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Abstract. Given a tuple (X1, . . . ,Xk) of irreducible characters of GLn(Fq ) we define a star-
shaped quiver 0 together with a dimension vector v. Assume that (X1, . . . ,Xk) is generic. Our
first result is a formula which expresses the multiplicity of the trivial character in the tensor product
X1 ⊗ · · · ⊗ Xk as the trace of the action of some Weyl group on the intersection cohomology of
some (non-affine) quiver varieties associated to (0, v). The existence of such a quiver variety is
subject to some condition. Assuming that this condition is satisfied, we prove our second result:
The multiplicity 〈X1⊗ · · ·⊗Xk, 1〉 is non-zero if and only if v is a root of the Kac–Moody algebra
associated with 0. This is somewhat similar to the connection between Horn’s problem and the
representation theory of GLn(C) [28, Section 8].
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1. Introduction

1.1. Decomposing tensor products of irreducible characters

The motivation of this paper is the study of the decomposition

X1 ⊗ X2 =
∑
X
〈X1 ⊗ X2,X 〉X

of the tensor product X1 ⊗ X2 of two irreducible complex characters of GLn(Fq) as
a sum of irreducible characters. This is equivalent to the study of the multiplicities
〈X1 ⊗ X2 ⊗ X3, 1〉 of the trivial character 1 in X1 ⊗ X2 ⊗ X3.

Although the character table of GLn(Fq) is known since 1955 by the work of Green
[17], the computation of these multiplicities remains an open problem which does not
seem to have been studied much in the literature.

When X1,X2,X3 are unipotent characters, the multiplicities 〈X1 ⊗ X2 ⊗ X3, 1〉 are
computed by Hiss and Lübeck [21] using CHEVIE for n ≤ 8 and appeared to be polyno-
mials in q with positive coefficients.

Let χ : GLn(Fq)→ C be the character of the conjugation action of GLn(Fq) on the
group algebra C[gln(Fq)]. Fix a non-negative integer g and put 3 := χ⊗g (with 3 = 1
if g = 0).

In this paper we describe the multiplicities 〈3⊗X1 ⊗ · · · ⊗Xk, 1〉 for generic tuples
(X1, . . . ,Xk) of irreducible characters of GLn(Fq) in terms of representations of a certain
quiver 0 (see §6.8 for the definition of generic tuple). Although the occurrence of 3
does not seem to be very interesting from the perspective of the representation theory of
GLn(Fq) it will appear to be more interesting for the theory of quiver representations.

Let us now explain how to construct the quiver together with a dimension vector from
any tuple of irreducible characters (not necessarily generic).

We first define a type A quiver together with a dimension vector from a single irre-
ducible character X .
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Consider a total ordering ≥ on the set P of partitions and define a total ordering
denoted again by ≥ on the set Z>0× (P−{0}) as follows. If µ 6= λ then (d, µ) ≥ (d ′, λ)
ifµ ≥ λ, and (d, λ) ≥ (d ′, λ) if d ≥ d ′. Denote by Tn the set of non-increasing sequences
ω = (d1, ω

1) · · · (dr , ωr) such that
∑
i di |ωi | = n.

In §6.8, we associate to the irreducible character X an element ω =
(d1, ω

1) · · · (dr , ωr) ∈ Tn called the type of X . The di’s are called the degrees of X .
If the degrees di’s are all equal to 1 we say that X is split. Let us now draw the Young
diagrams of these partitions ω1, . . . , ωr from left to right with the diagram of ωi repeated
di times (partitions being represented by the rows of the Young diagram). Let l be the
total number of columns and let ni be the length of the i-th column. We obtain a strictly
decreasing sequence uω := (v0 = n > v1 > · · · > vl−1) by putting v1 := n − n1,
vi := vi−1 − ni . We then obtain a type Al quiver with dimension vector uω. For instance
if X = 1, then ω = (1, (1, . . . , 1)) and so Al = A1 and uω = n. If X is the Steinberg
character then ω = (1, (n)) and so Al = An and uω = (n, n − 1, n − 2, . . . , 1). If X is
of type (1, 1) · · · (1, 1), then we still have Al = An and uω = (n, n− 1, n− 2, . . . , 1).

Given ω = (ω1, . . . , ωk) ∈ (Tn)k , we obtain (as just explained) k type A quivers
equipped with dimension vectors uω1 , . . . ,uωk . Gluing together the vertices labeled by 0
of these k quivers and adding g loops at the central vertex of this new quiver we get a so-
called comet-shaped quiver 0ω with k legs (see picture in §5.2) together with a dimension
vector vω which is determined in the obvious way by uω1 , . . . ,uωk .

Let 8(0ω) be the root system associated with 0ω (see Kac [22]). Let C0ω be the
Cartan matrix of 0ω and put dω = 2− tvωC0ωvω.

In §6.10.6 we show that for every multitype ω ∈ (Tn)k , there exists a polynomial
Hω(T ) ∈ Q[T ] such that for any finite field Fq and any generic tuple (X1, . . . ,Xk) of
irreducible characters of GLn(Fq) of type ω, we have

〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉 = Hω(q).

In §1.2 (see above Theorem 1.2.2) we define the notion of admissible multitype. This
notion arises naturally in the theory of quiver varieties.

In this paper we use the geometry of quiver varieties to prove the following theorem
(see next section for more details).

Theorem 1.1.1. Assume that ω ∈ (Tn)k is admissible.

(a) Hω(T ) 6= 0 if and only if vω ∈ 8(0ω). Moreover Hω(T ) = 1 if and only if vω is a
real root.

(b) If non-zero, Hω(T ) is a monic polynomial of degree dω/2 with integer coefficients. If
moreover ω is split, then the coefficients of Hω(T ) are non-negative.

We will prove (see Proposition 5.2.9) that if g ≥ 1, then vω is always an imaginary root
and so the second part of (a) is relevant only when g = 0.

The discussion and conjecture in §1.3 together with the results of Crawley-Boevey
[8] imply that the assertions (a) and (b) of the above theorem remain true in all types (not
necessarily admissible).
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In a future publication, we will investigate (a) by analyzing combinatorially the poly-
nomial Hω(T ) which is defined in terms of Hall–Littlewood symmetric functions (see
§6.10.2).

Example 1.1.2. We give examples of generic tuples of irreducible characters which are
not of admissible types and which satisfy (a) and (b) of the above theorem.

Assume that g = 0 and n = k = 3.
For a partition λ, we denote by Rλ the associated unipotent character of GL3. Recall

that according to our parameterization (see beginning of this section), the trivial character
corresponds to the partition (1, 1, 1) and the Steinberg character to the partition (3).

For a linear character α : F×q → C× we put Rαλ := (α ◦ det) · Rλ. This is again an
irreducible character of type (1, λ).

The triple (Rαλ , R
β
µ, R

γ
ν ) is generic if the subgroup 〈αβγ 〉 of Hom(F×q ,C×) is of

size 3.
Assume now that (Rαλ , R

β
µ, R

γ
ν ) is generic (it is not admissible, see (iii) below The-

orem 1.2.3). As mentioned earlier, the multiplicity 〈Rαλ ⊗ Rβµ ⊗ Rγν , 1〉 depends only on
λ,µ, ν and not on α, β, γ . Put

Rλ,µ,ν := Rαλ ⊗ Rβµ ⊗ Rγν .
We can easily verify that the only non-zero multiplicities (with unipotent type characters)
are

〈R(3),(3),(3), 1〉 = q, (1.1.1)
〈R(2,1),(3),(3), 1〉 = 〈R(3),(2,1),(3), 1〉 = 〈R(3),(3),(2,1), 1〉 = 1. (1.1.2)

In the first case the underlying graph of 0ω is Ẽ6 and vω is the indivisible positive imag-
inary root. In the second case the underlying graph of 0ω is the Dynkin diagram E6
and vω is the positive real root α1 + α2 + 2α3 + 3α4 + 2α5 + α6 in the notation of [4,
PLANCHE V]. Finally we can verify that there is no other pair (0ω, vω) arising from
ω = ((1, λ), (1, µ), (1, ν)) with vω ∈ 8(0ω).

1.2. Quiver varieties

We now introduce the quiver varieties which provide a geometrical interpretation of
〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉 for generic tuples (X1, . . . ,Xk) of admissible type.

Let P be a parabolic subgroup of GLn(C), L a Levi factor of P and let 6 = σ + C
where C is a nilpotent orbit of the Lie algebra l of L and where σ is an element of the
center zl of l. Put

XL,P,6 := {(X, gP ) ∈ gln × (GLn/P ) | g−1Xg ∈ 6 + uP }
where uP is the Lie algebra of the unipotent radical of P . We then denote by XoL,P,6 the
open subset of pairs (X, gP ) which satisfy g−1Xg ∈ 6 + uP .

It is known (cf. §4.3.2 for more details) that the image of the projection XL,P,6 → gln
on the first coordinate is the Zariski closure O of an adjoint orbit O.
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We assume without loss of generality that L is of the form
∏
j GLnj and that P is the

unique parabolic subgroup of GLn containing the upper triangular matrices and having L
as a Levi factor (such a choice is only for convenience).

When O is nilpotent regular, the varieties XL,P,6 appears in Borho and Mac-
Pherson [3]. These varieties were also considered by Lusztig in the framework of his
generalization of Springer correspondence [37].

Consider triples {(Li, Pi, 6i)}i=1,...,k , with 6i = σi + Ci , as above and put L :=
L1 × · · · × Lk , P := P1 × · · · × Pk , 6 := 61 × · · · ×6k and C := C1 × · · · × Ck .

Let (O1, . . . ,Ok) be the tuple of adjoint orbits of gln(C) such that the image of
XLi ,Pi ,6i → gln is Oi .

We say that the pair (L, 6) is generic if the tuple (O1, . . . ,Ok) is generic. The ex-
istence of generic tuples of adjoint orbits with prescribed multiplicities of eigenvalues is
subject to some restriction (cf. §5.1 for more details).

We assume now that (L, 6) is generic. Fix a non-negative integer g, put OL,P,6 =
(gln)

2g × XL,P,6 , OoL,P,6 = (gln)2g × XoL,P,6 and define

VL,P,6 :=
{
(A1, B1, . . . , Ag, Bg, (X1, . . . , Xk, g1P1, . . . , gkPk)) ∈ OL,P,6

∣∣∣∑
j

[Aj , Bj ] +
∑
i

Xi = 0
}
.

Put O := (gln)2g ×O1 × · · · ×Ok , Oo := (gln)2g ×O1 × · · · ×Ok and define

VO :=
{
(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ O

∣∣∣ ∑
j

[Aj , Bj ] +
∑
i

Xi = 0
}
.

Let ρ : VL,P,6 → VO be the projection on the first 2g + k coordinates.
The group GLn acts on VL,P,6 (resp. on VO) diagonally by conjugating the first 2g+k

coordinates and by left multiplication of the last k coordinates (resp. diagonally by con-
jugating the 2g + k coordinates). Since the tuple (O1, . . . ,Ok) is generic, this action
induces a set-theoretically free action of PGLn on both VL,P,6 and VO. The PGLn-orbits
of these two spaces are then all closed. Consider the affine GIT quotient

QO := VO/PGLn = Spec(C[VO]PGLn).

The quotient map VO → QO is actually a principal PGLn-bundle in the étale topology.
Since VL,P,6 is projective over VO, by a result of Mumford [43] the categorical quotient
QL,P,6 of VL,P,6 by PGLn exists and the quotient map VL,P,6 → QL,P,6 is also a
principal PGLn-bundle.

We will see that we can identify QO and QL,P,6 with quiver varieties Mξ (vO) and
Mξ,θ (vL,P,6) made out of the same comet-shaped quiver 0L,P,6 = 0O equipped with
(possibly different) dimension vectors vO and vL,P,6 (here we use Nakajima’s nota-
tion, cf. §4.1). The variety QO is also isomorphic to the image π(Mξ ,θ (vL,P,6)) of
π :Mξ ,θ (vL,P,6)→Mξ (vL,P,6).
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The identification of QO with the quiver variety Mξ (vO) is due to Crawley-Boevey
[6] and is also available in the non-generic case (see §5.2). Although it may not be in the
literature, the identification of QL,P,6 with Mξ,θ (vL,P,6) is then quite natural to consider.

Under the identification QO ' Mξ (vO), the open subset Q o
O ⊂ QO defined as the

image of
VoO := VO ∩Oo

in QO corresponds to the subset Ms
ξ
(vO) ⊂ Mξ (vO) of simple representations. The

image QoL,P,6 of
VoL,P,6 := VL,P,6 ∩OoL,P,6

in QL,P,6 corresponds to the subset Ms
ξ ,θ
(vL,P,6) ⊂Mξ ,θ (vL,P,6) of θ -stable represen-

tations.
The generic quiver variety QL,P,6 (which does not seem to have been considered in

the literature before) and QO will be one of the main foci of this paper.
If VO 6= ∅, the varieties QoL,P,6 and Q o

O are both non-empty irreducible non-singular
dense open subsets of QL,P,6 and QO respectively. The irreducibility of QO follows from
a more general result due to Crawley-Boevey (see Theorem 4.1.2). The irreducibility of
QL,P,6 (see Theorem 5.3.7) seems to be new and our proof uses Theorem 4.1.5 and
Crawley-Boevey’s result in Theorem 4.1.2. The equivalence between the non-emptiness
of QO and that of Qo

O is not stated explicitly in Crawley-Boevey’s paper but our proof
follows very closely various arguments which are due to him. More precisely we have the
following result which is important for this paper.

Theorem 1.2.1. The following assertions are equivalent:

(i) The variety Qo
O is not empty.

(ii) The variety QO is not empty.
(iii) vO ∈ 8(0).
Let us discuss this theorem. Say that an element X in VoO is irreducible if there is no
non-zero proper subspace of Cn which is preserved by all the coordinates of X. The exis-
tence of irreducible elements in VoO was studied by Kostov [29] who calls it the (additive)
Deligne–Simpson problem (in [29] the tuple (O1, . . . ,Ok) is not necessarily generic).
Later on, Crawley-Boevey [6] reformulated Kostov’s answer to the Deligne–Simpson
problem in terms of roots of 0. This reformulation involves general results of Crawley-
Boevey on quiver varieties (see §4.1 for more details) and his identification of QO with
Mξ (vO). Our proof of Theorem 1.2.1 consists in working out in the generic case Crawley-
Boevey’s results on the Deligne–Simpson problem.

For a pair (L,6) as above, we put

W(L,6) := {n ∈ NGLn(L) | n6n−1 = 6}/L.
The group W(L,6) acts on the complex p∗(IC•XL,P,6 ) where p : XL,P,6 → gln is
the projection on the first coordinate, and IC•XL,P,6 is the simple perverse sheaf with
coefficients in the constant local system C.
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From this, we find an action of

W(L, 6) := W(L1, 61)× · · · ×W(Lk, 6k)

on the complex (ρ/PGLn)∗(IC•QL,P,6
) and consequently on the hypercohomology

Hic(QL,P,6, IC•QL,P,6
) which we take as a definition for the compactly supported inter-

section cohomology IHi
c(QL,P,6,C).

From the theory of quiver varieties, we have IHi
c(QL,P,6,C) = 0 for odd i. Let us

then consider the polynomials

Pw
c (QL,P,6, q) :=

∑
i

Tr(w | IH2i
c (QL,P,6,C))qi

with w ∈ W(L, 6).
As explained in §4.3.2 to each pair (L,C) with L = ∏r

i=1 GLni ⊂ GLn and C a
nilpotent orbit of

⊕r
i=1 glni corresponds a unique sequence of partitions

ω̃ = ω1 · · ·ω1︸ ︷︷ ︸
a1

· · ·ωl · · ·ωl︸ ︷︷ ︸
al

with ω1 ≥ · · · ≥ ωl and ωj 6= ωs if j 6= s.
The group W(L,C) is then isomorphic to

∏l
j=1 Saj where Sd denotes the symmetric

group on d letters.
The decomposition of the coordinates of an element w ∈ W(L,C) ' ∏l

j=1 Saj as a
product of disjoint cycles provides a partition (d1

j , d
2
j , . . . , d

rj
j ) of aj for each j , and so

defines a unique type

ω = (d1
1 , ω

1) · · · (dr11 , ω
1)(d1

2 , ω
2) · · · (dr22 , ω

2) · · · (d1
l , ω

l) · · · (drll , ωl) ∈ Tn.

We thus have a surjective map from the set of triples (L,C,w) with w ∈ W(L,C) to the
set Tn.

Note that W(L, 6) ⊂ W(L,C).
Let w ∈ W(L, 6). The datum (L,C,w) thus defines a multitype ω = (ω1, . . . , ωk)

∈ (Tn)k . We call the multitypes arising in this way from generic pairs (L, 6) admissible.
Let (X1, . . . ,Xk) be a generic tuple of irreducible characters of GLn(Fq) of type ω

(generic tuples of irreducible characters of a given type always exist assuming that the
characteristic of Fq and q are large enough). The pair (0ω, vω) defined in §1.1 is the
same as the pair (0L,P,6, vL,P,6) defined from (L,P, 6), and moreover the integer dω
equals dimQL,P,6 .

Theorem 1.2.2. We have

Pw
c (QL,P,6, q) = q 1

2 dimQL,P,6 〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉.
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If w = 1 and if the adjoint orbits O1, . . . ,Ok are semisimple, in which case QL,P,6 '
QO, the theorem is proved in [18].

One of the consequences of Theorem 1.2.2 is an explicit formula for Pw
c (QL,P,6, q)

in terms of Hall–Littlewood symmetric functions (cf. §6.10).
Note that if for each i = 1, . . . , k we have CGLn(σi) = Li , then the projection

XLi ,Pi ,6i → Oi is an isomorphism and so is the map ρ/PGLn : QL,P,6 → QO. Hence
our main results will give in particular explicit formulas for the Poincaré polynomial
Pc(QO, q) where we write Pc instead of Pw

c when w = 1.
Let A(L,C) be the set of σ = (σ1, . . . , σk) ∈ zl1×· · ·×zlk such that the pair (L, σ+C)

is generic. It follows from Theorem 1.2.2 that Pc(QL,P,6, q) depends only on (L,C) and
not on σ ∈ A(L,C).

We say that a generic tuple (X1, . . . ,Xk) of irreducible characters is admissible if it
is of admissible type.

From Theorems 1.2.2 and 1.2.1, we prove Theorem 1.1.1, namely:

Theorem 1.2.3. Let (X1, . . . ,Xk) be an admissible generic tuple of irreducible charac-
ters of GLn(Fq) of type ω.

(a) 〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉 6= 0 if and only if vω ∈ 8(0ω). Moreover 〈3⊗ X1 ⊗ · · · ⊗
Xk, 1〉 = 1 if and only if vω is real.

(b) If vω ∈ 8(0ω), the multiplicity 〈3 ⊗ X1 ⊗ · · · ⊗ Xk, 1〉 is a monic polynomial in
q of degree dω/2 with integer coefficients. If moreover w = 1, then it has positive
coefficients.

Now let us see some examples of generic tuples (X1, . . . ,Xk) of irreducible characters
which are not admissible. This is equivalent to giving examples of triples (L,C,w) for
which there is no σ ∈ A(L,C) such that w ∈ W(L, σ + C).

The existence of such a σ is subject to some restrictions which can be worked out
explicitly using §5.1. Let us see the explicit situations (i)–(iii) below.

(i) Assume that L is a maximal torus (in which case C is the trivial nilpotent orbit) and
that the coordinates of w are all n-cycles. Then w belongs to a subgroupW(L, σ+C)
ofW(L,C) = W(L) if and only if the coordinates of σ = (σ1, . . . , σk) are all scalar
matrices. But such a σ does not belong to A(L,C).

(ii) When the dimension vector v of the comet-shaped quiver 0 is divisible (i.e., the gcd
of its coordinates is greater than 1), then A(L,C) = ∅.

(iii) If L = (GLn)k , then we also have A(L,C) = ∅.
When C = {0}, then A(L,C) 6= ∅ if and only if vω is indivisible. This implies that a

generic tuple of split semisimple irreducible characters is admissible if and only if vω is
indivisible.

1.3. Character varieties: A conjecture

Now we propose a conjectural geometrical interpretation of 〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉 for
any generic tuple (X1, . . . ,Xk).
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Let P be a parabolic subgroup of GLn(C), L a Levi factor of P and let 6 = σC

where C is a unipotent conjugacy class of L and where σ is an element of the center ZL
of L. Put

YL,P,6 := {(x, gP ) ∈ GLn × (GLn/P ) | g−1xg ∈ 6UP }
where UP is the unipotent radical of P . The variety YL,P,6 is the multiplicative analogue
of XL,P,6 .

We choose a tuple (O1, . . . ,Ok) of conjugacy classes of GLn(C) and for each i =
1, . . . , k we let Õi be the conjugacy class of the semisimple part of an element in Oi .
We say that the tuple (O1, . . . ,Ok) is generic if

∏k
i=1 det(Oi) = 1 and whenever V is a

subspace of Cn which is stable under some xi ∈ Õi (for each i) such that

k∏
i=1

det(xi |V ) = 1

then either V = 0 or V = Cn. Unlike the additive case, generic tuples of conjugacy
classes always exist (the multiplicities of the eigenvalues being prescribed). For instance,
while we cannot form generic tuples of adjoint orbits of nilpotent type, we can always
form generic tuples of conjugacy classes of unipotent type as follows. Let ζ be a primitive
n-th root of unity, and O1 = ζC1, O2 = C2, . . . ,Ok = Ck where C1, . . . , Ck are
unipotent conjugacy classes. Then (O1, . . . ,Ok) is generic.

For each i = 1, . . . , k, let (Li, Pi, 6i) be such that the image of the projection
YLi ,Pi ,6i → gln is Oi . As in §1.2, we define L,P, 6,C and we say that (L, 6) is generic
if the tuple (O1, . . . ,Ok) is generic, which we now assume. We define the multiplicative
analogue of VL,P,6 as

UL,P,6 :=
{(
a1, b1, . . . , ag, bg, (x1, . . . , xk, g1P1, . . . , gkPk)

) ∈ (GLn)2g × YL,P,6
∣∣

(a1, b1) · · · (ag, bg)x1 · · · xk = 1
}

where (a, b) denotes the commutator aba−1b−1. As in the quiver case, the genericity
condition ensures that the group PGLn acts freely on UL,P,6 . Then consider the quotient
ML,P,6 = UL,P,6/PGLn. The projection UL,P,6 → (GLn)2g+k on the first 2g + k
coordinates induces a morphism from ML,P,6 onto the affine GIT quotient

MO :=
{
(a1, b1, . . . , ag, bg, x1, . . . , xk) ∈ (GLn)2g ×O1 × · · · ×Ok

∣∣∣∏
(ai, bi)

∏
xj = 1

}/
PGLn.

Remark 1.3.1. If Sg is a compact Riemann surface of genus g with punctures p =
{p1, . . . , pk} ⊂ Sg , then MO can be identified (hence the name of character varieties)
with the affine GIT quotient

{ρ ∈ Hom(π1(Sg\p),GLn) | ρ(γi) ∈ Oi}/PGLn,

where γi is the class of a simple loop around pi with orientation compatible with that
of Sg .
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Unlike quiver varieties, the mixed Hodge structure on IHk
c(ML,P,6,C) is not pure

(see for instance [18] in the case where the conjugacy classes Oi are semisimple).
We let W• be the weight filtration on IHk

c(ML,P,6,C) and put

H i,k(ML,P,6) := WiIHk
c(ML,P,6,C)/Wi−1IHk

c(ML,P,6,C).

The action of W(L, 6) preserves the weight filtration and so, for w ∈ W(L, 6), we may
consider the mixed Poincaré polynomial

Hw
c (ML,P,6; q, t) :=

∑
i,k

Tr(w |H i,k(ML,P,6))q
i tk

and its pure part

PHw
c (ML,P,6, t) :=

∑
i

Tr(w |H i,i(ML,P,6))t
i .

Recall that 6 = σC with C a unipotent conjugacy class of L and σ ∈ ZL.
Let w ∈ W(L, 6). As above Theorem 1.2.2, we can define a type ω ∈ (Tn)k from

(L,C,w). Let (X1, . . . ,Xk) be a generic tuple of irreducible characters of GLn(Fq) of
type ω.

Conjecture 1.3.2. We have

PHw
c (ML,P,6,

√
q) = q 1

2 dimML,P,6 〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉. (1.3.1)

If w = 1 and if the conjugacy classes Oi are semisimple, in which case ML,P,6 'MO,
this conjecture is already in [18].

Now put ξ := (ζ · 1, 1, . . . , 1) ∈ (ZGLn)
k where ζ is a primitive n-th root of unity.

Then for any triple (L,C,w) with w ∈ W(L,C) the pair (L, ξC) is always generic and
w ∈ W(L, ξC) = W(L,C). Hence Conjecture 1.3.2 implies that for any generic tuple
(X1, . . . ,Xk) of irreducible characters there exists a triple (L,C,w) with w ∈ W(L,C)
such that if we put 6 := ξC, then (1.3.1) holds.

Put C′ := C − 1 and assume that there exists σ ′ ∈ A(L,C′) such that CGLn(σ ) =
CGLn(σ

′). Then Conjecture 1.3.2 together with Theorem 1.2.2 implies the following con-
jecture.

Conjecture 1.3.3. We have

PHw
c (ML,P,6,

√
q) = Pw

c (QL,P,6′ , q).

In the case where the adjoint orbits O1, . . . ,Ok and the conjugacy classes O1, . . . ,Ok

are semisimple and w = 1, then this conjecture is due to T. Hausel. If g = 0, he actually
conjectured that the identity between the two polynomials is realized by the Riemann–
Hilbert monodromy map QO →MO.

In [18] we gave a conjectural formula for the mixed Poincaré polynomial of MO

in terms of Macdonald polynomials when O1, . . . ,Ok are semisimple. We will dis-
cuss the generalization of this conjecture for the twisted mixed Poincaré polynomial
Hw
c (ML,P,6; q, t) in a forthcoming paper.
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2. Preliminaries on geometric invariant theory

In this section, K is an algebraically closed field of arbitrary characteristic. The letter G
denotes a connected reductive algebraic group over K.

We review the construction by Mumford [43] of GIT quotients.

2.1. GIT quotients

For an algebraic variety X over K we denote by K[X] := H 0(X,OX) the K-algebra of
regular functions onX. LetG act onX and let σ : G×X→ X, pr2 : G×X→ X denote
respectively the G-action and the projection. Then a G-linearization of a line bundle L
overX is an isomorphism8 : σ ∗(L) ' pr∗2(L) satisfying a certain cocycle condition (see
Mumford [43]). The isomorphism 8 defines a linear action of G on the space H 0(X,L)

of sections as (g ·s)(x) = g ·s(g−1 ·x). We denote byH 0(X,L)G the space ofG-invariant
sections.

Fix a G-linearization 8 of L and for an integer n, put L(n) := L⊗ n. A point x ∈ X
is semistable (with respect to 8) if there exist m > 0 and s ∈ H 0(X,L(m))G such that
Xs := {y ∈ X | s(y) 6= 0} is affine and contains x. If moreover the G-orbits of Xs are
closed in Xs and the stabilizer CG(x) of x in G is finite, then x is said to be stable.

We denote by Xss(8) (resp. Xs(8)) the open G-invariant subset of semistable (resp.
stable) points of X.

Let q : Xss(8) → X//8G denote the GIT quotient map defined by Mumford
[43, Theorem 1.10]. It is defined by glueing together the affine quotient maps Xs →
Xs//G := Spec(K[Xs]G) where s runs over the set of sections H 0(X,L(m))G, with
m > 0, such that Xs is affine.

We will use the following well-known properties of q.

Theorem 2.1.1. (1) The quotient q is a categorical quotient (in the category of algebraic
varieties).

(2) If x, y ∈ Xss(8), we have q(x) = q(y) if and only if G · x ∩G · y 6= ∅.
(3) If U is a q-saturated (i.e. q−1q(U) = U) G-stable open subset ofXss(8), then q(U)

is an open subset of X//8G and the restriction U → q(U) is a categorical quotient.
(4) Let F be a closed G-stable subset of Xss(8). Then q(F ) is closed in X//8G.
(5) There is an ample line bundle M on X//8G such that q∗(M) ' L(n) for some n.

The theorem can be found for instance in Mumford [43] or in Dolgachev [13, Theorems
8.1, 6.5].

Since the Zariski closure of a G-orbit always contains a closed orbit, the assertion (2)
shows that X//8G parameterizes the closed orbits of Xss(8). If we identify X//8G with
the set of closed orbits of Xss(8), the map q sends an orbit O of Xss(8) to the unique
closed orbit contained in O.

Let G′ be another connected reductive algebraic group over K acting on X. Assume
that the two actions ofG andG′ onX commute. PutG′′ = G×G′ and assume that there is
aG′′-linearization8′′ of L extending8. Denote by8′ theG′-linearization on L obtained
by restricting8′′ toG′×X. Let π ′′ : Xss(8′′)→ X//8′′G′′ and π ′ : Xss(8′)→ X//8′G′



1386 Emmanuel Letellier

be the quotient maps. Since the actions of G and G′ commute, the group G acts on the
spaces H 0(X,L(n))G

′
and so the quotient map π ′ is G-equivariant. Also the ample line

bundle M on X//8′G′ constructed in [13, proof of Theorem 8.1] such that (π ′)∗(M) '
L(n) is G-equivariant and there is a G-linearization 9 of M such that (π ′)∗(9) = 8(n).
Proposition 2.1.2. Assume that the inclusion Xss(8′′) ⊂ Xss(8′) is an equality and put
Z = X//8′G′. Then there is a canonical isomorphism X//8′′G′′ ' Z//9G.

Proof. If X is affine clearly X//G′′ = Spec(K[X]G′′) ' Spec((K[X]G′)G) =
(X//G′)//G. Hence the proposition follows from the construction of GIT quotients by
glueing affine quotients. ut
Let ψ : G×X→ X×X, (g, x) 7→ (g ·x, x). According to Mumford (see [43, Definition
0.6] or [13, §6]) we say that a morphism φ : X→ Y of algebraic varieties is a geometric
quotient (of X by G) if the following conditions are satisfied:

(i) φ is surjective and constant on G-orbits,
(ii) the image of ψ is X ×Y X,

(iii) U ⊂ Y is open if and only if φ−1(U) is open,
(iv) for any open subset U of Y , the natural homomorphism H 0(U,OY ) →

H 0(φ−1(U),OX) is an isomorphism onto the subring H 0(φ−1(U),OX)
G of G-

invariant sections.

A geometric quotient is a categorical quotient, hence if it exists it is unique. The condition
(ii) says that Y parameterizes theG-orbits ofX and so we will sometimes use the notation
X/G to denote the geometric quotient of X by G.

Recall that the restrictionXs(8)→ q(Xs(8)) of q is a geometric quotientXs(8)→
Xs(8)/G.

Unless otherwise otherwise specified, the principal G-bundles we will consider will
be with respect to the étale topology.

Lemma 2.1.3. A geometric quotient π : X→ Y is a principal G-bundle if and only if π
is flat and ψ : G×X→ X ×Y X, (g, x) 7→ (g · x, x), is an isomorphism.

Proposition 2.1.4. IfX→ P is a principalG-bundle with P quasi-projective, then there
exists a line bundle L onX together with aG-linearization8 of L such thatXs(8) = X.
In particular P ' X//8G.

Proof. Follows from Mumford [43, §4, Converse 1.12] and the fact that the morphism
X→ P is affine (as G is affine). ut
We say that the action of G on X is free if ψ : G× X → X × X is a closed immersion.
Recall that a geometric quotient X → X/G by a free action of G on X is a princi-
pal G-bundle [43, Proposition 0.9]. In the case where X is affine then the quotient map
X → X//G is a principal G-bundle if and only if the stabilizers CG(x), with x ∈ X,
are all trivial and the G-orbits of X are all separable (see Bardsley and Richardson [1,
Proposition 8.2]).

We have the following proposition (see Mumford [43, Proposition 7.1]).
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Proposition 2.1.5. Let G act on the algebraic varieties X and Y and let f : X → Y be
a G-equivariant morphism. Assume that Y → Z is a principal G-bundle with Z quasi-
projective. Assume also that there exists a G-equivariant line bundle L over X which
is relatively ample for f . Then there exists a quasi-projective variety P and a principal
G-bundle X→ P . Moreover the commutative diagram

X
f //

��

Y

��
P

f/G // Z

is Cartesian. If K = Fq and if all our data are defined over Fq then P , X → P and
X ' P ×Z Y are also defined over Fq .

Assume that A is a finitely generated K-algebra. The projective r-space over A is the
algebraic variety PrA := ProjA[x0, . . . , xr ] = SpecA × PrK. We denote by OA(1) the
twisting sheaf on PrA.

We now assume thatG acts on the algebraic varieties SpecA and PrK and hence on PrA.
The ample line bundle OA(n) admits aG-linearization for some n sufficiently large (as the
twisting sheaf O(1) on PrK does by Dolgachev [13, Corollary 7.2]). For such an n, the re-
striction L of OA(n) to a closedG-stable subvariety X of PrA admits aG-linearization8.
In this case, the Xs with s ∈ H 0(X,L(n))G are always affine.

Corollary 2.1.6. Let f : X→ Y be a projective G-equivariant morphism with Y affine.
Assume moreover that CG(y) = 1 for all y ∈ Y and that the G-orbits of Y are all
separable. Then the geometric quotients Y → Y/G and X → X/G exists (and are
principal G-bundles) and X ' X/G ×Y/G Y . If K = Fq and if X,Y , G and f are
defined over Fq , then Y → Y/G, X → X/G and X ' X/G ×Y/G Y are also defined
over Fq .

2.2. Particular case: Affine varieties

Assume now that X is an affine algebraic variety. Let χ : G→ K× be a linear character
ofG. Then the action ofG on Lo = X×A1 given by g · (x, t) 7→ (g ·x, χ(g)−1t) defines
a G-linearization 8 of Lo. The space H o(X,Lo(n))G with n ≥ 0 can then be identified
with the space K[X]G,χn of functions f ∈ K[X] which satisfy f (g · x) = χn(g)f (x) for
all g ∈ G and x ∈ X. Such a function f ∈ K[X] is called a χn-semi-invariant function.

A polynomial f = ∑r
i=0 fi · zi ∈ K[X][z] ' K[X × A1] is G-invariant if and only

if for each i, the function fi is a χ i-semi-invariant, that is,

K[X × A1]G =
⊕
n≥0

K[X]G,χn

and so
X//8G = Proj(K[X × A1]G).



1388 Emmanuel Letellier

The canonical projective morphism

πX : X//8G→ X//G := Spec(K[X]G) (2.2.1)

is induced by the inclusion of algebras K[X]G ⊂ K[X × A1]G. Of course if 8 is trivial
then πX is an isomorphism.

We will use the following important property. Let q : Xss(8) → X//8G be the
quotient with respect to (Lo,8).

Proposition 2.2.1. If F is closed subvariety of X, then F ss(8) = Xss(8) ∩ F and the
canonical morphism F//8G→ q(F ss(8)) is bijective. If K = C, it is an isomorphism.

Remark 2.2.2. Note that for any G-equivariant morphism φ : X → Y of affine al-
gebraic varieties, the co-morphism φ] : K[Y ] → K[X] preserves χ -semi-invariants,
hence we always have φ−1(Y ss(8)) ⊂ Xss(8). If moreover φ is a finite morphism then
φ(Xss(8)) ⊂ Y ss(8) and so we recover the first assertion of the proposition.

3. Intersection cohomology

3.1. Generalities and notation

LetX be an algebraic variety over the algebraically closed field K. Let ` be a prime which
does not divide the characteristic of K. The letter κ denotes the field Q`.

We denote by Db
c (X) the bounded “derived category” of κ-(constructible) sheaves

on X. For K ∈ Db
c (X) we denote by HiK the i-th cohomology sheaf of K . If m is an

integer, then we denote by K[m] the m-th shift of K ; we have HiK[m] = Hi+mK . For
a morphism f : X → Y , we have the usual functors f∗, f! : Db

c (X) → Db
c (Y ) and

f ∗, f ! : Db
c (Y ) → Db

c (X). If i : Y ↪→ X is a closed immersion, the restriction i∗K of
K ∈ Db

c (X) is denoted by K|Y . We denote by DX : Db
c (X) → Db

c (X) the Verdier dual
operator.

Recall (see Beilinson–Bernstein–Deligne [2]) that a perverse sheaf on X is an ob-
ject K in Db

c (X) which satisfies the following two conditions:

• dim(Supp(HiK)) ≤ −i,
• dim(Supp(HiDXK)) ≤ −i for all i ∈ Z.

The full subcategory of Db
c (X) of perverse sheaves on X forms an abelian cate-

gory (see [2, Théorème 1.3.6]) and its objects are all of finite length (see [2, Théorème
4.3.1(i)]).

Let now Y be an irreducible open non-singular subset of X such that Y = X. Then
for a local system ξ on Y , we let IC•X,ξ ∈ Db

c (X) be the intersection cohomology com-
plex defined by Goresky–MacPherson and Deligne. The perverse sheaf K = IC•X,ξ :=
IC•X,ξ [dimX] is characterized by the following properties:

• HiK = 0 if i < − dimX,

• H− dimXK|Y = ξ,
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• dim(Supp(HiK)) < −i if i > − dimX,

• dim(Supp(HiDXK)) < −i if i > − dimX.

If U is another open non-singular subset of X and if ζ is any local system on U such
that ζ |U∩Y = ξ |U∩Y , then IC•X,ξ = IC•X,ζ . That is why we omit the open set Y from the
notation IC•X,ξ . We will simply denote by IC•X the complex IC•

X,Q`
.

Remark 3.1.1. Note that if U is a locally closed subvariety of X such that U ( X then
H− dimUK|U = 0.

We have the following description of simple perverse sheaves due to Beilinson, Bern-
stein and Deligne. If Z is an irreducible closed subvariety of X and ξ an irreducible local
system on some open subset of Z then the extension by zero of IC•Z,ξ on X − Z is a
simple perverse sheaf on X and any simple perverse sheaf on X arises in this way from
some pair (Z, ξ) (see [2, 4.3.1]).

It will be convenient to continue to denote by IC•Z,ξ and IC•Z,ξ their extension by
zero on X − Z.

Note that if X is non-singular then IC•X,ξ =: ξ is the complex K• concentrated in
degree − dimX with K− dimX = ξ .

We define the compactly supported i-th intersection cohomology groups IHi
c(X, ξ)

with coefficients in the local system ξ as the compactly supported i-th `-adic hypercoho-
mology group Hic(X, IC•X,ξ ). If f is the unique morphism X → {pt}, then IHi

c(X, ξ) =
Hi(f!IC•X,ξ ).

If X is non-singular, then IC•X is the constant sheaf κ concentrated in degree 0 and so
IHi

c(X, κ) = H i
c (X, κ).

We will need the following decomposition theorem of Beilinson, Bernstein, Deligne
and Gabber.

Theorem 3.1.2. Suppose that ϕ : X→ X′ is a proper map with X irreducible. Then

ϕ∗(IC•X) '
⊕
Z,ξ,r

VZ,ξ,r ⊗ IC•Z,ξ [r]

where ξ is an irreducible local system on some open subset of a closed irreducible sub-
variety Z of X′. If moreover ϕ∗(IC•X) is a perverse sheaf, then

ϕ∗(IC•X) '
⊕
Z,ξ

VZ,ξ ⊗ IC•Z,ξ . (3.1.1)

The theorem remains true if we replace IC•X by a semisimple object of “geometrical
origin” [2, 6.2.4].

Remark 3.1.3. Let Y be a closed irreducible subvariety of X′ and let U be a non-empty
non-singular open subset of Y . Note that

H− dimY
(⊕
Z,ξ

VZ,ξ ⊗ IC•Z,ξ
)∣∣∣
U
'
⊕
ξ

VY,ξ ⊗ ξ

where the direct sum on the right hand side is over the irreducible local systems on Y .
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Definition 3.1.4. A proper surjective morphism f : Z → X is semismall if one of the
following equivalent conditions is satisfied:

(i) dim{x ∈ X | dim f−1(x) ≥ i} ≤ dimX − 2i for all i ∈ Z≥0.
(ii) There exists a filtration X := F0 ⊃ F1 ⊃ · · · ⊃ Fr = ∅ of X by closed subsets

such that, for all i ∈ {0, . . . , r − 1} and x ∈ Fi − Fi+1, we have 2 dim f−1(x) ≤
dimX − dimFi .

We will use the following easy fact.

Lemma 3.1.5. Let f : Z → X be a proper surjective map and let X := F0 ⊃ F1 ⊃
· · · ⊃ Fr = ∅ be a filtration of X by closed subsets. Let h : X′ → X be a surjective
map and put F ′i = h−1(Fi). Assume that dimX − dimFi = dimX′ − dimF ′i . Then the
projection on the second coordinate Z ×X X′ → X′ is semismall with respect to the
filtration X′ := F ′0 ⊃ F ′1 ⊃ · · · ⊃ F ′r = ∅ if and only if the map f is semismall with
respect to X := F0 ⊃ F1 ⊃ · · · ⊃ Fr = ∅.
Definition 3.1.6. Let X be an algebraic variety over K. We say that X = ∐α∈I Xα is a
stratification of X if the set {α ∈ I | Xα 6= ∅} is finite, each non-empty subset Xα is a
locally closed non-singular equidimensional subvariety of X, and for each α, β ∈ I , if
Xα ∩Xβ 6= ∅, then Xα ⊂ Xβ .

It is well-known that if f : Z → X is a semismall map with Z non-singular and
irreducible, then the complex f∗(ξ) is a perverse sheaf for any local system ξ on Z.

We can actually generalize this result as follows.

Proposition 3.1.7. Let f : Z→ X be a proper surjective map with Z irreducible and let
Z =∐α∈I Zα be a stratification of Z. For x ∈ X, put f−1(x)α := f−1(x)∩Zα . Assume
that

dim{x ∈ X | dim f−1(x)α ≥ 1
2 (i − codimZ(Zα))} ≤ dimX − i

for all α ∈ I and i ∈ Z≥0 where codimZ(Zα) := dimZ− dimZα . Then for any perverse
sheaf K on Z, the complex f∗K is a perverse sheaf on X.

This proposition is used and proved (without being stated explicitly) in Lusztig’s gener-
alization of Springer correspondence [37, proof of Proposition 4.5].

Proof. We need to prove that

(i) dim(Supp(Hif∗K)) ≤ −i,
(ii) dim(Supp(HiDXf∗K)) ≤ −i for all i ∈ Z.

Since f is proper, the Verdier dual commutes with f∗ and so we only prove
(i), as the proof of (ii) will be similar. The stalk Hi

xf∗K is the hypercohomol-
ogy Hi(f−(x),K|f−1(x)). If for x ∈ X we have Hi(f−(x),K|f−1(x)) 6= 0, which
means that there exists α ∈ I such that the compactly supported hypercohomology
Hic(f−(x)α,K|f−1(x)α

) does not vanish. Hence to prove (i) we are reduced to checking
that for all α ∈ I and i,

dim{x ∈ X | Hic(f−1(x)α,K|f−1(x)α
) 6= 0} ≤ −i. (3.1.2)
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If Hic(f−1(x)α,K|f−1(x)α
) 6= 0 then from the hypercohomology spectral sequence

we may write i as i1 + i2 with i1 ≤ 2 dim f−1(x)α and Hi2(K|f−1(x)α
) 6= 0. The

last condition implies that Hi2K|Zα 6= 0. Since K is a perverse sheaf, we must have
i2 + dimX ≤ codimZ(Zα). We thus have i + dimX ≤ 2 dim f−1(x)α + codimZ(Zα).
Hence (3.1.2) is a consequence of

dim{x ∈ X | i + dimX ≤ 2 dim f−1(x)α + codimZ(Zα)} ≤ −i,
or equivalently, of

dim{x ∈ X | dim f−1(x)α ≥ 1
2 (i − codimZ(Zα))} ≤ dimX − i

for all i. ut
Corollary 3.1.8. Let ϕ : X→ X′ be a morphism which satisfies the condition in Propo-
sition 3.1.7. Then (3.1.1) becomes

ϕ∗(IC•X) ' IC•X′ ⊕
(⊕
Z,ξ

VZ,ξ ⊗ IC•Z,ξ
)

(3.1.3)

with Z ( X′. In particular

IHi
c(X, κ) ' IHi

c(X
′, κ)⊕

(⊕
Z,ξ

VZ,ξ ⊗ IHi+dZ−dX
c (Z, ξ)

)
. (3.1.4)

where dZ is the dimension of Z.

The isomorphism (3.1.4) is obtained from (3.1.3) by applying the functor f! with f :
X′→ {pt}.
Corollary 3.1.9. Assume that ϕ : X → X′ satisfies the condition in Proposition 3.1.7.
If X′ = ⋃α∈I X′α where I is a finite set and where the X′α are locally closed irreducible
subvarieties of X′ such that the restriction of Hi(ϕ∗(IC•X)) to X′α is a locally constant
sheaf for all i and α ∈ I , then

ϕ∗(IC•X) ' IC•X′ ⊕
(⊕
α,ξα

Vα,ξα ⊗ IC•
X′α,ξα

)
where the α run over the set {α ∈ I | X′α ( X′}.
Proof. Let Z be an irreducible closed subvariety of X′ such that IC•Z,ξ is a direct
summand of ϕ∗(IC•X). We have Z = ⋃

α(X
′
α ∩ Z). Since Z is irreducible, there ex-

ists an α such that X′α ∩ Z is dense in Z. We have H− dimZϕ∗(IC•X)|X′α∩Z 6= 0.
Since H− dimZϕ∗(IC•X)|X′α is locally constant and non-zero, we have X′α ⊂
Supp(H− dimZϕ∗(IC•X)). Hence

dimX′α ≤ dim
(
Supp(H− dimZϕ∗(IC•X))

) ≤ dimZ.
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The right inequality holds because ϕ∗(IC•X) is a perverse sheaf. Since dim(X′α ∩ Z) =
dimZ, we deduce that the inclusion X′α ∩ Z ⊂ X′α is an equality, i.e., X′α ⊂ Z, and so
X′α = Z. ut
Assume that K is an algebraic closure of a finite field Fq and that X is an irreducible
algebraic variety defined over Fq . We denote by F : X→ X the corresponding Frobenius
endomorphism. We will useXF orX(Fq) to denote the fixed points of F . LetK ∈ Db

c (X)

and assume that there exists an isomorphism ϕ : F ∗(K) ' K . The characteristic function
XK,ϕ : XF → κ of (K, ϕ) is defined by

XK,ϕ(x) =
∑
i

(−1)i Trace(ϕix,Hi
xK).

If r ∈ Z, we denote by K(r) the r-th Tate twist of K . Then XK(r), ϕ(r) = q−r XK,ϕ .
Let Y be an open non-singular F -stable subset of X. We will simply denote by XIC•X

the function XIC•X,ϕ where ϕ : F ∗(IC•X) → IC•X is the unique isomorphism which
induces the identity on H0

x(IC•X) for all x ∈ YF .

3.2. Restriction

Assume that X is irreducible. Let Z be an irreducible closed subvariety of X and let
i : Z ↪→ X denote the inclusion. We give a condition for i∗(IC•X) = IC•Z to be true.

Proposition 3.2.1. Assume that there is a decomposition X = ⋃α∈I Xα of X where I is
a finite set and where the Xα are locally closed irreducible subvarieties such that

(i) if Zα := Xα ∩ Z is not empty, then it is equidimensional and codimX(Xα) =
codimZ(Zα).

Assume moreover that there exists a Cartesian diagram

X̃
f // X

Z̃
g //

ĩ

OO

Z

i

OO

such that

(ii) f and g are semismall resolutions of singularities,
(iii) the restriction of the sheaf Hi(f∗(κ)) to Xα is a locally constant sheaf for all i for

all i and all α in I .

Then i∗(IC•X) = IC•Z .

Proof. If Y is a variety, let dY denote its dimension. Let αo ∈ I be such that Xαo is the
open stratum of X. To avoid any confusion we will write IC•Z[dZ] instead of IC•Z . By
Corollary 3.1.9,

f∗(κ[dX]) = IC•X[dX] ⊕
( ⊕
α 6=αo, ξα

Vα,ξα ⊗ IC•
Xα,ξα
[dXα ]

)
. (3.2.1)
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By (iii) and i∗f∗(κ) = g∗(κ) we see that the restriction of Hi(g∗(κ)) to Zα is locally
constant. Hence by Corollary 3.1.9, we have

g∗(κ[dZ]) = IC•Z[dZ] ⊕
( ⊕
α 6=αo, β∈Iα, ζα,β

W(α,β),ζα,β ⊗ IC•
Z(α,β),ζα,β

[dZα ]
)

(3.2.2)

where {Z(α,β)}β∈Iα is the set of irreducible components of Zα . Using again i∗f∗(κ)
= g∗(κ) we see from (3.2.1) and (3.2.2) that the complex i∗(IC•X)[dZ] is a direct sum-
mand of the semisimple perverse sheaf g∗(κ[dZ]). It is therefore a semisimple perverse
subsheaf of g∗(κ[dZ]). Since the open stratum Zαo of Z is contained in the open stra-
tum of X, the restriction of i∗(IC•X)[dZ] to Zαo is the constant sheaf κ[dZ]. Hence
i∗(IC•X)[dZ] contains IC•Z[dZ] as a direct summand, i.e.,

i∗(IC•X)[dZ] = IC•Z[dZ] ⊕
( ⊕
α 6=αo, β∈Iα, ζα,β

W ′(α,β),ζα,β ⊗ IC•
Z(α,β),ζα,β

[dZα ]
)

for some subspaces W ′(α,β),ζα,β ⊂ W(α,β),ζα,β . It remains to see that W ′(α,β),ζα,β = 0 for all
α 6= αo.

Put K := i∗(IC•X)[dZ]. Then for α 6= αo we have

H−dZαK|Zα = HdZ−dZα IC•X|Zα = HdX−dXα IC•X|Zα = H−dXα IC•X[dX]|Zα = 0.

The last equality follows from Remark 3.1.1. HenceW ′(α,β),ζα,β = 0 by Remark 3.1.3 and
we have proved the proposition. ut

3.3. E-polynomial

Recall that a mixed Hodge structure on a rational vector space H consists of a finite
increasing filtration W• (the weight filtration) on H , and a finite decreasing filtration F •
(the Hodge filtration) on the complexification HC, which induces a pure Hodge structure
of weight k on the complexified graded pieces GrWk HC = (WkH/Wk−1H)C, i.e.,

GrWk HC =
⊕
p+q=k

(GrWk HC)
p,q

with
(GrWk HC)

p,q = Fp GrWk HC ∩ F q GrWk HC.

We call the integers {hp,q := dim (GrWp+q HC)p,q}p,q the mixed Hodge numbers.
Recall (Saito [51], see also [48, Chapter 14]) that for any complex algebraic varietyX,

the intersection cohomology group IHk
c(X,C) is endowed with a mixed Hodge structure.

If X is non-singular, it coincides with Deligne’s mixed Hodge structure on Hc(X,C)
which is defined in [10].

We then denote by {ihp,q;kc (X)}p,q the mixed Hodge numbers of IHk
c(X,C) and we

define the mixed Hodge polynomial of X as

IHc(X; x, y, z) =
∑
p,q,k

ihp,q;kc (X)xpyqzk.

The compactly supported Poincaré polynomial of X is then IHc(X; 1, 1, t).
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In this paper we will say that X is pure if the mixed Hodge structure on IHk
c(X,C) is

pure for all k, i.e., ihp,q;kc (X) = 0 when p + q 6= k.
The E-polynomial of X is defined as

Eic(X; x, y) := IHc(X; x, y,−1) =
∑
p,q

(∑
k

(−1)kihp,q;kc (X)
)
xpyq .

Let R be a subring of C which is finitely generated as a Z-algebra and let X be a
separatedR-scheme of finite type. According to [20, Appendix], we say that X is strongly
polynomial count if there exists a polynomial P(T ) ∈ C[T ] such that for any finite
field Fq and any ring homomorphism ϕ : R → Fq , the Fq -scheme X ϕ obtained from
X by base change is polynomial count with counting polynomial P , i.e., for every finite
extension Fqn/Fq , we have

]{X ϕ(Fqn)} = P(qn).
According to Katz terminology (cf. [20, Appendix]), we call a separated R-scheme X

which gives back X after extension of scalars from R to C a spreading out of X.
The complex variety X is said to be polynomial count if there exists a spreading out

of X which is strongly polynomial count.
Let us now denote by {hi,j ;kc (X)}i,j the mixed Hodge numbers of H k

c (X,C) and put

E(X; x, y) :=
∑
i,j

(∑
k

(−1)khi,j ;kc (X)
)
xiyj .

We recall the result of Katz in the appendix of [20] (see also Kisin and Lehrer [27] for
closely related results).

Theorem 3.3.1. Assume thatX is polynomial count with counting polynomial P ∈ C[T ].
Then E(X; x, y) = P(xy).
Let X = ∐α∈I Xα be a stratification and let Xαo be the open stratum, i.e., X = Xαo . Put
α ≤ β if Xα ⊂ Xβ , and rα := (dimXα − dimX)/2.

We say that X has the property (E) with respect to this stratification and the ring R
if there exists a spreading out X of X, a stratification X = ∐

α Xα , and a morphism
∇ : X̃ → X of R-schemes such that:

(1) X̃ and the closed strata Xα are strongly polynomial count,
(2) for each α, the stratum Xα is a spreading out of Xα , the morphism r : X̃ → X

obtained from ∇ after extension of scalars from R to C yields an isomorphism of
mixed Hodge structures

H i
c (X̃,Q) ' IHi

c(X,Q)⊕
(⊕
α 6=αo

Wα ⊗
(
IHi+2rα

c (Xα,Q)⊗Q(rα)
))
, (3.3.1)

where Q(−d) is the pure mixed Hodge structure on Q of weight 2d and with Hodge
filtration F d = C and F d+1 = 0,
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(3) for any ring homomorphism ϕ : R → Fq , the morphism ∇ϕ : X̃ ϕ → X ϕ obtained
from ∇ by base change yields an isomorphism

(∇ϕ)∗(κ) ' IC•X ϕ ⊕
(⊕
α 6=αo

Wα ⊗ IC•X ϕ

α

(rα)
)

(3.3.2)

of perverse sheaves.

Assume now that all complex varieties Xα (in particular X) have the property (E)
with respect to the stratification Xα = ∐β≤α Xβ and the ring Rα . Since there are only a
finite number of strata, we may assume without loss of generality that the rings Rα are all
equal to the same ring R.

Theorem 3.3.2. With the above assumption, there exists a polynomial P(T ) ∈ Z[T ] such
that for any ring homomorphism ϕ : R→ Fq , we have∑

x∈X ϕ(Fq )
XIC•Xϕ(Fq )

(x) = P(q) (3.3.3)

and

Eic(X; x, y) = P(xy).
Proof. If there is only one stratum, i.e., if X is non-singular, then the conclusion is true
by Theorem 3.3.1. We now use induction on α < β. Assume that the conclusion is true
for all α < αo. By (3.3.1), we have

E(X̃; x, y) = Eic(X; x, y)+
∑
α<αo

(dimWα)x
−rαy−rαEic(Xα; x, y).

By induction hypothesis and since X̃ is polynomial count, this shows that Eic(X; x, y)
depends only on the product xy, i.e., there exists a unique polynomial P such that
Eic(X; x, y) = P(xy); more precisely, P = P̃ − ∑α<αo

(dimWα)x
−rαy−rαPα(xy)

where P̃ is the counting polynomial of X and Pα (with α 6= αo) is the polynomial which
satisfies the assertion for X = Xα . It remains to see that P satisfies (3.3.3).

By (3.3.2), we have

X(∇ϕ)∗(κ) = XIC•Xϕ
+
∑
α<αo

(dimWα)q
−rαXIC•

Xϕ
α

. (3.3.4)

By Grothendieck’s trace formula we have∑
x∈X ϕ(Fq )

X(∇ϕ)∗(κ)(x) = ]{X̃ ϕ(Fq)} = P̃ (q).

Now integrating (3.3.4) over X ϕ(Fq) proves (3.3.3). ut
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Proposition 3.3.3. Assume that X satisfies the assumptions of Theorem 3.3.2 and X is
pure. Then for any ring homomorphism ϕ : R→ Fq we have∑

x∈X ϕ(Fq )
XIC•Xϕ(Fq )

(x) = Pc(X; q)

where Pc(X; t) :=∑i(dim IH2i
c (X,C))t i .

Proof. Since X is pure we have Eic(X; x, y) = ∑
p,q(−1)p+q ihp,q;p+qc (X)xpyq . By

Theorem 3.3.2, the polynomial Eic(X; x, y) depends only on the product xy, hence
ihp,q;p+qc (X) = 0 if p 6= q. The mixed Hodge numbers of X are thus all of the form
ihp,p;2pc (X) and so Eic(X; x, y) = Pc(X; xy). ut

4. Preliminaries on quiver varieties

We introduce the so-called quiver varieties Mξ,θ (v) and Mξ,θ (v,w) over K which were
considered by many authors including Kronheimer, Lusztig, Nakajima and Crawley-
Boevey. The latter varieties, due to Nakajima and called framed quiver varieties, can be
realized as the first one by an observation due to Crawley-Boevey [5, Introduction]. For
our application we found it more convenient to introduce them separately. Here we recall
the basic results we need.

In this section we will only consider quotients of affine varieties by (finite) direct
products of GLn’s. If G = GLn1 × · · · × GLnr is such a group and if χ : G → K×,
(gi) 7→

∏
i(det gi)−θi , is the character given by θ ∈ Z{1,...,r}, then we will use X//θG

instead ofX//8G and we will often writeXss instead ofXss(8)when the context is clear.

4.1. Generalities on quiver varieties

Let 0 be a quiver and let I denote the set of its vertices. We assume that I is finite. A
dimension vector for 0 is a collection v = {vi}i∈I ∈ ZI≥0, and a representation of 0 of
dimension v over K is a collection of K-linear maps ϕi,j : Kvi → Kvj , for each arrow
i → j of 0, that we identify with matrices (using the canonical basis of Kr ). We define
a morphism between two representations (possibly of different dimension) in the obvious
way. A subrepresentation of ϕ is a representation ϕ′ together with an injective morphism
ϕ′ → ϕ. Let � be a set indexing the edges of 0. For γ ∈ �, let h(γ ), t (γ ) ∈ I denote
respectively the head and the tail of γ . The algebraic group GLv := ∏i∈I GLvi (K) acts
on the space

M(0, v) :=
⊕
γ∈�

Matvh(γ ),vt (γ )(K)

of representations of dimension v in the obvious way: for g = (gi)i∈I ∈ GLv and B =
(xγ )γ∈�, we have g · B := (gvh(γ )xγ g

−1
vt (γ )

). As the diagonal center Z = {(λ Idvi )i∈I |
λ ∈ K×} ⊂ GLv acts trivially, the action of GLv induces an action of

Gv := GLv/Z.

Clearly two elements of M(0, v) are isomorphic if and only if they are Gv-conjugate.
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We define a bilinear form on KI by a �b =∑i aibi . Let θ ∈ ZI be such that θ �v = 0.
This defines a character χ : Gv → K× given by (gi)i 7→∏

i(det gi)−θi .

Theorem 4.1.1 ([26]). A point B ∈M(0, v) is χ -semistable if and only if

θ � dimB ′ ≤ 0

for every subrepresentation B ′ of B. It is χ -stable if and only if it is semistable and the
inequality is strict unless B ′ = 0 or B ′ ' B.

We will write “θ -semistable” instead of “χ -semistable”. We denote respectively by
Mss
θ (0, v) and Ms

θ (0, v) the θ -semistable and θ -stable representations.
Let 0 be the double quiver of 0, i.e. 0 has the same vertices as 0 but the edges

are given by � := {γ, γ ∗ | γ ∈ �} where h(γ ∗) = t (γ ) and t (γ ∗) = h(γ ). Then
via the trace pairing we may identify M(0, v) with the cotangent bundle T∗M(0, v). Put
glv = Lie(GLv) =

⊕
i glvi (K) and gv := Lie(Gv). Define the moment map

µv :M(0, v)→ M(v)0, (xγ )γ∈� 7→
∑
γ∈�
[xγ , xγ ∗ ], (4.1.1)

where
M(v)0 :=

{
(fi)i∈I ∈ glv

∣∣∣ ∑
i∈I

Tr(fi) = 0
}
.

Note that we can identify M(v)0 with (gv)
∗ via the trace pairing. The moment map µv is

Gv-equivariant.
Let ξ = (ξi)i ∈ KI be such that ξ � v = 0. Then (ξi Id)i ∈ glv is in fact in M(v)0.

By abuse of notation we denote by ξ the element (ξi Idvi )i ∈ M(v)0. The affine variety
µ−1

v (ξ) is Gv-stable.
Define

Mξ ,θ (v) := µ−1
v (ξ)//θGv.

We define Ms
ξ ,θ
(v) as the image of µ−1

v (ξ)s in Mξ ,θ (v). By Theorem 2.1.1, it is an open
subset of Mξ ,θ (v).

Since stabilizers in Gv of quiver representations are connected, the action of Gv on
the space Ms

θ (0, v) is set-theoretically free and so the restriction µ−1
v (ξ)s → Ms

ξ ,θ
(v)

of ϕ is the set-theoretical quotient µ−1
v (ξ)s → µ−1

v (ξ)s/Gv. By [49, Lemma 6.5], the
map µ−1

v (ξ)s → µ−1
v (ξ)s/Gv is actually a principal Gv-bundle (in the étale topology).

We put Mξ (v) := Mξ ,0(v). It is the affine GIT quotient µ−1
v (ξ)//Gv =

Spec(K[µ−1
v (ξ)]Gv). The set Mξ (v) parameterizes the set of conjugacy classes of the

semisimple representations of µ−1
v (ξ). Under this parameterization, the open subset

Ms
ξ
(v) of 0-stable points coincides with the set of conjugacy classes of simple repre-

sentations.
The natural projective morphism π :Mξ ,θ (v)→Mξ (v) takes a representation to its

semisimplification.
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Let C0 = (cij )i,j be the Cartan matrix of the quiver 0, namely

cij =
{

2− 2(the number of edges joining i to itself) if i = j,
−(the number of edges joining i to j) otherwise.

We say that a variety X is of pure dimension d if its irreducible components are all of
the same dimension d . We have the following well-known theorem (the irreducibility is
an important result of Crawley-Boevey [5]).

Theorem 4.1.2. Let θ ∈ ZI be such that θ �v = 0. If Ms
ξ ,θ
(v) 6= ∅, then it is non-singular

of pure dimension 2− tvC0v. If Ms
ξ
(v) is not empty, then Ms

ξ ,θ
(v) is also not empty and

Mξ ,θ (v) is irreducible.

Proof. First a simple representation is necessarily θ -stable, hence Ms
ξ
(v) 6= ∅ implies

Ms
ξ ,θ
(v) 6= ∅. It is a result of Crawley-Boevey [5, Theorem 1.2] that the existence of

simple representations in µ−1
v (ξ) implies the irreducibility of µ−1

v (ξ) and so the irre-
ducibility of Ms

ξ ,θ
(v) and Mξ ,θ (v). Note that a point α ∈ µ−1

v (ξ) is non-singular if
µv is smooth at α, that is, if the stabilizer of α in Gv is trivial. From this we deduce
that the space µ−1

v (ξ)s of θ -stable representations is a non-singular space of dimension
dim M(0, v)− dim Gv, and so Ms

ξ ,θ
(v) is non-singular of dimension

2− tvC0v = dim M(0, v)− 2 dim Gv. ut
We put an order on ZI as follows: we say that w ≤ v if wi ≤ vi for each i ∈ I . We denote
by E(v) the set of w such that 0 < w < v, ξ � w = 0 and µ−1

w (ξ) 6= ∅.
For w ∈ ZI≥0, we denote by Hw the hyperplane {α ∈ QI | α � w = 0} of QI . Put

Hvw := Hv ∩Hw and
Dv := Hv −

⋃
w∈E(v)

Hvw.

We say that v is indivisible if the gcd of {vi}i∈I is 1. Note thatDv is not empty if and only
if v is indivisible.

When v is indivisible, the spaces Hvw are hyperplanes of Hv and so define a system
of faces [4, Chapter 1, §1].

Definition 4.1.3. We say that θ is generic with respect to v if θ ∈ Dv.

If θ is generic then θ -semistability coincides with θ -stability, and so Ms
ξ ,θ
(v) =

Mξ ,θ (v). The variety Mξ ,θ (v) is thus non-singular for generic θ .
We have [44], [47, §2.5]:

Proposition 4.1.4. Assume that θ is generic and Ms
ξ
(v) 6= ∅. Then the map π :Mξ ,θ (v)

→Mξ (v) is a resolution of singularities.

The following proposition is proved in [18, proof of Proposition 2.2.6].
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Theorem 4.1.5. Assume that K = C and θ is generic. Then for any parameter ξ , the va-
rieties Mξ ,θ (v) and M0,θ (v) have isomorphic cohomology supporting pure mixed Hodge
structure.

We also have the following result of Nakajima [9, Appendix B].

Theorem 4.1.6. Assume that K = Fq and that θ is generic. Then there exists r0 ∈ Z≥0
such that for all r ≥ r0 the varieties Mξ ,θ (v) and M0,θ (v) have the same number of
points over Fqr .

We now give a criterion due to Crawley-Boevey for the non-emptiness of Ms
ξ
(v). For

i ∈ I let ei ∈ ZI be the vector with 1 at the vertex i and zero elsewhere and let8(0) ⊂ ZI
be the root system associated to 0 defined as in [22]. We denote by 8+(0) the set of
positive roots. Let ( , ) be the symmetric bilinear form on the root lattice ZI given by
(ei, ej ) = cij . Note that vertices of 0 may support loops.

For α ∈ ZI , we put p(α) = 1− 1
2 (α, α). If α is a real root we have p(α) = 0, and if

α is an imaginary root then p(α) > 0.
The following theorem is due to Crawley-Boevey [5, Theorem 1.2].

Theorem 4.1.7. (i) The space Mξ (v) is non-empty if and only if v = β1+β2+· · · with
βi ∈ 8+(0) and βi � ξ = 0 for all i.

(ii) The space Ms
ξ (v) is non-empty if and only if v ∈ 8+(0) and p(v) > p(β1) +

p(β2)+ · · · for any non-trivial decomposition of v as a sum v = β1 + β2 + · · · with
βi ∈ 8+(0) and βi � ξ = 0 for all i.

4.2. Nakajima’s framed quiver varieties

The construction of framed quiver varieties follows the above except that we have an
additional graded vector space W .

Let 0 and v be as in §4.1. Let w ∈ ZI≥0 be another dimension vector. Put Lv,w =⊕
i∈I Matwi ,vi (K) '

⊕
i∈I Hom(Kvi ,Kwi ), Lw,v =⊕i∈I Matvi ,wi (K), and

M(0, v,w) :=M(0, v)⊕ Lv,w ⊕ Lw,v.

An element of M(0, v,w) is then denoted by (B, a, b) with B ∈ M(0, v), a ∈ Lv,w and
b ∈ Lw,v. The group GLv acts on M(0, v,w) by

g · (B, a, b) = (g · B, a · g−1, g · b) (4.2.1)

where g · B is the action defined in §4.1.
Consider the moment map

µv,w :M(0, v,w)→ glv ' (glv)∗

that maps (B, a, b) to −ba + µv(B). For ξ ∈ ZI we denote by Mξ (v,w) the affine
framed quiver variety µ−1

v,w(ξ)//GLv as in [45]. Note that unlike §4.1, we do not assume
that ξ � v = 0.
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Definition 4.2.1. Let θ ∈ ZI . A point (B, a, b) ∈ M(0, v,w) is θ -semistable if the
following two conditions are satisfied:

(i) θ � dim S ≤ 0 for any B-invariant subspace S of V such that Si ⊂ Ker(ai) for all
i ∈ I .

(ii) θ � dim T ≤ θ � v for any B-invariant subspace T of V such that Ti ⊂ Im(bi) for all
i ∈ I .

The point (B, a, b) is called θ -stable if strict inequalities hold in (i), (ii) unless S = 0,
T = V respectively.

We denote respectively by Mss
θ (0, v,w) and Ms

θ (0, v,w) the set of θ -semistable and
θ -stable points. Then Ms

θ (0, v,w) is an open subset of Mss
θ (0, v,w) on which the group

GLv acts set-theoretically freely.

Remark 4.2.2. (i) If θi ≥ 0 for all i ∈ I , then the condition (ii) of Definition 4.2.1 is
always satisfied and so a representation is θ -semistable if and only if (i) is satisfied.

(ii) Let θ , θ ′ ∈ ZI≥0 and let Jθ := {i ∈ I | θi = 0} and Jθ ′ := {i ∈ I | θ ′i = 0}. If
Jθ ⊂ Jθ ′ , then Mss

θ (0, v,w) ⊂Mss
θ ′(0, v,w).

Let χ : GLv → K×, (gi) 7→ ∏
i(det gi)−θi , be the character associated to θ . Then a

representation in M(0, v,w) is χ -semistable if and only if it is θ -semistable. The framed
quiver variety Mξ ,θ (v,w) is defined as

Mξ ,θ (v,w) := µ−1
v,w(ξ)//θGLv.

Define also Ms
ξ ,θ
(v,w) as the image of µ−1

v,w(ξ)
s in Mξ ,θ (v,w). If not empty, the variety

Ms
ξ ,θ
(v,w) is a non-singular open subset of Mξ ,θ (v,w).

Note that Mξ ,0(v,w) is the affine framed quiver variety Mξ (v,w) as all points
of M(0, v,w) are 0-semistable. We thus have a natural projective morphism π :
Mξ ,θ (v,w)→Mξ (v,w).

It was observed by Crawley-Boevey [5, Introduction] that any framed quiver variety
can in fact be realized as an “unframed” quiver variety of §4.1. This is done as follows.

From 0 and W we construct a new quiver 0∗ by adding to 0 a new vertex∞ and for
each vertex i of 0, we add wi arrows starting at∞ toward i. Put I ∗ = I ∪ {∞}. We then
define (v∗, θ∗) ∈ ZI∗≥0 × ZI∗ as follows. We put

(i) v∗i = vi if i ∈ I and v∗∞ = 1,
(ii) θ∗i = θi if i ∈ I and θ∗∞ = −θ · v.

We have a natural group embedding GLv ↪→ GLv∗ that sends g = (gi)i∈I to g∗ =
(g∗i )i∈I∗ with g∗i := gi if i ∈ I and g∗∞ := 1. This induces an isomorphism GLv '
Gv∗ = GLv∗/K×. We have a GLv-equivariant isomorphism M(0∗, v∗) → M(0, v,w).
Under this isomorphism, the θ -semistability (resp. stability) of Definition 4.2.1 coincides
with the θ∗-semistability (resp. stability) of §4.1.
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In the context of framed quivers, we say that θ is generic if θ∗ is generic with respect
to v∗ in the sense of Definition 4.1.3. In this case we have

Mss
θ (0, v,w) =Ms

θ (0, v,w).

We have (see Nakajima [44]):

Proposition 4.2.3. Assume that θ is generic and Ms
ξ
(v,w) 6= ∅. Then Mξ ,θ (v,w) =

Ms
ξ ,θ
(v,w) and the map π :Mξ ,θ (v,w)→Mξ (v,w) is a resolution of singularities.

Remark 4.2.4. If θi > 0 for all i, then θ∗ is always generic with respect to v∗.

4.3. Quiver varieties of type A

We review known results by Kraft–Procesi [30], Nakajima [45], [46], Crawley-Boevey
[6], [8] and Shmelkin [50] and give a slight generalization of some of them.

4.3.1. Partitions and types. We denote by P the set of all partitions including the unique
partition 0 of 0, by P∗ the set of non-zero partitions and by Pn the set of partitions
of n. Partitions λ are denoted by λ = (λ1, λ2, . . . ), where λ1 ≥ λ2 ≥ · · · ≥ 0, or by
(1n1 , 2n2 , . . . ) where ni denotes the number of parts of λi equal to i. We write |λ| :=∑
i λi for the size of λ. The length of λ is the maximum i with λi > 0 and we denote

by λ′ the dual partition of λ. For two partitions λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs)

we define the partition λ + µ as (λ1 + µ1, λ2 + µ2, . . . ), and for λ = (1n1 , 2n2 , . . . ),
µ = (1m1 , 2m2 , . . . ), we define the union λ ∪ µ as (1n1+m1 , 2n2+m2 , . . . ). For a partition
λ = (λ1, . . . , λs) and a positive integer d, we denote by d ·λ the partition (dλ1, . . . , dλs).
Recall that (λ+ µ)′ = λ′ ∪ µ′.

Given a total ordering ≤t on P , we denote by T̃t the set of non-increasing sequences
ω̃ = ω1 · · ·ωr withωi ∈ P and let T̃tn be the subset of sequences ω̃ such that

∑
i |ωi | = n.

We will see in §4.3.2 that the set T̃tn parameterizes the types of the adjoint orbits in gln(K).
Although the choice of a particular total ordering will be sometimes convenient it will not
be essential for the results of this paper. We will actually often write T̃ and T̃n instead
of T̃t and T̃tn when the reference to the ordering ≤t is not necessary.

We extend the ordering ≤t to a total ordering on the set {(d, λ) | d ∈ Z∗≥0, λ ∈ P∗}
which we continue to denote by ≤t as follows. If µ 6= λ, we write (d, µ) ≤t (d ′, λ)
if µ ≤t λ, and we write (d, λ) ≤t (d ′, λ) if d ′ ≤ d. We denote by Tt the set of all
non-increasing sequences ω = (d1, λ

1) · · · (dr , λr) and by Ttn the subset of Tt of these
sequences which satisfy |ω| := ∑

i di |λi | = n. The first coordinate of a pair (d, λ) is
called the degree. We will see in §6.8 that Ttn parameterizes both the types of the adjoint
orbits in gln(Fq) and the types of the irreducible characters of GLn(Fq). Just as for T̃
and T̃n, we will often write T and Tn instead of Tt and Ttn.

Since the term “type” has two meanings in this paper, we use {ω, τ, . . . } to denote
elements of T, and {ω̃, τ̃ , . . . } for elements of T̃.
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To a type ω = (d1, ω
1) · · · (dr , ωr) ∈ Tt , we assign the type

ω̃ =
d1︷ ︸︸ ︷

ω1 · · ·ω1 · · ·
dr︷ ︸︸ ︷

ωr · · ·ωr

of T̃t . We thus have a surjective map H : Tt → T̃t , ω 7→ ω̃.
Let

ω̃ =
a1︷ ︸︸ ︷

ω1 · · ·ω1 · · ·
ar︷ ︸︸ ︷

ωr · · ·ωr ∈ T̃t

with ωi 6= ωj if i 6= j and put

Wω̃ :=
r∏
i=1

Sai .

Note that the elements in the fiber H−1(ω̃) are parameterized by Pa1 × · · · × Par and so
by the conjugacy classes of Wω̃.

4.3.2. Zariski closure of adjoint orbits as quiver varieties. Let A ∈ gln(K) with semi-
simple part As and nilpotent part An. We assume for simplicity that As is a diagonal
matrix so that its centralizer L in GLn is exactly a product of GLmi ’s. We have A =
As + An with [As, An] = 0 where [x, y] = xy − yx. We put Cgln(A) := {X ∈ gln |
[A,X] = 0} = Lie(L). Let C be the L-orbit of An. Then the GLn-conjugacy class of the
pair (L,C) is called the type of the GLn-orbit O of A.

Fix a total ordering ≤t on P . The types of the adjoint orbits of gln are parameterized
by the set T̃tn as follows.

Letm1, . . . , mr be the multiplicities of the r distinct eigenvalues α1, . . . , αr of A. We
may assume that As is the diagonal matrix

( m1︷ ︸︸ ︷
α1, . . . , α1, . . . ,

mr︷ ︸︸ ︷
αr , . . . , αr

)
.

The Jordan form of the element An ∈ Cgln(σ ) = glm1 ⊕ · · · ⊕ glmr defines a unique
partition ωi of mi for each i ∈ {1, . . . , r}. Re-indexing if necessary we may assume that
ωr ≤t ωr−1 ≤t · · · ≤t ω1, in which case we have ω̃ = ω1 · · ·ωr ∈ T̃tn. Conversely, any
element of T̃tn arises as the type of some adjoint orbit of gln. Types of semisimple orbits
are of the form (1n1) · · · (1nr ), and types of nilpotent orbits are just partitions of n.

Lemma 4.3.1. The dimension of O is

n2 −
r∑

j=1

〈ωj , ωj 〉 (4.3.1)

where for a partition λ = (λ1, λ2, . . . ), we put 〈λ, λ〉 = 2n(λ) + |λ| with n(λ) =∑
i≥1(i − 1)λi .
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We now explain how to construct a quiver 0O and a pair (ξO, vO) from O such that
MξO (vO,w) ' O. While the quiver 0O and w will be independent of the choice of ≤t ,
the parameters ξO, vO will depend on it.

We draw the Young diagrams respectively of ω1, . . . , ωr from left to right and we
label the columns from left to right (with the convention that partitions are represented by
the rows of the Young diagrams). Let d be the total number of columns and let ni be the
length of the i-th column with respect to this labelling. We define the dimension vector
vO = (v1, . . . , vd−1) by v1 := n − n1 and vi := vi−1 − ni for i > 1 and the parameter
ζO = (ζ1, . . . , ζd) as follows. If the i-th column belongs to the Young diagram of ωj

then we put ζi = αj .
We then have

(A− ζ1 Id) · · · (A− ζd Id) = 0.

Example 4.3.2. Take the lexicographic ordering for ≤t and assume that O is of type
(2, 2)(1, 1) with eigenvalues α1 and α2 respectively of multiplicity 4 and 2. The corrre-
sponding Young diagrams are

1 2 3

Then the dimension vector is vO = (4, 2) and ζO = (α1, α1, α2).

We have

Lemma 4.3.3. For i > 0, the integer vi is the rank of the partial product

(A− ζ1 Id) · · · (A− ζi Id).

The following result is due to Crawley-Boevey [8] (in characteristic zero with O nilpotent
it is due to Kraft and Procesi [30]).

Theorem 4.3.4. Let B ∈ gln. The following assertions are equivalent:

(1) B ∈ O.
(2) There is a flag of subspaces Kn = V0 ⊃ V1 ⊃ · · · ⊃ Vd = 0 with dimVi = vi and

(B − ζi Id)(Vi−1) ⊂ Vi for all 1 ≤ i ≤ d.
(3) There are vector spaces Vj and linear maps a, b, φj , φ∗j ,

V = V0
b−→←−
a

V1

φ∗1−→←−
φ1

V2

φ∗2−→←−
φ2

. . .

φ∗
d−1−→←−
φd−1

Vd = 0

where Vj has dimension vj , and satisfying

B = ab + ζ1 Id, φjφ
∗
j − φ∗j−1φj−1 = (ζj − ζj+1) Id (1 ≤ j < d),

where φ∗0 = b and φ0 = a.
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Remark 4.3.5. We obtain (3) from (2) by putting φ∗i := (B−ζi+1 Id)|Vi and by letting φi
be the inclusion Vi+1 ⊂ Vi .

Let 0O be the quiver

•1 •2oo · · ·oo •d−1oo

whose underlying graph is the Dynkin diagram of type Ad−1 and put I := {1, . . . , d−1}.
Put w := (n, 0, . . . , 0) and define ξO = (ξ1, . . . , ξd−1) by ξj := ζj − ζj+1.

Theorem 4.3.6. The map q : µ−1
vO,w(ξO) → O given by (B, a, b) 7→ ab + ζ1 Id is

well-defined and surjective. It induces a bijective morphism q̃ : MξO (vO,w) → O. If
K = C, then q is a categorical quotient by GLv, i.e., the map MξO (vO,w) → O is an
isomorphism. The bijective morphism q̃ restricts to Ms

ξO
(vO,w)→ O.

Proof. The first assertion follows from Theorem 4.3.4. The second assertion can be
proved using the “First Fundamental Theorem of Invariant Theory” as in Kraft and Pro-
cesi [30, §2]. The third assertion follows from the second one using Proposition 2.2.1
(this assertion is actually stated in Kraft and Procesi [30, §2] for nilpotent orbits and
in Crawley-Boevey [7, Lemma 9.1] for any orbits). For an arrow of 0O with tail i and
head j , we denote by Bi,j the corresponding coordinate of B. By Crawley-Boevey [6,
§3], we have f (B, a, b) ∈ O if and only if the Bi+1,i’s and a are all injective, while
Bi,i+1’s and b are all surjective, i.e., (B, a, b) is a 0-stable representation. Hence the last
assertion. ut
Remark 4.3.7. If C is the GLv-orbit of any representation (B, a, b) ∈ µ−1

vO,w(ξO) then
a′b′ = ab for any (B ′, a′, b′) ∈ C.

We say that (n1, . . . , nd−1) ∈ (Z>0)
d−1 is decreasing if n1 > · · · > nd−1.

Remark 4.3.8. Let v = (v1, . . . , vd−1) be a decreasing sequence with n > v1, and let
ξ = (ξ1, . . . , ξd−1). Then there is a total ordering≤t on P and an adjoint orbit O such that
(ξ , v) = (ξO, vO) if and only if the following condition is satisfied (see Crawley-Boevey
[8, §2]):

(∗) For any j ∈ I with ξj = 0 we have vj−1 − vj ≥ vj − vj+1 with v0 := n.

4.3.3. Partial resolutions of Zariski closures of adjoint orbits as quiver varieties. Let
P be a parabolic subgroup of GLn(K) (which for simplicity is assumed to contain the
upper triangular matrices), L a Levi subgroup of P and let 6 = σ + C where σ is in the
center zl of the Lie algebra l of L and where C is a nilpotent orbit of l. We denote by UP
the unipotent radical of P and by uP the Lie algebra of UP . The aim of this section is to
identify the variety

XL,P,6 := {(X, gP ) ∈ gln × (GLn/P ) | g−1Xg ∈ 6 + uP }
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with a quiver variety of the form Mξ ,θ (v,w) when K = C (in positive characteristic we
have a bijective morphism Mξ ,θ (v,w)→ XL,P,6).

Note that
dimXL,P,6 = dim GLn − dimL+ dim6. (4.3.2)

Taking a GLn-conjugate of L if necessary, we may assume that L = GLsp+1×GLsp×
· · · × GLs1 . Since σ is in the center of l, we may write σ as the diagonal matrix

( sp+1︷ ︸︸ ︷
εp+1, . . . , εp+1,

sp︷ ︸︸ ︷
εp, . . . , εp, . . . ,

s1︷ ︸︸ ︷
ε1, . . . , ε1

)
.

The nilpotent orbit C of l decomposes as

C = Cp+1 × · · · × C1

with Ci a nilpotent orbit of glsi . For i = 1, . . . , p + 1, let µi be the partition of si which
gives the size of the blocks of the Jordan form of Ci .

We choose a total ordering ≤t on P such that, reordering if necessary, we have
µp+1 ≤t µp ≤t · · · ≤t µ1 and the following condition is satisfied:

(∗∗) If εi = εj then for any i ≤ k ≤ j we have εk = εi .
This choice of ≤t is only for convenience (see above Example 4.3.10).

Let α1, . . . , αk be the distinct eigenvalues of σ with respective multiplicities
m1, . . . , mk . For each i = 1, . . . , k, we define a partition λi of mi as the sum of the
partitions µr where r runs over the set {r | εr = αi}. The partitions λ1, . . . , λk define
unique nilpotent orbits of the Lie algebra m of M := CGLn(σ ). Let v be an element in
this orbit and let O be the unique adjoint orbit of gln that contains σ + v. The following
proposition is well-known.

Proposition 4.3.9. The image of the projection p : XL,P,6 → gln is O. Moreover
it induces an isomorphism p−1(O) ' O. If M = L, the map p is an isomorphism
XL,P,6 ' O.

We have dimO = dimXL,P,6 and so

dimO = dimG− dimL+ dim6. (4.3.3)

We now denote by F the variety of partial flags {0} = Ep+1 ⊂ Ep ⊂ · · · ⊂ E1 ⊂
E0 = Kn with dimEr−1/Er = sr . For an element X ∈ gln that leaves stable a partial
flag

({0} = Ep+1 ⊂ Ep ⊂ · · · ⊂ E1 ⊂ E0 = Kn) ∈ F

we denote by Xr , r = 1, . . . , p + 1, the induced endomorphism of Er−1/Er ' Ksr .
We denote by ZL,P,6 (resp. ZoL,P,6) the subvariety of gln × F of pairs (X, f ) such

that X · f = f and Xr ∈ εr Id+ Cr (resp. Xr ∈ εr Id+ Cr ) for all r = 1, . . . , p + 1.
Note that F ' GLn/P and so the two varieties ZL,P,6 and XL,P,6 are isomorphic.
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There exist a unique positive integer d , a decreasing sequence of positive integers

vL,P,6 = (v1, . . . , vd−1) ∈ (Z>0)
d−1,

and p elements i1 < · · · < ip in {1, . . . , d − 1} such that if we put i0 := 0, v0 := n,
ip+1 := d , and vd := 0, then for each r = 1, . . . , p + 1, we have vir−1 − vir = sr , and
(vir−1 − vir−1+1, . . . , vir−1 − vir ) is the dual partition of µr .

This defines a type Ad−1 quiver 0L,P,6 as in §4.3.2. We keep the same w as in §4.3.2
and we define ζL,P,6 = (ζ1, . . . , ζd) by ζj = εr+1 if ir < j ≤ ir+1 with r = 0, . . . , p.
As in §4.3.2, this defines a unique parameter ξL,P,6 = (ξ1, . . . , ξd−1) ∈ KI such that
ξi = ζi − ζi+1. We now choose a stability parameter θ ∈ (Z≥0)

I with the requirement
that θj 6= 0 exactly when j ∈ {i1, . . . , ip}.

The quiver 0L,P,6 defined above is the same as the quiver 0O associated with the
adjoint orbit O in §4.3.2. Denote by (vO, ξO) the datum arising from O as in §4.3.2
with respect to ≤t . The dimension vector vO might differ from vL,P,6 as shown in the
example below. However since≤t respects the condition (∗∗) on the εi’s, we always have
ξL,P,6 = ξO.

Example 4.3.10. Assume that L = GL1×GL2×GL2×GL3×GL3, C = C(1)×C(1,1)×
C(2)×C(2,1)×C(3) where Cµ denotes the nilpotent orbit corresponding to the partition µ,
and σ is the diagonal matrix

(α, α, α, α, α︸ ︷︷ ︸
5

, β, β, β, β, β, β︸ ︷︷ ︸
6

)

with α 6= β. Clearly σ is in the center of l and M = GL5 × GL6. The underlying graph
of 0L,P,6 is A8 and w = (11, 0, 0, 0).

Assume that ≤t is the lexicographic ordering. The type of O is (5, 1)(4, 1) ∈ T̃t11.
Note that (1) ≤t (1, 1) ≤t (2) ≤t (2, 1) ≤t (3). We thus have ε1 = ε2 = β and ε3 =
ε4 = ε5 = α. Hence vL,P,6 = (10, 9, 8, 6, 5, 4, 3, 1), (i1, . . . , ip) = (3, 5, 7, 8), θ =
(0, 0, θ3, 0, θ5, 0, θ7, θ8) with θ3, θ5, θ7, θ8 > 0, ζL,P,6 = (β, β, β, β, β, α, α, α, α),
ξL,P,6 = (0, 0, 0, 0, β − α, 0, 0, 0). Finally note that vO = (9, 8, 7, 6, 5, 3, 2, 1) 6=
vL,P,6 .

The aim of the section is to show that there is a bijective morphism
MξL,P,6 ,θ

(vL,P,6,w)→ ZL,P,6 which is an isomorphism when K = C.
Given (B, a, b) ∈ µ−1

vL,P,6 ,w(ξL,P,6) and an arrow of 0L,P,6 with tail i and head j ,
we denote by Bi,j the corresponding coordinate of B.

For a parameter x ∈ KI , put Jx = {i ∈ I | xi = 0} where I denotes the set of vertices
of 0L,P,6 . We will need the following lemma:

Lemma 4.3.11. Let (B, a, b) ∈ µ−1
vL,P,6 ,w(ξL,P,6). Then (B, a, b) is θ -semistable if and

only if for all i ∈ I − Jθ the map a ◦ B2,1 ◦ · · · ◦ Bi,i−1 : Kvi → Kn is injective.
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Proof. Put V := ⊕
i Kvi . We first construct for each s ∈ I a B-invariant graded

subspace Ls = ⊕
i L

s
i of V . Put Ls1 := Ker(a), for all i ∈ {2, . . . , s} put Lsi :=

Ker(a ◦ B2,1 ◦ · · · ◦ Bi,i−1), and for i > s put Lsi := Bi−1,i ◦ Bi−2,i−1 ◦ · · · ◦
Bs+1,s+2 ◦ Bs,s+1 (L

s
s). Let us see that Ls is a B-invariant subspace of V . For i < s

we need to see that Bi,i+1(L
s
i ) ⊂ Lsi+1. We first prove it when i = 1. We have

ba − B2,1B1,2 = ξ1 Id, hence (a ◦ B2,1)(B1,2(Ker(a)) = a ◦ (ba − ξ1 Id)(Ker(a)) = 0
and so B2,1(L

s
1) ⊂ Ls2. Assume that this is true for all j < i. At the vertex i, we have the

relation Bi−1,iBi,i−1 − Bi+1,iBi,i+1 = ξ2 Id. For x ∈ Lsi we have

a ◦ B2,1 ◦ · · · ◦ Bi,i−1 ◦ Bi+1,i (Bi,i+1(x))

= a ◦ B2,1 ◦ · · · ◦ Bi,i−1 ◦ (Bi−1,iBi,i−1 − ξ2 Id)(x)
= a ◦ B2,1 ◦ · · · ◦ Bi,i−1 ◦ (Bi−1,iBi,i−1(x)).

We need to see that the RHS is 0. By definition of Ls it is clear that Bi,i−1 (L
s
i ) ⊂ Lsi−1

hence Bi,i−1 (x) ∈ Lsi−1. By induction hypothesis we then have Bi−1,i (Bi,i−1 (x)) ⊂ Lsi .
By definition of Lsi we thus have a ◦ B2,1 ◦ · · · ◦ Bi,i−1(Bi−1,i ◦ Bi,i−1(x)) = 0. To
see that Ls is a B-invariant subspace of V it remains to see that for all i ≥ s we have
Bi+1,i (L

s
i+1) ⊂ Lsi , which again can be proved by induction using the relations at the

vertices.
Assume that (B, a, b) is θ -semistable. Assume that s ∈ I − Jθ . If the map as :=

a ◦ B2,1 ◦ · · · ◦ Bs,s−1 is not injective then Ls is a non-trivial B-invariant subspace of
V such that θ � dimLs > 0 (as θs 6= 0), which contradicts the stability condition (i) of
Definition 4.2.1. Hence the map as must be injective for all s ∈ I − Jθ .

Let us prove the converse. Assume that V ′ is a B-invariant subspace of V such that
V ′1 ⊂ Ker(a). Hence for all i and x ∈ V ′i we have B2,1 ◦ · · · ◦ Bi,i−1(x) ∈ Ker(a), i.e.,
a ◦ B2,1 ◦ · · · ◦ Bi,i−1(x) = 0, and so V ′i ⊂ Ker(a ◦ B2,1 ◦ · · · ◦ Bi,i−1). Hence for
i ∈ I − Jθ we have V ′i = 0 by assumption. Therefore θ � dimV ′ = 0 and so the condition
(i) of Definition 4.2.1 is satisfied. ut
For (B, a, b) ∈ MξL,P,6 ,θ

(vL,P,6,w), we denote by f(B,a,b) the partial flag {0} =
Ep+1 ⊂ Ep ⊂ · · · ⊂ E1 ⊂ E0 = Kn with E r := Im(a ◦ B2,1 ◦ · · · ◦ Bir ,ir−1). By
Lemma 4.3.11, we have f(B,a,b) ∈ F .

Proposition 4.3.12. The map

µ−1
vL,P,6 ,w(ξL,P,6)

ss → ZL,P,6, (B, a, b) 7→ (ab + ζ1 Id, f(B,a,b)),

is well-defined and induces a canonical bijective morphism MξL,P,6 ,θ
(vL,P,6,w) →

ZL,P,6 which restricts to Ms
ξL,P,6 ,θ

(vL,P,6,w)→ ZoL,P,6 and which makes the diagram

MξL,P,6 ,θ
(vL,P,6,w) //

π

��

ZL,P,6

pr1

��
MξL,P,6

(vL,P,6,w)
ρ // gln
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commutative, where ρ maps a semisimple representation (B, a, b) to ab+ζ1 Id. If K = C
this bijective map is an isomorphism MξL,P,6 ,θ

(vL,P,6,w) ∼→ ZL,P,6 .

If θi > 0 for all i and ξL,P,6 = 0, this is a result of Nakajima [44, Theorem 7.3]; see also
[50] for more details.

Proof. The fact that the diagram is commutative follows from a generalization of Remark
4.3.7 to any decreasing dimension vector (see Kraft and Procesi [30, Proposition 3.4]). To
alleviate the notation we omitL,P,6 from the notation ξL,P,6, vL,P,6, ζL,P,6, 0L,P,6 .
Let us see that the map

h : µ−1
v,w(ξ)

ss → ZL,P,6, (B, a, b) 7→ (ab + ζ1 Id, f(B,a,b))

is well-defined. Let (B, a, b) ∈ µ−1
v,w(ξ)

ss and putX := ab+ζ1 Id and E r := Im(a◦B2,1◦
· · ·◦Bir ,ir−1). The fact thatX leaves stable the partial flag f(B,a,b) is straightforward from
the preprojective relations

Bi−1,iBi,i−1 − Bi+1,iBi,i+1 = ξi Id

with B0,1 := b and B1,0 := a.
For brevity, for all i < j we denote by fj,i the map Bi+1,i ◦ · · · ◦Bj,j−1 : Kvj → Kvi .
Fix r ∈ {1, . . . , p + 1} and define H = ⊕

i∈I∪{0}Hi by Hi = Kvi if i ≥ ir and
Hi = Im(fir ,i) otherwise. From the preprojective relations we see that (B, a, b) leaves
H stable and so we can consider the restriction (BH , aH , bH ) of (B, a, b) to H and
the quotient (B, a, b) of (B, a, b) by (BH , aH , bH ). Put Ui := Kvi/Hi . Then Ui '
Kvi−vir if i < ir and Ui = {0} otherwise. From the preprojective relations we see that
Xr : E r−1/E r → E r−1/E r coincides with the map Yr : Uir−1 → Uir−1 induced by
Bir−1+1,ir−1Bir−1,ir−1+1 + ζir−1+1 Id. In other words the diagram

E r−1/E r

Xr

��

Uir−1

Yr

��

fir−1,0/Hir−1oo

E r−1/E r Uir−1

fir−1,0/Hir−1oo

is commutative.
We want to see that the map Yr ∈ End(Uir−1) ' End(Ksr ) lies in ζir−1+1 Id+Cr .
Consider the subquiver 0′

•ir−1+1 · · ·oo •ir−1oo

of 0. Put d ′ := ir , w′ := (vir−1 − vir , 0, . . . , 0), v′ := (vir−1+1 − vir , vir−1+2 − vir , . . . ,
vir−1−vir ), and ζ ′ = (ζir−1+1, ζir−1+2, . . . , ζir−1+d ′). We have ξ ′i = 0 for all i = ir−1+1,
. . . , ir − 1, i.e., ζir−1+1 = ζir−1+2 = · · · = ζir−1+d ′ . Consider the projection of (B, a, b)
on ⊕

i∈{ir−1,...,ir−2}
Hom(Ui, Ui+1)⊕

⊕
i∈{ir−1+1,...,ir−1}

Hom(Ui, Ui−1) 'M(0′, v′,w′)
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and denote by (B ′, a′, b′) the corresponding element in M(0′, v′,w′). Note that a′ and b′
come from Bir−1+1,ir−1 and Bir−1,ir−1+1 respectively. The map Yr : Uir−1 → Uir−1 is thus
a′b′ + ζir−1+1 Id.

The sequence (w′1 − v′1, v′1 − v′2, v′2 − v′3, . . . , v′d ′−1) is the partition µ′r . Now apply
Proposition 4.3.6 to (0′, v′,w′, ξ ′). Then we see that a′b′ belongs to the Zariski closure
of nilpotent orbit Cr , thus proving that Yr ∈ ζir−1+1 Id+Cr . ut
By Propositions 4.3.12 and 4.3.9 we have

Corollary 4.3.13. The image of the composition

MξL,P,6 ,θ
(vLP ,6,w) π→MξL,P,6

(vL,P,6,w)
ρ→ gln

is O. Moreover if Jθ = Jξ , then π ◦ ρ is a bijective morphism onto its image (if K = C,
it is an isomorphism).

Remark 4.3.14. Assume that K = C. The condition in Remark 4.3.8 to have
MξL,P,6

(vL,P,6,w) ' O may not be satisfied here. For instance in the example given
by Shmelkin [50, Example 4.3] we have vL,P,6 = (4, 1), w = (5, 0), ζL,P,6 = (0, 0),
θ = (1, 1), the adjoint orbit O is the nilpotent orbit with partition (3, 1, 1) while
MξL,P,6

(vL,P,6,w) is isomorphic to the Zariski closure of the nilpotent orbit with parti-
tion (3, 2).

4.3.4. Geometry of resolutions and parabolic induction. We review well-known results
on the geometry of resolutions of Zariski closures of adjoint orbits (Propositions 4.3.18
and 4.3.19). In the case where the adjoint orbit is regular nilpotent the results are contained
in Borho–MacPherson’s paper [3]. In order to clarify the picture we also review Lusztig’s
parabolic induction of perverse sheaves [38].

Let L,P,6, σ, C,O be as in §4.3.3 with L = GLsp+1 × · · · × GLs1 ⊂ GLn. Recall
also that µi is a partition of si defined by the coordinate of C in glsi . For each i =
1, . . . , p + 1, the dual partition µ′i = (µ′i,1, . . . , µ

′
i,ri
) of µi defines a Levi subgroup

L̂i =
∏
j GLµ′i,j ⊂ GLsi . Let P̂i be a parabolic subgroup of GLsi having L̂i as a Levi

subgroup and containing the upper triangular matrices. Then P̃ := ∏
i P̂i is a parabolic

subgroup of L having L̂ := ∏p+1
i=1 L̂i as a Levi factor. Put P̂ := P̃ .UP . It is the unique

parabolic subgroup of GLn having L̂ as a Levi factor and contained in P .
Consider the following maps

X
L̂,P̂ ,{σ }

π̃−→ XL,P,6
p−→ O (4.3.4)

where π̃(X, gP̂ ) = (X, gP ) and p(X, gP ) = X.
Note that the variety X

L̂,P̂ ,{σ } is non-singular and π̃ is surjective.



1410 Emmanuel Letellier

The decomposition C = ∐
α Cα as a disjoint union of L-orbits provides a strati-

fication 6 = ∐
α 6α with 6α = σ + Cα and therefore a stratification of XL,P,6 =∐

α XoL,P,6α where

XoL,P,6α := {(X, gP ) ∈ g× (GLn/P ) | g−1Xg ∈ 6α + uP }
is the smooth locus of XL,P,6α .

The following proposition is a particular case of a result of Lusztig [37] (cf. [33, proof
of Proposition 5.1.19] for more details).

Proposition 4.3.15. For x ∈ O, put p−1(x)α := p−1(x) ∩ XoL,P,6α . Then

dim{x ∈ O | dimp−1(x)α ≥ 1
2 i − 1

2 (dim6 − dim6α)} ≤ dimO − i
for all i ∈ Z≥0.

Hence the map p satisfies the condition of Proposition 3.1.7 and so p∗(IC•XL,P,6 ) is a
perverse sheaf by Proposition 3.1.7. If we apply the proposition to (L̂, P̂ , {σ }) instead of
(L, P,6) we find that p ◦ π̃ is semismall.

We now recall briefly Lusztig’s parabolic induction of perverse sheaves [39, §4]. It
will help to clarify the picture and also some references to the literature in §6.4.

Put V1 := {(X, g) ∈ gln×GLn | g−1Xg ∈ p} and V2 := {(X, gP ) ∈ gln×(GLn/P ) |
g−1Xg ∈ p} and consider the diagram

l
ρ′←− V1

ρ−→ V2
ρ′′−→ gln

where ρ(X, g) = πP (g
−1Xg) with πp : p = l ⊕ uP → l the natural projection,

ρ′(X, g) = (X, gP ), ρ′′(X, gP ) = X. The parabolic induction functor Indglnl⊂p is a
functor from the category ML(l) of L-equivariant perverse sheaves on l to Db

c (gln). Re-
call that a perverse sheaf K on l is said to be L-equivariant if (pr2)

∗K ' m∗K where
m : L × l → l, (l, X) 7→ lXl−1 and pr2 : L × l → l is the projection. The category
ML(l) is then a full subcategory of Db

c (l) (see [33, 4.2] for a detailed discussion). The
morphism ρ is P -equivariant if we let P act on V1 as g · (X, h) = (X, hg−1) and on l as
g · X = πP (g)XπP (g)−1 where πP is the canonical projection P = L n UP → L. It
is also a smooth morphism with connected fibers of dimension m = dim GLn + dimUP .
Hence if K ∈ML(l) then ρ∗K[m] is a P -equivariant perverse sheaf on V1. Since ρ′ is a
locally trivial (for Zariski topology) principal P -bundle, the functor (ρ′)∗[dimP ] induces
an equivalence of categories from the category of perverse sheaves on V2 to the category
of P -equivariant perverse sheaves on V1. Hence for anyK ∈ML(l), there exists a unique
(up to isomorphism) perverse sheaf K̃ on V2 such that

ρ∗K[m] ' (ρ′)∗K̃[dimP ].

We define Indglnl⊂p(K) := (ρ′′)∗K̃ .
The following result is due to Lusztig [39, §4].
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Proposition 4.3.16. Let Q = MUQ be another Levi decomposition in GLn with corre-
sponding Lie algebra decomposition q = m⊕ uQ. Assume that L ⊂ M and P ⊂ Q. Let
K ∈ML(l) and assume that Indml⊂p∩m(K) is a perverse sheaf (it is then automatically
M-equivariant). Then

Indglnl⊂p(K) ' Indglnm⊂q(Indml⊂p∩m(K)).

The next result is easy to prove from the Cartesian diagram

l V1
ρoo ρ′ // V2

ρ′′ // g

6

OO

YL,P,6

OO

b1oo b2 // XL,P,6

OO

p // O

OO

where YL,P,6 := {(X, g) ∈ gln × GLn | g−1Xg ∈ 6 + uP }, and where the vertical
arrows are inclusions and b1, b2, p are the restrictions of ρ, ρ′, ρ′′.

Lemma 4.3.17. The GLn-equivariant perverse sheaf p∗(IC•XL,P,6 ) is isomorphic to

Indglnl⊂p(IC
•
6
). Similarly the GLn-equivariant perverse sheaf (pπ̃)∗(κ) is isomorphic to

Indgln
l̂⊂p̂(κσ ) where κσ is the constant sheaf on {σ } extended by zero on l̂− {σ }.

Define X
L̂,P̃ ,{σ } := {(X, gP̃ ) ∈ l × (L/P̃ ) | g−1Xg ∈ σ + u

P̃
} and let Y be the variety

{(y, z, g) ∈ P × gln × GLn | g−1zg ∈ σ + u
P̂
} modulo the action of P̂ given by

p · (y, z, g) := (yp−1, z, gp−1).
Consider the following Cartesian diagram (see Borho and MacPherson [3, §2.10] in

the case where O is regular nilpotent):

X
L̂,P̃ ,{σ }

r

��

Y

c

��

a2 //a1oo X
L̂,P̂ ,σ

π̃

��
6 YL,P,6

b2 //b1oo XL,P,6

p

��
O

(4.3.5)

where a1(y, z, g) = (πp(yg
−1zgy−1), πP (y)P̃ ), a2(y, z, g) = (z, gP̂ ), c(y, z, g) =

(z, gy−1), r(X, gP̃ ) = X where πP : Ln UP → L is the canonical projection.
We now use this diagram to prove the following proposition.

Proposition 4.3.18. The morphism π̃ is semismall with respect to XL,P,6=∐α XoL,P,6α .



1412 Emmanuel Letellier

Proof. By Proposition 4.3.15 applied to (L̂, P̃ , {σ }) instead of (L, P,6) we find that
r : X

L̂,P̃ ,{σ } → 6 is semismall with respect to the stratification 6 = ∐
α 6α . On the

other hand we see from the identity (4.3.2) that

codim6(6α) = codimYL,P,6 (YL,P,6α ) = codimXL,P,6 (XL,P,6α ). (4.3.6)

From the first equality and Lemma 3.1.5 we deduce that c is semismall with respect to
YL,P,6 = ∐

α YL,P,6α . Then applying Lemma 3.1.5 to the right square of the diagram
(4.3.5) we deduce the proposition. ut
Proposition 4.3.19. The restriction of the sheaf Hi(π̃∗(κ)) to XoL,P,6α is locally con-
stant for all i and α.

Proof. From the above diagram (4.3.5) we see that

(b2)
∗(π̃∗(κ))[dimP ] ' (b1)

∗(r∗(κ))[m]. (4.3.7)

Since b2 is a locally trivial principal P -bundle for the Zariski topology it is enough to
prove that the restriction of Hi(r∗(κ)) to 6α is locally constant for all i and α. The
map r is semismall and L-equivariant if we let L act on X

L̂,P̃ ,{σ } by v · (X,mP̃ ) =
(vXv−1, vmP̃ ). The complex r∗(κ) is thus a semisimple L-equivariant perverse sheaf.
Since 6 has only a finite number of L-orbits, the simple constituents of r∗(κ) are of the
form IC•

6α
. ut

Remark 4.3.20. Diagrams similar to (4.3.5) are used by Lusztig to prove Proposition
4.3.16. In our situation this works as follows. As in Lemma 4.3.17, we have r∗(κ) =
Indl

l̂⊂p̃(κσ ). Hence it follows from the isomorphism (4.3.7) that

Indglnl⊂p(Indl
l̂⊂p̃(κσ )) ' Indgln

l̂⊂p̂(κσ ),

which is a particular case of Proposition 4.3.16.

5. Comet-shaped quiver varieties

5.1. Generic tuples of adjoint orbits

Let O1, . . . ,Ok be k orbits of gln(K) and let ω̃i be the type of Oi . Then ω̃ :=(ω̃1, . . . , ω̃k)

is called the type of (O1, . . . ,Ok).

Definition 5.1.1. A k-tuple (C1, . . . , Ck) of semisimple adjoint orbits is said to be generic
if
∑k
i=1 Tr Ci = 0 and the following holds. If V ⊂ Kn is a subspace stable under some

Xi ∈ Ci for each i such that
k∑
i=1

Tr(Xi |V ) = 0,

then either V = 0 or V = Kn.
Let Ci be the adjoint orbit of the semisimple part of an element of Oi . Then we say

that (O1, . . . ,Ok) is generic if the tuple (C1, . . . , Ck) of semisimple orbits is generic.
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We have [18, Lemma 2.2.2]:

Lemma 5.1.2. For i = 1, . . . , k, put ω̃i = ω1
i ω

2
i · · ·ωrii with ωji ∈ P∗ such that

∑
j |ωji |

= n. Put D = mini maxj |ωji | and let d = gcd{|ωji |}. Assume that

char(K) - D!.
If d > 1, generic k-tuples of adjoint orbits of gln of type (ω̃1, . . . , ω̃k) do not exist. If
d = 1, they do.

Remark 5.1.3. Our definition of generic tuple is equivalent to that given by Kostov [29,
§1.2] and Crawley-Boevey [6, §6]. Let us recall the latter definition as we will need it.
For each i = 1, . . . , k, we let αi,1, αi,2, . . . , αi,pi be the distinct eigenvalues of Oi with
respective multiplicities mi,1, mi,2, . . . , mi,pi . Then (O1, . . . ,Ok) is generic if

k∑
i=1

pi∑
j=1

mi,jαi,j = 0,

which corresponds to our condition
∑k
i=1 Tr(Oi) = 0, and if for any integers 0 ≤ m′i,j

≤ mi,j such that
∑pi
j=1m

′
i,j does not depend on i, the equality

k∑
i=1

pi∑
j=1

m′i,jαi,j = 0

holds if and only if m′i,j = mi,j for all i, j or m′i,j = 0 for all i, j .

5.2. Affine comet-shaped quiver varieties

Let (O1, . . . ,Ok) be a k-tuple of adjoint orbits of gln(K) and let g ≥ 0 be an integer. Put

O := (gln)2g ×O1 × · · · ×Ok, Oo := (gln)2g ×O1 × · · · ×Ok.

Consider the affine variety

VO :=
{
(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ O

∣∣∣ g∑
i=1

[Ai, Bi] +
k∑
i=1

Xi = 0
}
,

and let VoO denote the open subset VO ∩Oo of VO.
We assume that

∑k
i=1 Tr(Oi) = 0 since otherwise VO is clearly empty.

If (O′1, . . . ,O
′
k) is another k-tuple of adjoint orbits of gln, then we write O′ E O if

O′i ⊂ Oi for all i = 1, . . . , k. Note that if (O1, . . . ,Ok) is generic and O′ E O, then
(O′1, . . . ,O

′
k) is also generic. Moreover, we have the finite partition

VO =
∐

O′EO
VoO′ .
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Let PGLn(K) act on VO by simultaneously conjugating the 2g+k matrices and define

QO := VO//PGLn = Spec(K[VO]PGLn).

We denote by Qo
O the image of VoO in QO. By Theorem 2.1.1(3) it is an open subset

of QO.

Definition 5.2.1. An element (A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ VoO is said to be ir-
reducible if no non-zero proper subspace of Kn is preserved by all matrices A1, B1, . . . ,

Ag, Bg, X1, . . . , Xk .

When g = 0, the problem of describing the k-tuples (O1, . . . ,Ok) for which VoO
admits irreducible elements is stated and studied by Kostov (see [29] for a survey) who
calls it the (additive) Deligne–Simpson problem.

In [6], Crawley-Boevey reformulates this problem and Kostov’s answer in terms of
preprojective algebras and the moment map for representations of quivers. Let us now
review Crawley-Boevey’s work as we will need it later. More precisely we define a
quiver 0O and parameters vO, w, ξO such that there is a bijective morphism MξO(vO,w)
→ QO which is an isomorphism when K = C.

Consider the following quiver 0O
1 with g loops at the central vertex 0 and with the

set of vertices I = {0} ∪ {[i, j ]}1≤i≤k, 1≤j≤si :

|

[1, 1] [1, 2] [1, s1]

[2, 1] [2, 2] [2, s2]

[k, 1] [k, 2] [k, sk]

0

The dimension vector vO of 0O with coordinate vi at i ∈ I is defined as follows.
We choose k total orderings ≤i on P and for each i = 1, . . . , k, we define the sequence
v[i,1] > v[i,2] > · · · > v[i,si ] as the dimension vector vOi

associated with the orbit Oi

with respect to ≤i as in §4.3. Note that vO depends only on the type of the adjoint orbits
O1, . . . ,Ok .

We also define ξO ∈ KI as follows. For each i, let ζOi
= (ζi,1, . . . , ζi,si+1) and ξOi

=
(ξ[i,1], . . . , ξ[i,si ]) be the two sequences defined from Oi as in §4.3. We also put ξ0 =
−∑k

i=1 ζi,1. This defines an element ξO = {ξ0} ∪ {ξ[i,j ]}i,j ∈ KI such that ξO � vO = 0.
For a representation ϕ of 0O, denote by ϕ[i,1] the linear map associated to the arrow whose
tail is [i, 1], by ϕ1, . . . , ϕg the matrices associated to the loops in�, and by ϕ∗1 , . . . , ϕ

∗
g the

ones associated to the loops in�−�. We have the following consequence of Proposition
4.3.6 (see [6], [7]).

1 The picture is from [54].
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Proposition 5.2.2. The map µ−1
vO
(ξO) → VO, ϕ 7→ (A1, B1, . . . , Ag, Bg, X1, . . . , Xk),

with
Ai = ϕi, Bi = ϕ∗i , Xi = ϕ[i,1]ϕ∗[i,1] + ζi,1 Id, (5.2.1)

is well-defined and maps the set of simple representations onto the subset (VoO)
irr of irre-

ducible elements. This map induces a bijective morphism MξO(vO) → QO which maps
Ms
ξO
(vO) onto (Qo

O)
irr. If K = C, this bijective map is an isomorphism.

The above proposition together with Theorem 4.1.7 implies a criterion in terms of roots
for the non-emptiness of (VoO)

irr, thus solving the additive Deligne–Simpson problem.
From Proposition 5.2.2 and Theorem 4.1.2 we have the following result:

Corollary 5.2.3. If (VoO)
irr 6= ∅ then both VO and QO are irreducible respectively of

dimension dim O− n2 + 1 and

dO = 2− tvOC0O vO = dim O− 2n2 + 2 (5.2.2)

where C0O is the Cartan matrix of 0O.

We now state a result in the generic case. The proof is omitted as it is an easy generaliza-
tion of the case of semisimple orbits [18, Proposition 2.2.3].

Proposition 5.2.4. Assume that (O1, . . . ,Ok) is generic. Then (VoO)
irr = VoO and the

map VO → QO is a principal PGLn-bundle for the étale topology (and so it is a geomet-
ric quotient). In particular the PGLn-orbits of VO are all closed of the same dimension
dim PGLn. Finally the two varieties VoO and Qo

O are non-singular.

The following result is a consequence of Proposition 5.2.4 and Corollary 5.2.3.

Corollary 5.2.5. Assume that (O1, . . . ,Ok) is generic. Then the partitions

VO =
∐

O′EO
VoO′ and QO =

∐
O′EO

Qo
O′ (5.2.3)

are stratifications.

Crawley-Boevey’s criterion for the non-emptiness of VO and VoO simplifies in the generic
case as follows.

Theorem 5.2.6. Assume that (O1, . . . ,Ok) is a generic tuple. Then the following three
assertions are equivalent:

(i) The set VO is not empty.
(ii) The set VoO is not empty.

(iii) vO ∈ 8+(0O).
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Although this theorem is not stated in Crawley-Boevey’s papers, the main ingredients for
its proof are there. For the convenience of the reader we give the proof in detail (repeating
if necessary some arguments of Crawley-Boevey).

We start with an intermediate result. Following Crawley-Boevey’s terminology [8],
we say that a dimension vector β = {βi}i∈I of 0O with β0 = n is strict if for any
i = 1, . . . , k we have n ≥ β[i,1] ≥ · · · ≥ β[i,si ].

Proposition 5.2.7. Assume that VO is not empty. Then the dimension vector vO is a sum
β1+· · ·+βr of strict positive roots such that ξO �β

i = 0 for all i = 1, . . . , r . If moreover
(O1, . . . ,Ok) is generic, then r = 1, i.e., vO is a positive root.

Proof. By Theorem 4.3.4 and Remark 4.3.5, we can choose B ∈ µ−1
vO
(ξO) whose coor-

dinates Bh, where h describes the set of arrows of 0O which are not loops, are injective.
Let π be the canonical projection M(0O, vO) → M(0O, vO). Write π(B) as a direct
sum I1 ⊕ · · · ⊕ Ir of indecomposable representations of 0O and let βm be the dimension
vector of Im. We have vO = β1 + · · · + βr and since the maps Bh are injective, the
maps (Im)h are also injective and so βm is a strict dimension vector for all m = 1, . . . , r .
It is a well-known theorem of Kac [22] that the dimension vector of an indecomposable
representation is a positive root. Hence the β1, . . . ,βr are positive strict roots. It remains
to see that βm � ξO = 0 for all m = 1, . . . , r . But βm is the dimension vector of a direct
summand of a representation of 0O that lifts to a representation of µ−1

vO
(ξO), hence by

Crawley-Boevey’s theorem [5, Theorem 3.3] we must have βm � ξO = 0.
Assume now that (O1, . . . ,Ok) is generic. To prove that r = 1 we repeat Crawley-

Boevey’s argument in [6, §3]. For each i = 1, . . . , k, we let αi,1, . . . , αi,pi be the distinct
eigenvalues of Oi with respective multiplicities mi,1, . . . , mi,pi . Let s ∈ {1, . . . , r}. For
given 1 ≤ i ≤ k, 1 ≤ f ≤ pi , define

msi,f =
si+1∑
j=1

ζi,j=αi,f

(βs[i,j−1] − βs[i,j ])

where for convenience βs[i,si+1] = 0 and [i, 0] denotes also the vertex 0. Since βs is strict,
the integer msi,f is positive. Moreover

pi∑
f=1

msi,f = βs0 (5.2.4)

is independent of i. Now

r∑
s=1

msi,f =
si+1∑
j=1

ζi,j=αi,f

(v[i,j−1] − v[i,j ]) = mi,f (5.2.5)
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where v[i,si+1] = 0. Hence 0 ≤ msi,f ≤ mi,f and

0 = ξO � β
s =

( k∑
i=1

si∑
j=1

(ζi,j − ζi,j+1)β
s
[i,j ]

)
−
( k∑
i=1

ζi,1

)
βs0

= −
k∑
i=1

si+1∑
j=1

ζi,j (β
s
[i,j−1] − βs[i,j ]) = −

k∑
i=1

pi∑
f=1

αi,fm
s
i,f ,

which contradicts the genericity condition (see Remark 5.1.3) unless msi,f = mi,f for all
i, f , or msi,f = 0 for all i, f . But since βs is a strict root we must have βs0 > 0 and so by
(5.2.4) we cannot have msi,f = 0 for all i, f . Hence msi,f = mi,f for all i, f and so from
the identity (5.2.5) we must have r = 1. ut
Proof of Theorem 5.2.6. (ii)⇒(i) is trivial, and (i)⇒(iii) by Proposition 5.2.7. Hence it
remains to see that (iii)⇒(ii). But this is exactly what is proved in [6, §6]. ut
For each i ∈ I − {0}, we let si : ZI → ZI be the reflection defined by

si(x) = x − (x, ei)ei,

where ( , ) is the form defined by (ei, ej ) = cij (cf. §4.1).
For u ∈ ZI and i = 1, . . . , k denote by u]i the unordered collection of numbers

n− u[i,1], u[i,1] − u[i,2], . . . , u[i,si−1] − u[i,si ], u[i,si ].
Since the action of the reflection s[i,j ] has the effect of exchanging the j -th and (j +1)-th
terms in this collection, we have the following lemma.

Lemma 5.2.8. If u, v ∈ ZI satisfy (v)]i = (u)]i for all i = 1, . . . , k, then there exists an
element w in the subgroup of the Weyl group of 0 generated by the reflections s[i,j ] such
that u = w(v).
Proposition 5.2.9. If g ≥ 1, then vO is always an imaginary root.

Proof. Since vO is a decreasing dimension vector, it defines, for each i = 1, . . . , k, a
unique partition µi = (µi1, . . . , µiri ) of n whose parts are of the form v[i,j ]−v[i,j+1], j =
0, . . . , si (with the convention that v[i,0] = n and v[i,si+1] = 0). Define a dimension vector
f of 0O by f0 = n and f[i,j ] = n−∑j

r=1 µ
i
r . Note that f = vO if and only if v[i,j ]−v[i,j+1]

≥ v[i,j+1] − v[i,j+2] for all i, j . We have (e0, f) = (2 − 2g)n −∑k
i=1 f[i,1] ≤ 0, and

(e[i,j ], f) = µij+1 − µij ≤ 0. Hence f is in the fundamental set of imaginary roots by
definition (see [22, Chapter 1]). By Lemma 5.2.8, the vector f can be obtained from vO
by applying an element of the Weyl group of 0O, and we conclude that vO is always an
imaginary root of 0O. ut
Theorem 5.2.6 and Proposition 5.2.9 have the following consequence.

Corollary 5.2.10. If (O1, . . . ,Ok) is generic and g ≥ 1, then VoO is not empty.
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The following proposition is due to Crawley-Boevey [6].

Proposition 5.2.11. If (O1, . . . ,Ok) is generic and g = 0, then vO is a real root if and
only if VoO consists of a single PGLn-orbit (in which case VoO = VO).

Example 5.2.12. Here we assume that g = 0, k = 3 = n. Let O be the regular nilpotent
orbit of gl3 and let S be the regular semisimple adjoint orbit with eigenvalues 1, 2,−3.
The tuple (O1,O2,O3) = (O,O,S) is then generic, the underlying graph of the asso-
ciated quiver 0O is Ẽ6 and vO is the indivisible positive imaginary root. Hence VO is
not empty by Theorem 5.2.6. Moreover we can use again Theorem 5.2.6 to verify that
the only non-empty strata of VO are VoO and the two strata VoO1

and VoO2
corresponding

respectively to (O, C,S) and (C,O,S) where C is the nilpotent subregular adjoint orbit.
Note that vOi

, i = 1, 2, is the real root α1 + α2 + 2α3 + 3α4 + 2α5 + α6 of E6 (in the
notation of [4, PLANCHE V]) and so VOi

is a single PGLn-orbit by Proposition 5.2.11.

Remark 5.2.13. If VO′ is not empty then for any O such that O′ E O the variety VO
will also be not empty. We may use this together with the equivalence between the two
assertions (i) and (iii) of Theorem 5.2.6 to construct new roots of quivers from known
ones.

5.3. General comet-shaped quiver varieties

Let (O1, . . . ,Ok) be a tuple of adjoint orbits of gln(K), and for each i = 1, . . . , k, let
(Li, Pi, σi, Ci) be as in §4.3.3 such that the image of the first projection pi : XLi ,Pi ,6i →
gln is Oi where 6i = σi + Ci . As in the introduction, we put P = P1 × · · · × Pk , L =
L1×· · ·×Lk and6 = 61×· · ·×6k , C := C1×· · ·×Ck . Put OL,P,6 = (gln)2g×XL,P,6 ,
OoL,P,6 = (gln)2g × XoL,P,6 and

VL,P,6 :=
{
(A1, B1, . . . , Ag, Bg, (X1, . . . , Xk, g1P1, . . . , gkPk)) ∈ OL,P,6

∣∣∣∑
j

[Aj , Bj ] +
∑
i

Xi = 0
}
.

Let p = (id)2g×p1×· · ·×pk : OL,P,6 → O and let ρ : VL,P,6 → VO be its restric-
tion. The map ρ is clearly projective. Let GLn act on VL,P,6 diagonally by conjugation
on the first 2g + k coordinates and by left multiplication on the last k coordinates. These
actions of GLn on VL,P,6 and on VO induce actions of PGLn for which the morphism ρ

is PGLn-equivariant.

Proposition 5.3.1. Assume that the tuple (O1, . . . ,Ok) is generic. Then the geometric
quotient VL,P,6 → QL,P,6 exists and is a principal PGLn-bundle. Moreover the diagram

VL,P,6
ρ //

��

VO

��
QL,P,6

ρ/PGLn // QO
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is Cartesian. If K = Fq and if our data (L,P, 6) is defined over Fq then the above
diagram is also defined over Fq .

Proof. Since (O1, . . . ,Ok) is generic, the quotient VO → QO is a principal PGLn-bundle
in the étale topology (see Proposition 5.2.4) and so the result follows from Corollary 2.1.6.

ut
In general (i.e. when (O1, . . . ,Ok) is not necessarily generic) we can always define the
GIT quotient

VL,P,6//9GLn
with respect to some GLn-linearization 9 of some ample line bundle M on VL,P,6 . In-
deed, VL,P,6 is projective over VO and so such a pair (M,9) always exists (see above
Corollary 2.1.6).

Assuming that (O1, . . . ,Ok) is generic, we show in this section that QL,P,6//9GLn
can be identified (at least when K = C) with a quiver variety Mξ ,θ (v) for appropriate
choices of ξ , θ , v.

For each i = 1, . . . , k, we can define a type A quiver 0Li ,Pi ,6i together with param-
eters ξLi ,Pi ,6i , θ i, vLi ,Pi ,6i as in §4.3.3 so that there is a canonical bijective morphism
XLi ,Pi ,6i →MξLi ,Pi ,6i

,θ i (vLi ,Pi ,6i ,w) which is an isomorphism when K = C.
We now define a comet-shaped quiver 0L,P,6 as in §5.2 such that each leg with ver-

tices [1, 1], . . . , [1, si] is exactly the quiver 0Li ,Pi ,6i . That is, if we delete the central ver-
tex {0} from 0L,P,6 , we recover the k typeA quivers 0L1,P1,61 , . . . , 0Lk,Pk,6k . We denote
by I the set of vertices of 0L,P,6 , and we define a dimension vector vL,P,6 = {vi}i∈I by
putting v0 := n and, for each i = 1, . . . , k, (v[i,1], . . . , v[i,si ]) := vLi ,Pi ,6i . Multiplying
the vectors θ i by a strictly positive integer if necessary, there is θ ∈ ZI whose projection
on 0Li ,Pi ,6i is θ i for each i and θ � vL,P,6 = 0. There is a unique ξL,P,6 ∈ KI whose
projection on 0Li ,Pi ,6i is ξLi ,Pi ,6i for all i and ξL,P,6 � vL,P,6 = 0. Note that θ0 must be
negative.

The quiver 0L,P,6 and the parameter ξL,P,6 are the same as 0O and ξO obtained
from (O1, . . . ,Ok) (see above Example 4.3.10). However in general the dimension vector
vL,P,6 differs from vO as shown in Example 4.3.10.

To alleviate the notation we will use 0, ξ , v instead of 0L,P,6 , ξL,P,6 and vL,P,6 .
Let 0† be the quiver obtained from 0 by deleting the central vertex (i.e., the union

of the quivers 0L1,P1,61 , . . . , 0Lk,Pk,6k ). We denote by I † = {[i, j ]}i,j the set of vertices
of 0†. For a parameter x ∈ KI , we denote by x† its projection on KI †

. We put

Z(0†, v†,w) := (gln)2g ×M(0†, v†,w).

We let GLv† act on Z(0†, v†,w) by the trivial action on (gln)2g and by the usual action
on the second coordinate.

We identify in the obvious way M(0, v) with Z(0†, v†,w) and we regard µ−1
v (ξ) as

a GLv† -stable closed subvariety of (gln)2g × µ−1
v†,w(ξ

†). To avoid any confusion, for a

closed GLv-stable subset X of M(0, v) = Z(0†, v†,w) we denote by Xss(8) the set
of θ -semistable points of X and by Xss(8†) the set of θ†-semistable points. Clearly
Xss(8) ⊂ Xss(8†).
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Define

Zξ†,θ†(v†,w) := ((gln)2g × µ−1
v†,w(ξ

†))//θ†GLv† ' (gln)2g ×Mξ†,θ†(v†,w).

There is a canonical bijective map f1 : Zξ†,θ†(v†,w) → OL,P,6 (which is an isomor-

phism when K = C). Let q : ((gln)2g × µ−1
v†,w(ξ

†))ss(8†) → Zξ†,θ†(v†,w) denote
the quotient map. By Proposition 2.2.1 the map f1 restricts to a bijective morphism
q(µ−1

v (ξ)ss(8†)) → VL,P,6 and there is a canonical bijective map µ−1
v (ξ)//θ†GLv† →

q(µ−1
v (ξ)ss(8†)). Composing the two bijective morphisms we end up with a bijective

morphism f2 : µ−1
v (ξ)//θ†GLv† → VL,P,6 which is an isomorphism when K = C.

Proposition 5.3.2. Assume that (O1, . . . ,Ok) is generic. Then an element of µ−1
v (ξ) is

θ -semistable (resp. θ -stable) if and only if it is θ†-semistable (resp. θ†-stable).

Proof. Assume that ϕ ∈ µ−1
v (ξ) is θ†-semistable. Let ψ be a subrepresentation of

ϕ. It is an element in µ−1
v′ (ξ) for some v′ ≤ v. We need to verify that θ � v′ ≤ 0.

If v′0 = v0, then we must have θ � v′ ≤ θ � v = 0 since θ† ∈ ZI †

≥0. If v′0 =
0, then the subspaces V ′[i,1] are contained in Ker(ai) for all i = 1, . . . , k and so
θ � v′ = θ† � (v′)† ≤ 0 since ϕ is θ†-semistable. Let (Aϕ1 , B

ϕ
1 , . . . , A

ϕ
g , B

ϕ
g , X

ϕ
1 , . . . , X

ϕ
k )

be given by (5.2.1). Since ψ is a subrepresentation of ϕ, the subspace V ′0 ⊂ V0
= Kv0 is preserved by all matrices Aϕ1 , B

ϕ
1 , . . . , A

ϕ
g , B

ϕ
g , X

ϕ
1 , . . . , X

ϕ
k . Recall also

that any tuple (O′1, . . . ,O
′
k) E (O1, . . . ,Ok) is generic. Hence by Proposition 5.2.4,

the tuple (Aϕ1 , B
ϕ
1 , . . . , A

ϕ
g , B

ϕ
g , X

ϕ
1 , . . . , X

ϕ
k ), which belongs to some (O′1, . . . ,O

′
k) E

(O1, . . . ,Ok), is irreducible. Hence v′0 = 0 or v′0 = n. ut

Proposition 5.3.3. Assume that (O1, . . . ,Ok) is generic. Then the morphism f2 induces
a bijective morphism Mξ ,θ (v)→ QL,P,6 (which is an isomorphism when K = C).

Proof. This follows from Propositions 5.3.2 and 2.1.2 applied to X = µ−1
v (ξ), G′′ =

GLv = GLn × GLv† . ut

Remark 5.3.4. If (O1, . . . ,Ok) is not generic, a priori we only have a bijective mor-
phism Mξ ,θ (v) onto an open subset of a quotient VL,P,6//9GLn.

We now assume until the end of this section that the tuple (O1, . . . ,Ok) is generic.
Thanks to Proposition 5.3.2 we can now omit 8 and 8† from µ−1

v (ξ)ss(8) or
µ−1

v (ξ)ss(8†) and write simply µ−1
v (ξ)ss.

Remark 5.3.5. Assume that the θ i’s, i = 1, . . . , k, have strictly positive coordinates.
Then µ−1

v (ξ)ss = µ−1
v (ξ)s. This identity also holds when θ is generic. Notice that in

this situation we can actually choose our θ i’s (taking larger values of the coordinates if
necessary) such that θ is generic. Indeed, the set µ−1

v (ξ)ss depends only on the position
of the non-zero coordinates of the θ i’s and not on their values (cf. Remark 4.2.2(ii)).
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Put
Nξ ,θ†(v†,w) := µ−1

v (ξ)//θ†GLv† .

We summarize what we said in the following commutative diagram:

Zξ†,θ†(v†,w)
f1 // OL,P,6

p // O

Nξ ,θ†(v†,w)
f2 //

OO

��

VL,P,6
ρ //

��

OO

VO

OO

��
Mξ ,θ (v)

f3 // QL,P,6
ρ/PGLn // QO

(5.3.1)

where QL,P,6 is defined as in Proposition 5.3.1 and f3 is the factorization morphism (as
q ◦π2 ◦f2 is constant on GLn-orbits). The top vertical arrows are the canonical inclusions
and the bottom vertical arrows are the canonical quotient maps.

Remark 5.3.6. When K = C, the maps f1, f2, f3 are isomorphisms and the diagram is
Cartesian.

Recall that 6i = σi + Ci . Put C = C1 × · · · × Ck . Then the decomposition of
C = ∐α Cα as a union of L-orbits provides a stratification 6 = ∐α 6α . We thus have a
decomposition

VL,P,6 =
∐
α

VoL,P,6α (5.3.2)

where VoL,P,6α := VL,P,6α∩OoL,P,6α . By Proposition 4.3.12, the subset VoL,P,6 ⊂ VL,P,6

corresponds to the stable points, i.e., VoL,P,6 ' Ns
ξ ,θ†(v†,w) = µ−1

v (ξ)s/GLv† . The
image of VL,P,6α by the projective morphism ρ : VL,P,6 → VO is of the form VOα

for
some Oα EO.

Theorem 5.3.7. The variety VL,P,6α is not empty if and only if vL,P,6α is a root of
0L,P,6α . In this case the piece VoL,P,6α is also not empty and is an irreducible non-
singular dense open subset of VL,P,6α of dimension

(2g + k − 1)n2 + 1− dim L+ dim6α.

In particular the partition (5.3.2) is a stratification.

Since VL,P,6 → QL,P,6 is a principal PGLn-bundle we have the following result.

Corollary 5.3.8. The stratum QoL,P,6α is irreducible and the decomposition QL,P,6 =∐
α QoL,P,6α is a stratification.

Recall that vO is the dimension vector of 0 obtained from the tuple (O1, . . . ,Ok) as in
§5.2. Let W(0†) denote the Weyl group of 0†.
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Lemma 5.3.9. The vectors v and vO are in the same W(0†)-orbit.

Proof. This follows from Lemma 5.2.8 as (vO)
]
i = v]i for each i = 1, . . . , k. ut

Proof of Theorem 5.3.7. We prove it for 6 = 6α as the proof will be the same for
any 6α . Note that VL,P,6 is not empty if and only if VO is not empty. Hence the first
assertion follows from Lemma 5.3.9 and Proposition 5.2.6.

Assume that VL,P,6 is not empty. Then VO is not empty and so by Proposition 5.2.6
the set VoO is also not empty. Since the inverse image of VoO by the map ρ : VL,P,6 → VO
is contained in VoL,P,6 , the open subset VoL,P,6 of VL,P,6 is not empty.

Set YoL,P,6 := {(X, g) ∈ gln × GLn | g−1Xg ∈ 6 + uP }. Then the canonical map
YoL,P,6 → XoL,P,6 , (X, g) 7→ (X, gP ), is a locally trivial principal P -bundle (for the
Zariski topology). Note that YoL,P,6 ' G × (6 + uP ). Now consider the set LoL,P,6 of
(2g+k)-tuples (A1, B1, . . . , Ag, Bg, (g1, y1), . . . , (gk, yk)) in (gln)2g×(G×(61+uP ))
× · · · × (G× (6k + uP )) such that∑

j

[Aj , Bj ] +
∑
i

giyig
−1
i = 0.

The natural map LoL,P,6 → VoL,P,6 is then a locally trivial principal P-bundle. Hence it
remains to prove that LoL,P,6 is non-singular. A sufficient condition for a point x ∈ LoL,P,6
to be non-singular is that the differential dxµ of the map

µ : (gln)2g × (G× (61 + uP ))× · · · × (G× (6k + uP ))→ sln

given by (A1, B1, . . . , Ag, Bg, (g1, σ1), . . . , (gk, σk)) 7→
∑
j [Aj , Bj ] +

∑
i giyig

−1
i is

surjective.
Let yi be the coordinate of x in 6i + uP . Consider the restriction λ of µ to the closed

subset (gln)2g×(G×{y1})×· · ·×(G×{yk}). It is enough to prove that the differential dxλ
is surjective. But this is what we proved to see that the variety VoS is non-singular (S being
(gln)

2g × S1 × · · · × Sk where Si ⊂ Oi is the adjoint orbit of yk): see Theorem 5.2.4 and
references therein. The variety VoL,P,6 is thus non-singular and its irreducible components
are all of the same dimension. To compute the dimension of VoL,P,6 we may use what we
just said or use the fact that there is a bijective morphism Ns

ξ ,θ†(v†,w) → VoL,P,6 and
then use Theorem 4.1.2.

Let us see now that VL,P,6 is irreducible. Let L̂, P̂ be defined as in §4.3.4 and put σ :=
(σ1, . . . , σk). The canonical map VL̂,P̂,{σ } → VL,P,6 defined by (X, gP̂) 7→ (X, gP)
being surjective, it is enough to show that VL̂,P̂,{σ } is irreducible. We are thus reduced
to proving the irreducibility of VL,P,6 when 6 is reduced to a point {σ }, which we now
assume. Hence VL,P,{σ } = VoL,P,{σ } and the parameter θ satisfies θi > 0 for all i ∈ I †. By
Remark 5.3.5, we may assume that θ is generic with respect to v. We now need to prove
the irreducibility of Nξ ,θ†(v,w). Since Nξ ,θ†(v,w) → Mξ ,θ (v) is a principal PGLn-
bundle, it remains to prove that Mξ ,θ (v) is irreducible.

Assume first that K = C. Then by Theorem 4.1.5 we have H i
c (Mξ ,θ (v),C) '

H i
c (Mθ ,θ (v),C). Recall that the dimension ofH 2e

c (X,C), where e is the dimension ofX,
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equals the number of irreducible components of X of dimension e. The varieties Mξ ,θ (v)
and Mθ ,θ (v) are both of pure dimension by Theorem 4.1.2. Hence we just need to see
that Mθ ,θ (v) is irreducible. The representations in µ−1

v (θ) are all simple because θ is
generic, hence Mθ (v) is irreducible and non-singular (see Theorem 4.1.2). The canonical
map Mθ ,θ (v)→ Mθ (v), being a resolution of singularities, is thus an isomorphism and
so Mθ ,θ (v) is irreducible.

Assume that K = Fq . By Theorem 4.1.6 there exists r0 such that for all r ≥ r0 we
have ]{Mξ ,θ (v)(Fqr )} = ]{Mθ ,θ (v)(Fqr )}. As the canonical map Mθ ,θ (v)→ Mθ (v) is
an isomorphism we actually have

]{Mξ ,θ (v)(Fqr )} = ]{Mθ (v)(Fqr )}. (5.3.3)

Note that the dimension of the compactly supported `-adic cohomology groupH 2e
c (X, κ)

with ` invertible in K and e = dimX also equals the numberm of irreducible components
of X of dimension e. Moreover if X is defined over Fq , then the Frobenius F ∗ acts on
H 2e
c (X, κ) as multiplication by qe. Therefore, the coefficient of qe in ]{X(Fq)} equalsm.

From the identity (5.3.3) we deduce that Mξ ,θ (v) is irreducible if and only if Mθ (v) is
irreducible. But as above, the variety Mθ (v) is irreducible because θ is generic. ut

5.4. A restriction property

We keep the notation of §5.3 and we assume that (O1, . . . ,Ok) is generic and that VO is
not empty. Note that VoL,P,6 is then also not empty by Theorem 5.3.7.

The aim of this section is to prove the following theorem.

Theorem 5.4.1. Let i be the natural inclusion VL,P,6 ↪→ OL,P,6 . Then

i∗(IC•OL,P,6
) = IC•VL,P,6

.

By §5.3, we have a stratification OL,P,6 =
∐
α OoL,P,6α with OoL,P,6α := (gln)

2g ×
XoL,P,6α . It satisfies the conditions (i) of Proposition 3.2.1.

We consider the semismall resolution π̃ : OL̂,P̂,{σ } → OL,P,6 considered in §4.3.4
and its restriction ρ̃ : VL̂,P̂,{σ }→ VL,P,6 .

Proposition 5.4.2. The morphism ρ̃ is a semismall resolution. Moreover the diagram

OL̂,P̂,{σ }
π̃ // OL,P,6

VL̂,P̂,{σ }

OO

ρ̃ // VL,P,6

OO

is Cartesian (the vertical arrows being the canonical inclusions) and the restriction of
the sheaf Hi(π̃∗(κ)) to each piece OoL,P,6α is a locally constant sheaf.
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Proof. The diagram is Cartesian by definition of the varietiesVL,P,6 . The varietyVL̂,P̂,{σ }
is also non-singular by Theorem 5.3.7. Hence ρ̃ is a resolution of singularities.

By Proposition 4.3.18 the map π̃ is semismall with respect to OL,P,6 =
∐
α OoL,P,6α .

By Theorem 5.3.7 the codimension of VoL,P,6α in VL,P,6 equals the codimension of
OoL,P,6α in OL,P,6 , hence ρ̃ is also semismall. The last assertion of the proposition fol-
lows from Proposition 4.3.19. ut
Theorem 5.4.1 is now a consequence of Propositions 5.4.2 and 3.2.1.

We have the following particular case of Theorem 5.4.1.

Proposition 5.4.3. Let i denote the inclusion VO ↪→ O. Then i∗(IC•O) ' IC•VO
.

6. Characters and Fourier transforms

Here K is an algebraic closure of a finite field Fq . In this section we put G := GLn(K)
and g := gln(K). We denote by F the standard Frobenius endomorphism g → g that
maps a matrix (aij )i,j to (aqij )i,j so that GF = GLn(Fq) and gF = gln(Fq).

6.1. Preliminaries on finite groups

Let κ be an algbraically closed field of characteristic 0. Let z 7→ z be an involution of κ
that maps roots of unity to their inverses. For a finite set E, we define 〈 , 〉E on the space
of all functions E→ κ by

〈f, g〉E = 1
|E|

∑
x∈E

f (x)g(x).

Now let H be a subgroup of a finite group K and let H̃ be a subgroup of NK(H)
containing H . Let ρ1 : H̃ → GL(V 1) and ρ2 : H̃ → GL(V 2) be representations
of H̃ in the finite-dimensional κ-vector spaces V 1, V 2. We denote by χ1 and χ2 their
associated characters. The group H̃ acts on the space Hom(V 1, V 2) as follows. For f ∈
Hom(V 1, V 2), we define r · f : V 1 → V 2 by (r · f )(v) = r · f (r−1 · v). The subspace
HomH (V

1, V 2) of fixed points of the action of H on Hom(V 1, V 2) is clearly H̃ -stable
(it is therefore a κ[H̃ /H ]-module).

For any r ∈ H̃ , we have

Tr(r | Hom(V 1, V 2)) = χ1(r)χ2(r−1). (6.1.1)

For s ∈ H̃ , we denote by χ is the restriction of χ i to the coset Hs := {hs | h ∈ H }.

Proposition 6.1.1. Let s ∈ H̃ . We have

Tr(s | HomH (V
1, V 2)) = 〈χ1

s , χ
2
s 〉Hs .
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Proof. Put E := Hom(V 1, V 2) and EH := HomH (V
1, V 2) and define p : E → EH

by p(x) = |H |−1∑
h∈H h · x. Then E′ := Kerp is an H̃ -stable subspace of E and

E = EH ⊕ E′. Since (
1
|H |

∑
h∈H

hs

)∣∣∣∣
E′
= 0

we deduce that

Tr(s | EH ) = 1
|H |

∑
h∈H

Tr(hs |E).

By (6.1.1), the right hand side of this equation is 〈χ1
s , χ

2
s 〉Hs . ut

We now let ϕ and ψ be the characters of H̃ and K associated respectively to representa-
tions H̃ → GL(V ) and K → GL(W). The group H̃ acts on the K-module IndKH (V ) :=
κ[K] ⊗κ[H ] V by t · (x ⊗ v) = xt−1 ⊗ t · v. Its restriction to H being trivial, it factor-
izes through an action of H̃ /H on IndKH (V ). Under the natural isomorphism (Frobenius
reciprocity)

HomH (V ,W) ' HomK(IndKH (V ),W) (6.1.2)

the action of H̃ /H on HomH (V ,W) described earlier corresponds to the action of H̃ /H
on the κ-vector space HomK(IndKH (V ),W) given by (t · f )(x ⊗ v) = f (t−1 · (x ⊗ v)).
For a subset E of K and a function f : E→ κ , we define IndKE (f ) : K → κ by

IndKE (f )(k) =
1
|E|

∑
{g∈K|g−1kg∈E}

f (g−1kg).

Then we have the following generalization of Frobenius reciprocity for functions:

Lemma 6.1.2. Let h : K → κ be a function. Then

〈IndKE (f ), h〉K = 〈f,ResKE (h)〉E .
Proof. This follows from a straightforward calculation. ut
By Proposition 6.1.1, (6.1.2) and the above lemma, we have the following proposition:

Proposition 6.1.3. Let v ∈ H̃ /H and let v̇ ∈ H̃ be a representative of v. Then

Tr
(
v
∣∣ HomK(IndKH (V ),W)

) = 〈IndKHv̇(ϕv), ψ〉K

where ϕv denotes the restriction of ϕ to Hv̇.
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6.2. Littlewood–Richardson coefficients

For a positive integer m, we denote by Sm the symmetric group on m letters.

Notation 6.2.1. For a subgroup H of a group K , we denote by WK(H) the quotient
NK(H)/H .

Fix a sequence τo = (a1, m1)(a2, m2) · · · (as, ms) with ai, mi ∈ Z>0 such that∑
i aimi = n and mi 6= mj if i 6= j . Put

S := (Sm1)
a1 × · · · × (Sms )as ⊂ Sn

where (Sm)d stands for Sm × · · · × Sm (d times). Then we may write NSn(S) as the
semidirect product S o

∏s
i=1 Sai where each Sai acts on (Smi )

ai by permutation of the
coordinates.

Hence

WSn(S) '
s∏
i=1

Sai . (6.2.1)

The group NSn(S) acts on the category of κ[S]-modules in the natural way, i.e., if ρ :
S → GL(V ) and n ∈ NSn(S), then n∗(ρ) is the representation ρ ◦ n−1 : S → GL(V ).

For a representation ρ : S → GL(V ), we denote by WSn(S, ρ) the quotient
NSn(S, ρ)/S where

NSn(S, ρ) = {n ∈ NSn(S) | n∗(ρ) ' ρ}.

Let ρ : S → GL(V ) be an irreducible representation. Then for each i = 1, . . . , s,
there exists a partition (di,1, . . . , di,ri ) of ai and non-isomorphic irreducible κ[Smi ]-mod-
ules Vi,1, . . . , Vi,ri such that

V =
⊗
i,j

T di,j (Vi,j )

where for a κ-vector space E, we put T dE := E ⊗ · · · ⊗ E with E repeated d times.
Then the isomorphism (6.2.1) restricts to an isomorphism

WSn(S, ρ) '
∏
i,j

Sdi,j .

For each (i, j), the group (Smi )
di,j o Sdi,j acts on T di,j (Vi,j ) = Vi,j ⊗ · · · ⊗ Vi,j as

(w, s) · (x1 ⊗ · · · ⊗ xdi,j ) = (w1 · xs−1(1) ⊗ · · · ⊗ wdi,j · xs−1(di,j )
).

This defines an action of NSn(S, ρ) '
∏
i,j ((Smi )

di,j o Sdi,j ) ' S o
∏
i,j Sdi,j on V . We

denote by χ̃ : NSn(S, ρ) → κ the corresponding character, and for v ∈ ∏i,j Sdi,j we
denote by χ̃v its restriction to the coset Sv.
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By Proposition 6.1.3 we have:

Proposition 6.2.2. For any κ[Sn]-module W with character ψ and any v ∈ WSn(S, ρ),

Tr
(
v
∣∣ HomSn(IndSnS (V ),W)

) = 〈IndSnSv(χ̃v), ψ〉Sn .
Lemma 6.2.3. Let χi,j be the character associated with the κ[Smi ]-module Vi,j . As-
sume that v acts on each (Smi )

di,j by circular permutation of the coordinates, namely
v · (g1, . . . , gdi,j ) = (g2, g3, . . . , gdi,j , g1). Let wi,j = (wi,j,1, wi,j,2, . . . , wi,j,di,j ) ∈
(Smi )

di,j and let w ∈ S =∏i,j (Smi )
di,j be the element with coordinates wi,j . Then

χ̃(w, v) =
∏
i,j

χi,j (wi,j,1wi,j,2 · · ·wi,j,di,j ).

We now show that this trace is also a Littlewood–Richardson coefficient (or more pre-
cisely a twisted version of it). We will use this result later on.

Let x = {x1, x2, . . . } be an infinite set of variables and let 3(x) be the corresponding
ring of symmetric functions. For a partition λ, let sλ(x) be the associated Schur symmetric
function. Let E denote the dominance ordering on the set P of partitions. For a type
ω = (d1, ω

1) · · · (dr , ωr) ∈ Tn, define ω+ as the partition
∑r
i=1 di · ωi .

For a type ω = (d1, ω
1) · · · (dr , ωr) ∈ Tn, we define {cµω}µ∈Pn by

sω(x) := sω1(xd1)sω2(xd2) · · · sωr (xdr ) =
∑
µEω+

cµωsµ(x)

where xd := {xd1 , xd2 , . . . }. We call the coefficients cµω the twisted Littlewood–Richardson
coefficients. If d1 = · · · = dr = 1, these are the usual Littlewood–Richardson coeffi-
cients.

For λ = (1m1 , 2m2 , . . . ) ∈ P , put

zλ :=
∏
i≥1

imimi !.

This is also the cardinality of the centralizer in S|λ| of an element of type λ (i.e. whose
decomposition as a product of disjoint cycles is given by λ). We denote by χλ the irre-
ducible character of S|λ| associated to λ as in Macdonald [42, I, §7] and by χλµ its value
at an element of type µ.

Proposition 6.2.4. We have

cµω =
∑
ρ

χµρ

∑
α

( r∏
i=1

z−1
αi
χω

i

αi

)
where the second sum runs over all α = (α1, . . . , αr) ∈ P|ω1| × · · · × P|ωr | such that⋃
i di · αi = ρ.
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Proof. We have sλ(xd) =
∑
ρ z
−1
ρ χλρpρ(xd) where pρ is the power symmetric function

(see [42]). On the other hand, pρ1(xd1) · · ·pρr (xdr ) = p∪idi ·ρi (x). Hence

sω(x) =
∑
ρ

(∑
α

∏
i

z−1
αi
χω

i

αi

)
pρ(x)

where the second sum runs over all α = (α1, . . . , αr) ∈ P|ω1| × · · · × P|ωr | such that⋃
i di · αi = ρ. We now decompose pρ in the basis {sλ}λ to get the result. ut

For λ ∈ P , we denote by Vλ an irreducible κ[S|λ|]-module with corresponding charac-
ter χλ.

Proposition 6.2.5. Put Vω :=
⊗r

i=1 T
diVωi and S := ∏i(S|ωi |)di and let ρ be the rep-

resentation S → GL(Vω). Let v ∈ WSn(S, ρ) be the element which acts on each (S|ωi |)di
by circular permutation of the coordinates. For any µ ∈ Pn we have

Tr
(
v
∣∣ HomSn(IndSnS (Vω), Vµ)

) = cµω .
Proof. This is a consequence of Propositions 6.2.2 and 6.2.4.

ut

6.3. Rational Levi subgroups and Weyl groups

By a Levi subgroup of G, we shall mean a Levi subgroup of a parabolic subgroup of G,
i.e., a subgroup of G which is GLn-conjugate to some subgroup of the form

∏r
i=1 GLni

with
∑
i ni = n. A maximal torus ofG is a Levi subgroup which is isomorphic to (K×)n.

Let L be an F -stable Levi subgroup of G. An F -stable subtorus of S of L of rank r is
said to be split if there is an isomorphism S ' (K×)r which is defined over Fq , i.e.,
SF ' (F×q )r . The Fq -rank of L is defined as the maximal value of the ranks of the split
subtori of L. Since the maximal torus of diagonal matrices is split, any F -stable Levi
subgroup that contains diagonal matrices is of Fq -rank n.

If T is an F -stable maximal torus of L of the same Fq -rank as L, in which case we
say that T is an L-split maximal torus of L. In this case we denote by WL, instead of
WL(T ) (see Notation 6.2.1), the Weyl group of L with respect to T .

If f is a group automorphism of K , we say that two elements k and h of K are
f -conjugate if there exists g ∈ K such that k = ghf (g)−1.

The identification of the symmetric group Sn with the monomial matrices in GLn
with entries in {0, 1} gives an isomorphism Sn ' WG. Fix a sequence of integers m =
(m1, . . . , mr) such that

∑
i mi = n and consider the Levi subgroup Lo = GLm :=∏r

i=1 GLmi . Then WLo = Sm := ∏r
i=1 Smi . The GF -conjugacy classes of the F -stable

Levi subgroups of G that are G-conjugate to Lo are parameterized by the conjugacy
classes of WG(Lo) = WSn(Sm) [12, Proposition 4.3]. For v ∈ NSn(Sm), we denote
by Lv a representative of the GF -conjugacy class (of F -stable Levi subgroups) which
corresponds to the conjugacy class of v in WSn(Sm). Then (Lv, F ) ' (Lo, vF ), i.e.,
the action of the Frobenius F on Lv corresponds to the action of vF on Lo given by
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vF (g) := vF (g)v−1 for any g ∈ Lo. Since F acts trivially on WG ' Sn, we have
(WLv , F ) ' (Sm, v). By §6.2, there exists a decomposition

Sm = (Sn1)
d1 × · · · × (Snr )dr

for some sequence (d1, n1)(d2, n2) · · · (dr , nr) and a specific choice of an element σ in
the coset vSm which acts on each component (Sni )

di by circular permutation of the coor-
dinates. Taking the GF -conjugate Lσ of Lv if necessary, we may assume that v = σ . We
also have

Lo =
r∏
i=1

(GLni )
di and (Lv)

F ' (Lo)vF '
r∏
i=1

GLni (Fqdi ).

Now let L be any F -stable Levi subgroup of G. Consider the semidirect product
WLo〈F 〉where 〈F 〉 is the cyclic group generated by the Frobenius automorphism onWL.
If ψ is a character of WL o 〈F 〉, then for all a ∈ WL, we have ψ(F(a)) = ψ(a) since
(F (a), 1) ∈ WL o 〈F 〉 is the conjugate of (a, 1) by (1, F ). Hence the restriction of ψ to
WL is an F -stable character ofWL. Conversely, given an F -stable character χ ofWL, we
now define an extension χ̃ of χ toWLo〈F 〉 as follows. We have L = Lv for some m and
v ∈ NSn(Sm) by the above discussion so that we may identify WL o 〈F 〉 with Sm o 〈v〉.
For an v-stable character χ of Sm we define the extension χ̃ on Sm o 〈v〉 as in §6.2.

The LF -conjugacy classes of the F -stable maximal tori of L are parameterized by
the F -conjugacy classes of WL [12, Proposition 4.3]. If w ∈ WL, we denote by Tw an
F -stable maximal torus of L which is in the LF -conjugacy class associated to the F -
conjugacy class of w. We put tw := Lie(Tw).

6.4. Springer correspondence for relative Weyl groups

Let P be a parabolic subgroup of G and L a Levi factor of P . Let l be the Lie algebra
of L and let zl denote its center. Recall that the classical Springer correspondence gives a
bijection

C = CL : IrrWL→ {nilpotent orbits of l}
which maps the trivial character to the regular nilpotent orbit. Moreover if L is F -stable
then C restricts to a bijection between the F -stable irreducible characters of WL and the
F -stable nilpotent orbits of l. Recall that if L = G and λ ∈ Pn, then the sizes of the
Jordan blocks of the nilpotent orbit C(χλ) are given by the partition λ.

Let ε ∈ IrrWL be the sign character. For χ ∈ IrrWL put χ ′ := χ ⊗ ε. Then let
Cε : IrrWL

∼→ {nilpotent orbits of l} be the map which sends χ to C(χ ′). The bijection Cε
was actually the first correspondence discovered [52].

Let C be a nilpotent orbit of l and put 6 = σ + C with σ ∈ zl. Consider the relative
Weyl group

WG(L,6) := {n ∈ NG(L) | n6n−1 = 6}/L.
Recall that 6 is of the form σ + C with C a nilpotent orbit of l and σ ∈ zl. Put M :=
CG(σ ), then WG(L,6) = WM(L,C). Let O be the orbit of gln whose Zariski closure is
the image of the projection p : XL,P,6 → g on the first coordinate.
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Let gσ be the set of elements x ∈ g whose semisimple part is G-conjugate to σ .
Note that the image of p is contained in gσ . The set gσ has a finite number of G-orbits
which are indexed by the irreducible characters of WM via the bijection CM . If χ is an
irreducible character of WM we denote by Oχ the corresponding adjoint orbit in gσ . For
χ ∈ IrrWM , put

Aχ = HomWM (IndWMWL (VC), Vχ )
where VC is the irreducible WL-module corresponding to the nilpotent orbit C under C.

We have the following result due to Springer in the case where O is nilpotent regular
(see Borho and MacPherson [3, 3.1] for the regular nilpotent case and Lusztig [39, 2.5]
for the general case).

Proposition 6.4.1. We have

Indgl⊂p(IC
•
6
) = p∗(IC•XL,P,6 ) =

⊕
χ∈IrrWM

Aχ ⊗ IC•Oχ

and Aχ = 0 if Oχ is not included in O. The multiplicity Aχo corresponding to O = Oχo

is the trivial character of WM(L,C).

If O is regular nilpotent, L = T and if 6 = {0}, then this is the classical Springer
correspondence.

The groupWM(L,C) is naturally isomorphic toWWM (WL, ρ). As shown in §6.2, the
action ofWL on VC can be extended to an action of NWM (WL, ρ) on VC . By §6.1 it gives
a structure of WM(L,C)-module on each Aχ and so by Proposition 6.4.1 we have an
action of WM(L,C) on p∗(IC•XL,P,6 ).

Remark 6.4.2. It is also possible to define an action ofWM(L,C) on p∗(IC•XL,P,6 ) using
the approach in Bohro and MacPherson [3] by considering partial simultaneous resolu-
tions.

To alleviate the notation put K := p∗(IC•XL,P,6 ) and Kχ := Aχ ⊗ IC•Oχ
. Assume

now that (M,Q,L, P,6) is F -stable and let F : XL,P,6 → XL,P,6 be the Frobenius
given by F(X, gP ) = (F (x), F (g)P ). Then the morphism f commutes with the Frobe-
nius endomorphisms. Let ϕ : F ∗(κ) ' κ be the isomorphism (in the category of sheaves
on XoL,P,6) which induces the identity on stalks at Fq -points. It induces a canonical iso-
morphism F ∗(IC•XL,P,6 ) ' IC•XL,P,6 , which in turns induces a canonical isomorphism
ϕ̃ : F ∗(K) ' K . Note that the orbits Oχ are F -stable and F acts trivially on WM . Hence
F ∗(Kχ ) ' Kχ and so ϕ̃ induces an isomorphism ϕ̃χ : F ∗(Kχ ) ' Kχ for each χ . Now
we define an isomorphism φχ : F ∗(IC•Oχ

) ' IC•Oχ
with the requirement that its tensor

product with the identity on Aχ gives ϕ̃χ .
We then have

XIC•Oχ
,φχ = q

1
2 (dimO−dimOχ )XIC•Oχ

.

Since the Aχ are WM(L,C)-modules, each v ∈ WM(L,C) induces an isomorphism
Kχ ' Kχ and so an isomorphism θv : K ' K such that

XK,θv◦ϕ̃ =
∑
χ

Tr(v |Aχ )q 1
2 (dimO−dimOχ ) XIC•Oχ

.
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6.5. Deligne–Lusztig induction and Fourier transforms

Here we recall the definition of Deligne–Lusztig induction both in the group setting
(which is now standard [11]) and in the Lie algebra setting [32]. We then recall the com-
mutation formula between Fourier transforms and Deligne–Lusztig induction (in the Lie
algebra case), which is the main result of [33]. This commutation formula is an essential
ingredient in the proof of the main theorem of this paper. Although the theory is available
for any connected reductive algebraic groups we keep our assumption G = GLn(Fq).

For any subset Y of X, we denote by 1Y the function X → κ that takes the value 1
on Y and the value 0 elsewhere.

6.5.1. Generalized induction. Let H and K be two finite groups and let M be a finite-
dimensional K-vector space. We say thatM is anH -module-K if it is a left κ[H ]-module
and a right κ[K]-module such that (a · x) · b = a · (x · b) for any a ∈ κ[H ], b ∈ κ[K]
and x ∈ M . Then M defines a functor from the category of finite-dimensional left κ[K]-
modules to the category of finite-dimensional left κ[H ]-modules by V 7→ M ⊗κ[K] V .
This functor induces an obvious κ-linear map RHK : C(K)→ C(H) on κ-vector spaces of
class functions.

The approach of generalized induction with bimodules is due to Broué. We have the
following formula [12, 4.5].

Proposition 6.5.1. Let f ∈ C(K) and g ∈ H , then

RHK (f )(g) = |K|−1
∑
k∈K

Trace((g, k−1) |M)f (k).

6.5.2. The group setting: Deligne–Lusztig induction. Let L be an F -stable Levi sub-
group of a parabolic subgroup P of G and let V be the unipotent radical of P . Consider
the Lang map LG : G → G, x 7→ x−1F(x). In [36], Lusztig considers the variety
L−1
G (V ) which is endowed with the action of GF by left multiplication and with the ac-

tion of LF by right multiplication. These actions commute and so make H i
c (L
−1
G (V ), κ)

into a GF -module-LF . Consider the virtual GF -module-LF

H ∗c (L
−1
G (V )) =

∑
i

(−1)iH i
c (L
−1
G (V ), κ).

The κ-linear map RGL : C(LF )→ C(GF ) associated with this virtual bimodule is called
Deligne–Lusztig induction.

Let us put
SGL (g, h) := Trace

(
(g, h−1)

∣∣ H ∗c (L−1
G (V ))

)
.

By Proposition 6.5.1 we have, for any f ∈ C(LF ),

RGL (f )(g) = |LF |−1
∑
h∈LF

SGL (g, h)f (h). (6.5.1)
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If M is an F -stable Levi subgroup of G containing L, we define RML exaclty as above
replacing G by M .

Let Luni be the subvariety of unipotent elements of L. We now list some properties of
this induction which are standard.

Proposition 6.5.2. (i) RGL does not depend on the choice of the parabolic subgroup P
having L as a Levi subgroup.

(ii) If L ⊂ M is an inclusion of Levi subgroups, then RGM ◦ RML = RGL .
(iii) ResGGuni

◦ RGL = RGL ◦ ResLLuni
where ResLLuni

: C(LF )→ C(LF ) maps a function f
to the unipotently supported function that takes the same values as f on LFuni.

For w ∈ WL we put
QL
Tw
:= RLTw (11)

where 11 denotes the function with value 1 at 1 and with value 0 elsewhere. We call
the functions QL

Tw
the Green functions of LF . They are defined by Deligne and Lusztig

in [11].
When L = G, in which case WL ' Sn, the Green functions are related to the well-

known Green polynomials as follows. The decomposition of w as product of disjoint
cycles gives a partition, say λ. Then the value of QG

Tw
at the unipotent conjugacy class

associated with the partition µ is the Green polynomial Qµ
λ in the notation of [42, III, 7].

By Proposition 6.5.2(iii), we may also write the function QL
Tw

as ResLLuni
◦ RLTw (1Tw ).

We have the following important formula due to Deligne and Lusztig [11].

Theorem 6.5.3. Let f ∈ C(T Fw ) and let l ∈ LF . Then

RLTw (f )(l) = |CL(ls)F |−1
∑

{h∈LF |ls∈hTwh−1}
Q
CL(ls)

hTwh−1(lu)f (h
−1lsh), (6.5.2)

where l = lslu is the Jordan decomposition of l with ls the semisimple part and lu the
unipotent part.

6.5.3. The Lie algebra setting: Fourier transforms. Fourier transforms of functions on
reductive Lie algebras over finite fields were first investigated by Springer in the study
of the geometry of nilpotent orbits [52]. Interesting applications in the representation
theory of connected reductive groups over finite fields were then found by many authors
including Kawanaka (e.g. [24]), Lusztig (e.g. [40]), Lehrer (e.g. [31]), Waldspurger [53]
and the present author (e.g. [33]).

Let us recall the definition and basic properties of Fourier transforms. The most im-
portant property of Fourier transforms will be stated in the next section §6.5.4.

We fix once for all a non-trivial additive character 9 : Fq → κ× and we denote by
µ : g × g → K the trace map (a, b) 7→ Trace(ab). It is a non-degenerate G-invariant
symmetric bilinear form defined over Fq . Let Fun(gF ) be the κ-vector space of all func-
tions gF → κ . We define the Fourier transform Fg : Fun(gF ) → Fun(gF ) with respect
to (9,µ) by

Fg(f )(x) =
∑
y∈gF

9(µ(x, y))f (y).
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A detailed review of properties of Fourier transforms can be found in [31]. Here we just
recall what we will need.

Define the convolution product ∗ on Fun(gF ) as

(f ∗ g)(x) =
∑
y∈gF

f (y)g(x − y)

for all x ∈ gF . Then for all f, g ∈ Fun(gF ), we have [18, Proposition 3.2.1]

Fg(f ∗ g) = Fg(f ) · Fg(g).

For any f ∈ Fun(gF ) it is straightforward to check that

|gF | · f (0) =
∑
x∈gF

Fg(f )(x). (6.5.3)

6.5.4. The Lie algebra setting: Deligne–Lusztig induction. We now review Deligne–
Lusztig induction in the Lie algebra setting. Details and proofs can be found in [32], [33].

Consider L,P, V as in §6.5.2 and let l, p, n be their respective Lie algebras. We de-
note by C(gF ) the κ-vector space of functions gF → κ which are constant on adjoint
orbits.

It is not clear whether there is a Lie algebra analogue of the variety L−1
G (V ). The naive

guess L−1
g (n) with Lg : g→ g, x 7→ F(x)− x, does not give anything interesting.

However, we have the following formula [12, Lemma 12.3] obtained independently
by Digne–Michel and Lusztig:

SGL (g, l) = |LF |−1
∑

{h∈GF |hlsh−1=ls}
|CL(ls)F | |CG(ls)F |−1S

CG(ls)
CL(ls)

(h−1guh, lu).

This formula reduces the computation of SGL (g, l) to its computation at unipotent ele-
ments.

We define our Sgl (x, y) using the Lie algebra analogue of this formula as follows. Let
gnil be the variety of nilpotent elements of g and let ω : gnil → Guni be the isomorphism
given by x 7→ x + 1. For (x, y) ∈ gF × lF , we put

S
g
l (x, y) := |LF |−1

∑
{h∈GF |hysh−1=xs}

|CL(ys)
F | |CG(ys)

F |−1S
CG(ys)
CL(ys)

(h−1ω(xn)h, ω(yn))

where x = xs + xn is the Jordan decomposition of x with xs the semisimple part and xn
the nilpotent part.

We define our Lie algebra version of Deligne–Lusztig induction Rg
l : C(lF )→ C(gF )

as
R
g
l (f )(x) = |LF |−1

∑
y∈lF

S
g
l (x, y)f (y).

This definition of Rg
l works also if we replace the isomorphism ω by any G-equivari-

ant isomorphism gnil ' Guni defined over Fq (e.g. the exponential map when the char-
acteristic is large enough). We actually prove in [33, Remark 5.5.17] that the definition
of Rg

l does not depend on the choice of such an isomorphism.
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It is also easy to prove that our induction Rg
l satisfies the analogous properties in

Proposition 6.5.2 (see [32] for details).
The Lie algebra analogue of Theorem 6.5.3 follows from the definition of Rl

tw
: If

f ∈ C(tFw) and x ∈ tF , then

Rl
tw
(f )(x) = |CL(xs)

F |−1
∑

{h∈LF |xs∈htwh−1}
Q
CL(xs)

hTwh−1(ω(xn))f (h
−1xsh). (6.5.4)

We will also use the following properties [33, Propositions 3.2.24 and 7.1.8].

Proposition 6.5.4. Let C be an F -stable nilpotent orbit of l and let σ ∈ (zl)F be such
that CG(σ ) = L. Denote by OL the adjoint orbit σ + C of l and by O the unique orbit of
g which contains OL. Then:

(i) Rg
l (1OL) = 1O,

(ii) Rg
l (XIC•

OL
) = XIC•O

.

Our definition of Rg
l is not natural and thus a little frustrating, especially for other re-

ductive groups where we do not always have an isomorphism between the nilpotent el-
ements and the unipotent ones in small characteristics. However, the following theorem
[33, Corollary 6.2.17] shows that our definition ofRg

l behaves well with respect to Fourier
transforms (which are not well-defined in the group setting).

Theorem 6.5.5. Put εL = (−1)Fq−rank(L). Then

Fg ◦ Rg
l = εGεLqdimVR

g
l ◦ F l.

This formula suggests that a more conceptual definition of Rg
l should exist. In [34] we in-

vestigate this problem in greater detail and bring a partial answer in terms of the geometry
of the semidirect product Gn g.

It is proved by Lehrer [31] that Fourier transforms commute with Harish-Chandra
induction. Moreover when the parabolic P is F -stable the induction Rg

l coincides with
Harish-Chandra induction (see [32]). Hence Lehrer’s result is a particular case of the
theorem.

We also mention that when σ ∈ tFw is regular (i.e. CG(σ ) = Tw) then it follows from
Kazhdan and Springer’s results [25], [52] that Fg◦Rg

tw
(1σ ) = εGεTwqdimUR

g
tw
◦F tw (1σ )

where U is the unipotent radical of a Borel subgroup of G.

6.6. Characters of finite general linear groups

The character table of GF was first computed by Green [17]. In [41], Lusztig and Srini-
vasan describe it in terms of Deligne–Lusztig theory [41]. This is done as follows.

LetL be an F -stable Levi subgroup ofG and let ϕ be an F -stable irreducible character
of WL. The function XL

ϕ : LF → κ defined by

XL
ϕ = |WL|−1

∑
w∈WL

ϕ̃ (wF)RLTw (1Tw ) (6.6.1)
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is an irreducible character of LF (here ϕ̃ is the extension of ϕ defined in §6.3). The
characters XL

ϕ are called the unipotent characters of LF .
For g ∈ GF and θ ∈ Irr(LF ), let gθ ∈ Irr(gLF g−1) be defined by gθ(glg−1) = θ(l).

We say that a linear character θ : LF → κ× is regular if for n ∈ NGF (L), we have
nθ = θ only if n ∈ LF . We denote by Irrreg(L

F ) the set of regular linear characters of
LF . For θL ∈ Irrreg(L

F ), the virtual character

X := εGεLRGL (θL · XL
ϕ ) = εGεL|WL|−1

∑
w∈WL

ϕ̃ (wF)RGTw (θ
Tw ), (6.6.2)

where θTw := θL|Tw , is an irreducible true character ofGF , and any irreducible character
of GF is obtained in this way [41]. An irreducible character of GF is thus completely
determined by the GF -conjugacy class of a datum (L, θL, ϕ) with L an F -stable Levi
subgroup ofG, θL ∈ Irrreg(L

F ) and ϕ ∈ Irr(WL)
F . Characters associated to triples of the

form (L, θL, 1) are called semisimple.
The characters εGεTwR

G
Tw
(θ) are called Deligne–Lusztig characters.

6.7. Fourier transforms of orbital simple perverse sheaves

We have the Deligne–Fourier transform Fg : Db
c (g) → Db

c (g) which is defined as fol-
lows.

We denote by A1 the affine line over K. Let h : A1 → A1 be the Artin–Schreier
covering defined by h(t) = tq − t . Then, since h is a Galois covering of A1 with Galois
group Fq , the sheaf h∗(κ) is a local system on A1 on which Fq acts. We denote by L9
the subsheaf of h∗(κ) on which Fq acts as 9−1.

There exists an isomorphism ϕ9 : F ∗(L9)→ L9 such that for any integer i ≥ 1, we
have XL9 ,ϕ(i)9

= 9 ◦ TraceF
qi
/Fq : Fqi → κ (see Katz [23, 3.5.4]). Then for a complex

K ∈ Db
c (g) we define

Fg(K) := (p1)!((p2)
∗(K)⊗ µ∗(L9))[dim g]

where p1, p2 : g×g→ g are the two projections. If ϕ : F ∗(K)→ K is an isomorphism,
then it induces a natural ismorphism F(ϕ) : F ∗(Fg(K))→ Fg(K). Moreover,

XFg(K),F(ϕ) = (−1)dimgFg(XK,ϕ).

We will need to compute the characteristic functions of the perverse sheaves
Fg(IC•O), where O is an F -stable adjoint orbit of g. It is known by results of Lusztig
that these perverse sheaves are closely related to the character sheaves on G [40] and
that the characteristic functions of character sheaves on G give the irreducible characters
ofGF [35]. We thus expect to have a tight connection between the characteristic functions
of the sheaves Fg(IC•O) on g and the irreducible characters of GF .

More precisely, let x ∈ OF and put L = CG(xs). Let ϕ be the F -stable irreducible
character ofWL that corresponds to the nilpotent orbit OL

xn
of l = Lie(L) via the Springer

correspondence Cε .
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Theorem 6.7.1. We have

Fg(XIC•O
) = εGεLq 1

2 dimO|WL|−1
∑
w∈WL

ϕ̃(wF)Rg
tw
(ηtw ) (6.7.1)

where ηtw : tFw → κ is the character z 7→ 9(µ(xs, z)).

Remark 6.7.2. Note that (6.6.2) is similar to (6.7.1). It shows that Fg(XIC•O
) arises

from the GF -conjugacy class of a triple (l, ηl, ϕ) with ηl : lF → κ×, z 7→ 9(µ(xs, z)),
exactly as in the group setting.
Proof of Theorem 6.7.1. Let OL be the L-orbit of x in l := Lie(L). Then OL decomposes
as xs +OL

xn
where OL

xn
denotes the L-orbit of xn in l. Then

XIC•OL
= 1xs ∗ XIC•

OL
xn

.

By Proposition 6.5.4, we have

XIC•O
= Rg

l (XIC•OL
) (6.7.2)

Hence from the commutation formula in Theorem 6.5.5 we have

Fg(XIC•O
) = εGεLq 1

2 (dimG−dimL)Rg
l ◦ F l(XIC•OL

)

= εGεLq 1
2 (dimG−dimL)Rg

l (F
l(1xs) · F l(XIC•

OL
xn

))

We also have
XIC•

OL
xn

= q−δ|WL|−1
∑
w∈WL

ϕ̃′(wF)Rl
tw
(10) (6.7.3)

where δ = 1
2 (dimCL(xn)− dim T ).

Indeed, by (6.5.4) the function Rl
tw
(10) corresponds to the Green function QL

Tw
via

the isomorphism ω : lnil ' Luni. Moreover if we put CL = ω(OL
xn
), then by Lusztig [35],

we have ResLLuni
(XL

ϕ′) = qδ XIC•
C
L

where XL
ϕ′ is the unipotent character of LF associated

to ϕ′. Hence (6.7.3) is obtained from (6.6.1) via the isomorphism ω.
We now deduce from (6.7.3) and Theorem 6.5.5 that

F l(XIC•
OL
xn

) = q−δ|WL|−1
∑
w∈WL

ϕ̃′(wF)εLεTwq
1
2 (dimL−dim Tw)Rl

tw
(1tw ).

Since xs is central in l, we deduce that

F l(1xs) · F l(XIC•
OL
xn

) = q−δ|WL|−1
∑
w∈WL

ϕ̃′(wF)εLεTwq
1
2 (dimL−dim Tw)Rl

tw
(θwxs

).

From the transitivity property of Deligne–Lusztig induction and the fact that CG(x) =
CL(xn) we deduce that

Fg(XIC•O
) = εGεLq 1

2 dimO|WL|−1
∑
w∈WL

ϕ̃′(wF)εLεTwR
g
tw
(θwxs

).

The map WL→ {1,−1}, w 7→ εLεTw , is the sign character ε of WL. ut
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Lemma 6.7.3. The functions Fg(XIC•O
) are GF -invariant (i.e. constant on adjoint

orbits) characters of the finite abelian group (gF ,+).
Proof. The functions Fg(XIC•O

) are clearlyGF -invariant. The function Fg(1O) is a sum

of linear characters of gF and therefore is a character of gF . We thus need to see that if
we write XIC•O

=∑C nC1C as a sum over the adjoint orbits of gF , then nC ∈ Z≥0. Let
us use the notation introduced in the proof of Theorem 6.7.1. Write

XIC•OL
= 1xs ∗ XIC•

OL
xn

= 1xs ∗
(∑
C′
nC′1C′

)
=
∑
C′
nC′1xs+C′

where the sum runs over the nilpotent LF -orbits of lF (note that xs + C′ is an LF -orbit
of lF since xs is central). By Proposition 6.5.4(i), for a nilpotent adjoint orbit of lF , the
function Rg

l (1xs+C′) is the characteristic function of theGF -orbit of an element in xs+C′.
By (6.7.2) it remains to see that nC′ ∈ Z≥0. We have LF ' ∏

i GLni (Fqdi ) for some
ni, di ∈ Z≥0, and so XIC•

OL
xn

is a product of functions of the form XIC•Oi

on glni (Fqdi )

where Oi is a nilpotent orbit of glni (Fq). By Lusztig [35], the values of the functions
XIC•Oi

are non-negative integers. ut

6.8. Generic characters and generic orbits

Let (L, θL, ϕ) be a triple as in §6.6 with L an F -stable Levi subgroup, θL ∈ Irrreg(L
F )

and ϕ ∈ Irr(WL)
F and let X be the associated irreducible character of GF . Then we say

that the GF -conjugacy class of the pair (L, ϕ) is the type of X . Similarly we define the
type of an adjoint orbit OF of gF as follows. Let x ∈ OF and letM = CG(xs) and let CM

be theM-orbit of xn ∈ m. Then theGF -conjugacy class of the pair (M,CM) is called the
type of OF .

From the pair (L, ϕ) we define ω = (d1, ω
1) · · · (dr , ωr) ∈ Tn as follows. There exist

positive integers di, ni such that L '∏r
i=1 GLni (Fq)di and LF '∏r

i=1 GLni (Fqdi ). The
F -stable irreducible characters ofWL then correspond to Irr(Sn1)×· · ·× Irr(Snr ) and the
latter set is in bijection with Pn1 × · · · × Pnr via Springer correspondence Cε that sends
the trivial character of Sm to the partition (1m). If q > n, the set of types of irreducible
characters of GF is thus parameterized by Tn. Under this parameterization, semisim-
ple irreducible characters correspond to types of the form (d1, (1n1)) · · · (dr , (1nr )) and
unipotent characters to types of the form (1, λ).

From the pair (M,CM)we define τ = (d1, τ
1) · · · (dr , τ r) ∈ Tn as follows. There ex-

ist positive integers di, ni such thatM '∏r
i=1 GLni (Fq)di andMF '∏r

i=1 GLni (Fqdi ).
The Jordan form of CM defines partitions τ 1, . . . , τ r of n1, . . . , nr respectively. If q ≥ n,
the set of types of adjoint orbits of gF is thus parameterized by Tn.

Remark 6.8.1. Note that if OF is an orbit of gF of type ω = (d1, ω
1) · · · (dr , ωr), then

in the sense of §4.3 the G-orbit O is of type

ω̃ := ω1 · · ·ω1︸ ︷︷ ︸
d1

· · ·ωr · · ·ωr︸ ︷︷ ︸
dr

.

In particular, the two notions coincide if the eigenvalues of O are in Fq .
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Definition 6.8.2. Let OF
1 , . . . ,O

F
k be k adjoint orbits of gF . We say that the tuple

(OF
1 , . . . ,O

F
k ) is generic if (O1, . . . ,Ok) is generic in the sense of Definition 5.1.1.

Assume that L is an F -stable Levi subgroup of G. We say that a linear additive char-
acter of zFl is generic if its restriction to zFg is trivial and its restriction to zFm is non-trivial
for any proper F -stable Levi subgroup M of G which contains L.

Put
(zl)reg := {x ∈ zl | CG(x) = L}.

Let {(di, ni)}i=1,...,r be pairs of positive integers such that L ' ∏r
i=1(GLni (Fq))di and

LF '∏r
i=1 GLni (Fqdi ). Define

Ko
L =

{
(−1)r−1dr−1µ(d)(r − 1)! if di = d for all i,
0 otherwise,

where µ is the ordinary Möbius function.
The proof of the following proposition is completely similar to that of Proposition

4.2.1 in [18].

Proposition 6.8.3. Let 0 be a generic character of zFl . Then∑
z∈(zl)Freg

0(z) = qKo
L.

For a group H , we denote by ZH its center.

Lemma 6.8.4. Let (OF
1 , . . . ,O

F
k ) be a generic tuple of adjoint orbits of gF . Let

(Li, ηi, ϕi) be a datum defining the character Fg(XIC•Oi

) (see Remark 6.7.2). Then∏k
i=1(

giηi)|zm is a generic character of zFm for any F -stable Levi subgroupM ofG which
satisfies the following condition: For all i ∈ {1, . . . , k}, there exists gi ∈ GF such that
ZM is contained in giLig−1

i .

Proof. We may write ηi = F li (1σi ) where σi ∈ zli is the semisimple part of an element
of OF

i . Note that giσig−1
i is in the center of gi lig−1

i and so it commutes with the elements
of zm ⊂ gi lig−1

i , i.e., giσig−1
i ∈ Cg(zm) = m. Let z ∈ zFm. Then

k∏
i=1

(giηi)(z) =
k∏
i=1

F li (1σi )(g
−1
i zgi) =

k∏
i=1

9(µ(σi, g
−1
i zgi)) =

k∏
i=1

9(µ(giσig
−1
i , z))

= 9
(
µ
(∑

i

giσig
−1
i , z

))
.

If z = λ Id ∈ zg, then µ(
∑
i giσig

−1
i , z) = λ Tr(

∑
i giσig

−1
i ) = 0 by the first gener-

icity condition (see Definition 5.1.1). Let L be an F -stable Levi subgroup such that
M ( L ( G, i.e., zg ( zl ( zm and assume that

∏k
i=1(

giηi)|zl is trivial. There is a
decomposition Kn = V1 ⊕ · · · ⊕ Vr such that l '⊕i gl(Vi). Then any element z ∈ zl is
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of the form (λ1 Id, . . . , λr Id) for some λ1, . . . , λr ∈ K. Since giσig−1
i ∈ m ⊂ l for all i,

we may write
∑
i giσig

−1
i = (x1, . . . , xr) ∈ gl(V1)⊕ · · · ⊕ gl(Vr). Since

∏k
i=1(

giηi)|zl
is trivial we have

∑r
i=1 λi Tr(xi) = 0 for all λ1, . . . , λr ∈ K. Hence Tr(xi) = 0 for all

i = 1, . . . , r . This contradicts the second genericity assumption. ut
A linear character of ZFL is said to be generic if its restriction to ZFG is trivial and its
restriction to ZFM is non-trivial for any F -stable proper Levi subgroup M of G such that
L ⊂ M . Put

(ZL)reg := {x ∈ ZL | CG(x) = L}.
We have the following proposition [18, Proposition 4.2.1].

Proposition 6.8.5. Let 0 be a generic character of ZFL . Then∑
z∈(ZL)Freg

0(z) = (q − 1)Ko
L.

Definition 6.8.6. Let X1, . . . ,Xk be irreducible characters of GF . For each i, let
(Li, θi, ϕi) be a datum defining Xi . We say that the tuple (X1, . . . ,Xk) is generic if∏k
i=1(

gi θi)|ZM is a generic character of ZFM for any F -stable Levi subgroup M of G
which satisfies the following condition: For all i ∈ {1, . . . , k}, there exists gi ∈ GF such
that ZM ⊂ giLig−1

i .

Example 6.8.7. Let µ1, . . . , µk be partitions of n and denote by Rµ1 , . . . , Rµk the cor-
responding unipotent characters of GF (see beginning of this section). Consider k linear
characters α1, . . . , αk of F×q . For each i, put Xi := (αi ◦ det) · Rµi . Then Xi is an irre-
ducible character of GF of the same type as Rµi . Then according to Definition 6.8.6, the
tuple (X1, . . . ,Xk) is generic if and only if the size of the subgroup of IrrF×q generated
by α1 · · ·αk equals n.

Given ω = (ω1, . . . , ωk) ∈ (Tn)k , and assuming that char(Fq) does not divide the gcd
of {|ωji |}i,j and that q is large enough, we can always find a generic tuple (X1, . . . ,Xk)
of irreducible characters of GF of type ω. The proof of this is similar to the proof of the
existence of generic tuples of conjugacy classes of GLn of a given type (see [18]).

Definition 6.8.8. We say that an adjoint orbit of gF (or an irreducible character of GF )
is split if the degrees of its type are all equal to 1.

6.9. Multiplicities in tensor products

Let (X1, . . . ,Xk) be a generic tuple of irreducible characters ofGF . Assume that there ex-
ists a generic tuple (OF

1 , . . . ,O
F
k ) of adjoint orbits of gF of the same type as (X1, . . . ,Xk).

We put dO = (2g − 2)n2 + 2+∑i dimOi as in Corollary 5.2.3.
Let 2 : gF → κ be given by x 7→ qgn

2+g dimCG(x), and let 3 : GF → κ be given by
x 7→ qg dimCG(x). If g = 1, note that 3 is the character of the representation of GF in the
group algebra κ[gF ] where GF acts on gF by conjugation.
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Theorem 6.9.1. We have

〈3⊗X1⊗· · ·⊗Xk, 1〉GF =
q−dO/2(q − 1)
|GF | 〈2⊗Fg(XIC•O1

)⊗· · ·⊗Fg(XIC•Ok

), 1〉gF .

Proof. For each i = 1, . . . , k, let (Li, θi, ϕi) be a datum defining Xi . Then

|GF |〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉GF

=
∑
x∈GF

qg dimCG(x)
k∏
i=1

(
εGεLi |WLi |−1

∑
w∈WLi

ϕ̃i(wF)R
G
Tw
(θi)(x)

)

=
k∏
i=1

(εGεLi |WLi |−1)
∑
x∈GF

qg dimCG(x)
∑

(w1,...,wk)∈WL1×···×WLk

k∏
i=1

ϕ̃i(wiF)R
G
Twi
(θi)(x)

=
∑

(w1,...,wk)∈WL1×···×WLk

( k∏
i=1

εGεLi |WLi |−1ϕ̃i(wiF)
) ∑
x∈GF

qg dimCG(x)
k∏
i=1

RGTwi
(θi)(x).

The type of Oi is the GF -conjugacy class of (Li,OLi
i ) where OLi

i is an F -stable
nilpotent orbit of li that corresponds to ϕi via Springer’s correspondence.

For i = 1, . . . , k, let (Li, ηi, ϕi) be a datum defining Fg(XIC•Oi

) as explained in

Remark 6.7.2. Using Theorem 6.7.1 we may proceed as above to get

〈2⊗ Fg(XIC•O1
)⊗ · · · ⊗ Fg(XIC•Ok

), 1〉gF

= |gF |−1
∑

(w1,...,wk)∈WL1×···×WLk

( k∏
i=1

εGεLiq
1
2 dimOi |WLi |−1ϕ̃i(wiF)

)

×
∑
x∈gF

qgn
2+g dimCG(x)

k∏
i=1

R
g
twi
(ηi)(x)

= qgn2−n2+ 1
2
∑
i dimOi

∑
(w1,...,wk)∈WL1×···×WLk

( k∏
i=1

εGεLi |WLi |−1ϕ̃i(wiF)
)

×
∑
x∈gF

qg dimCG(x)
k∏
i=1

R
g
twi
(ηi)(x).

Since dO/2 = gn2 − n2 + 1+ 1
2
∑
i dimOi , we need to see that

(q − 1)
∑
x∈gF

qg dimCG(x)
k∏
i=1

R
g
twi
(ηi)(x) = q

∑
x∈GF

qg dimCG(x)
k∏
i=1

RGTwi
(θi)(x).
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Since the functions RGTwi
(θi) and Rg

twi
(ηi) are constant respectively on conjugacy classes

and adjoint orbits, we need to verify that for a given type ω ∈ Tn,

(q − 1)
∑
x∼ω

k∏
i=1

R
g
twi
(ηi)(x) = q

∑
x∼ω

k∏
i=1

RGTwi
(θi)(x). (6.9.1)

where x ∼ ω means that the G-conjugacy class of x is of type ω. Let (M,C) with M
an F -stable Levi subgroup and C an F -stable nilpotent orbit of m such that the GF -
conjugacy class of (M,C) corresponds to ω as in §6.8. Recall that x ∈ gF is of type
(M,C) if there exists y in the GF -orbit of x such that M = CG(ys) and yn ∈ CF .
Similarly, an element x ∈ GF is of type (M,C) if there exists y in theGF -orbit of x such
that M = CG(ys) and yu − 1 ∈ CF .

Then the proof of (6.9.1) reduces to the proof of the identity

(q − 1)
∑

z∈(zm)Freg

k∏
i=1

R
g
twi
(ηi)(z+ v) = q

∑
z∈(ZM )Freg

k∏
i=1

RGTwi
(θi)(zu)

where v is a fixed element in CF and u = v+ 1. By formulas (6.5.2) and (6.5.4) we have

R
g
twi
(ηi)(z+ v) = |MF |−1

∑
{h∈GF |z∈htwi h−1}

QM
hTwi h

−1(u) ηi(h
−1zh),

RGTwi
(θi)(zu) = |MF |−1

∑
{h∈GF |z∈hTwi h−1}

QM
hTwi h

−1(u) θi(h
−1zh).

Since CG(z) = M , we have {h ∈ GF | z ∈ htwih−1} = {h ∈ GF | hTwih−1 ⊂ M}. Thus

∑
z∈(zm)Freg

k∏
i=1

R
g
twi
(ηi)(z+ v) =

∑
h1,...,hk

( k∏
i=1

|MF |−1QM

hiTwi h
−1
i

(u)
) ∑
z∈(zm)Freg

k∏
i=1

ηi(h
−1
i zhi)

where the first sum runs over the set
∏k
i=1{h ∈ GF | hTwih−1 ⊂ M}. Similarly we have

∑
z∈(ZM )Freg

k∏
i=1

RGTwi
(θi)(zu) =

∑
h1,...,hk

( k∏
i=1

|MF |−1QM

hiTwi h
−1
i

(u)
) ∑
z∈(ZM )Freg

k∏
i=1

θi(h
−1
i zhi).

The inclusion hiTwih
−1
i ⊂ M implies that ZM ⊂ hiTwih

−1
i ⊂ hiLih

−1
i . By Lemma

6.8.4, the character (
∏k
i=1

hiηi)|zm is a generic character of zm and so by Proposition
6.8.3 we have ∑

z∈(zm)Freg

k∏
i=1

ηi(h
−1
i zhi) = qKo

M .
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Similarly, by Proposition 6.8.5 we have

∑
z∈(ZM )Freg

k∏
i=1

θi(h
−1
i zhi) = (q − 1)Ko

M . ut

When the tuples (X1, . . . ,Xk) and (OF
1 , . . . ,O

F
k ) are not generic we do not have such

a nice relation between mulitplicities. For instance, let us choose (X1, . . . ,Xk) and
(OF

1 , . . . ,O
F
k ) to be respectively unipotent and nilpotent of the same type. With the no-

tation in the proof of the theorem we have Li = G for all i and the linear characters ηi
and θi are the trivial characters. Then

∑
z∈(zm)Freg

k∏
i=1

ηi(h
−1
i zhi) = |(zm)Freg|,

∑
z∈(ZM )Freg

k∏
i=1

θi(h
−1
i zhi) = |(ZM)Freg|.

Hence, unlike the generic case, the relation between these two terms involves the rational
function |(zm)Freg|/|(ZM)Freg| which depends on M . The independence from M is crucial
as we obtain the multiplicities by summing over M .

6.10. Multiplicities and symmetric functions

6.10.1. Definitions. Consider k separate sets x1, . . . , xk of infinitely many variables and
denote by 3k := Q(q) ⊗Z 3(x1) ⊗Z · · · ⊗Z 3(xk) the ring of functions separately
symmetric in each set x1, . . . , xk with coefficients in Q(q) where q is an indeterminate.
On 3(xi) consider the Hall pairing 〈 , 〉i that makes the set {mλ(xi)}λ∈P of monomial
symmetric functions and the set {hλ(xi)}λ∈P of complete symmetric functions dual bases.
On 3k , put 〈 , 〉 =∏i〈 , 〉i . Consider

ψn : 3k[[T ]] → 3k[[T ]], f (x1, . . . , xk; q, T ) 7→ f (xn1, . . . , xnk ; qn, T n)
where we denote by xd the set of variables {xd1 , xd2 , . . . }. The ψn are called the Adams
operations.

Define 9 : T3k[[T ]] → T3k[[T ]] by

9(f ) =
∑
n≥1

ψn(f )

n
.

Its inverse is given by

9−1(f ) =
∑
n≥1

µ(n)
ψn(f )

n

where µ is the ordinary Möbius function.
Following Getzler [15] we define Log : 1 + T3k[[T ]] → T3k[[T ]] and its inverse

Exp : T3k[[T ]] → 1+3k[[T ]] as

Log(f ) = 9−1(log(f )) and Exp(f ) = exp(9(f )).
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6.10.2. Cauchy function. For an infinite set x of variable, the transformed Hall–Little-
wood symmetric function H̃λ(x, q) ∈ 3(x)⊗Z Q(q) is defined as

H̃λ(x, q) :=
∑
λ

K̃νλ(q)sν(x)

where K̃νλ(q) = qn(λ)Kνλ(q−1) is the transformed Kostka polynomial [42, III (7.11)].
For a partition λ, put

Hλ(q) := qg〈λ,λ〉/aλ(q)
where aλ(q) denotes the cardinality of the centralizer of a unipotent element of GLn(Fq)
with Jordan form of type λ [42, IV, (2.7)]. Define the k-points Cauchy function

�(q) :=
∑
λ∈P

( k∏
i=1

H̃λ(xi, q)
)
Hλ(q)T

|λ|.

It lies in 1+ T3k[[T ]]. These functions were considered by Garsia and Haiman [14].
Given a family of symmetric functions uλ(x, q) indexed by partitions, we extend its

definition to a type ω = (d1, ω
1) · · · (dr , ωr) ∈ Tn by uω(x, q) :=∏r

i=1 uωi (x
di , qdi ).

For a multitype ω = (ω1, . . . , ωk) ∈ (Tn)k , put uω := uω1(x1, q) · · · uωk (xk, q)
∈ 3k .

Recall that λ′ denotes the dual partition of λ. For a type ω = (d1, λ1) · · · (dr , λr), we
denote by ω′ the type (d1, λ

′
1) · · · (dr , λ′r).

Let ω = (ω1, . . . , ωk) ∈ (Tn)k with ωi = (d i1, ω1
i ) · · · (d iri , ωrii ) and define

Hω(q) := (−1)r(ω)(q − 1)〈sω′ ,Log(�(q))〉 (6.10.1)

where r(ω) := kn+∑i,j |ωji | and where 〈sω′ ,Log(�(q))〉 is the Hall pairing of sω′ with

the coefficient of Log(�(q)) in T n. Note that if the degrees dji are all equal to 1, then
r(ω) = 2kn.

We rewrite (6.10.1) in some special cases:

6.10.3. The split semisimple case. We say thatω ∈ Tn is a semisimple type if it is the type
of a semisimple adjoint orbit of gFn (or equivalently the type of a semisimple character
ofGF ). It is then of the form (d1, (1n1)) · · · (dr , (1nr )). If moreover ω is split, i.e., di = 1
for all i, then λ = (n1, . . . , nr) is a partition of n and any partition of n is obtained in this
way from a unique split semisimple type of Tn. Note that for a split semisimple type ω
with the corresponding partition λ, we have sω′(x) = hλ(x).

For a multipartition λ = (λ1, . . . , λk) ∈ (Pn)k with corresponding split semisimple
multitype ω ∈ (Tn)k we put Hss

λ (q) := Hω(q). Then (6.10.1) reads

Hss
λ (q) = (q − 1)〈hλ,Log(�(q))〉.

Since {hλ} and {mλ} are dual bases with respect to the Hall pairing, we may recover
�(q) from Hss

λ (q) by the formula

�(q) = Exp
(∑
n≥1

∑
λ∈(Pn)k

Hss
λ (q)

q − 1
mλT

n

)
. (6.10.2)
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6.10.4. The nilpotent case. We say that a type ω ∈ Tn is nilpotent if it is the type of a
nilpotent adjoint orbit of gF (or the type of a unipotent character of GF ), in which case it
is of the form ω = (1, λ) for some partition λ of n, and sω(x) = sλ(x).

For a multipartition λ = (λ1, . . . , λk) ∈ (Pn)k , we put Hnλ(q) := Hω(q), where
ω = ((1, λ1), . . . , (1, λk)).

Since the base {sλ}λ∈P is self-dual, we recover �(q) from the Hnλ(q) by the formula

�(q) = Exp
(∑
n≥1

∑
λ∈(Pn)k

Hn
λ′(q)

q − 1
sλT

n

)
. (6.10.3)

6.10.5. The regular semisimple case. We say that a type ω ∈ Tn is semisimple regular
if it is the type of a semisimple regular adjoint orbit of GF (or the type of an irreducible
Deligne–Lusztig character, see §6.6). Then it is of the form ω = (d1, 1) · · · (dr , 1) and so
λ = (d1, . . . , dr) is a partition of n. In this case, the function sω(x) is the power symmetric
function pλ(x).

For a multipartition λ with the corresponding regular semisimple multitype ω, we use
the notation Hrss

λ (q) and r(λ) instead of Hω(q) and r(ω).
Recall that for any two partitions λ,µ, we have 〈pλ(x), pµ(x)〉 = zλδλµ.
Then we recover �(q) from Hrss

λ (q) by the formula

�(q) = Exp
(∑
n≥1

∑
λ∈(Pn)k

(−1)r(λ)Hrss
λ (q)

(q − 1)zλ
pλT

n

)
. (6.10.4)

6.10.6. Multiplicities. Let (X1, . . . ,Xk) be a generic tuple of irreducible characters
of GF of type ω = (ω1, . . . , ωk) ∈ (Tn)k .
Theorem 6.10.1. We have

〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉GF = Hω(q).

If the irreducible characters X1, . . . ,Xk are all split semisimple with the corresponding
multipartition µ ∈ (Pn)k , then Hω(q) = (q − 1)〈hµ,Log(�(q))〉 by §6.10.3. Hence in
the split semisimple case, this theorem is exactly [18, Theorem 6.1.1].

Since the main ingredient [18, Theorem 4.3.1(2)] in the proof of [18, Theorem 6.1.1]
is available for any type ω ∈ Tn, we may follow line by line the proof of [18, Theo-
rem 7.1.1] for arbitrary types (not necessarily split semisimple) to obtain the formula of
Theorem 6.10.1.

Remark 6.10.2. The theorem shows that the multiplicities of generic irreducible charac-
ters depend only on the types and not on the choices of irreducible characters of a given
type. Note that Hω(q) is clearly a rational function in q with rational coefficients. On the
other hand by Theorem 6.10.1, it is also an integer for infinitely many values of q. Hence
Hω(q) is a polynomial in q with rational coefficients.
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7. Poincaré polynomials of quiver varieties and multiplicities

Unless otherwise specified K is an arbitrary algebraically closed field. For i = 1, . . . , k
let Li, Pi, σi, Ci, 6i,Oi be as in §5.3. Put Mi := CGLn(σi) and M := M1 × · · · ×Mk .
We assume that (O1, . . . ,Ok) is generic.

7.1. Decomposition theorem and Weyl group action

Let ρ : VL,P,6 → VO and p : OL,P,6 → O be the canonical projective maps (see
diagram (5.3.1)). For an irreducible character χ = χ1 ⊗ · · · ⊗ χk of the Weyl group
WM = WM1 × · · · ×WMk

we put Oχ = (gln)2g ×Oχ1 × · · · ×Oχk where for each i =
1, . . . , k, Oχi is the unique adjoint orbit contained in Oi corresponding to the character χi
via the Springer correspondence C.

By Proposition 6.4.1, we have

p∗(IC•OL,P,6
) ' IC•O ⊕

( ⊕
χ∈(IrrWM)∗

Aχ ⊗ IC•Oχ

)
(7.1.1)

where (IrrWM)
∗ := (IrrWM)− {χo} and

Aχ = HomWM(IndWM
WL
(VC), Vχ )

with VC :=
⊗

i VCi .

Proposition 7.1.1. We have

(ρ/PGLn)∗(IC•QL,P,6
) ' IC•QO

⊕
( ⊕
χ∈(IrrWM)∗

Aχ ⊗ IC•QOχ

)
. (7.1.2)

The action ofWM(L,C) on theAχ ’s (see §6.4) thus induces an action ofWM(L,C) on the
complex (ρ/PGLn)∗(IC•QL,P,6

) and so on the hypercohomology Hic(QL,P,6, IC•QL,P,6
) =

IHi
c(QL,P,6, κ). For v ∈ WM(L,C), we denote by θv : (ρ/PGLn)∗(IC•QL,P,6

) '
(ρ/PGLn)∗(IC•QL,P,6

) the corresponding automorphism.

Proof of Proposition 7.1.1. By applying the proper base change to the top right square of
the diagram (5.3.1), it follows from the isomorphism (7.1.1) and Theorem 5.4.1 that

ρ∗(IC•VL,P,6
) ' IC•VO

⊕
( ⊕
χ∈(IrrWM)∗

Aχ ⊗ IC•VOχ

)
. (7.1.3)

Since the quotient maps p1 : VL,P,6 → QL,P,6 and p2 : VO → QO are
principal PGLn-bundles, they are smooth and so we have (p2)

∗(IC•QO
) ' IC•VO

and
(p1)

∗(IC•QL,P,6
) ' IC•VL,P,6

. Applying the decomposition theorem to ρ/PGLn (Theo-
rem 3.1.2) and the base change theorem we see that if IC•Z,ζ [r] is a direct summand
of (ρ/PGLn)∗(IC•QL,P,6

) then (p2)
∗(IC•Z,ζ ) = IC•

p−1
2 (Z),(p2)∗(ζ )

is (up to a shift) a direct

summand of ρ∗(IC•VL,P,6
) and so we must have Z = QOχ

for some χ and ζ = κ . It
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is also clear that IC•QOχ
appears in (ρ/PGLn)∗(IC•QL,P,6

) with the same multiplicity as

IC•VOχ
in ρ∗(IC•VL,P,6

). ut
Recall that dO denotes the dimension of QO. Put rχ = (dOχ

− dO)/2. When (L,P, 6) is
defined over Fq , Proposition 7.1.1 can be made more precise as follows.

Proposition 7.1.2. If K = Fq and if (L,P, 6) is defined over Fq , then the isomorphism

(ρ/PGLn)∗(IC•QL,P,6
) ' IC•QO

⊕
( ⊕
χ∈(IrrWM)∗

Aχ ⊗ IC•QOχ
(rχ )

)
.

is defined over Fq . In particular for v ∈ WM(L,C), we have

X(ρ/PGLn )∗(IC•QL,P,6
),θv◦ϕ̃ = XIC•QO

+
∑

χ∈(IrrWM)∗
Tr(v | Aχ )q−rτ̃ XIC•QOχ

(7.1.4)

where ϕ̃ : F ∗(π∗(IC•VL,P,6
)) ' π∗(IC•VL,P,6

) is the canonical isomorphism induced by
the unique isomorphism ϕ : F ∗(IC•QL,P,6

) ' IC•QL,P,6
which induces the identity on

H−dO
x (IC•QL,P,6

) when x ∈ QoL,P,6(Fq).

Proof. This follows from the last assertion of Proposition 5.3.1 and the discussion at the
end of §6.4. ut
We can proceed as in Göttsche and Soergel [16] to prove the following proposition from
the mixed Hodge module version of the isomorphism (7.1.2).

Proposition 7.1.3. Assume K = C. Then

IHi
c(QL,P,6,Q) ' IHi

c(QO,Q)⊕
( ⊕
χ∈(IrrWM)∗

Aχ ⊗ (IHi+2rχ
c (QOχ

,Q)⊗Q(rχ ))
)

(7.1.5)
is an isomorphism of mixed Hodge structures.

7.2. A lemma

Assume that K = Fq . Recall that F : gln → gln denotes the standard Frobenius endo-
morphism so that (gln)F = gln(Fq).

Assume that (O1, . . . ,Ok) is F -stable. We do not assume that the eigenvalues of the
adjoint orbits Oi are in Fq .

Lemma 7.2.1. We have

|PGLn(Fq)|
∑

x∈QO(Fq )
XIC•QO

(x) =
∑

x∈VO(Fq )
XIC•VO

(x)

= 〈2⊗ Fgln(XIC•O1
)⊗ · · · ⊗ Fgln(XIC•Ok

), 1〉gln(Fq )

where 2 : gln(Fq)→ κ , x 7→ qgn
2+g dimCGLn (x).
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Proof. We continue to denote by F the induced Frobenius endomorphism on VO. We will
write VFO instead of VO(Fq). Let q : VO → QO be the quotient map. Since PGLn(Fq)
acts freely on VO, it induces an injective map VFO/PGLn(Fq) → QF

O. Since PGLn(Fq)
is connected, any F -stable orbit of VO has a rational point. Hence the above map is
also surjective. As q is a principal PGLn-bundle we have q∗(IC•QO

) ' IC•VO
and so

XIC•VO
(x) = XIC•QO

(y) whenever q(x) = y. We thus deduce the first equality.
If i : VO ↪→ O denotes the inclusion, then by Proposition 5.4.3 we have IC•VO

=
i∗(IC•O) = i∗(κ� 2g � IC•O1

� · · · � IC•Ok
) where κ is the constant sheaf on GLn and

κ� 2g := κ � · · · � κ (2g times). Hence for x = (a1, b1, . . . , ag, bg, x1, . . . , xk) ∈ VFO ,
we have

XIC•VO
(x) = XIC•O1

(x1) · · ·XIC•Ok

(xk).

For z ∈ glFn , put

4(z) := ]
{
(a1, b1, . . . , ag, bg) ∈ (glFn )2g

∣∣∣ ∑
i

[ai, bi] = z
}
.

Hence∑
x∈VFO

XIC•VO
(x) =

∑
(x1,...,xk)∈ (O1×···×Ok)

F

4(−(x1+· · ·+xk))XIC•O1
(x1) · · ·XIC•Ok

(xk)

= (4∗XIC•O1
∗· · ·∗XIC•Ok

)(0).

By (6.5.3) we have
|glFn | · f (0) =

∑
x∈glFn

Fgln(f )(x)

for any f ∈ Fun(glFn ). We deduce that∑
x∈VFO

XIC•VO
(x) = |glFn |−1

∑
x∈glFn

Fgln(4)(x)Fgln(XIC•O1
)(x) · · ·Fgln(XIC•Ok

)(x).

= 〈Fgln(4)⊗ Fgln(XIC•O1
)⊗ · · · ⊗ Fgln(XIC•Ok

), 1〉glFn
It remains to see that Fgln(4) = 2.

For x ∈ glFn , we have

Fgln(4)(x) =
∑
y

9(µ(x, y))4(y) =
∑

(a1,b1,...,ag,bg)∈ (glFn )2g
9
(
µ
(
x,

g∑
i=1

[ai, bi]
))

=
∑

(a1,b1,...,ag,bg)∈ (glFn )2g

g∏
i=1

9(µ(x, [ai, bi])) =
( ∑
a,b∈glFn

9(µ(x, [a, b]))
)g

=
( ∑
a∈glFn

∑
b∈glFn

9(µ([x, a], b))
)g = (|Cgln(x)

F | · |glFn |)g = 2(x). ut
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Proposition 7.2.2. Assume that 6 is a reduced to a point and that (L,P, 6) is defined
over Fq . The varieties VL,P,6 and QL,P,6 are polynomial count. Moreover,

|QL,P,6(Fq)| = |VL,P,6(Fq)|/|PGLn(Fq)|.
Proof. The second assertion follows from the fact that PGLn is connected and acts freely
on VL,P,6 (see beginning of the proof of Lemma 7.2.1).

We only prove the first assertion for QL,P,6 as the proof for VL,P,6 will be similar.
Since 6 is a point we have QL,P,6 = QoL,P,6 and so the variety QL,P,6 is non-singular
by Corollary 5.3.8. Hence IC•QL,P,6

is the constant sheaf κ concentrated in degree 0. By
(7.1.4) applied with v = 1, we thus have

X(ρ/PGLn )∗(κ) = XIC•QO
+

∑
χ∈(IrrWM)∗

(dimAχ )q
−rχXIC•QOχ

. (7.2.1)

By Grothendieck’s trace formula we have∑
x∈QF

O

X(ρ/PGLn )∗(κ)(x) = |QL,P,6(Fq)|.

By Lemma 7.2.1, Theorem 6.9.1 and Theorem 6.10.1, there exists a rational function
Q ∈ Q(T ) such that for any r ∈ Z>0,∑

x∈QFr

O

XIC•QO
(x) = Q(qr).

By integrating (7.2.1) over QF
O, we deduce that

|QL,P,6(Fqr )| = P(qr)
for some P ∈ Q(T ). Since P(qr) is an integer for all r ∈ Z>0, the rational function P
must be a polynomial with rational coefficients. ut

7.3. The split case

In order to use Theorem 4.1.5 we assume that K = C. As in [18, Appendix 7.1], we may
define a finitely generated ring extensionR ofZ and a k-tuple ofR-schemes (O1, . . . ,Ok)

such that Oi is a spreading out of Oi and for any ring homomorphism ϕ : R → Fq
into a finite field Fq , the tuple (Oϕ

1 (Fq), . . . ,O
ϕ
k (Fq)) is a generic tuple of adjoint or-

bits of gln(Fq) of the same type as (O1, . . . ,Ok). Denote by VO the R-scheme defined
from (O1, . . . ,Ok) as VO was defined from (O1, . . . ,Ok) (in the semisimple case this is
written in detail in [18, Appendix A]), and let QO be the affine quotient BO//PGLn. Then
VO is a spreading out of VO. Recall (see for instance Crawley-Boevey and Van den Bergh
[9, Appendix B]) that the standard constructions of GIT quotients are compatible with
base change for R sufficiently “large”, namely in our case we have Qϕ

O = V
ϕ

O//PGLn for
any ring homomorphism ϕ : R→ k into a field k.
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Theorem 7.3.1. The cohomology group IHi
c(QO,C) vanishes if i is odd. For any ring

homomorphism ϕ : R→ Fq we have

Pc(QO, q) =
∑

x∈Qϕ
O(Fq )

XIC•
Q
ϕ
O(Fq )

(x)

where Pc(X, q) :=∑i dim(IH2i
c (X,C))qi .

Theorem 7.3.2. If not empty, the variety QO is pure.

Proof. Let θ be generic with respect to vO. Since QO 6= ∅, by Theorem 5.2.6, we have
Qo

O 6= ∅ and so Ms
ξO
(vO) ' Qo

O is also not empty. The canonical projective map
MξO,θ (vO) → QO is then a resolution of singularities by Theorem 4.1.4 and so the
group IHi

c(QO,C) is a direct summand of H i
c (MξO,θ (vO),C) as a mixed Hodge struc-

ture. By Theorem 4.1.5, the variety MξO,θ (vO) is pure, hence so is QO. ut
Proof of Theorem 7.3.1. By §7.1 and Proposition 7.2.2, the variety QO satisfies the con-
dition of Theorem 3.3.2. Hence the theorem follows from Proposition 3.3.3 and Theorem
7.3.2. ut
Letm : T̃n→ Tn send ω̃ = ω1 · · ·ωr ∈ T̃n to (1, ω1) · · · (1, ωr) ∈ Tn, and denote bymk

the map (m, . . . , m) : (T̃n)k → (Tn)k .
Recall (see §6.8) that a generic tuple of irreducible characters of GLn(Fq) of a given

type ω ∈ (Tn)k always exists assuming that char(Fq) and q are large enough.
We have the following relation between multiplicities and Poincaré polynomials of

quiver varieties.

Theorem 7.3.3. Let ω̃ be the type of (O1, . . . ,Ok) and let Fq be a finite field such that
there exists a ring homomorphism R → Fq . Then for any generic tuple (X1, . . . ,Xk) of
irreducible characters of GLn(Fq) of type mk(ω̃) we have

Pc(QO, q) = qdO/2〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉.
Remark 7.3.4. In the above theorem the existence of a ring homomorphism R → Fq
guarantees the existence of a generic tuple of irreducible characters of GLn(Fq).

Proof of Theorem 7.3.3. Fix a ring homomorphism ϕ : R→ Fq . To ease the notation we
use Oi instead of Oϕ

i (Fq). From Theorem 7.3.1 and Lemma 7.2.1, we have

Pc(QO, q) = 1
|PGLn(Fq)| 〈2⊗ Fgln(XIC•

O1
)⊗ · · · ⊗ Fgln(XIC•

Ok

), 1〉.

Hence Theorem 7.3.3 follows from Theorem 6.9.1. ut
From the above theorem and Theorem 6.10.1 we deduce the following result.

Corollary 7.3.5. Assume that (O1, . . . ,Ok) is of type ω̃ ∈ (T̃n)k . Then

Pc(QO, q) = qdO/2Hmk(ω̃)(q).
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7.4. The general case

Here K = C. Fix w ∈ WM(L,C) and put

Pw
c (QL,P,6; q) :=

∑
i

Tr(w | IH2i
c (QL,P,6,C))qi .

We now explain how to associate a multitype ω = (ω1, . . . , ωk) ∈ (Tn)k to the triple
(L,C,w).

Let wi be the coordinate of w in WMi
(Li, Ci). In §4.3.2 we showed how to associate

to (Li, Ci) a type ω̃i ∈ T̃n. Write

ω̃i = ω1
i · · ·ω1

i︸ ︷︷ ︸
di,1

ω2
i · · ·ω2

i︸ ︷︷ ︸
di,2

· · ·ωrii · · ·ωrii︸ ︷︷ ︸
di,ri

with ωji 6= ωsi if j 6= s. The groupWGLn(Li, Ci) is then isomorphic toWω̃i =
∏ri
j=1 Sdi,j

and so the conjugacy classes of WGLn(Li, Ci) are in bijection with H−1(ω̃i) ⊂ Tn (see
§4.3.1). Hence to wi ∈ WMi

(Li, Ci) ⊂ WGLn(Li, Ci) corresponds a unique element in
H−1(ω̃i) which we denote by ωi .

7.4.1. The main theorem. Let R be the finitely generated ring extension of Z considered
in §7.3. The main theorem of the paper is the following.

Theorem 7.4.1. Let Fq be a finite field such that there exists a ring homomorphism
R → Fq . Let (X1, . . . ,Xk) be a generic tuple of irreducible characters of GLn(Fq)
of type ω. Then

Pw
c (QL,P,6; q) = qdO/2〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉.

Remark 7.4.2. Assume that w = 1, i.e., the degrees of the types ωi are all equal to 1. By
Theorem 7.3.3, we have

Pc(QS; q) = qdS/2〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉

where S = (gln)2g × S1 × · · · × Sk with (S1, . . . , Sk) a generic tuple of adjoint orbits of
gln of type ω̃. Hence by Theorem 7.4.1 we have

Pc(QL,P,6; q) = Pc(QS; q).

From Theorem 6.10.1 we deduce the following identity.

Corollary 7.4.3.
Pw
c (QL,P,6; q) = qdO/2Hω(q).
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7.4.2. Proof of Theorem 7.4.1. By (7.1.5) we have

Pw
c (QL,P,6; q) = Pc(QO; q)+

∑
χ∈(IrrWM)∗

Tr(w | Aχ )q−r(χ)Pc(QOχ
; q). (7.4.1)

To alleviate the notation, for each τ ∈ (Tn)k we choose a generic tuple (X1, . . . ,Xk) of
irreducible characters of type τ and we put Rτ := X1⊗· · ·⊗Xk . For τ̃ ∈ (T̃n)k we write
Rτ̃ instead of Rmk(τ̃ ).

Now for each irreducible character χ of WM we denote by τ̃χ the type of Oχ and we
denote simply by τ̃ the type of O. By Theorem 7.3.3 we have

Pc(QOχ
; q) = qdOχ /2〈3⊗ Rτ̃χ , 1〉.

Hence we are reduced to proving the identity

〈3⊗ Rω〉 = 〈3⊗ Rτ̃ 〉 +
∑

χ∈(IrrWM)∗
Tr(w | Aχ )〈3⊗ Rτ̃χ , 1〉.

By Theorem 6.10.1 we need to see that

Hω(q) = Hτ̃ (q)+
∑

χ∈(IrrWM)∗
Tr(w | Aχ )Hτ̃χ (q) (7.4.2)

where Hτ̃ (q) := Hmk(τ̃ )(q).
From the definition of Hω(q) (cf. (6.10.1)) we are reduced to the following problem

on Schur functions {sω(x)}ω∈Tn :
Let L,C,M,O, Aχ be as in §6.4. For χ ∈ IrrWM , denote by τ̃χ ∈ T̃n the type of Oχ

(with the convention that τ̃1 = τ̃ ). Let ω̃ ∈ T̃n be the type associated to (L,C). Fix
w ∈ WM(L,C) and let ω ∈ H−1(ω̃) ∈ Tn be the type corresponding to (L,C,w). To
prove (7.4.2) it is enough to prove the identity

(−1)r(ω)sω′(x) = sτ̃ ′(x)+
∑

χ∈(IrrWM )∗
Tr(w | Aχ )sτ̃ ′χ (x) (7.4.3)

where for ν̃ = ν1 · · · νr ∈ T̃n, sν̃(x) := sν1(x) · · · sνr (x) and where r(ω) = n+∑i |ωi |.
We now explain how to get (7.4.3) from Proposition 6.2.5.
We may assume that L =∏r

j=1(GLnj,1 × · · ·×GLnj,sj ) so thatM =∏r
i=1 GLmi and

GLnj,1 × · · · × GLnj,sj ⊂ GLmj . Then the nilpotent orbit C may be written as

C =
r∏

j=1

(Cj,1 × · · · × Cj,sj )

with Cj,l a nilpotent orbit of glnj,l . Let ωj,l be the partition of nj,l given by the size of the
Jordan blocks of Cj,l , and for each j = 1, . . . , r , let ω̃j ∈ T̃mj be the type given by the
collection {ωj,l}l=1,...,sj . Then

WM(L,C) '
r∏

j=1

Wω̃j . (7.4.4)

Consider the map F̃r : T̃m1 × · · · × T̃mr → T̃n where F̃r(µ̃1, . . . , µ̃r) is defined by
reordering the partitions in the concatenation of the types µ̃1, . . . , µ̃r .
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Example 7.4.4. Consider the lexicographic ordering on partitions. Then the image of
((3, 2, 1)(2, 1), (3, 1)) under F̃2 : T̃9 × T̃4 → T̃13 is (3, 2, 1)(3, 1)(2, 1).

Similarly we define Fr : Tm1 × · · · × Tmr → Tn.
We denote by S : T̃→ P the map which assigns to a type λ1 · · · λr ∈ T̃ the partition∑r
i=1 λ

i .
Consider the commutative diagram

Tm1 × · · · × Tmr
Hr
//

Fr

��

T̃m1 × · · · × T̃mr
Sr //

F̃r
��

Pm1 × · · · × Pmr

Tn
H // T̃n

Note that ω̃ = F̃r(ω̃1, . . . , ω̃r). Let wj be the coordinate of w ∈ WM(L,C) in
Wω̃j . The element wj defines a unique element ωj ∈ H−1(ν̃j ) ⊂ Tmi . Then ω =
Fr(ω1, . . . , ωr) and so

sω(x) = sω1(x) · · · sωk (x). (7.4.5)

For each i = 1, . . . , r , put τ i = S(ω̃i) ∈ Pmi . Note that the collection of the partitions
τ 1, . . . , τ r gives the type τ̃ of O.

Now for each i = 1, . . . , r , we have

sωi (x) =
∑
λEτ i

cλωi sλ(x)

and so
sω(x) =

∑
(λ1,...,λr )E(τ 1,...τ r )

(∏
i

cλ
i

ωi

)
sλ1(x) · · · sλr (x)

where (λ1, . . . , λr) E (τ 1, . . . τ r) means that λi E τ i for all i = 1, . . . , r . Note that the
set of sequences (λ1, . . . , λr) such that (λ1, . . . , λr) E (τ 1, . . . τ r) is in bijection with
the set {τ̃χ | χ ∈ IrrWM(L,C)}. The bijection associates to a sequence (λ1, . . . , λr)

the unique type given by the collection of partitions λ1, . . . , λr . Moreover if (λ1, . . . , λr)

corresponds to χ , we have
∏
i c
λi

ωi
= Tr(w | Aχ ) by Proposition 6.2.5, hence

sω(x) =
∑

χ∈IrrWM

Tr(w | Aχ )sτ̃χ (x) = sτ̃ (x)+
∑

χ∈(IrrWM )∗
Tr(w | Aχ )sτ̃χ (x),

from which we deduce our formula (7.4.3).

7.4.3. Application to multiplicities in tensor products. Assume that (X1, . . . ,Xk) is a
generic tuple of irreducible characters of type ω. Theorem 7.4.1 has the following conse-
quences.



Quiver varieties and the character ring of general linear groups 1453

Theorem 7.4.5. (a) The multiplicity 〈3⊗X1⊗· · ·⊗Xk, 1〉 is a polynomial in q of degree
dO/2 with integer coefficients (with the convention that dO = −∞ if QO = ∅). If
moreover the degrees of the characters X1, . . . ,Xk are all split, then the coefficients
of that polynomial are positive.

(b) The coefficient of qdO/2 in 〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉 equals 1.
(c) 〈3 ⊗ X1 ⊗ · · · ⊗ Xk, 1〉 6= 0 if and only if vO ∈ 8(0O). If g = 0, then vO is a real

root if and only if 〈X1 ⊗ · · · ⊗ Xk, 1〉 = 1.
(d) If g ≥ 1, we always have 〈3⊗ X1 ⊗ · · · ⊗ Xk, 1〉 6= 0.

Proof. Let us first see that if QO 6= ∅ then dim IH2dO
c (QO,C) = 1. Consider a resolution

QL̂,P̂,{σ } → QO. It is clear from (7.4.1) applied to L̂, P̂, {σ } instead of L,P, 6 that

dimH
2dO
c (QL̂,P̂,{σ },C) = dim IH2dO

c (QO,C). But QL̂,P̂,{σ } is irreducible by Theorem

5.3.7 and so dimH
2dO
c (QL̂,P̂,{σ },C) = 1.

It is thus clear from (7.4.1) that Pw
c (QL,P,6; q) is a polynomial in q of degree dO with

integer coefficients and that the coefficient of qdO is equal to 1. It is also clear that if w =
1, then the coefficients are positive. Hence q−dO/2Pw

c (QL,P,6; q) = 〈3⊗X1⊗· · ·⊗Xk, 1〉
satisfies the assertions (a) and (b) of the theorem.

From what we just said it is clear that 〈3 ⊗ X1 ⊗ · · · ⊗ Xk, 1〉 6= 0 if and only if
QO 6= ∅. Hence the assertion (c) follows from Theorem 5.2.6 and Proposition 5.2.11.

Finally, (d) follows from (c) and Proposition 5.2.9. ut
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Zbl 0576.14046 MR 0737927
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non ramifiés. Astérisque 269 (2001) Zbl 0965.22012 MR 1817880
[54] Yamakawa, D.: Geometry of multiplicative preprojective algebra. Int. Math. Res. Papers 2008,

art. ID rpn008, 77 pp. Zbl 1197.16019 MR 2470573

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0854.20061&format=complete
http://www.ams.org/mathscinet-getitem?mr=1322953
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1105.20035&format=complete
http://www.ams.org/mathscinet-getitem?mr=2149636
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1076.43001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2114404
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05555301&format=complete
http://www.ams.org/mathscinet-getitem?mr=2498257
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0473.20029&format=complete
http://www.ams.org/mathscinet-getitem?mr=0641425
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0371.20039&format=complete
http://www.ams.org/mathscinet-getitem?mr=0419635
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0547.20032&format=complete
http://www.ams.org/mathscinet-getitem?mr=0732546
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0586.20018&format=complete
http://www.ams.org/mathscinet-getitem?mr=0792706
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0603.20037&format=complete
http://www.ams.org/mathscinet-getitem?mr=0865898
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0654.20047&format=complete
http://www.ams.org/mathscinet-getitem?mr=0911139
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0384.20008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0453886
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0824.05059&format=complete
http://www.ams.org/mathscinet-getitem?mr=1354144
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0797.14004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1304906
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0826.17026&format=complete
http://www.ams.org/mathscinet-getitem?mr=1302318
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0970.17017&format=complete
http://www.ams.org/mathscinet-getitem?mr=1604167
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0981.17016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1808477
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1241.17028&format=complete
http://www.ams.org/mathscinet-getitem?mr=2470410
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1138.14002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2393625
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1043.17010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1974891
http://arxiv.org/abs/0912.3130
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0727.14004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1047415
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0374.20054&format=complete
http://www.ams.org/mathscinet-getitem?mr=0442103
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0965.22012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1817880
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1197.16019&format=complete
http://www.ams.org/mathscinet-getitem?mr=2470573

	Introduction
	Decomposing tensor products of irreducible characters
	Quiver varieties
	Character varieties: A conjecture

	Preliminaries on geometric invariant theory
	GIT quotients
	Particular case: Affine varieties

	Intersection cohomology
	Generalities and notation
	Restriction
	E-polynomial

	Preliminaries on quiver varieties
	Generalities on quiver varieties
	Nakajima's framed quiver varieties
	Quiver varieties of type A

	Comet-shaped quiver varieties
	Generic tuples of adjoint orbits
	Affine comet-shaped quiver varieties
	General comet-shaped quiver varieties
	A restriction property

	Characters and Fourier transforms
	Preliminaries on finite groups
	Littlewood–Richardson coefficients
	Rational Levi subgroups and Weyl groups
	Springer correspondence for relative Weyl groups
	Deligne–Lusztig induction and Fourier transforms
	Characters of finite general linear groups
	Fourier transforms of orbital simple perverse sheaves
	Generic characters and generic orbits
	Multiplicities in tensor products
	Multiplicities and symmetric functions

	Poincaré polynomials of quiver varieties and multiplicities
	Decomposition theorem and Weyl group action
	A lemma
	The split case
	The general case

	References

