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Abstract. We construct and study the unique random tiling of the hyperbolic plane into ideal hy-
perbolic triangles (with the three corners located on the boundary) that is invariant (in law) with
respect to Möbius transformations, and possesses a natural spatial Markov property that can be
roughly described as the conditional independence of the two parts of the triangulation on the two
sides of the edge of one of its triangles.

1. Introduction

The study of the scaling limit of critical two-dimensional discrete models from statistical
physics has given rise to various random objects in the continuum that combine confor-
mal invariance with a “spatial Markov property” that is inherited from the locality of
the interactions in the discrete models (one can think of course about Schramm’s SLE
processes [11]).

In the present paper we shall exhibit and study a special Möbius-invariant random tri-
angulation of the Poincaré disk D endowed with its hyperbolic complex structure, which
has a certain spatial Markov property. Let us first very briefly explain what type of tri-
angulations we have in mind. A (hyperbolic) triangle T will be determined by its three
corners, always taken on ∂D, and T will be the “inside” of the three hyperbolic lines join-
ing these three points (recall that these hyperbolic lines are circular chords when viewed
in the Euclidean setting). We say that T is a complete hyperbolic triangulation of D if it
is a disjoint collection of such triangles, and if the complement of the union of all these
triangles has zero hyperbolic measure.

We say that a random triangulation T is Möbius-invariant if its law is invariant under
all conformal transformations from D onto itself. In other words, for any Möbius trans-
formation φ of the unit disk onto itself, the law of φ(T) is the same as that of T. Our main
statement can be described as follows:
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There exists a unique random complete Möbius-invariant triangulation of D that has
a spatial Markov property that can be loosely speaking described as follows: Given a
triangle T = (abc) in this triangulation T (in fact the rigorous statement is that T is the
triangle that contains the origin in T), the restrictions of the triangulation T to the three
connected components of the complement of T in D are conditionally independent, and
moreover, the part that is beyond (bc) is independent of the position of a.

Fig. 1. Sample of our triangulation in the disk.

This will be stated more rigorously in Theorem 2. Uniqueness means of course here
uniqueness of the law of the triangulation. Heuristically, the spatial Markov property
means that there is conditional independence of both sides of an edge in the triangulation,
so that the role of the edges in our triangulations is reminiscent of that of an interface in
a nearest-neighbor interaction model from statistical physics.

Discrete models, such as triangulations of convex polygons, have been thoroughly
studied in combinatorics, physics or geometry. Some triangulations of the disk can be
viewed as continuous counterparts to these discrete models, and various random triangu-
lations of the disk have been defined and studied, in particular in recent years (see for
instance [1, 8] and the references therein). However, the particular random triangulation
that we construct and study in the present paper is different (we would like to stress that
it is not the same as the uniform triangulation defined by Aldous [1] that can be viewed
as the scaling limit of the uniform triangulation of an n-gon; we shall for instance see that
our triangulation is much thinner), and despite its rather striking properties it does not
seem (to our knowledge) to have been studied before.
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In order to help getting a feeling of what is going on, let us provide a brief heuris-
tic discussion. Assume that a random triangulation T is complete, Möbius-invariant and
Markovian. We can first sample the triangle T (0) of T that contains the origin—and it
will be easy (see Section 2) to identify its law from the conformal invariance and com-
pleteness of T. We write a, b and c for the three apexes of T (0) ordered anti-clockwise.
Then, we can start exploring the three pieces of the complement of T (0) independently,
because of the spatial Markov property. A first naive guess is that the edge (bc) will also
be one of the edges of another triangle of T, which “neighbors” T (0). We can wonder
what the conditional law of its third corner a′ will be. Conformal invariance (and the fact
that a′ is conditionally independent of a given (bc)) imposes that this (conditional) law is
invariant under all Möbius transformations of the disk that fix b and c. But all (non-zero)
measures supported on the arc of ∂D between b and c that are invariant under all these
transformations necessarily have an infinite mass (in fact, they are multiples of the image
of the measure ξ(dx) := dx/x on R+ under any fixed Möbius transformation that maps
the upper half-plane onto the unit disk, and 0 and∞ to b and c respectively), and more
precisely this infinite mass lies in the neighborhood of b and of c. So, this attempt to con-
struct a neighboring triangle in a Möbius-invariant way fails, but it suggests to those of us
who are acquainted with Lévy processes which way to go: When exploring the triangles
“outwards” starting from the (bc) boundary of T (0), one will use a Poisson point process,
with intensity given by ξ , that will be used at the “time” of choosing each new corner.
In particular (because ξ is an infinite measure), almost surely, two different triangles T
and T ′ in the triangulation will never be adjacent (there will always be infinitely many
other very thin—in the Euclidean sense—triangles that separate T from T ′). In fact, it
will turn out that there are not that many triangles either: For any large n, the number of
triangles of (Euclidean) width in [2−n−1, 2−n) that are separating T and T ′ is of constant
order (it is random but its mean is roughly constant). This explains why one could at first
glance think that big triangles can happen to be adjacent to each other by looking at the
simulation depicted in Figure 1.

The paper is organized as follows. In Section 2, we collect and derive some rather gen-
eral or elementary facts, we write down definitions and state our main result, Theorem 2.
In Section 3, inspired by the previous heuristic, we show that if T is a Möbius-invariant
complete and Markovian triangulation, then it necessarily corresponds to some Poisson
point process that we describe. This argument will prove that the law of T is unique, if it
exists. In Section 4, we define explicitly a random triangulation (again, using a Poisson
point process), and we check that it indeed has all the required properties, so that existence
of the Möbius-invariant complete Markovian triangulation follows.

In Section 5, we discuss and state results dealing with Möbius-invariant Markovian
tilings of the disk into other hyperbolic polygons than triangles (analogous statements and
constructions exist for instance for tilings into conformal squares). In the final section, we
make a few comments, and list a couple of open questions.

We are going to assume that the reader is acquainted with basic properties of Möbius
transformations on the one hand, and basic knowledge about Poisson point processes,
pure jump processes and subordinators (as can be found in [3, 4, 10]) on the other hand.
As we are aware that this is not quite a usual mix of backgrounds, we will recall some of
the basic features that we will use.
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2. Simple preliminaries

2.1. Hyperbolic triangles

We will mostly use the unit disk D = {z ∈ C : |z| < 1} to represent the hyperbolic plane.
At some point, it will also be convenient to work in the upper half-plane H = {z ∈ C :
Im(z) > 0}. Throughout the paper, ψ−1 will denote the conformal map from H onto D
defined by ψ−1(z) = (z− i)/(z+ i), which maps i to the origin and infinity to 1.

For any pair of distinct points a and b on ∂D, we define the hyperbolic line (ab) in D
to be the circular chord in D that crosses ∂D orthogonally at both a and b (when a = −b,
this “circular chord” is in fact a diameter line). In order to avoid confusion, we will use
[a, b] to denote straight Euclidean segments.

If we consider three distinct points a, b and c on ∂D, we can define a hyperbolic
triangle as the middle open connected component of D \ ((ab) ∪ (bc) ∪ (ca)) (in other
words, the connected component of this set that has a, b and c on its boundary). A tri-
angle is thus identified with the unordered set of its three apexes {a, b, c}. The set of all
hyperbolic triangles will be denoted by T .

We will denote by T◦ the set of all marked hyperbolic triangles (it can be viewed as the
set of ordered triplets (a, b, c) of distinct boundary points that are ordered anti-clockwise
on ∂D). Each hyperbolic triangle corresponds to three marked triangles (one just has to
distinguish one apex in order to mark the triangle).

Let us stress that this is a slight abuse of terminology, as our hyperbolic triangles
always have their apexes on the boundary of D (these triangles are called ideal in hyper-
bolic geometry, but since we will not use any other triangles in the present paper, we will
simply omit to specify that we always mean ideal triangles). Notice also that with our
definition, any triangle is open and has non-empty interior.

Clearly, it is possible to identify the set T◦ of all marked triangles with the group M
of all Möbius transformations (hyperbolic isometries) of the unit disk, i.e., the group of
transformations of the type

φz0,θ : z 7→
eiθ (z− z0)

z0z− 1
, where z0 ∈ D and θ ∈ [0, 2π).

Indeed, for each (a, b, c) ∈ T◦, there exists a unique φ ∈ M (which we can therefore
call φa,b,c) such that φ((1, j, j2)) = (a, b, c) (where j = exp(2iπ/3) denotes the cubic
root of unity). Furthermore, in this identification φa,b,c ↔ (a, b, c), left multiplication
by an element φ of M corresponds to taking the image of (a, b, c) under this map, i.e.,
φ ◦ φ(a,b,c) ↔ (φ(a), φ(b), φ(c)).

Let us now describe natural measures that one can define on these different sets. Recall
first that the hyperbolic metric on D is defined by

µ =
4 dx dy

π(1− x2 − y2)2

which is (up to a multiplicative constant) the unique measure on D that is invariant under
the group M. Note that all triangles are equivalent up to hyperbolic isometry, so that they
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all have the same hyperbolic area. It is easy to check that this area is finite, and we have
normalized µ in such a way that the common area of all triangles is equal to 1.

The identification of T◦ with the locally compact Lie group M immediately shows
that, up to a multiplicative constant, there exists a unique Haar measure on T◦ that is
invariant under the group M (i.e. corresponding to the measures on M invariant under
left multiplication). In other words, there exists a unique Möbius-invariant measure ν◦
on T◦ (up to a multiplicative constant). Recall that M is unimodular, so that ν◦ is also
invariant under right multiplication. Here are a couple of simple explicit constructions
of ν◦:

• Consider the product measure µ⊗λ on D×[0, 2π), where µ is the hyperbolic measure
in D and λ is the uniform probability measure on [0, 2π). Each pair (z0, θ) in this set
defines the isometry φz0,θ in M, and it is easy to check that the image measure of
µ ⊗ λ in M is invariant under right multiplication. In other words, one can view ν◦
as the image of µ ⊗ λ under the map (z0, θ) 7→ φz0,θ ((1, j, j2)) (note that with this
construction, the point eiθz0 is the “hyperbolic” center of the triangle); it is easy to
check that indeed

µ⊗ λ({(z0, θ) : 0 ∈ φz0,θ ((1, j, j2))}) = 1.

• Another way of constructing the Möbius-invariant measure on T◦ goes as follows: De-
fine on R3 the measure

du dv dw
|u− v| |v − w| |w − u|

,

where we restrict ourselves to the triplets (u, v,w) that are ordered anti-clockwise
around ∂H (i.e. u < v < w, v < w < u or w < u < v). Clearly this measure is
invariant under the transformations z 7→ −1/z, z 7→ λz and z 7→ z + z0 for z0 ∈ R
and λ > 0. Hence, the image of this measure under ψ−1 is a measure on (∂D)3 (or
rather on T◦) that is Möbius-invariant. It is therefore necessarily equal to a multiple
of ν◦. In fact an explicit computation shows that the multiplicative constant is π2.

Similarly, if a measure η on T is Möbius-invariant, we can observe that the measure
on marked triangles obtained by marking one corner uniformly at random among the
three, is an invariant measure on T◦, and therefore a multiple of ν◦. It follows that η is a
multiple of the measure ν obtained from ν◦ by the natural projection from T◦ onto T .

Recall that the ν◦-mass (and therefore the ν-mass also) of the set of all triangles that
have the origin in their interior is equal to one. By Möbius invariance, the same holds
for the set of all triangles that have a given point z in their interior. In the following, Pz
(respectively P ◦z ) will denote the probability measure on T (resp. T◦) that is equal to ν
(resp. ν◦) restricted to those triangles that contain z. The probability measure P0 will be
used repeatedly.

2.2. Möbius-invariant triangulations

A (hyperbolic) triangulation T of D is a disjoint collection of hyperbolic triangles of D.
Since every triangle has non-empty interior, such a collection is finite or countable. If
T is a triangulation and z ∈ D, we define T (z) to be the (unmarked) triangle of T that
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contains z if it exists, and T (z) = ∅ otherwise. Clearly, if we choose a fixed countable
dense family (zq)q∈Q in D, then the family (T (zq), q ∈ Q) fully describes T. This gives
a way to define a natural sigma-field on the set of all triangulations of D which we will
implicitly use from now on. Note that this sigma-field in fact does not depend on the
choice of the dense family (zq)—indeed, if we order Q and identify Q with N, then for
all z ∈ D, one has

T (z) =
⋃
j≥0

T (zj ) 1z∈T (zj ) and z/∈T (z1)∪···∪T (zj−1)

(here and throughout, T (zj ) 1A is equal to the triangle T (zj ) when the event A holds and
to the empty set otherwise). It is also easy to check that this sigma-field coincides with
that associated with the Hausdorff topology on D (but we will not use this fact).

We say that a triangulation T = (Tj ) is complete if the hyperbolic area of D \
⋃
j Tj

is zero. Most triangulations that we will consider in this paper will be complete. Let us
make two side remarks here (they will not be useful in this paper so that we just mention
them, leaving the details to the interested reader):

Remark 1. Note that a complete triangulation T is dense, in the sense that the union
of the triangles of T is dense in D. However there exist dense triangulations that are
not complete (an analogy that one can keep in mind is that there exist open subsets O of
[−1, 1] that are dense in [−1, 1], but with Lebesgue measure strictly smaller than 2—such
an open subset O then loosely speaking corresponds to the intersection of the interiors of
the triangles with [−1, 1]).

Remark 2. A lamination is a closed subset of D that can be written as a disjoint union
of hyperbolic lines. One says that a lamination is maximal if it is maximal for inclusion
among laminations. It is not hard to see that the complement of a maximal lamination is
composed of disjoint open (ideal) triangles and thus is a hyperbolic triangulation (see [5]
for more details on hyperbolic laminations).

We say that a random complete triangulation T is Möbius-invariant if it is invariant
(in law) under the action of each Möbius transformation of the unit disk. In words, it is
Möbius-invariant if, for any conformal map φ from D onto D, φ(T) and T have the same
law.

Suppose now that T is such a Möbius-invariant random complete triangulation.
By M-invariance, the quantity P(T (z) 6= ∅) is independent of z ∈ D and must be

equal to 1 by completeness. We can also associate with T an infinite “counting” measure η
on T as follows: For any measurable set A of triangles in T , we define η(A) to be the
expected value of the number of triangles Tj ∈ T that fall in A. By M-invariance of T
it follows that η is a Möbius-invariant measure on T . Note also that η(0 ∈ T ) is equal
to the mean number of triangles of T that contain the origin, which is equal to 1 since T
is almost surely complete. Consequently, one has η = ν, and for every z ∈ D, T (z) is
distributed according to Pz.

Of course, it is worth checking if non-trivial Möbius-invariant triangulations exist
at all. Here is a construction of the simplest one of all, based on the standard Farey–
Ford tiling of D. Suppose that τ is a given (unmarked) hyperbolic triangle. We construct
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τ

Fig. 2. Construction of Ref(τ ) started from some τ .

deterministically a triangulation Ref(τ ) containing τ by reflections: It is the only trian-
gulation T with the property that for any triangle T ∈ T, if φ denotes any one of the
three Möbius transformations that map {1, j, j2} onto T , then T has exactly three adja-
cent triangles in T that are φ({1, ω1, ω2

}), φ({ω2, ω3, ω4
}) and φ({ω4, ω5, 1}) where

ω = exp(iπ/3). It is elementary to check that Ref(τ ) is well-defined and is a complete
hyperbolic triangulation. The triangulation F := Ref({1, j, j2}) is called the Farey–Ford
tiling (see [6, Chapter 8]). One can identify the set of all marked triangles in F with the
discrete subgroup G of M that leaves F invariant. In this way, the set of all triangles of
Ref(τ ) is nothing else than the family of all g(τ), where g spansG (and because we have
been using marked triangles to define G, each triangle of Ref(τ ) appears three times in
this list).

Proposition 1. If T0 is distributed according to P0, then Ref(T0) is Möbius-invariant.

Proof. Note that the knowledge of any triangle in Ref(T0) characterizes the entire trian-
gulation. It therefore suffices to prove that if T (z) is the triangle that contains z in this
triangulation, it is distributed according to Pz (as this will imply that the law of the trian-
gulation is invariant under any Möbius transformation that maps 0 onto z, because Pz is
the image of P0 under such a hyperbolic isometry).

As ν is invariant under M, it follows that for each g ∈ G, the measures Mg and M ′g
defined on the set of pairs of triangles by

Mg(A) = ν({T ∈ T : (T , gT ) ∈ A}) and M ′g(A) = ν({T
′
∈ T : (g−1T ′, T ′) ∈ A})

are identical. It follows of course that
∑
gMg =

∑
gM
′
g . But, if one restricts ν to those

triangles that contain the origin, one obtains P0, and furthermore, almost surely, only one
unmarked triangle in Ref(T0) does contain z, i.e. T (z) = gT0 for exactly three g’s in G,
and no other gT0’s contain z. Hence, it follows that

3P(T (z) ∈ A) =
∑
g

ν({T : 0 ∈ T , z ∈ gT , gT ∈ A})

=

∑
g

ν({T ′ : 0 ∈ g−1T ′, z ∈ T ′, T ′ ∈ A}) = 3Pz(A). ut
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2.3. Markovian triangulations

Let us now define the additional Markovian property that we will require of our random
triangulations. A first rather weak assumption would be that, conditionally on T (0), the
intersections of T with the three connected components of D\T (0) are independent. Note
that the previous randomized Farey–Ford example has this property (indeed, conditionally
on T (0), all other triangles are deterministic).

Our Markovian condition will be stronger. Suppose that we denote the three apexes
of T (0) by u1, u2 and u3 ordered anti-clockwise, and the three connected components of
D \T (0) byO1,O2 andO3 in such a way that uj /∈ ∂Oj (see Figure 3). In order to define
which of the three apexes is denoted by u1, we can for instance just choose it at random
among the three.

We will say that a random complete triangulation is Markovian if

conditionally on (u2, u3), T ∩O1 is independent of (T ∩O2,T ∩O3).

Note that (because the triangulation is complete), one can recover u1 from T ∩ O2 and
T ∩O3, so that T ∩O1 is conditionally independent of u1, given (u2, u3).

Note also that if T is also Möbius-invariant, then the same statement holds for the
restriction of T to the three connected components of the complement of T (z) (for any
given fixed point z in D). We are now ready to state our main result:

Theorem 2. There exists exactly one (law of a) Markovian Möbius-invariant complete
triangulation in D.

Until the rest of this section, T will denote a random Markovian Möbius-invariant com-
plete triangulation, and we will start to study its properties. Let us make a first observation.
Define for each j ∈ {1, 2, 3} a conformal transformation ψj from D onto H that maps Oj
onto the domain

H+ := {z ∈ H : |z| > 1}

(see Fig. 3). We choose a way to define ψj that is a deterministic function of Oj (so
that ψ1 does not depend on u1 etc.)—let us for instance pick ψ1 so that ψ1(u3) = −1,
ψ1(u2) = 1 and |ψ ′1(u2)| = 1). In this way, each T̃j := ψj (T ∩ Oj ) is a triangulation
of H+.

The following statement is a consequence (i.e., a reformulation) of our Markovian
assumption for Möbius-invariant complete triangulations.

Lemma 3. The variables T (0), T̃1, T̃2, T̃3 are independent, and the latter three have
the same distribution. Furthermore, this common distribution σ is invariant under the
one-dimensional group of all Möbius transformations φ of H such that φ(H+) = H+.

Proof. Let us (for notational convenience) decide that each triangle of T has been marked
at random and independently (this defines u1(z), u2(z), u3(z),O1(z), . . . for almost all
z ∈ D because the triangulation is complete in such a way that if T (z) = T (z′) then
ui(z) = ui(z

′),Oi(z) = Oi(z
′), . . . ). We will denote by Tzj the triangulation T restricted

to Oj (z), T̃zj its image in H+, and θ1(z) will denote the harmonic measure at z of the
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u1

u2

u3

O1

O2

O3 T (0)

ψ3
ψ2

ψ1

−1 1

−1 1

−1 1

H+

H+

H+

Fig. 3. The three maps ψ1, ψ2 and ψ3.

part of ∂D between u2 = u2(z) and u3 = u3(z) that does not contain u1 = u1(z). In
particular, 2πθ1(0) ∈ (0, π) is simply the angle at the origin of the triangle u20u3.

Note that T̃1, T̃2, T̃3 are conditionally independent given T (0) (because each T̃j is a
deterministic function of T ∩ Oj ). In order to derive the full independence, it therefore
suffices to check that (for each given j ), T̃j and T (0) are independent. By symmetry, it is
sufficient to consider the case j = 1. As T̃1 and u1 are conditionally independent given
(u2, u3), it is enough to show that T̃1 and (u2, u3) are independent. Because of rotational
invariance (and because T̃1 does not change if one rotates T), it finally suffices to show
that T̃1 and θ1(0) are independent.

Let F denote a measurable bounded real-valued function on the set of triangulations,
and h a measurable bounded function on R. Then

E[F(T̃1)h(θ1(0))] = E
[
F(T̃1)h(θ1(0))×

∫
D

dµ(z) 1z∈T (0)

]
=

∫
D

dµ(z)E[F(T̃z1)h(θ1(0)) 10∈T (z)]

=

∫
D

dµ(z)E[F(T̃0
1)h(θ1(z)) 1z∈T (0)]

= E[F(T̃1)] ×

∫
D
h(θ1(z)) 1z∈T (0) dµ(z),

where we have used the facts that the µ-area of T (0) is one, that 0 ∈ T (z) if and only
if z ∈ T (0), that the triangulation is Möbius-invariant (in particular under the hyperbolic
isometry that interchanges z and 0), and finally that

∫
T (0) h(θ1(z)) dµ(z) is a constant

that does not depend on the triangle T (0) (because of Möbius invariance of all quantities
involved). This completes the proof of the fact that T̃1, T̃2 and T̃3 are independent and
independent of T (0). They clearly have the same law that we denote by σ .

It remains to show that σ is invariant under all Möbius transformations of H that
map H+ onto itself. Recall from Section 2.2 that we know explicitly the distribution
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of T (0) which has a smooth density with respect to the Lebesgue measure on (∂D)3,
and we have just seen that T (0) is independent of T̃1. Hence, we can say that for any
given triangle (a, b, c) that contains the origin, the conditional distribution of T̃1 given
T (0) = (u1, u2, u3) = (a, b, c) is σ . Suppose that 8 : D → D is some Möbius trans-
formation, and define T′ = 8(T). If we combine the previous decomposition with the
Möbius invariance of T, we see that for any a, b and c, the conditional distribution of T̃′1
given T ′(0) = (8(a),8(b),8(c)) is still σ as long as this new triangle contains 0.

Let φ be a fixed Möbius transformation of H onto itself such that φ(1) = 1 and
φ(−1)=−1. By choosing a, b and c appropriately (for instance a=−1, b=−i exp(iε))
and c = b̄ with ε very small so that the latter two points are very close to −i and i),
we can make sure that if we define 8 = ψ−1

1 ◦ φ ◦ ψ1 (where ψ1 is the isometry de-
fined deterministically using b, c only, that maps these two points onto 1 and −1, chosen
with the same rule as the one we used to define T̃1) then both triangles (a, b, c) and
(8(a),8(b),8(c)) contain the origin. Furthermore, we see that for this particular triple,
when T (0) = (a, b, c), the conditional law of T̃′1 is that of φ(T̃1). It follows that the law
of T̃1 is indeed invariant under φ. ut

We note that this proves in particular that we can define (in terms of σ ) the conditional
distribution of T (z) given T (0). We can also note that by Möbius invariance of T, for each
given z, the previous lemma also yields (using the conformal map that swaps 0 and z) a
description of the conditional law of the three triangulations corresponding to T restricted
to each of the three connected components of the complement of T (z), in terms of σ .

The next lemma shows that in order to prove uniqueness (in law) of Möbius-invariant
complete Markovian triangulations, it suffices to prove that all their two-dimensional
marginals are uniquely determined:

Lemma 4. If for each z, z′ ∈ D we know the joint law of (T (z), T (z′)), then we know the
law of the entire triangulation T.

Proof. The law of T = (T (z), z ∈ D) is characterized by the law of its finite-dimensional
marginals, i.e. by the law of T (Z) := {T (z1), . . . , T (zn)} for all finite sets of points
Z = {z1, . . . , zn} in D with rational coordinates (see the discussion on sigma-fields at the
beginning of Section 2.2).

We say that a finite collection of disjoint triangles in the unit disk is good if each
connected component of the complement of the union of these triangles in the disk has at
most two neighboring triangles in this collection. The left picture of Figure 4 represents
a set T (Z) that is not good, because the shaded component neighbors three different
triangles of T (Z).

However, because T is almost surely complete, for each given Z, with probability
one, it is possible to add to T (Z) finitely many triangles of T in order to turn it into a
good collection. In fact, there is a minimal way to do this, and we denote by T̃ (Z) the
corresponding finite collection of triangles of T. Note that (for each given Z) T (Z) is a
deterministic function of T̃ (Z) (it consists of those triangles in T̃ (Z) that contain a point
of Z), so that the distribution of T̃ (Z) contains all the information about the distribution
of T (Z).
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When Z′ is a finite set of points in D, we say that a finite collection T of triangles is in
A(Z′) if T is good, and if each triangle in T corresponds to exactly one point of Z′ (i.e.
each triangle of T contains exactly one point of Z′ and each point of Z′ is in a triangle
of T). In particular, if T is our random triangulation, the event {T (Z′) ∈ A(Z′)} holds iff
T (Z′) is good and if each triangle of T (Z′) contains exactly one point of Z′.

Note that if Z is some other given finite family of points, by looking at T (Z′) only, we
can see whether T̃ (Z) = T (Z′). Similarly, we can also check whether this event holds or
not by looking at T̃ (Z) only (it suffices to check that T̃ (Z) ∈ A(Z′)). Suppose that for a
given Z′, we know the law of T (Z′) 1T ′∈A(Z′). Then, clearly, for each given Z, we know
the law of

T (Z′) 1
T (Z′)∈A(Z′) and T (Z′)=T̃ (Z) = T̃ (Z) 1

T̃ (Z)∈A(Z′).

But if I denotes the family of finite sets Z′ with rational coordinates, then for any
given Z,

P
(
T̃ (Z) ∈

⋃
Z′∈I

A(Z′)
)
= 1

(because each triangle of T̃ (Z) contains some point with rational coordinates). Hence, it
follows that if, for all Z′, one knows the law of T (Z′) 1T (Z′)∈A(Z′), then one can recon-
struct the law of T̃ (Z) and therefore that of T (Z).

Finally, it remains to prove that for each finite Z (we use Z instead of Z′ now), the
law of T (Z) 1T (Z)∈A(Z) is fully determined by the knowledge of all two-dimensional
marginal distributions of (T (z), T (z′)) for z, z′ ∈ D. We are going to do one further
reduction step: Let us now suppose that for some finite Z we have T (Z) ∈ A(Z) (recall
that this means that T (Z) is good, and that each triangle of T (Z) corresponds to exactly
one point of Z). This defines naturally a connected tree structure G on Z, where each zj
has one, two or three neighbors in the graph (see Figure 4). We can therefore decompose
the event {T ∈ A(Z)} according to the tree structure that T (Z) induces on Z. Hence,
it suffices to describe for each Z and each possible tree structure 0 on Z, the law of
T (Z) 1T ∈A(Z,0), where

A(Z, 0) = A(Z) ∩ {G = 0}.

Z Z Z ′

Fig. 4. A configuration T (Z), its completed configuration T̃ (Z) and a configuration in A(Z′).
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We are going to proceed by induction on the number of points in Z. Suppose that
we know the law of all two-dimensional marginals (T (z), T (z′)), and that for each Z
with no more than n points, and for each tree structure 0 on Z, we know the law of
T (Z) 1T ∈A(Z,0). Let us show that, we then know it also for all Z = {z1, . . . , zn+1} with
n+1 points and all tree structures 0 on Z. Let us choose such a Z with n+1 points and a
tree structure 0 on Z. Consider a leaf-point (i.e., a point in Z with just one 0-neighbor)—
by relabeling the points, we can assume that this leaf is z1 and that its 0-neighbor is z2.
Our assumptions and previous results show that we know:

• The distribution of (T (z2), . . . , T (zn+1)), when restricted to the event that it defines
the tree structure obtained by removing the leaf z1 from 0.
• The fact that conditionally on the event that T (z2) separates z1 from the other n − 1

points, T (z1) is independent of (T (z3), . . . , T (zn)).
• The joint distribution of (T (z1), T (z2)) (and therefore also the conditional distribution

of T (z1) given T (z2)).

This readily shows that we know the distribution of T (Z) 1T ∈A(Z,0): Indeed, first sample
(T (z2), . . . , T (zn+1)), look if it is compatible with A(Z, 0), and then sample T (z1) ac-
cording to the conditional distribution given T (z2).

Hence, we have proved our claim by induction n, which provides a characterization of
the law of all T (Z) 1T ∈A(Z,0), and therefore by our previous arguments, of T itself. ut

3. Uniqueness

3.1. Warm-up

In order to help those readers who are not well acquainted with the theory of regenerative
sets, we briefly review some very classical facts on this topic (we refer to [3, 4] for details).
Those readers who are familiar with these objects can safely skip this subsection.

Suppose that we are given a random non-empty closed subset F of R+ such that
almost surely, 0 ∈ F , F is not bounded, and the Lebesgue measure of F is 0. Suppose
furthermore that it has the following regenerative property: For any t ≥ 0, if we define
Xt = min[t,∞)∩F , then the law of Ft := (F ∩ [Xt ,∞))−Xt is equal to that of F . We
also assume that Ft is independent of (Xt , F ∩ [0, t]). In the standard terminology, this
means that F is a “light” (because its Lebesgue measure is 0) regenerative subset of R+.

Then, for each given small positive x, we can find intervals of length greater than x
in R+ \ F from left to right. This defines (at least for small enough x) a sequence χx :=
(χx1 , χ

x
2 , . . .) of lengths. The previous assumptions readily imply that this is a sequence

of independent identically distributed random variables that have some common law ρx .
Furthermore, when x′ < x, the fact that χx

′

is almost surely a subsequence of χx implies
that ρx = ρx′(· | [x,∞)). Hence, we can define a measure ρ on all of (0,∞) with the
property that for all small enough x,

ρx(A) =
ρ(A ∩ [x,∞))

ρ([x,∞))
.
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The measure ρ is unique up to a multiplicative constant and in a way describes the relative
likelihood of appearance of intervals of a certain length in the complement of F . Note that
it can happen that the total mass of ρ is infinite, which corresponds to the fact that there
can be infinitely many (small) intervals in the complement of F ∩ [0, 1] say.

Now, it turns out that the measure ρ completely characterizes the law of the random
set F . For instance, we can define simultaneously for each x > 0, a sample of χx in such
a way that they are all compatible (i.e. χx is almost surely a subsequence of χx

′

when
x′ < x). Then the left endpoint of the interval corresponding to χxn will be the sum of all
intervals (of arbitrary length) that have appeared before it, which can be recovered from
the knowledge of all χx

′

for x′ < x.
One convenient way to express this is to use a Poisson point process: This is a random

countable collection P := (ti, xi)i∈I in R+ × R+ where we introduced an artificial time
parametrization at which the intervals appear. Intuitively, the existence of the point (ti, xi)
in P means that at time ti , an interval of length xi appears. If for a given x, we write
down the sequence of lengths xi greater than x in their order (with respect to time) of
appearance, one gets a sample of χx . Then, the position of the left endpoint of the interval
corresponding to i0 can be recovered from P as it is equal to

∑
i∈I : ti<ti0

xi .

Note that if we were looking at the set F̃ := {exp(t) : t ∈ F } instead of F , we would
have had a set with similar properties to F : With obvious notation, the law of F̃t/X̃t is
equal to that of F̃0, and in order to recover F̃ from ρ, one has to replace the sum of all
jumps xi by the product of all exp(xi). We shall use rather natural generalizations of these
ideas in the next subsection.

3.2. Accordion and Poisson point process

Let T be a complete triangulation of D. For x 6= y in D, we define the accordion between
x and y in T as the collection of all triangles T ∈ T intersecting the part of the hyperbolic
line between x and y that goes through these two points, and denote it by AccT(x, y) (see
Fig. 5).

y
x

Fig. 5. An accordion.

Suppose now that T is Möbius-invariant complete and Markovian. Clearly, if we know
the distribution of the accordion AccT(0, 1), this will characterize the law of (T (0), T (u))
for all u ∈ (0, 1) and therefore (by Möbius invariance and Lemma 4) also the distribution
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of T. The goal of the present section will be to show that there is (at most) one possible
law for this accordion. The basic idea will be to see that it necessarily corresponds to
some particular subordinator (when one “discovers” the triangles of the accordion from 0
towards 1). In the next section, we shall check that the random triangulation defined using
these random accordions is indeed Möbius-invariant complete and Markovian.

For notational convenience, we will now choose to work in the upper half-plane H
instead of the unit disk D. For the remainder of this section, T will denote a random
Möbius-invariant complete Markovian triangulation of the upper half-plane (i.e. the im-
age under ψ of such a triangulation of D). Note that almost surely, ∞ and 0 are on the
boundary of none of the triangles of T (this follows from rotational invariance and the fact
that the set of triangles is countable—one can also just look at the second characteriza-
tion of the measure ν in the preliminaries). In other words, all triangles are bounded and
bounded away from the origin. We are going to focus on the accordion between i and∞
in T, which will be denoted by AccT(i,∞) (we will omit to specify that we are working
in H).

Fig. 6. Sample of (part of) our triangulation in H.

Almost surely, for all positive rational y, one of the boundaries of T (iy) does sep-
arate iy from ∞. We denote it by (`yry) where `y < 0 < ry . Clearly, −`y and ry are
non-decreasing functions of y. We can therefore define (`y, ry) for all positive y simulta-
neously (including those that are in no triangle) by choosing the right-continuous version
of y 7→ (`y, ry).

Let us first outline the idea of the proof: If we discover the triangle T (iy), the con-
ditional law of the part of the triangulation that is “above” this triangle can be described
via σ , and it is (modulo taking its image under the affine map that maps `1, r1 to −1, 1)
always the same. It follows that the closure of the set {(ry − `y)/(r1 − `1) : y > 1} is
the exponential of a regenerative set, just as F̃ at the end of the warm-up subsection. It
can therefore be described thanks to a Poisson point process—the fact that the triangula-
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tion is complete will imply that the Lebesgue measure of this set F̃ is 0. The set F̃ does
not, however, contain enough information to reconstruct the accordion because when a
triangle appears, one needs to know which one of the two processes ` or r is jumping. We
will therefore describe the accordion via a slightly enriched Poisson point process that
contains this additional information.

For all positive y, define

ỹ := sup{v ∈ (0, y) : T (iv) 6= T (iy)}.

For all y such that T (iy) 6= ∅, the third vertex of T (iy) (apart from `y and ry) is nec-
essarily one of the two points `ỹ− or rỹ−. Note also that the jumps of the process (`, r)
exactly correspond to the triangles of AccT(i,∞) (i.e., the set J of “jumping heights” is
equal to {ỹ : y > 0}). Note also that y can never be a simultaneous jumping height for `
and r (because almost surely, no T (iy) is a quadrilateral).

For each positive y, we denote by ϕy the affine map that maps (`y−, ry−) onto (−1, 1).
We can then describe the jumps of T (iy) by defining for each y ∈ J ,X(y) to be the image
of the third apex of T (iy) (apart from `y− and ry−) under ϕy . In other words,

X(y) = ε(y) ·

(
2
ry − `y

ry− − `y−
− 1

)
(1)

where

ε(y) = 1{ry 6=ry−} − 1{`y 6=`y−}.

When y /∈ J , we can declare X(y) to be equal to an abstract cemetery point δ.
Note that for all y1 > 1, and all x > 1, the number of jumps ỹ in [1, y1] such that

|X(ỹ)| > x is finite. Hence, it follows that the collection (X(ỹ) 1|X(ỹ)|>x, ỹ ≥ 1) almost
surely defines an ordered discrete sequence ζ x = (ζ x1 , ζ

x
2 , . . .) in R \ [−x, x]. Note that

when x′ > x, the sequence ζ x
′

is a deterministic subsequence of ζ x . We define C to be
this nested family of sequences (ζ x, x > 1) (we cannot view it as just one sequence,
because infinitely many “small” jumps occur before any given jump).

An equivalent way to encode C is to define it as the process of jumps (X(ỹ), ỹ ≥ 1)
but defined modulo increasing time reparametrization, i.e., only the order of arrivals of
the jumps matters.

In the following, for x ≥ 1 we let Ix = R \ [−x, x]. In particular I1 = R \ [−1, 1].

Lemma 5. The ordered (but unparametrized) set of jumps C has the same distribution
as the ordered family of jumps (modulo increasing time reparametrization) of a Poisson
point process P = {(ti, xi)i∈I } on R+ ×R with intensity dt ⊗ ρ, where ρ is some sigma-
finite measure on R \ [−1, 1].

Proof. Let t > 1. By the spatial Markov property applied to the triangle T (it) (i.e.,
the push-forward of Lemma 3 by ψ), one deduces that the ordered (but unparametrized)
collection of jumps (X(ỹ), ỹ ≥ t) is independent of (X(ỹ), 1 ≤ ỹ ≤ t) and has the same
distribution as the ordered family of jumps (X(ỹ), ỹ ≥ 1).
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Fix x0 > 1 such that there almost surely exists a jump in Ix0 . We deduce from the above
remark that for every 1 < x < x0, the discrete random sequence (X(ỹ) 1|X(ỹ)|∈Ix , ỹ > 1)
has the same distribution as i.i.d. samples from a certain probability measure ρx on Ix .
Furthermore, the distributions ρx satisfy the compatibility condition

ρx′(· | Ix) = ρx

for all 1 < x′ < x. Consequently, one can uniquely define a sigma-finite measure ρ on
I1 = R\[−1, 1] such that ρ(·∩Ix)/ρ(Ix) = ρx and ρ(Ix0) = 1. It is then easy to see that
the jumps of C have the same distribution as the unparametrized jumps of a Poisson point
process P = {(ti, xi)i∈I } on R+ × R with intensity dt ⊗ ρ (see the warm-up section).
The details are left to the reader.

The sigma-finite measure ρ has an arbitrary multiplicative normalization (but note
that the multiplicative constant does not change the law of the ordered family of jumps, it
just changes the time-parametrization). ut

We have now seen that if a Möbius-invariant complete Markovian triangulation T exists,
then one can associate with it a measure ρ that describes the law of the jumps of C, and
we have also seen that the distribution of T (i) is necessarily the image of P0 under ψ .
Furthermore, the Markovian property (Lemma 3) shows that T (0) and the jumps of C
are independent. The following lemma proves that conversely, one can recover the law of
AccT(i,∞) from ρ and T (i):

Lemma 6. The distributions of T (i) and C fully characterize the law of AccT(i,∞).

Proof. It is clear that AccT(i,∞) can be recovered from the two processes (`y)y≥1 and
(ry)y≥1 and the initial triangle T (i). More precisely, instead of the full processes (`)
and (r), it suffices to know (`, r) up to time reparametrization to reconstruct the accor-
dion. Indeed, only the range of (`, r) matters in order to define AccT(i,∞).

We first claim that the ranges of the processes (`) and (r) are both of zero one-
dimensional Lebesgue measure. Recall that the triangulation T is almost surely complete,
and Möbius-invariant, so that any given point in H is almost surely in the interior of some
triangle of T. Hence, the (one-dimensional) Lebesgue measure of the intersection I of
the imaginary line with the closure of the union of all arches (`yry) is almost surely equal
to 0.

Indeed, assume that the Lebesgue measure of the intersection of the range of (`) with
some interval [−l1,−l2] is positive. Clearly, one can associate to each point `y of this
range a point iy on the imaginary half-line in such a way that for any y < y′ we have
|y′ − y| > |`y′ − `y |/K(l1) for some constant K(l1). Hence, it follows readily that the
one-dimensional Lebesgue measure of I is positive. Since this is prohibited, we conclude
that the range of (`) (and of (r), by the same argument) is almost surely of zero (one-
dimensional) Lebesgue measure.

As (`) and (r) are monotone functions, the fact that their ranges are of zero Lebesgue
measure implies that the range of (`, r) is characterized by its jumps (which themselves
are described by C) and by its initial value (which is given by T (i)). Hence, we can
recover, up to time reparametrization, the process (`, r) from C and T (i). This is sufficient
to reconstruct AccT(i,∞). ut
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3.3. Identification of the jump measure

It now remains to show that (up to a multiplicative constant) there is in fact at most one
possibility for the measure ρ defined in Lemma 5. This will follow from the Möbius
invariance of the measure σ as heuristically described in the introduction.

Let us suppose for the remainder of this section that T is a Möbius-invariant complete
Markovian triangulation, and that ρ and P are defined as in Lemma 5 (and P is coupled
with C in such a way that their ordered families of jumps are identical). If ϕ is a Möbius
transformation of H, the action of ϕ can be extended to the boundary ∂H = R. We will
implicitly use this extension in what follows. Note that it is sufficient for an arch or a
triangle to track down its apexes ∈ ∂H to know it entirely.

Lemma 7. The image measure of ρ under any Möbius transformation of the upper half-
plane into itself that fixes −1 and 1 is proportional to ρ.

Proof. Fix x0 > 1 in such a way that ρ({x0,−x0}) = 0 and ρ(Ix0) > 0. Define `1 <

0 < r1 as before so that (`1, r1) is the top boundary of T (i). We denote x̃ the first jump
of the point process P such that |x̃| > x0 and write ˜̀ < 0 < r̃ for the feet of the bottom
hyperbolic line of the triangle corresponding to the jump x̃. Let ã denote the third apex of
this triangle. See Figure 7.

−1−1− ε 1 1 + ε′˜̀ `1 r1 r̃ã

i

Fig. 7. Setup of the proof.

For each small ε and ε′, we consider the events

A(ε, ε′) := {−1− ε < ˜̀< `1 < −1 and 1 < r1 < r̃ < 1+ ε′}.

By standard properties of Poisson point processes the event A(ε, ε′) is independent
of x̃ which is distributed according to the measure ρx0 . Thus for any Borel positive f :
R \ [−1, 1] → R+ with compact support we have

E[f (x̃) | A(ε, ε′)] = ρ(Ix0)
−1
∫
Ix0

ρ(da) f (a). (2)
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We will now let x0 → 1. To avoid subsequent normalizations, we consider another pos-
itive measurable function g : R \ [−1, 1] → R+ with compact support: Using the last
display and letting x0 → 1 we have

E[f (x̃) | A(ε, ε′)]

E[g(x̃) | A(ε, ε′)]
−−−−→
ε,ε′→0

∫
I1
ρ(dx) f (x)∫

I1
ρ(dx) g(x)

. (3)

On the other hand, x̃ can be related to the geometric quantity ã as follows. When ε
and ε′ are both very small (and A(ε, ε′) holds) then the jump x̃ is necessarily very close
to the first foot ã of the accordion with absolute value larger than x0. Thanks to the above
remark, the x̃ can be replaced by the geometric ã on the left-hand side of (3).

Let us now suppose that ϕ is a Möbius transformation that maps H onto itself with
ϕ(−1) = −1 and ϕ(1) = 1. Note in particular that since the semi-circle (−1, 1) is
preserved by ϕ, for every ε, ε′ > 0 there exist δ, δ′ > 0 such that if A(δ, δ′) is satisfied
for T then A(ε, ε′) holds for ϕ(T) and furthermore T (i) = T (ϕ(i))). Since ϕ(T) and T
are identically distributed it follows readily using the same arguments as before that

E[f (ϕ(ã)) | A(ε, ε′)]

E[g(ϕ(ã)) | A(ε, ε′)]
−−−−→
ε,ε′→0

∫
I1
ρ(dx) f (x)∫

I1
ρ(dx) g(x)

. (4)

Thus comparing (4) with (3) (with x̃ replaced by ã) we deduce that∫
I1
ρ(dx) f (ϕ(x))∫

I1
ρ(dx) g(ϕ(x))

=

∫
I1
ρ(dx) f (x)∫

I1
ρ(dx) g(x)

.

Hence the push-forward of ρ under the map ϕ is indeed a multiple of ρ. ut

A natural candidate for the measure ρ is the measure ζ on R \ [−1, 1] defined by

ζ(dx) =
2 dx
|x|2 − 1

1{|x|>1}

as it is the only measure (up to a multiplicative constant) that is invariant under all Möbius
transformations of H that fix the boundary points−1 and 1 (note for instance that it is the
image of the measure dx/x on R+ under the map (1+ x)/(1− x)). Indeed:

Lemma 8. The measure ρ defined in Lemma 5 is necessarily equal to a constant times
the measure ζ .

Proof. Let us consider ϕ(x) = (1+ x)/(1− x) as above. Clearly, if ρ̃ denotes the push-
forward of ρ under ϕ−1, this measure ρ̃ on R+ will have the property that the image of
ρ̃ under any map z 7→ λz for positive λ (these are the Möbius transformations of H onto
itself that fix 0 and ∞) is a multiple (which may depend on λ) of ρ̃. It follows that for
some real α and some positive constant c,

ρ̃(dx) = cx−α 1{x>0} dx.
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We want to show that α is necessarily equal to 1. Let us assume that α < 1. Then
ρ̃[ε,∞) = ∞ while ρ̃[0, ε) <∞ for any ε > 0. In terms of ρ, this implies in particular
that ρ[1,∞) <∞. But the proof of Lemma 6 then tells us that the set of (ry)y≥1 has no
accumulation points, i.e. all ry’s are isolated. In particular, this implies that if E denotes
the set of all corners of triangles in T that separate 0 from∞ in H, then E+ := E ∩R+ is
almost surely discrete in the sense that for all 0 < a < b, E+ ∩ [a, b] is finite (here [a, b]
denotes the horizontal segment between a and b).

On the other hand, for any ε > 0, ρ[−1− ε,−1] = ∞. This readily shows there are
infinitely many jumps for (`y) while (ry) only jumps finitely many times. In particular,
we see that almost surely, there exist b < a < 0 such that there are infinitely many points
in the intersection of E− := E ∩ R− with the horizontal segment [b, a].

Finally, because of invariance of the law of T under the transformation z 7→ −1/z,
we note that E+ has the same law as {−1/z, z ∈ E−}, which contradicts the previous
facts that we just proved for E+ and E−.

We therefore conclude that α ≥ 1. In exactly the same way, we can exclude the
possibility that α > 1 (because then ρ[1,∞) = ∞ while ρ(−∞,−1] <∞). Hence, we
see that ρ is a multiple of the image under ϕ of x−1 dx 1{x>0}, i.e., a multiple of ζ . ut

The previous lemmas describe the joint law of (T (i), T (iy)) for any given y > 1. But, for
any z and z′ in D, there exists some y ≥ 1 and a Möbius transformation from D onto H
that maps z onto i and z′ onto iy; by Möbius invariance, we can therefore describe the joint
law of (T (z), T (z′)), and by Lemma 4, we have completed the proof of the uniqueness
part of Theorem 2:

Proposition 9. There exists at most one (law of a) complete Möbius-invariant Markovian
triangulation.

4. Existence

The goal of this section is to define the candidate for the random triangulation, and to
check that it is complete, Markovian and Möbius-invariant.

4.1. The half-plane accordion

In order to define a random accordion in H+ (i.e., what will turn out to be our distribu-
tion σ ), we start with a Poisson point process P = {(ti, xi)i∈I } on R+ × (R \ [−1, 1])
with intensity dt ⊗ ζ .

We then construct two pure jump processes (Lt )t≥0 (for left) and (Rt )t≥0 (for right)
that jump only at the jumping times of P whose jumps (defined as in (1)) are the xi’s. Set
L0 = −1 and R0 = 1. The idea is that L is decreasing, R is increasing, and when a jump
(t, x) occurs, then R−L is multiplied by (|x|+1)/2, and L jumps only if x < −1, while
R jumps only if x > 1.

More precisely, if we set Pt := {(ti, xi) ∈ P : ti ≤ t}, then we can first define

1t := (R0 − L0)
∏

(ti ,xi )∈Pt

|xi | + 1
2

,
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which is the exponential of the pure jump process with intensity given by the image of ζ
under the mapping x 7→ log |x|+1

2 . It is easily checked that this subordinator is well-
defined (does not blow up), using the explicit expression for its jump measure. Then, we
simply set

Rt := R0 +
∑

(ti ,xi )∈Pt
(1ti −1ti−) 1xi>1, (5)

Lt := L0 −
∑

(ti ,xi )∈Pt
(1ti −1ti−) 1xi<−1. (6)

As 1t = Rt − Lt is almost surely finite for all t , the two processes (Lt )t≥0 and (Rt )t≥0
are well-defined as well (note that L is non-increasing and R is non-decreasing). Note
also that Rt →∞ and Lt →−∞ almost surely as t →∞.

Equivalently, for each i ∈ I , we can write

(Lti , Rti ) = ϕ
−1
ti−
((−1, xti )) 1xti>1 + ϕ

−1
ti−
((xti , 1)) 1xti<−1

where ϕ−1
t denotes the affine map that maps (−1, 1) onto (Lt−, Rt−).

We are now ready to define our accordion in H+. For each (ti, xi) ∈ P , define the
hyperbolic triangle in H with three corners given by (Lti , Rti−, Rti ) if xi > 1, and by
(Lti , Lti−, Rti ) if xi < −1. The definition clearly ensures that each of these triangles
separates the semi-circle {z ∈ H : |z| = 1} from ∞ in H+ and that these triangles are
disjoint.

−1 1
Lt Rt

Fig. 8. Sample of a piece of A(P).

In fact, to indicate that this accordion is from the semi-circle (−1, 1) to∞ in H, we
will denote it by A(P)[(−1,1)→∞;H] (and omit the H when it is clear that we are working
in H, and simply write A(P)(−1,1)→∞).

We can immediately extend our construction to the case where the initial position
(L0, R0) = (l0, r0) (for r0 > l0) is different from (−1, 1), and this defines the accordion
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A(P)(l0,r0)→∞. It is easy to check that that this new accordion has the same distribution
as the image of A(P)(−1,1)→∞ under the linear map that maps −1 to l0 and 1 to r0.

In other words, we have in fact defined (Lt , Rt ) as a Markov process on {(l, r) : l <
0 < r} with translation-invariant and scale-invariant transition kernel (the process started
from (−1 + x, 1 + x) has the same law as (x + Lt , x + Rt )t≥0 when L0 = −1 and
R0 = 1, and on the other hand, the process started from (−r, r) has the same law as
(rLt , rRt )t≥0).

4.2. Towards completeness

Let us now prove the following statement:

Lemma 10. Almost surely, the ranges of (Lt )t≥0 and (Rt )t≥0 restricted to any compact
interval of R are both of box-counting dimension 0.

Proof. Consider an auxiliary subordinator (Qt , t ≥ 0) defined by

Qt =

∑
(ti ,xi )∈Pt

xi − 1
2

1xi>1.

Let T > 0. It is clear from its construction that the process (Rt , t ≥ 0) jumps exactly
when the process (Qt , t ≥ 0) jumps, and that up to time T , the size of a jump of R is
less than the corresponding jump of Q multiplied by 1T : indeed, if t < T is a jump time
for R we have

Rt − Rt− = 1t −1t− = 1t−
xi − 1

2
= 1t−(Qt −Qt−).

Thus, the box-counting dimension of the range R[0, T ] is almost surely not larger than
that of Q[0, T ] (because the former set is the image of the latter under a Lipschitz map).
But the box-counting dimension ofQ[0, T ] is easily seen to be almost surely equal to zero
(see [4, Chapter 5.1.1] or [3, Chapter III.5], and use the behavior of ζ(dx) near x = 1).
As the process L has the same law as −R, the lemma follows. ut

Similarly to the case of Lemma 6, we will translate the previous result on the range of L
and R into a property of the set of points of the accordion that are on the imaginary axis.
More precisely, let us define the set I∞ of points of the type iy for y ≥ 1 that are not
inside a triangle of A(P)(−1,1)→∞. Then we have:

Corollary 11. The (one-dimensional) Lebesgue measure of I∞ is almost surely equal to
zero.

Proof. For any k > 1, let us define the set Jk of points iy for y ≥ 1 that are in the closure
of the union of the semi-circles ((Lt , Rt ), t < σk), where σk is the first time at which
max(Rt ,−Lt ) ≥ k. Clearly, it is sufficient to prove that for any given k, this set Jk has
almost surely zero Lebesgue measure. For each positive ε, define Nε to be the minimal
number of intervals of length ε that are needed to cover R[0, σk] ∪ L[0, σk]. Lemma 10
in particular implies that almost surely, Nε/ε−1/3 vanishes as ε tends to 0.
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−1 1

Fig. 9. Sketch of the covering.

Suppose that iy (for y > 1) is in no triangle of A(P)(−1,1)→∞. This means that one
can find one of the intervals of length ε covering the range of L (call it Il), and one of
the intervals of length ε covering the range of R (that we call Ir ) such that iy is in one of
the semi-circles joining a point in Il to a point in Ir . See Fig. 9. But, for a given k, and
any two such intervals, the length of the set of points on the imaginary axis that can be
reached in this way is bounded by a constant C = C(k) times ε. Thus we have

Leb1(Jk) ≤ Cε ×N
2
ε .

The right-hand side goes almost surely to 0 as ε vanishes, which concludes the proof of
the corollary. ut

4.3. Target-independence

Let us now recall a simple classical lemma (see for instance [3, Section O.5]—it can be
viewed as a direct consequence of the “compensation formula”) that roughly states that
if we start with a Poisson point process, and modify it in a way that preserves both the
independence and the intensity measure, then the law of the modified point process is still
the same:

Lemma 12 (Modification of Poisson point processes). Let P = {(ti, xi), i ∈ I } be a
Poisson point process on R+ × R of intensity dt ⊗ ρ (where ρ denotes some measure
on R). Let (Ht )t≥0 be a predictable process taking values in the space of non-negative
measurable functions R → R such that almost surely, for every t ≥ 0 the push-forward
of the measure ρ by Ht is ρ. Then P ′ := {(ti, Hti (xi)), i ∈ I } has the same law as P .
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We will use this lemma in order to derive a target-independence property of our accordion
A(P)(−1,1)→∞.

Fix a ∈ R \ [−1, 1] and let us define ψa,0 to be the Möbius map from H onto itself
that maps (−1, 1,∞) onto (−1, 1, a). We define the accordion A(P)(−1,1)→a in H to
be the image of A(P)(−1,1)→∞ under ψa,0. We finally denote by A(P)(−1,1)→∞∧a the
sub-accordion of A(P)(−1,1)→∞ whose triangles intersect the line (0a), and similarly we
denote by A(P)(−1,1)→a∧∞ the sub-accordion of A(P)(−1,1)→a whose triangles inter-
sect the line (0∞).

Proposition 13 (Target independence). For any a ∈ R \ [−1, 1], the two accordions
A(P)(−1,1)→a∧∞ and A(P)(−1,1)→∞∧a have the same law.

Proof. The idea is to decompose the global action of the composition of an accordion
with a Möbius transformation into an iteration of infinitesimal transformations of the
jumps by (predictable) functions. Consider (L) and (R), the two functions associated
with a standard accordion [(−1, 1)→∞;H], and introduce the disconnection time of a
and∞:

θa := inf{t ≥ 0 : Lt < a < Rt }.

For each jumping time ti ≤ θa , the jump xi in the accordion [(−1, 1) → ∞] cor-
responds to the image of Lti or Rti under the affine map that sends (Lti−, Rti−,∞)
onto (−1, 1,∞). Let us now see what is the corresponding jump x(a)i in the image of
A(P)(−1,1)→∞ under ψa,0 that we consider as an accordion growing towards ∞, at
least as long as ti ≤ θa . The jump x(a)i corresponding to xi in A(P)(−1,1)→a (which
is ψa,0(A(P)(−1,1)→∞) by definition) is the image of ψa,0(Lti ) or ψa,0(Rti ) under the
hyperbolic isometry that sends (ψa,0(Lti−), ψa,0(Rti−),∞) onto (−1, 1,∞). We deduce
that x(a)i is the image of xi by the hyperbolic isometry

ψa,ti := ϕ(ψa,0(Lti−),ψa,0(Rti−),∞)→(−1,1,∞) ◦ ψa,0 ◦ ϕ(−1,1,∞)→(Lti−,Rti−,∞).

Note that the measure ζ is invariant under ψa,ti and that this is a predictable function
(with respect to the natural filtration defined by the Poisson point process). When t > θa ,
we simply define ψa,t to be the identity. Hence, we deduce from Lemma 12 that the two
ordered but unparametrized families {xi, i ∈ I } and {ψa,ti (xi), i ∈ I } have the same law.
This, together with the fact that the jumps characterize the accordion (Lemma 6), tells us
precisely that up to the first time at which one disconnects∞ from a, the two accordions
A(P)(−1,1)→a and A(P)(−1,1)→∞ are identically distributed. Note that the final “jump”
(i.e. the triangle that disconnects a from∞) is also included in this description. ut

It is therefore possible to couple the two accordions aiming at a ∈ R \ [−1, 1] and∞, in
such a way that they coincide up to the triangle disconnecting a and∞. This compatibility
shows that it is in fact possible to couple accordions (all based on (−1, 1)) aiming at all
points (with rational coordinates, say) in R \ [−1, 1] in such a way that any two of them
coincide up to the first triangle that disconnects their two targets. We define by A(−1,1),H
the union of all the triangles in this “accordion tree”. Then:
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• The distribution of A(−1,1),H is invariant under the one-dimensional family of confor-
mal maps from H onto itself that fix (−1, 1). This follows just from the definition of
the accordion targeting other points than∞ via Möbius invariance.
• This triangulation A(−1,1),H is almost surely complete, i.e. almost surely, the two-

dimensional Lebesgue measure of the complement in H+ of the union of all the tri-
angles of A(−1,1),H is zero. This is just due to the fact that for any a ∈ R \ {0}, the
intersection of this set with the hyperbolic line joining 0 to a has almost surely zero
(one-dimensional) Lebesgue measure (which again follows from the result for a = ∞,
i.e. from Corollary 11, via Möbius invariance).

This target independence is reminiscent of the “locality property” of SLE6 [9].

4.4. Reversibility of the accordion

On top of being invariant under Möbius transformations of H that leave H+ invariant,
the measure ζ has another property that will yield “reversibility” of the accordion. Recall
from the end of Section 4.1 that we can view Mt = M

+
t = (Rt , Lt )t≥0 as a pure jump

Markov process on the space {(r, l) ∈ R2
: l < 0 < r}.

We will also use the Markov process M−t = (L−t , R
−
t ) defined on the same state

space, but aiming at 0 instead of∞. It is defined exactly as Mt except that the measure ζ
is replaced by the measure ζ−(dx) = 2 dx/(1−x2) with support in [−1, 1]. Note that ζ−

is the image of ζ under the map x 7→ −1/x, so that it follows (using the same arguments
as in the proof of Proposition 13) that if M0 = M−0 = (−1, 1), then the two processes
(L−t , R

−
t )t≥0 and (−1/Rt ,−1/Lt )t≥0 have the same law.

Let us define, for any u < v in R, the two measures ζ[u,v] and ζ[v,u] that are supported
respectively on [u, v] and R \ [u, v] with respective densities

ζ[u,v](dw) =
(v − u) dw

(v − w)(w − u)
and ζ[v,u](dw) =

(v − u) dw
(w − v)(w − u)

.

Note that these two measures are invariant under any Möbius transformation of H that
fixes v and w, and that they are the push-forward of the measure dx/x on R+ by any
Möbius transformation from H onto itself that maps 0 and∞ to u and v (in that order for
ζ[u,v] and in the reverse order for ζ[v,u]; in fact, the measure dx/x on R+ can be interpreted
as ζ[0,∞]). Hence, all these measures are images of each other under some hyperbolic
isometry. Note also that ζ[1,−1] is exactly our measure ζ and that ζ[−1,1] = ζ

−.
The definition of our Markov processMt shows that ζ[v,u] describes its jump intensity

measure (i.e. the location of the new point after the jump when (L,R) = (u, v)) and
similarly ζ[u,v] describes the jump intensity measure for M−t .

Here is a simple observation: Suppose that the pair (u, v) is defined under the infinite
measure

π(du dv) =
du dv
(v − u)2

1{u<0<v}

on the set R−×R+ (it is important for what follows that we restrict ourselves to this set!).
We can then define w under the measure ζ[v,u] so that the triple (u, v,w) is defined on the
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set {u < 0 < v < w} ∪ {w < u < 0 < v} by the measure with density

ν(du dv dw) =
du dv dw

(w − v)(v − u)(w − u)
.

We recognize here (a multiple of) the Haar measure on unmarked hyperbolic triangles
in H (see Section 2.1), restricted to those triangles that separate 0 from ∞. Note also
that when one sees this triangle without knowing which is u or which point is v, one can
recover it immediately: These triangles always have at least one point on R+ and one
point on R−. If there are two points in R+, then u < 0 < v < w, and if there are two
points in R−, then w < u < 0 < v.

We can use the same procedure in the other direction. Let us first define (α, β) under
the same measure π and then γ under ζ[α,β] (mind that this time, γ ∈ [α, β]) so that one
obtains the triple (α, β, γ ) defined on the set {α < γ < 0 < β} ∪ {α < 0 < γ < β}

under the measure with intensity dα dβ dγ /((β −α)(γ −α)(β − γ )). In this way, we get
exactly the same measure as before, and we can also recover from the unmarked triangle
which apexes are α, β and γ .

We have thus proved the following by looking at the properties of the jump mea-
sures of the two processes M and M− (see for instance [7] for background on duality for
Markov processes):

Proposition 14. The measure π is an invariant measure for the Markov transition kernel
of M and the dual kernel is that of M−.

In plain words, suppose that for a given positive t :

• We define (u, v) according to π , then sample a Markov processM starting fromM0 =

(u, v); this defines an infinite measure on quadrilaterals (u, v, Lt , Rt ).
• We define (u′, v′) according to π , then sample a Markov process M− starting from
M−0 = (u

′, v′); this defines an infinite measure on quadrilaterals (L−t , R
−
t , u

′, v′).

Then these two measures on quadrilaterals are the same.
Suppose now that s = iy is some fixed point on the vertical line with y > 1. Let

us first sample a triangle Ti according to PH
i (this is the probability measure obtained by

restricting the Haar measure on triangles in H to those that contain i). Denote its three
apexes by a, l, r in such a way that l < a < r . The arc of Ti that separates i from infinity
is therefore (l, r). Note that one way to sample Ti is to define l, r under some universal
constant c0 times π , and then a under ζ[l,r] and to finally restrict the resulting measure on
(l, a, r) to those triangles that contain i.

We now define a triangle T (s) that contains s. If s ∈ Ti, we take T (s) = Ti. Otherwise,
we sample an accordion A(l,r)→∞. Then, almost surely, s is in one of the triangles of
the accordion, which we call T (s). Our goal in this subsection is to show the following
reversibility property of the joint law of (Ti, T (s)):

Lemma 15. If ϕ : z 7→ −y/z denotes the Möbius transformation in H that interchanges
i and s, then the law of (Ti, T (s)) is equal to that of (ϕ(T (s)), ϕ(Ti)).
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An equivalent possibly clearer way to phrase this reversibility is as follows: Define a ran-
dom triangle T ′s that contains s according to PH

s , and then define the triangle T ′(i) that
contains i, obtained by letting an accordion grow from T ′s towards 0. Since (T ′(i), T ′s ) is
distributed as (ϕ(T (s)), ϕ(Ti)), the lemma says that (Ti, T (s)) and (T ′(i), T ′s ) are identi-
cally distributed.

Proof of Lemma 15. Let us first notice that when restricted to the event that the two
triangles are equal (i.e., s ∈ Ti for the first pair, and i ∈ T ′s for the second), the laws
of (Ti, T (s)) and (T ′(i), T ′s ) are equal (they are both described via the Haar measure on
triangles, restricted to the triangles that contain both i and s). We can therefore focus on
the event where the two triangles are different.

Suppose now that Ti (and therefore (l, r)) has been sampled and does not contain s.
When one grows the accordion from the arc (l, r) towards∞, we use the Poisson point
process described in previous subsections. Note that we are interested in the law of the first
“time” (in the Poisson point process parametrization) at which one discovers a triangle
(i.e., a jump in our pure jump process) that swallows the point s. The classical theory of
Poisson point processes (see for instance the “master formula” in [10]) shows that it is
possible to decompose the law of T (s) according to the time at which the jump over s
occurs. More precisely, let us grow the accordion from M0 = (L0, R0) := (l, r) towards
infinity, and let Mt = (Lt , Rt ) denote the top boundary arc of the accordion at time t .

For each given t , we can sample Mt and then define a point w on R \ [Lt , Rt ] ac-
cording to the measure ζ[Rt ,Lt ]. This is an infinite measure, but the mass mt of the event
that s is in the triangle (Lt , Rt , w) is finite, and furthermore, the definition of the Pois-
son point process, together with the fact that the triangulation is complete, ensures that
E(
∫
∞

0 mt dt) = 1 (just because there is a.s. exactly one triangle in the accordion that
contains s), given the fact that s /∈ Ti.

Then (conditionally on (l, r) and on the fact that s lies above this arc), the distribution
of T (s) is described by

E
(
g(T (s))

∣∣ (l, r))
=

∫ t

0
dt E(L0,R0)=(l,r)

(∫
ζ[Rt ,Lt ](dw) g({Lt , Rt , w}) 1{s∈(Lt ,Rt ,w)}

)
for any measurable bounded function g. For convenience, we are now going to assume
that g(T ) = 0 as soon as s /∈ T , as this will enable us to incorporate the indicator function
in g. As we anyway restrict ourselves to the case where i /∈ T (s), we assume as well that
g(T ) = 0 as soon as i ∈ T . Similarly, we will consider a measurable function f on the
set of unmarked triangles, such that f (T ) = 0 as soon as i /∈ T or s ∈ T .

If we now combine this with the description of the law of Ti, we get

E(g(T (s))f (Ti)) =

∫
∞

0
dt c0π(dα dβ)

× E(L0,R0)=(α,β)

(∫
ζ[α,β](dγ ) ζ[Rt ,Lt ](dw) f ({α, β, γ })g({Lt , Rt , w})

)
.
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It now suffices to apply the reversibility of our Markov process, i.e. Proposition 14, which
implies that this quantity is equal to∫

∞

0
dt c0π(du dv)

× E(L−0 ,R
−

0 )=(u,v)

(∫
ζ
[L−t ,R

−
t ]
(dγ ) ζ[v,u](dw) f ({γ, L−t , R

−
t })g({u, v,w})

)
and to note that (just in the same way as before), this is precisely E(g(T ′s )f (T

′(i))),
which completes the proof. ut

4.5. End of the proof of Theorem 2

Let us construct a triangulation of T in the unit disk as follows. First sample T (0) ac-
cording to P0. In each of the three remaining domains O1, O2 and O3 (see Fig. 3) sample
independently an accordion tree started from (u2u3), (u3u1) and (u1u2) respectively. This
clearly defines a random complete triangulation T. Furthermore, this construction ensures
directly that T is Markovian. What remains to be checked is its Möbius invariance.

As the definition also yields invariance under rotations around the origin, it suffices
to check that for any given z0 in D \ {0}, the law of T is invariant under the hyperbolic
isometry ϕz0 in D that interchanges 0 and z0.

In other words, define another random triangulation as follows. First sample T ′(z0)

according to Pz0 . Then, in each of the three remaining domains, sample independently
an accordion tree. This defines a random triangulation T′ (and by construction, its law
is that of ϕz0(T) because the image measure of P0 under ϕz0 is Pz0 and by invariance of
the accordion tree under Möbius transformations). Our goal is to prove that T and T′ are
identically distributed.

As in the proof of Lemma 4, in order to prove that T and T′ are identically distributed,
it suffices to see that for all Z = {0, z0, z1, . . . , zn} and for any tree structure 0 on Z, one
has identity in law between T (Z) 1T (Z)∈A(Z,0) and T ′(Z) 1T ′(Z)∈A(Z,0).

But Lemma 15 shows readily that this is certainly the case as soon as 0 and z0 are
neighbors in 0. Indeed, we can note that for both triangulations the marginal law of
(T (0), T (z0)) is the same (this is just the image in D of Lemma 15), and that (on the
event that the remaining points lie in the four outer connected components of the comple-
ment of these two triangles) the conditional distribution of T (Z) given these two triangles
is also the same by construction.

Suppose now that in 0, 0 is at distance 2 of z0, i.e. both 0 and z0 are neighbors of
some zl . Then we can use another random triangulation T′′ that is constructed just as T
and T′, except that it is based at zl , i.e., one starts defining T ′′(zl) using Pzl etc. We have
just showed that

• T (Z) 1T (Z)∈A(Z,0) and T ′′(Z) 1T (Z)∈A(Z,0) are identically distributed,
• T ′′(Z) 1T ′′(Z)∈A(Z,0) and T ′(Z) 1T ′(Z)∈A(Z,0) are identically distributed,

which clearly settles the case when the graph-distance between 0 and z0 is 2. The very
same argument works without any problem when the distance is larger. ut
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5. The Markovian hyperbolic quadrangulations, pentangulations etc.

It is of course natural to wonder if our results are specific to hyperbolic triangulations,
or if they do have extensions to random partitions into other hyperbolic polygons. The
answer is that, while triangulations are of course in some way special, there exist analogs
to our Markovian triangulation when one replaces triangles by other polygons. In order to
avoid any notational mess, the discussion in the present section will deliberately remain
on a rather descriptive and maybe wordier style, and we will leave mathematical details
to the interested reader.

Let us first focus on the case of regular polygons: We say that the sequence of distinct
points x1, . . . , xn on the unit circle that is ordered anti-clockwise is a hyperbolic n-gon
(and the n hyperbolic lines (x1x2) etc. are its boundary edges). We say that it is a reg-
ular n-gon if there exists a Möbius transformation φ such that φ(xj ) = e2iπj/n for all
j in {1, . . . , n}. For instance, any (anti-clockwise ordered) triple x1, x2, x3 is a regular
3-gon, but then, only one possible x4 turns x1, x2, x3, x4 into a regular 4-gon (we will
from now on call regular 4-gons hyperbolic squares). Note that any n-gon is obtained by
glueing together n−2 adjacent triangles (and triangles are all equivalent up to hyperbolic
isometry). The µ-hyperbolic area of any n-gon is therefore always equal to n (with our
normalization of the hyperbolic measure µ). A hyperbolic square is just the glueing of
two “conformally symmetric” adjacent triangles and it has µ-area 2. Note also that an
(unmarked) hyperbolic n-gon corresponds to n different possible marked n-gons (one has
to choose which one of the corners is x1).

It is trivial to extend the definition of the Markovian property to random tilings of D
into n-gons. The first extension of Theorem 2 goes as follows:

Theorem 16. For any n ≥ 3, there exists exactly one (law of a) Markovian Möbius-
invariant complete partition of D into regular n-gons.

The case n = 3 is exactly Theorem 2, whereas when n = 4, the statement is that there
exists a unique Markovian Möbius-invariant partition of D into hyperbolic squares.

Sketch of the proof. The proof goes along similar lines to that of Theorem 2. Let us
focus here on the case n = 4 (the proof of the other cases is quasi-identical and involves
essentially no new idea) and just highlight the main differences with the proof of the case
n = 3.

The origin square. First of all, note that there is a natural measure ν(4)◦ on marked hy-
perbolic squares: It is is obtained from the measure ν◦ on marked triangles (a, b, c) by
looking at (a, b, c, d) where d is the symmetric image of b with respect to (ac), i.e., the
only point d such that (a, b, c, d) is a hyperbolic square. Clearly, this measure is invariant
under circular relabeling (i.e., under (a, b, c, d) 7→ (b, c, d, a)), and the marginal mea-
sure of any of its four halves (i.e. the triangles obtained by dropping one of the four points)
is ν◦. It follows immediately that if a random tiling S of the disk into hyperbolic squares
is Möbius-invariant, then the measure on the marked square S(0) containing the origin (if
one marks it by choosing one of its corners uniformly at random among the four) is a mul-
tiple of ν(4)◦ restricted to those squares that contain the origin (the multiplicative constant
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being chosen in such a way that the ν(4)◦ -mass of the set of marked squares containing the
origin is equal to 1).

Uniqueness. Let us now consider the accordion of squares in the quadrangulation S be-
tween 0 and 1 in D. There is still no problem to define this object; it corresponds to the
set of squares of S that intersect the segment [0, 1].

In the uniqueness part of the proof, we assume that S is a Möbius-invariant Marko-
vian decomposition into hyperbolic squares. One then first checks using the Markovian
property and Möbius invariance that the corresponding half-plane accordion AccS(i,∞)
can be described via a Poisson point process of intensity given by some measure ρ(4) on
hyperbolic squares in H that have two adjacent corners at exactly −1 and 1. The measure
ρ(4) plays the same role as ρ in Section 3; it can be viewed as a measure on the set of pairs
of points (x1, x2) in R \ [−1, 1] such that−1, 1, x1, x2 are ordered anti-clockwise on ∂H,
and −1, 1, x1, x2 is always a hyperbolic square (see Fig. 10). The latter means that

x2 − 1
x2 + 1

= 2 ·
x1 − 1
x1 + 1

. (7)

−1 1 −1 1 −1 1
x1x2x2x1 x1 x2

Fig. 10. Sketch of squares of type I1, II and I2.

Just as for ρ (using Möbius invariance), one checks that the image of this measure
under any Möbius transformation that preserves −1 and 1 is a multiple of ρ(4). If one
now defines ρ(4)1 to be the image measure of ρ(4) under the mapping (x1, x2) 7→ x1, it
follows readily (using analogous arguments to those in Section 3 in order to show that
ρ is in fact invariant under those transformations) that ρ(4)1 is equal to ρ itself (or to a
constant multiple of ρ) and that it is also equal to the image of ρ(4) under (x1, x2) 7→ x2.
Hence the measure ρ(4) is totally described by (7) and the fact that ρ(4)1 = ρ (up to a
multiplicative constant).

The rest of the uniqueness part of the proof (the fact that this ρ(4) characterizes the
law of the accordion, and that this law characterizes the law of S) follows exactly the
same arguments as in the case n = 3 in Section 3.

Existence. We can decompose the set of squares (−1, 1, x1, x2) into three parts: the
part I2 where 1 < x1 < x2 (and on this part, the only relevant information in order to
construct the “future” of the accordion is the value of x2, which is distributed just as ρ on
[1,∞)), the part I1 where x1 < x2 < −1 (and here, the only relevant information for the
future of the accordion is x1, which is distributed just as ρ on (−∞,−1]), and the third



1338 Nicolas Curien, Wendelin Werner

part that we will call II with x2 < −1 < 1 < x1 (here, one needs to know both x1 and x2
to construct the future of the accordion).

We then consider a Poisson point process of squares with intensity ρ(4). For a square
S in the upper half-plane (with four apexes on the real line), denote its leftmost apex by
al(S) and its rightmost one ar(S). This defines a Poisson point process {(alti , a

r
ti
)} (the

square corresponding to (alt , a
r
t ) is of type I or II depending on whether one of the values

−alt and art is 1 or not). Then, as in the case of the triangulations, one defines two pure
jump processes (Lt , Rt ) by putting

(Lt , Rt ) = ϕ
−1
t− ((a

l
t , a

r
t ))

at all jump times (where ϕ−1
t− is the affine map that maps (−1, 1) onto (Lt−, Rt−)). In

contrast to the triangulation case, L and R can jump simultaneously (if the corresponding
square is of type II). Note that I1 and I2 have infinite ρ(4)-mass. The key observation is that
the ρ(4)-mass of type-II squares is finite (this can be for instance seen from the fact that
this mass is equal to ρ({4 ≤ x1})). Hence, when one constructs the half-plane accordion,
the “times” (in the Poisson point process) at which one discovers a square where the two
sides separating the square from 0 and from∞ are not adjacent, form a discrete locally
finite set. In other words, the accordion will be quite similar to the accordion with triangles
except that:

• For each triangle (abc) in the accordion, one adds the fourth point d in order to turn it
into a square, in such a way that d lies on the same side of the triangle (abc) as neither
0 nor infinity.
• One has squeezed in, in a Poissonian way, a discrete locally finite family of hyperbolic

squares where the sides that separate 0 from infinity are not adjacent.

It then suffices to use the fact that the “times” at which one adds those type-II squares
are in fact exactly the same (modulo time reversal) when one looks at the accordion in D
from −1 to 1 or from 1 to −1 (here, one uses the fact that the “time” parametrizations
of the forward and backward accordions are the same, except for the time reversal). This
will then indeed allow one to prove the Möbius invariance of the random decomposition
into squares that is defined in this way. ut

Let us now list further possible extensions:

• The previous proof shows that it is also very easy to construct a tiling of D into a
mixture of triangles and squares. The Möbius-invariant measure would then be described
by a parameter p ∈ [0, 1] (each value of p would correspond to a different distribution
on tilings) that is equal to the probability that (in the tiling) the origin is in a triangle
(and not in a square). More generally, for any distribution P on {3, 4, . . . , n0}, one can
define a random tiling of D into regular n-gons (with varying n’s) in such a way that
the probability that the origin lies in a regular n-gon is equal to P(n). Conversely, these
tilings will be the only complete Markovian tilings of D into regular n-gons for n ≤ n0.

• So far, we have been dealing with tilings by regular n-gons. When n = 3, any triangle
is a regular 3-gon, so that this was not a restriction, but for n ≥ 4, it is. It raises the addi-
tional question of the existence and characterization of Markovian complete tilings of D
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into general n-gons. It turns out to be very easy to construct such tilings by non-symmetric
tiles. For instance, we could be looking for tiles that are 4-gons with a prescribed con-
formal structure, i.e. such that the four ordered boundary points (x1, x2, x3, x4) can be
mapped by some Möbius transformation onto one of the two 4-gons (i,−1,−i, eiθ ) or
(i,−1,−i, e−iθ ) for some given θ ∈ (0, π/2) (note that the condition also has to be
satisfied by (x2, x3, x4, x1)). This is then the unique Markovian tiling of the disk into hy-
perbolic rectangles of prescribed aspect ratio. Loosely speaking, the only main difference
with the previously described case of tiling by squares is now that in the accordion, one
tosses a fair coin for each 4-gon in order to choose between θ or −θ (i.e. if one discovers
one of its “long” sides or one of its “short” sides).

The general statement about Markovian tilings by n-gons (of not necessarily pre-
scribed hyperbolic structure) would then go along the following lines: Suppose that J is
a Möbius-invariant measure on the set of ordered polygons Pn where

Pn = {(x1, . . . , xn) ∈ ∂D, ordered clockwise}

such that
1. The image measure of J via the projection (x1, . . . , xn) 7→ (x1, x2, x3) of Pn onto P3

is a multiple of ν◦.
2. The J -mass of the set of n-gons that contain the origin is 1 (this is just a matter of

normalization).
3. J is invariant under (x1, x2, . . . , xn) 7→ (x2, x3, . . . , xn, x1).
Then there exists a complete Möbius-invariant Markovian tiling of D such that the n-gon
containing 0 (if one marks it by choosing x1 uniformly at random among the corners of
the n-gon) is distributed according to the restriction of J to those n-gons that contain the
origin. Conversely, this construction basically describes all possible complete Markovian
Möbius-invariant tilings by n-gons.

Furthermore, all such measures J can be obtained via a product measure ν◦ ⊗ P ,
where ν◦ chooses the first three points x1, x2, x3, and P the hyperbolic position of the
other n− 3 points with respect to (x1, x2, x3).

We leave out the details of the proofs, as well as generalizations to tilings into mixtures
of n-gons for varying n’s, to the interested reader.

6. Concluding remarks

We conclude the paper with some remarks and open questions.

Hausdorff dimension. One property of our Markovian triangulation that we have col-
lected on the way (we safely leave the details to the reader, recall Lemma 10 and Corol-
lary 11) is:

Proposition 17. The Hausdorff dimension of the closure of the union of all triangle
boundaries in our Markovian hyperbolic triangulation is almost surely equal to 1.

In other words, the “dimension” of the Markovian triangulation is not larger than 1, as
opposed to other natural random triangulations that are “fatter” (see for instance [1, 8]).
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Completeness. For non-complete Möbius-invariant triangulations, one can still make
sense of the definition of the Markovian property in the following way: First note that
the probability that z ∈ D is in some triangle of the triangulation is equal to some con-
stant p0 that does not depend on z ∈ D because of Möbius invariance, and if we assume
that T is not almost surely empty, p0 is strictly positive. Then, we can condition on the
event that T (0) is not empty, and define the Markovian property as in Section 2.3.

It is easy to define non-trivial Möbius-invariant Markovian triangulations that are not
complete. Here is an example: Pick p ∈ [0, 1) and consider our random complete tri-
angulation T as defined in Theorem 2. Conditionally on T, let (dT )T ∈T be independent
Bernoulli variables of parameter p indexed by the triangles of T, and define

T(p) = {T ∈ T : dT = 1}.

In other words, we keep each triangle of T with probability p. Clearly, T(p) is a non-
complete Möbius-invariant Markovian triangulation.

It is nevertheless possible to strengthen Theorem 2 replacing the completeness as-
sumption by a density assumption. We recall that a triangulation T is dense if the union
of the triangles of T is dense in D. The statement then becomes: There is a unique (law
of a) dense Möbius-invariant triangulation of D that has the spatial Markov property.

In other words, any dense Möbius-invariant Markovian triangulation is in fact com-
plete (see Remark 1). For expository reasons we chose to focus on Theorem 2 and its
proof in the present paper, and we therefore do not include the proof of this last state-
ment, but let us nevertheless give some brief hints for the interested reader: Most of the
analysis goes along similar lines to that of Section 3. Density makes it possible to still de-
fine properly the processes (`), (r) and the jumps X. The fact that the triangulation is not
complete however a priori allows the possibility to include a drift part in the subordinator-
like evolution of r and `. But it turns out that there is no Möbius-invariant way to define
a non-zero drift term, as applying a hyperbolic isometry would change the relative speed
of the drift near r and near ` (which is the usual problem when one tries to define, in a
Möbius-invariant way, processes growing simultaneously at two different points).

Open questions. We conclude with three natural open questions:

1. It would be nice and enlightening to have an alternative construction of our Markovian
Möbius-invariant triangulation (for instance via an auxiliary Poissonian model, some
allocation idea or some statistical physics arguments) that would explain “directly”
why it exists.

2. What are the natural discrete models that one could think of, and that would give rise
to such Markovian hyperbolic triangulations in the scaling limit? Note that the Marko-
vian property is somewhat reminiscent of Omer Angel’s exploration of percolation
interfaces in random triangulations [2] (which however gives rise to a different scaling
limit). This could also provide another (heuristic or rigorous) justification to the exis-
tence of our triangulation (just as the discrete percolation model “explains” the locality
and reversibility properties of SLE6 [9]).
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3. What are the natural and Möbius-invariant dynamics (if they exist) on the set of tri-
angulations that leave our measure invariant? One would for instance like to have a
“continuous” evolution (in some appropriate topology) and such that the evolution of
triangles that are far apart de-correlate fast with this distance. Each “individual” tri-
angle could for instance follow some Brownian motion in the three-dimensional Lie
group of Möbius transformations.
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