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Abstract. We describe two constructions of (very) dense graphs which are edge disjoint unions of
large induced matchings. The first construction exhibits graphs on N vertices with

(N
2
)
− o(N2)

edges, which can be decomposed into pairwise disjoint induced matchings, each of size N1−o(1).
The second construction provides a covering of all edges of the complete graphKN by two graphs,
each being the edge disjoint union of at most N2−δ induced matchings, where δ > 0.076. This
disproves (in a strong form) a conjecture of Meshulam, substantially improves a result of Birk,
Linial and Meshulam on communicating over a shared channel, and (slightly) extends the analysis
of Håstad and Wigderson of the graph test of Samorodnitsky and Trevisan for linearity. Addition-
ally, our constructions settle a combinatorial question of Vempala regarding a candidate rounding
scheme for the directed Steiner tree problem.

1. Introduction

1.1. Background

Dense graphs consisting of large pairwise edge disjoint induced matchings have found
several applications in combinatorics, complexity theory and information theory. Call a
graphG = (V ,E) an (r, t)-Ruzsa–Szemerédi graph ((r, t)-RS graph, for short) if its set of
edges consists of t pairwise disjoint induced matchings, each of size r . The total number
of edges of such a graph is clearly rt . Graphs of this type are useful when both r and t
are relatively large as a function of the number of vertices N . There are several known
interesting constructions, relying on a variety of techniques.

The first surprising construction was given by Ruzsa and Szemerédi [23], who applied
a result of Behrend [7] about the existence of dense subsets of {1, . . . ,2(N)} containing
no 3-term arithmetic progressions to prove that there are (r, t)-RS graphs on N vertices
with r = N/eO(

√
logN) and t = N/3. They applied this construction, together with the

regularity lemma of Szemerédi [26], to settle an extremal problem of Brown, Erdős and
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Sós [11, 12], showing that the maximum possible number of edges in a 3-uniform hyper-
graph on N vertices which contains no 6 vertices spanning at least 3 edges is greater than
N2−ε and smaller than εN2, for any ε > 0, provided N > N0(ε). See also [14], [5] for
more details about this problem, its extensions, and their connection to (r, t)-RS graphs.

Note that the above construction provides graphs with N vertices and N2/eO(
√

logN)

edges, that is, rather dense graphs, but still ones in which the number of edges is o(N2).
These graphs and some appropriate variants have been used by the first author in [1],
to show that the problem of testing H -freeness in graphs requires a super-polynomial
(in 1/ε) number of queries if and only if H is not bipartite. The proof for one-sided
error algorithms is given in [1], and an extension for two-sided algorithms is described
in [3]. A similar application of these graphs for testing inducedH -freeness appears in [4],
and yet another very recent application showing that testing graph-perfectness requires a
super-polynomial number of queries appears in [2].

The above graphs have also been applied by Håstad and Wigderson [20] to give an
improved analysis of the graph test of Samorodnitsky and Trevisan for linearity and for
PCP with low amortized complexity [24].

Another construction of (r, t)-RS graphs on N vertices, with r = N/3 − o(N) and
t = N�(1/log logN), was given by Fischer et al. in [15]. Note that the matchings here are
of linear size, but their number is much smaller than in the original construction of Ruzsa
and Szemerédi. The construction here is combinatorial, and Fischer et al. use these graphs
to establish an N�(1/log logN) lower bound for testing monotonicity in general posets.

Yet another construction was obtained by Birk, Linial and Meshulam [8], and in an
improved form by Meshulam [22]. For the application in [8] it is crucial to obtain graphs
with positive density. Indeed, the graphs here are (r, t)-graphs on N vertices with r =
(logN)�(log logN/(log log logN)2) and t roughly N2/24r . Thus, their number of edges is
about N2/24. The method here relies on a construction of a low degree representation of
the OR function, due to Barrington, Beigel and Rudich [6]. The application in [8] is in
information theory, the graphs are applied to design an efficient deterministic scheduling
scheme for communicating over a shared directional multichannel.

Interestingly, none of these constructions address the question of whether or not an
(r, t)-RS graph can simultaneously have positive density and yet be an edge disjoint union
of polynomially large induced matchings. This range of parameters is important for some
applications—especially ones in which there is a tradeoff between the number of missing
edges and the number of induced matchings needed to cover the graph. Indeed, Meshulam
[22] conjectured that there were no such graphs. We are able to disprove this conjecture
in the strongest possible sense: The density of our construction is 1 − o(1) and yet r is
nearly linear in N . We also give a number of applications of our constructions.

1.2. Our results

We construct (r, t)-RS graphs on N vertices with rt = (1 − o(1))
(
N
2

)
, and r = N1−o(1).

Thus, not only can we have graphs with positive edge density which are edge disjoint
union of induced matchings of size N�(1), but in fact we can have edge density 1− o(1),
where the size of each matching is N1−o(1). We also describe another construction of a
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partition of the complete graph KN into two subgraphs, each being a union of at most
N2−δ induced matchings, where δ > 0.076. The main difference between the new con-
structions presented here and the previous ones mentioned above is that the graphs con-
structed here are of density 1 − o(1), that is, almost all edges of the complete graph KN
are covered, and yet all these edges can be partitioned into large pairwise disjoint induced
matchings. This surprising property turns out to be useful in various applications.

Our first construction is geometric, and is inspired by the recent work of Fox and Loh
[17] on dense graphs in which every edge is contained in at least one triangle and yet no
edge is contained in too many triangles. The construction follows the basic approach of
Fox and Loh (slightly modified according to the remark of the first author, mentioned at
the end of [17]) with different parameters. An additional (simple) argument is required
in decomposing sparse graphs into not too many induced matchings. Our second con-
struction applies some basic tools from coding theory. Also we make use of the regularity
lemma and some combinatorial and entropy based techniques to prove lower bounds for
these questions.

It is worth noting that a general result of Frankl and Füredi [18] implies that for any
fixed r , there are (r, t)-RS graphs G on N vertices with rt = (1 − o(1))

(
N
2

)
. This is

proved by choosing the non-edges of G randomly and by applying the nibble technique
to obtain the existence of the desired matchings. This method, however, yields the induced
matchings of constant size, whereas we are interested, crucially, in large matchings. The
techniques of [18] cannot provide induced matchings of size exceeding 2(logN).

We apply our results to significantly improve the application in [8]. As mentioned
earlier, Birk, Linial and Meshulam construct (r, t)-graphs on N vertices with r =

(logN)�(log logN/(log log logN)2) and rt roughly N2/24. The authors then use these graphs
to design a communication protocol over a shared directional multi-channel—it is critical
for this application that these graphs have positive density. The communication protocol
based on these graphs achieves a round complexity of O(N2/r) and this is a slightly
better than poly logarithmic improvement over the naive protocol for bus-based architec-
tures.

We can use our construction to achieve a round complexity ofO(N2−δ) over a shared
directional multi-channel. This is the first such protocol that is a polynomial improvement
over the naive protocol. We can accomplish this using just two receivers per station (this
corresponds to a partition of the edges of a complete bipartite graph into two graphs that
can be decomposed into large induced matchings). In case we are allowed C = C(ε)

receivers per station, we can achieve a round complexity that is O(N1+ε) for any ε > 0.
Hence, previous protocols required nearly a quadratic number of rounds, and our proto-
cols require only a nearly linear number of rounds.

Our constructions also disprove the recent conjecture of Meshulam. Moreover, we can
achieve a density approaching 1 while simultaneously being able to decompose the graph
into at most a nearly linear number of induced matchings.

Besides their applications to the problems of [8] and [22], our constructions can be
plugged in the result of [20], extending it to a new range of the parameters that may be
of interest. Lastly, we also answer a question of Vempala [27], showing that a certain
rounding scheme for the directed Steiner tree problem is not effective.
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The rest of this paper is organized as follows. In the next section we describe the two
new constructions. Lower bounds showing that these are not far from being tight are given
in Section 3. In Section 4 we describe applications of these graphs. The final Section 5
contains some concluding remarks and open problems.

2. Constructions

2.1. A geometric construction

Here we construct nearly complete graphs that can be covered by an almost linear number
of induced matchings. These graphs will be based on a geometric construction inspired
by a recent construction of Fox and Loh [17].

We first describe a graphG = (V ,E) and then prove that it can be slightly modified to
yield a nearly complete (r, t)-RS graph. Set V = [C]n for some constant C to be chosen
later. Let N = Cn be the number of vertices. Each vertex x ∈ V will be interpreted as an
integer vector in n dimensions with coordinates in [C] = {1, . . . , C}, where for technical
reasons it is convenient to assume that n is even. Let µ = Ex,y[‖x − y‖22] where x and y
are sampled uniformly at random from V . It is easy to show that µ = 1

6n(c
2
− 1), but we

will not need this exact value.
Next, we describe the set E of edges. A pair of vertices x and y are adjacent if and

only if ∣∣‖x − y‖22 − µ∣∣ ≤ n.
This condition implies that the number of missing edges is small, by a standard applica-
tion of Hoeffding’s inequality:

Claim 2.1.
(
N
2

)
− |E| ≤

(
N
2

)
2e−n/2C

4
.

Proof. The quantity ‖x − y‖22 =
∑n
i=1(xi − yi)

2 is the sum of independent random vari-
ables (when x and y are chosen uniformly at random from V ). Each variable is bounded
in the range [0, C2

] and hence we can apply Hoeffding’s inequality to obtain

Pr
[∣∣‖x − y‖22 − µ∣∣ > n

]
≤ 2e−n/2C

4
,

which implies the claim. ut

As a first step, we will cover all the edges of G by a linear number of induced subgraphs
of small (but super-constant) maximum degree. We will then use this covering to obtain
a covering via an almost linear number of induced matchings. Next, we describe the
(preliminary) induced subgraphs that we use to cover G.

We will define one subgraph Gz for each z ∈ V . Let Vz (the vertex set of Gz) be

Vz =
{
x ∈ V :

∣∣‖x − z‖22 − µ/4∣∣ ≤ 3n/4
}
.

The subgraph Gz is the induced graph on Vz. First, we prove that these subgraphs Gz do
indeed cover the edges of G:
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Lemma 2.2. Let n ≥ 2C. For all (x, y) ∈ E, there is a z such that x, y ∈ Vz.

Proof. First we establish a simple claim that will help us choose an appropriate z:

Claim 2.3. Let a be a vector in which the absolute value of each entry is at most C. Then
there is a vector w where each entry is ±1/2 such that |(a,w)| = |

∑n
i=1 aiwi | ≤ C/2

≤ n/4.

Proof. We can prove this by induction by considering the partial sum
∑r
i=1 aiwi which

we will assume is at most C/2 in absolute value. We can choose wr+1 so that ar+1wr+1
has the opposite sign of this partial sum and this implies that the partial sum

∑r+1
i=1 aiwi is

also at most C/2 in absolute value (although the sign may have changed). This completes
the proof of the claim. ut

Let a be a vector defined as follows: if yi − xi is even, set ai = 0, and otherwise set
ai = yi − xi . We can apply Claim 2.3 to a, but furthermore change the values of w to
be zero on indices on which a is zero. Then |(a,w)| is still at most C/2, and wi is ±1/2
whenever ai is non-zero, and zero whenever a is zero. Set z = (y + x)/2+ w. Note that
z ∈ V because whenever (yi + xi)/2 is not an integer, ai must be non-zero and hence wi
is ±1/2 and alternatively whenever (yi + xi)/2 is an integer, ai is zero and hence wi is
zero. Consider the quantity

‖z− x‖22 =

∥∥∥∥y − x2
+ w

∥∥∥∥2

2
=

1
4
‖y − x‖22 + (y − x,w)+ ‖w‖

2
2.

Since x and y are adjacent in G, we have
∣∣ 1

4‖y − x‖
2
2 − µ/4

∣∣ ≤ n/4. Also, ‖w‖22 ≤ n/4.
Finally, (y − x,w) = (a,w) since w is zero iff a is zero. Hence

∣∣‖z − x‖22 − µ/4∣∣ ≤
n/4+C/2+n/4 ≤ 3n/4, and an identical argument holds for bounding

∣∣‖z−y‖22−µ/4∣∣.
Thus x, y ∈ Vz and the edge (x, y) is covered by some induced subgraph Gz. ut

Next we establish that the maximum degree of any induced subgraph Gz is not too large:

Lemma 2.4. For all z ∈ V , the maximum degree of Gz is at most (10.5)n.

Proof. Let x ∈ Vz and consider any neighbor y of x that satisfies y ∈ Vz. We first
establish that x and y are close to being antipodal in the ball centered at z, and hence we
can bound the number of neighbors of x in Vz by bounding the number of points of V in
some small spherical cap around the antipodal point to x.

Define x′ = 2z− x, the antipodal point to x with respect to the ball centered at z.
Consider the parallelogram (x, z, y, x + y − z). By the parallelogram law, the sum of

the squares of the four side lengths equals the sum of the squares of the lengths of the two
diagonals. Therefore we obtain

‖x − y‖22 + ‖x + y − 2z‖22 = 2‖x − z‖22 + 2‖y − z‖22.

Using the definition of x′, this gives

‖x − y‖22 + ‖y − x
′
‖

2
2 = 2‖x − z‖22 + 2‖y − z‖22.
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Hence ‖y − x′‖22 = 2‖x − z‖22 + 2‖y − z‖22 − ‖x − y‖
2
2 and as both ‖x − z‖22 and

‖y − z‖22 are approximately µ/4 (since x, y ∈ Vz) and ‖x − y‖22 is approximately µ
because x is adjacent to y in G, this implies that ‖y − x′‖22 ≤ 4n. Therefore we can
bound the degree of x in Gz by the number of lattice points in a ball of radius 2

√
n

(centered at the lattice point x′). The unit n-dimensional cubes centered at these lattice
points are pairwise disjoint, each has volume 1, and they are all contained in a ball of
radius 2

√
n + 0.5

√
n = 2.5

√
n. Therefore, the number of these points does not exceed

the volume of an n-dimensional ball of radius 2.5
√
n. Since n is even, the volume of this

ball is
πn/2(2.5

√
n)n

(n/2)!
< (2πe)n/2

(2.5
√
n)n

nn/2
= (2.5 ·

√
2πe)n < 10.5n,

where we have used the fact that b! > (b/e)b for any positive integer b. This completes
the proof of the lemma. ut

Lemma 2.5. Let H be a graph with maximum degree d . Then H can be covered by
O(d2) induced matchings.

Proof. Call two edges e1, e2 ofH in conflict if either they share a common end or there is
an edge in H connecting an endpoint of e1 to an endpoint of e2. It is clear that any edge e
of H can be in conflict with at most 2d − 2+ (2d − 2)(d − 1) < 2d2 other edges of H .

Thus we can initialize each member of a set of 2d2 induced matchings Mi to be the
empty set, and for each edge e of H in its turn, add e to the first Mi for which e is not
in conflict with any edge currently in Mi . Since e is in conflict with less than 2d2 edges,
it can be added to some Mi . We can continue this procedure, obtaining a set of less than
2d2 induced matchings covering all edges of H . ut

It follows that we can decompose the edges of each induced subgraph Gz into at most
O(d2) ≤ O((10.5)2n) induced matchings, and this yields a decomposition of G into
O(Nd2) induced matchings. These matchings can additionally be made edge-disjoint,
since, if any edge is multiply covered we can remove it from all but one of the induced
matchings (and the result is still an induced matching). We have thus proved the following.

Theorem 2.6. For every n,C with n ≥ 2C, n even, there is a graph G on N = Cn

vertices that misses at most Ng edges for

g = 2−
1

2C4 logC
+ o(1)

and can be covered by Nf disjoint induced matchings, where

f = 1+
2 log 10.5

logC
+ o(1).

Hence, for any ε > 0 we can construct a graph G on N vertices missing at most N2−δ

edges for δ = δ(ε) = e−O(1/ε), that can be covered by N1+ε pairwise disjoint induced
matchings. Note that the number of matchings is nearly linear. Note also that by splitting
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each of these matchingsM into b|M|/rc pairwise disjoint matchings, each of size exactly
r = N1−ε−δ , omitting the remaining |M| − rb|M|/rc < r edges, we get an (r, t)-RS
graph, where r = N1−ε−δ and the number of missing edges is at most 2N2−δ . As ε (and
hence δ < ε) can be chosen to be arbitrarily small, this gives, with the right choice of
parameters, an (r, t)-RS graph on N vertices, with r = N1−o(1) and rt =

(
N
2

)
− o(N2).

2.2. A construction using error correcting codes

Here we construct nearly complete graphs with large induced matchings using error cor-
recting codes. These constructions will be incomparable to those in the previous section—
the number of missing edges will be much smaller (in fact, the number of missing edges
can be made asymptotically optimal as we will demonstrate in Section 3.2), but the price
we pay is that the average size of an induced matching will only be a small power of N as
opposed to nearly linear. As we will show, the construction in this section will be better
tailored to the application in [8] (at least for some values of the relevant parameters) than
the construction of the previous section.

Throughout this section, we will use codes over the binary alphabet as well as over
a bigger alphabet. Let dH(x, y) be the Hamming distance between two binary strings x
and y (of the same length). The Hamming weight of a binary string x is the number of
non-zero entries, or equivalently the Hamming distance to the all-zeros vector. We can
similarly define the Hamming distance dH(x, y) between two vectors x and y over a
larger alphabet [C] as the number of indices where these vectors disagree.

Definition 2.7. An [n, k, d] linear code is a subspace C consisting of 2k length n binary
vectors such that for all x, y ∈ C and x 6= y, dH(x, y) ≥ d . We will call n the encoding
length, k the dimension, and d the distance of the code.

An n × k matrix A of full column rank over GF(2) is the generating matrix of a
code of dimension k and length n consisting of all linear combinations of its columns.
The distance of this code is exactly the minimum Hamming weight of any non-zero code
word. Throughout this section we will make use of a particular type of code:

Definition 2.8. Call a linear code C proper if the all-ones vector E1 is a codeword.

It is well-known that there are linear codes that achieve the Gilbert–Varshamov bound.
In fact, proper codes also achieve this bound:

Lemma 2.9. If
∑d
i=0

(
n
i

)
≤ 2n−k , then there is a proper [n, k, d] code. Thus, there is

such a code in which k = (1−H(d/n))n, whereH(x) = −x log2 x− (1−x) log2(1−x)
is the binary entropy function.

Proof. Let C be a maximum subspace of {0, 1}n that contains E1 and has distance at least d.
Such a subspace exists since {E0, E1} has this property. Since C is a subspace, the minimum
distance is exactly the minimum Hamming weight of any non-zero vector in C. Let w
be some vector not in C. If dH(w, x) ≥ d for every x ∈ C, then it is easy to see that
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(w+C)∪C is a larger subspace containing E1 which still has distance at least d. Therefore,
by the maximality of C, we have⋃

x∈C

{
y : dH(y, x) ≤ d

}
= {0, 1}n

and hence |C|
∑d
i=0

(
n
i

)
≥ 2n. Since

∑d
i=0

(
n
i

)
≤ 2n−k , this implies that |C| ≥ 2k . ut

Claim 2.10. Let A be the generating matrix for a proper [n, k, d] code C with d > 1.
Then deleting any row of A results in a generating matrix A′ for a proper [n−1, k, d−1]
code.

Proof. Note that C′ = {A′x : x ∈ {0, 1}k} and hence C′ (defined by the generating
matrix A′) has dimension k, as no non-trivial linear combination of the columns of A′

can be the zero vector, by the assumption d > 1. The all-ones vector is still a codeword
since Ax = E1 implies that A′x = E1. Finally, the minimum distance of C′ is the minimum
Hamming weight of any non-zero codeword, and the Hamming weight of any codeword
in C decreases by at most 1 by deleting any index. ut

Throughout this section let C = Cn be an [n, k, d] code, and let Cn−1,Cn−2, . . . ,Cn−d+1
be proper [n− 1, k, d − 1], [n− 2, k, d − 2], . . . and [n− d + 1, k, 1] codes, respectively.

Next, we define a graph G = (V ,E) that will be the focus of this section. Let V =
[C]n and set N = |V | = Cn. Consider two vertices a, b ∈ V , where a = (a1, . . . , an)

and b = (b1, . . . , bn) for ai, bi ∈ [C]. There is an edge between a and b if and only if
dH(a, b) =

∑n
i=1 1ai 6=bi > n− d .

It is easy to count the number of missing edges. Indeed, in the complement ofG each
vertex a is connected to all vertices b so that ai = bi for at least d indices i. As the
number of missing edges is half the sum of degrees in the complement, this gives:

Claim 2.11. (
N

2

)
− |E| ≤

1
2
Cn

n∑
i=d

(
n

i

)
(C − 1)n−i .

Lemma 2.12. If d/n ≥ 2/(C − 1) then

1
2
Cn

n∑
i=d

(
n

i

)
(C − 1)n−i ≤

(
n

d

)
Cn(C − 1)n−d .

Proof. Using the inequality
(
n
i

)
≤ (n/d)i−d

(
n
d

)
we obtain a bound

n∑
i=d

(
n

i

)
(C − 1)n−i ≤

(
n

d

)
(C − 1)n−d

n−d∑
j=0

(n/d)j (C − 1)−j ,

which implies the lemma. ut

Hence the number of missing edges in G is at most Ne for

e = 1+
H(d/n)+ (1− d/n) log2(C − 1)

log2 C
+ o(1).
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Next, we describe the induced matchings that are used to cover the edges in G. In
order to do so, we will define an equivalence relation over edges of G. In particular, this
will be an equivalence relation over ordered pairs (a, b), where a = (a1, . . . , an) and
b = (b1, . . . , bn), under the condition that dH(a, b) > n− d .

Definition 2.13. Let S ⊂ [n], |S| = r and let (a, b) be a pair of vertices in V where S =
{i : ai = bi}. Let x be a {0, 1}n−r vector. Let [n]−S = {i1, . . . , in−r} and i1 < · · · < in−r .
Then the x-flip of (a, b) is a pair (c, d) such that for all i ∈ S, ci = ai = bi = di and for
all i = ij /∈ S (i.e. i is the j th smallest index not in S), ci = ai , di = bi if xj = 0 and
otherwise ci = bi , di = ai .

Informally, the n − r indices not in S are mapped in order to the n − r bits in x and
the corresponding locations in a and b are swapped if and only if the corresponding bit
of x is 1.

Definition 2.14. We will define a pair (a, b) ∼ (a′, b′) iff S = {i : ai = bi} = S′ =

{i : a′i = b
′

i}, |S| = r < d and furthermore there is an x ∈ Cn−r such that (a′, b′) is the
x-flip of (a, b).

Next we will establish that this relation ∼ is indeed an equivalence relation, and that
it is actually a relation on unordered pairs, that is, (a, b) ∼ (b, a) for all a, b:

Claim 2.15. (a, b) ∼ (b, a).

This follows because the code Cn−r is proper (for all r < d), and hence the all-ones
vector E1 lies in Cn−r and (b, a) is the E1-flip of (a, b).

Claim 2.16. (a, b) ∼ (c, d) iff (c, d) ∼ (a, b).

Proof. By symmetry we only need to establish one direction. Suppose (a, b) ∼ (c, d).
Then S = {i : ai = bi} = S′ = {i : ci = di}. Let (c, d) be an x-flip of (a, b) (where
x ∈ Cn−r ). Then (a, b) is also the x-flip of (c, d). ut

Claim 2.17. (a, b) ∼ (c, d) and (c, d) ∼ (e, f ) implies (a, b) ∼ (e, f ).

Proof. Again note that S = {i : ai = bi} = S′ = {i : ci = di} = S′′ = {i : ei = fi}.
Let x, y ∈ Cn−r be such that (c, d) is the x-flip of (a, b) and (e, f ) is the y-flip of (c, d).
Then x + y ∈ Cn−r since the code is linear, and (e, f ) is the x + y-flip of (a, b). ut

This immediately implies:

Lemma 2.18. The relation ∼ is an equivalence relation over unordered pairs (a, b)
which have Hamming distance > n− d .

Since each code Cn−r (for r < d) has dimension k, each equivalence class has size
exactly 2k .

Lemma 2.19. Each equivalence class is an induced matching consisting of 2k−1 edges.
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Proof. Consider two edges (a, b) and (e, f ) in the same equivalence class. Let S = {i :
ai = bi} = {i : ei = fi} where |S| = r (< d). Let (e, f ) be the x-flip of (a, b) for
x ∈ Cn−r . Since the code Cn−r has distance at least d − r , the Hamming weight of x is
at least d − r . Consider the Hamming distance between a and f . Each index i ∈ S is
an index at which a and f agree (i.e. ai = fi). Furthermore, there is a bijection between
indices in x that are set to one and indices outside of the set S, for which a and f agree.
So the vectors a and f agree on at least r + (d − r) = d indices, and hence af is not an
edge in G. Since (e, f ) and (f, e) are in the same equivalence class, the above argument
also shows that ae, be and bf are non-edges. ut

If we use one induced matching for each equivalence class, then each edge in G is cov-
ered exactly once and hence the number of induced matchings needed to cover G is
|E|/2k−1

≤ N2/2k .

Theorem 2.20. For every n, d, C such that 1/2 > d/n ≥ 2/(C − 1) , there is a graph
G on N = Cn vertices that misses at most Ne edges for

e = 1+
H(d/n)+ (1− d/n) log2(C − 1)

log2 C
+ o(1)

and can be covered by Nf disjoint induced matchings, where

f = 2−
1−H(d/n)

log2 C
+ o(1).

In particular, for any ε > 0, there is a graph G on N vertices missing at most N3/2+ε

edges that can be covered by N2−cε3
induced matchings. This is obtained by choosing C

for which log2 C = 2(1/ε) and d/n = 1/2−2(ε).
Also we can choose C = 35 and d = 0.15n, in which case 2(e−1), f < 1.924. Thus

we can cover the edges of a complete graph on 2N vertices by two graphs G1 (set to G
with N replaced by 2N in the above construction) and G2 (set to the complement of G),
where the number of induced matchings needed to cover the edges of G1 is O(N2−δ) for
δ > 0.076, and the same holds for G2 (see Section 4.1 for details). For applications we
need that the above statement holds also for covering all edges of the complete bipartite
graphKN,N by two such graphsG′1 andG′2—this clearly follows by splitting the vertices
of K2N arbitrarily into two equal classes and by defining G′i , for i = 1, 2, to be the graph
obtained from Gi by keeping only the edges that have one endpoint in each class.

3. Limits

3.1. Triangle removal lemma

The connection between the triangle removal lemma and the existence of (r, t)-RS graphs
is well known since the work of Ruzsa and Szemerédi; for completeness we include the
argument.
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Proposition 3.1. If there exists an (r, t)-RS graph onN vertices, then there exists a graph
on N + t vertices with at least 3rt/2 edges, in which every edge is contained in exactly
one triangle. Thus one has to delete at least rt/2 edges to destroy all triangles and yet
the graph contains only rt/2 triangles.

Proof. Let G be an (r, t)-RS graph on N vertices. Then its number of edges is rt and
hence, by a well known simple result, it contains a bipartite subgraph G′ = (U, V,E′)

with at least rt/2 edges. Clearly, these edges can be covered by t induced matchings
M1, . . . ,Mt , and we can assume that these matchings are pairwise edge disjoint.

For each matchingMi , add an additional vertex wi and connect wi to the endpoints of
all edges in Mi . The resulting graph H = (U, V,W,EH ) is tripartite, has N + t vertices
and contains |E′| triangles. The critical property of this construction is that each edge
of H is in a unique triangle. Indeed, there is a natural set of |E′| triangles in H—each
such triangle is specified by an edge (u, v) ∈ E′ and if this edge is contained in the
matching Mi , this edge is mapped to the triangle (u, v,wi) in H . There are in fact no
other triangles inH : Let T = (a, b, c) be a triangle inH . SinceH is tripartite, there must
be exactly one vertex from each set U,V and W in the set a, b, c. Suppose that a ∈ U
and b ∈ V . Then let Mi be the unique matching containing the edge (a, b). Suppose
c = wj 6= wi . This implies that the matching Mj covers both vertices a and b but does
not contain the edge (a, b), and hence Mj is not an induced matching, a contradiction.
This completes the proof. ut

The triangle removal lemma of [23], which is one of the early major applications of
the regularity lemma, asserts that for any ε > 0 there is a δ = δ(ε) > 0 so that for
N > N(ε) any graph on N vertices from which one has to delete at least εN2 edges to
destroy all triangles contains at least δN3 triangles. This and the above proposition imply
that there are no (r, t)-RS graphs on N vertices with r = �(N) and t = �(N). The
original proof of [23] provides a rather poor quantitative relation between ε and δ, but
the improved recent proof of Fox [16] supplies better estimates (which are still very far
from the known constructions). If the number of vertices is N and the graph is a pairwise
disjoint union of t induced matching, each of size r = cN , then t is at most N/log(x)N
with x = O(log(1/c)), where log(x)N denotes the x-fold iterated logarithm. For more
details, see [16].

3.2. Reconstruction principle

Here we prove lower bounds on the number of edges that a graph must miss if it can
be covered by disjoint induced matchings of size r . These lower bounds establish that
the results in Section 2.2 are essentially tight for an important range of the parameters.
Indeed, as proved in that section, there are graphs on N vertices missing N3/2+ε edges
that can be covered by disjoint, induced matchings of polynomial size. Yet, as we show
below, any graph that can be covered by disjoint, induced matchings of size two or more
must miss at least N3/2 edges. We describe two proofs. The first is based on entropy
considerations, and the second is an elementary combinatorial proof, which in fact yields
a somewhat stronger result, as it bounds the minimum degree in the graph of missing
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edges. We believe, however, that both methods are interesting and each may have further
applications. We start with the entropy proof.

Let G = (V ,E) be a graph on N vertices that can be covered by disjoint induced
matchings M1, . . . ,Mt each of size r ≥ 2. We will prove an upper bound on the num-
ber |E| of edges based on an application of the reconstruction principle (and through
information-theoretic inequalities).

To this end, we define a random variable A as follows:

• Choose Mi uniformly at random.
• Choose an ordered set of two distinct edges e1, e2 from Mi .

Set A = (e1, e2). Let e1 = (W,X) and e2 = (Y, Z). Here we use upper case letters to
denote that each of these choices W,X, Y and Z is a random variable and we will use
lower case letters to denote specific choices of these random variables.

Claim 3.2. H(A) = log |E| + log(r − 1).
Proof. Since we choose each matching Mi uniformly at random, and each matching is
of the same size (r), the first edge e1 is chosen uniformly at random from the set E.
Conditioned on the choice of e1, the remaining edge e2 is chosen uniformly at random
from the other r − 1 edges in Mi . ut

Let dv be the number of missing edges incident to v ∈ V . Let Dv be the set of non-
neighbors of v, and let fv : Dv → [dv] be a function mapping each non-neighbor of v to
a unique integer in the set [dv].

• Choose A as above and let e1 = (w, x) and e2 = (y, z).
• Choose S1 with probability 1/2 to be either w or x, and let S3 be the opposite choice.
• Choose S2 with probability 1/2 to be either y or z.

We set the random variable B = [s1, fs1(s2), fs2(s3)].

Lemma 3.3. H(B) ≥ H(A).
Proof. We prove that A can be computed as a deterministic function of B, and then we
apply the chain rule for entropy to prove the lemma.

Claim 3.4. A can be computed as a deterministic function of B.

Proof. Given B, we can compute s2 using s1 and fs1(s2), and using s2 and fs2(s3) we can
compute s3. This in turn defines the edge e1 = (s1, s3) which uniquely determines Mi

since the set of matchings disjointly covers the edges in G. From Mi and s2, we can
compute the remaining edge e2: this is the unique edge incident to s2 in the matchingMi .

ut

The chain rule for entropy yields the expansion H(B,A) = H(B) + H(A |B), but
H(A |B) = 0 because A is a deterministic function of B. We can alternatively expand
H(B,A) as H(A)+H(B |A). Since H(B |A) ≥ 0 we get H(B) = H(B,A) ≥ H(A),
as desired. ut

Next, we give an upper bound for the entropy of B (based on the number of missing
edges), and this combined with the lemma above will imply a contradiction if the number
of missing edges is too small.
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Definition 3.5. We will call a random variable S on V degree-uniform if S chooses a
random vertex proportional to the degree in G.

Claim 3.6. S1 and S2 are degree-uniform random variables.

Note that these two random variables are not independent!

Proof. We can choose the random variable A by choosing an edge uniformly at random
from E, setting this edge to be e1 and choosing e2 uniformly at random from the remain-
ing edges in the matching Mi that contains e1. The distribution of S1 in this sampling
procedure (for A) is clearly degree-uniform.

To prove the remainder of the claim, we can slightly modify the sampling procedure
for A. We could instead choose an edge uniformly at random from E and set this edge to
be e2. Then choose an edge e1 uniformly at random from the other edges in the match-
ing Mi that contains e2. This is an equivalent sampling procedure for generating A, and
from this procedure it is clear that S2 is degree-uniform. ut

Let d̄ be the average degree in the complement of G.

Lemma 3.7. H(B) ≤ logN + 2 log d̄.

Proof. We can decompose the random variable B into B1 = s1, B2 = fs1(s2) and B3 =

fs2(s3). Again, using the chain rule for entropy we obtain

H(B) = H(B1)+H(B2 |B1)+H(B3 |B2, B1).

Since S2 is a deterministic function of the random variables B2 and B1, we get

H(B3 |B2, B1) = H(B3 |B2, B1, S2) ≤ H(B3 | S2).

We can upper bound H(B1) by logN , and

H(B2 |B1) =
∑
s1

Pr[S1 = s1]H(B2 | S1 = s1) ≤
∑
s1

Pr[S1 = s1] log ds1 .

Using Claim 3.6, this is

H(B2 |B1) =
∑
s1

N − 1− ds1
2|E|

log ds1 ≤
∑
s1

N − 1− d̄
2|E|

log d̄ = log d̄,

where we have used Jensen’s inequality and the concavity of the functions log x and
−x log x. An identical bound holds also for H(B3 | S2) again using Claim 3.6, and thus
we get H(B) ≤ logN + 2 log d̄ . ut

We can apply Lemma 3.3 and the bounds in Lemma 3.7 and Claim 3.2 to obtain the
following theorem:

Theorem 3.8. Let G = (V ,E) be a graph on N vertices that can be covered by disjoint
induced matchings of size r ≥ 2. Then the number of missing edges satisfies(

N

2

)
− |E| ≥

(
1

2
√

2
− o(1)

)
r1/2N3/2.
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For r = 2 the following construction shows that this estimate is tight up to a constant
factor. Let G be a graph on N vertices such that V (G) = {(x, y) : 1 ≤ x, y ≤

√
N}

and every vertex (x, y) is adjacent to all vertices (x′, y′) such that x 6= x′ and y 6= y′.
Then the complement of G has (

√
N − 1)N edges and G can be covered by the disjoint

induced matchings Mx,x′,y,y′ = {(x, y) ∼ (x
′, y′), (x, y′) ∼ (x′, y)} of size two.

We can also apply a nearly identical argument to the proof of Theorem 3.8 in the case
in which G is a bipartite graph:

Theorem 3.9. Let G = (U, V,E) be a bipartite graph that can be covered by disjoint
induced matchings of size r ≥ 3. Then the number of missing edges satisfies

|U | × |V | − |E| ≥ �(r2/3
|U |2/3|V |2/3).

To prove this result, we chooseA′ to be three distinct edges from the matchingMi , and we
use a length three path through pairs inU×V that are not inE to define the corresponding
random variable B ′. Again, the proof uses information-theoretic inequalities and the fact
that (if appropriately defined) A′ can be reconstructed as a deterministic function of B ′.
It is worth noting that for a bipartite graph with |U | = |V | = N and induced matchings
of size 2, the following simple construction misses only N edges. Let G be a bipartite
graph with U,V = [N ] such that every i ∈ U is adjacent to all j ∈ V , j 6= i. Then the
complement of G has N edges and G can be covered by the disjoint induced matchings
Mi,j = {(i, j), (j, i)} of size two.

We can also give a direct counting argument, which is somewhat stronger, as it yields
a lower bound on the minimum degree in the graph of missing edges. This counting
argument proceeds by estimating the size of an appropriately defined set in two ways.

Theorem 3.10. If G = (V ,E) is a graph on N vertices that is the disjoint union of
induced matchings of size r , then the minimum degree d in the complement of G satisfies(

d

2

)
≥ (r − 1)(N − 1− d).

Proof. Let G be an edge disjoint union of the induced matchings M1, . . . ,Mt each of
size r , and let dv be the degree of v in the complement of G. Set

Fv = {e ∈ E : v /∈ e, ∃Mi such that e ∈ Mi and v is covered by Mi}.

For each v ∈ V , Fv contains precisely (N − 1 − dv)(r − 1) edges since v belongs to
exactly N − 1− dv matchings and for each such matching there are exactly r − 1 choices
of an edge (in the matching) that is not incident to v.

Alternatively, each Fv contains at most
(
dv
2

)
edges: If e ∈ Fv then v cannot be a

neighbor of each endpoint of e because the matching is induced. As there are at most
(
dv
2

)
choices of pairs of vertices that are not neighbors of v, we find that for every v ∈ V ,

(r − 1)(N − 1− dv) ≤
(
dv

2

)
.

In particular, this holds for the vertex of minimum degree d, completing the proof. ut

The assertion of Theorem 3.9 can also be proved by a counting argument. We omit the
details.
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4. Applications

4.1. Shared communication channels

We apply our results to significantly improve the application in [8] of communicating
over a shared directional multi-channel. Roughly, when communicating over a shared
channel we want the edges (corresponding to messages sent in some time step called a
round) to form an induced matching. Otherwise, a receiver will hear messages sent from
two different sources and the messages will appear garbled. Birk, Linial and Meshulam
construct graphs with positive density that can be covered by roughly N2/24r induced
matchings where r = (logN)�(log logN/(log log logN)2). The authors then use these graphs
to design a communication protocol forN stations over a shared directional multi-channel
where the round complexity of this protocol is O(N2/r). This is a slightly better than
poly-logarithmic improvement over the naive protocol for bus-based architectures.

We can use our constructions to achieve a round complexity ofO(N2−δ) over a shared
directional multi-channel. This is the first such protocol that provides a polynomial im-
provement over the naive protocol. We accomplish this using just one transmitter and two
receivers per station. This corresponds to a partition of the edges of a complete bipartite
graph into two graphs each of which can be decomposed into a small number of induced
matchings. If we allow C = C(ε) receivers per station, we can achieve a round com-
plexity that is O(N1+ε) for any ε > 0 (here N is a trivial lower bound). Hence, while
previous protocols required a nearly quadratic number of rounds with a constant number
of receivers per station, our protocols require only a nearly linear number of rounds.

Motivated by the application to communication over a shared channel, Meshulam
[22] conjectured that any graph on N vertices with positive density could not be covered
by O(N2−δ) induced matchings. The constructions presented in Sections 2.1 and 2.2
disprove this conjecture in a strong sense.

First we explain the model considered in [8]. Roughly, the goal is to design a good
communication protocol using a small number of shared communication channels. More
precisely, suppose we have N stations, and each wants to send a (distinct) message to all
the other stations. We further assume that each message is (roughly) the same size. In this
context, it is often prohibitively expensive to build a point-to-point communication chan-
nel from each station to every other one. Often, the proposed solution is to use some form
of a shared communication channel. Indeed, the standard bus-based architecture connects
all pairs of stations using a single connection in such a way that only one message can be
sent on the channel per time step and hence a total of N2 rounds are needed to send all
messages.

There are other architectures that can be implemented cheaply in hardware and can
accomplish this task in a smaller number of rounds. One such architecture is the shared
directional multi-channel. The combinatorial abstraction is that we imagine the communi-
cation graph as a complete bipartite graphKN,N (withN vertices on the left, representing
the transmitters of the stations, and N vertices on the right, representing the receivers).
A directed multi-channel allows us to partition KN,N into C graphs G1, . . . ,GC . These
graphs correspond to allocating c receivers to each station. For each graph Gi , in each
round we can exchange all messages corresponding to the edges in some induced match-
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ing inGi in one time step. These matchings are required to be induced because otherwise
messages would interfere in the underlying hardware.

Thus the problem of designing a communication protocol for this architecture that
completes in a small number of rounds and does not use too many transmitters and re-
ceivers per station is exactly the problem of covering all the edges of a complete bipartite
graph (using at most C graphs) so that the number of induced matchings needed to cover
the edges in each graph is small. The number C represents the number of receivers that
each station must be equipped with, assuming it has only one transmitter, and so our goal
is not only to minimize the number of rounds, but also to do so for a small value of C.

• For C = 2, we give a protocol that completes in O(N2−δ) rounds for δ > 0.076
• For any ε > 0, we show that there is a C = C(ε) = 2O(1/ε) so that there is a commu-

nication protocol that completes in O(N1+ε) rounds.

Let KN,N be the complete bipartite graph with N vertices on the left and N on the
right.

Theorem 4.1. There is a partition of the edges of KN,N into two graphs G1 and G2 so
that each of these graphs can be covered by at most O(N2−δ) induced matchings, for
δ > 0.076.

Proof. This follows immediately from the construction given at the very end of Sec-
tion 2.2: we can choose G′1 and G′2 that cover all edges of KN,N , where G′1 covers all
edges ofKN,N but at mostN2−δ and yet it is a union of at mostN2−δ induced matchings.
The second graphG′2 consists of all these remaining edges. This graph is in fact d-regular
by construction and has Ne edges, with 2(e − 1) < 1.924. Since d = Ne−1, we can
invoke Lemma 2.5 and we can cover G′2 by O(d2) = O(N2(e−1)) induced matchings.
The total number of induced matchings in each graph is thus at most O(N2−δ). ut

Theorem 4.2. For any ε > 0, there is a C = C(ε) = 2O(1/ε) so that the edges of KN,N
can be partitioned into G1, . . . ,GC and each of these graphs can be covered by at most
O(N1+ε) induced matchings.

Proof. To obtain this result, we can instead invoke the construction in Section 2.1 to
obtain a bipartite graph G (obtained by splitting the vertices of the graph constructed
in that section into two equal parts and by keeping all edges that join vertices in the
two parts). For each i, we can take Gi to be a random shift of G—i.e. we construct Gi
by permuting the labels of the vertices on the right randomly. G misses less than N2−δ

edges, for δ = 2−O(1/ε), and hence if we take C = 2/δ random shifts the expected
number of edges that are not covered in any Gi is less than one. Hence there is some
choice of G1, . . . ,GC that covers the edges in the complete bipartite graph and yet the
edges in each Gi can be covered by at most O(N1+ε) induced matchings. We note that
the above proof can be derandomized using the method of conditional expectations, that
is, the graphs Gi can be generated efficiently and deterministically. ut

Finally we mention a simple lower bound for the number of rounds needed, proved by
Meshulam [22]. This shows that for any constant number of receivers a super-linear num-
ber of rounds is needed:
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Proposition 4.3 ([22]). For any partition of the edges of KN,N into G1, . . . ,GC ,
the total number of induced matchings needed to cover G1, . . . ,GC is at least
b(C)N1+1/(2C−1).

Proof. We apply induction on C, the result for C = 1 is trivial. Consider the case C = 2.
Without loss of generality, let G1 contain at least half of the edges from the complete
bipartite graph and suppose that the minimum number of induced matchings needed to
cover G1 is N r . Then there is an induced matching (in this set) that contains at least
1
2N

2−r edges and hence G2 contains a complete bipartite graph where the number of
vertices on the left and on the right is at least 1

4N
2−r . Hence the number of induced

matchings needed to coverG2 is at least 1
16N

4−2r . Since the quantity max(N r , N4−2r) is
minimized for r = 4/3 the total number of induced matchings needed to cover G1 and
G2 is at least �(N4/3).

We can iterate the above argument in the general case. Without loss of generality
let G1 contain at least (1/C)N2 edges and suppose the minimum number of induced
matchings needed to cover G1 is N r . Then the union of G2, . . . ,GC contains a complete
bipartite graph where the number of vertices on the left and on the right is at least 1

2CN
2−r .

We can assume by induction that the total number of induced matchings needed to cover
G2, . . . ,GC is at least some b′(C)N (2−r)(1+1/(2C−1

−1)). The quantity

max
(
r, (2− r) ·

2C−1

2C−1 − 1

)
is minimized for r = 2C/(2C − 1), and this completes the proof. ut

Hence any protocol requires at least �(log 1
ε
) receivers per station to reduce the number

of rounds toO(N1+ε). In contrast, the protocol in Theorem 4.2 uses 2O(1/ε) receivers per
station to complete this same task in O(N1+ε) rounds.

4.2. Linearity testing

Here we observe that our graphs can be plugged in the analysis of Håstad and Wigderson
[20] of the graph test of Samorodnitsky and Trevisan [24] to provide a (modest) strength-
ening. We obtain slightly better bounds on the soundness of this test, which may be of
interest for a particular range of parameters.

The classical linearity test of Blum, Luby and Rubinfeld chooses a pair of points x
and y uniformly at random from the domain of a function, and checks if f (x)+ f (y) =
f (x + y). The test accepts f if and only if this condition is met, and indeed this test
always accepts a linear function and if f is not linear, the probability that this test accepts
f can be bounded by 1/2+ d(f )/2, where d(f ) is the maximum correlation of f with a
linear function [9].

What if we want to reduce the probability that a function f that is not linear passes
this test? We could perform ` independent trials, in which case the probability that f is ac-
cepted is bounded by (1/2+ d(f )/2)`. However, such a test queries the function f on 3`
locations. Motivated by the problem of designing a PCP with optimal amortized query
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complexity and the related problem for linearity testing, Samorodnitsky and Trevisan
introduced a graph-based linearity test: Associate each vertex in an N -vertex complete
graph with a randomly chosen element from the domain of f , and for each edge check if
f (x) + f (y) = f (x + y) where x and y are the values associated with the endpoints of
the edge. This test accepts if and only if all of these conditions are met.

This test queries the function f onN+
(
N
2

)
locations and the hope is that the soundness

should behave approximately like
(
N
2

)
independent trials of the original linearity test [9].

Samorodnitsky and Trevisan [24] showed that the soundness of this test is bounded by

(1/2)(
N
2) + d(f ).

This analysis was subsequently simplified and improved by Håstad and Wigderson
[20], using the known existence of graphs that have many edges but can be covered by
large (disjoint) induced matchings. The intuition behind this connection is that an in-
duced matching corresponds to independent trials of the original Blum–Luby–Rubinfeld
linearity test (although the formal analysis somewhat masks this intuition). Håstad and
Wigderson [20] proved:

Theorem 4.4. If G = (V ,E) is an (r, t)-RS graph, then the graph-test for G accepts a
function f with probability at most

e−(1−2c)2rt/2
+ d(f )cr

for any 0 < c < 1/2.

This theorem is stated in [20] for c = 1/4, but the tradeoff quoted above is immediate
from their proof. Håstad and Wigderson [20] used the construction of Ruzsa and Sze-
merédi [23] mentioned in the introduction, which shows that there are (r, t)-RS graphs
on N vertices with r = N/eO(

√
logN) and t = N/3.

We can plug our constructions directly into this theorem (with ε = o(1)) to obtain
slightly better bounds, for some special values of d(f ). Our constructions are dense, and
hence improve the first term in the bound, but the second term is slightly worse (although
we still have r = N1−o(1)). Note that as the complete graph on N vertices contains every
graph on N vertices, these bounds, like the ones of [24] and [20], provide the following
upper estimate.

Theorem 4.5. The probability that the complete graph linearity test on N vertices ac-
cepts a function f is at most

2−(1/2−o(1))N
2
+ d(f )N

1−o(1)
.

In general, the bounds obtained will be better than either of those in [24] or [20] for some
values of d(f ).

4.3. The directed Steiner tree problem

In this short subsection we briefly note the connection between our constructions and
a candidate randomized rounding algorithm for the directed Steiner tree problem that
motivated Vempala [27] to ask about the existence of certain (r, t)-RS graphs.
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Giving a poly-logarithmic approximation algorithm for the directed Steiner tree prob-
lem is a famous open problem in approximation algorithms. A special case is the group
Steiner tree problem (in an undirected graph), for which Garg, Konjevod and Ravi gave
an elegant, poly-logarithmic approximation algorithm [19]. Charikar et al. [13] give an
approximation algorithm for the directed Steiner tree problem whose approximation guar-
antee is Õ(N ε) for any ε > 0, and this guarantee can be made poly-logarithmic at the
cost of running in quasi-polynomial time.

Even our understanding of the naive linear programming relaxation is quite weak.
Zosin and Khuller [28] give an �(

√
k) integrality gap (where k is the number of termi-

nals), but this construction has exponentially many (in k) vertices. Hence we could still
hope that the naive relaxation has at most a poly-logarithmic (in N ) integrality gap.

Rajaraman and Vempala considered a stronger relaxation and a candidate rounding
algorithm. In the case in which the support of the solution to the linear program is a
tree, they proved that their rounding algorithm achieves a poly-logarithmic approximation
ratio and this analysis is reminiscent of the rounding procedure for the group Steiner tree
problem [19].

However, even when flow merges in one layer of a layered graph (i.e. when the frac-
tional solution is not supported on a tree), attempting to analyze the behavior of the round-
ing algorithm led Vempala to a combinatorial conjecture:

Conjecture 1 ([27]). Let G = (U, V,E) be an N × k complete bipartite graph and
N ≥ k. Let P be a partition of the edge set and for a part p ∈ P, let pi denote the degree
of vertex i in p (i.e. the number of edges of p incident to i). Then∑

i∈U,j∈V

min
(

1,
∑
p∈P

pipj

|p|

)
≥ C

Nk

logN
.

Our constructions yield a negative answer to the above conjecture. In our negative ex-
ample we have N = k. To obtain this result, we can instead invoke the construction
in Section 2.2 to obtain a bipartite graph H (obtained by duplicating the vertices of the
graph constructed in that section). We can take P to be the induced matchings coveringH
and additionally we add a part in the partition (consisting of a single edge) for each edge
across the bipartition missing from H .

We can upper bound the right hand side as∑
i∈U,j∈V

min
(

1,
∑
p∈P

pipj

|p|

)
≤

∑
(i,j)∈H

∑
p∈P

pipj

|p|
+

∑
(i,j)/∈H

1.

H is an (r, t)-RS graph (and r = �(N2−f ) in our construction) and so for each part p
we have

∑
(i,j)∈H pipj/|p| = 1 because p is an induced matching with respect to H .

The number of parts in the partition (ignoring singletons, which are not in H anyway) is
at most O(Nf ) and so we can bound the contribution of the first term by O(Nf ). Also,
the number of edges that H misses (across the bipartition) is at most O(Ne) and hence
we can bound the above sum byO(Ne

+Nf ) for e and f as in Theorem 2.20 (recall that
N = k). Since we can have both e and f at most 1.924, it follows that the conjecture is
false.
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5. Concluding remarks and open questions

We have given two constructions of nearly complete graphs that can be decomposed into
large pairwise edge disjoint induced matchings and described several applications of these
graphs.

The main combinatorial open problem that remains is to determine or estimate more
precisely the set of all pairs (r, t) so that there are (r, t)-RS graphs on N vertices. This
is interesting for most values of the parameters, but is of special interest in some specific
range. In particular, if for r = N/(logN)g with g > 1, one can show that t = o(N),
this will improve the best known upper bound for the maximum possible cardinality of a
subset of {1, . . . , N} with no 3-term arithmetic progressions—a problem that received a
considerable amount of attention over the years (see [25] and its references).

The study of the combinatorial problem above seems to require a variety of tech-
niques: the known constructions of [23], [15], [22] and the ones given here apply tools
from additive number theory, coding theory, low degree representations of Boolean func-
tions and geometry, while the proofs of non-existence rely on the regularity lemma and
on combinatorial and entropy based techniques. All of these, however, still leave a wide
gap between the upper and lower bounds for at least some of the range, and it will be
interesting to find additional ideas that will help to study this problem.

In all the applications considered here there are still remaining open problems. The
communication protocols over a shared directional multi-channel we suggest, while im-
proving substantially the existing ones, are still not optimal, and the problem of deciding
the best possible number of rounds for N stations, even with two receivers per station,
is still not settled, although our results show that it is N2−δ for some δ between 0.076
and 2/3. The best possible upper bound for the probability of acceptance of a function f
in the linearity graph test, using a complete graph of size N , is also not precisely deter-
mined as a function of N and d(f ) (although here the gap between the upper bounds and
the lower bounds is not large—see [20]). Finally, it will be interesting to decide if our
graphs can be helpful in establishing new integrality gap results for the natural relaxation
of the directed Steiner tree problem, rather than merely estimating the performance of
specific rounding schemes.

Our constructions can be extended to uniform hypergraphs as well. An induced match-
ing in a k-uniform hypergraph is a set M of pairwise vertex-disjoint edges so that no
other edge of the hypergraph is contained in the set of all vertices covered by the mem-
bers of M . We can describe an explicit construction showing that for every k there are
k-uniform hypergraphs on N vertices with at least (1− o(1))

(
N
k

)
edges, so that all edges

can be partitioned into Nk−1+o(1) pairwise edge disjoint induced matchings. The o(1)
terms here tend to zero as N tends to infinity.

This construction has an interesting application in the study of a problem in commu-
nication complexity studied by Liang and Vaidya [21] and by Brody [10]. In this problem
there are k+1 players, each having an n-bit string. The players are allowed point-to-point
communication, and must decide, deterministically, if their inputs are all equal. In a trivial
protocol the first k players transmit their bits to the last one, who checks for equality and
determines the answer. Thus a total communication of kn bits suffices. Somewhat surpris-
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ingly, it turns out that one can do better. It is shown in [21] that at least (k+ 1)n/2 bits of
communication are needed, and the authors also obtain a non-trivial upper bound (which
is not tight). Brody [10] has used our graphs to show that for k + 1 = 3, 1.5n + o(n)
bits suffice, showing that the lower bound is tight for k + 1 = 3 up to a low order addi-
tive error term. (In fact, the original construction of Ruzsa and Szemerédi suffices here).
Using our construction for k-uniform hypegraphs we can extend his result and design a
protocol that shows that for every k and n, the minimum possible number of bits in a
communication protocol for the above problem with k + 1 players, each having an n-bit
string, is (1+o(1))(k+1)n/2. Brody and Håstad [10] have independently found a similar
protocol, using the k cliques of the graphs in our construction here.

The hypergraph construction may well have additional applications, and we hope to
study it further in a subsequent work.
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