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Abstract. Given a tuple (X7, ..., Ay) of irreducible characters of GL,(IF;) we define a star-
shaped quiver I' together with a dimension vector v. Assume that (X, ..., X}) is generic. Our
first result is a formula which expresses the multiplicity of the trivial character in the tensor product
X1 ® --- ® X as the trace of the action of some Weyl group on the intersection cohomology of
some (non-affine) quiver varieties associated to (I', v). The existence of such a quiver variety is
subject to some condition. Assuming that this condition is satisfied, we prove our second result:
The multiplicity (X} ® - - - ® Xk, 1) is non-zero if and only if v is a root of the Kac—Moody algebra
associated with I'. This is somewhat similar to the connection between Horn’s problem and the
representation theory of GL;, (C) [28, Section 8].

Contents
1. Introduction . . . . . . . . . . . .. 1376
1.1. Decomposing tensor products of irreducible characters . . . . . ... ... ... 1376
1.2, Quiver varieties . . . . . . . . . . e e e e e e e e 1378
1.3. Character varieties: A conjecture . . . . . . . . . .. .o oo oo e e 1382
2. Preliminaries on geometric invariant theory . . . . . . ... ... ... ... 1385
2.1 GITquotients . . . . . . . oottt e e e e e e e e e 1385
2.2. Particular case: Affine varieties . . . . . . ... ... oL 1387
3. Intersection cohomology . . . . .. . ... ... .. ... 1388
3.1. Generalities and notation . . . . . . . . ... ... 1388
32, Restriction . . . . . . ... 1392
33. E-polynomial . . . ... ... ... .. 1393
4. Preliminaries on quiver varieties . . . . . . . . . . ..o oo e e e e e e e e e 1396
4.1. Generalities on quiver varieties . . . . . . . . . ... ... 1396
4.2. Nakajima’s framed quiver varieties . . . . . . . . ... ... ... 1399
4.3. Quiver varietiesof type A . . . . . . ... L 1401
5. Comet-shaped quiver varieties . . . . . . . . . . ... o oo e 1412
5.1. Generic tuples of adjoint orbits . . . . . . . ... ... 1412
5.2. Affine comet-shaped quiver varieties . . . . . . . ... ... oo 1413
5.3. General comet-shaped quiver varieties . . . . . ... ... ... ... ... ... 1418
54, Arestriction property . . . . . . ... o oo e e e e e e e e e e e e e 1423
6. Characters and Fourier transforms . . . . . . .. .. ... .. ... L. 1424
6.1. Preliminaries on finite groups . . . . . . . .. ..o oo e oo e 1424

E. Letellier: Laboratoire de Mathématiques, Nicolas Oresme/CNRS UMR 61 39,
Université de Caen Basse-Normandie, BP 5186, F 14032 Caen Cedex, France;
e-mail: letellier.emmanuel @ math.unicaen.fr



1376 Emmanuel Letellier

6.2. Littlewood—Richardson coefficients . . . . . ... ... ... ... ... ..., 1426
6.3. Rational Levi subgroups and Weyl groups . . . . . . ... ... ... ...... 1428
6.4. Springer correspondence for relative Weyl groups . . . . . . . ... ... 1429
6.5. Deligne-Lusztig induction and Fourier transforms . . . . . . . .. .. ... ... 1431
6.6. Characters of finite general linear groups . . . . . . . . ... ... ... 1434
6.7. Fourier transforms of orbital simple perverse sheaves . . . . . . ... ... ... 1435
6.8. Generic characters and genericorbits . . . . . . .. ... .o 1437
6.9. Multiplicities in tensor products . . . . . . ... Lo 1439
6.10. Multiplicities and symmetric functions . . . . . . . .. ... ... ... ... 1442
7. Poincaré polynomials of quiver varieties and multiplicities . . . . ... ... ... .. 1445
7.1. Decomposition theorem and Weyl group action . . . . . . ... ... ... ... 1445
720 Alemma. . . ... 1446
7.3. Thesplitcase . . . . . . .. e 1448
74. Thegeneralcase . . . . . . . . . . . o i ittt 1450
References . . . . . . . . . 1453

1. Introduction

1.1. Decomposing tensor products of irreducible characters

The motivation of this paper is the study of the decomposition

X@X =) (X ®X, X)X
X

of the tensor product X} ® A of two irreducible complex characters of GL,(IF;) as
a sum of irreducible characters. This is equivalent to the study of the multiplicities
(X1 ® X, ® A3, 1) of the trivial character 1 in X} ® A ® As.

Although the character table of GL, (IF,) is known since 1955 by the work of Green
[17], the computation of these multiplicities remains an open problem which does not
seem to have been studied much in the literature.

When X7, X, &3 are unipotent characters, the multiplicities (X] ® X, ® A3, 1) are
computed by Hiss and Liibeck [21] using CHEVIE for n < 8 and appeared to be polyno-
mials in g with positive coefficients.

Let x : GL,(F;) — C be the character of the conjugation action of GL,(IF;) on the
group algebra C[gl,, (F,)]. Fix a non-negative integer g and put A := x®¢ (with A = 1
if g =0).

In this paper we describe the multiplicities (A ® X1 ® - - - ® Ak, 1) for generic tuples
(X1, ..., &) of irreducible characters of GL,, (IF) in terms of representations of a certain
quiver I (see §6.8 for the definition of generic tuple). Although the occurrence of A
does not seem to be very interesting from the perspective of the representation theory of
GL, (IF,) it will appear to be more interesting for the theory of quiver representations.

Let us now explain how to construct the quiver together with a dimension vector from
any tuple of irreducible characters (not necessarily generic).

We first define a type A quiver together with a dimension vector from a single irre-
ducible character X.
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Consider a total ordering > on the set P of partitions and define a total ordering
denoted again by > on the set Z- x (P — {0}) as follows. If . # A then (d, u) > (d’, 1)
if u > A, and (d, A) > (d’, A) if d > d’. Denote by T,, the set of non-increasing sequences
o= (], ") (d,, »") such that Y dilo'| = n.

In §6.8, we associate to the irreducible character X an element w =
(dy, a)l) <o (dy,w") € T, called the type of X'. The d;’s are called the degrees of X.
If the degrees d;’s are all equal to 1 we say that X is split. Let us now draw the Young
diagrams of these partitions w1, .. ., @, from left to right with the diagram of o' repeated
d; times (partitions being represented by the rows of the Young diagram). Let / be the
total number of columns and let n; be the length of the i-th column. We obtain a strictly
decreasing sequence u, = (vp = n > vy > --- > v;_1) by putting v := n — ny,
v; := vj_1 — n;. We then obtain a type A; quiver with dimension vector u,,. For instance
if ¥ =1,thenw = (1,(1,...,1)) and so A; = A; and u,, = n. If X is the Steinberg
character then w = (1, (n)) andso A; = A, andu, = (n,n —1,n—2,...,1). If X is
of type (1, 1) --- (1, 1), then we still have A; = A, andu, = (n,n — 1, n —2,...,1).

Given w = (w1, ..., wr) € (T,)¥, we obtain (as just explained) k type A quivers
equipped with dimension vectors uy,,, ..., Uy, . Gluing together the vertices labeled by 0
of these k quivers and adding g loops at the central vertex of this new quiver we get a so-
called comet-shaped quiver I', with k legs (see picture in §5.2) together with a dimension
vector v, which is determined in the obvious way by u,,,, ..., ug,.

Let ®(I'y,) be the root system associated with I'y, (see Kac [22]). Let Cr, be the
Cartan matrix of 'y, and put d, = 2 — v, Cr,, V.

In §6.10.6 we show that for every multitype @ € (T,), there exists a polynomial
H,(T) € Q[T] such that for any finite field IF, and any generic tuple (X7, ..., A;) of
irreducible characters of GL, (F,) of type w, we have

(A®XI Q- ® X, 1) = Ho(g).

In §1.2 (see above Theorem 1.2.2) we define the notion of admissible multitype. This
notion arises naturally in the theory of quiver varieties.

In this paper we use the geometry of quiver varieties to prove the following theorem
(see next section for more details).

Theorem 1.1.1. Assume that @ € (T,)¥ is admissible.

(@) Hu(T) # 0 ifand only if v, € ®(I'y). Moreover Hy,(T) = 1 if and only if vy is a
real root.

(b) If non-zero, H,(T) is a monic polynomial of degree dy /2 with integer coefficients. If
moreover w is split, then the coefficients of Hg,(T) are non-negative.

We will prove (see Proposition 5.2.9) that if g > 1, then v,, is always an imaginary root
and so the second part of (a) is relevant only when g = 0.

The discussion and conjecture in §1.3 together with the results of Crawley-Boevey
[8] imply that the assertions (a) and (b) of the above theorem remain true in all types (not
necessarily admissible).
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In a future publication, we will investigate (a) by analyzing combinatorially the poly-
nomial H,, (7) which is defined in terms of Hall-Littlewood symmetric functions (see
§6.10.2).

Example 1.1.2. We give examples of generic tuples of irreducible characters which are
not of admissible types and which satisfy (a) and (b) of the above theorem.

Assume that g =0andn =k = 3.

For a partition A, we denote by R the associated unipotent character of GL3. Recall
that according to our parameterization (see beginning of this section), the trivial character
corresponds to the partition (1, 1, 1) and the Steinberg character to the partition (3).

For a linear character « : IF; — C* we put Ry := (a o det) - R). This is again an
irreducible character of type (1, A).

The triple (RY, Rﬁ, R}) is generic if the subgroup (afy) of Hom(F*, C*) is of
size 3.

Assume now that (RY, R,’z, RY) is generic (it is not admissible, see (iii) below The-
orem 1.2.3). As mentioned earlier, the multiplicity (R ® Rﬁ ® R}, 1) depends only on
A, u,vand noton «, B, y. Put

Rk,u,v = RK[ ® Rg ® R]);

We can easily verify that the only non-zero multiplicities (with unipotent type characters)
are

(R3),3).03)- 1) = ¢, (1.1.1)
(R2,1),3).,3), ) = (R3),2.1.3), 1) = (R3),3), 2.1, 1) = 1. (1.1.2)

In the first case the underlying graph of 'y, is E¢ and v,, is the indivisible positive imag-
inary root. In the second case the underlying graph of I',, is the Dynkin diagram Ejg
and v, is the positive real root o1 + 2 + 203 + 304 + 205 + a6 in the notation of [4,
PLANCHE V]. Finally we can verify that there is no other pair (I'y, V,,) arising from
o = ((1, 1), (1, w), (1,v)) with v, € ®(I'y).

1.2. Quiver varieties

We now introduce the quiver varieties which provide a geometrical interpretation of
(AR X ® - ® X, 1) for generic tuples (X7, ..., Xx) of admissible type.

Let P be a parabolic subgroup of GL,(C), L a Levi factor of P andlet ¥ = o 4+ C
where C is a nilpotent orbit of the Lie algebra [ of L and where o is an element of the
center z of [. Put

Xp,px i={(X,gP) €gl, x (GL,/P) | g 'Xg € T +up}

where up is the Lie algebra of the unipotent radical of P. We then denote by X7 , s the
open subset of pairs (X, g P) which satisfy g~ ' Xg € = + up.

Itis known (cf. §4.3.2 for more details) that the image of the projection X, p 3 — gl,
on the first coordinate is the Zariski closure O of an adjoint orbit O.
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We assume without loss of generality that L is of the form [ | j GL,, and that P is the
unique parabolic subgroup of GL,, containing the upper triangular matrices and having L
as a Levi factor (such a choice is only for convenience).

When O is nilpotent regular, the varieties Xy p x appears in Borho and Mac-
Pherson [3]. These varieties were also considered by Lusztig in the framework of his
generalization of Springer correspondence [37].

Consider triples {(L;, P;, Z;)}i=1,...k, With X; = o; + C;, as above and put L :=
Lix - xLig,P:=Px-- - xP, X=X x---xXand C:=C| x -+ x Cf.

Let (O, ..., O) be the tuple of adjoint orbits of gl,(C) such that the image of
XLi,Pi,Ei — g[n is @,’.

We say that the pair (L, X) is generic if the tuple (Oy, ..., Ok) is generic. The ex-
istence of generic tuples of adjoint orbits with prescribed multiplicities of eigenvalues is
subject to some restriction (cf. §5.1 for more details).

We assume now that (L, X) is generic. Fix a non-negative integer g, put O p.x =
(gl,)*¢ x XLp.x, Ofpy= (gl,)*8 x X{ py and define

Vips = [(Ah By,...,Aq, By, (X1,.... X1, 81P1, ..., 8k P) € OLp s ‘

14y B+ Y X =0}
F i
Put O := (g[n)2g X O] %+ x O, 0° := (g[n)2g x O1 x --- x O and define

Vo i= |(A1,Bl,...,Ag,Bg,Xl,...,Xk) €0 ‘ ;[AJ-,BJ-HZ:& =0}.

Let p : Vi p,x. — Vo be the projection on the first 2g + k coordinates.

The group GL,, acts on V, p 5 (resp. on Vo) diagonally by conjugating the first 2g+k
coordinates and by left multiplication of the last £ coordinates (resp. diagonally by con-
jugating the 2g 4 k coordinates). Since the tuple (Oy, ..., O) is generic, this action
induces a set-theoretically free action of PGL,, on both Vi, p » and V. The PGL,-orbits
of these two spaces are then all closed. Consider the affine GIT quotient

Qo := Vo/PGL, = Spec(C[Vo] ).

The quotient map Vo — Qo is actually a principal PGL,-bundle in the étale topology.
Since Vi, p x is projective over Vg, by a result of Mumford [43] the categorical quotient
QL.p x of VL p s by PGL, exists and the quotient map Vi, p.x — QLp x is also a
principal PGL,,-bundle.

We will see that we can identify Qo and Qg p,x with quiver varieties g (vo) and
Me o (VL p,=) made out of the same comet-shaped quiver I'r, p s = I'g equipped with
(possibly different) dimension vectors vp and vi, p x (here we use Nakajima’s nota-
tion, cf. §4.1). The variety Qo is also isomorphic to the image (Mg g (VL p,x)) of
7 :Me g(VLp,3) = Me(VLp,3).
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The identification of Q¢ with the quiver variety g (vo) is due to Crawley-Boevey
[6] and is also available in the non-generic case (see §5.2). Although it may not be in the
literature, the identification of Qp, p,x with Mg ¢ (VL p,x) is then quite natural to consider.
Under the identification Qp >~ Mg (vp), the open subset Q(") C Qo defined as the
image of
Vo = Vo NO°

in Qo corresponds to the subset Dﬁé (vo) C Mg (vp) of simple representations. The

3 O

image Qf p 5 of
o —— 0
Les =VLpxNOfpx

in Q p,x corresponds to the subset Dﬁgﬁ (vL,p,=) C Mg o(vL,p,x) of O-stable represen-
tations.

The generic quiver variety Qr, p.x= (which does not seem to have been considered in
the literature before) and Qg will be one of the main foci of this paper.

If Vo # ¥, the varieties Q] p v and Qg are both non-empty irreducible non-singular
dense open subsets of Q, p,» and Qg respectively. The irreducibility of Qg follows from
a more general result due to Crawley-Boevey (see Theorem 4.1.2). The irreducibility of
QL.p.x (see Theorem 5.3.7) seems to be new and our proof uses Theorem 4.1.5 and
Crawley-Boevey’s result in Theorem 4.1.2. The equivalence between the non-emptiness
of Qo and that of Q) is not stated explicitly in Crawley-Boevey’s paper but our proof
follows very closely various arguments which are due to him. More precisely we have the
following result which is important for this paper.

Theorem 1.2.1. The following assertions are equivalent:

(i) The variety Q) is not empty.
(ii) The variety Qg is not empty.
(iii) vog € ®(I).

Let us discuss this theorem. Say that an element X in Vg is irreducible if there is no
non-zero proper subspace of C" which is preserved by all the coordinates of X. The exis-
tence of irreducible elements in Vg was studied by Kostov [29] who calls it the (additive)
Deligne—Simpson problem (in [29] the tuple (O1, ..., Ok) is not necessarily generic).
Later on, Crawley-Boevey [6] reformulated Kostov’s answer to the Deligne—Simpson
problem in terms of roots of I". This reformulation involves general results of Crawley-
Boevey on quiver varieties (see §4.1 for more details) and his identification of Qg with
M (vo). Our proof of Theorem 1.2.1 consists in working out in the generic case Crawley-
Boevey’s results on the Deligne—Simpson problem.
For a pair (L, X) as above, we put

W(L, %) :={n € Ng,(L) | nZn~' = Z}/L.

The group W(L, X) acts on the complex p*(I_ngLPZ) where p : Xy px — gl, is
the projection on the first coordinate, and ZC% is the simple perverse sheaf with
coefficients in the constant local system C.

L.P.%



Quiver varieties and the character ring of general linear groups 1381

From this, we find an action of
WL, Z) == W(Ly, Z1) X -+ x W(Lg, Zg)

on the complex (p /pGLn)*(I_C@L p»y) and consequently on the hypercohomology
H (QL.p.x, IC@LP ) Which we take as a definition for the compactly supported inter-

section cohomology IHQ QLp.x,C).
From the theory of quiver varieties, we have IHf; (@Qrp,x,C) = 0 foroddi. Let us
then consider the polynomials

PY@Qups.q) =) Tr(w|IH Qup 3z, C)q'
i

withw € W(L, X).
As explained in §4.3.2 to each pair (L, C) with L = ]_[;=1 GL,, C GL, and C a
nilpotent orbit of )’ _, gl,,, corresponds a unique sequence of partitions
d):wl...wl...a)l...wl

— ——
ap ap

withw! > -+ > ol and 0/ # 0* if j # 5.

The group W (L, C) is then isomorphic to ]_[j:l Sa; where Sy denotes the symmetric
group on d letters.

The decomposition of the coordinates of an element w € W(L, C) =~ ]_[i: 1 Sa; as a
product of disjoint cycles provides a partition (djl, djz, e d;j ) of a; for each j, and so
defines a unique type

o=@}, 0" - d', oY), 0 - (dy}, oY) (d, ) (@, ') € Ty

We thus have a surjective map from the set of triples (L, C, w) with w € W(L, C) to the
set T,,.

Note that W(L, X) Cc W(L, C).

Let w € W(L, X). The datum (L, C, w) thus defines a multitype @ = (wy, ..., wk)
€ (T,)*. We call the multitypes arising in this way from generic pairs (L, ) admissible.

Let (&7, ..., &%) be a generic tuple of irreducible characters of GL, (F,) of type @
(generic tuples of irreducible characters of a given type always exist assuming that the
characteristic of IF, and g are large enough). The pair (I'y, V,,) defined in §1.1 is the
same as the pair (I'L p,x, VL p.x) defined from (L, P, ), and moreover the integer d,,
equals dim QL p x.

Theorem 1.2.2. We have

1 4
PY@Qupsx.q) =q2mMUPTAR XY @ - ® X, 1).
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If w = 1 and if the adjoint orbits Oy, ..., O are semisimple, in which case Qr p x =~
Qo, the theorem is proved in [18].

One of the consequences of Theorem 1.2.2 is an explicit formula for P (Qr p,x, q)
in terms of Hall-Littlewood symmetric functions (cf. §6.10).

Note that if for each i = 1,...,k we have Cgr,(0;) = L;, then the projection
X1,z — O; is an isomorphism and so is the map p/roL, - QLpx — Qo. Hence
our main results will give in particular explicit formulas for the Poincaré polynomial
P.(Qo, q) where we write P, instead of P when w = 1.

Let Aq,c) bethesetof o = (o1, ..., 0k) € 21, X+ - - x 2y, such that the pair (L, o +C)
is generic. It follows from Theorem 1.2.2 that P.(Qr p.x, ¢) depends only on (L, C) and
notono € -A(L,C)'

We say that a generic tuple (X7, ..., Xk) of irreducible characters is admissible if it
is of admissible type.

From Theorems 1.2.2 and 1.2.1, we prove Theorem 1.1.1, namely:

Theorem 1.2.3. Let (X], ..., Xk) be an admissible generic tuple of irreducible charac-
ters of GL,,(IF) of type w.

@ AQRXI Q- Xk, 1) #0ifand only if vy € ®(I'y). Moreover ( AQ@ X1 Q@ --- ®
X, 1) = 1 ifand only if v, is real.

(b) If vy € ®(Ty), the multiplicity (A @ X1 ® --- ® Xy, 1) is a monic polynomial in
q of degree dy /2 with integer coefficients. If moreover w = 1, then it has positive
coefficients.

Now let us see some examples of generic tuples (X7, ..., Xy) of irreducible characters
which are not admissible. This is equivalent to giving examples of triples (L, C, w) for
which there isno o € A, c) such thatw € W(L, o + C).

The existence of such a ¢ is subject to some restrictions which can be worked out
explicitly using §5.1. Let us see the explicit situations (i)—(iii) below.

(1) Assume that L is a maximal torus (in which case C is the trivial nilpotent orbit) and
that the coordinates of w are all n-cycles. Then w belongs to a subgroup W (L, o +C)
of W(L, C) = W(L) if and only if the coordinates of o = (071, .. ., ox) are all scalar
matrices. But such a o does not belong to A, c).

(ii)) When the dimension vector v of the comet-shaped quiver I is divisible (i.e., the gcd
of its coordinates is greater than 1), then A, c) = 9.
(i) If L = (GL,)*, then we also have A c) = 9.

When C = {0}, then Aq,.c) # ¥ if and only if v, is indivisible. This implies that a
generic tuple of split semisimple irreducible characters is admissible if and only if v, is
indivisible.

1.3. Character varieties: A conjecture

Now we propose a conjectural geometrical interpretation of (A @ X1 ® - -+ ® A%, 1) for
any generic tuple (X7, ..., &%).



Quiver varieties and the character ring of general linear groups 1383

Let P be a parabolic subgroup of GL,(C), L a Levi factor of P and let ¥ = oC
where C is a unipotent conjugacy class of L and where o is an element of the center Zj,
of L. Put

Y,.p.5 = {(x, gP) € GL, x (GL,/P) | g~ 'xg € TUp)

where Up is the unipotent radical of P. The variety Y, p x is the multiplicative analogue
of XL’ P.x-

We choose a tuple (D1, ..., Ok) of conjugacy classes of GL,(C) and for each i =
1,...,k we let O; be the conjugacy class of the semisimple part of an element in O;.
We say that the tuple (91, ..., Oy) is generic if ]_[f-‘=1 det(9;) = 1 and whenever V is a
subspace of C" which is stable under some x; € O, (for each i) such that

k
[ [detCilv) =1

i=1

then either V = 0 or V = C”". Unlike the additive case, generic tuples of conjugacy
classes always exist (the multiplicities of the eigenvalues being prescribed). For instance,
while we cannot form generic tuples of adjoint orbits of nilpotent type, we can always
form generic tuples of conjugacy classes of unipotent type as follows. Let ¢ be a primitive
n-th root of unity, and 9| = ¢Cy, D7 = Cy,...,9Dr = Ci where Cy, ..., Cy are
unipotent conjugacy classes. Then (D1, ..., Ok) is generic.

For eachi = 1,...,k, let (L;, P;, ¥;) be such that the image of the projection
Y, P, — gl is 51" Asin §1.2, we define L, P, X, C and we say that (L, X) is generic
if the tuple (D1, ..., Og) is generic, which we now assume. We define the multiplicative
analogue of Vi, p » as

ULps = {(a1.b1,....ag, bg, (x1,...,xk, &1 P, ..., &k P) € (GL,)* x YLpx |
(a1, b1) - (ag, bg)xy - xx = 1}

where (a, b) denotes the commutator aba~'b~!. As in the quiver case, the genericity

condition ensures that the group PGL,, acts freely on Uy, p 5. Then consider the quotient

Mprps = ULp.x/PGL,. The projection UL p.x — (GLn)zg*k on the first 2g + k
coordinates induces a morphism from M, p 5 onto the affine GIT quotient

Mo = {(@r br, .o ag by x1, 30 € (GLY* x Dy x o x D |

[Te.o0 [T =1} /pcLa.

Remark 1.3.1. If S, is a compact Riemann surface of genus g with punctures p =
{P1,..., Pk} C Sg, then Mg can be identified (hence the name of character varieties)
with the affine GIT quotient

{p € Hom(1(S¢\p), GLu) | p(vi) € Oi}/PGL,,

where y; is the class of a simple loop around p; with orientation compatible with that
of §.
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Unlike quiver varieties, the mixed Hodge structure on IHX(My, p 5, C) is not pure
(see for instance [18] in the case where the conjugacy classes £; are semisimple).
We let W, be the weight filtration on IH’; ML p.x, C) and put

H"" (ML p x) := WiH*(Myp 5, C)/ Wi IH* (ML p %, C).

The action of W (L, X) preserves the weight filtration and so, for w € W (L, ¥), we may
consider the mixed Poincaré polynomial

HY(Myp ;g 1) =Y Tr(w| H*(Mpp 5))q't"
ik

and its pure part

PHY(MLp s, 1) = Y _ Tr(w|H" (MLp 5))t".
i

Recall that ¥ = ¢ C with C a unipotent conjugacy class of L and o € Zy..

Let w € W(L, ). As above Theorem 1.2.2, we can define a type @ € (Tn)k from
(L, C,w). Let (&1, ..., &%) be a generic tuple of irreducible characters of GL,, (IF;) of
type @.

Conjecture 1.3.2. We have

PHY(MLp.s. V@) = q?mMLPE (A @ X @ - @ 4, 1). (1.3.1)

If w = 1 and if the conjugacy classes O; are semisimple, in which case ML, p,x >~ Mo,
this conjecture is already in [18].

Nowputé :=(¢-1,1,...,1) € (ZGLn)k where ¢ is a primitive n-th root of unity.
Then for any triple (L, C, w) with w € W (L, C) the pair (L, £C) is always generic and
w e W(L,§C) = W(L, C). Hence Conjecture 1.3.2 implies that for any generic tuple
(X1, ..., X) of irreducible characters there exists a triple (L, C, w) with w € W (L, C)
such that if we put X := £C, then (1.3.1) holds.

Put C' := C — 1 and assume that there exists o’ € A, ¢y such that Cgr, (o) =
CaL, (o). Then Conjecture 1.3.2 together with Theorem 1.2.2 implies the following con-
jecture.

Conjecture 1.3.3. We have

PHY Mpp.x, v/9) = P Qup.x, q).

In the case where the adjoint orbits Oy, ..., O and the conjugacy classes D1, ..., Ok
are semisimple and w = 1, then this conjecture is due to T. Hausel. If g = 0, he actually
conjectured that the identity between the two polynomials is realized by the Riemann—
Hilbert monodromy map Qo — M.

In [18] we gave a conjectural formula for the mixed Poincaré polynomial of Mg
in terms of Macdonald polynomials when Oy, ..., Oy are semisimple. We will dis-
cuss the generalization of this conjecture for the twisted mixed Poincaré polynomial
HY(MLp,x; g, t) in a forthcoming paper.
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2. Preliminaries on geometric invariant theory

In this section, K is an algebraically closed field of arbitrary characteristic. The letter G
denotes a connected reductive algebraic group over K.
We review the construction by Mumford [43] of GIT quotients.

2.1. GIT quotients

For an algebraic variety X over K we denote by K[X] := H(X, Ox) the K-algebra of
regular functions on X. Let G acton X andleto : G x X — X, pr, : G x X — X denote
respectively the G-action and the projection. Then a G-linearization of a line bundle L
over X is an isomorphism ® : o*(L) = prj(L) satisfying a certain cocycle condition (see
Mumford [43]). The isomorphism & defines a linear action of G on the space H 0(x, L)
of sections as (g-5)(x) = g-s(g~'-x). We denote by HO(X, L)“ the space of G-invariant
sections.

Fix a G-linearization ® of L and for an integer n, put L(n) := L®". A point x € X
is semistable (with respect to ®) if there existm > Oand s € H 0(X, L(m))® such that
X :={y € X | s(y) # 0} is affine and contains x. If moreover the G-orbits of X are
closed in X and the stabilizer Cg(x) of x in G is finite, then x is said to be stable.

We denote by X5 (®) (resp. X5(®)) the open G-invariant subset of semistable (resp.
stable) points of X.

Let ¢ : X%(®) — X//oG denote the GIT quotient map defined by Mumford
[43, Theorem 1.10]. It is defined by glueing together the affine quotient maps X; —
X,//G = Spec(K[X,]%) where s runs over the set of sections H(X, L(m))C, with
m > 0, such that X is affine.

We will use the following well-known properties of g.

Theorem 2.1.1. (1) The quotient q is a categorical quotient (in the category of algebraic
varieties).

() Ifx,y € X5(®), we have q(x) = q(y) ifand only if G -x NG - y # @.

(3) IfU is a g-saturated (i.e. q_lq(U) = U) G-stable open subset of X**(®), then q(U)
is an open subset of X // G and the restriction U — q(U) is a categorical quotient.

(4) Let F be a closed G-stable subset of X*°(®). Then q(F) is closed in X//G.

(5) There is an ample line bundle M on X // G such that g* (M) >~ L(n) for some n.

The theorem can be found for instance in Mumford [43] or in Dolgachev [13, Theorems
8.1, 6.5].

Since the Zariski closure of a G-orbit always contains a closed orbit, the assertion (2)
shows that X //¢ G parameterizes the closed orbits of X*°(®). If we identify X //¢ G with
the set of closed orbits of X*%(®), the map ¢ sends an orbit O of X5 (®) to the unique
closed orbit contained in O.

Let G’ be another connected reductive algebraic group over K acting on X. Assume
that the two actions of G and G’ on X commute. Put G” = G x G’ and assume that there is
a G”-linearization ®” of L extending ®. Denote by @’ the G'-linearization on L obtained
by restricting ®” to G’ x X. Letn” : X*(®") - X//¢»G" and 7’ : X(®') - X //¢ G’
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be the quotient maps. Since the actions of G and G’ commute, the group G acts on the
spaces HO(X, L(n))Y and so the quotient map 7’ is G-equivariant. Also the ample line
bundle M on X //¢'G’ constructed in [13, proof of Theorem 8.1] such that (z")*(M) =~
L(n) is G-equivariant and there is a G-linearization ¥ of M such that (z/)*(¥) = ®(n).

Proposition 2.1.2. Assume that the inclusion X*(®") C X*(®') is an equality and put
Z = X//o'G'. Then there is a canonical isomorphism X /| onG" >~ Z /|y G.

Proof. If X is affine clearly X//G” = Spec(K[X]°") =~ Spec((K[X]%))
(X//G")//G. Hence the proposition follows from the construction of GIT quotients by
glueing affine quotients. O

Lety : GxX — Xx X, (g,x) = (g-x, x). According to Mumford (see [43, Definition
0.6] or [13, §6]) we say that a morphism ¢ : X — Y of algebraic varieties is a geometric
quotient (of X by G) if the following conditions are satisfied:

(i) ¢ is surjective and constant on G-orbits,
(i1) the image of ¥ is X xy X,
(iii)) U C Y is open if and only if ¢_1 (U) is open,
(iv) for any open subset U of Y, the natural homomorphism H ‘u,oy) —
H%¢~1(U), Ox) is an isomorphism onto the subring H(¢~'(U), Ox)C of G-
invariant sections.

A geometric quotient is a categorical quotient, hence if it exists it is unique. The condition
(ii) says that Y parameterizes the G-orbits of X and so we will sometimes use the notation
X /G to denote the geometric quotient of X by G.

Recall that the restriction X*(®) — g (X*(®)) of g is a geometric quotient X*(d) —
X5(d)/G.

Unless otherwise otherwise specified, the principal G-bundles we will consider will
be with respect to the étale topology.

Lemma 2.1.3. A geometric quotient w : X — Y is a principal G-bundle if and only if
isflatand ¥ : G x X — X xy X, (g,x) — (g - x, x), is an isomorphism.

Proposition 2.1.4. If X — P is a principal G-bundle with P quasi-projective, then there
exists a line bundle L on X together with a G-linearization ® of L such that X5(®) = X.
In particular P ~ X //$G.

Proof. Follows from Mumford [43, §4, Converse 1.12] and the fact that the morphism
X — P is affine (as G is affine). m]

We say that the action of G on X is free if ¥ : G x X — X x X is a closed immersion.
Recall that a geometric quotient X — X /G by a free action of G on X is a princi-
pal G-bundle [43, Proposition 0.9]. In the case where X is affine then the quotient map
X — X//G is a principal G-bundle if and only if the stabilizers Cg(x), with x € X,
are all trivial and the G-orbits of X are all separable (see Bardsley and Richardson [1,
Proposition 8.2]).

We have the following proposition (see Mumford [43, Proposition 7.1]).
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Proposition 2.1.5. Let G act on the algebraic varieties X and Y and let f : X — Y be
a G-equivariant morphism. Assume that Y — Z is a principal G-bundle with Z quasi-
projective. Assume also that there exists a G-equivariant line bundle L over X which
is relatively ample for f. Then there exists a quasi-projective variety P and a principal
G-bundle X — P. Moreover the commutative diagram

f

_—

X Y
e
Pf/ Z

_ >

is Cartesian. If K = Fq and if all our data are defined over F, then P, X — P and
X >~ P xz Y are also defined over F.

Assume that A is a finitely generated K-algebra. The projective r-space over A is the
algebraic variety P, := Proj A[xo, ..., x,] = Spec A x Pj.. We denote by O4(1) the
twisting sheaf on P, .

We now assume that G acts on the algebraic varieties Spec A and P}, and hence on P, .
The ample line bundle O 4 (1) admits a G-linearization for some n sufficiently large (as the
twisting sheaf O(1) on Py does by Dolgachev [13, Corollary 7.2]). For such an n, the re-
striction L of Q4 (n) to a closed G-stable subvariety X of P, admits a G-linearization &.
In this case, the X, with s € H%(X, L(n))¢ are always affine.

Corollary 2.1.6. Let f : X — Y be a projective G-equivariant morphism with Y affine.
Assume moreover that Cg(y) = 1 for all y € Y and that the G-orbits of Y are all
separable. Then the geometric quotients Y — Y/G and X — X/G exists (and are
principal G-bundles) and X ~ X/G xy;c Y. If K = Fq and if X,Y, G and f are
defined over Fy, then Y — Y/G, X — X/G and X >~ X/G Xy;c Y are also defined
over .

2.2. Particular case: Affine varieties

Assume now that X is an affine algebraic variety. Let x : G — K* be a linear character
of G. Then the action of G on L° = X x Al givenby g- (x,1) — (g-x, x(g)~'t) defines
a G-linearization ® of L°. The space H°(X, L°(n))® with n > 0 can then be identified
with the space K[X19%" of functions f € K[X] which satisfy f(g-x) = x"(g)f(x) for
all g € G and x € X. Such a function f € K[X] is called a x"-semi-invariant function.

A polynomial f = Z?:o fi 7 € K[X1[z] ~ K[X x A!]is G-invariant if and only
if for each i, the function f; is a Xi—semi—invariant, that is,

K[X x A1¢ = @K[X]G’X"

n>0

and so
X//6G = Proj(K[X x A!19).



1388 Emmanuel Letellier

The canonical projective morphism
7x : X//oG — X//G = Spec(K[X]9) (2.2.1)

is induced by the inclusion of algebras K[X 19 c K[X x Al19. Of course if @ is trivial
then x is an isomorphism.

We will use the following important property. Let ¢ : X%(®) — X//¢G be the
quotient with respect to (L?, ®).

Proposition 2.2.1. If F is closed subvariety of X, then F3(®) = X% (®) N F and the
canonical morphism F [/ G — q(F%(®)) is bijective. If K = C, it is an isomorphism.

Remark 2.2.2. Note that for any G-equivariant morphism ¢ : X — Y of affine al-
gebraic varieties, the co-morphism o - K[Y] - K[X] preserves y-semi-invariants,
hence we always have ¢~ (Y (®)) C X% (P). If moreover ¢ is a finite morphism then
¢ (X5 (®)) C Y*(d) and so we recover the first assertion of the proposition.

3. Intersection cohomology

3.1. Generalities and notation

Let X be an algebraic variety over the algebraically closed field K. Let £ be a prime which
does not divide the characteristic of K. The letter x denotes the field Q,.

We denote by Df(X ) the bounded “derived category” of x-(constructible) sheaves
on X. For K € Dé’ (X) we denote by H'K the i-th cohomology sheaf of K. If m is an
integer, then we denote by K [m] the m-th shift of K ; we have H!K[m] = H!T" K . For
a morphism f : X — Y, we have the usual functors f, fi : Df X)) — Dé’(Y ) and
f*5 fH DoY) — D2(X).Ifi : Y — X is a closed immersion, the restriction i*K of
K € D2(X) is denoted by K |y. We denote by Dy : D(X) — D?(X) the Verdier dual
operator.

Recall (see Beilinson—-Bernstein—-Deligne [2]) that a perverse sheaf on X is an ob-
ject K in Dé’ (X) which satisfies the following two conditions:

o dim(Supp(H'K)) < —i,
o dim(Supp(H'DxK)) < —i foralli € Z.

The full subcategory of Dé’ (X) of perverse sheaves on X forms an abelian cate-
gory (see [2, Théoreme 1.3.6]) and its objects are all of finite length (see [2, Théoréme
4.3.11)D.

Let now Y be an irreducible open non-singular subset of X such that Y = X. Then
for a local system & on Y, we let IC}(f € ’Df (X) be the intersection cohomology com-
plex defined by Goresky—MacPherson and Deligne. The perverse sheaf K = ZC% , =
Icy%, ¢[dim X] is characterized by the following properties:

e H'K =0ifi < —dimX,
° H_dlmXK|y ZE’
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o dim(Supp(H'K)) < —i if i > —dim X,
e dim(Supp(H'DxK)) < —i if i > —dim X.
If U is another open non-singular subset of X and if ¢ is any local system on U such
that ¢ |yny = &luny, then IC;(’g = IC;“. That is why we omit the open set ¥ from the
notation ZC$% ¢- We will simply denote by ZC% the complex IC;( G,

s E44

Remark 3.1.1. Note that if U is a locally closed subvariety of X such that U C X then
H_dlmUK|U =0.

We have the following description of simple perverse sheaves due to Beilinson, Bern-
stein and Deligne. If Z is an irreducible closed subvariety of X and & an irreducible local
system on some open subset of Z then the extension by zero of I_C.Z,g on X —Zisa
simple perverse sheaf on X and any simple perverse sheaf on X arises in this way from
some pair (Z, ) (see [2, 4.3.1]).

It will be convenient to continue to denote by ZC?% ¢ and ZCY ¢ their extension by
zeroon X — Z.

Note that if X is non-singular then ZC% ¢ = & is the complex K* concentrated in
degree — dim X with K ~4mX — g

We define the compactly supported i-th intersection cohomology groups IHé (X,8
with coefficients in the local system & as the compactly supported i-th £-adic hypercoho-
mology group H.(X, ZCY ;). If f is the unique morphism X — {pt}, then IH, (X, §) =
H (ATC ¢)-

If X is non-singular, then ZC% is the constant sheaf x concentrated in degree 0 and so
IH.(X, k) = HL(X, ).

We will need the following decomposition theorem of Beilinson, Bernstein, Deligne
and Gabber.

Theorem 3.1.2. Suppose that ¢ : X — X' is a proper map with X irreducible. Then

0 (ICY) ~ @ Vzer ®ICY 17
ZEr

where & is an irreducible local system on some open subset of a closed irreducible sub-
variety Z of X'. If moreover ¢(ZC%) is a perverse sheaf, then

¢:+(IC%) = (P Vze ®ICY ;. (3.1.1)
Z,§

The theorem remains true if we replace ZC% by a semisimple object of “geometrical
origin” [2, 6.2.4].

Remark 3.1.3. Let Y be a closed irreducible subvariety of X’ and let U be a non-empty
non-singular open subset of Y. Note that

H—dimY(@ Vze ®I—C.z,g>‘U o~ @ Vye®E&
Z§ £

where the direct sum on the right hand side is over the irreducible local systems on Y.
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Definition 3.1.4. A proper surjective morphism f : Z — X is semismall if one of the
following equivalent conditions is satisfied:

(i) dim{x € X | dim f~'(x) > i} <dim X — 2i foralli € Z>yp.

(ii) There exists a filtration X := Fy D F| D --- D F, = @ of X by closed subsets
such that, for all i € {0,...,r — 1} and x € F; — F;41, we have 2dim f_l(x) <
dim X — dim F;.

We will use the following easy fact.

Lemma 3.1.5. Let f : Z — X be a proper surjective map and let X 1= Fy D F| D
.-~ D F, = @ be a filtration of X by closed subsets. Let h : X' — X be a surjective
map and put F! = h='(F;). Assume that dim X — dim F; = dim X’ — dim F/. Then the
projection on the second coordinate Z xx X' — X' is semismall with respect to the
filtration X' := Fy D F| D --- D F/ = ( if and only if the map f is semismall with
respectto X .= FyD F1 D ---D F. =0.

Definition 3.1.6. Let X be an algebraic variety over K. We say that X = [[,.; Xo is a
stratification of X if the set {¢ € I | X, # @} is finite, each non-empty subset X, is a
locally closed non-singular equidimensional subvariety of X, and for each o, 8 € I, if
Xo N Xp # 0, then Xo C Xg.

It is well-known that if f : Z — X is a semismall map with Z non-singular and
irreducible, then the complex f.(§) is a perverse sheaf for any local system § on Z.
We can actually generalize this result as follows.

Proposition 3.1.7. Let f : Z — X be a proper surjective map with Z irreducible and let
Z =1l e; Zo be a stratification of Z. For x € X, put F 1) == f71(x) N Zy. Assume
that

dim{x € X | dim f~'(x)¢ = 1(i — codimz(Zy))} < dim X — i

foralla € I andi € Z>o where codimz(Zy) := dim Z — dim Z. Then for any perverse
sheaf K on Z, the complex fK is a perverse sheaf on X.

This proposition is used and proved (without being stated explicitly) in Lusztig’s gener-
alization of Springer correspondence [37, proof of Proposition 4.5].

Proof. We need to prove that

(i) dim(Supp(H! fxK)) < —i,
(i) dim(Supp(H Dy f+K)) < —i forall i € Z.

Since f is proper, the Verdier dual commutes with f, and so we only prove
(i), as the proof of (ii) will be similar. The stalk 7-[; f«K is the hypercohomol-
ogy H'(f~(x), K|-1(y). If for x € X we have H'(f~ (x), K|f-1(,y) # 0, which
means that there exists « € [ such that the compactly supported hypercohomology
]HIZ( fm(x)a, K| 1)) does not vanish. Hence to prove (i) we are reduced to checking
that forall@ € I and i,

dim{x € X | HL(f ™' (0)a. Klf-1(y),) # 0} < —i. (3.1.2)
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If Hi( F 1 (X)a, K| f-1(n),) 7 0 then from the hypercohomology spectral sequence
we may write i as i] + i» with i < 2 dim f~!(x), and HiZ(K|.f-71(x)a) # 0. The
last condition implies that H2K|z, # 0. Since K is a perverse sheaf, we must have
i» + dim X < codimy(Zy). We thus have i + dim X < 2dim f~!(x)q + codimy(Zy).
Hence (3.1.2) is a consequence of

dim{x € X | i +dim X < 2dim ffl(x)a + codimyz(Zy)} < —i,
or equivalently, of
dim{x € X | dim ™' (x)g = 1(i — codimz(Zy))} < dim X — i
for all i. O

Corollary 3.1.8. Let ¢ : X — X' be a morphism which satisfies the condition in Propo-
sition 3.1.7. Then (3.1.1) becomes

9.(ICY) = ICx @ (P Vze ©IC3 ¢ ) (3.1.3)
A3

with Z C X'. In particular

IHL(X, ) = IHL(X', ) @ (€D Vze @ HEF (2, 8)). (3.1.4)
2%

where dz is the dimension of Z.

The isomorphism (3.1.4) is obtained from (3.1.3) by applying the functor f; with f :
X' — {pt}.

Corollary 3.1.9. Assume that ¢ : X — X’ satisfies the condition in Proposition 3.1.7.
If X' = Uyey X, where I is a finite set and where the X, are locally closed irreducible
subvarieties of X' such that the restriction of H'(¢+(ZC%)) to X, is a locally constant
sheaf for all i and « € I, then

0x(ZCY) = IC% @ (EB Vag, ® I—C%:,,sa)

o6
where the a run over the set {a € I | X, C X'}.

Proof. Let Z be an irreducible closed subvariety of X’ such that I_C'z,g is a direct
summand of ¢, (ZC%). We have Z = [, (X, N Z). Since Z is irreducible, there ex-
ists an « such that X/, N Z is dense in Z. We have H_d‘nga*(I_C;()Ixémz # 0.

Since H’dimzw*(I_C;(ﬂ x,, 1s locally constant and non-zero, we have X, C
Supp(H~9MZ ¢, (ZC%)). Hence

dim X/, < dim(Supp(H_diquO*(I_C;())) < dim Z.
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The right inequality holds because ¢, (ZC%) is a perverse sheaf. Since dim(X, N Z) =
dim Z, we deduce that the inclusion X, N Z C X, is an equality, i.e., X, C Z, and so
X, =2Z. O
Assume that K is an algebraic closure of a finite field F;, and that X is an irreducible
algebraic variety defined over IF,. We denote by F' : X — X the corresponding Frobenius
endomorphism. We will use X ForXx (IF,) to denote the fixed points of . Let K € Dé’ (X)
and assume that there exists an isomorphism ¢ : F*(K) =~ K. The characteristic function
Xk : X' — k of (K, @) is defined by

Xk p(x) = Y (—1)" Trace(pl, H\K).

If r € Z, we denote by K (r) the r-th Tate twist of K. Then Xg ), () =97 Xk, -
Let Y be an open non-singular F-stable subset of X. We will simply denote by Xz¢s,
the function Xz¢s , where ¢ : F *(IC%) — 1C% is the unique isomorphism which

induces the identity on H%(ZC%,) forall x € YT

3.2. Restriction

Assume that X is irreducible. Let Z be an irreducible closed subvariety of X and let
i : Z — X denote the inclusion. We give a condition for i*(ZC%,) = ZC?% to be true.
Proposition 3.2.1. Assume that there is a decomposition X = \J,c; Xo of X where I is
a finite set and where the Xy are locally closed irreducible subvarieties such that

1) if Zy = Xo N Z is not empty, then it is equidimensional and codimy(X,) =
codimy (Zy).

Assume moreover that there exists a Cartesian diagram

-1 . x

|

(1) f and g are semismall resolutions of singularities,
(iii) the restriction of the sheaf H' (f«(x)) to Xy is a locally constant sheaf for all i for
alliandall o in 1.

Then i*(1C%) = IC%.
Proof. If' Y is a variety, let dy denote its dimension. Let o, € I be such that X, is the

open stratum of X. To avoid any confusion we will write ZC%[dz] instead of ZC?%. By
Corollary 3.1.9,

folkldx) =TCx1dx1 @ ( €D Ve, ®TCY , [dx,]). 321
aFta,, &y

f
i
8

Nx%kz

_—

such that
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By (iii) and i* fix (k) = g«(x) we see that the restriction of Hi (g«(k)) to Z is locally
constant. Hence by Corollary 3.1.9, we have

gewld ) =TCdAe (B Wapas ®IC | ldz]) (22
aap, Bela, tup ) tap

where {Z g)}gel, is the set of irreducible components of Z,. Using again i* f,(x)
= g+«(«) we see from (3.2.1) and (3.2.2) that the complex i*(ZC%)[dz] is a direct sum-
mand of the semisimple perverse sheaf g.(k[dz]). It is therefore a semisimple perverse
subsheaf of g.(«x[dz]). Since the open stratum Z,, of Z is contained in the open stra-
tum of X, the restriction of i*(ZC%)[dz] to Z,, is the constant sheaf «[dz]. Hence
i*(ZC%)[dz] contains ZC%[d7] as a direct summand, i.e.,

i*(IC;()[dZ] = IC.Z[dZ] 2] ( @ W(Ia,ﬁ),ga‘ﬂ ® IC% [dza]>
aFo,, Bely, Ca,p (a»ﬁ)-{a,ﬁ

/ : / _
for some subspaces W(Ol’ﬂ)’%.[3 C Wia.p).z,p- It remains to see that W(a,ﬂ),;a.,g = 0 for all

o F# .
Put K :=i*(ZC%)[dz]. Then for & # «, we have

H 2K |7, = HIZ 2 ICY |7, = HX X ICY |z, = H ¥« IC[dx]lz, = 0.

The last equality follows from Remark 3.1.1. Hence W(’ B lup = 0 by Remark 3.1.3 and

we have proved the proposition. O

3.3. E-polynomial

Recall that a mixed Hodge structure on a rational vector space H consists of a finite
increasing filtration W, (the weight filtration) on H, and a finite decreasing filtration F'®
(the Hodge filtration) on the complexification Hc, which induces a pure Hodge structure
of weight k on the complexified graded pieces Gr,‘f] Hc = (WyH/Wi_1H)c, i.e.,

Gr) He = @ (Grl He)P
ptq=k
with
(Gr{ Hc)?4 = FP Gr}’ Hc N F4 Gr)¥ Hc.
We call the integers {79 := dim (Grl‘;VJrq Hc)?P1}, , the mixed Hodge numbers.

Recall (Saito [51], see also [48, Chapter 14]) that for any complex algebraic variety X,
the intersection cohomology group IH’Cc (X, C) is endowed with a mixed Hodge structure.
If X is non-singular, it coincides with Deligne’s mixed Hodge structure on H.(X, C)
which is defined in [10].

We then denote by {ih” ’q;k(X )}p,q the mixed Hodge numbers of IH’C‘ (X, C) and we
define the mixed Hodge polynomial of X as

IH(X;x,y,2) = Y ihl T (X)xPytzk,
p-q.k
The compactly supported Poincaré polynomial of X is then IH.(X; 1, 1, ¢).
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In this paper we will say that X is pure if the mixed Hodge structure on IH’; (X,0)is

pure for all &, i.e., ih?"7*(X) = 0 when p + ¢ # k.
The E-polynomial of X is defined as

E(X;x,y) 1= (X 2,3, =1) = Y2 (D= Dhnl 00 )ar .
k

p-q

Let R be a subring of C which is finitely generated as a Z-algebra and let X be a
separated R-scheme of finite type. According to [20, Appendix], we say that X is strongly
polynomial count if there exists a polynomial P(7T) € C[T] such that for any finite
field F; and any ring homomorphism ¢ : R — F,, the F;-scheme X% obtained from
X by base change is polynomial count with counting polynomial P, i.e., for every finite
extension F» /F,, we have

HX?Fgm)} = P(g").

According to Katz terminology (cf. [20, Appendix]), we call a separated R-scheme X’
which gives back X after extension of scalars from R to C a spreading out of X.

The complex variety X is said to be polynomial count if there exists a spreading out
of X which is strongly polynomial count.

Let us now denote by {457 (X )}i,j the mixed Hodge numbers of HX(X, C) and put

EQGx, ) = 3 (P DR 00 )iy,
ij ok

We recall the result of Katz in the appendix of [20] (see also Kisin and Lehrer [27] for

closely related results).

Theorem 3.3.1. Assume that X is polynomial count with counting polynomial P € C[T].
Then E(X; x,y) = P(xy).
Let X = [[,c; X« be a stratification and let X, be the open stratum, i.e., X = X,,. Put
a < Bif Xy C Xp, and ry := (dim X, — dim X)/2.

We say that X has the property (E) with respect to this stratification and the ring R
if there exists a spreading out X of X, a stratification X = [], Ay, and a morphism

V : X — X of R-schemes such that:

(1) X and the closed strata X,, are strongly polynomial count,

(2) for each «, the stratum X, is a spreading out of X, the morphism r : X — X
obtained from V after extension of scalars from R to C yields an isomorphism of
mixed Hodge structures

HA(R, Q) = HL(X, Q) & (@D We ® (IH*(Xe, © ® Q) (B.3.1)
aFEd,

where Q(—d) is the pure mixed Hodge structure on QQ of weight 2d and with Hodge
filtration F¢ = C and F4*t1 = 0,
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(3) for any ring homomorphism ¢ : R — F,, the morphism V¢ : X? — X% obtained
from V by base change yields an isomorphism

(V)) = IC, & (D) Wa ® I3 1)) (3:32)
aFa, “

of perverse sheaves.

Assume now that all complex varieties X,, (in particular X) have the property (E)
with respect to the stratification X = LI p<a X and the ring Ry. Since there are only a
finite number of strata, we may assume without loss of generality that the rings R, are all
equal to the same ring R.

Theorem 3.3.2. With the above assumption, there exists a polynomial P(T) € Z[T] such
that for any ring homomorphism ¢ : R — Fy, we have

> Xzey,, (0 =P@) (33.3)
xeX¥(Fy)

and
E“(X;x,y) = P(xy).

Proof. If there is only one stratum, i.e., if X is non-singular, then the conclusion is true
by Theorem 3.3.1. We now use induction on & < 8. Assume that the conclusion is true
for all @ < «,. By (3.3.1), we have

E(X;x,y) = E“(X;x, ) + Y (dim Wo)x "=y~ E"“ (X x, ).

<o,

By induction hypothesis and since X is polynomial count, this shows that E(X; x, y)
depends only on the product xy, i.e., there exists a unique polynomial P such that
Ei“(X;x,y) = P(xy); more precisely, P = P — Za<a0(dim We)xTey™"e Py (xy)
where P is the counting polynomial of X and P, (with & # a,) is the polynomial which
satisfies the assertion for X = X,,. It remains to see that P satisfies (3.3.3).

By (3.3.2), we have

Xvoy.w0 = Xz, + , (dim Wa)g~"“Xree (3.3.4)

a<a,

By Grothendieck’s trace formula we have

> Xwey @) = HEF} = P(g).
xeX?([Fy)

Now integrating (3.3.4) over X?(F,) proves (3.3.3). ]
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Proposition 3.3.3. Assume that X satisfies the assumptions of Theorem 3.3.2 and X is
pure. Then for any ring homomorphism ¢ : R — F, we have

> X, ()= PXig)
xeX¢(F,)

where Po(X; 1) := Y ;(dim IH (X, C))t'.

Proof. Since X is pure we have E°(X; x,y) = Zp’q(—1)”+qihf’q;p+q(X)x”yq. By
Theorem 3.3.2, the polynomial E¢(X;x,y) depends only on the product xy, hence
ih? TPt (X) = 0if p # g. The mixed Hodge numbers of X are thus all of the form
ih? 2P (X) and s0 E°(X; x, y) = Pe(X; x). O

4. Preliminaries on quiver varieties

We introduce the so-called quiver varieties ¢ ¢ (v) and Mg ¢ (v, w) over K which were
considered by many authors including Kronheimer, Lusztig, Nakajima and Crawley-
Boevey. The latter varieties, due to Nakajima and called framed quiver varieties, can be
realized as the first one by an observation due to Crawley-Boevey [5, Introduction]. For
our application we found it more convenient to introduce them separately. Here we recall
the basic results we need.

In this section we will only consider quotients of affine varieties by (finite) direct
products of GL,,’s. If G = GL,, x --- x GL,, is such a group and if ¥ : G — K*,
(gi) — [];(det gi) "%, is the character given by 0 € 711 then we will use X//gG
instead of X // G and we will often write X*® instead of X*(®) when the context is clear.

4.1. Generalities on quiver varieties

Let " be a quiver and let / denote the set of its vertices. We assume that / is finite. A
dimension vector for I' is a collection v = {v;}ie; € ZLO, and a representation of I" of
dimension v over K is a collection of K-linear maps gw,} : K¥%i — KUY, for each arrow
i — j of I, that we identify with matrices (using the canonical basis of K"). We define
a morphism between two representations (possibly of different dimension) in the obvious
way. A subrepresentation of ¢ is a representation ¢’ together with an injective morphism
¢ — ¢. Let Q be a set indexing the edges of I'. For y € Q, let h(y), t(y) € I denote
respectively the head and the tail of . The algebraic group GLy := [];.; GL,, (K) acts
on the space

iel

M(T, v) := @) Maty, )., (K)
yeQ
of representations of dimension v in the obvious way: for g = (g;)ic; € GLy and B =
(xy)yeq, we have g - B := (guh(y)x,,g;r(ly)). As the diagonal center Z = {(Aldy,)ies |

A € K*} C GLy acts trivially, the action of GLy induces an action of
Gy :=GLy/Z.

Clearly two elements of M(I', v) are isomorphic if and only if they are Gy-conjugate.
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We define a bilinear form on K/ by a.b = > aibi.Let € 7! be such that 0.v = 0.
This defines a character x : Gy — K* given by (g;); — [];(det gi)_gi.

Theorem 4.1.1 ([26]). A point B € M(T', v) is x-semistable if and only if
0.dimB <0

for every subrepresentation B’ of B. It is y-stable if and only if it is semistable and the
inequality is strict unless B' = 0 or B’ ~ B.

We will write “@-semistable” instead of “x-semistable”. We denote respectively by
Mg’ (T, v) and M (T", v) the #-semistable and #-stable representations.

Let T be the double quiver of T, i.e. T has the same vertices as I' but the edges
are given by Q = {y,y* | y € Q} where h(y*) = t(y) and t(y*) = h(y). Then
via the trace pairing we may identify M(T", v) with the cotangent bundle T*M(T", v). Put
gly = Lie(GLy) = ), gl,, (K) and gy := Lie(Gy). Define the moment map

uy :MT,v) > MW, (x)),eq > lxyxypel, 4.1.1)
yeQ

where
MW = {(fier € gl

ZTr(ﬁ):O}.

iel
Note that we can identify M(v)? with (gv)* via the trace pairing. The moment map iy is
Gy-equivariant.

Let £ = (&); € K be such that £ . v = 0. Then (§; Id); € gl, is in fact in M(v)°.
By abuse of notation we denote by & the element (§; 1d,,); € M(v)°. The affine variety
,u;l (&) is Gy-stable.

Define

M o(V) := 1y (€)//6Gy-

We define Dﬁz,e (v) as the image of p,v_l (6)% in Mg ¢(v). By Theorem 2.1.1, it is an open
subset of Mg ¢ (v).

Since stabilizers in Gy of quiver representations are connected, the action of Gy on
the space Mj (T, v) is set-theoretically free and so the restriction Ky L) —» imz’o(v)
of ¢ is the set-theoretical quotient u;'(&)* — uy'(§)%/Gy. By [49, Lemma 6.5], the
map 1y ' (§) — ny ' (§)*/Gy is actually a principal Gy-bundle (in the étale topology).

We put M:(v) = Mg o(v). It is the affine GIT quotient puy L&) /)Gy =
Spec(K[uy 1(&)]GV). The set Mg (v) parameterizes the set of conjugacy classes of the
semisimple representations of 1(&). Under this parameterization, the open subset
Sﬁz (v) of 0-stable points coincides with the set of conjugacy classes of simple repre-
sentations.

The natural projective morphism 7 : M ¢(v) — e (v) takes a representation to its
semisimplification.
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Let Cr = (¢ij)i,; be the Cartan matrix of the quiver I', namely

2 — 2(the number of edges joining i to itself) ifi = j,
Cij =

—(the number of edges joining i to j) otherwise.

We say that a variety X is of pure dimension d if its irreducible components are all of
the same dimension d. We have the following well-known theorem (the irreducibility is
an important result of Crawley-Boevey [5]).

Theorem 4.1.2. Let0 € 7! be such that 6.v = 0. Ifﬁﬁzﬁ (v) # @, then it is non-singular

of pure dimension 2 — 'vCrv. If Dﬁz (V) is not empty, then Sﬁzyo (v) is also not empty and
Me ¢ (v) is irreducible.

Proof. First a simple representation is necessarily #-stable, hence 93?2 (v) # 0 implies
9)?2 o(V) # 0. It is a result of Crawley-Boevey [5, Theorem 1.2] that the existence of
simple representations in j, (&) implies the irreducibility of My (&) and so the irre-
ducibility of sz,o(v) and Mg ¢(v). Note that a point @ € uy (&) is non-singular if
Wy is smooth at «, that is, if the stabilizer of « in Gy is trivial. From this we deduce
that the space L(&)® of #-stable representations is a non-singular space of dimension
dimM(T", v) — dim Gy, and so SJJIZ ¢ (V) is non-singular of dimension

2 —'vCrv = dimM(T, v) — 2dim Gy. o

We put an order on 7! as follows: we say that w < vif w; < v; foreachi € I. We denote
by £(v) the set of w such that0 <w < v,&.w=0and /Lv’vl(é) # 0.

Forw € leo’ we denote by Hy, the hyperplane {« € Q! | o . w = 0} of Q. Put
Hyw := Hy N Hy and

Dy:=Hy— (] Hyw.
we&(v)

We say that v is indivisible if the gcd of {v;};<s is 1. Note that Dy is not empty if and only
if v is indivisible.

When v is indivisible, the spaces Hyy are hyperplanes of Hy and so define a system
of faces [4, Chapter 1, §1].

Definition 4.1.3. We say that 0 is generic with respect to v if @ € Dy,

If @ is generic then @-semistability coincides with #-stability, and so 93?2 o(V) =
M ¢(v). The variety Mg ¢(v) is thus non-singular for generic 0.
We have [44], [47, §2.5]:

Proposition 4.1.4. Assume that 0 is generic and 9)?2 (V) # 0. Then the map 7 : Mg ¢(V)
— DM (V) is a resolution of singularities.

The following proposition is proved in [18, proof of Proposition 2.2.6].
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Theorem 4.1.5. Assume that K = C and 0 is generic. Then for any parameter &, the va-
rieties Mg ¢ (V) and Mg ¢ (V) have isomorphic cohomology supporting pure mixed Hodge
structure.

We also have the following result of Nakajima [9, Appendix B].

Theorem 4.1.6. Assume that K = Fq and that 0 is generic. Then there exists ro € Z>o
such that for all v > rq the varieties Mg ¢ (V) and Mo ¢(v) have the same number of
points over Fyr.

We now give a criterion due to Crawley-Boevey for the non-emptiness of 93"(2 (v). For
i € Ilete; € Z' be the vector with 1 at the vertex i and zero elsewhere and let &(I") C Z/
be the root system associated to I' defined as in [22]. We denote by & (I") the set of
positive roots. Let (, ) be the symmetric bilinear form on the root lattice Z! given by
(e;, ;) = c;j. Note that vertices of I" may support loops.

Fora € Z!, we put p(a) = 1 — %(a, a). If « is a real root we have p(a) = 0, and if
« is an imaginary root then p(«) > O.

The following theorem is due to Crawley-Boevey [5, Theorem 1.2].

Theorem 4.1.7. (i) The space M (V) is non-empty if and only if v = B1+ P+ - - with
Bi € ®T(I') and B; . & = 0 for all i.

(i1) The space img (v) is non-empty if and only if v e ®T(T) and p(v) > p(B1) +
p(B2) + - - - for any non-trivial decomposition of v as a sum v = 1+ B + - - - with
Bi € ®T () and B; . & =0 foralli.

4.2. Nakajima’s framed quiver varieties

The construction of framed quiver varieties follows the above except that we have an
additional graded vector space W.

LetI" and vbe as in §4.1. Let w € Zio be another dimension vector. Put Ly y =
D, c; Maty, o, (K) =~ P, ; Hom(K%, K¥), Lyy = €D, ; Maty, u, (K), and

M, v, w) :==MT, V) ® Lyw® Ly.y.

An element of M(T, v, w) is then deri)ted by (B, a, b) with B € MT,v),a € Ly w and
b € Ly.y. The group GLy acts on M(T", v, w) by

g-(B,a,b)=(g-B,a-g" ', g-b) 4.2.1)

where g - B is the action defined in §4.1.
Consider the moment map

pyw : M(T, v, w) — gl, >~ (gl,)*

that maps (B, a, b) to —ba + uy(B). For § € Z' we denote by Me (v, w) the affine
framed quiver variety u, lv(E)// GLy as in [45]. Note that unlike §4.1, we do not assume
that§ .v = 0.
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Definition 4.2.1. Let @ € Z!. A point (B, a,b) € M(T, v, w) is 0-semistable if the
following two conditions are satisfied:

(i) 0 .dim S < O for any B-invariant subspace S of V such that S; C Ker(a;) for all
iel.

(i) @ .dimT < @ .v for any B-invariant subspace T of V such that 7; C Im(b;) for all
iel.

The point (B, a, b) is called 0-stable if strict inequalities hold in (i), (ii) unless S = O,
T = V respectively.

We denote respectively by My® (T, v, w) and My (T, v, w) the set of #-semistable and
6-stable points. Then My (T, v, w) is an open subset of My’ (T, v, w) on which the group
GLy acts set-theoretically freely.

Remark 4.2.2. (i) If 6; > 0 for all i € I, then the condition (ii) of Definition 4.2.1 is
always satisfied and so a representation is #-semistable if and only if (i) is satisfied.

(ii) Let 0,0’ € Z’>0 andlet Jo :={i € I | 6; =0}and Jpy :={i € I | 6/ = 0}. If
Jo C Jy, then M;S(F, V,W) C M;ﬁ T, v, w).

Let x : GLy — @X, (gi) — [1;(det gi) "%, be the character associated to 8. Then a
representation in M(I", v, w) is x-semistable if and only if it is #-semistable. The framed
quiver variety 9 ¢ (v, w) is defined as

Mg o (v, W) := g 4, ()//6GLy.

Define also zm;,, (v, w) as the image of uy ;(5 )¥ in M ¢ (v, w). If not empty, the variety
93?2,0 (v, w) is a non-singular open subset of Mg o (v, W).

Note that Mg (v, w) is the affine framed quiver variety Mg (v, w) as all points
of M(T',v,w) are O-semistable. We thus have a natural projective morphism 7
Me o(v, W) = Me (v, w).

It was observed by Crawley-Boevey [5, Introduction] that any framed quiver variety
can in fact be realized as an “unframed” quiver variety of §4.1. This is done as follows.

From I" and W we construct a new quiver I'* by adding to I" a new vertex oo and for
each vertex i of ', we add w; arrows starting at co toward i. Put I* = I U {oo}. We then
define (v¥, %) € Z’:O x Z!" as follows. We put

() vf =wv;ifi e I and vy, =1,
(i) 0 =6;ifi e I and 0, = —0 - v.

We have a natural group embedding GLy <> GLy+ that sends g = (g;)ies to g* =
(8])ier+ with g¥ := g; if i € I and g5, := 1. This induces an isomorphism GLy =~
Gy+ = GLy+/K*. We have a GLy-equivariant isomorphism M(T"*, v*) — M(T, v, w).
Under this isomorphism, the #-semistability (resp. stability) of Definition 4.2.1 coincides
with the 0*-semistability (resp. stability) of §4.1.
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In the context of framed quivers, we say that 8 is generic if * is generic with respect
to v* in the sense of Definition 4.1.3. In this case we have

My (T, v, w) = M} (T, v, w).
We have (see Nakajima [44]):

Proposition 4.2.3. Assume that 0 is generic and 93?;5 (v,w) # 0. Then Mg ¢(v, W) =
Qﬁz o (v, W) and the map 7w : Mg g(v, W) — Mg (v, W) is a resolution of singularities.

Remark 4.2.4. If 9; > 0 for all i, then 8* is always generic with respect to v*.

4.3. Quiver varieties of type A

We review known results by Kraft—Procesi [30], Nakajima [45], [46], Crawley-Boevey
[6], [8] and Shmelkin [50] and give a slight generalization of some of them.

4.3.1. Partitions and types. We denote by P the set of all partitions including the unique
partition O of 0, by P* the set of non-zero partitions and by P, the set of partitions
of n. Partitions A are denoted by A = (A1, A2,...), where A; > A > --- > 0, or by
(1™, 2"2 .. .) where n; denotes the number of parts of A; equal to i. We write |A| :=
Zi A; for the size of A. The length of A is the maximum i with A; > 0 and we denote
by A’ the dual partition of A. For two partitions A = (A1, ..., A,;) and & = (U1, ..., Ls)
we define the partition A + w as (A1 + w1, Az + u2,...), and for A = (11,272, .. ),
w=(1"1,2m2 ), we define the union A U y as (171+™1 2m2+m2 -y For a partition
A = (A1, ..., As) and a positive integer d, we denote by d - A the partition (dA1, ..., dAs).
Recall that (A + )’ = A" U u/.

Given a total ordering <, on P, we denote by T’ the set of non-increasing sequences
&=w'-- o witho' € P andlet T/, be the subset of sequences & such that 3, |w'| = n.
We will see in §4.3.2 that the set 'i'z parameterizes the types of the adjoint orbits in gl,, (K).
Although the choice of a particular total ordering will be sometimes convenient it will not
be essential for the results of this paper. We will actually often write T and T, instead
of T and ’i‘; when the reference to the ordering <; is not necessary.

We extend the ordering <, to a total ordering on the set {(d,}) | d € Z%, A € P*}
which we continue to denote by <; as follows. If © # A, we write (d, ,u)_ <; (d, )
if w <; A, and we write (d, A) <, (d’, ) if d < d. We denote by T’ the set of all
non-increasing sequences w = (dy, A')--- (d,, A") and by T!, the subset of T’ of these
sequences which satisfy |o| 1= ), d;|A!| = n. The first coordinate of a pair (d, A) is
called the degree. We will see in §6.8 that T/, parameterizes both the types of the adjoint
orbits in gl, (F;) and the types of the irreducible characters of GL, (IF,). Just as for T
and T,,, we will often write T and T, instead of T’ and T!.

Since the term “type” has two meanings in this paper, we use {w, 7, ...} to denote
elements of T, and {®, 7, ...} for elements of T.
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To a type w = (dj, a)l) - (d,, ®") € T!, we assign the type

dl dr
e —
i{):wl...wl...wr...wr
of T!. We thus have a surjective map §) : T — T, 0 — .
Let

a) a
1 1 r T
Cb:w...w...wr...a)reT[

with o' # w/ ifi # j and put
.
Wa =[] Su:-
i=1

Note that the elements in the fiber £~ (&) are parameterized by Py, x -+ x P, and so
by the conjugacy classes of W;,.

4.3.2. Zariski closure of adjoint orbits as quiver varieties. Let A € gl,(K) with semi-
simple part A and nilpotent part A,. We assume for simplicity that A is a diagonal
matrix so that its centralizer L in GL, is exactly a product of GL,;,’s. We have A =
As + A, with [Ag, Ay] = 0 where [x, y] = xy — yx. We put Cy (A) = {X € g, |
[A, X] = 0} = Lie(L). Let C be the L-orbit of A,.. Then the GL,-conjugacy class of the
pair (L, C) is called the type of the GL,-orbit O of A.
Fix a total ordering <, on P. The types of the adjoint orbits of gl,, are parameterized
by the set T as follows.
Letmy, ..., m, be the multiplicities of the r distinct eigenvalues oy, ..., o of A. We
may assume that Ay is the diagonal matrix
mi my
e e —
(al,...,al,...,ar,...,oer).
The Jordan form of the element A, € Cgy (o) = gl,,, ® --- & gl,,, defines a unique
partition w’ of m; foreachi € {1, ..., r}. Re-indexing if necessary we may assume that
o <, 0" <, --- <, !, in which case we have & = w! - - 0" € Tﬁl Conversely, any
element of ’i‘ﬁl arises as the type of some adjoint orbit of gl,,. Types of semisimple orbits
are of the form (1"!) - - - (1"), and types of nilpotent orbits are just partitions of 7.

Lemma 4.3.1. The dimension of O is

r

n* — ZW, ) 4.3.1)

j=1

where for a partition A = (A1,A2,...), we put (A, A) = 2n(A) + |A| with n(A) =
Zizl(z’ — Da;.
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We now explain how to construct a quiver I'p and a pair (§¢, vp) from O such that
M o VO, W) > O. While the quiver I'o and w will be independent of the choice of <;,
the parameters & », v will depend on it.

We draw the Young diagrams respectively of w!, ..., " from left to right and we
label the columns from left to right (with the convention that partitions are represented by
the rows of the Young diagrams). Let d be the total number of columns and let n; be the

length of the i-th column with respect to this labelling. We define the dimension vector

vo = (v1,...,v4-1) by v; :==n —nj and v; := v;_| — n; fori > 1 and the parameter
o = (L1, ..., &q) as follows. If the i-th column belongs to the Young diagram of w/
then we put {; = «;.

We then have

(A=5lId)---(A—-Egld) =0.

Example 4.3.2. Take the lexicographic ordering for <; and assume that O is of type
(2,2)(1, 1) with eigenvalues o] and a» respectively of multiplicity 4 and 2. The corrre-

sponding Young diagrams are
12 3

=

Then the dimension vector is v = (4, 2) and £ » = (o1, a1, o02).

We have
Lemma 4.3.3. Fori > 0, the integer v; is the rank of the partial product
(A=4Id)--- (A =g 1d).

The following result is due to Crawley-Boevey [8] (in characteristic zero with O nilpotent
it is due to Kraft and Procesi [30]).

Theorem 4.3.4. Let B € gl,,. The following assertions are equivalent:

(1) BeO.

(2) There is a flag of subspaces K" = Vo D Vi D --- D Vg = 0 withdim V; = v; and
(B—=gId)(Vioy) C Viforalll <i <d.

(3) There are vector spaces V; and linear maps a, b, ?j, ¢;,

b o} o3 $a-1
V=WV 2V 2V Z2...2V;=0
a 1 [55) [

where V; has dimension vj, and satisfying
B=ab+01d, ¢;¢f —¢* dj1=(—gld (1<j<d),

where ¢5 = b and ¢ = a.
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Remark 4.3.5. We obtain (3) from (2) by putting ¢ := (B —¢; 41 1d)|y; and by letting ¢;
be the inclusion V;4; C V;.

Let I'o be the quiver

o! o2 o1

whose underlying graph is the Dynkin diagram of type Ay—j andput I :={1,...,d—1}.
Putw := (n,0,...,0) and define §h = (&1,...,&4-1) by §; :=¢j — {jy1.

Theorem 4.3.6. The map q : /L;(_;l,,w(go) — O given by (B,a,b) — ab + ¢ 1d is
well-defined and surjective. It induces a bijective morphism q : Mg, (vo, w) — O. If
K = C, then q is a categorical quotient by GLy, i.e., the map Mg , (vo, w) — O is an
isomorphism. The bijective morphism § restricts to imgo vo,w) — O.

Proof. The first assertion follows from Theorem 4.3.4. The second assertion can be
proved using the “First Fundamental Theorem of Invariant Theory” as in Kraft and Pro-
cesi [30, §2]. The third assertion follows from the second one using Proposition 2.2.1
(this assertion is actually stated in Kraft and Procesi [30, §2] for nilpotent orbits and
in Crawley-Boevey [7, Lemma 9.1] for any orbits). For an arrow of I' with tail i and
head j, we denote by B; ; the corresponding coordinate of B. By Crawley-Boevey [6,
§3], we have f(B,a,b) € O if and only if the B;1;’s and a are all injective, while
B; i+1’s and b are all surjective, i.e., (B, a, b) is a O-stable representation. Hence the last
assertion. ]

Remark 4.3.7. If C is the GLy-orbit of any representation (B, a, b) € uy, é’W(E o) then
a'b’ = ab for any (B',a’,b’) € C.

We say that (n1,...,n4-1) € (Z>0)”l_1 is decreasing if ny > --- > ng_1.
Remark 4.3.8. Let v = (vq, ..., vg—1) be a decreasing sequence with n > v1, and let
& = (&1, ...,&4-1). Then there is a total ordering <; on P and an adjoint orbit O such that

(&,v) = (§», Vo) if and only if the following condition is satisfied (see Crawley-Boevey
(8, §2]):

(¥) Forany j € I with§; = 0 we have v; | —v; > v; — vj 4 with v := n.

4.3.3. Fartial resolutions of Zariski closures of adjoint orbits as quiver varieties. Let
P be a parabolic subgroup of GL, (K) (which for simplicity is assumed to contain the
upper triangular matrices), L a Levi subgroup of P and let ¥ = o 4+ C where o is in the
center 7 of the Lie algebra [ of L and where C is a nilpotent orbit of [. We denote by Up
the unipotent radical of P and by up the Lie algebra of Up. The aim of this section is to
identify the variety

Xp.px ={(X,gP) €gl, x (GL,/P) | ' Xg € T +up}
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with a quiver variety of the form 9t ¢ (v, w) when K = C (in positive characteristic we
have a bijective morphism Mg o (v, W) — Xy p 5).
Note that
dimXy py =dimGL, —dim L + dim X. 4.3.2)

Taking a GL,,-conjugate of L if necessary, we may assume that L = GL,,
- x GLy, . Since o is in the center of [, we may write o as the diagonal matrix

X GLSP X

Sp+1 Sp S1

— | ——
(Ep_H,...,6p+1,6p,...,6p,...,61,...,61).
The nilpotent orbit C of [ decomposes as
C=Cpp1 x---xC

with C; a nilpotent orbit of gl;,. Fori =1,..., p+ 1, let u! be the partition of s; which
gives the size of the blocks of the Jordan form of C;.

We choose a total ordering <, on P such that, reordering if necessary, we have
uPtl <, uP <, --- <, u! and the following condition is satisfied:

(#x) If ¢, = ¢; thenforany i < k < j we have ¢, = ¢;.

This choice of <; is only for convenience (see above Example 4.3.10).

Let «oq,...,0r be the distinct eigenvalues of o with respective multiplicities
mi,...,mg. Foreachi = 1,...,k, we define a partition A; of m; as the sum of the
partitions i where r runs over the set {r | €, = «;}. The partitions Ap, ..., Ay define
unique nilpotent orbits of the Lie algebra m of M := Cgy, (o). Let v be an element in
this orbit and let O be the unique adjoint orbit of gl,, that contains o + v. The following
proposition is well-known.

Proposition 4.3.9. The image of the projection p : X px — gl, is O. Moreover
it induces an isomorphism pNO) ~ O.If M = L, the map p is an isomorphism
XL,P,Z ~ Q.

We have dim O = dim X, p 5 and so
dim O =dimG — dim L + dim X. (4.3.3)

We now denote by F the variety of partial flags {0} = EP*! ¢ EP c --- Cc E' C
E® = K" with dim E"~!/E" = s,. For an element X € gl,, that leaves stable a partial
flag
{0y =EP'cEPc...cE'cE'=K") e F
we denote by X,.,r =1, ..., p + 1, the induced endomorphism of Er_l/E’ ~ K5r.
We denote by Zy, p.x (resp. Z‘i) p.x) the subvariety of gl, x F of pairs (X, f) such

that X - f = fand X, € eld+ C, (resp. Xy € ¢ Id+ C,) forallr =1,..., p+ 1.
Note that 7 >~ GL,,/ P and so the two varieties Z;, p x, and Xy _p x are isomorphic.
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There exist a unique positive integer d, a decreasing sequence of positive integers

Vips =1, ...,v4-1) € (Zog)? !,
and p elements iy < --- < i, in {1,...,d — 1} such that if we put iy := 0, vp = n,
ipy1 :=d,and vg := 0, then foreachr =1,..., p + 1, we have v;, _, — v;, = s,, and
(Vi,_, — Vi,_y+1s - --» Vi,—1 — Vj,) is the dual partition of u".
This defines a type Ay quiver I'z p » as in §4.3.2. We keep the same w as in §4.3.2
and we define &y p v = (1,...,8a) by §j = €41 if iy < j < ipqq withr =0,..., p.
As in §4.3.2, this defines a unique parameter §; p 5 = (§1,...,84-1) € K! such that

& = ¢ — ¢i+1. We now choose a stability parameter 6 € (Zzo)l with the requirement
that 6; # 0 exactly when j € {iy, ..., ip}.

The quiver I'z p.x defined above is the same as the quiver I'p associated with the
adjoint orbit O in §4.3.2. Denote by (vp, §») the datum arising from O as in §4.3.2
with respect to <;. The dimension vector v might differ from v, p s as shown in the
example below. However since <; respects the condition () on the ¢€;’s, we always have

§rpx =60

Example 4.3.10. Assume that L = GL; x GL, x GLy x GL3 x GL3, C = C(]) X C(l,l) X
C) x C2,1) x C(3) where C,, denotes the nilpotent orbit corresponding to the partition .,
and o is the diagonal matrix

(Ol, o, o, o, o, ﬂ’ :Bs :87 /37 :37 :3)

5 6

with o # B. Clearly o is in the center of [ and M = GLs x GL¢. The underlying graph
of FL,P,Z is Ag and w = (11, 0, 0, 0)

Assume that <; is the lexicographic ordering. The type of O is (5,1)(4, 1) € T’“.
Note that (1) <, (1,1) <, 2) <4 (2,1) <4 (3). We thus have €] = ¢ = B and €3 =
€4 = €5 = a. Hence vy py» = (10,9,8,6,5,4,3, 1), (i1,...,ip) = (3,5,7,8),0 =
0,0,05,0,05,0,07,0s) with 63,05,07,03 > 0, ¢, py = (8,8,8.8,8,0,a,a,a),
§,py = (0,0,0,0,8 — ,0,0,0). Finally note that vo = (9,8,7,6,5,3,2,1) #
VL,P, 3.

The aim of the section is to show that there is a bijective morphism
W;L’P’E’o(VL)PYE, W) — Zp, p,x which is an isomorphism when K = C.

Given (B, a,b) € “;L],P,Z,W(EL»P,E) and an arrow of T'y_p » with tail i and head j,
we denote by B; ; the corresponding coordinate of B.

For a parameter x € K/, put J, = {i € I | x; = 0} where I denotes the set of vertices
of 'y p.x. We will need the following lemma:

Lemma 4.3.11. Let (B, a,b) € “v_Llp sw(&r px) Then (B, a,b) is 0-semistable if and
only ifforalli € I — Jg themapao By1o---0 B;;_1: K% — K" is injective.
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Proof. Put V. := @, K". We first construct for each s € I a B-invariant graded
subspace L* = @; L] of V. Put L] := Ker(a), for all i € {2,...,s} put L} :=
Ker(a o By, o --- 0 B;jj_1), and for i > s put L‘iY = Bi_1;0Bi_3i-10--0
Bsi1,542 0 By 41 (L3). Let us see that L® is a B-invariant subspace of V. Fori < s
we need to see that B;;1(L]) C LfH. We first prove it when i = 1. We have
ba — By 1B12 = &1 1d, hence (a o By,1)(B12(Ker(a)) = a o (ba — & 1d)(Ker(a)) = 0
and so By j (le) C L;. Assume that this is true for all j < i. At the vertex i, we have the
relation B; 1 ;B ;-1 — Biy1,iBii+1 = §1d. For x € L] we have

aoByjo---0Bji 10Bit1,;(Bjir1(x))
=aoByjo---oBij10(Bi_1,;Bji—1 —&Id)(x)
=aoByjo---0oBj; 10(Bi_1,Bii—1(x)).

We need to see that the RHS is 0. By definition of L* it is clear that B; ;1 (L}) C Lj_,
hence B; ;1 (x) € L!_,. By induction hypothesis we then have B; 1 ; (B; ;-1 (x)) C L;.
By definition of Lf we thus have a o By o --- 0 B;;—1(Bj—1,; o B;j—1(x)) = 0. To
see that L® is a B-invariant subspace of V it remains to see that for all i > s we have
Bit1,i (L7 ;) C Lj, which again can be proved by induction using the relations at the
vertices.

Assume that (B, a, b) is #-semistable. Assume that s € I — Jp. If the map a; =
ao By1o---0 B, isnot injective then L* is a non-trivial B-invariant subspace of
V such that @ . dim L* > 0 (as 65 # 0), which contradicts the stability condition (i) of
Definition 4.2.1. Hence the map a; must be injective for all s € I — Jp.

Let us prove the converse. Assume that V' is a B-invariant subspace of V such that
V| C Ker(a). Hence for all i and x € V/ we have By 1 o--- 0 B;;_1(x) € Ker(a), i.e.,
aoByjo---0B;;_1(x) = 0, and so Vl/ C Ker(a o By;j o--- 0 Bji_1). Hence for
i € I — Jp we have V/ = 0 by assumption. Therefore @ . dim V' = 0 and so the condition
(i) of Definition 4.2.1 is satisfied. ]

For (B,a,b) € mgL,P,Z)o(VL’p’E,W), we denote by f(p 4 the partial flag {0} =
gl cgr c ..o c & c £ = K" with & = Im(a o Byj1o---0B i—-1) By
Lemma 4.3.11, we have f(g 4p) € F.

Proposition 4.3.12. The map

e pswErp )™ = Zops, (B,a,b)— (ab+i1d, fig.an),

is well-defined and induces a canonical bijective morphism fmgL b5 (VL p s, W) —
Zr p.x. which restricts to QJTZL . o(VL.P.x, W) — L7 p 5 and which makes the diagram

Mg, peo(VL,p s, W) ————>ZL px

Mg, , o (VL.p5. W) —— g,
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commutative, where p maps a semisimple representation (B, a, b) to ab+¢11d. If K = C
this bijective map is an isomorphism Mg, , - ¢(VL p v, W) = ZL P 5.

If6; > Oforalli and & Lpy = 0, this is a result of Nakajima [44, Theorem 7.3]; see also
[50] for more details.

Proof. The fact that the diagram is commutative follows from a generalization of Remark
4.3.7 to any decreasing dimension vector (see Kraft and Procesi [30, Proposition 3.4]). To
alleviate the notation we omit L, P, ¥ from the notation§; p 5,vL p.x. ¢ px.I'L,P.x.
Let us see that the map

hepgh®® = Zips,  (Boa,b) > @b+ 011d, f.an)

is well-defined. Let (B, a, b) € u;lv(E)SS andput X :=ab+¢1ldand £ :=Im(ao By 10
-+--0B;, ;i —1). The fact that X leaves stable the partial flag f(g 4 ) is straightforward from
the preprojective relations

Bi1,iBii-1— Biy1,Bii+1 =§&1d

with By, := b and B :=a.

For brevity, forall i < j we denote by f; the map B; 1 ;0---0Bj ;1 : K% — K.

Fixr € {1,..., p + 1} and define H = @ieIU{O} H; by H; = K¥ if i > i, and
H; = Im(f;, ;) otherwise. From the preprojective relations we see that (B, a, b) leaves
H stable and so we can consider the restriction (By,ay, by) of (B,a,b) to H and
the quotient (B, @, b) of (B, a,b) by (By,ay,by). Put U; := KY/H;. Then U; ~
Kvi=vr if i < i, and U; = {0} otherwise. From the preprojective relations we see that
X, : E71/&r — £71/€ coincides with the map Y, : U; , — U; _, induced by
Bi. 41, Bi,_,.i,_1+1 + &i,_,+11d. In other words the diagram

fi,_y.0/Hi
r—1 r r—1- r—1
&) <— Ui,

X, \L l Y,
fir 10/ Hi

gr—l/(c/'r . Ui,-,l

is commutative. .
We want to see that the map Y, € End(U;,_,) >~ End(K*) liesin ¢;, _,4+1Id+C,.
Consider the subquiver I'/

oir—1+1 oir—1
of . Putd =i, W :=(vi_ , —v;,0,...,0), V i= (Ui,_,4+1 — Vi,» Vi,_;42 — Ui,y ...,
/ . .
Vi,—1—v;,),and & = (&, +1,Ci, 142, - iy +a’)- Wehave & = Oforalli =i,_1+1,
i —14e, 8,41 =&, 42 = -+ = {i,_,+a- Consider the projection of (B, a, b)

on

@ Hm@,Uune @  HomU, Ui =MT, vV, w)
ifiy_1,....0ir—2} i€lir—1+1,....ir—1}
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and denote by (B’, a’, b’) the corresponding element in M(T", v/, w’). Note that ¢’ and b’
come from B;, 11, _, and B; _,; ,+1 respectively. The map Y, : U;,_, — U;,_, is thus
a'b + Ci,_+1 Id.

The sequence (w} — v}, v} — v}, vy — v}, ..., v),_,) is the partition 1. Now apply
Proposition 4.3.6 to (I, v/, w', §'). Then we see that a’b’ belongs to the Zariski closure
of nilpotent orbit C,, thus proving that ¥, € &;, 41 1d +C,. ]

By Propositions 4.3.12 and 4.3.9 we have

Corollary 4.3.13. The image of the composition
0
Mg, p5.0(VLp x, W) s Me, s (VL. Pz, W) — gl,

is O. Moreover if Jg = Jg, then 7w o p is a bijective morphism onto its image (if K = C,
it is an isomorphism).

Remark 4.3.14. Assume that K = C. The condition in Remark 4.3.8 to have
Me, (VL P 3, W) = O may not be satisfied here. For instance in the example given
by Shmelkin [50, Example 4.3] we have vi p.x = (4, 1), w = (§5,0), py = (0,0,
0 = (1, 1), the adjoint orbit O is the nilpotent orbit with partition (3, 1, 1) while
Mg, , (VL p x, W) is isomorphic to the Zariski closure of the nilpotent orbit with parti-
tion (3, 2).

4.3.4. Geometry of resolutions and parabolic induction. We review well-known results
on the geometry of resolutions of Zariski closures of adjoint orbits (Propositions 4.3.18
and 4.3.19). In the case where the adjoint orbit is regular nilpotent the results are contained
in Borho—MacPherson’s paper [3]. In order to clarify the picture we also review Lusztig’s
parabolic induction of perverse sheaves [38].

LetL, P, X,0,C,O beasin §4.3.3 with L = GLSp+1 x -+ x GL;; C GL,. Recall
also that u; is a partition of s; defined by the coordinate of C in gl,. For each i =

1,..., p+ 1, the dual partition u; = (“;,1’ ""/“L;,ri) of u; defines a Levi subgroup
Li = Hj GLM;J C GLg;. Let P; be a parabolic subgroup of GL; having L; as a Levi
subgroup and containing the upper triangular matrices. Then P := Il P isa parabolic
subgroup of L having L= I—[f:ll L; as a Levi factor. Put P := P.Up. It is the unique
parabolic subgroup of GL,, having L as a Levi factor and contained in P.

Consider the following maps

X A X pr 2O (4.3.4)

L,P{o)}

where 7 (X, gP) = (X, gP) and p(X, gP) = X.
Note that the variety X; 3 (o) is non-singular and 7 is surjective.
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The decomposition C = [y Co as a disjoint union of L-orbits provides a strati-
fication ¥ = ][, Xy with ¥y = o + C, and therefore a stratification of Xy p 5 =
e X7 p 5, Where

X9 pg, ={(X.gP) € g x (GL,/P) | g"'Xg € Zq + up}

is the smooth locus of X p 5,.
The following proposition is a particular case of a result of Lusztig [37] (cf. [33, proof
of Proposition 5.1.19] for more details).

Proposition 4.3.15. Forx € O, put p~'(x)o := p~'(x) NX] p 5 . Then
dim{x € O | dimp~'(x)g = 1i — 1(dim = — dim =)} < dimO — i

Sforalli € Zxy.
ggL.P.):) iS a
perverse sheaf by Proposition 3.1.7. If we apply the proposition to (L, P, {o}) instead of
(L, P, X) we find that p o 7 is semismall.

We now recall briefly Lusztig’s parabolic induction of perverse sheaves [39, §4]. It
will help to clarify the picture and also some references to the literature in §6.4.

Put Vi := {(X. ¢) € gl, xGL, | g~'Xg € p}and V3 := {(X. gP) € gl, x (GL,/P) |
¢ 'Xg € p} and consider the diagram

Hence the map p satisfies the condition of Proposition 3.1.7 and so p.(ZC

"

[(p—V1£>V2£—>g[n

where p(X,g) = mp(g~'Xg) with mp - p = [ @ up — [ the natural projection,

o' (X,g) = (X,gP), p’(X,gP) = X. The parabolic induction functor Ind?[" is a
cp

functor from the category M ([) of L-equivariant perverse sheaves on [ to Dé’ (gl,). Re-
call that a perverse sheaf K on [ is said to be L-equivariant if (pr,)*K =~ m*K where
m:Lxl— [, X)+— [XI~"and pr, : L x [ — lis the projection. The category
My (1) is then a full subcategory of Dﬁ([) (see [33, 4.2] for a detailed discussion). The
morphism p is P-equivariant if we let P act on Vj as g - (X, h) = (X, hg~!) and on [ as
g X = np(g)Xnp(g)~"! where 7p is the canonical projection P = L x Up — L. It
is also a smooth morphism with connected fibers of dimension m = dim GL,, + dim Up.
Hence if K € M ([) then p*K[m] is a P-equivariant perverse sheaf on V;. Since o’ is a
locally trivial (for Zariski topology) principal P-bundle, the functor (p’)*[dim P] induces
an equivalence of categories from the category of perverse sheaves on V; to the category
of P-equivariant perverse sheaves on V. Hence for any K € M (I), there exists a unique
(up to isomorphism) perverse sheaf K on V5 such that

p*K[m] ~ (p')*K[dim P).

We define Indfc‘"p(K) = (p"):K.
The following result is due to Lusztig [39, §4].
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Proposition 4.3.16. Let Q = MUy be another Levi decomposition in GL,, with corre-
sponding Lie algebra decomposition ¢ = m ® ug. Assume that L C M and P C Q. Let
K € My (l) and assume that Ind}‘épmm (K) is a perverse sheaf (it is then automatically
M -equivariant). Then

Ind® Ly

[
e (K) = Indg g (Ind{E o (K)).

[CpNm

The next result is easy to prove from the Cartesian diagram

0 0 ’ P ”
Vi V2

I

~—Yrps ——XL psx —

where Y, py = {(X,g) € gl, x GL, | g_ng €T+ up}, and where the vertical
arrows are inclusions and by, by, p are the restrictions of p, o', p”.

Lemma 4.3.17. The GL,-equivariant perverse sheaf p*(I_C§§L py) IS isomorphic to

gly
Ind[Cp

Indf:C[”IS (k) where k. is the constant sheaf on {0} extended by zero on - {o}.

(I_C'f). Similarly the GL,-equivariant perverse sheaf (pit)« (k) is isomorphic to

Define Xi,i’,{a} ={(X,gP)eIx (L/P)| g 'Xgeo+ u;} and let Y be the variety
{(v,2,8) € Pxgl, xGL, | g7lzg € o + uz} modulo the action of P given by
p-(y.z.8)=0p Lzgp).

Consider the following Cartesian diagram (see Borho and MacPherson [3, §2.10] in
the case where O is regular nilpotent):

ay a
X}i B o} Y Xi bo
T S
Al b b
Y<~——Yips —=Xip5 (4.3.5)
P
9}

where a1(y,z,8) = (mp(vg~'28y™ ), TP (N P), ar(y, 2,8) = (. gP), e(y,2,8) =
(z,gy™ 1, r(X,gP) = X where mp : L x Up — L is the canonical projection.
We now use this diagram to prove the following proposition.

Proposition 4.3.18. The morphism 7t is semismall with respectto Xy p z =]], X7, P.5,
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Proof. By Proposition 4.3.15 applied to (L, P, {o}) instead of (L, P, ¥) we find that
r:X; o) ¥ is semismall with respect to the stratification ¥ = [[, X4. On the
other hand we see from the identity (4.3.2) that

codimyz (%) = codimy, , (Y7 px,) = codimxu,y2 XL, px,)- (4.3.6)

From the first equality and Lemma 3.1.5 we deduce that ¢ is semismall with respect to
Yr,px =1, Yr P x,. Then applying Lemma 3.1.5 to the right square of the diagram
(4.3.5) we deduce the proposition. O

Proposition 4.3.19. The restriction of the sheaf H' (7. (k)) to XZ p.x, IS locally con-
stant for all i and .

Proof. From the above diagram (4.3.5) we see that
(b2)* (74 (k) [dim P] 2= (b1)* (r« (k) [m]. (4.3.7)

Since by is a locally trivial principal P-bundle for the Zariski topology it is enough to
prove that the restriction of H'(r«(k)) to X4 is locally constant for all i and . The
map r is semismall and L-equivariant if we let L act on X; 3 (o) by v (X,mP) =
(vXv~!, vmP). The complex ry (k) is thus a semisimple L-equivariant perverse sheaf.

Since X has only a finite number of L-orbits, the simple constituents of 7, (k) are of the
form ll% . O

Remark 4.3.20. Diagrams similar to (4.3.5) are used by Lusztig to prove Proposition
4.3.16. In our situation this works as follows. As in Lemma 4.3.17, we have r,(k) =
Ind{CIS (k). Hence it follows from the isomorphism (4.3.7) that

8l ([pg! ~ Ind®"
Indrcp(lndtcﬁ(ﬁo)) ~ Indicﬁ(gg),

which is a particular case of Proposition 4.3.16.

5. Comet-shaped quiver varieties

5.1. Generic tuples of adjoint orbits

Let Oy, ..., O be k orbits of gl,, (K) and let @; be the type of O;. Then @ :=(®y, ..., &)
is called the fype of (O, ..., O).

Definition 5.1.1. A k-tuple (Cy, ..., Cx) of semisimple adjoint orbits is said to be generic
if Z;‘:l TrC; = 0 and the following holds. If V' C K" is a subspace stable under some
X; € C; for each i such that

k
> TrXilv) =0,
i=1
then either V. =0 or V = K",
Let C; be the adjoint orbit of the semisimple part of an element of O;. Then we say
that (O1, ..., Ok) is generic if the tuple (Cy, ..., Cx) of semisimple orbits is generic.
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We have [18, Lemma 2.2.2]:

Lemma 5.1.2. Fori =1, ...k, put &; = wl.l “’12 et w{" with a)l/ € P* such that Zj |wij|

= n. Put D = min; max; |(uij| and letd = gcd{|a)ij|}. Assume that
char(K) t D!.

If d > 1, generic k-tuples of adjoint orbits of gl,, of type (@1, ..., dk) do not exist. If
d =1, they do.

Remark 5.1.3. Our definition of generic tuple is equivalent to that given by Kostov [29,
§1.2] and Crawley-Boevey [6, §6]. Let us recall the latter definition as we will need it.
Foreachi = 1,...,k, weleta;1,@;2,...,a; p be the distinct eigenvalues of O; with
respective multiplicities m; 1, m; 2, ..., m; p,. Then (O1, ..., Of) is generic if

Pi

Z m; jei j =0,

i=1 j=1

which corresponds to our condition Zle Tr(O;) = 0, and if for any integers 0 < m; j
< mj,j such that Z]p’zl m ; does not depend on i, the equality

b

]
/ [—
m; o j = 0

i=1j=

holds if and only if m;/ =m, j foralli, j or m;J =0 forall i, j.

5.2. Affine comet-shaped quiver varieties

Let (Oq, ..., O) be a k-tuple of adjoint orbits of gl,(K) and let g > 0 be an integer. Put
0:= (91,1)25’ XOpx-x O, 0°:= (g[n)zg x O x -+ x O.

Consider the affine variety
g k
Vo i={(A1Br.... Ag. By X1, X0 €O D14 B+ Y X; =0},
i=1 i=1

and let Vg denote the open subset Vo N O of Vo.

We assume that Zle Tr(O;) = 0 since otherwise Vo is clearly empty.

If (O], ..., 0,) is another k-tuple of adjoint orbits of gl,, then we write O’ < O if
(’)lf c O; foralli = 1,...,k. Note that if (Oy, ..., Oy) is generic and O’ < O, then
(O], ..., 0,) is also generic. Moreover, we have the finite partition

Vo= [] V§-

0'<0
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Let PGL,, (K) act on Vg by simultaneously conjugating the 2g 4k matrices and define
Qo = Vo//PGL, = Spec(K[Vol").

We denote by Qg the image of Vg in Qo. By Theorem 2.1.1(3) it is an open subset
of Qo.

Definition 5.2.1. An element (Ay, By, ..., Ag, Bg, X1, ..., Xx) € V8 is said to be ir-
reducible if no non-zero proper subspace of K" is preserved by all matrices A, By, ...,
Ag, Bg, X1, ..., Xk.

When g = 0, the problem of describing the k-tuples (O, ..., Ok) for which Vg
admits irreducible elements is stated and studied by Kostov (see [29] for a survey) who
calls it the (additive) Deligne—Simpson problem.

In [6], Crawley-Boevey reformulates this problem and Kostov’s answer in terms of
preprojective algebras and the moment map for representations of quivers. Let us now
review Crawley-Boevey’s work as we will need it later. More precisely we define a
quiver I'p and parameters vo, W, § o such that there is a bijective morphism Mg (vo, W)
— Qo which is an isomorphism when K = C.

Consider the following quiver ' ' with g loops at the central vertex 0 and with the

[1,2] (1, s1]

M
a
(2,2] [2, 52]
) . e e
O
\
[k, 1] [k, 2] [k, sk]
The dimension vector vg of I'g with coordinate v; at i € [ is defined as follows.
We choose k total orderings <; on P and foreachi = 1, ..., k, we define the sequence
Vi1 > V2] > -c > Vs as the dimension vector v, associated with the orbit O;

with respect to <; as in §4.3. Note that vg depends only on the type of the adjoint orbits
01, ..., 0.

We also define &y € K’ as follows. For each i, let o, = @ity ooy Gisr1)and o, =
(111, - - -5 &is;1) be the two sequences defined from O; as in §4.3. We also put §) =
- Zle gi,1. This defines an element £ = {0} U {§[; j1}i,; € K! such that §o-vo=0.
For a representation ¢ of I' g, denote by ¢; 1] the linear map associated to the arrow whose
tailis [, 1], by ¢1, . .., @, the matrices associated to the loops in €2, and by <pi", e (pz,‘ the

ones associated to the loops in © — 2. We have the following consequence of Proposition
4.3.6 (see [6], [7]).

1 The picture is from [54].
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Proposition 5.2.2. The map uv_()l(go) — Vo, ¢ > (A1, B, ..., Ag, Bg, X1, ..., Xp),
with
Ai=¢i, Bi=¢', Xi=guine;+ai1ld, (5.2.1)

is well-defined and maps the set of simple representations onto the subset (Vg))irr of irre-
ducible elements. This map induces a bijective morphism Mg, (Vo) — Qo which maps

93?20 (vo) onto (Q”O)irr. If K = C, this bijective map is an isomorphism.

The above proposition together with Theorem 4.1.7 implies a criterion in terms of roots
for the non-emptiness of (V)"", thus solving the additive Deligne-Simpson problem.
From Proposition 5.2.2 and Theorem 4.1.2 we have the following result:

Corollary 5.2.3. If (V(”))irr # 0 then both Vo and Qg are irreducible respectively of
dimension dim O — n®> + 1 and

do =2 —"voCryvo = dimO — 2n% 42 (5.2.2)
where Cr, is the Cartan matrix of T'o.

We now state a result in the generic case. The proof is omitted as it is an easy generaliza-
tion of the case of semisimple orbits [18, Proposition 2.2.3].

Proposition 5.2.4. Assume that (Oq, ..., O) is generic. Then (V(‘]))irr = Vg and the
map Vo — Qo is a principal PGL,,-bundle for the étale topology (and so it is a geomet-
ric quotient). In particular the PGL,-orbits of Vo are all closed of the same dimension
dim PGL,,. Finally the two varieties V¢ and Q¢ are non-singular.

The following result is a consequence of Proposition 5.2.4 and Corollary 5.2.3.

Corollary 5.2.5. Assume that (O, ..., Ok) is generic. Then the partitions
Vo= [[V§ and Qo= [] Q% (5.2.3)
0’70 0’70

are stratifications.

Crawley-Boevey’s criterion for the non-emptiness of Vo and Vg simplifies in the generic
case as follows.

Theorem 5.2.6. Assume that (Oq, ..., O) is a generic tuple. Then the following three
assertions are equivalent:

(1) The set Vo is not empty.
(ii) The set Vg, is not empty.
(iii) vo € ®T(To).
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Although this theorem is not stated in Crawley-Boevey’s papers, the main ingredients for
its proof are there. For the convenience of the reader we give the proof in detail (repeating
if necessary some arguments of Crawley-Boevey).

We start with an intermediate result. Following Crawley-Boevey’s terminology [8],
we say that a dimension vector § = {B;}ie; of ['o with By = n is strict if for any
i=1,...,kwehaven > B 1] > -+ = Blis]-

Proposition 5.2.7. Assume that Vg is not empty. Then the dimension vector Vo is a sum
B+ -+ B of strict positive roots such thatég.B' =0foralli =1, ..., r. [fmoreover
(Oq, ..., 0) is generic, thenr = 1, i.e., Vo is a positive root.

Proof. By Theorem 4.3.4 and Remark 4.3.5, we can choose B € /L‘Tol (&) whose coor-
dinates Bj,, where h describes the set of arrows of I'g which are not loops, are injective.
Let 7 be the canonical projection M(To, vo) — Mo, vo). Write 7(B) as a direct
sum ] @ - - - @ I, of indecomposable representations of I'g and let 8 be the dimension
vector of I,,. We have vg = B! + --- + B” and since the maps B), are injective, the
maps (1) are also injective and so ™ is a strict dimension vector forallm =1, ..., r.
It is a well-known theorem of Kac [22] that the dimension vector of an indecomposable
representation is a positive root. Hence the B!, ..., " are positive strict roots. It remains
to see that 8" . g = O forallm =1, ..., r. But B is the dimension vector of a direct
summand of a representation of I'g that lifts to a representation of u;ol (§0). hence by
Crawley-Boevey’s theorem [5, Theorem 3.3] we must have 8™ . & = 0.

Assume now that (Oy, ..., Of) is generic. To prove that r = 1 we repeat Crawley-
Boevey’s argument in [6, §3]. Foreachi =1, ..., k, weleta; 1, ..., o; p, be the distinct
eigenvalues of O; with respective multiplicities m; 1, ..., m; p;. Lets € {1, ..., r}. For

givenl <i <k,1 < f < p;, define

si+1

miy= Y Blijn— By
i=1
Gij=ai f

where for convenience ,3[31 it = 0 and [i, 0] denotes also the vertex 0. Since B is strict,
the integer m; 7 is positive. Moreover

pi
> omi =4 (5.2.4)
=1
is independent of i. Now
r si+1
Zmzsf = Z (v[i’j_l] - U[i,j]) =mj f (5.2.5)
s=1 j=1

Sij=ai f
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where v; 5;+1] = 0. Hence 0 < mj ; < m; 7 and

k S; k
0=§0.8" = (Z > @ - §i,j+1)/3[si,j]> - (Z é“i,l)ﬂg
i=1j=1 i=1
k sit+l , , k pi
=- Zl Zl gi,j(,B[S,',j_l] - ,B[Si’j]) = - zleai,fmifs
i=1 j= i=1 f=

which contradicts the genericity condition (see Remark 5.1.3) unless m; F=miy for all
i, f,or ml‘f = Oforall i, f. But since * is a strict root we must have £ > 0 and so by
(5.2.4) we cannot have mf = 0 for all i, f. Hence m;f =m, s forall i, f and so from
the identity (5.2.5) we must have r = 1. ]

Proof of Theorem 5.2.6. (i1))=>(i) is trivial, and (i)=-(iii) by Proposition 5.2.7. Hence it
remains to see that (iii)=>(ii). But this is exactly what is proved in [6, §6]. ]

For each i € I — {0}, we lets; : Z! — 7! be the reflection defined by
si(x) =x — (x, &)e;,
where (, ) is the form defined by (e;, ;) = ¢;; (cf. §4.1).
Forue Z!  andi =1, ..., k denote by u? the unordered collection of numbers
no—= Uy, UG T U[E2] e Uls—1] T U] Ui

Since the action of the reflection sy; ;) has the effect of exchanging the j-th and (j + 1)-th
terms in this collection, we have the following lemma.

Lemma 5.2.8. Ifu,v € Z! satisfy (V)f.i = (u)ffor alli =1, ..., k, then there exists an
element w in the subgroup of the Weyl group of ' generated by the reflections s|; j) such
thatu = w(v).

Proposition 5.2.9. If g > 1, then vo is always an imaginary root.

Proof. Since vq is a decreasing dimension vector, it defines, for eachi = 1,...,k, a
unique partition ' = (7, ..., i;,) of n whose parts are of the form vy; j) —vji j+13, j =
0, ..., s; (with the convention that v|; o] = n and v; 5;+1] = 0). Define a dimension vector

fof "o by fo =nand fj; jy =n—Y/_, ui.Note that f = vg if and only if vy, jj—vj;, j+1]
= Vfi, j+11 — Vi, j+2] fqr all 7, j. We have (ep,f) = (2 — 2g)n — Zle Sy < 0, and
(ep, 1.0 = /L;- - ,u} < 0. Hence f is in the fundamental set of imaginary roots by
definition (see [22, Chapter 1]). By Lemma 5.2.8, the vector f can be obtained from vg
by applying an element of the Weyl group of I'g, and we conclude that vg is always an

imaginary root of I'g. O

Theorem 5.2.6 and Proposition 5.2.9 have the following consequence.

Corollary 5.2.10. If (Oy, ..., Ox) is generic and g > 1, then V¢, is not empty.



1418 Emmanuel Letellier

The following proposition is due to Crawley-Boevey [6].

Proposition 5.2.11. If (Oy, ..., Ok) is generic and g = 0, then Vg is a real root if and
only if V§ consists of a single PGLy,-orbit (in which case Vi = Vo).

Example 5.2.12. Here we assume that g = 0, k = 3 = n. Let O be the regular nilpotent
orbit of gl; and let S be the regular semisimple adjoint orbit with eigenvalues 1, 2, —3.
The tuple (O1, 02, O3) = (O, O, S) is then generic, the underlying graph of the asso-
ciated quiver I'g is E¢ and vg is the indivisible positive imaginary root. Hence Vg is
not empty by Theorem 5.2.6. Moreover we can use again Theorem 5.2.6 to verify that
the only non-empty strata of Vo are Vg and the two strata Vgl and Vé’)z corresponding
respectively to (O, C, S) and (C, O, §) where C is the nilpotent subregular adjoint orbit.
Note that vo,, i = 1, 2, is the real root a1 + a2 + 203 + 34 + 205 + a6 of Eg (in the
notation of [4, PLANCHE V]) and so Vo, is a single PGL,-orbit by Proposition 5.2.11.

Remark 5.2.13. If V is not empty then for any O such that O’ < O the variety Vo
will also be not empty. We may use this together with the equivalence between the two
assertions (i) and (iii) of Theorem 5.2.6 to construct new roots of quivers from known
ones.

5.3. General comet-shaped quiver varieties

Let (O, ..., O) be a tuple of adjoint orbits of gl,(K), and for eachi = 1, ..., k, let
(L;, P, ai, C;) be as in §4.3.3 such that the image of the first projection p; : Xz, p. 5, —
gl, is O; where ¥; = o; + C;. As in the introduction, we put P = P} x -+ x P, L =
Lix---xLyand X = X1 x---x %, C:=C1x-- - xCr. PutOppx = (g[n)2g xXLp.3,
0 px = (@l,)* x X{ p 5 and

VLps = {(Ah By,...,Aq, By, (X1,.... X1, 81P1, ..., 8kP) € OLp s ‘
D14 B+ Y X =0},
J i

Letp = (id)zg Xxp1X---Xpr:OLpy — Oandlet p : VL p x — Vo be its restric-
tion. The map p is clearly projective. Let GL, act on Vp, p » diagonally by conjugation
on the first 2g 4 k coordinates and by left multiplication on the last k coordinates. These
actions of GL,, on Vp, p,» and on Vg induce actions of PGL,, for which the morphism p
is PGL,-equivariant.

Proposition 5.3.1. Assume that the tuple (O, ..., Ok) is generic. Then the geometric
quotient V1, p x. — QL p.x exists and is a principal PGL,,-bundle. Moreover the diagram

o
Vip s — Vo

i P/PGLy, \L

QL,P,E - QO
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is Cartesian. If K = Fq and if our data (L, P, X) is defined over F, then the above
diagram is also defined over I,,.

Proof. Since (O4y, ..., O) is generic, the quotient Vg — Qg is a principal PGL,,-bundle
in the étale topology (see Proposition 5.2.4) and so the result follows from Corollary 2.1.6.
O

In general (i.e. when (O, ..., Ok) is not necessarily generic) we can always define the
GIT quotient
VLp.x//wGL,

with respect to some GL,-linearization ¥ of some ample line bundle M on Vi, p 5. In-
deed, Vi, p x is projective over Vo and so such a pair (M, V) always exists (see above
Corollary 2.1.6).

Assuming that (O1, ..., Oy) is generic, we show in this section that Qr, p,x //wGL,
can be identified (at least when K = C) with a quiver variety 9 ¢(v) for appropriate
choices of €, 6, v.

Foreachi =1, ..., k, we can define a type A quiver I'y, p, x; together with param-
eters SLisPisEi ,0;, v, p. 5 asin §4.3.3 so that there is a canonical bijective morphism
X Pz — E)JIEL[_PI_):[,(;[ (v, p;,x;» W) which is an isomorphism when K = C.

We now define a comet-shaped quiver I't, p,» as in §5.2 such that each leg with ver-
tices [1, 1], ..., [1, s;] is exactly the quiver I';; p, 5,. That is, if we delete the central ver-
tex {0} from I'y, p 5, we recover the k type A quivers 'z, p,. 5, ..., ['1,, P, 5,- We denote
by I the set of vertices of 'L, p,x, and we define a dimension vector vi, p.x = {v;}ies by
putting vo :=n and, foreachi = 1,...,k, (v 1y, ..., V5] = Vi, p,5;- Multiplying
the vectors 6; by a strictly positive integer if necessary, there is @ € Z! whose projection
on Iy, p. x; is 0; for each i and . v, p x = 0. There is a unique &y, p 5 € K! whose
projectionon I'z, p, 5, is &, p, 5, foralli and &y p 5 - VL p x = 0. Note that 6y must be
negative.

The quiver 'L p,x and the parameter &y, p 5 are the same as 'g and & obtained
from (Oq, ..., O) (see above Example 4.3.10). However in general the dimension vector
vi,.p.s differs from vg as shown in Example 4.3.10.

To alleviate the notation we will use I', &, vinstead of I'L p 5, & LpyxandvLps.

Let I'" be the quiver obtained from I by deleting the central vertex (i.e., the union
of the quivers 'y, p,,5,, ..., 'L, ., 5, )- We denote by It = {[i, j1}i,j the set of vertices

of I'". For a parameter x € K/, we denote by x its projection on K/'. We put
ZT v, w) = (gl)* x MT', vl w).

We let GL,+ act on Z(T5, v, w) by the trivial action on (g [n)zg and by the usual action
on the second coordinate.

We identify in the obvious way M(T', v) with Z(T'", v¥, w) and we regard ;! (§) as
a GL,+-stable closed subvariety of (g[n)2g X MV_TIW(ET)- To avoid any confusion, for a

closed GLy-stable subset X of M(T',v) = Z(T'", v/, w) we denote by X*(®P) the set
of @-semistable points of X and by X*(d") the set of #'-semistable points. Clearly
XSS(d) C X%(dY).
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Define
3et gt (VT W) 1= (1) x ! (€9)//g1GLy = (91)% X M g1 (v, w).

There is a canonical bijective map f : BET,N v, w — OL.p,> (which is an isomor-
phism when K = C). Let ¢ : ((gl,,)*¢ x M‘}lyw(‘;‘f))ss(cb’k) — BET,N(VT,W) denote
the quotient map. By Proposition 2.2.1 the map f; restricts to a bijective morphism
q(u;l (£)(®7)) — Vi p.x and there is a canonical bijective map MJI(E)//NGLVT —
q(puy 1(&)*s(®T)). Composing the two bijective morphisms we end up with a bijective
morphism f5 : iy L&) //¢7GLy+ — Vy p x which is an isomorphism when K = C.

Proposition 5.3.2. Assume that (O, ..., O) is generic. Then an element of |y L&) is
0-semistable (resp. 0-stable) if and only if it is 07 -semistable (resp. 07 -stable).

Proof. Assume that ¢ € u, L&) is 0 -semistable. Let Y be a subrepresentation of
@. It is an element in ,u;l(g) for some v/ < v. We need to verify that . v/ < 0.
If vy = wvp, then we must have § . v/ < 6 .v = 0 since 0" ¢ Z’;O. If vy =
0, then the subspaces V[’l.’” are contained in Ker(q;) for all i = 1, .T.,k and so
0.v=0".)" < 0since ¢ is @7-semistable. Let (A?, BY, ... A%, BY. XV, ... X))
be given by (5.2.1). Since ¥ is a subrepresentation of ¢, the subspace Vj; C Vo
= K" is preserved by all matrices A{, BY,..., Ay, By, X}, ..., X}. Recall also
that any tuple (O}, ..., 0;) < (O, ..., O) is generic. Hence by Proposition 5.2.4,
the tuple (A?, Bip, e, Ag, B;,p, X(f, e, X,(f), which belongs to some (O, ..., 0)) <
(O1, ..., Oy), is irreducible. Hence v, = 0 or v, = n. m}

Proposition 5.3.3. Assume that (Oy, ..., O) is generic. Then the morphism f; induces
a bijective morphism Mg ¢(v) — Q. p,x (Which is an isomorphism when K = C).

Proof. This follows from Propositions 5.3.2 and 2.1.2 applied to X = u;'(§), G =
GLy = GL, x GL,:. O

Remark 5.34. If (Oy,..., Og) is not generic, a priori we only have a bijective mor-
phism 91 ¢ (v) onto an open subset of a quotient V, p, 5 //wGL,.

We now assume until the end of this section that the tuple (O, ..., Oy) is generic.
Thanks to Proposition 5.3.2 we can now omit ® and & from My 1 (&)SS(®) or
u;l (£)*S(®") and write simply ,u;l (&)s.

Remark 5.3.5. Assume that the 0;’s, i = 1, ..., k, have strictly positive coordinates.
Then py L) = Uy 1(&)*. This identity also holds when @ is generic. Notice that in
this situation we can actually choose our 6;’s (taking larger values of the coordinates if
necessary) such that @ is generic. Indeed, the set uy ! (§)% depends only on the position
of the non-zero coordinates of the #;’s and not on their values (cf. Remark 4.2.2(ii)).
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Put
Ny gt V1, W) = 1y (6)//1GLs-

We summarize what we said in the following commutative diagram:

3t g1 (v, W) d OLp,z 4 o
N g (W) — L Vipy — Vo (53.1)
J’ f: l P/PGL,
Me (V) - Qups ——"— Qo

where QL p,x is defined as in Proposition 5.3.1 and f3 is the factorization morphism (as
q om0 f3 is constant on GL,,-orbits). The top vertical arrows are the canonical inclusions
and the bottom vertical arrows are the canonical quotient maps.

Remark 5.3.6. When K = C, the maps fi, f2, f3 are isomorphisms and the diagram is
Cartesian.

_ Recall that ¥; = 0; + C;. Put C = C; x --- X% Ck._Then the decomposition of
C =[], Cq as a union of L-orbits provides a stratification ¥ = [ [, X,. We thus have a
decomposition

Vips = ]_[Vi,p,ga (5.3.2)
o

where Vi’"P,Ea =VLpx, m@i,P,Ea‘ By Proposition 4.3.12, the subset Vi,P,E CVLps
corresponds to the stable points, i.e., V{ p 5 = m; 0T(VT7 W) = uy'(€)'/GLy:. The

image of Vi, p 5, by the projective morphism p : Vi, p,5 — Vo is of the form Vo, for
some O, < O.

Theorem 5.3.7. The variety Vi, p x5, is not empty if and only if vy p 5, is a root of
I'Lp.x,. In this case the piece Vi Pz, 8 also not empty and is an irreducible non-
singular dense open subset of V1, p 5, of dimension

(2g + k — Dn* +1 — dimL + dim %,.
In particular the partition (5.3.2) is a stratification.
Since Vi, p.x — QL p,x is a principal PGL,-bundle we have the following result.

Corollary 5.3.8. The stratum QOL,P,EO, is irreducible and the decomposition QL p.x =
Ly QF p 5, is a stratification.

Recall that vg is the dimension vector of I' obtained from the tuple (Oy, ..., O) as in
§5.2. Let W(I'T) denote the Weyl group of I'T.
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Lemma 5.3.9. The vectors v and vo are in the same W (I')-orbit.
Proof. This follows from Lemma 5.2.8 as (V())lt.1 = V? foreachi =1,...,k. m]

Proof of Theorem 5.3.7. We prove it for ¥ = X, as the proof will be the same for
any X,. Note that Vi, p x is not empty if and only if Vg is not empty. Hence the first
assertion follows from Lemma 5.3.9 and Proposition 5.2.6.

Assume that V, p 5 is not empty. Then Vg is not empty and so by Proposition 5.2.6
the set Vg is also not empty. Since the inverse image of V() by the map p : VL p x — Vo
is contained in Vy p v, the open subset VY p 5 of Vi p 5 is not empty.

Set YZ’P’E = {(X,g) egl, xGL, | g'Xg € £ + up}. Then the canonical map
Y py = X7 px. (X, 8 = (X, gP), is alocally trivial principal P-bundle (for the
Zariski topology). Note that Y7 , » =~ G x (¥ + up). Now consider the set L{ p . of
(28+k)'tuples (Al’ Blv ceey Aga Bgv (gls )’1), cee (gks )’k)) in (g[n)zg X (G X (El +11P))

- X (G x (Zf + up)) such that

D 1A Bil+ Y givigi =0
J i

The natural map L{ p 5. — Vﬁ p.x is then a locally trivial principal P-bundle. Hence it
remains to prove thatLj p 5 is non-singular. A sufficient condition for a point x € ]LL P
to be non-singular is that the differential dy w of the map

1 (gh,)% x (G x (Sy +up)) x -+ x (G x (B +up)) — sl,

given by (A1, Bi, ..., Ag, Bg, (81,01, ..., (8, 01)) > Y ;[Aj, Bil+ 3, givig ' is
surjective.

Let y; be the coordinate of x in X; + up. Consider the restriction A of u to the closed
subset (g[,,)zg X (G x{y1}) x---x (G x{yr}). It is enough to prove that the differential dxA
is surjective. But this is what we proved to see that the variety 1§ is non-singular (S being
(g[n)Qg x S1 % -+ x S where S; C O; is the adjoint orbit of yi): see Theorem 5.2.4 and
references therein. The variety VE,P’ 5, is thus non-singular and its irreducible components
are all of the same dimension. To compute the dimension of Vy p 5 we may use what we

just said or use the fact that there is a bijective morphism 9 £0 v w — VL p.y and

then use Theorem 4.1.2.

Let us see now that V, p 5, is irreducible. Let L, P be defined as in §4.3.4andputo =
(o1, ..., 0x). The canonical map VL Pl ViL.p,x defined by (X, gf’) — (X, gP)
being sur]ectlve it is enough to show that VL P.lo} is irreducible. We are thus reduced
to proving the irreducibility of Vi, p 5 when Y is reduced to a point {o'}, which we now
assume. Hence Vi, p (o) = VL,P,{O’ and the parameter @ satisfies 6; > O foralli € It By
Remark 5.3.5, we may assume that € is generic with respect to v. We now need to prove
the irreducibility of ‘ﬁ GT(V w). Since ‘ﬁ ot (v,w) — 9 ¢(v) is a principal PGL,-
bundle, it remains to prove that Mg ¢ (v) is 1rredu01ble

Assume first that K = C. Then by Theorem 4.1.5 we have H! (Mg ¢(v), C) =~
H, C’ (Mg.o(v), C). Recall that the dimension of che (X, C), where e is the dimension of X,
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equals the number of irreducible components of X of dimension e. The varieties g g (v)
and Mg ¢ (v) are both of pure dimension by Theorem 4.1.2. Hence we just need to see
that 9tp ¢(v) is irreducible. The representations in p, 1(0) are all simple because 6 is
generic, hence My (v) is irreducible and non-singular (see Theorem 4.1.2). The canonical
map Mg ¢(v) — Mp(v), being a resolution of singularities, is thus an isomorphism and
so 9y ¢ (v) is irreducible.

Assume that K = Fq. By Theorem 4.1.6 there exists ro such that for all » > ry we
have {0 ¢ (v)(Fyr)} = 1{Mg 9 (V)(Fyr)}. As the canonical map Mg ¢ (v) — My (v) is
an isomorphism we actually have

H{Me o (M (Fgr)} = 5{Mg (V) (Fyr)}- (5.3.3)

Note that the dimension of the compactly supported £-adic cohomology group HC2€ (X, k)
with £ invertible in K and e = dim X also equals the number m of irreducible components
of X of dimension e. Moreover if X is defined over F,, then the Frobenius F* acts on
che (X, k) as multiplication by g°. Therefore, the coefficient of ¢¢ in #{X (IF,)} equals m.
From the identity (5.3.3) we deduce that 9¢ ¢(v) is irreducible if and only if g (v) is
irreducible. But as above, the variety 2 (v) is irreducible because 6 is generic. m]

5.4. A restriction property

We keep the notation of §5.3 and we assume that (Oq, ..., Oy) is generic and that Vg is
not empty. Note that VE,P,E is then also not empty by Theorem 5.3.7.
The aim of this section is to prove the following theorem.

Theorem 5.4.1. Let i be the natural inclusion Vi, p,x — Or p.x. Then

i*(ICbL’P,E) = IC{’L,P.):'

By §5.3, we I}ave a stratification QL,p,g = ]T[.“‘ @E,P,):a with (O)i,P,Ea = (g[n)zg X
X{ p 5, It satisfies the conditions (i) of Proposition 3.2.1.

We consider the semismall resolution 77 : (O)]: Pio) OL,p,x considered in §4.3.4
and its restriction p : Vip o) Vip s

Proposition 5.4.2. The morphism p is a semismall resolution. Moreover the diagram

T
— @L,P,Z

Of 5
Vip

is Cartesian (the vertical arrows being the canonical inclusions) and the restriction of
the sheaf H' (74 (k)) to each piece ©i,P,Zu is a locally constant sheaf.

o}
o}

VLp,s
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Proof. The diagram is Cartesian by definition of the varieties Vy, p, .. The variety V¢
is also non-singular by Theorem 5.3.7. Hence p is a resolution of singularities.

By Proposition 4.3.18 the map 7 is semismall with respect to Or p.x = | [, Ofps,
By Theorem 5.3.7 the codimension of VL P.%, in VL, p.x equals the codimension of
(O)L’P, %, in Oy, p,x, hence p is also semismall. The last assertion of the proposition fol-
lows from Proposition 4.3.19. O

L.P {0}

Theorem 5.4.1 is now a consequence of Propositions 5.4.2 and 3.2.1.
We have the following particular case of Theorem 5.4.1.

Proposition 5.4.3. Let i denote the inclusion Vo — O. Then i*(ZCq) ~ ICV

6. Characters and Fourier transforms

Here K is an algebraic closure of a finite field F,. In this section we put G := GL,(K)
and g := gl,(K). We denote by F the standard Frobenius endomorphism g — g that
maps a matrix (a;;);, j to (aj 1)i,j so that GF = GL,(F,) and g© = gl,,(F,).

6.1. Preliminaries on finite groups

Let « be an algbraically closed field of characteristic 0. Let z — 7z be an involution of «
that maps roots of unity to their inverses. For a finite set E, we define (, ) g on the space
of all functions £ — « by

(f, &)k Z f0)g(x).
TIE&

Now let H be a subgroup of a finite group K and let H be a subgroup of N (H)
containing H. Let ,0l : H — GL(V'") and ,02 H — GL(V?) be representations
of H in the finite-dimensional k-vector spaces V!, V2. We denote by x! and x?2 their
associated characters. The group H acts on the space Hom(V'!, V2) as follows. For f €
Hom(V', V?), wedefine r - f : V! — V2by (r- f)(v) =r - f(r~" - v). The subspace
Hompy (V!, V?) of fixed points of the action of H on Hom(V!, V?) is clearly H-stable
(it is therefore a « [ H / H]-module).

For any r € H , we have

Tr(r | Hom(V!, v?) = x'(mx?¢ . (6.1.1)
For s € H, we denote by Xé the restriction of ' to the coset Hs := {hs | h € H}.
Proposition 6.1.1. Lets € H. We have

Te(s | Homp (V', V) = (x}, x2) us.
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Proof. Put E := Hom(V!, V%) and Ey := Homp(V!, V2~) and define p : E — Epy
by p(x) = |H|7'>,cyh - x. Then E’' := Kerp is an H-stable subspace of E and

E =Ey & E’. Since
1
— hs =0
(|H| ;;, )

E’

we deduce that

1
Te(s | Eg) = — Tr(hs | E).
|H| ,;
By (6.1.1), the right hand side of this equation is (xsl, st)Hs. m]

We now let ¢ and v be the characters of H and K associated respectively to representa-
tions H — GL(V) and K — GL(W). The group H acts on the K-module Indg(V) =
K[K]®cH] V byt - (x ®v) = xt~'' @ ¢ - v. Its restriction to H being trivial, it factor-
izes through an action of H /H on Indg (V). Under the natural isomorphism (Frobenius
reciprocity)

Hompg (V, W) >~ Homg (Ind,’_{l(V), W) (6.1.2)
the action of H/H on Homg (V, W) described earlier corresponds to the action of H/H

on the k-vector space HomK(Indg(V), W) given by (t - f)(x ® v) = @' (x ®@v)).
For a subset E of K and a function f : E — «, we define Indlg(f) : K — k by

1
ndf (NHky=— > flg ke

|E] =
{geKlg™ kg<eE)
Then we have the following generalization of Frobenius reciprocity for functions:

Lemma 6.1.2. Let h : K — « be a function. Then

(Indf; (). h)k = (f. Resg ().
Proof. This follows from a straightforward calculation. O

By Proposition 6.1.1, (6.1.2) and the above lemma, we have the following proposition:
Proposition 6.1.3. Let v € H/H and let v € H be a representative of v. Then
Tr(v | Homg (Indfy (V), W) = (Indjj; (9u), ¥)&

where @, denotes the restriction of ¢ to Hv.
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6.2. Littlewood—Richardson coefficients
For a positive integer m, we denote by S, the symmetric group on m letters.

Notation 6.2.1. For a subgroup H of a group K, we denote by Wg (H) the quotient
Nk (H)/H.

Fix a sequence t, = (ai,m1)(az, m2)---(as, mg) with a;, m; € Z-¢ such that
Y jaimi =nandm; #m;ifi # j. Put

S = (Sm) x -+ X (Sm,)™ C S

where (Sm)d stands for S, x .-+ x S, (d times). Then we may write Ng, (S) as the
semidirect product S x ]_[f=1 Sq; where each S, acts on (S,,,)% by permutation of the
coordinates.

Hence

Ws, (8) 2~ [ ] Sa:- 6.2.1)
i=l1

The group Ng, (S) acts on the category of «[S]-modules in the natural way, i.e., if p :
S — GL(V) and n € Ng,(S), then n*(p) is the representation p o n~1: 85— GL(V).

For a representation p : § — GL(V), we denote by W;s, (S, p) the quotient
Ns, (S, p)/S where

Ns, (S, p) = {n € N5, (S) | n*(p) = p}.

Let p : S — GL(V) be an irreducible representation. Then for eachi = 1,...,s,
there exists a partition (d; 1, .. ., d; ;) of a; and non-isomorphic irreducible «[S,,, ]-mod-
ules V; 1, ..., Vi, such that

V=Q T i)

i,J

where for a k-vector space E, we put T’E := E ® - -- ® E with E repeated d times.
Then the isomorphism (6.2.1) restricts to an isomorphism

Ws, (S, 0) > [ [ Sa,-
i,J

For each (i, j), the group (Sm,.)dlij X de acts on Tdi’j(‘/i’j) =V,i®---®V,;as
(wv S) : ()C] ® M ®xd,"j) = (wl : 'xS_I(l) ® M ® wd,"j : xs_l(di.j))'
This defines an action of N, (S, p) >~ ]_[l-)j((Smi)d"nf X Sg; ;) = S % ]_[i)j Sq;; on V. We

denote by x : Ns, (S, p) — « the corresponding character, and for v € ]_[i, j Sd,-,j we
denote by , its restriction to the coset Sv.
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By Proposition 6.1.3 we have:

Proposition 6.2.2. For any «[S,]-module W with character  and any v € Ws, (S, p),
Tr(v | Homs, (Indg" (V), W)) = (Indgs (%), ¥)s,

Lemma 6.2.3. Let x; ; be the character associated with the k[Sp,;]-module V; ;. As-
sume that v acts on each (Smi)din/ by circular permutation of the coordinates, namely
ve(8ls-es 8 ;) = (82,83, -5 84y ;> 81)- Let wij = (wij1, wij2,..., Wijd,;) €
(Sm,.)di-f andletw € S = ]_[l-,j(Sml.)dﬁf be the element with coordinates w; ;. Then

X(w,v) = l_[ Xij (Wi jawi j2 e Wi jdg ;)
i,j

We now show that this trace is also a Littlewood—Richardson coefficient (or more pre-
cisely a twisted version of it). We will use this result later on.

Let x = {x, x2, ...} be an infinite set of variables and let A (x) be the corresponding
ring of symmetric functions. For a partition A, let s, (x) be the associated Schur symmetric
function. Let < denote the dominance ordering on the set P of partitions. For a type
w=(d, o) (dr, ") € Ty, define w" as the partition Y _, d; - o'.

Foratype w = (di, ') - -+ (d,, ®") € T,, we define {c}y},cp, by

Sew(X) 1= 5,1 (Xdl)Swz (x2) s (xF) = Z cls,(x)
ulawt

where x¢ := {xf, xg , ... }. We call the coefficients c? the twisted Littlewood—Richardson
coefficients. If dy = --- = d, = 1, these are the usual Littlewood—Richardson coeffi-
cients.

For A = (1"1,2™2 . ..) € P, put

) = Himimi!.
i>1

This is also the cardinality of the centralizer in S} of an element of type A (i.e. whose
decomposition as a product of disjoint cycles is given by A). We denote by x* the irre-
ducible character of S};| associated to A as in Macdonald [42, I, §7] and by x ﬁ its value
at an element of type .

Proposition 6.2.4. We have

where the second sum runs over all ¢ = (al, o) e 73|w1| X -+ X Pior| such that
U,’ d; - o = P-
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Proof. We have s x? = > o z;l X ;; Dp (x?) where Dp is the power symmetric function
(see [42]). On the other hand, Py (xdy... Do (x¥) = Pu;d;-pi (x). Hence

5o = Y (X TTea' ) po
o o i

where the second sum runs over all @ = (!, ..., a") € lell X -+« X Pjyr| such that
U; di - ol = p. We now decompose Dp in the basis {53}, to get the result. O

For . € P, we denote by V) an irreducible «[S);|]-module with corresponding charac-
ter x*.

Proposition 6.2.5. Put V,, := @'_, T%V,; and S := I—[i(S‘m”)d" and let p be the rep-
resentation S — GL(V,,). Let v € W, (S, p) be the element which acts on each (S|w,-‘)d"
by circular permutation of the coordinates. For any . € P, we have

Tr(v | Homs, (Indy" (V,,), V) = ck.

Proof. This is a consequence of Propositions 6.2.2 and 6.2.4.

6.3. Rational Levi subgroups and Weyl groups

By a Levi subgroup of G, we shall mean a Levi subgroup of a parabolic subgroup of G,
i.e., a subgroup of G which is GL,-conjugate to some subgroup of the form [];_, GL,,
with ), n; = n. A maximal torus of G is a Levi subgroup which is isomorphic to (K*)".
Let L be an F-stable Levi subgroup of G. An F-stable subtorus of S of L of rank r is
said to be split if there is an isomorphism § ~ (K*)" which is defined over F, i.e.,
SF ~ (IF; )". The Fy-rank of L is defined as the maximal value of the ranks of the split
subtori of L. Since the maximal torus of diagonal matrices is split, any F-stable Levi
subgroup that contains diagonal matrices is of IF,-rank n.

If T is an F-stable maximal torus of L of the same [F,-rank as L, in which case we
say that 7 is an L-split maximal torus of L. In this case we denote by W, instead of
Wi (T) (see Notation 6.2.1), the Weyl group of L with respectto T'.

If f is a group automorphism of K, we say that two elements £ and & of K are
f-conjugate if there exists g € K such that k = ghf(g)~!.

The identification of the symmetric group S, with the monomial matrices in GL,
with entries in {0, 1} gives an isomorphism S, >~ Wg. Fix a sequence of integers m =
(my, ..., m;) such that Zi m; = n and consider the Levi subgroup L, = GLy :=
[1:—; GLy,. Then W1, = Sm := [[/_; Sm;- The G -conjugacy classes of the F-stable
Levi subgroups of G that are G-conjugate to L, are parameterized by the conjugacy
classes of Wg(L,) = Ws,(Sm) [12, Proposition 4.3]. For v € Ng,(Sm), we denote
by L, a representative of the G’ -conjugacy class (of F-stable Levi subgroups) which
corresponds to the conjugacy class of v in Wg, (Sm). Then (L, F) =~ (Lo, vF), ie.,
the action of the Frobenius F on L, corresponds to the action of vF on L, given by
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vF(g) = vF(g)v_1 for any g € L,. Since F acts trivially on Wg =~ S,,, we have
(Wi, F) = (Sm, v). By §6.2, there exists a decomposition

Sm = (SN X o x (S,

for some sequence (di, n1)(dz, n2) - - - (d, n,) and a specific choice of an element ¢ in
the coset vSy which acts on each component (S, )di by circular permutation of the coor-
dinates. Taking the G -conjugate L, of L, if necessary, we may assume that v = 0. We
also have
Lo =[[GL.)% and (L))" ~ (L,)"F ~ [ [GLy, (Fq).
i=1 i=1

Now let L be any F-stable Levi subgroup of G. Consider the semidirect product
Wi % (F) where (F) is the cyclic group generated by the Frobenius automorphism on Wy .
If ¢ is a character of Wy x (F), then for all a € Wy, we have ¥ (F(a)) = y(a) since
(F(a), 1) € W x (F) is the conjugate of (a, 1) by (1, F). Hence the restriction of i to
Wy is an F-stable character of Wy . Conversely, given an F-stable character x of Wy, we
now define an extension x of y to Wy x (F) as follows. We have L = L, for some m and
v € Ng,(Sm) by the above discussion so that we may identify Wy x (F) with Sy % (v).
For an v-stable character x of Sy, we define the extension y on Sp, % (v) as in §6.2.

The L*-conjugacy classes of the F-stable maximal tori of L are parameterized by
the F-conjugacy classes of Wy, [12, Proposition 4.3]. If w € W, we denote by T;, an
F-stable maximal torus of L which is in the L% -conjugacy class associated to the F-
conjugacy class of w. We put t,, := Lie(Ty,).

6.4. Springer correspondence for relative Weyl groups

Let P be a parabolic subgroup of G and L a Levi factor of P. Let [ be the Lie algebra
of L and let z; denote its center. Recall that the classical Springer correspondence gives a
bijection
¢ = ¢ : Irr W — {nilpotent orbits of [}

which maps the trivial character to the regular nilpotent orbit. Moreover if L is F-stable
then € restricts to a bijection between the F'-stable irreducible characters of Wy, and the
F-stable nilpotent orbits of . Recall that if L = G and A € P,, then the sizes of the
Jordan blocks of the nilpotent orbit €(x*) are given by the partition A.

Let € € Irr W be the sign character. For x € Irr W, put x' := x ® €. Then let
Ce: Iir Wy, S {nilpotent orbits of [} be the map which sends x to €(x’). The bijection €,
was actually the first correspondence discovered [52].

Let C be a nilpotent orbit of [ and put ¥ = o + C with o € z;. Consider the relative
Weyl group

Wg(L, %) :={n € Ng(L) | nEn~' = }/L.
Recall that X is of the form ¢ + C with C a nilpotent orbit of [ and o € z;. Put M :=
Cg (o), then W (L, ¥) = Wy (L, C). Let O be the orbit of gl,, whose Zariski closure is
the image of the projection p : Xy p x — g on the first coordinate.
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Let g, be the set of elements x € g whose semisimple part is G-conjugate to o.
Note that the image of p is contained in g,. The set g, has a finite number of G-orbits
which are indexed by the irreducible characters of Wy, via the bijection €. If x is an
irreducible character of Wy, we denote by O, the corresponding adjoint orbit in g, . For
x € Irr Wy, put

Ay = Homy,, (Indy (Vc), Vy)
where V¢ is the irreducible Wz -module corresponding to the nilpotent orbit C under €.

We have the following result due to Springer in the case where O is nilpotent regular
(see Borho and MacPherson [3, 3.1] for the regular nilpotent case and Lusztig [39, 2.5]
for the general case).

Proposition 6.4.1. We have

Indf, (ZC5) = po(ICY, , )= (D A ®ICy

x€lrr Wy

and A, = 0if O, is not included in O. The multiplicity A 5, corresponding to O = O,
is the trivial character of Wy (L, C).

If O is regular nilpotent, L = T and if ¥ = {0}, then this is the classical Springer
correspondence.

The group Wy (L, C) is naturally isomorphic to Wy,, (W, p). As shown in §6.2, the
action of Wy, on V(¢ can be extended to an action of Nw,, (W, p) on Vc. By §6.1 it gives
a structure of Wy, (L, C)-module on each A, and so by Proposition 6.4.1 we have an
action of Wy, (L, C) on p,(ZC% ).

Remark 6.4.2. Itis also possible to define an action of Wy (L, C) on p, (I_ngL » 2) using
the approach in Bohro and MacPherson [3] by considering partial simultaneous resolu-
tions.

XL.p.x

To alleviate the notation put K := p, (ICXL p. G and Ky == A, ® IC' . Assume

now that (M, Q, L, P, X) is F-stable and let F : Xy px — XL p.x be the Frobemus
given by F(X, gP) = (F(x), F(g)P). Then the morphism f commutes with the Frobe-
nius endomorphisms. Let ¢ : F*(k) =~ k be the isomorphism (in the category of sheaves
on X9 7.p.x) wWhich induces the identity on stalks at [F4-points. It induces a canonical iso-
morphlsm F *(ICX o) = ICX , which in turns induces a canonical isomorphism
¢ F*(K)~K. Note that the orbits (9 are F-stable and F acts trivially on Wj,. Hence
F*(Ky) ~ K, and so ¢ induces an 1somorph1sm ¢y 1 F*(K,) ~ K, for each x. Now
we define an isomorphism Oy F *(I_C.éx) ~ I_C'5X with the requirement that its tensor

product with the identity on A, gives ¢, .

We then have .
— ,3(dimO—dim Oy) .
q? XE@(
Since the A, are Wy (L, C)-modules, each v € Wy (L, C) induces an isomorphism
K, ~ K, and so an isomorphism 6, : K >~ K such that

_ Z Tr(v| Ax)q%(dimo—dimox) XE'@
X
X

X7 e
E@Xv¢x

XK50110¢
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6.5. Deligne—Lusztig induction and Fourier transforms

Here we recall the definition of Deligne-Lusztig induction both in the group setting
(which is now standard [11]) and in the Lie algebra setting [32]. We then recall the com-
mutation formula between Fourier transforms and Deligne-Lusztig induction (in the Lie
algebra case), which is the main result of [33]. This commutation formula is an essential
ingredient in the proof of the main theorem of this paper. Although the theory is available
for any connected reductive algebraic groups we keep our assumption G = GL, (Fq).

For any subset Y of X, we denote by 1y the function X — « that takes the value 1
on Y and the value 0 elsewhere.

6.5.1. Generalized induction. Let H and K be two finite groups and let M be a finite-
dimensional K-vector space. We say that M is an H-module-K if it is a left [ H]-module
and a right k[ K]-module such that (a - x) - b = a - (x - b) forany a € «[H], b € «[K]
and x € M. Then M defines a functor from the category of finite-dimensional left k[ K ]-
modules to the category of finite-dimensional left k[ H]-modules by V = M ®,x] V.
This functor induces an obvious «-linear map R II({ : C(K) — C(H) on k-vector spaces of
class functions.

The approach of generalized induction with bimodules is due to Broué. We have the
following formula [12, 4.5].

Proposition 6.5.1. Let f € C(K) and g € H, then

RE(H)(©@) =IKI7" Y Trace((g, k™) | M) f (k).

kekK

6.5.2. The group setting: Deligne—Lusztig induction. Let L be an F-stable Levi sub-
group of a parabolic subgroup P of G and let V be the unipotent radical of P. Consider
the Lang map L5 : G — G, x — x 'F(x). In [36], Lusztig considers the variety
Eal (V) which is endowed with the action of G by left multiplication and with the ac-
tion of LY by right multiplication. These actions commute and so make Hci (Cal V), k)
into a G¥-module-L*". Consider the virtual G/-module-L¥

HX(LG (V) =) (=D HILG (V). k).

The k-linear map Rg : C(LT) — C(GF) associated with this virtual bimodule is called
Deligne—Lusztig induction.
Let us put

SG (g, h) := Trace((g, k™) | HX (LG (V))).

By Proposition 6.5.1 we have, for any f € C(LF),

RE()() =L 171 Y 5F(g. h) f (). 6.5.1)

heLF
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If M is an F-stable Levi subgroup of G containing L, we define Rﬁ” exaclty as above
replacing G by M.

Let Lyp; be the subvariety of unipotent elements of L. We now list some properties of
this induction which are standard.

Proposition 6.5.2. (i) RE does not depend on the choice of the parabolic subgroup P
having L as a Levi subgroup.

(i1) If L C M is an inclusion of Levi subgroups, then Rf,, o Rﬁ” = Rf.

(ii1) Resguni o Rg = Rg o Res%uni where Reslzuni :C(LTYy = ciLh maps a function f

F

to the unipotently supported function that takes the same values as f on L, ..

For w € W, we put

Qf, = Rf, (1)
where 1; denotes the function with value 1 at 1 and with value O elsewhere. We call
the functions Qlfw the Green functions of LT . They are defined by Deligne and Lusztig
in [11].

When L = G, in which case W; ~ §,,, the Green functions are related to the well-
known Green polynomials as follows. The decomposition of w as product of disjoint
cycles gives a partition, say A. Then the value of Q(T;w at the unipotent conjugacy class
associated with the partition p is the Green polynomial Q‘f in the notation of [42, III, 7].

By Proposition 6.5.2(iii), we may also write the function Qlfw as Res%uni o R%w Aar,).

We have the following important formula due to Deligne and Lusztig [11].

Theorem 6.5.3. Let f € C(T)) andletl € LY. Then

RE (HO =1CL@ ™ > 0t @) f i ish, (6.5.2)
{(heLF|l;ehTy,h=1}

where | = Igly is the Jordan decomposition of | with ls the semisimple part and 1, the
unipotent part.

6.5.3. The Lie algebra setting: Fourier transforms. Fourier transforms of functions on
reductive Lie algebras over finite fields were first investigated by Springer in the study
of the geometry of nilpotent orbits [52]. Interesting applications in the representation
theory of connected reductive groups over finite fields were then found by many authors
including Kawanaka (e.g. [24]), Lusztig (e.g. [40]), Lehrer (e.g. [31]), Waldspurger [53]
and the present author (e.g. [33]).

Let us recall the definition and basic properties of Fourier transforms. The most im-
portant property of Fourier transforms will be stated in the next section §6.5.4.

We fix once for all a non-trivial additive character ¥ : IF, — «* and we denote by
© g x g — K the trace map (a, b) — Trace(ab). It is a non-degenerate G-invariant
symmetric bilinear form defined over IF,;. Let Fun(g©) be the «-vector space of all func-
tions g¥ — k. We define the Fourier transform F9 : Fun(g’) — Fun(g’) with respect
to (W, u) by

FINH@) = Y W ) ()

yegl
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A detailed review of properties of Fourier transforms can be found in [31]. Here we just
recall what we will need.
Define the convolution product % on Fun(g’) as

(fr)x) =Y f(gkx—y)

yeg”
for all x € g¥'. Then for all f, g € Fun(g’), we have [18, Proposition 3.2.1]
FUf xg) =FUf) Fg.
For any f € Fun(gF) it is straightforward to check that
"1 £0) = ) FO(f)(x). (6.5.3)

xeghl

6.5.4. The Lie algebra setting: Deligne—Lusztig induction. We now review Deligne—
Lusztig induction in the Lie algebra setting. Details and proofs can be found in [32], [33].

Consider L, P, V as in §6.5.2 and let [, p, n be their respective Lie algebras. We de-
note by C(g”) the k-vector space of functions gF — « which are constant on adjoint
orbits.

It is not clear whether there is a Lie algebra analogue of the variety E(_;l (V). The naive
guess E;l(n) with Ly : g — g, x = F(x) — x, does not give anything interesting.

However, we have the following formula [12, Lemma 12.3] obtained independently
by Digne-Michel and Lusztig:

_ “1Cas) /g —
Sg.D=IL"17" > el ICa U0 1T SEE (h guh, L),
{heGF|hlsh—1=I}

This formula reduces the computation of SLG (g, 1) to its computation at unipotent ele-
ments.

We define our S[g (x, ¥) using the Lie algebra analogue of this formula as follows. Let
gnil be the variety of nilpotent elements of g and let w : gniji — Guni be the isomorphism
given by x — x + 1. For (x, y) € gf' x [F, we put

_ 1 aC(ys) /1y —
sty =1L ST e 0T 1Ce (0 I SE (T w (), 0 ()
{heGF |hysh=1=xs}

where x = xg + xy, is the Jordan decomposition of x with xg the semisimple part and x,
the nilpotent part.

We define our Lie algebra version of Deligne-Lusztig induction R} : C(IF) — C(g")
as

RYAH@) = ILFI7N Y SPee, »f ().

yelf

This definition of R[g works also if we replace the isomorphism w by any G-equivari-
ant isomorphism gpjj ~ Gyy; defined over Iy (e.g. the exponential map when the char-
acteristic is large enough). We actually prove in [33, Remark 5.5.17] that the definition
of R? does not depend on the choice of such an isomorphism.
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It is also easy to prove that our induction R[g satisfies the analogous properties in
Proposition 6.5.2 (see [32] for details).
The Lie algebra analogue of Theorem 6.5.3 follows from the definition of R{w: It

fe C(ti) and x € t¥, then

R, (N =1CLex)™ 1™ 30 O @) f(h T xh). (6.5.4)

{(heLF|xseht,h~1)
We will also use the following properties [33, Propositions 3.2.24 and 7.1.8].

Proposition 6.5.4. Let C be an F-stable nilpotent orbit of | and let o € (z() be such
that C (o) = L. Denote by OF the adjoint orbit o + C of L and by O the unique orbit of
g which contains O. Then:

() Rl (1pL) = lo,
i g —
(11) R[ (XIC'@L) = XIC%'

Our definition of R? is not natural and thus a little frustrating, especially for other re-
ductive groups where we do not always have an isomorphism between the nilpotent el-
ements and the unipotent ones in small characteristics. However, the following theorem
[33, Corollary 6.2.17] shows that our definition of R? behaves well with respect to Fourier
transforms (which are not well-defined in the group setting).

Theorem 6.5.5. Put ¢ = (—1)Fa—mank(L) Tpep
F9o R[g = EGGquimVR[g o ]'_[.

This formula suggests that a more conceptual definition of R? should exist. In [34] we in-
vestigate this problem in greater detail and bring a partial answer in terms of the geometry
of the semidirect product G x g.

It is proved by Lehrer [31] that Fourier transforms commute with Harish-Chandra
induction. Moreover when the parabolic P is F-stable the induction R? coincides with
Harish-Chandra induction (see [32]). Hence Lehrer’s result is a particular case of the
theorem.

We also mention that when o € ti is regular (i.e. Cg (o) = Ty,) then it follows from
Kazhdan and Springer’s results [25], [52] that F9oR{ (15) = eger, qimY R oF' (1)
where U is the unipotent radical of a Borel subgroup of G.

6.6. Characters of finite general linear groups

The character table of G was first computed by Green [17]. In [41], Lusztig and Srini-
vasan describe it in terms of Deligne—Lusztig theory [41]. This is done as follows.

Let L be an F-stable Levi subgroup of G and let ¢ be an F-stable irreducible character
of Wr. The function Xé : LT — k defined by

Xf=wl™" Y ¢wF)RE (17,) (6.6.1)

weWr,
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is an irreducible character of LY (here @ is the extension of ¢ defined in §6.3). The
characters X(/I; are called the unipotent characters of LT .

For g € GFand 0 € Irr(LF), let 20 € Trr(g LY g ~') be defined by 20 (glg™") = 6(1).
We say that a linear character 6 : LY — «* is regular if for n € Ngr (L), we have
"0 = @ only if n € LT. We denote by Irrreg(LF ) the set of regular linear characters of
L¥ . For 0L € Irryeg (LT), the virtual character

X :=egeL R (0" - XL) = eger|WLI™" Y ¢ (wF)RE (0™), (6.6.2)
weWp
where 67w := 9L |7, | is an irreducible true character of G¥', and any irreducible character

of G is obtained in this way [41]. An irreducible character of G is thus completely
determined by the G -conjugacy class of a datum (L, 8, ¢) with L an F-stable Levi
subgroup of G, oL e Irrreg(LF )and ¢ € Irr(Wp)F . Characters associated to triples of the
form (L, oL, 1) are called semisimple.

The characters eger, R% (0) are called Deligne—Lusztig characters.

6.7. Fourier transforms of orbital simple perverse sheaves

We have the Deligne-Fourier transform F@ : Db(g) — DP(g) which is defined as fol-
lows.

We denote by A! the affine line over K. Let & : A — A! be the Artin—Schreier
covering defined by h(t) = t9 — t. Then, since 4 is a Galois covering of A! with Galois
group Iy, the sheaf £, («) is a local system on A on which F, acts. We denote by Ly
the subsheaf of /. (k) on which F, acts as wl

There exists an isomorphism ¢y : F*(Ly) — Ly such that for any integeri > 1, we
have chwg) =V¥o Traceyqi Ry * ]Fqi — « (see Katz [23, 3.5.4]). Then for a complex

K € Df (g) we define
FUK) == (pi((p2)*(K) @ u*(Ly))[dim g]

where p1, p2 : g X g — g are the two projections. If ¢ : F*(K) — K is an isomorphism,
then it induces a natural ismorphism F(¢) : F*(F9(K)) — F9(K). Moreover,

Xrak) Flg) = (—DIMIFI Xk ).

We will need to compute the characteristic functions of the perverse sheaves
F9 (I_C‘é), where O is an F-stable adjoint orbit of g. It is known by results of Lusztig
that these perverse sheaves are closely related to the character sheaves on G [40] and
that the characteristic functions of character sheaves on G give the irreducible characters
of G [35]. We thus expect to have a tight connection between the characteristic functions
of the sheaves F9 (I_C'é) on g and the irreducible characters of G

More precisely, let x € OF and put L = Cg(x;). Let ¢ be the F-stable irreducible

character of Wy, that corresponds to the nilpotent orbit (’))%n of [ = Lie(L) via the Springer
correspondence €.
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Theorem 6.7.1. We have
L4 ~
Fo(Xzes) = egerg> MOWLIT Y GwF)RE, (') (6.7.1)

weWp
where nt"«’ : ti — K is the character z — W (u(xs, 2)).

Remark 6.7.2. Note that (6.6.2) is similar to (6.7.1). It shows that F9 (XIcoa) arises
from the G ¥'-conjugacy class of a triple (I, n', ) with n' : (¥
exactly as in the group setting.

Proof of Theorem 6.7.1. Let OF be the L-orbit of x in [ := Lie(L). Then O decomposes

as xs + OL where OL denotes the L-orbit of x, in I. Then

- KX,Z = lp(l’l’(xSa Z))7

Xzey, = le* Xzc, -

Xn

By Proposition 6.5.4, we have
Xzey, = R} Xzee,) (6.7.2)
Hence from the commutation formula in Theorem 6.5.5 we have

1,4 T
]:g(XZC-@) = EGGqu(dlmG dim L) R[g [e] ]:[(XIC-EL)
1,4 T
— EGGLqQ(dlmG dim L) R?(}-[(IXS) . -F[(XIC'@L ))

We also have
_ =6 -1 ~/ [
XZC'@L =q °|Wr| E 7 (wF)Rtw(lo) (6.7.3)

n weWy,
where § = (dim Cy, (x,) — dim 7).
Indeed, by (6.5.4) the function ’R,Ew (1p) corresponds to the Green function Q%w via
the isomorphism @ : lnjj > Lyni. Moreover if we put C* = w(OF ), then by Lusztig [35],
we have Res%uni %9 (/)L,) =4° XIC%L where X v{‘, is the unipotent character of L’ associated

to ¢’. Hence (6.7.3) is obtained from (6.6.1) via the isomorphism w.
‘We now deduce from (6.7.3) and Theorem 6.5.5 that

_ _ - l . _a;
FlXgee, ) =q " Wel™" Y @' wF)eper,q2 @M IMTIRE (1),
n weWp
Since xq is central in [, we deduce that
- 1 dim L—di
-F[(lxs) X ]:[(XIC%L ) — q—8|WL|—1 Z (p/(wF)GLequz(dlmL dlmTw)Riw (9;5)
*n weWpr,
From the transitivity property of Deligne-Lusztig induction and the fact that Cg(x) =
C1 (xp) we deduce that
1y _ -
FO(Xges) = ecerq? MMOIWL| T Y ¢ wF)erer, RE, (61).
weWp,

The map Wy, — {1, —1}, w — €p€7,, is the sign character € of Wy . O
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Lemma 6.7.3. The functions F g(XZC.E) are G -invariant (i.e. constant on adjoint

orbits) characters of the finite abelian group (gF, +).
Proof. The functions F9 (XI(%) are clearly G -invariant. The function 9 (1¢) is a sum

of linear characters of g and therefore is a character of g¥". We thus need to see that if
we write XIC% = ZC nclc as a sum over the adjoint orbits of gF ,thennc € Zso. Let

us use the notation introduced in the proof of Theorem 6.7.1. Write
XIC'@L = 1Xs * XIC.@L = lxs * <Z l’lc/lc/) = ZnC’1x5+C’
xn C’ c’

where the sum runs over the nilpotent L -orbits of [¥ (note that xs + C” is an L -orbit
of IF since x; is central). By Proposition 6.5.4(i), for a nilpotent adjoint orbit of [¥, the
function R? (1x,4c) is the characteristic function of the GF -orbit of an element in x,+C’.
By (6.7.2) it remains to see that n¢r € Z>g. We have LF ~ [1; GLy, (qu,-) for some
n;,d; € Zso, and so XIC'@L is a product of functions of the form XIC%‘ on gl (F )

Xn

where O; is a nilpotent orbit of gl (Fq). By Lusztig [35], the values of the functions
XIC'@ are non-negative integers. O

6.8. Generic characters and generic orbits

Let (L, 0%, p) be a triple as in §6.6 with L an F-stable Levi subgroup, 6% € Irryeg (LF)
and ¢ € Irr(W;)¥ and let X' be the associated irreducible character of G¥'. Then we say
that the G ¥ -conjugacy class of the pair (L, ¢) is the fype of X. Similarly we define the
type of an adjoint orbit OF of g’ as follows. Let x € OF and let M = C (x;) and let CY
be the M-orbit of x,, € m. Then the G’ -conjugacy class of the pair (M, C¥) is called the
type of OF .

From the pair (L, ¢) we define w = (dj, oV (d,, »") € T, as follows. There exist
positive integers d;, n; such that L ~ []/_, GL,, (F,)% and L¥ ~ []/_, GLy, (F ,¢;). The
F-stable irreducible characters of Wy, then correspond to Irr(S,,) x - - - x Irr(S,, ) and the
latter set is in bijection with P,, x --- x P, via Springer correspondence €, that sends
the trivial character of S, to the partition (1™). If ¢ > n, the set of types of irreducible
characters of G¥ is thus parameterized by T,. Under this parameterization, semisim-
ple irreducible characters correspond to types of the form (dy, (1"))--- (d,, (1"7)) and
unipotent characters to types of the form (1, 1).

From the pair (M, CM) we define t = (dy, ') - - - (d,, ") € T, as follows. There ex-
ist positive integers d;, n; such that M ~ [;_, GL,, (Fq)di and MF ~]\_, GL,, (F yar)-
The Jordan form of CM defines partitions .. 1" ofny, ..., n, respectively. If ¢ > n,
the set of types of adjoint orbits of g’ is thus parameterized by T,,.

Remark 6.8.1. Note that if OF is an orbit of g¥ of type w = (dy, w") - - - (d,, ®"), then

in the sense of §4.3 the G-orbit O is of type

J)::a)l...wl...wr...wr_
——

dy dy

In particular, the two notions coincide if the eigenvalues of O are in F,.
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Definition 6.8.2. Let (’)f e, (’),f be k adjoint orbits of gf. We say that the tuple
(OF, ..., O,f) is generic if (O, ..., Ok) is generic in the sense of Definition 5.1.1.

Assume that L is an F-stable Levi subgroup of G. We say that a linear additive char-
acter of z{ is generic if its restriction to z g is trivial and its restriction to z£, is non-trivial
for any proper F'-stable Levi subgroup M of G which contains L.

Put

(20reg = {x € 21 | Ca(x) = L}.

Let {(d;, n;)}i=1,.., be pairs of positive integers such that L =~ []/_,(GL,, (F,))% and
LF ~TT/_, GL,, (F,4)- Define

(=D ' (@@ — 1) ifd; =d foralli,

K7 = )
0 otherwise,

where p is the ordinary Mobius function.
The proof of the following proposition is completely similar to that of Proposition
4.2.1in [18].

Proposition 6.8.3. Let I" be a generic character of Zf . Then

> T')=qKkK].

z€(z0ky
For a group H, we denote by Z its center.

Lemma 6.8.4. Let (OF,...,(’),f) be a generic tuple of adjoint orbits of gF. Let
(Li, mi, @;) be a datum defining the character F9 (XIC.@) (see Remark 6.7.2). Then

Hf:l (3'ni)|z,, is a generic character ofzf; for any F-stable Levi subgroup M of G which
satisfies the following condition: For all i € {1, ...k}, there exists g; € G' such that
Zy is contained in g,-L,-gi_l.

Proof. We may write n; = F Li (15;) where o; € zj; is the semisimple part of an element
of Of . Note that g;o; g, !is in the center of gilig; ! and so it commutes with the elements
of zm C gi[,-gfl, ie., gl-crl-glfl € Cy(zm) = m. Let z € z£ . Then

k k
[ @ =]]F Qo) e " 28 = [ [ (o, g 'ze)) = [ [ ¥ (u(gioig ', 2)

i=1 i=1 i=l1 i=1
= ‘P(M(Z gioig ", z))
i

If z = AId € zg, then u(}_; giaigi_l, 2) = A Tr(}; g,'a,-gi_l) = 0 by the first gener-

icity condition (see Definition 5.1.1). Let L be an F-stable Levi subgroup such that
M C L CG,ie,zg & 21  zm and assume that ]_[le(gi ni)lz, is trivial. There is a

=

decomposition K* = V| @ - - - @ V, such that [ > &P; gl(V;). Then any element z € z; is

k k
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of the form (A1 1d, ..., A, Id) for some A1, ..., A, € K. Since g,-oigfl emC [foralli,
we may write ) giaigfl =x1,...,x) € gl(V]) & --- & gl(V}). Since ]_[f;l(gi ni)lz,
is trivial we have Zle Ai Tr(x;) = O for all A, ..., XA, € K. Hence Tr(x;) = O for all
i =1,...,r. This contradicts the second genericity assumption. O

A linear character of Z f is said to be generic if its restriction to Zg is trivial and its

restriction to Z 151 is non-trivial for any F-stable proper Levi subgroup M of G such that
L C M.Put
(Zp)reg ={x € Z, | Cg(x) = L}.

We have the following proposition [18, Proposition 4.2.1].

Proposition 6.8.5. Let T" be a generic character of Z f . Then

Y T =(q—DK].

ZE(ZL){;g

Definition 6.8.6. Let X, ..., X; be irreducible characters of G¥. For each i, let
(L;, 0;, ¢;) be a datum defining &;. We say that the tuple (&7, ..., Xy) is generic if
Hfﬁzl(gi 0:)|z,, 1s a generic character of Z /f,] for any F-stable Levi subgroup M of G
which satisfies the following condition: For all i € {1, ..., k}, there exists g; € GT such
that Zy; C giLigfl.

Example 6.8.7. Let ,u], R Mk be partitions of n and denote by R wls e s Ruk the cor-
responding unipotent characters of G (see beginning of this section). Consider k linear
characters oy, ..., o of IF; For each i, put &X; := (o; o det) - Rﬂi. Then A is an irre-
ducible character of GF of the same type as R,i. Then according to Definition 6.8.6, the
tuple (X1, ..., X) is generic if and only if the size of the subgroup of Irr IF;< generated
by ag - - - ¢ equals n.

Givenw = (w1, ...,wg) € (Tn)k , and assuming that char(IF;) does not divide the gcd
of {|a)l! [}i,; and that g is large enough, we can always find a generic tuple (&7, ..., X%)

of irreducible characters of Gf of type . The proof of this is similar to the proof of the
existence of generic tuples of conjugacy classes of GL,, of a given type (see [18]).

Definition 6.8.8. We say that an adjoint orbit of g (or an irreducible character of G*)
is split if the degrees of its type are all equal to 1.

6.9. Multiplicities in tensor products

Let (X1, ..., &) be a generic tuple of irreducible characters of GF. Assume that there ex-
ists a generic tuple (OF , ..., OF) of adjoint orbits of g* of the same type as (X1, ..., Xi).
We putdo = (2g — Dn? 42+ Zi dim O; as in Corollary 5.2.3.

Let ® : g — « be given by x qg”2+gdimcG(x), and let A : GF — « be given by
x > ¢g84mCe (™) If ¢ = 1, note that A is the character of the representation of G in the
group algebra «[gF] where G' acts on g’ by conjugation.
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Theorem 6.9.1. We have

qg~/%(g — 1)

(A®X1®®Xk71)GF= |GF|

<®®-7:9(XZC'51)®' . .®IE(XIC-6k), 1>gF

Proof. Foreachi =1,...,k,let (L;,6;, ¢;) be a datum defining &;. Then

IGF(A@X ® -+ ® Xi, 1) gr

=3 qu‘"’CGmH(eceL W™ > GiwF)RE 6) ()

xeGF weWy,
k
=1"[(eGeL (Wr, |71 Y grdimCet > H i(wi FRE, (6)(x)
xeGF (Wi, W) EWL X x Wy, i=1
- 3 (HeGeL Wil i) > qu‘mCG“)HRT 6 ().
Wi W) EWL XX W, i=1 xeGF

The type of O; is the G -conjugacy class of (L;, (’)iL") where (’)iL" is an F-stable
nilpotent orbit of [; that corresponds to ¢; via Springer’s correspondence.
Fori = 1,...,k, let (L;, n;, ;) be a datum defining .FQ(XIC-@_) as explained in

Remark 6.7.2. Using Theorem 6.7.1 we may proceed as above to get

(© ®]:g(XIC‘6l) ®: - ®}"Q(ch'@), 1)gr

k

x Z qgnz-i-gdlng(x)l—[Rg (771)()5)

xegf

k
2_ 20 Ly g . 1~
— qgn n°+5 Zl dim O; Z (l—[ €Ger, |WLi| 1§0i (wi F))

(Wi yees wk)GWLlX---XWLk i=1

x Z qumw")]‘[zeg (1) ).

xeghf

Since do/2 = gn®> —n*> + 1+ % >, dim O;, we need to see that

G-1 Z ngd““CG"”]"[Rg ) =q Y qg“lmCd”]—[RG ) (x).

xegt xeGF i=1



Quiver varieties and the character ring of general linear groups 1441

Since the functions R?u ; (6;) and R?w,- (n;) are constant respectively on conjugacy classes
and adjoint orbits, we need to verify that for a given type w € T,

k k
@—=DY IR, @) =q) []RE, @). (6.9.1)

x~wi=] X~wi=]

where x ~ w means that the G-conjugacy class of x is of type w. Let (M, C) with M
an F-stable Levi subgroup and C an F-stable nilpotent orbit of m such that the G-
conjugacy class of (M, C) corresponds to w as in §6.8. Recall that x € g is of type
(M, C) if there exists y in the G’ -orbit of x such that M = Cg(ys) and y, € CF.
Similarly, an element x € G is of type (M, C) if there exists y in the G’ -orbit of x such
that M = Cg(ys) and y, — 1 € CF.

Then the proof of (6.9.1) reduces to the proof of the identity

k k
@-0 > TIRL wGc+v=q Y T[RE @G

2€(zm)fg =1 e(Zm)f, 1=1

where v is a fixed element in C¥ andu = v + 1. By formulas (6.5.2) and (6.5.4) we have

R, )G+ =Mt Y o) @) mi(h zh),
{heGF |zehty, h=1) '
RE, (@) (u) = M7 > 0 1 @) 6;(h™"2h).

{heGF |zeh Ty, h="1}
Since Cg(z) = M, we have {h € G | z € hty,h~'} = (h € G | hT,;h~! C M}. Thus
k k k
Y TR, mc+w= 3 ([Tm o), ) 3 [Tt s
ZE(Zm)rIEgiZI ..., by =1 ' ZG(Zm)rI;gizl
where the first sum runs over the set ]_[le{h e GF| hTwih_1 C M}. Similarly we have
k k k
Y 1@ = 3 ([Tm" 1oy, w) o 6t <.
2€(Zu) kg 1=1 hi,..hy i=1 ! 2€(Zu) kg 1=1
The inclusion hiTwihfl C M implies that Zy; C h,'Tw,.h;l - hl-Lihlfl. By Lemma

6.8.4, the character (Hlehf ni)lz, 1S a generic character of zy, and so by Proposition
6.8.3 we have

k
S T niwy zhi) = gk

ZE(Zm)gg i=1
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Similarly, by Proposition 6.8.5 we have

k
Y [leti zm) =@ - DK, o

ey i=1

When the tuples (X7, ..., Xx) and (OF, e, O,f) are not generic we do not have such
a nice relation between mulitplicities. For instance, let us choose (&7, ..., Xx) and
OF, ..., O,f ) to be respectively unipotent and nilpotent of the same type. With the no-
tation in the proof of the theorem we have L; = G for all i and the linear characters »;
and 6; are the trivial characters. Then

k k
Yo JImti 2y = 1@l Y. [0 2hi) = 1(Zm) k).

2€(m)fg =1 z€(Zmiky i=1

Hence, unlike the generic case, the relation between these two terms involves the rational
function |(zm)r€g| /I(Z M)£g| which depends on M. The independence from M is crucial
as we obtain the multiplicities by summing over M.

6.10. Multiplicities and symmetric functions

6.10.1. Definitions. Consider k separate sets X1, . . ., X, of infinitely many variables and
denote by Ay = Q(g) ®z A(X1) ®z --- ®z A(xx) the ring of functions separately
symmetric in each set Xy, ..., X with coefficients in Q(¢) where ¢ is an indeterminate.
On A(x;) consider the Hall pairing (, ); that makes the set {m, (X;)},<p of monomial
symmetric functions and the set {/ (X;)},<p of complete symmetric functions dual bases.
On Ag, put {, ) =[[;(, )i. Consider

Vn t AT = A)[[TTL, f&1,.. X5 ¢, T) = f(X], . x5 9", T

where we denote by x? the set of variables {xf, xg, ...}. The ¥, are called the Adams
operations.
Define W : TAk[[T1] — T Ax[[T]] by

\I/(f)zzw"(f)

n>1 n

Its inverse is given by
Yn(f)

n

() =) u)

n>1

where u is the ordinary Mobius function.
Following Getzler [15] we define Log : 1 + T A¢[[T1] — T Ax[[T]] and its inverse
Exp : TA([[T]] = 1 4+ Ak[[T]] as

Log(f) = W~ '(log(f)) and Exp(f) = exp(¥(f)).
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6.10.2. Cauchy function. For an infinite set x of variable, the transformed Hall-Little-
wood symmetric function H, (X, g) € A(x) ®z Q(g) is defined as

H.(x,q) =Y _ Ki(q)sy(x)
A

where K, (q) = ¢"M K, (g~") is the transformed Kostka polynomial [42, TIT (7.11)].
For a partition A, put
Hi(q) == ¢**M Ja(q)
where a; (q) denotes the cardinality of the centralizer of a unipotent element of GL,, ()
with Jordan form of type A [42, IV, (2.7)]. Define the k-points Cauchy function

k
@) =Y ([T 0)Hal@ T,
reP i=1

Itlies in 1 + T Ag[[T]]. These functions were considered by Garsia and Haiman [14].

Given a family of symmetric functions u, (X, ¢) indexed by partitions, we extend its
definition to a type w = (d1, @) - - - (d,, @") € T, by uy(x, q) = | (x4, g%).

For a multitype ® = (w1, ...,w;) € (Tn)k, put uey = Uy, (X1,9) - Ue, Xk, q)
€ Ag.

Recall that A" denotes the dual partition of A. For a type w = (dy, A1) - - - (dy, Ar), We
denote by o’ the type (di, A}) - - - (dy, A}.).

Letw = (w1, ..., wp) € (Ty)* withw; = (d}, ®}) -+ (d!, w]') and define

Ho(g) :== (=1 (g = 1){se, Log(2(q))) (6.10.1)
where r (@) := kn + Zi’j |wij| and where (s, Log(€2(q))) is the Hall pairing of s, with

the coefficient of Log(€2(g)) in T". Note that if the degrees dl.j are all equal to 1, then
r(w) = 2kn.
We rewrite (6.10.1) in some special cases:

6.10.3. The split semisimple case. We say that w € T,, is a semisimple type if it is the type
of a semisimple adjoint orbit of g/ (or equivalently the type of a semisimple character
of GF). Tt is then of the form (dy, (1™)) - - - (d,, (1")). If moreover w is split, i.e., d; = 1
for all i, then A = (ny, ..., n,) is a partition of n and any partition of n is obtained in this
way from a unique split semisimple type of T,. Note that for a split semisimple type w
with the corresponding partition A, we have s,/ (X) = 7 (X).

For a multipartition A = (A1, ..., A) € (P,)¥ with corresponding split semisimple
multitype @ € (T,)* we put H3*(q) := He(g). Then (6.10.1) reads

Hy'(q) = (g — D {ha, Log(22(q))).

Since {h)} and {m,} are dual bases with respect to the Hall pairing, we may recover
Q(q) from H;3*(¢q) by the formula

Q(q):Exp(Z 3 Hj*_(ql)mﬂ”) (6.10.2)

n=1xre(P,)k




1444 Emmanuel Letellier

6.10.4. The nilpotent case. We say that a type w € T,, is nilpotent if it is the type of a
nilpotent adjoint orbit of g** (or the type of a unipotent character of G¥), in which case it
is of the form w = (1, A) for some partition A of n, and s, (x) = s, (X).

For a multipartition A = (Aq,...,Ax) € (P)K, we put Hy(¢) := He(g), where
®=((1,A1),..., (1, ).

Since the base {s;},¢p is self-dual, we recover Q2(g) from the HY (¢) by the formula

Q(q) = Exp(Z > (q) ”) (6.10.3)

n>1re(P, )"

6.10.5. The regular semisimple case. We say that a type @ € T,, is semisimple regular
if it is the type of a semisimple regular adjoint orbit of G (or the type of an irreducible
Deligne—Lusztig character, see §6.6). Then it is of the form @ = (dy, 1) - - - (d;, 1) and so
A =(di,...,d;)isapartition of n. In this case, the function s, (X) is the power symmetric
function p; (x).

For a multipartition A with the corresponding regular semisimple multitype @, we use
the notation H}**(¢) and r () instead of H,(¢g) and r (@).

Recall that for any two partitions A, u, we have (p; (X), p, (X)) = z20xu-

Then we recover Q(q) from H3*(g) by the formula

-1 r(l)Hrss
Q(q) =Exp<z > Mmﬂ). (6.10.4)
mhadmy @ Da
6.10.6. Multiplicities. Let (X7, ..., Xx) be a generic tuple of irreducible characters

of GF of type w = (w1, ..., o) € (Ty).
Theorem 6.10.1. We have
(ARXI® - ® X, )gr = Hyp(g).

If the irreducible characters A7, ..., X} are all split semisimple with the corresponding
multipartition p € (P,)¥, then Heu(g) = (g — 1){hy, Log(2(g))) by §6.10.3. Hence in
the split semisimple case, this theorem is exactly [18, Theorem 6.1.1].

Since the main ingredient [18, Theorem 4.3.1(2)] in the proof of [18, Theorem 6.1.1]
is available for any type @ € T,, we may follow line by line the proof of [18, Theo-
rem 7.1.1] for arbitrary types (not necessarily split semisimple) to obtain the formula of
Theorem 6.10.1.

Remark 6.10.2. The theorem shows that the multiplicities of generic irreducible charac-
ters depend only on the types and not on the choices of irreducible characters of a given
type. Note that Hy,(g) is clearly a rational function in ¢ with rational coefficients. On the
other hand by Theorem 6.10.1, it is also an integer for infinitely many values of g. Hence
H,(g) is a polynomial in ¢ with rational coefficients.
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7. Poincaré polynomials of quiver varieties and multiplicities

Unless otherwise specified K is an arbitrary algebraically closed field. Fori = 1,...,k
let L;, Pi, 0, Ci, £;,O; be as in §5.3. Put M; := Cgr,(0;) and M := My x --- X M.
We assume that (O, ..., Of) is generic.

7.1. Decomposition theorem and Weyl group action

Let p : VLpy — Voand p : OLpx — O be the canonical projective maps (see
diagram (5.3.1)). For an irreducible character y = x; ® --- ® xx of the Weyl group
Wnm = Wy, x -+ x Wy, we put O = (gl,,)> x Oy, x -+ x Oy, where for each i =
1,...,k, Oy, is the unique adjoint orbit contained in O; corresponding to the character x;
via the Springer correspondence €.

By Proposition 6.4.1, we have

PuICh ) I (D A ®IC) (7.1.1)
x €(lrr Wap)*

where (Irr Wyp)™* := (Irr W) — {x,} and
Ay = Homy, (Indy™ (Ve), Vy)
with Vg = ®i Ve,

Proposition 7.1.1. We have

(Plror)@Ch, , ) = ICo 0 ( D 4,0IC,, ). (12)
x €(Irr Wyp)*

The action of Wy (L, C) onthe A, ’s (see §6.4) thus induces an acti_on of Wm(L, C) on the
complex (p /PGLn)*(I_CbL l).):) and so on the hypercohomology H.(Qp,p 5. IC@L l)»2) =

IHi(QL,p’Z, k). For v € Wm(L, C), we denote by 6, : (p/PGL")*(I—C(.@L,P,):) ~
(p/pGL, )*(E@)L »5) the corresponding automorphism.

Proof of Proposition 7.1.1. By applying the proper base change to the top right square of
the diagram (5.3.1), it follows from the isomorphism (7.1.1) and Theorem 5.4.1 that

eIy ) =ICh o ( P A, eIcy, ). (7.13)
x €(Irr Wyp)*

Since the quotient maps p1 : Vppyx — Qrpsx and po : Vo — Qo are
principal PGL,-bundles, they are smooth and so we have ( Pz)*(IC'QO) ~ IC;)O and

(pl)*(IC('@LAP.E) ~ IC%IL.P,E' Applying the decomposition theorem to p/pgr, (Theo-

rem 3.1.2) and the base change theorem we see that if IC'Z, {[r] is a direct summand
of (,o/pGLn)*(I_CbLM) then (Pz)*(IC.Z,;) = IC;{'(Z),(pz)*(C) is (up to a shift) a direct
summand of p*(llglu)z) and so we must have Z = Qg for some x and { = «. It
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is also clear that I_C'QO appears in (p /PGLH)*(I_C@LP ,) with the same multiplicity as
X P,
I_C{;OX mn p*(I_ngLvP’E) o

Recall that dg denotes the dimension of Qg. Put r, = (do, —do)/2. When (L, P, ¥) is
defined over I, Proposition 7.1.1 can be made more precise as follows.

Proposition 7.1.2. If K = Fq and if (L, P, X) is defined over I, then the isomorphism
(p/ro,)+(ZCh, ) = ICh & ( D A, ®ICh, ().
x e(rr Wyp)*
is defined over F. In particular for v e Wy (L, C), we have
X o o1, TCh, 0000 = Xze T Y T A0 Xger,  (714)
o xe(lm Wyp* *
where ¢ : F*(m, (llglL py)) X T (EQL py) is the canonical isomorphism induced by
the unique isomorphism ¢ : F* (I_CTQLPE) -~ I_C@LP2 which induces the identity on
—d, ° V‘ '1
H, O(I—CQL.P,Z) when x € Qi,P,E(Fq)'

Proof. This follows from the last assertion of Proposition 5.3.1 and the discussion at the
end of §6.4. O
We can proceed as in Gottsche and Soergel [16] to prove the following proposition from
the mixed Hodge module version of the isomorphism (7.1.2).

Proposition 7.1.3. Assume K = C. Then

IH.@Qurs. Q) = H(Qo. Q@& ( @ 4, ®UH " (Qo,. Q) ® Q)
x €(lrr Wap)*
(7.1.5)
is an isomorphism of mixed Hodge structures.

7.2. A lemma

Assume that K = Fq. Recall that F : gl, — gl, denotes the standard Frobenius endo-
morphism so that (gl,)" = gl (F,).

Assume that (O, ..., Og) is F-stable. We do not assume that the eigenvalues of the
adjoint orbits O; are in IF,.

Lemma 7.2.1. We have

IPGL,(F)l > Xzep, (0= > Xzep ()
XGQO(F({) XEVO(IFq)

= (©® F (Xzey )@+ & F Xzey, ). Dai, &)

where © : gl,(F,) — K, x > & +&dimCar, (),



Quiver varieties and the character ring of general linear groups 1447

Proof. We continue to denote by F' the induced Frobenius endomorphism on Vg. We will
write Vg instead of Vo(IFy). Let ¢ : Vo — Qo be the quotient map. Since PGL,, (FF,)
acts freely on Vo, it induces an injective map Vg /PGL, (Fy) — QS. Since PGL, (Fq)
is connected, any F'-stable orbit of Vo has a rational point. Hence the above map is
also surjective. As ¢ is a principal PGL,-bundle we have q*(IC’QO) ~ IC{,O and so
XIC;, . x) = XIC'Q o (y) whenever g (x) = y. We thus deduce the first equality.

Ifi : Vo — O denotes the inclusion, then by Proposition 5.4.3 we have IC{;O =

i*(ICq) = i*(x N2 x IC' X IC.@ ) where « is the constant sheaf on GL, and
k

K228 =k R Rk (2g tlmes). Hence for x = (a1, b1, ..., a4, bg, x1, ..., xx) € V{,

we have

Xzey, () = Xzez; (1) -+ Xzess ().
Forz € g[,f, put

E(2) = ﬁ[(a1,b1,...,ag,bg) € (glf)e ‘ Z[ai,bi] = z].

Hence
> Xzep, (0= > B (=4 x)) Xgee (0) - Xgee ()
erF X1y Xi)E (O x - xO)F I g

=(E *XIc'61 *ee '*XIc'@)(O)-

By (6.5.3) we have
gl - fO) = > FOU(f)x)

xeg[F
forany f € Fun(g[F ). We deduce that
> Xz, (0 =laly |t Y FOE) @) FO (X, RO - FOh (Xzes )(0).
xEVF xeglf ¢
= (FI(8) ® Fo (Xzee ) ® -+~ ® FO" (Xgey ). 1) g
Ol Ok n

It remains to see that 8% (E) = ©
For x € gIf', we have

Fi @) =) W »)EQ) = ) e i[ahbﬂ))
y i=1

(a,b1,....ag,bg)e (glfH28

8
= 3 [T¥0e oo = (Y Y ))’

(@1,b1,....aq.bg)€ (glf )28 1=1 a,begly

= (X 2 wlx.a.b)’ = (Cq, @I lgf D =0@). D

aeglf begll



1448 Emmanuel Letellier

Proposition 7.2.2. Assume that ¥ is a reduced to a point and that (L, P, X) is defined
over Fy. The varieties V1, p s and Qy, p,x are polynomial count. Moreover,

|Qu.p,x (Fy)| = [VL,p,x (Fy)I/IPGL, (Fy)l.

Proof. The second assertion follows from the fact that PGL,, is connected and acts freely
on V, p,s (see beginning of the proof of Lemma 7.2.1).

We only prove the first assertion for Qr, p x as the proof for Vi, p = will be similar.
Since X is a point we have Qp p 5z = QK’P‘E and so the variety Qp, p,x is non-singular
by Corollary 5.3.8. Hence IC(E)}L‘P,Z is the constant sheaf ¥ concentrated in degree 0. By
(7.1.4) applied with v = 1, we thus have

Xp/por,)nt0) = Xz + > (dim A,)qg™"*Xzcy, - (7.2.1)
xe(lrr Wap)* X

By Grothendieck’s trace formula we have

> Xipsrort0®) = 1Qup. s ([Fy).

xEQS

By Lemma 7.2.1, Theorem 6.9.1 and Theorem 6.10.1, there exists a rational function
Q € Q(T) such that for any r € Z-,

> Xzep, @) = Q).

xEQ(F)r
By integrating (7.2.1) over QS, we deduce that

|Qup,x(Fygr)l = P(qg")

for some P € Q(T). Since P(q") is an integer for all r € Z-, the rational function P
must be a polynomial with rational coefficients. O

7.3. The split case

In order to use Theorem 4.1.5 we assume that K = C. As in [18, Appendix 7.1], we may
define a finitely generated ring extension R of Z and a k-tuple of R-schemes (D1, ..., O)
such that ©; is a spreading out of O; and for any ring homomorphism ¢ : R — F,
into a finite field F,, the tuple (Dip (Fq), S ,f (Fq)) is a generic tuple of adjoint or-
bits of gl, (Fq) of the same type as (O1, ..., Ok). Denote by Lo the R-scheme defined
from (91, ..., Og) as Vo was defined from (O1, ..., O) (in the semisimple case this is
written in detail in [18, Appendix A]), and let Qo be the affine quotient B¢ //PGL,,. Then
U is a spreading out of Vg. Recall (see for instance Crawley-Boevey and Van den Bergh
[9, Appendix B]) that the standard constructions of GIT quotients are compatible with
base change for R sufficiently “large”, namely in our case we have Q% = QT% //PGL,, for
any ring homomorphism ¢ : R — k into a field k.



Quiver varieties and the character ring of general linear groups 1449

Theorem 7.3.1. The cohomology group IHQ(QO, C) vanishes if i is odd. For any ring
homomorphism ¢ : R — F, we have

P(Qo.9)= Y. Xgeo, ()
)

¢
reTE, Qg Ey
where Pe(X, q) := )_; dim(IHZ' (X, C))q".

Theorem 7.3.2. If not empty, the variety Qo is pure.

Proof. Let 6 be generic with respect to vp. Since Qo # ¥, by Theorem 5.2.6, we have
Qb # ¥ and so i)ﬁgo (vo) >~ Qg is also not empty. The canonical projective map
SJ?EO,g(V(')) — Qg is then a resolution of sjngularities by Theorem 4.1.4 and so the
group IH.(Qo, C) is a direct summand of H; (Mg, ¢(vo), C) as a mixed Hodge struc-
ture. By Theorem 4.1.5, the variety Mg ¢(vo) is pure, hence so is Qo. m]

Proof of Theorem 7.3.1. By §7.1 and Proposition 7.2.2, the variety Qg satisfies the con-
dition of Theorem 3.3.2. Hence the theorem follows from Proposition 3.3.3 and Theorem
7.3.2. O

Letm:T, - Tysend®=w' -0 € T,t0(1,0)---(1,0) € T,,, and denote by m*

the map (m, ..., m) : (Tp)¥ — (T)F.

Recall (see §6.8) that a generic tuple of irreducible characters of GL, (IF;) of a given
type @ € (T,,)* always exists assuming that char(IF;) and g are large enough.

We have the following relation between multiplicities and Poincaré polynomials of
quiver varieties.

Theorem 7.3.3. Let @ be the type of (O1, ..., Oy) and let ¥ be a finite field such that
there exists a ring homomorphism R — F,. Then for any generic tuple (X1, ..., Xy) of
irreducible characters of GL, (Fy) of type m* (@) we have

P(Q0.9) = ¢ (AQX ® - ® X, 1).

Remark 7.3.4. In the above theorem the existence of a ring homomorphism R — F,
guarantees the existence of a generic tuple of irreducible characters of GL, (IF,).

Proof of Theorem 7.3.3. Fix a ring homomorphism ¢ : R — IF,. To ease the notation we
use £; instead of D;p(Fq). From Theorem 7.3.1 and Lemma 7.2.1, we have

1
P(Q0,q) = ————— (0@ F¥(Xzee ) ® - ® Fn(Xzes ), 1).
(20, q) |PGLn(IFq)|< ( ICDI) ( chk) )
Hence Theorem 7.3.3 follows from Theorem 6.9.1. O

From the above theorem and Theorem 6.10.1 we deduce the following result.
Corollary 7.3.5. Assume that (Oy, ..., Ox) is of type @ € (T,)X. Then

Pe(Q0. q) = /7, 5 (@)
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7.4. The general case

Here K = C. Fix w € Wy (L, C) and put

PY@Qupsiq) =Y Tr(w|IH} Qupz, C)q'.

We now explain how to associate a multitype @ = (w1, ..., w) € (T,)F to the triple
(L, C, w).

Let w; be the coordinate of win Wy, (L;, C;). In §4.3.2 we showed how to associate
to (L;, C;) atype ; € T,. Write

~ i i
a)lza)tla)lla)tzwlza)lw’

i i
—_— ——
di,1 di» dir;

with wij # w; if j # 5. The group WL, (L;, C;) is then isomorphic to W, = ]_[;’:1 Sd;
and so the conjugacy classes of Wgr, (L;, C;) are in bijection with S Y@ c T, (see
§4.3.1). Hence to w; € Wy, (L;, C;) C War, (L;, C;) corresponds a unique element in
H! (@;) which we denote by w;.

7.4.1. The main theorem. Let R be the finitely generated ring extension of Z considered
in §7.3. The main theorem of the paper is the following.

Theorem 7.4.1. Let F; be a finite field such that there exists a ring homomorphism
R — Fy. Let (X1, ..., &) be a generic tuple of irreducible characters of GL, (IF;)
of type w. Then

PYQuLps:q) =g ARX ® - ® X, 1).

Remark 7.4.2. Assume that w = 1, i.e., the degrees of the types w; are all equal to 1. By
Theorem 7.3.3, we have

P(Qs:q) =¢BPAQX @ ® X, 1)

where S = (g[n)zg X St x -+ x Sg with (S1, ..., Sx) a generic tuple of adjoint orbits of
gl,, of type @. Hence by Theorem 7.4.1 we have

Pe@Qup,x; 9) = Pe(Qs; ).
From Theorem 6.10.1 we deduce the following identity.

Corollary 7.4.3.
PY(QLp.z:q) = ¢“*Hu(q).
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7.4.2. Proof of Theorem 7.4.1. By (7.1.5) we have

PYQurpxiq) =P(Qoiq)+ Y. Te(w|A g " WP(Qo,:q). (141
x €(Irr Wypp)*

To alleviate the notation, for each T € (T,)* we choose a generic tuple (X7, ..., Ax) of
irreducible characters of type T and we put R; := X1 ®--- @ X.For T € (T,,)k we write
R; instead of R,k z).

Now for each irreducible character x of Wy we denote by 7, the type of O, and we
denote simply by 7 the type of O. By Theorem 7.3.3 we have

Pe(Qo,:9) = q“x*(A® Rz . 1).
Hence we are reduced to proving the identity
(A®Ry) =(A®R:)+ > Tr(w|A)(A® Rz, 1).
x €(lrr Wyp)*
By Theorem 6.10.1 we need to see that
Ho(q) =Hz(g)+ Y Tr(w|A)H; (9) (7.4.2)

x €(drr Wap)*

where Hz (q) := H,,k3)(q).

From the definition of H,(g) (cf. (6.10.1)) we are reduced to the following problem
on Schur functions {54, (X)}weT,:

LetL,C, M, 0O, A, beasin§6.4. For x € Irr Wy, denote by 7,, € T, the type of O,
(with the convention that 7} = 7). Let @ € T, be the type associated to (L, C). Fix
we Wy(L,C)and let w € H™'(®) € T, be the type corresponding to (L, C, w). To
prove (7.4.2) it is enough to prove the identity
D Dsy®) =se @+ Y Trw | Agsz () (743)

x €(lrr Wyp)*
where for 7 = vl .-V € Ty, s3(x) 1= §,1(X) - - - sy (x) and where r(w) =n+ ) ; |t
We now explain how to get (7.4.3) from Proposition 6.2.5.
We may assume that L = [;_;(GLy, , x -+ x GLy, ) so that M = [T;_, GL,, and

GLn_,u x --- x GL c GL,, ;- Then the nilpotent orbit C may be written as

nj,Sj
,
C = ]‘[(CJ-,I x % Cjg;)

j=1

with C;; a nilpotent orbit of g[,,jv .- Let w’"! be the partition of nj,; given by the size of the
Jordan blocks of C;;, and foreach j = 1,...,r,letw; € ’i‘mj be the type given by the

collection {a)j’l}lzl ,,,,,, s Then
r
Wy (L, C) ~ ]_[ Wi, - (7.4.4)
j=1
Consider the map §r : ’i‘ml X oo X Tm, — Tn where §r (@1, ..., i) is defined by

reordering the partitions in the concatenation of the types i, ..., fi,.
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Example 7.4.4. Consider the lexicographic ordering on partitions. Then the image of
(3,2, D2, 1), 3, 1)) under §» : To x T4 — Ty3is (3,2, D3, D(2, D).

Similarly we define §, : T, x -+ x T, — Tj.
We denote by S : T — P the map which assigns to a type A' --- A" € T the partition

Consider the commutative diagram

.Fjr ~ ~ SV
Ty x - xTy, ——=Tp, x - xXTyp, ——Pp, X+ X Py,

A s

T, o T,

Note that @ = §r(d)1, ..., ;). Let w; be the coordinate of w € Wy (L, C) in
WC;)],. The element w; defines a unique element w; € .V)_l(f)j) C Ty,. Then v =
§r(wy, ..., ) and so

S (X) = Sg, (X) + - Sy (X). (7.4.5)
Foreachi =1,...,r,put i = S(&;) € P, - Note that the collection of the partitions
tl, ..., 1" gives the type T of O.
Now foreachi =1, ..., r, we have

Sor(X) =Y 51 (x)

Azl
and so
So(X) = Z <1_[ C?Li_)s;hl (X) - - - s (X)
L@,y

where (AL, ..., ") < (z!,...7") means that A < 7/ foralli = 1, ..., r. Note that the
set of sequences L ..o, A7) such that (A, ..., ) < (2L, ...t is in bijection with
the set {7, | x € Irr Wy (L, C)}. The bijection associates to a sequence Ao
the unique type given by the collection of partitions AL, ... A" Moreoverif (A, ..., A7)

corresponds to x, we have [ cf‘;l = Tr(w | A,) by Proposition 6.2.5, hence

s = Y Trw | Agsy, (0 =s: )+ Y Tr(w | Ay)sz, (),

x €lrr Wy x €(rr Wyy)*

from which we deduce our formula (7.4.3).
7.4.3. Application to multiplicities in tensor products. Assume that (X7, ..., Xy) is a

generic tuple of irreducible characters of type . Theorem 7.4.1 has the following conse-
quences.
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Theorem 7.4.5. (a) The multiplicity (AQX1 Q- - -Q Xk, 1) is a polynomial in q of degree
do/2 with integer coefficients (with the convention that dg = —oo if Qo = 9). If
moreover the degrees of the characters X1, ..., Xy are all split, then the coefficients
of that polynomial are positive.

(b) The coefficient of g0/ in (A @ X1 @ - - - ® Xx, 1) equals 1.

© AR Q- Q X, 1) #O0ifand only if vg € ©(T'o). If g = 0, then vo is a real
root ifand only if (X1 @ -+ - @ Xy, 1) = 1.

(d) Ifg = 1, we always have (AQ X1 ® -+ ® A, 1) # 0.

Proof. Let us first see that if Qg # @ then dim IH 2do (Qo, (C) = 1. Consider a resolution
QL Plo) Qo. It is clear from (7.4.1) applied to L, P, {o} instead of L, P, ¥ that

dim H>% Q. p.): ©) = dim IH>% (9, C). But Q) (o) is irreducible by Theorem

5.3.7 and so dim H>% Qi p0p O =1L

It is thus clear from (7.4. i) that PY(QL,p,x; ¢) is a polynomial in ¢ of degree do with
integer coefficients and that the coefficient of ¢%0 is equal to 1. It is also clear that if w =
1, then the coefficients are positive. Hence ¢ ~90/2 PY(QLp.5; ¢) = (AQX1®- - - @&k, 1)
satisfies the assertions (a) and (b) of the theorem.

From what we just said it is clear that (A @ A1 ® --- ® A%, 1) # 0 if and only if
Qo # V. Hence the assertion (c) follows from Theorem 5.2.6 and Proposition 5.2.11.

Finally, (d) follows from (c) and Proposition 5.2.9. ]
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