now Corollary A.8 yields

|QS
N (0)| =

∏
p∈S

p

p + 1
1
ζ(2)

N + qS2 (N)+ q
S
3 (N),

where
|qS3 (N)| ≤ N

∏
p∈S

p − 1
p

∑
d>
√
N

1
d2 ≤ C

′′(S)
√
N

and C′′(S) = 2
∏
p∈S (p − 1)/p for N ≥ 4. This concludes the proof of the general case

of the theorem, with α(S) =∏p∈S p/(p + 1) and C(S) = C′(S)+ C′′(S). ut
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Appendix B. The proofs of Lemmata 4.1–4.3

Proof of Lemma 4.1. Let us write

l =
∏
p̄∈P̄

(p̄)a(p̄) ·
∏
p′∈P ′

(p′)b(p
′)
· q (53)

where P̄ ⊆ P(d), a(p̄) ≥ 2 for every p̄ ∈ P̄ , P ′ ⊂ P r P(d), |P| < ∞, b(p′) ≥ 2
for every p′ ∈ P ′, q is square-free and p - q for every p ∈ P̄ ∪ P ′. It is clear that every
l ≥ 1 can be written uniquely as in (53). And the condition l ≤ N can be rewritten using
the notation in (13) as

q ∈ QP̄∪P ′
N/(

∏
p̄∈P̄ (p̄)

a(p̄)·
∏
p′∈P ′ (p′)b(p

′))
(0).

Furthermore, notice that c2(d
2l) can depend only on d and P ′:

c2(d
2l) =

∏
p∈P(d)∪P ′

(
1−

1
p2

) ∏
p/∈P(d)∪P ′

(
1−

2
p2

)
= σ1

∏
p∈P(d)∪P ′

p2
− 1

p2 − 2
.

Now we can write

1
N

∑
l≤N

c2(d
2l) = σ1

∏
p∈P(d)

p2
− 1

p2 − 2

∑
P̄⊆P(d)

∑
P ′⊂PrP(d)

∏
p′∈P ′

p′2 − 1
p′2 − 2

·

∑
a(p̄)≥2, p̄∈P̄
b(p′)≥2, p′∈P ′

1∏
p̄∈P̄ (p̄)

a(p̄) ·
∏
p′∈P ′(p′)b(p

′)
EP̄∪P ′
N/(

∏
p̄∈P̄ (p̄)

a(p̄)·
∏
p′∈P ′ (p′)b(p

′))
(0).

Now we can use (14) while taking the limit asN →∞, and sum over all a(p̄), b(p′) ≥ 2
as in the proof of Proposition 3.4. Notice that the sets P(d) and P ′ are disjoint. We obtain

lim
N→∞

1
N

∑
l≤N

c2(d
2l)

= σ1
∏

p∈P(d)

p2
− 1

p2 − 2

∑
P̄⊆P(d)

∑
P ′⊂PrP(d)

∏
p′∈P ′

p′2 − 1
p′2 − 2

6
π2

∏
p∈P̄∪P ′

1
p2 − 1

= σ1
6
π2

∏
p∈P(d)

p2
− 1

p2 − 2

(
1+

1
p2 − 1

) ∏
p∈PrP(d)

(
1+

1
p2 − 2

)

=
6
π2

∏
p∈P(d)

p2

p2 − 1

∏
p

p2
− 1
p2 =

(
6
π2

)2 ∏
p∈P(d)

p2

p2 − 1
,

and the lemma is proved. ut
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Proof of Lemma 4.2. Let us first consider the case g = 1. Numbers of the form∏
p′∈P ′ p

′b(p′)q, where P ′ ⊂ P r P(d), |P ′| < ∞, b(p′) ≥ 2 for p′ ∈ P ′, q is square-
free and p - q for every p ∈ P(d) ∪ P ′ can be represented as∏

p′∈P ′
p′b(p

′)
· q = d2l + h (54)

for some 1 ≤ h ≤ d2
− 1, where gcd(h, d2) = 1. Since there are ϕ(d2) such h’s (here ϕ

denotes Euler’s totient function) and the various h’s appear with the same frequency, we
have

lim
N→∞

1
N

∑
l≤N

c2(d
2l + t) =

1
ϕ(d2)

lim
N→∞

1
N

∑
l≤N

∑
gcd(h,d2)=1

c2(d
2l + h). (55)

Notice that the condition l ≤ N becomes

q ∈ QP(d)∪P ′
(d2N+h)/

∏
p′∈P ′ p′b(p

′)
(0)

and

c2(d
2l + t) =

∏
p′∈P ′

(
1−

1
p2

) ∏
p/∈P ′

(
1−

2
p2

)
= σ1

∏
p′∈P ′

p′2 − 1
p′2 − 2

.

Now

1
N

∑
l≤N

∑
gcd(h,d2)=1

c2(d
2l + h) = σ1

∑
P ′⊂PrP(d)

∏
p′∈P ′

p′2 − 1
p′2 − 2

·

∑
b(p′)≥2, p′∈P ′

d2∏
p′∈P ′ p′b(p

′)

d2N + h

d2N
EP(d)∪P ′
(d2N+h)/

∏
p′∈P ′ p′b(p

′)
(0),

and by taking the limit as N →∞ we get

lim
N→∞

1
N

∑
l≤N

∑
gcd(h,d2)=1

c2(d
2l + h)

= σ1
∑

P ′⊂PrP(d)

∏
p′∈P ′

p′2 − 1
p′2 − 2

6
π2

∏
p∈P(d)

p3

p + 1

∏
p′∈P ′

1
p′2 − 1

= σ1
6
π2

∏
p∈P(d)

p3

p + 1

∑
P ′⊂PrP(d)

∏
p′∈P ′

1
p′2 − 2

= σ1
6
π2

∏
p∈P(d)

p3

p + 1

∏
p∈PrP(d)

(
1+

1
p2 − 2

)

=
6
π2

∏
p∈P(d)

p3(p2
− 2)

(p + 1)(p2 − 1)

∏
p

p2
− 1
p2 =

(
6
π2

)2 ∏
p∈P(d)

p3(p2
− 2)

(p + 1)(p2 − 1)
. (56)
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Let us apply the fact that ϕ is multiplicative and that ϕ(p2) = p(p − 1). We obtain

1
ϕ(d2)

=

∏
p∈P(d)

1
p(p − 1)

. (57)

Now (55)–(57) yield the desired result.
Let us now consider the case when gcd(t, d2) = g = p̄. In this case d2

= p̄2d2
1 and

t = p̄t1, where d1 is square-free, p̄ - d1, and p̄ - t1. We can write

d2

p̄
l +

t

p̄
= p̄d2

1 l + t1 =
∏
p′∈P ′

p′b(p
′)
· q1,

where P ′ ⊂ P r P(d), |P ′| <∞, q1 is square-free and p - q for every p ∈ P(d) ∪ P ′.
The condition l ≤ N now reads

q1 ∈ QP(d)∪P ′
(p̄d2

1N+t1)/
∏
p′∈P ′ p′b(p

′)
(0).

Since, by assumption, p̄2 - d2l + t , we have

c2(d
2l + t) = c2(p̄d

2
1 + t1) =

∏
p′∈P ′

(
1−

1
p′2

) ∏
p/∈P ′

(
1−

2
p2

)
= σ1 ·

∏
p′∈P ′

p′2 − 1
p′2 − 2

.

Now, since gcd(t1, p̄d2
1 ) = 1, we can use (55):

lim
N→∞

1
N

∑
l≤N

c2(d
2l + t) = lim

N→∞

1
N

∑
l≤N

c2(p̄d
2
1 l + t1)

=
1

ϕ(p̄d2
1 )

lim
N→∞

1
N

∑
l≤N

∑
gcd(h1,p̄d

2
1 )=1

c2(p̄d
2
1 + h1), (58)

and we can write

1
N

∑
l≤N

∑
gcd(h1,p̄d

2
1 )=1

c2(p̄d
2
1 + h1) = σ1

∑
P ′⊂PrP(d)

∏
p′∈P ′

p′2 − 1
p′2 − 2

·

∑
b(p′)≥2, p′∈P ′

p̄d2
1∏

p′∈P ′ p′b(p
′)

p̄d2
1N + h1

p̄d2
1N

EP(d)∪P ′
(p̄d2

1N+h1)/
∏
p′∈P ′ p′b(p

′)
(0).
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Notice that P(d) = P(d1) ∪ {p̄}. By taking the limit as N →∞ we obtain

lim
N→∞

1
N

∑
l≤N

∑
gcd(h1,p̄d

2
1 )=1

c2(p̄d
2
1 l + h1)

= σ1
∑

P ′⊂PrP(d)

∏
p′∈P ′

p′2 − 1
p′2 − 2

p̄d2
1

6
π2

∏
p∈P(d)

p

p + 1

∏
p′∈P ′

1
p′2 − 1

= σ1
6
π2

p̄2

p̄ + 1

∏
p∈P(d1)

p3

p + 1

∑
P ′⊂PrP(d)

∏
p′∈P ′

1
p′2 − 2

= σ1
6
π2

p̄2

p̄ + 1

∏
p∈P(d1)

p3

p + 1

∏
p∈PrP(d)

(
1+

1
p2 − 2

)

=
6
π2

p̄2

p̄ + 1
p̄2
− 2

p̄2 − 1

∏
p∈P(d1)

p3(p2
− 2)

(p + 1)(p2 − 1)

∏
p

p2
− 1
p2

=

(
6
π2

)2
p̄2(p̄2

− 2)
(p̄ + 1)(p̄2 − 1)

∏
p∈P(d1)

p3(p2
− 2)

(p + 1)(p2 − 1)
. (59)

Let us use the fact that ϕ(p̄d2
1 ) = ϕ(p̄)ϕ(d

2
1 ) = (p̄ − 1)ϕ(d2

1 ) to obtain the formula

1
ϕ(p̄d2

1 )
=

1
p̄ − 1

∏
p∈P(d1)

1
p(p − 1)

. (60)

Now we can combine (58)–(60) to conclude the proof of the lemma. The case of a general
square-free g is treated analogously. ut

Proof of Lemma 4.3. The case when g is square-free (i.e. P2(g) = ∅) is already included
in Lemma 4.2. Thus, assume P2(g) 6= ∅. Let, for simplicity, gcd(t, d2) = g = p̄2 (i.e.
ω(g) = 1), the case of ω(g) > 1 being analogous. We have d2

= p̄2d2
1 and t = p̄2t1,

where d1 is square-free and p̄ - d1. In particular gcd(t1, d2
1 ) = 1. We can write

d2

p̄2 l +
t

p̄2 = d
2
1 l + t1 = p̄

a
∏
p∈P ′

p′b(p
′)q1,

where a ≥ 0, P ′ ⊂ P r P(d), |P ′| < ∞, q1 is square-free and p - q1 for every
p ∈ P(d) ∪ P ′. The condition l ≤ N can be written as

q1 ∈ QP(d)∪P ′
(d2

1N+t1)/
∏
p′∈P ′ p′b(p

′)
(0),

and

c2(d
2l + t) = c2(p̄

2(d2
1 l + t1)) =

∏
p∈P ′∪{p̄}

(
1−

1
p2

) ∏
p/∈P ′∪{p̄}

(
1−

2
p2

)

= σ1
∏

p∈P ′∪{p̄}

p2
− 1

p2 − 2
.
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Notice that P ′ and {p̄} are disjoint by construction. Using (55) we see that

lim
N→∞

1
N

∑
l≤N

c2(d
2l + t) = lim

N→∞

∑
l≤N

c2(p̄
2(d2

1 l + t1))

=
1

ϕ(d2
1 )

lim
N→∞

1
N

∑
l≤N

∑
gcd(h1,d

2
1 )=1

c2(p̄
2(d2

1 l + h1)). (61)

We have

1
N

∑
l≤N

∑
gcd(h1,d

2
1 )=1

c2(p̄
2(d2

1 l + h1)) = σ1
∑

P ′⊂PrP(d)

p̄2
− 1

p̄2 − 2

∏
p′∈P ′

p′2 − 1
p′2 − 2

·

∑
a≥0

∑
b(p′)≥2, p′∈P ′

d2
1

p̄a
∏
p′∈P ′ p′b(p

′)

d2
1N + h1

d2
1N

EP(d)∪P ′
(d2

1N+h1)/(p̄a
∏
p′∈P ′ p′b(p

′))
(0),

and by taking the limit as N →∞ we get

lim
N→∞

1
N

∑
l≤N

∑
gcd(h1,d

2
1 )=1

c2(p̄
2(d2

1 l + h1))

= σ1
p̄2
− 1

p̄2 − 2

∑
P ′⊂PrP(d)

∏
p′∈P ′

p′2 − 1
p′2 − 2

d2
1 p̄

p̄ − 1
6
π2

∏
p∈P(d)

p

p + 1

∏
p′∈P ′

1
p′2 − 1

= σ1
6
π2

p̄ + 1
p̄(p̄2 − 2)

∏
p∈P(d)

p3

p + 1

∑
P ′⊂PrP(d)

∏
p′∈P ′

1
p′2 − 2

= σ1
6
π2

p̄ + 1
p̄(p̄2 − 2)

∏
p∈P(d)

p3

p + 1

∏
p∈PrP(d)

(
1+

1
p2 − 2

)

=
6
π2

p̄2

p̄2 − 1

∏
p∈P(d1)

p3

p + 1
p2
− 2

p2 − 1

∏
p

p2
− 1
p2

=

(
6
π2

)2
p̄2

p̄2 − 1

∏
p∈P(d1)

p3(p2
− 2)

(p + 1)(p2 − 1)
. (62)

We use again the fact that

1
ϕ(d2

1 )
=

∏
p∈P(d1)

1
p(p − 1)

, (63)

and combining (61)–(63), we obtain the lemma. ut
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Note added in proof. The authors have become aware of some independent results by M. Baake,
R. V. Moody and P. A. B. Pleasants [1], where the second correlation function for square-free
integers has also been computed. Moreover, a recent paper by Pleasants and C. Huck [7] addresses
the problem of m-free points (m ≥ 2) in an arbitrary lattice, with a geometric notion of m-freeness
that agrees with the one we consider when the lattice is Z; it also includes the computation of
measure-theoretical entropy for these points.
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