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Abstract. We consider a linear parabolic transmission problem across an interface of codimension
one in a bounded domain or on a Riemannian manifold, where the transmission conditions involve
an additional parabolic operator on the interface. This system is an idealization of a three-layer
model in which the central layer has a small thickness §. We prove a Carleman estimate in the
neighborhood of the interface for an associated elliptic operator by means of partial estimates in
several microlocal regions. In turn, from the Carleman estimate, we obtain a spectral inequality that
yields the null controllability of the parabolic system. These results are uniform with respect to the
small parameter 4.
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1. Introduction

When considering elliptic and parabolic operators in R” with a diffusion coefficient that
jumps across an interface of codimension one, say {x, = 0}, we can interpret the as-
sociated equations as two equations with solutions that are coupled at the interface via
transmission conditions at x,, = 0, viz. in the parabolic case,

Oyt — VxerVeyr = fi in{x, <0}, 8y2 — VecaVeyr = fo inf{x, > 0}, (1.1)
and

V=0 = Y2jx,=0*>  €10x, Y1|x, =0~ = €20x, Y2|x,=0+- (1.2)

Here, we are interested in parabolic/elliptic models in which part of the diffusion oc-
curs along the interface. Then the transmission conditions are of higher order, involving
differentiations in the direction of the interface. Such a model can be viewed as an ide-
alization of two diffusive media separated by a thin membrane. We derive this model
starting from three media and formally letting the thickness of the intermediate layer be-
come very small. We introduce a small parameter § > 0 that measures the thickness
of this layer. Questions such as unique continuation, observation and controllability are
natural for such a model. This is the main goal of the present article.

Most of the analysis that we shall carry out concerns a related elliptic operator, in-
cluding an additional variable. Our key result is the derivation of a Carleman estimate
for this operator (see Theorem 1.2 below). The general form of Carleman estimates for a
second-order elliptic operator P is (local form)

hlle? "wll7, + ke’ Vw2, < Ch*||e?’" Pw]3,, (1.3)

for h sufficiently small, an appropriately chosen weight function ¢, and for smooth com-
pactly supported functions w. We then deduce an interpolation inequality and a spectral
inequality for the original operator in the spirit of the work [LR95]. This spectral inequal-
ity then yields the null controllability of the parabolic system considered. An important
feature of the results we obtain here is their uniformity in the thickness parameter §. In



Controllability of a parabolic system with a diffusive interface 1487

particular this allows us to recover the earlier results obtained on (1.1)—(1.2) in [LR10];
this corresponds to the limit § — 0 in the model we consider here.

1.1. Setting

Let (2, g) be a smooth compact n-dimensional (n > 2) connected Riemannian manifold
(with or without boundary), with g denoting the metric, and S an n — 1-dimensional
smooth submanifold of © (without boundary). We assume' that Q \ S = Q; U Q5 with
Q1 N Qy = 0, so that 2 and 2, are two smooth open subsets of 2. Endowed with the
metric g|7(s), S has a Riemannian structure. We denote by 9,, a nonvanishing vector field
defined in a neighborhood of S and normal to S (for the Riemannian metric). We choose
the vector field 9, outgoing from €21, incoming in £2;. In local coordinates, we have

By = oy, with n/ =i mglt. Inlg =1,
i k

where g/ gjx = 8,1? = (g"/n;n;)~!, and n is the normal to S for the Euclidean metric in
the local coordinates, outgoing from €21, incoming in €2;. In fact )L‘ZS = det(g)/det(g|7(s))
at S.

The covariant gradient and the divergence operators are given in local coordinates by

. 1

V, = Yoy, divev = ——— 0y, (v det(g)vy),

. Zg X V= T Z  (v/det(g)vy)

with similar definition for the gradient V¥ = V

the interface S with the metric g7(s). o

We consider a (scalar) diffusion coefficient c(x) with ¢jq, € €*°(R2;), i = 1,2, yet

discontinuous across S and satisfying c¢(x) > cpinp > 0 uniformly for x € Q1 U Q. We
set

. P
er(s) and divergence div’ = divg ., on

1 L.
Ac = divg c(x)V, = N0 12]: 3y, (cg"\/det(g)dy,) in Q1 Uy,
in local coordinates. Let us denote by ¢® a smooth (scalar) diffusion coefficient on §
satisfying ¢*(x) > c;;, > 0. Similarly we define As = div® ¢*V* as a second-order
elliptic differential operator on S.
In what follows, we shall use the notation zZ|s; = (Z|Q]-)\ s, j = 1, 2, for the traces of
functions on §.

Given atime T > 0, we consider the parabolic control problem

8z — Acz = Tuu in (0, 7) x Q UQy,
9z — Aesz® = $((cdy2))s, — (cdy2)ys,) in (0, T) x S, (L.4)
15, =28 =218, in(0,T) xS,

Zjae =0,

with some initial data in LZ(2; U Q) x L2(S). Here, 8 denotes a bounded parameter,

' Other geometrical situations can also be dealt with because of the local nature of the estimates
we prove here. See Section 1.3.2 below.
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0 < § < 8o, and w is an open nonempty subset of €21 U ;. Let us suppose for instance
that o C €2;. The function u is a control function and the null controllability problem
concerns the ability to drive the solution (z, z%) to zero at the final time 7.

Such a coupling condition at the interface was considered in [KZ06] and [LZ12] for
the associated hyperbolic system. In Appendix A, we briefly explain how this model can
be formally derived. This model corresponds to two diffusive media separated by a thin
layer in which diffusion also occurs. The parameter § is then a measure of the thickness
of this intermediate layer. In the derivation of the model § is assumed to be small.

We present here some function spaces and operators and their basic properties, in or-
der to formulate Problem (1.4) in a more abstract way. The reader is referred to Section 2
for the details. We introduce the Hilbert space ”Hg = L2( UQy) x L2(S) with the inner
product

(Z. 2030 = @ D2quay +8E D a), Z=2), Z=@E.2),
where

(Z’Z)Lz(Qluﬂz) :/ sz\), (ZX,ZS)LZ(S) :/ZSZ_SdUS, (15)
S

QUQ,

with dv = J/det(g) dx and dv® = ,/det(g|7(s)) dy. We also introduce the following
Hilbert space

Hy=1{Z=(2,2) e H(Q1UQ) x H'(S); zp2 =0; 715, =2* = 75,},  (1.6)
with the inner product
(Z, Z)'Hé = (Z, Z)'Hg + (CVgZ, VgZ)LZ(QlLJQz)
+8( V'L, V') sy 2=, Z=@E D).

Problem (1.4) can be written as

0:/Z + AsZ = Bu, (1.7)
where the state is Z = (z, 7%) € ’Hg and the operator A;s reads
_ACZ
AsZ = , 1.8
’ <—Ac5Z‘Y — L(etyo)s — (canz)|sl)) 9
with domain
D(As) = {(z,2°) € M} As(z, 2°) € HY). (1.9)

The operator (As, D(As)) is nonnegative self-adjoint on 7—[50. The control operator B is
the bounded operator from L2(2; U Q) into L2(2; U €22) x L2(S) givenby B : u —
"(14u, 0). We shall prove that System (1.7), i.e. System (1.4), is well-posed for an initial
condition in Hg.
Remark 1.1. In the limit § — 0, from System (1.4), we obtain the following system (see
Section 2.2 for a proof of convergence):

07— Acz=14u in (0, T) x 21U Qo,

(CB,,Z)|SZ = (Ca,7z)|sl and 218, = 1S, in (0, T) X S, (1.]0)

Zjp =0,
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which corresponds to the case studied in [LR10]. We also refer to the recent works
[DOP02, BDLO7a, Le 07, BDLO7b, BGLO7, LR11, LL11, BDLI11] for the derivation
of Carleman estimates for elliptic and parabolic operators with such coefficients with
applications to controllability and inverse problems.

1.2. Statement of the main results

1.2.1. Carleman estimate. The Carleman estimate we prove concerns an augmented el-
liptic operator: we introduce an additional coordinate, xg € (0, Xo) C R, so that (xg, x) €
(0, Xg) x Q. This variable xo was introduced in [LR95]; there it allowed us to obtain the
null controllability of the heat equation. This approach was followed in several works
[LZ98, JL99, LR10]. It was also used to prove stabilization properties of the wave equa-
tion [Leb96, LRI7].

We consider the n + 1-dimensional partially determined elliptic problem

—0iw — Acw + Vow + bw = f in (0, Xo) x (1 U Qy),
_a)%ows — Apw® + V;ws + bW’ (.11)
= $((c0w) |0, x0)x 5 — (CW)|(0,x0) x5 +6°) in (0, Xo) x S, '

W)(0,Xg)xS; = w? +91 and W|(0,X0)x S, = w’ + 62 in 0, Xg) x S.

Note that we add lower-order terms to the elliptic operators here: V, (resp. V;) denotes
any smooth vector field on 1 U 2, (resp. S) and b (resp. b*) some bounded function on
Q1 U Qy (resp. S). Moreover, we include source terms 0/, j = 1,2, 6% at the interface
through the transmission conditions. This system is not fully determined as we do not
prescribe any boundary condition on {0} x €2 and {Xo} x €.

In Section 3, we introduce a small neighborhood V; of S in 2, where we can use
coordinates of the form (y, x,) with y € S and x, € [—2¢,2¢]. We then set M =
(0, Xp) x Vg and M; = M N ((0, Xo) x ), j =1,2.

For a properly chosen weight function ¢ (see Section 3.1), for some 0 < op < X¢/2,
and a cut-off function ¢ = ¢ (x,) € €°([0, 2¢)), with ¢ = 1 on [0, &), we shall prove the
following theorem.

Theorem 1.2. For all 5o > 0, there exist C > 0 and ho > 0 such that
hlle? " wl§ + 1 1e? "V cwlg +h Y (e ws [+ Y 1V cwys [
j=1,2 j=1,2

< C(h* 1™ fira, 1§ + 21" fiat, 15+ 1287 15e?”" fian, G + hle? "0 [§

+ (h+ 8% )|e? 07§ + 17 1e?/"Vy, 501§+ 17 1e?/ MV 56715 + 171 6°[5)

(1.12)

forall0 < § < 8,0 < h < ho, for (w,0',60%,6%, f) satisfying (1.11), wip, €
€2 (M,), and w® € €0, Xo) x S) with

supp(w) C (ag, Xo — ag) x S x (—2¢,2¢), supp(w®) C (ag, Xo — ap) x S.
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Here Vi x = (3xys Ve)'s Vig.s = (xy, V¥)' and || - [lo, | - lo are L? norms on M and
(0, Xo) x S respectively. The weight function ¢ will be chosen increasing when crossing S
from M to M3, which corresponds to an observation on the side (0, Xo) x €22. Observe
the nonsymmetric form of the r.h.s. of the estimate above. This originates from our choice
of observing the solution w in (0, Xp) x 2.

This type of Carleman estimate is well known away from the interface S (see [Hor63],
and [LR95] for an estimate at the Dirichlet boundary 9<2).

Remark 1.3. The additional variable x is used here to obtain the spectral inequality of
Theorem 1.5 below. The same Carleman inequality holds for the operator As. The proof
can be adapted from that of Theorem 1.2. In fact, without the additional variable, the
proof becomes less involved.

The Carleman estimate of Theorem 1.2 exhibits the loss of half a derivative apart from
one term on the r.h.s. (see below). Usually, one proves such Carleman estimates locally in
a neighborhood of a point, for instance using local coordinates, treating only the principal
part of the operator. Next, one includes lower order terms in the operator, exploiting that
the associated contributions can be absorbed thanks to the coefficients 2* of the terms
on the Lh.s. of the Carleman estimate.” Finally, one patches these estimates together if a
global estimate is needed. This can be achieved again thanks to the precise powers of &
in all the terms. For a review of these derivations see for example [LL12].

At the interface, for technical reasons, in the following terms on the r.h.s. of (1.12):

82
n28% e’ fipn, I + gw/ hg2)3,

the powers of & are not the usual expected ones: h* for the first term and % for the second
one. For the first term this corresponds in fact to a loss of one and a half derivative. We do
not know if these two terms are optimal or not. If we simply prove the Carleman estimate
in the neighborhood of a point, because of the powers of / in these terms such local
estimates cannot be patched together. The obstruction originates from the diffusion that
occurs in the (n — 1)-dimensional submanifold S through the operator A.s. Note that this
obstruction naturally disappears in the limit § — O.

Our strategy will thus differ from what is done classically. The estimate of Theo-
rem 1.2 is of semiglobal nature. It is global in the direction of the submanifold S and
local in the other directions (x¢ and a normal direction to S in £2): we work in a neighbor-
hood of the whole interface S. Thanks to the cut-off function ¢ that confines the term

R282 ¢! fia, I

to a neighborhood of §, estimate (1.12) can in turn be patched with Carleman estimates
away from the interface to form a global estimate. Moreover for the same reasons we do

2 Note that the powers of 4 in estimate (1.3) are in fact optimal.



Controllability of a parabolic system with a diffusive interface 1491

not restrict our analysis to the principal part: in the proof we also consider the first-order
terms of the operator.’

Following [LR10] we shall introduce microlocal regions. Here, the regions are defined
on the whole (cotangent bundle of) S. For each region we shall derive a partial Carleman
estimate. The different estimates can then be patched together to yield (1.12). Our strategy
requires us to work on S globally; we shall thus consider (pseudo-)differential operators
on S. Yet, we shall often use their expression in local coordinates; this will allow us to
use some of the results proven in [LR10].

For the purpose of proving the null controllability of the parabolic problem (1.4), a
local Carleman estimate of the form of Theorem 1.2 in the neighborhood of any point
at the interface would be sufficient. Yet, an important property of Carleman estimates
resides in the possibility of patching them together to obtain a global estimate. Our result
thus preserves this important feature.

1.2.2. Interpolation inequality. With the Carleman estimate of Theorem 1.2 we then
prove an interpolation inequality of the form introduced in [LR95]. This type of inter-
polation inequality for elliptic operators has also been used in [Leb96, LR97] to address
stabilization problems for the wave equation.

Let oy € [0, X0/2). We set K (1) = L2((a1, Xo — a1); HY) with £ = K2(0), and
we define the following Sobolev spaces:

Ki(ar) = L*((a1, Xo — a1); H)) N H' (a1, Xo —a1); HY), K} = K3(0),
K% = L2((0, Xo); D(As)) N H'((0, Xo): H}) N H((0, Xo); HY).
Theorem 1.4. For all 5y > 0, there exist C > 0 and vy € (0, 1) such that for all § €
(0, o),

1—
10l @) = CIIUII,CSIVO(II(—afo + As)Ulio + 19010, X) | 12(4y) ™ (1.13)

forallU = (u,u®) € ICg with u|y,—0 = 0in Q1 U Q).

An important consequence of this interpolation inequality is the spectral inequality that
we present in the next section.

1.2.3. Spectral inequality and null controllability result. From the above interpolation
inequality we deduce a spectral inequality for the elliptic operator As defined in (1.8). We
consider & ; = (es,, eg’ j), j € N, a Hilbert basis of ’Hg composed of eigenfunctions of
the operator As associated with the nonnegative eigenvalues us ; € R, j € N, sorted in
an increasing sequence (see Proposition 2.5).

Theorem 1.5. For §y > 0, there exists C > 0 such that for all 0 < § < §y and n € R,
1Zlyo < Ce Vol oy Z= (2 2') € spanty i oy <p). (L14)

Following [LR95], this estimate then yields a construction of the control function u; (¢, x)
in (1.4), by sequentially acting on a finite yet increasing number of eigenspaces, and we

3 This technical point explains the regularity requirements we made above for V,, and V. Yet,
we can treat bounded coefficients for the zero-order terms.
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hence obtain the following §-uniform controllability theorem. The proof can be adapted
from those in [LR95] or [LZ98, Section 5, Proposition 2], and the uniformity with respect
to the parameter § > 0 comes naturally. We also refer to [LL12] for an exposition of the
method and to [Mil06, Léa10, Mil10, TT11] for further developments.

Theorem 1.6. Let 59 > 0. For an arbitrary time T > 0 and an arbitrary nonempty open
subset w C Q there exists C > 0 such that: for all initial conditions Zy = (zo, z(s)) € Hg
and all 0 < § < 8, there exists us € L*>((0, T) x w) such that the solution (z, z°) of
(1.4) satisfies (z(T), z°(T)) = (0, 0) and moreover

lusllL2(0,7)xw) = CllIZoll30-

An important feature of this result is that the control is uniformly bounded as § — O,
so that we can extract a subsequence us weakly convergent in L2((0, T) x ). In Corol-
lary 2.9 below we prove that the associated solution of Problem (1.4) converges towards
a controlled solution of Problem (1.10). For this last control problem (previously treated
in [LR10]), we hence construct a control function which is robust with respect to small
viscous perturbations in the interface.

It is classical to deduce a boundary null controllability result from the previous dis-
tributed control result.

N.B. Here, for the sake of fixing the notation for the statement of the Carleman esti-
mate above, we chose the observation in €25. This corresponds to @ C €23 in the proofs
of Theorems 1.4-1.6. Yet, o can be chosen as an arbitrary open subset of 2.

1.3. Some additional results and remarks

1.3.1. A stabilization result.. A second important consequence of the interpolation in-
equality of Theorem 1.4 concerns the stabilization properties of the hyperbolic system
(studied in [KZ06, LZ12])

01172 — Acz+a(x)oiz =0 in (0, T) x 21Uy,
0z — Apz® = 5((cdy2)is, — (cdyz)s,) in (0, T) x S,
. (1.15)
Zis, =2 =25, in(0,7) x S,
Zi9e =0,

where a is a nonvanishing nonnegative smooth function on €21 US2;. According to [Leb96,
LR97], a local version of (1.13) (see Lemma 5.1 below) allows one to produce resolvent
estimates which in turn give a result of the following type: for all o > 0 and all k € N
there exists C > 0 such that for any 0 < § < §p, we have the energy decay estimate

132, 3230 + (2, 2 [l

< -
~ [log2+ t)]"(
for all solutions of (1.15). In particular, this decay rate is uniform with respect to 8.
See [Bur98, Theorem 3] to obtain the power k exactly. The same properties can be ob-
tained for this hyperbolic system with a boundary damping (see [LR97]).

166z, 32" ir=0ll p g2y + 112, ZS)It:0||D(A§k+l)/2))
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1.3.2. Other geometrical situations. Above we assumed that Q2 could be partitioned as
Q = Q1 U QU S. More general situations can be treated (interpolation and spectral
inequalities, and null controllability result) because of the local nature of the Carleman
estimate of Theorem 1.2. If V is a neighborhood of S, we require V to be of the form
Vi UV, U S with Vi and V; on both sides of S. Several nonintersecting interfaces can be
considered as well. For example, the geometrical situations in Figure 1 can be addressed
as well. If needed, a global Carleman estimate can be derived by combining Theorem 1.2
and the arguments of Section 5 in [LR11].

LY ®Ex

(@) (b)

Fig. 1. Other geometrical situations: (a) € is a bounded open subset of R”; (b) and (c) Q is a
compact manifold with boundary.

1.3.3. Lack of controllability from the interface. It is important to note that the parabolic
controllability result of Theorem 1.6 does not hold in general if the control function
acts on the interface S. Let w® be an open subset of S. Then in general there is no
ue L2((0,T) x S) that brings the solution of

97— Acz=0 in (0, 7) x Q1 U Qy,
7' — Apsz® = §((€dy2)is, — (€dy2)is) + Ly in (0, T) x S,
; . (1.16)
Zis =2 =25, in(0,7T) x S,
Zpe =0

to zero at time 7.

Let us consider the following two-dimensional example: Q = R/(27Z) x (—m, ) is
the cylinder endowed with a flat metric. For consistency with the notation of Section 3 we
use (y, x,) as the coordinates in €2, with periodic conditions in y. We define the interface
as S = {x, =0} =R/(2n7Z) x {0}, so that 2; = {x, < 0} and 2, = {x, > 0}.

We take the diffusion coefficient ¢ to be piecewise constant (i.e. ¢ = ¢; in Q; for
Jj = 1,2) and define the operator As as in (1.8) (with Dirichlet boundary conditions in
the x, variable). In this geometrical context, we have the following result.

Proposition 1.7. If y := /ca/c1 € N* then for all ¢* > 0,8 > 0, and j € Z, the
function N
ey sin(y?jx,) forx, <0,

R N : . —
. = ( 0 ) with e5,j (v, Xn) = {eij”y sin(jx,) for x, > 0,

is an eigenfunction of the operator As associated with the eigenvalue ¢ j*(1 + y2).
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As a consequence, the adjoint problem of (1.16) (which is of the same form as (1.16)
without any control function) does not have the unique continuation property when ob-
served from any subset of S. More precisely, we notice that the set of “invisible” modes is
of infinite dimension. As a consequence, System (1.16) is not approximately controllable
in this case and moreover the set of noncontrollable modes is of infinite dimension.

The phenomenon exhibited in this example is due to the high level of symmetry.
However, in a general setting, if the Laplace operator has an eigenfunction which has
a € closed nodal curve, then the associated problem (1.16) with ¢c; = ¢; = 1 and §
given by this nodal curve is not controllable from S. We hence see that this question is
connected to properties of the eigenfunctions of the Laplace operator and of their nodal
sets.

1.4. Notation: semiclassical operators and geometrical setting

1.4.1. Semiclassical operators on R?. We shall use the notation (n) := (1 + ||*)"/2.
For a parameter 1 € (0, ho] for some hg > 0, we denote by S™ (Rd X Rd), S™ for
short, the space of smooth functions a(z, ¢, h) that satisfy the following property: for all
multi-indices «, B, there exists Cy, g > 0 such that

0200 a(z. ¢ )| < Captt)" P zeRY ¢ eRY he (0, hl.

Then, for all sequences a,,—; € §m=J, j e N, there exists a symbol ¢ € ™ such that
an~ Zj h’ay,_;, in the sense that

a—Y hay jenVs"" (1.17)
j<N
(see for instance [Mar02, Proposition 2.3.2] or [Hor85a, Proposition 18.1.3]), with a,, as

principal symbol. We define W™ as the space of semiclassical operators A = Op(a), for
a € 8™, formally defined by

Au(z) = 2rh)~¢ // O gz o () drde,  u e S (RY).

We shall denote the principal symbol a,, by o (A). We shall use the techniques of pseudo-
differential calculus in this article, such as construction of parametrices, composition for-
mula, formula for the symbol of the adjoint operator, etc. We refer the reader to [TayS81,
Hor85a, Mar02]. We provide composition and change of variables formul in the case of
tangential operators in Appendix B. Those formula can be adapted to the case of opera-
tors acting in the whole space RY. In the main text the variable z will be (xq, x) € R**!
and § = (60, &) € R\
We set

ST =85 hTST®=)r"ST,
m>0 m>0
L B R N e e s R A

m>0 m>0
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Note that if there exists a closed set F such that in the asymptotic expansion (1.17) we
have supp(a,,—;) C F, j € N, then a representative of @ modulo 2°° S~ can be chosen
supported in F.

We shall also denote by 2" the space of semiclassical differential operators, i.e., the
case where a(z, ¢, h) is a polynomial function of order m in ¢. In particular we set

h
D = -0, andwehave o(D)=2E.
l
We now introduce Sobolev spaces on R¢ and Sobolev norms which are adapted to
the scaling parameter /. The natural norm on L*(R%) is written as ||u]| 2wdy = llullo ==

(f lu(x)>dx)!/?. Let r € R; we then set

lully = llull spr gy = 1A ullo,
with
A" :=0p((£)") and "R :={u € S R |lull, < 0o}.
The space /" (R?) is algebraically equal to the classical Sobolev space H" (R?). For a

fixed value of &, the norm || - ||, is equivalent to the classical Sobolev norm that we write
I - Il g~ (re)- However, these norms are not uniformly equivalent as & goes to 0.

1.4.2. Tangential semiclassical operators on RY, d >2. We set 7 = (7, za), 7 =
(z1,.-.,2d—1) and ¢ = (¢1,..., L4—1) accordingly. We denote by Sﬁ,”-(Rd X Rd’l),
S’7"- for short, the space of smooth functions b(z, ¢', i), defined for & € (0, ho] for some
ho > 0, that have the following property: for all multi-indices «, 8, there exists Cy g > 0
such that

192 3P

$0,b(z, ¢ b)) < Coplc)" Pl zeRY, ¢ e R he (0, hol.

As above, for any sequence by, € S;"fj , J € N, there exists a symbol b € S’7”— such that
b~3; h/by_;, in the sense that b — Yion hiby_; € hNSS"fN, with b,, as principal
symbol. We define W7 as the space of tangential semiclassical operators B = Op7(b)
(observe that the notation we adopt is different from that above to avoid confusion), for
b € §7, formally defined by

Bu(z) = (Znh)‘<d‘1>f/ AN (e, zg)de de, u e S (RY).

In the main text the variable z will be (xq, x', x,) € R"*! and ¢/ = (&), £) € R".

‘We shall also denote the principal symbol b, by o (B). In the case where the symbol
is polynomial in ¢’ and &, we shall denote the space of associated tangential differen-
tial operators by 91’,1-. We shall denote by AST the tangential pseudo-differential operator
whose symbol is (¢')*. We set

S7—_oo — m S—m’ hooS7—_oo — ﬂ th%m’
m>0 m>0

W® = ﬂ W W™ = ﬂ AW

m>0 m>0
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For functions defined on z; = 0 or restricted to z; = 0, following [LR95, LR97], we
shall denote by (-, -)o the inner product, i.e., (f, g)o := [/ f(z)g(z') dz'. The induced
norm is denoted by | - |p, i.e., |f|(2) = (f, f)o. Forr € R we introduce

| fler a1y = | f1r == | AT flo. (1.18)

The composition formula and the action of change of variables are given in Ap-
pendix B.1.
Note that we shall keep the notation W7~ for operators with symbols independent of z4,

acting on {zg = 0}. These operators are in fact in W (R¢~1). A similar notation will be
used in the case of operators on a manifold.

1.4.3. Local charts, pullbacks, and Sobolev norms. The submanifold S is of ~dimension
n — 1 and is furnished with a finite atlas (U;, ¢;), j € J. Themap ¢; : U; — U; C R—1
is a smooth diffeomorphism. If U; N Uy # @ we also set

ik ¢ (U N U CUj — g (U NUD) C Ui,y > do ¢l ().

The local charts and the diffeomorphisms we introduce are illustrated in Figure 2.

Rn—l . Rn—l
jk

&qz

Ujk Uk j

Fig. 2. Local charts and diffeomorphisms for the submanifold S.

For a diffeomorphism ¢ between two open sets, ¢ : Uy — U, the associated pullback
(here stated for continuous functions) is

¢* G (Uy) - CWUy), ur>uodg.
For a function defined on phase space, e.g. a symbol, the pullback is given by
P u(y.m) =u(p(y)." @ N"'n). yeUnneTiU), ueCT* V. (1.19)

We shall use semiclassical Sobolev norms over the manifold S together with a finite
atlas (U, ¢))j, ¢; : Uj — R"~! and a partition of unity (j); subordinated to this
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covering of §:

Yj € €°(S), supp(¥;) CUj, 0<vy; <1, ij:l.
j

‘We then set
|l e (s) = Z |(¢;‘)*¢ju|%r(wl). (1.20)
J

Note that the 1.h.s. denotes a norm on the manifold and the r.h.s. is defined in (1.18). We
shall need the following elementary result.

Lemma 1.8. Let (fj); be a family of smooth functions on S with supp(f;) C U; and
Zj fi=f=C>0inS. Weset N-(u) = Zj |(¢;1)*f}u|%r(Rn—l). Then N, is a norm
equivalent to | - | ypr gn-1y, uniformly in h. '

For a proof see Appendix C.1. Note that the L? norm (r = 0) defined in (1.20) is equiva-
lent to the natural > norm on the Riemannian manifold S given through the inner product
in (1.5).

Norms in codimension 1. For a function u defined on (0, Xo) x R"~! we set

Xo
2 2 2
lulo = lul2(0,xo)xrr-1)>  |ul7 = [Dxyutlg +/ |51 -1y d o0
0

Note that the latter norm is equivalent to |u| y1 g gs-1y if moreover the function u is
compactly supported in the xq variable. For a function # defined on (0, Xo) x S, we set

ule =Y 18; Y jule,  €=0,1, (1.21)
J

where ¢; stands for Id ® ¢;.

Norms in all dimensions. For a function u defined on (0, Xg) x R"~1 x R we set

lullo = llull 220, x4) xR -1 xR)>
Xo
2_p 2 2 dxod D 2
lul? = 1 Dyull? + el 1 et dox0 iy + [ D3,
0 R

Note that the latter norm is equivalent to ||lu|| 1 g xge-1 xRy if moreover u is compactly
supported in the x( variable. For a function u# defined on (0, Xg) x S x R, we set

lulle = D@7 Yjulle,  €=0,1, (122)
J

where ¢; stands for Id ® ¢; ® Id.
The following lemma is a counterpart of Lemma 1.8 when working on a local chart
of (0, Xg) x Sor (0, Xg) x § xR.

Lemma 1.9. Let u be such that supp(u) C K C (0, Xo) x U; (resp. (0, Xo) x U; x R)
with K compact. Then for some constant Cg we have

Clule < 1@ D ule < Cilule (resp. Cxllulle < (@7 D ulle < Cxllulle), €=0,1.
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Proof. We treat the case of a function defined in (0, X¢) x U;. Consider a partition of
unity of S, Y, Yk = 1, Y € €>°((0, Xo) x Uy), such that 1 ® ¥; = 1 in a neighborhood
of K. Then the induced norms are equivalent to that given above by Lemma 1.8 and for
the particular function u they are equal to |(¢j_l)*u le, £ =0, 1. O

Tangential semiclassical operators on a manifold. We can define tangential semiclassical
operators on a manifold by means of local representations. This relies on the change
of variables formula for semiclassical operators in R? presented in Appendix B.1. We
provide details of this construction in Appendix B.2. In particular we define the local
symbol of the operator in each chart and its principal symbol on the manifold. We also
provide composition and Sobolev regularity results for such operators. In Section 3.6
below we introduce a particular class of tangential operators that will be important in
the proof of the Carleman estimate as they will allow us to separate the analysis into
microlocal regions.

A trace formula. In the sections below, we shall also use of the following trace formula
[LR97, p. 486] connecting the tangential and volume norms introduced above:

[Wie—otlo < Ch™ 21yl (1.23)
for ¢ defined on R+ as well as for Y defined on (0, Xo) x S x [0, 2¢].

2. Well-posedness and asymptotic behavior

We introduce a more general operator

A(;Z—< —Acz+ Vaz + bz )

—Apz® + V32 + b2 — F((edy2)is, — (cdy2)ys))

with domain D(As) = D(As) (see (1.9)), where V, (resp. V) denotes a smooth vector
field a(x) Vg (resp. a®(x)V*), and b (resp. b*) is a bounded function.

We start by considering the well-posedness of the evolution problem (1.4), 9;Z +
AsZ = F. Note that the lower-order perturbations we add to As to form 45 do not affect
the well-posedness properties (compare with (1.8)).

2.1. Well-posedness

In this section we simply assume that a, a* are bounded coefficients. For Z, Ze D(Asg),
an integration by parts gives

(As +11d)Z, Z)Hg = (cVy2, Vg2 120,00 + (Vaz + 0+ )2, D) 120,u0)
+ S(CXVSZS, VSZS)LZ(S) + S(Vas‘zi‘ + (bi‘ + )\‘)ZS, ZS)Lz(S)
=:a,(Z, 7). .1

The bilinear form a,, is in fact continuous on (H §)2.
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Lemma 2.1. There exists Ag > 0 sufficiently large such that the bilinear form ay_is coer-
cive, uniformly in 8, if A > Ag.

Proof. This follows from

2
lalxg,um,

Cmin 2 _ 2
a)»(Zv Z) = D) ”VgZ”LZ(Qlng) + <)‘- 2Cmin ”b”LEX’(Qluﬂz)) ”Z”Lz(QlUQz)
s |a* |7 o0
12 L>(S$) 512
+8%|VSZS|L2(S)+S<)\'_T_|bS|L°°(S)>|Z$|L2(S)' O
min

The coercivity of a, shows that the problem (As +A1d)Z = F for F € ’Hg is well-posed
in a weak sense; for any continuous linear form L on 7—[; the Lax—Milgram theorem
ensures the existence and uniqueness of Z € 7—[; satisfying

a,(Z,7)=L(Z) forany Z € M}, (2.2)

and ”Z”Hé < C”L”(Hg)/ with the constant C uniform in 8. If we take L(Z) = (F, Z)Hg

for some F € HY, this linear form is continuous on 7—[;. Then, for some constant C > 0
uniform in § the solution satisfies

1Z1i31 = CllE li3g0- (2.3)

Higher regularity can be obtained.

Proposition 2.2. Let A > Agand F € ’Hg. The unique weak solution Z = (z,7%) € 7—[;
10 (2.2) with L(Z) = (F, Z)Hg belongs to D(As). Hence, for all F € Hg there exists a

unique Z € D(As) such that AsZ + LZ = F and moreover for some positive constant
C uniform in § we have

Y Nzl +8"212 sy < ClIFllyg. (2.4)
i=12
Proposition 2.3. Let A > Ao and F = (f, f*) € ngle U Q) x H™(S). The
unique weak solution Z = (z,7°) € Hé to (2.2) with L(Z) = (F, Z)”Hg belongs to

HM2(Q U Qy) x H™2(S) with

Y lziglgmeagy + 8212 meags) < C(Z Il fi: () +31/2|fS|H'"(S)> (2.5)
i=12 i=12

We refer to Appendices C.2 and C.3 for proofs.
A consequence of the properties we have gathered on Aj is the following well-
posedness for the evolution problem.

Proposition 2.4. Let a,b,a® and b° be bounded coefficients. Then the operator
(—As, D(As)) generates a ‘50—semigr0up on ”Hg. If moreover a = 0, a® = 0 and
b, b* € R, then Ay is self-adjoint on HY.
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Proof. Lemma 2.1 shows that A;s + 1o Id is monotone and Proposition 2.2 shows that this
operator maps its domain D(As) onto Hg. Hence As + Ao 1d is maximal monotone. The
Lumer-Phillips theorem (see e.g. [Paz83]) then allows one to conclude that .45 generates
a strongly continuous semigroup on ’Hg.

Note thatif a = 0, @® = 0 and b, b* € R, from (2.1) we see that the operator Ay is
symmetric. It is self-adjoint, as the surjectivity of As 4 Ao/ implies D(A}) = D(As) =
D(As) (see e.g. [Bre83, Proposition VII-6]). ]

By the Rellich theorem 7—[; injects compactly in ’Hg. Hence the inverse (As + Ao Id)~!
that we constructed is a compact map from Hg into itself. One then deduces the following
spectral result.

Proposition 2.5. There exists a Hilbert basis of 7—[50 formed of eigenfunctions, & =
(es, ), eg, j), Jj € N, of the self-adjoint operator As associated with the eigenvalues 0 <
Ms,0 = M8, 1 =+

Note that if €2 is a manifold without boundary then 0 is an eigenfunction for As. If Q2 has a

boundary, the Dirichlet boundary condition that we prescribe implies the first eigenvalue
is positive.

Corollary 2.6. The function space
T ={(z.2") e H}: 210, € €° (), i =1,2)
is dense in D(Ay).

Proof. From Proposition 2.3 the eigenfunctions of As are in 7. The result follows as
they generate a dense subset in D(As). ]

2.2. Asymptotic behavior of solutions as 6 — 0

2.2.1. Asymptotic behavior in the elliptic problem. Consider F5 = (fs, f}) € ’Hg. Let
Zs = (25, z3) be the strong solution defined in the previous section for the elliptic equa-
tion (As + A)Zs = Fs.

We also consider the weak solution z € H& of the elliptic problem

—divg(cVez) +Az=f inQ. 2.6)

Arguing as in the previous section such a solution exists and is unique for A > Aiq (the
same value of Ag as in Lemma 2.1 can be used). In particular we have z5, = z|s,, i.e. the
solution is continuous across the interface, and as ¢V, z has its divergence in L2() we
have cd,zs, = cdyzs,. Moreover zjq, € H?*($;) and

Y lzie gz < Clifll2@,uas)- 2.7
i=1,2

Proposition 2.7. Suppose that ”F3”Hg < C uniformly in § and fs — f in L2(2 U )
as 8 — 0. Then z5)q; — zjq; in H2(Qj)f0rj =12
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Note that the assumption || Fj ”HS < C implies that there always exists a sequence §,, — 0
such that f5, — f.

Proof. We set ¢5 := zs — z. According to (2.4), the boundedness assumption on Fs, and
(2.7), we have

D lesig, 2y <€
i=1,2

uniformly in 6. Moreover, ;s satisfies

—divg(cVels) + 185 = f5s — in Q1 U Q,
(cOnts)is, — (€dyla)is; = 8 (—Aeszf +rz5 — f§) inS,

&s15, = &5y, inS,

{sjpe = 0.

Taking the inner product of the first line of this system with {5 and integrating by parts,
we obtain

(cVgis, VgCB)LZ(QIUQZ) + ((cdy&s))s, — (€Iy&s)sy s Q)LZ(S) + A(Ls, §S)L2(QIUQZ)
= (fs — 1, 85) 12(@,u0y)-

In this expression, we have

[((cdy8s)1s, — (COnLs)isy. 8D 125yl = 812182 Acszy — 82025 + 812 £, £5) 125
< C8'2@' 215l 2y + I Fslgg) 181l @yuey < €821 1 2 @uuay = 0. (2:8)

according to (2.4), the trace estimate and the boundedness assumption on Fs. Moreover,
since ¢s is bounded in H 2(91 U @), from every sequence 3, — 0 we can extract a
subsequence, also called 8,, such that ¢5, converges strongly in Lz(Ql U ), and we
have

(fs, — f, Qn)LZ(QIUQZ) — 0.
As a consequence, we obtain

(cVg&s,, Vels,)12(@ua) T 28,5 8,) 12(0,u0,) — 0

ie. s, — Oin H! (€2j), for j = 1, 2. Because the limit is the same for any subsequence of
gs,» this implies that the whole ¢s converges to zero in H @ ;). Since 8519 is uniformly

bounded in H 2(9 i), the result follows. ]

2.2.2. Asymptotic behavior in the parabolic problem. Here, we discuss, for some A > 0
(one can take A = 0 if 92 # ) the convergence of the solution Zs = (z3, z3) of

9zs — Aczs +Az5 = fs in (0, T) x Q1 UQy,

0zy — Aeszg + Azg = %((C3n25)|52 — (cdpzs)ysy) + f; in(0,T) x S,

2818, = 23 = 258|5, in(0,7) xS, (2.9)
zsp =0 in (0, 7),

Buo=20 and =2,
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towards the solution z of

0rz— Acz+rz="1 in (0,T) x 21U Qy,

zi5;, =25, and (cd,z)5, = (cdy2z)s;, in(0,T) x S, (2.10)
zpe =0 in (0, T), '
Zj1=0 = 20 in Q.

Proposition 2.8. Suppose that | Fs|| L20.T:HY) < C uniformly in §, fs — f in
L*((0,T) x Q1 U ) as 8 — 0and 29 € Hy(Q) and z§ € H'(S). Then 250, = zjq;

in L2(0, T; H*(;)) N HY(0, T; L*(Q))) and *-weak in L*=(0, T; H'(R;)), and there
exists C' > 0 such that for all t € [0, T], 2510, (t)”Hl(Qj) <C'forj=1,2.

Proof. First, Problem (2.9) can be equivalently rewritten as d; Zs + (As +1)Zs = Fs with
Z5(0) = (z0, z)- For Zs(0) € D(As) and Fs € %00, TT; ’Hg) the semigroup solution
of this equation is in €0([0, T1; D(As)) N €L(0, TT; ’Hg) (see [Paz83, Corollary 2.6,
Chap. 4] or [Bre83, Théoréme VII.10]). As a consequence, we can form the square of the
’Hg norm of this equation and integrate on (0, 7). This yields

T
d 125 12 2 2
/0 (EII(Aa-H») Zsll3 + 1CAs + D Zs (O30 + 10 Z50)113 )

T
_ 2
—A”ﬁwhﬂﬁ

which in turns gives the stability estimate for the solution of (2.9):

T T
2 2 2
125D, + /0 (A5 + ) Zs(1) 30 di + fo 19, Z5(1) 3 i

T
sc(/o ||F8(f)||§{gdt+||Zs(0)||%_l;),

uniformly in §. By a density argument, this energy estimate remains valid if Z5(0) € 7—[;
and Fs(t) € L2(0, T; HY).
According to (2.4), this yields

T T T
||za<T>||§11+8|z§<r>|§,1(5)+/0 les (It +5 /0 |z;§<r)|§,z(s)dt+/0 13res ()12, di

T T
2 2 2
48 [ 00 dr < c(/o 1750 B i + ||za(0>||H;) <c. @i

uniformly in § (the volume norms are taken over 21 U 7).
In addition, the solution of (2.10) also satisfies

T T
I12(T)II7,,+ /0 (||(—Ac+x>z<r>||iz+||afz<r>||iz)dzsc(fo ||f<r>||izdz+||z<0>||§,l),
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where all the norms are taken over 21 U 5. By using the additional regularity (2.7), this
gives

T T
()13, + /0 Iz 13, +H3iz(0)113,) dt < c( fo )17, dt+||z(0)||i,1>. (2.12)
Now, we set {5 = zs — z. According to (2.11)—(2.12), we have

Z (I8s12; Il 0, 7: 111 ) + 188125 20,75 1202y ) + 168195 10,7222y )) = €
j=12

(2.13)
uniformly in §. Moreover, ;s satisfies
0r8s — Acls +Ags = f5 — f in (0, T) x (221 UQ),
(€0y85)15, — (€8s, = 8(0:z5 — Aeszy +Azy — f3) in(0,T) x S,
{515, = &oys, in(0,T) x S, (2.14)
S50 =0 in (0, T),
§5|t=0 =0 in Q.

Forming the inner product of the first line of this system with ¢s and integrating on (0, T),
we obtain

%”{5(7‘)”%2(9) + ”\/Evg{a”%z((o,T)XQ) + )"Hé‘é"iZ((O’T)XQ)
+ ((03n§6)|S2 — (€On8s)is)s (5)L2((0,7)X5) =(fs— 1, C&)LZ((O,T)ny

In this expression, we have

‘((Can§5)|32 - (Cangﬁ)\sla C‘S)Lz((O,T)XS)’

1/2 1/2 1/2 1/2 1/2
= 5172](620,23 — 828wz} + 81202 = 82 £, 85) 2 1y

1/2
<csY 151l 220,7: H2(2,u0y)) = 0>

according to (2.11) (proceeding as in (2.8)). As in the proof of Proposition 2.7, for a
subsequence we have
(fs = £, &) 1200, mx @002 = 05

and we obtain
18D + IVEV G132 0. 7y + MG 1207y = ©-

This, together with (2.13), concludes the proof of the proposition. O

As a consequence, we can obtain a convergence result for the control problem under
study. We denote by u;s the control function given by Theorem 1.6, which satisfies

0:Zs + AsZs = Bus,

Zsj1=0 = Zo,
Zs=r = 0.
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According to Theorem 1.6, u; is uniformly bounded in L2((0, T) x ), so that we can
extract a subsequence (also denoted by u;s) weakly converging in this space towards u.
We also consider the solution Zs = (Zs, Z5) of

{3~[Z3+A525:Bu, 2.15)

Zsji=0 = Zo.
The following result is a consequence of Proposition 2.8.

Corollary 2.9. The limit u is a null-control function for the limit system (1.10).
Moreover, (Zs — z5)iq; — 0 in L*(0,T; H*())) N H'(0, T; L*(2;)) and x-weak
in L°°(0,T;H1(Qj)), and there exists C > 0 such that for all t € [0,T],
lzs512; (@) = Zs12; (Dl 1(q;) < Cfor j=1,2.

In particular, Z5(T) — Oin H 1(€2). This shows that the limit u is a control function for the
limit system (1.10) which is robust with respect to small viscous perturbations. Indeed, it
realizes an approximate control for System (2.15).

3. Local setting in a neighborhood of the interface

In a sufficiently small neighborhood of S, say V,, we can use normal geodesic coordinates
(with respect to the spatial variables x). More precisely (see [Hor85a, Appendix C.5]) for
¢ sufficiently small, there exists a diffeomorphism

F:S8x[-2e2]—> Ve, (3, x2) > F(y,xn),

so that the differential operator —8?0 — A. + V, takes the form, on both sides of the
interface,
—33 = c(y, %) (33, — Ro(y. X)) + Ri(y, Xn).

and the differential operator —330 — A? + V; on the interface takes the form
=32 + (M Ry, xa = 0) + R} (),

where R, (y, x,) is an x,-family of second-order elliptic differential operators on S, i.e.,
a tangential operator, with principal symbol r(y, x,, n), n € Ty*(S), that satisfies

r(y.xp.m €R and  Cilnly < r(y,x0. 1) < Calnl}. 3.1)

for some 0 < Cy < Cy < o0, and R;(y, xp,) is a first-order operator on S x ([—2¢, 0) U
(0, 2¢]) (involving partial derivatives in all variables and having a jump across S x {0});
finally R} (y) is a first-order operator on S.

By abuse of notation we shall write V, in place of S x [—2¢, 2¢]. In this setting,

Vi =F(S x[-26,0) =VeNQy, VI =F(S x (0,2¢]) = Ve N Q,

and we recall that the observation region w is in £2;.
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We shall often write
X = (y,xn), x:=(x0,x) = (x0,, %) € [0, Xo] x § x [2¢, 2¢].
We set

—_12_ 2 _ l S__l2 _ is
P = Caxo (05, Rz(x))+CR1(x), P’ = d +R2(y,xn—0)+csR1()’)-

oS X0

They both have smooth coefficients.
In this framework, in the neighborhood V; of S, System (1.11) becomes

Pw=F, in (0, Xg) x § x ([—2¢,0) U (0, 2¢]),
PSws = L ((cdy, W)}y, =0+ — (cdy, W)y, —0- + O%) in (0, Xo) x S, (3.2)
Wiy, =0- = W* + 6! and Wiy, =0+ = W* + 62, in (0, Xp) x S,
with
F = %f + Row, ©° =0+ SRyw’, (3.3)

where Rg and RS are zero-order operators with bounded coefficients on § x ([—2¢, 0) U
(0, 2¢]) and S respectively.

3.1. Properties of weight functions

We denote by 7(x, 1, n’) the symmetric bilinear form associated with the quadratic prin-
cipal symbol 7 (x, n). We introduce the symmetric bilinear form

1
c(x)

and the associated positive definite quadratic form B(x; &p, n). We choose a positive

B(x; &0, m; &, ') = ——E&o&) +F(x, 1, 1) (3.4)

bounded continuous function y (x) in V," such that
B —xn3 &0 1) — ¥ (v, x) B(Y. X G0, 1) = Cl(§0, mI* >0, (0. 1) € Rx Ty (S), (3.5)

forx = (y,x,) € 74N

We then choose a function ¢ = ¢(x) on [0, Xo] X V. that is smooth on both sides of
the interface and simply continuous across the interface, and moreover has the following
properties:

1. For a function ¥’ such that 0 < y'(x) < y(x) — € in V_;’, for some € > 0, we have
V' (32 %0) (02, 9)* (X0, ¥, Xn) — (32,9)*(x0, ¥, —xn) = C > 0, (3.6)

for xo € [0, Xol, and x = (y, x,) € VI
2. For a given value of v > 0 sufficiently small we have

05,9 (O] + V() g < vi‘gljlax,l¢|, x = (x0, x) € [0, Xo] X V. (3.7)
3. We have [9y,¢| + V¥ @lg + |0x, @] > 0in [0, Xo] x V; and Hormander’s subellipticity

condition is satisfied on both sides of the interface. This condition will be precisely
stated below after the introduction of the conjugate operator (see (3.18)).
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Note that infy,+ |9y, ¢| > C > 0.

The first condition states the increase in the normal slope of the weight function when
crossing the interface. The value of v in the second condition will be determined below
(see (3.19)—(3.20) and the proof of Proposition 3.5). We thus require the weight function
to be relatively flat in the tangent directions to the interface as compared to its variations in
the normal direction. We explain below how a weight function satisfying the subellipticity
condition can be built through a convexification procedure (see Remark 3.3).

Remark 3.1. Property (3.6) and [3y,¢| +|V*@|g + |0y, @| > 0 can be obtained by choos-
ing ¢ such that (9y,¢)|[0,x,]xs = C > 0and assuming that (3.6) only holds on [0, Xo]x §
and then shrinking the neighborhood V, by choosing ¢ sufficiently small.

An example of such a function will be given in the application of the Carleman esti-
mate in Section 5.

Remark 3.2. Note that the conditions we impose on the weight function are much sim-
pler than the conditions given in [LR10]. Such conditions are proven to be sharp in [LL11]
in the limiting case 6 — 0. If (3.6) is not satisfied, i.e., the increase in the normal slope
of the weight function is chosen too small, one can build a quasi-mode that concentrates
at the interface and shows that the Carleman estimate cannot hold.

3.2. A system formulation

Following [Bel03, LR10], we shall consider (3.2) as a system of two equations coupled
at the boundary x, = 0. Here, the coupling involves a tangential second-order elliptic
operator. In [0, Xo] x S x [—2¢, 0), we make the change of variables x, to —x,. For a
function ¢ defined in V;, we set

V) =Y and Yl x) =y, ), forx =0,
and similarly for symbols and operators, e.g.,
P ) =r(o ) and ' (yoxn, ) = (v, —xe,m),  forx, = 0.
We set V;‘ = S x (0, 2¢]. System (3.2) then takes the form

Pr/lwr/l = Fr/l, in (Os XO) X Vg+ﬂ
Piw® = J5((¢" 0, ")y, =0+ + (!0, w),—o+ + ©) in (0, X0) xS, (3.8
wl o = w40 in (0, Xo) x .

3.3. Conjugation by a weight function

We now consider the weight functions ¢” built up as above from the continuous function
¢ defined on V.. We introduce the following conjugate differential operators:

Pl = n2e¢" 10 plhg=e"/h Py = h?e¥s/hpsemeis/h,
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With the functions
VI = Myl S s Ry
Fll = e/ ME, @3 = —ihe?s/heT, gl = e95/hg,
for 0 < h < hg, System (3.8) can be rewritten as
PJVI = F} in (0, Xo) x VI,
P(Zl)x = 635( (Dxn +laxn(p )v|x —0+
+c (Dxn + laxn(p )v‘xn:0+ + ®fp) in (0, Xp) x S,
o =V 0 in (0, Xo) x 5.

3.9)

i

v
‘xn:

Recall that D = hd/i here. We shall consider the operators P(Zl and Py as semiclassical
differential operators.
We separate the self-adjoint and anti-self-adjoint parts of the operators Pw/[ , viz.,

~7 1 7, T ~7 1 7 r
0) = 5 (Pl + (PRI 0 = (Pl = (R])").
The (semiclassical) principal symbols g; of 0 i, j =1, 2, are then

#a&nm £2 4+ g (x, 0, m),
‘11 "(x, &0, 1, n) = 28,0y, 0 K +2q (x, &0, 1),

for (v, n) € T*(S), with

2
y 7) 8 T T,
ﬁm%m=i+ﬂw) C%?l+wu@Wwah>

00 xo‘p

ql'(x, &, m) = + 71 (xs 1, dyg).

Recall that 77 (x,n,7n") stands for the symmetric bilinear form associated with the
quadratic principal symbol r” (x, 1). The principal symbol of P(p/l is naturally

Pq/f = q;/I +i6?;/l =§ +2i&,0x,¢ @h +q —I—th1 . (3.10)

For concision we sometimes omit variable dependencies, e.g. writing ¢’ in place
of ¢ (x).
Note also that the symbol of P; is given by

2

p; = E—g + r(x, 7’]) — <(axo¢) + r(x dy(p‘Xn 0))
c

x, =0

+2i<€0 0% 4 n,d»wx,,_o)) (3.11)

x,=0

(Recall that ! and r" (resp. ¢! and ¢") coincide at x, = 01.)
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3.4. Phase-space regions

Following [LR97, LR10] we introduce the quantity

(@] (x, &, m)?

(01,612 G

1w (x, &0, 1) = g1 (x, €0, 1) +

and the following sets in the (tangential) phase space:

E™™ = {(x0, y, Xa3 €0, 1) € [0, Xol x S x [0, 2¢] x R x T;"(S);
wh oy, xnib0.m) 2 0}, (3.13)
Z" = {(x0, y, xa: £0. ) € [0, Xo] x § x [0, 2] x R x T;(S);
wh(xo, v, xni §o.m) =0} (3.14)
The analysis we carry out will specify the behavior of the roots of pZ/ (viewing pi as

a second-order polynomial in the variable &,, see (3.10)) as (x, §o, ) varies. In particular,
we prove that (x, &y, n) € 7', qe. whi(x, &, n) = 0, if and only if there exists £, € R

such that (x, &, 7, &) € Char(P}!).
With the symmetric bilinear forms
~T, l ~T
B (x: &0, m3 &g, ') = oo + P (xuma ),
& (xs €0, . Ens Egu 'L E) = B (xs G0 i 0. 1) +

and the associated quadratic forms, 87 (x; &, n) and o« (x; &y, 1, &,), we have

(BT (x; &0, 15 By @™, dyp))?
(0, 92
— o (x; 050", dyt, By, 7).

wh(x, &, m) = B’ (x, &, 1) +

We also define the quadratic form
Bl (x; Eo, ) = (B (x: &0, 13 g, dyp ™))

The quadratic forms 8% are positive definite. With the function y (x) on V_;’ chosen in
Section 3.1 we have

B (x; &0, m) — ¥ (B (x; €0, m) = Cl(Eo, mI* > 0. (3.15)
From the properties of the weight function listed in Section 3.1 we have
Y (0,9 — (0,¢)? > C >0, 0<y'(x)<y@)—e¢ e>0, (3.16)

and
19xo 0| + |dy@™ | < vinf(|dy,¢']), (3.17)
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with v > 0 sufficiently small. Furthermore |9y, (p71 |+ |Vg<pr/’ [+0x, (pr/l |>0in [0, Xo] xV_ng,
and the following subellipticity property is satisfied:
¥x € [0, Xol x Vi, (§0.1m.62) € R x T} (S) x R,
Pl 0. 0.8 =0 = (g3, 4] }x. Eo.n. ) > 0. (3.18)

The subellipticity property (3.18) is necessary for the derivation of the Carleman
estimate and is geometrically invariant (see e.g. [Hor63, Section 8.1, p. 186]; see also
[LL12]).

Remark 3.3. A weight function ¢ with the properties of Section 3.1, or (3.16)—(3.18)
equivalently, can be obtained in the following classical way. Choose a continuous func-
tion v, smooth on both sides of S, such that ¥ satisfies conditions (3.16), (3.17) and
|8xO1//71| + |V31/fr/’|g + |0x, Y| > 0 on [0, Xg] x Vi. These conditions are then also
satisfied by ¢ = ¢*¥, A > 1. For the parameter A sufficiently large, ¢ will also fulfill
the subellipticity condition (see e.g. Lemma 3 in [LR95, Section 3.B], Theorem 8.6.3 in
[Hor63, Chapter 8], or Proposition 28.3.3 in [Hor85b, Chapter 28]).

Using (3.15)—(3.17) for v sufficiently small, we obtain
B — v (B + B,/ (05,91 = Cl(E0, n)I* > 0, (3.19)
and
Y ()" (63 0y @” dy@”, B, 0") — & (53 00, dyg!, By, 0') = C > 0, (3.20)

where we have used that y > y’ + ¢.
The assumption we have formulated yields the following key property.

Proposition 3.4. There exists Co > 0 such that in the neighborhood V; we have

(1 =y U)X, &, 1) = Col(Eo, m))* > 0,
X = (x()? x) = (xOs ya xn)’ (50, )7) € R X Ty*(S)

In particular, E-+ U Z" c ELT.

Proof. From the properties of the weight function in Section 3.1, and more precisely
(3.19)—(3.20) that follow from them, we have

= B €0, m) — v () (B (x: €0, m) + Bl (% E0. 1)/ (B, ) + B, (x: €0, 1)/ (O, 0')°
+ya (x; 9" — o (x; ")+ y ou”
> C((Eo. M) +yu'. O

Proposition 3.5. For the weight function ¢ with the properties of Section 3.1 we have

Char(p)) C Char(Re pj)) C E"™ N {x, = 0}.
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Proof. From (3.11) we see that Re p; = 0 implies

[nlg + 160l < C 195" | + Idye™|g)x, =0, (3.21)

and we find
I
I’le,,=0+
11 I €0y . ?
N ) 2 152 0 .
= |:(§o —(0x, ) )(;—;> — (O, 9") +W< p +r(x;n, dy‘Px,,:O)) -
Using (3.21) together with (3.17) in this expression gives
Wlmor =< [~ @5, 9D + Cvinf(@3y,0)D)]|, -

The result thus follows when taking v sufficiently small. O

3.5. Root properties

The following lemma describes the position of the roots of pZ’ of (3.10) viewed as a
second-order polynomial in &,. The proof is given in Appendix C.4.

Lemma 3.6. We have the following root properties:

1. In the region E">, the polynomial pZ’ defined in (3.10) has two distinct roots that
satisfy Im pt > 0 and Im p"= < 0. Moreover,

ph>C>0 <« Imph*t >C' >0and Imp"~ < -C' <0.

2. In the region E'"~, the imaginary parts of the two roots have the sign of — 0y, Q.
3. In the region Z't, one of the roots is real.

Moreover, there exist C > 0 and H > 0 such that |pv+—p>~| > [Im p/-t —Im p»—| >
C > 0 in the region (' > —H).

Remark 3.7. Note that (x, &, n) € E% for |&| + In|g sufficiently large, say |&o| +

[nlg > R, uniformly in x € [0, Xo] x V_j and for & bounded. Note also that in the region
{u' = —H}, the roots p”-* are smooth since they do not cross.

For the polynomial py, for |§| + [n], small, i.e. in the region E"~, the two roots p” T
and p"~ both have negative imaginary parts. As the value of u” increases, the root p”*
moves towards the real axis, and crosses it in Z". In E"* we have Imp”* > 0 and
Imp"~ < 0.

For the polynomial p(lp, for |&o| + [n]g small, i.e. in E"~, the two roots p/** and p!"~
both have positive imaginary parts. As the value of u! increases, the root p/*~ moves
towards the real axis, and crosses it in Z'. In E/** we have Im p"** > 0 and Im p/>~ < 0.
The “motion” of the roots of P<lp and py, is illustrated in Figure 3.
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P} P
¢ Imé, ¢ Imé,
4pnt
4r+ Reky ' Reé,
' Xor— Xph—
] ]
F Imé, Py Imé&,
Xpl~+‘ Xpl’+
, b
:‘ Re Sn pl‘ _ Re Sn
v
(a) Root configuration in E"~, ,ud <0 (b) Root configuration in Z",
Pr
¢ Imé&, X‘lpr,-k
Re &y
Xpr’_
!
P(p Imé&, !
Xp +
Reé,
o F

() Root configuration in E"F, i/ > 0

Fig. 3. The root p™% crosses the real axis before the root pl'_ does, as u” decreases.

We now define
M4 = (0, Xp) x S x [0, 2¢].
We also set

M= {(x0, ¥, xn, €0, 1) € (0, Xg) x S x [0, 2¢] x R x T ()}

~ T*((0, Xg) x S) x [0, 2e].

r

With the symbols defined in Section B.2 (see Definition B.4) we obtain the following

result.

Lemma 3.8. Let H be as given in Lemma 3.6. Let x € Sg—(./\/lj) with support in
{u’ rz —HY). Then x"ph* e S’lr(-rMi)' Let Co > 0. There exists C > 0 such that
[Im p"-%| > C(1 + |&]| + [nlg) in {uh = Co). It follows that for some C' > 0 we have

[t = p 7] = Im(p"F = p ) = €'+ J5ol + Inlg) i {u” = Co).

We refer to Appendix C.5 for a proof.



1512 Jérome Le Rousseau et al.

3.6. Microlocalization operators
We define the following open sets in (tangential) phase space:
& = {(x, &0, n) € ML e1 < pu"(x, &0, 0},
Z ={(x,&,n) € M%; —2¢e1 < ' (x, &0, 1) < 2€1},
T ={(x 5o, € ML € < ' (x, §o, m) and 1" (x, &0, m) < —€1},
G = {(x, 0, m) € M 1 (x, €0, 1) < 2e2).

The constants €] and €; are taken such that sup(y)e; + €2 < Cp/2, with Cy as in Proposi-
tion 3.4. Our analysis in the region 2 will require € to be small (see Section 4.4 below).
Recall that y is defined in Section 3.1. This yields 4 N % = . As a consequence of
Propositions 3.4 and 3.5, the position of the different microlocal zones can be represented
as in Figure 4. In particular, Char(pfp) C@\Z)N{x, =0}

(3.22)

u=e pr=-2ep  pt=0  p =2
0 Char(Py) pu'=0 ; wl =26, ; w=—¢ ! wo=e 1
} d M T 5 T 5 * 5 | >
Zl | | | | zr I | v
1 ;\ =7 S
% l F T &
B T ——————————————————— —~—

Fig. 4. Sketch of the relative position of the different phase-space regions. Here, (x, &y, ) is fixed
and we plot the different zones for (x, v€y, vn) as v increases from O to co, with v representing
the norm of the tangential frequencies. This situation can be represented in this form since for x

fixed, the sets E/*~ and { pé, < 0} are star-shaped with respect to O in the variables (&g, n) €
T(”;O’y)((o, Xp) x S).

We introduce a ¢’ partition of unity subordinated to the open covering of M? by
&, %, F and ¥,

xet+xwr+xz+xg=10=<xe<1 supp(xs) Ce, 0e=8,2,%,9.

The sets 2, % and ¥ are relatively compact, which gives x ¢, x.#, x@ € S}OO (M) and
consequently xg € S%)-(Mi). Associated with these symbols, we now define tangential
pseudo-differential operators on M. .

Given 0 < a9 < Xo/2, we choose a function ¢! € €>°(0, Xo) that satisfies ch=1
on a neighborhood of («g, X¢ — ap) and 0 < ;1 < 1. Setting

¢ (x0, ¥, %) = ¢ (x0) ¥ () (3.23)

gives a partition of unity on (g, Xo —ap) X § x [0, 2¢]. Recall that (1)< is a partition
of unity on S (see Section 1.4.3).
We define the following operators on M :

Bo=) E.; with E,;=0]0pr(xe )@ )¢, je) o= 2, 7,9,
jeJ
(3.24)
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where 4);.‘ denotes the pullback by the function ¢; and

Xeoj = 4i(¢; ) xe, (3.25)

and ¢; denotes a function in €°((0, Xo) x U;) with {; = 1 in a neighborhood of
supp((; )" &)

Proposition B.14 in Appendix B.3 shows that the operators E, are zero-order tangen-
tial semiclassical operators on M., with principal symbol ¢ (x0) xe (x, &0, 7).

Remark 3.9. The role of the parameter o introduced here is to avoid considering bound-
ary problems on ({0} U {Xo}) x § x [0, 2¢].

4. Proof of the Carleman estimate in a neighborhood of the interface

In this section, we prove Carleman estimates in the four microlocal regions described
above, that is, for functions Z,v”, with v’/ ¢ E>°((0, Xo) x § x [0,2¢)) and o =
&, %, F,%9. 1t will be more convenient to do this in local coordinates,* since we can
then use the techniques and some of the results of [LR10].

Our strategy in each microlocal region e (with ¢ = &, 2, %, ¥) is hence the follow-
ing: We first produce Carleman estimates in each local chart (0, X¢) x U i x [0, 2¢) for
the functions

ul ;= 0pr(xe v and u ;= Op7(Xe jy 1)V} @.1)

where
i @7 and v g

with ¢; defined in (3.23). Then, we pull the local estimates back to the manifold and patch
them together to finally obtain a Carleman estimate for E,v7, as

2 =) g (42)
J

Note that the functions v;./’ (resp. vjf ) are defined in (0, X)) X Uj x [0, 2¢) (resp.

0, Xo) x U 1). Yet, because of their compact support, we naturally extend them by zero
to R x R"™!1 x RT (resp. R x R"~!). In the following, functions with such a compact
support will be extended similarly.

We shall use the notation < for < C, with a constant C independent of § and % (but
depending on g and hy).

4 However, note that it would be interesting to obtain the results of [LR10] directly in a global
setting.
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4.1. Preliminary observations

In the local chart f] i, the differential operators P, o =r,[ or s, are given by
o —1\* pa 4%
P, = () PEGT,

with principal symbol pg’ i= (qﬁj_l)* Pg-
Observe that the definition of w’t in (3.12), and of the associated microlocal regions
Z'h, EE in (3.13)—(3.14), and &, 2, .% and ¢4 in (3.22), are geometrically invariant.
In local coordinates, System (3.9) becomes

h ’1 = . .
P‘ﬂ]] _thj in (0, Xo) x U; x [0, 2¢),
S S — 1
P‘/’ Jji T L ( (Dxn +laxn(p])v =0+ (4 3)
+c (Dy, + laxngpj)v ot + ®fa,j) in (0, Xo) x Uj, '
Y/ ) . -
”jl|x,,=o+ = +0,; in (0, Xo) x Uj,
where we have set
5= @7 G F @ DR g,
er/[ = (¢'—1)*§_'0r/l’
o (4.4)

_ ~ cis
O = (7 )¢Oy, O ;=05 + 4@ )P, g1v,
=, e, =gt =@,
with [P}, ¢j] € h2'(My) and [P, &1 € hDH(M).

We now formulate System (4.3) in terms of u,_; in preparation for the estimations in
the four different microlocal zones. First, we have

Pl il = Opr(xe )P ol + 1P, Opr(xa Iv].
————
€h(¥9-Dy, +91)
In particular, this gives
T h < o h "
1P, juy illo S 1P, v Mo+ Allv 4.5)

Second, as a consequence of (4.3), the transmission conditions satisfied by u. and

W
u, ; read
8¢t . .
fp; s = (cl.(Dxn + 0, 9Dl Dix,=0+ + (] (D, +id,9)u, )i, —0+ + G1,
U _ I
o Jx, =0t — " +0.

(4.6)
with 6, = Op7 (Xe )|\, o+ )0, ; and
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8 A

oS
J Y 3 ! . I 1
G1 == [Py j» OPT (Xe.j 1y, =01 V) + [OPT (e jjy,—g+)- ¢ (D, + 10,0105, 0

1 0
ehV - SA%S

+ [OPT(Xo,j|xn=()+)v C;(Dxn + iaxn(D;)] U; I, =0 + OpT(X-,j|Xn=0+))®;,j-

0
SAZS
We have the estimate

< Slv° ! r o
IGilo < 8lvjl + hlvjlxn:mlo + hlv; |Xn:0+|o +10, ;o

S @+l + 6L ;1o + 1) jlo + 105 o, 4.7
by (4.3) and (4.4). We set
W ) =ul; o i) )= Dyl )i, (4.8)

In this local setting we also introduce

. 1
B=(c}/Dmor.  Gr=idyel®; —00 )+ Gi. (4.9)

c
J|x,=07F

. 1 ’
k= _l(ax"¢j|xn=0+ + B 0x,9; |)Cn:()Jr). (4.10)
Transmission conditions (4.6) can be written as

8¢t
J ps 8 l r r ~
. P <M. i = yl(u. )+ﬂ7/1(u. ) _kVO(M. ')+Gl7
th§ ®,] sJ sJ ) s (TC.’J)

N _ s "
VO(“.J) = U, j +6

o’
where the remainder G1 can be estimated thanks to (4.7) by
1Gilo S G+ + 165 510+ 161 510 + 18] ;lo- @11

We are now prepared to prove the different Carleman estimates in the four microlocal
regions.

4.2. Estimate in the region 9

Here, we prove a Carleman estimate for ug ;, and consequently for Egv.
We introduce a microlocal cut-off function x4z € €°(M?%), 0 < xgz < 1, satis-

fying
xgz =1 on a neighborhood of supp(x%),

X¢ + x# =1 on aneighborhood of supp(x«z). @.12)

We choose {2 € 6>°(0, Xp) such that 0 < {2 <

1, {2 = 1 on a neighborhood of
supp(¢!) (with ¢! defined in (3.23)), and such that {; =

1 on supp((qﬁj_l)*gjz) where
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g“jz(xo, y) = ;2(x0)1ﬁj (y). Asin (3.25) we set

X9z, =& (¢]-_1)*Xfm’

and we define the associated tangential pseudo-differential operator E¢ 4 by

[l

g7 =Y Byz; with Byz;=¢70pr(xez )@ )], jel,

jelJ
Note that the local symbol (see Proposition B.7) of E¢ 4 in each chart is equal to 1 in the
support of the local symbol of Eg.

We recall that the function ¢ = ¢(x,,) € €°°([0, 2¢)) satisfies £(0) = 1 on [0, €).
Making use of the Calderdn projector technique for P(;’ j and of the standard Carleman

techniques for P(é jowe obtain the following partial estimate.

Proposition 4.1. Suppose that the weight function ¢ satisfies the properties listed in Sec-
tion 3.1. Then, for all §y > 0, there exist C > 0 and ho > 0 such that, for all 0 < § < &y
and 0 < h < hg, and for v € € ((0, Xo) x S x [0, 2¢)) and v* € €°((0, Xo) x S)
satisfying (3.9), we have

= 2 =) 2 =) 2
[ Egv" [IT + Al Q%fon:mh + 1| Dy, ng(xnzoﬂo
2 2 2 4 2
< C(I1PyV" llg + Z 10" I + ¥ D, v, _+1p),  (413)
and

- 12 — 1 2 — l 2
Rl Egzv Iy +h|5f¢v‘xn=0+|1 + h|Dy, E‘glen=0+|0

52
< c<1 + ﬁ>(||;P;v’||% + W Bayzv I + hH Dy, v, _oi I + IV 1T+ 170" 1)

82 ,
+ C(||P;v’||3 + R T + RIOLIT + zwg,% + o)1 + h|®;|3). (4.14)

Proof. The function ug, ;s defined in (4.1), satisfies (TC, ;), with e = 4. On the “r”
side, the root configuration described in Lemma 3.6 (and represented in Figure 3) allows
us to apply the Calderdn projector technique used in [LR97, LR10]. According to [LR10,
Remark 2.5] and using (2.59)—(2.61) therein, applied with v? replaced here by v]’. , We
have

luty N+ B Pyt )+ B Pty Do

S AP v o + IV Il + h*|D (4.15)

r
Xn vj |xn=0+ |09

which is a local version of (4.13).

Let us now explain how such local estimates can be patched together to yield (4.13).
Concerning the first term on the left-hand side of (4.15), and using the definition of
Sobolev norms given in (1.20)—(1.22), we have

14 I S D luly ;s 1Bgv o —orli S Y vy Pl (4.16)
jelJ jelJ
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by (4.2) and Lemma B.15. Similarly we have Dy, By v/, _4 = > (ugy ;) since o7
does not depend on the x,, variable. As a consequence, we obtain
(D, B j,=0tlo < Y 17 viGuly Do S D vituly Dlo, 4.17)
jeJ jeJ
by Lemma 1.9.

Now concerning the right-hand side of (4.15), we directly have
7l = 1@y D g0 =18 @ D v I S @y D v I S I lh. (4.18)
by the definition of || - ||; on M, as well as
D5, _gelo S 1D, g+ lo- 4.19)
Finally, we compute
Py v = (@) PIoT@ ) v = (@7 ) g Pov” + (0] IR, G1v
We have

I1@; Y ¢ Ppv o = 11E" (@) i Py llo < I1PG" o, (4.20)
and, using Lemma 1.9,
1@; DY [Py, 10" llo S ILPy, 10" llo S Rl I, .21

since [sz, ;il e hg '(M). Finally combining all the estimates (4.16)—(4.21) with the
local inequalities (4.15) summed over j € J, we obtain the desired global estimate (4.13)
on M.

To obtain estimate (4.14) on the “I” side we first need a more precise estimate for
the “r” side. For this, we introduce another microlocal cut-off function x« & satisfying
the same requirements (4.12) as x¢#, and such that x¢# = 1 on a neighborhood of
supp(X«.#). We choose ¢3 € €>°(0, Xo) such that 0 < ¢3 < 1,¢% = 1 on a neighbor-
hood of supp(g“l), and such that 2 = 1 on a neighborhood of supp(§3). As in (3.25) we
set N

Xgz.j =3¢ ) a7,
and we define the associated tangential pseudo-differential operator égy by

gz =) Bqz; with EBgz;=¢70pr(uzr )@ )G, & =), jel,
jeJ

o

According to [LR10, Remark 2.5] and using (2.60) and (2.61) therein, applied with v?
replaced by {(xn)(qu_l)*gj Egzv", we have
h21y0(0pT (X, ) (@7 ) ¢ €z v + B In (OpT(xe, ) (5 ) ¢ Egz )0

S Py ;@Y G Byzv o + R 2@ 8 Bazv I + B2 yvi(@; ) 8 Egzv o
(4.22)
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We notice that the right-hand side of this inequality can be bounded directly by global
quantities. First, we have

1@, G Egzv I S I1Eg70" I, (4.23)
Second, we estimate
—1\* e = r = r
V1 )¢ Egz v < 1(Dy, Bz v )iy, =0+ o,
where
(Dx, Eg7V")x,=0+ = (Eg7 Ds, V)i, =0+ + ([Ds,. Egz10") |, =0+
—————
eh¥y- (M)
Using Proposition B.12 and the trace formula (1.23), we have the estimate
R In((¢; ) ¢ gz vN)lo S KDy v, _grlo + 172V 1. (4.24)

Concerning the term with P(;’ ;j on the right-hand side of (4.22), we can proceed as
in (4.20)—(4.21) to obtain

1P i¢(¢;7 )" Egzv" o
= (@] ) Py Egzv llo S IIPGEEgzv llo + 1 Egzv . (4.25)
Moreover, using Proposition B.10, we have 8¢z (1 — Egz) € hwa}w (My), as their

local symbols in every chart have disjoint supports by Proposition B.14, because of the
supports of 3 and §«2. We then obtain, by Proposition B.12,

= A ) = = 2
h|Egzv" 1 S hlEg7 Byz v |1 +hllEyz (1 — Egz)v" 1 S hllEgzv" [l1 + A7 V" ||
(4.26)
We also have

1P)¢ Egzv" llo S 142 Pyv" llo + P, Egz 10" |o. 4.27)

Arguing as above with the use of Propositions B.10 and B.14, and also Corollary B.11,
we have

[a]:

[P, Eg7¢] =P, E47{] Egz + [P}, E4z(1(1 — Egz)
————
ehWw!(My) €hOW—2 (M)

so that (4.27) now reads, by Proposition B.12,
1P gz v llo S I1E Py llo + kil By 1 + R 1. (4.28)
The three estimates (4.25), (4.26) and (4.28) give

1P 5@ ) 589z o S IEPIV lo + I Bgzd I + 120 1. (4.29)
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Combining (4.22) with (4.23)—(4.24), (4.26) and (4.29), we finally have
h'2lyoOpT(x. ) (@7 ) 8 Eazv) 1 + B2 1y1(OpT(xe. ) (@) ) ¢ Eg 70 )0
S e Py o + Rl Egz v I + R Dg, v _gelo+ RV 1. (4.30)

Then, we need the following lemma to come back to the variable u%’j =
OpT(Xéf,j)(¢j_l)*§j V" on the left-hand side of (4.30).
Lemma 4.2. There exists R € h®°W>° (M) such that
Op7(xs.))(¢; )¢ Eyzv” = uly ; + (67 ) RV
This lemma is proven in Appendix C.6. As a consequence we have
R lyotuy Dl S Y2 lyo©pr(xe, )@ ) 8 gz vl +h' Py (@)™ Ru o
S 12 1nOp7 (g, @G Egz v+ W |1
by the trace formula (1.23). This, together with estimate (4.30), gives
h vy Dl S NEPG o+ kI Egzv Il + A2 [V [l + h*| Dy, v, _gilo. (431

Lemma 4.2 also yields
W2 lyituy Dlo S lyi©Opr(xe )@ ) W Egzv)lo +h' 2 lyi(@]H* Rl
S E2 1 Opr (g @) Y Egzv)lo + WV 1 + KDy vf, _gelo.  (432)
Combining (4.30) with (4.32), we finally obtain
W2yl Do S NEPy llo + Bl Egzv Il + A2V [l + h*| Dy, o], _gilo.  (4.33)

On the “I” side, we apply the Carleman method. By the properties of the weight
function of Section 3.1 and in particular by (3.18), and by Lemma 2 in [LR95], we then
have

] 2 ) 2 l 1 11
hllug ;|I7 +Re(h% (ugy ;) + h*((Duug ; + Litg )jx, =0+ Lo“%,“xnzm)o)
S NPy juty g, (4.34)

for 0 < h < hy, hg sufficiently small, where Ll1 IS Qflr and Lé IS \Ilgr. The quadratic form
A is given by

2 W)
205,9j , Zo+ Bi) (m(w)) (mw)) .
= o , ,supp(¥) C (0, Xo) x Uj x [0, 2¢),
(( B! By \ro@) ) \nw)/ ] J
(4.35)

where B{, B{/ € .@71- with principal symbols G(B{) = o(B{/) = 2(¢171)*q{‘xn:0+, and
B} € 73 with o (B}) = —20,,¢} (¢,~*1)*61§|xn:o+-
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Observe that
|((Dutty ; + Lyuty Dis,—ov- Loty ;. . )ol S 11y DIG + vy DIF. - (436)
1 (uiy ) S Iyoluty DI+ Iyi(ugy DIG. (437
Now, using (4.34), together with the estimates (4.36) and (4.37), we have
hllugy (17 S NPy juey ;115 + hlvoGuly DI + hlyiGugy )5 (4.38)

It remains to estimate the traces on the “I”” side by the traces on the “r” side, through the
transmission conditions (TC, ;):
l _ r I _ pr
nlug ;) =1lug ;) + 6y ;=% ;-
c’
I _ _J ps r _pr _ r r _
Vl(“g,j) = i P%,'(VO(Mg’j) Qg,j) ﬁyl(”g,]‘) +kVO(“g’j) Gy,
J
s _ r _r
uy,; = ol ;) = O ;-

As a consequence, yo(u% j) and y; (uéf j) can be estimated as follows:

oGy D < Iyotuly Dl +104 ;11 +165 11,

8 ) ~
IniGuly Do S Iy o+ 1 Povolug plo+ 1Py ;8 jlo+ 1y jlo+1G1lo.
(4.39)
We now prove that, on the support of x« ;, the operator P(;’ j is of order 0. For this, let
X € €°(T*(IR")) be equal to 1 on a neighborhood of supp(x« ; =0 +). Then

voluy ;) = OpT (X%, DV} |, _o+
= 0p7(0) OPT (X9 )] |, _ov +OPT(1 = 1) OPT (X2 j) V) | 45

—00
ehOO\I/T

which yields

P, ivoluy ;) = (P(Z,j Op’r()?)) volug ;) + Py ; OpT(1 = X) OpT (X9, ) V) |\ _o4-

[ —
el ehow >

This, together with the trace formula (1.23), gives the estimate

§ K r § r Ny..r

1Py iy lo < Colvotuly Plo+Cash™ vl N €.
Similarly, we have the estimate

8. ) 1)
21Ps. it jlo < €165 jlo+ Cnh™I0] jlo S 416 jlo.



Controllability of a parabolic system with a diffusive interface 1521

The last two estimates and the second estimate of (4.39) yield

)
|V1(”g1)|0 S Inug o+ (1 + )lVo(uw Do
+ Zw;,,wo +1G1lo+ Cnh"Vjll, N eN.

Using estimates (4.31) and (4.33) to bound the traces on the “r” side, we obtain

8
h 2y o S ( }—l)(IICP;v’Ilo +hlEgzV I + K IV 1 + 1Dy, v], _o+l0)

+ m|9;,j|o+h1/2|él|o,

for 0 < h < hog, and using (4.11) to estimate the remainder, we have

6 r (=] r
WPyl o S ( E)(IIEPJU llo + Al gz V" I + K IV 1 + 21Dy, vf, _o+lo
+ 120+ h1210] 1) + V2105 1o+ k210, lo,  (4.40)
We now observe that the first line of (4.39) together with (4.31) yields

WPyl D SNEPG llo+ hlIEgzv Il + K2 IV I + h* 1Dy, vf, _o+ o
+ 12100 1+ R0 (4.41)

Combining (4.5) with (4.38), (4.40) and (4.41) we obtain
hllugy ;117 + Rlyo(uly DI+ hiyi(uly )G

82
(1+ )(ncPr "5+ P21 Bz v 1T+ hH VI + 2Dy, vf, _oe o+ 1 10517)

+h6L 1T+ %w;,j% +h10p 51T+ h1O5 5+ 1P vHIG + I 442)

This is a local version of (4.14). Patching together on M, the local Carleman estimates
(4.42) as we did in (4.16)—(4.21) yields (4.14). This concludes the proof of Proposi-
tion 4.1. m]

4.3. Estimate in the region %

Here, we prove a Carleman estimate for # & ;, and consequently for E #v. Making use of

the Calderén projector technique for both P and P(p o we obtain the following partial
estimate.
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Proposition 4.3. Suppose that the weight function ¢ has the properties listed in Sec-
tion 3.1. Then, for all §y > 0, there exist C > 0 and ho > 0 such that, for all 0 < § < §y
and 0 < h < hg, and for vl € E>°((0, Xo) x S x [0, 2¢)) and v° € €°((0, Xo) x S)
satisfying (3.9), we have
”u?v ”1 +h|uhv|x 70+|1 +h|Dxnu5"v‘x 70+|0
< C>IPJV"IG + h* IV I} + 2Dy, vf, _gel5),  (443)

and
IEZV' 1T + hIEZv], o+ |} + hIDx, Bzvl, _o+1o
< CUPW' G+ W IVIE + h* 1Dy, v, _olo+ 1PV
+ B2 IT 4 YDy, v eG4 hIO, 1T+ RIO, D). (4.44)

Proof. Here, the functions u 7 , J € J satisfy (TC, ;), with ¢ = .%. On both the “r”
and “I” sides, the root configuration described in Lemma 3.6 (and represented in Figure 5)

[ r
P P(p

[
Imé, ’Xpl’+ Imé&, ’

Reé, xph T Reéy

X -

0

X —
.

Fig. 5. Root configuration in the region .%.

allows us to use the Calderdn projector technique used in [LR97, LR10]. According to
[LR10, Remark 2.5] and using (2.59)—(2.61) therein, applied with v¢ replaced here by vjr. ,
we have

'z 1+ B0y Dl +h1/2|y1(uf¢j)|o
S Py i llo+hIVf I+ R Dy vf 0. (4.45)
This is a local version of (4.43). Patching together on M the local Carleman estimates
(4.45) as we did in (4.16)—(4.21) yields (4.43).
On the “I” side, since both roots are separated by the real axis (see Figure 5) we

only obtain one relation between the two traces at the interface: according to [LR10, Eq.
(2.67)], we have

'z ;1 S 1P, -v’-||o+h||vj-||1 + ' Pyl D+ 1Pz )l

+ h?| Dy v (4.46)

Xn j ‘ =0t |01
together with the following relation between the two traces [LR10, Eq. (2.68)]:
(1 = Opr @'y ) = Opr vy ) + Gb, (4.47)
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where a! € Sg- and b € S}l have principal parts respectively

1
and b, = (x—)
- 1, l,—
=0" Pj - Pj

l—
o
! - J
ap = _(X I+ l,—)
pi = p;

where p *+ are the roots of p (1 e. ,o/ (¢> )* pb* with p''* described in Lem-
ma 3.6) and X € ‘KOO(T*(R”)) 1s compactly supported and equal to 1 on a neighborhood
of the support of x .z ; 1ty =0+ . The remainder Gl (coming from the Calderén projector
method) satisfies [LR10, Eq. (2.69)]

)

Xp =0T

Gl S h V2 (1P, jvjllo + Allvilln + h21Dy,vj o). (4.48)

Let ¥ € €°(T*(R")) satisfy the same requirements as ¥ with ¥ equal to 1 in a neigh-
borhood of the support of 3. Since b’ , does not vanish in a neighborhood of supp(%),

one can introduce a parametrix for Op7(b'), say Op7(e), with e € S%-, satisfying
Op7(e) Opr(b') = Opr(R) + R, R e h™W >

Applying this parametrix to (4.47) gives the estimate

iy Do S Iy DhHGHCVEY (1 +1D5,v) _Llo), N €N, (4.49)

Here, we have used the trace formula (1.23) together with

Vilz ) = OpT (NGl ) + (1= OpT() OpT (X7 ix,=0+) D,V .

€h°°\I/7_—°°
+ ((1 = OpT(D)[Ds, OpT (7 Nisy=0+) Vo (4.50)

—00
ehOO\I/T

We now use the second equation in the transmission conditions (TC, ;), which by
(4.45), yields
WPy Hh < hl/zl)/o(ur) Phi+r2160% 1+ 12105
S APy jvillo + Al il + 21Dy vf o lo +hY210% 1+ Y2107 .

This estimate together with (4.48) and (4.49) provides an estimate for |y, (ufg,\ j)|0, which,
summed with (4.46), yields

lulz ji+0"2lvols ph+h 2 yile Dlo S 1Py ;5 lo+hllv I +A%1 Dy, 5 o

+ 1Py 07 llo + RVl + B2 Dx,vf o+ 02165 10+ k216 .

This is a local version of (4.44). Patching together on M such local estimates as we did
in (4.16)—(4.21) yields (4.44). This concludes the proof of Proposition 4.3. O
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4.4. Estimate in the region %

Here, we prove a Carleman estimate for u ¢ ;, and consequently for E zv.

As a consequence of property (3.6) of the weight function (see also (3.16)) and the
compactness of [0, Xg] x S x [0, 2¢], we remark that in the region %, there exists K| > 0
such that

(3x,¢")?* — " = min (3y,¢")* —2€1 = K1 > 0 4.51)

for €; sufficiently small (the constant €; is used in the definition of the microlocal regions
in (3.22)).

Making use of the Calderdn projector technique for P(/l)’ i and standard techniques to
prove Carleman estimates for P(;’ jowe obtain the following partial estimate.

Proposition 4.4. Suppose that the weight function ¢ has the properties listed in Sec-
tion 3.1. Then, for all 5y > 0, there exist C > 0 and hg > 0 such that, for all 0 < § < §g
and 0 < h < hg, and for v € E>°((0, Xo) x S x [0, 2¢)) and v* € €°((0, Xo) x S)
satisfying (3.9), we have

2

1)
— 2 — 2 — 2
hIE x| +h(1 + ﬁ>|agv(Xn:0+|1 +hIDy, Epvl, o+ 13

< c(nP;vr 15+ B>V + A + W] + [P G + 110 1T + YDy, vf, _o+ 5
32
+ 7|e;|3+h|e;|%+h|e;|%+h|@;|g> 4.52)

and

= )2 = 1 2 = I 2
IE2 v IT +hlExv), _o+l1 + Dy, Exv, _o+lo
2

h
< c<||P;vl||%+h2||vl||% + 1Dy vl, oG+ R0+ m<||P;v’||%+h2||vr||%>

h3
12 2 5 12
+h|9¢|1+h|9;|1+—82+h2|®;|0). (4.53)

Proof. The function u o ; satisfies (TC, ;), with @ = Z . On the “I” side, the root con-
figuration described in Lemma 3.6 (and represented in Figure 3b) allows us to apply the
Calder6n projector technique as in [LR97, LR10]. Since the two roots are separated by
the real axis we only obtain one relation between the two traces at the interface: according
to [LR10, Eq. (2.67)], we have

'y ;1 S Py jvjllo + Rllvill + 22 lyouly i+ 22 nly )l

+ %Dy, ) oo, (4.54)

together with the following relation between the two traces [LR10, Eq. (2.68)]:

(1 = Opr(@Nnly ;) = Opr(B)yi'y ) + G, (4.55)



Controllability of a parabolic system with a diffusive interface 1525

where a! € Sg- and b € S}l have principal parts respectively
!

ah = — ~L and b, = ~;
0= "\ XT7F _ i- -1 =\ X -
P =P/ =0t pj Pj

where le.’i are the roots of pfp’j (i.e. ,o/l.i = (¢>j_1)*,o”i with p/** described in Lem-
ma 3.6) and ¥ € G°(T*(R")) is equal to 1 on a neighborhood of the support of
X2\ jx,=0+ and equal to zero in a neighborhood of

, (4.56)

X =071

(@)D N {an = 0} = { (0. ¢ (3): &0, "dy (@5 (In): (xo. ¥, 0: 6o, 1) € F .

The remainder Gl2 (coming from the Calderén projector method) satisfies [LR10, Eq.
(2.69)]:
1Go1 S hV2 (1P, jvillo + hllvilln + h2[Dy,vj o o). (4.57)

On the “r” side, we apply the Carleman method to the operators P(;’ j By the proper-
ties of the weight function of Section 3.1, and in particular by (3.18), and by Lemma 2 in
[LRY5], we then have

hliwy ;I3 +Re(h % (u'y, ;) + h*((Dat'y ; + Ly Die,=ov Loty . )o)
SUIPyjuly ;I (4.58)
for h sufficiently small, where L) € ﬁ@}, Ly e \IJ%)-. The quadratic form %" is given by

B ()

20, ¢" B’) .
— =0t 71 <V1(W)) (V1(¢)> wu _
= ; s supp(¥) C (0, Xo) x Uj x [0, 2¢),
(( By By | \n@W)) "\ /]

(4.59)
where B{, B € QIT, Bj € .@%-, with principal symbols o (B}) = o (B{") = 297{’].””:0+
and o (B}) = ~20y,¢]q3 ;, _, withq] ; = (97 )*qf. k=1.2

Observe that
|((Dutty j+ Liu'y Div—ov Loty 5 ool S Iy DIG+ vy DIF. (4.60)

Thanks to the transmission conditions (TC, ;) at the interface and the trace relation
(4.55) on the “I” side, we shall be able to express y1(u'y j) through yo(u'y j) on the “r”
side. This will allow us to turn %" into a quadratic form operating on yo (', j) only. We
first formulate (TC, ;) in the following manner:

o'y ;) = yg(gf@p,p +0ly =0l
¢t -
14! (ulffyj) = KCJJ.P(;J(VO(“C%W,./) - 92}/{/’) - Bni (utﬂf’j) + kVO(’/‘C@V)M/) -Gy, (4.61)
J

s i r r
UWo | = yo(ug’j) — Bg)’j.
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Let x € €°°(T*(R")) satisfy the same requirements as ¥ with ¥ equal to 1 in a
neighborhood of the support of 3. Since the principal part b* | does not vanish in a neigh-

borhood of supp(x) (see (4.56)) one can introduce a parametrix for OpT(bl ), say Op7(e)
with e € S%-, satisfying

Op7(e) Opr(b') = Opr(X) + R, R e h®W ™.

Note that the principal part of the parametrix e is given by o (¢) = % (,of’Jr - pjl.’_)‘xn —0+-
Applying this parametrix to (4.55) gives ‘

Op7(@)(1 = Opr(@Nyolu'y ;) = OpT (Vi (u'y ;) + Ry (u'y ;) + OpT(e)Gh
=iy )+ RiDyv; o+ Rovj . +O0p7()Gy  (4.62)
with Ry € h°°\llf;°° and Ry € h°°\I/7_-°°, since

vy ) = OpT(Dvi(uly ;) + (1= Opr(R) OpT (2 ) D,V .

—00
ehOO\IJT

+ (1= OpT () Dx,. OpT (X2 DI V) | .

ehoow >

and

Ryi('y ) = ROpT(xz ) Dx, ], _g+ + RIDx,, OpT(xz DI V], _+-
B
eh°°\IJ7_-°° eh°°\l/7_—°°

Using the first relation of (4.61) to replace yo(uly j) by yo(ug,z) j) in (4.62), we obtain

Op7(e)(1 — Opr (@) (Yot ;) + 6% ; — 0%y )
I ! ! !
=y (u,@",j) + R\ Dy, Uj\xn=0+ 4+ R()vj‘x”=0+ + OPT(e)Gz. (4.63)

Now, applying (4.63) in the second equation of (4.61) yields the following relation be-
tween the two traces of u'y, IE

cl 5ct
By ) = (F;,_P;, ;= Opr(e)(1 — Opr(ah)) + k) Wy )= 2Py 0
J J
— Op7(e)(1 — Opr(a))(@ly ; — 6%y ;) — G1 + OpT(e)G)
[ [
+ R1Dy, v/|x,l:0+ + Rov/|xn:0+'
This equation can be written in the form
'y ) = Zsyolu'y ;) + Gs, (4.64)
where
1/ 8¢t |
s =2 (—CPA - — Opr(e)(1 — Opr(a)) + k) (4.65)
B hic; oJ
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and by (4.11) and (4.57) the term G3 can be estimated as

8
1Gslo S 3165, 10 + 16,511 + 16, -|1+<a+h>|uf|1+|®;,,-|o

+h7 V(1P villo + hllvb i + B2 Dy, v

.Y X J| _o+10): (4.66)

where we have used the trace formula (1.23) and
Py 0% ;= Py jOPT (X2, ) 6,
_f_d
ewd

In supp(¥), from (4.56) the symbol o5 of X5 reads

S

oy — ﬂ—1<_iﬁ P — o+ k) +r withr €8S +ASY. (467)
J

where functions are evaluated at the interface, i.e. x, = 0.
Using (4.64) in (4.59), we can now write " (u'y j) as

g = [ (P e BE) (B0 ) +Ga) (Zantty )+ Gs
2. B B} vo(u'y ;) ’ vy ;) .

= (Es0('y ). volu'y D)o +4Re@y,¢f o sy ). G3)o
+ (Biyo('y ;). G3)o + (BY'G3, yolu'y D)o + 200,97, _+G3,G3)o,  (4.68)
with ;
X5 =2%505,9] | o+ s + Z5 Bl + B{'%s + Bj. (4.69)

The following lemma makes use of condition (4.51) that describes the smallness of
the region 2.

Lemma 4.5. Let 65 be the symbol of ©s. We have %55 € Sg-. Moreover, in supp(X),

for ho > 0 sufficiently small, we have
h2
h2+62 >Co>0, O0<h<=<hy.

We refer to Appendix C.7 for a proof.
Let x € €2°(T*(R")) be equal to 1 on a neighborhood of supp(x . il _o+) and
such that ¥ is equal to 1 on a neighborhood of supp (). We then write
h2 2

RO =S s 8 = g5 Gsi + Col(§0, €0)7(1 = ),

h2
rs = <h2 5 co((éos»)(l—io.
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By Lemma 4.5, we have ss > Co{(&, &’ ))2 and observe that s5 € S%-. The Garding
inequality yields, for kg sufficiently small and 0 < h < hyo,

2

)
sy ) vo'y o = c<1 + )wo(ugf, PR =Cnh™; 15 (470)

h2
as supp(rs) Nsupp(x ;) =0

We now estimate the other terms in the expression (4.68). Using the Young inequality,
we have, for all ¢ > 0,

|(Biyo(u'y ;). G3)ol + |(B]'G3, yo(u'y Mol + 2|(8xn§0]| 0+ G3: G3)ol

1 > h2 2 @
+ |J/0(M5f])|1 +m |Gslg-  (4.71)
For the remaining term in (4.68), we have
4Re(3r, 9] | o1 Bsro@y ), Ga)y| S ( P vy Do+ |yo<uf@<j)|1)|c3|o,
according to (4.65) and (4.67). Taking x as above, we can write

P(;,jVO(ut@/),j)
= P2 0p7 (0 woluly ) + P (1= Opr (i) Opr(xz )V, o, (472)
%,—J

0 —00
eV eh°°lll7—

Using the Young inequality, for all ¢ > 0, N € N we obtain
4|Re(0x, 0], . Zsvou'y ;). G3)y|
52
(1 + )WO(“g D+ |G3|3 + echthw;m:m 3. (473)

Combining (4.70) and (4.68) with (4.71) and (4.73) gives, for ¢ sufficiently small and
8 < do,

82
<1+ >|yo<uj,>| S H Wy ) +1Gslg+ CvhNf L

Finally, returning to the Carleman form at the boundary, (4.58), and using (4.60), we
obtain, for all N € N, for h¢ sufficiently small and 0 < h < hy,

82
h||uf,||1+h(1+ )wo(uf]nz

S NPy vi G + hIGslg + Cvh™ V] | 15 + B3I 'y I
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Using (4.64), (4.65), (4.67) and (4.72) to estimate |y (u'y j)|0 in terms of [yo(u'y j)|1,
we obtain

)
iy Dlo S (1 + E) o'y D +1Gslo + CNthv;|Xn=0+|o-

Then, replacing |G3|o by its estimate (4.66) gives, for hg sufficiently small and 0 <
h < ho,

82
By 12 + bl Gy, I3+ h(l + )mw OB

SIP + R3[| ||1+h(82 h)|3 13+ 1P vl + P21 I

w J”O ®.Jj"J

+ 44Dy, v} 0+|3+7|9;,j|§+h|9;,j|%+h|9;,j|%+h|®;,j|§, (4.74)

using the trace formula (1.23). This is a local version of (4.52). Patching together on M
such local estimates as we did in (4.16)—(4.21) yields (4.52).
Let us now conclude the proof on the “I” side. The trace equation (4.62) yields

Gy Dlo < nolly Ph+1Goh + Cnh™ (1D, 05 _lo+ v . lo)
< lvy D +10, ;11 + |9 gh+ IG5 11
N
+CnhY (1D, v oo+ 1) _oilo). N eN,

after using the first relation of (4.61).
Using this last inequality, together with estimate (4.74) on [yo(u'y j)|1, estimate

(4.57) on |Gl2|1, (4.54), and the first transmission condition in (4.61), we finally obtain,
for hy sufficiently small and 0 < i < hyo,

'y 1T+ RlyvoGu'y DI+ Rlyi(uly DI
2

S AP, villG + 21T + h* Dy, v

2
0.7 Y + h7|lv; 1)

13+ (P 3

Xn ” —0+ 0 52 hz <P/ / 0

2 3
165 15+ 16 ;1T + h16) 1T +

62+h2 ®,J] @,] 62+h

+ R+ =10 16,

This is a local version of (4.53). Patching together on M such local estimates as we did
in (4.16)—(4.21) yields (4.53). O

4.5. Estimate in the region &

Here, in the region & (high frequencies), we prove a Carleman estimate for u ¢ ;, and con-
sequently for E¢v. Using in this region the ellipticity of PS and the Calderén projector

technique for both P’ and P , we obtain the following part1a1 estimate.
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Proposition 4.6. Suppose that the weight function ¢ has the properties listed in Sec-
tion 3.1. Then, for all §y > 0, there exist C > 0 and ho > 0 such that, for all 0 < § < §y
and 0 < h < hg, and for vl € E>°((0, Xo) x S x [0, 2¢)) and v° € €°((0, Xo) x S)
satisfying (3.9), we have
IEs0" 1T + hIEgv]! I} +hIDy Bsv/ .15
< C>IPJVIG + >0 1T + 2D, vf, _o 15+ I Ppo'IIG + P21 I1T

+hH Dy, v, i[5+ BV + RIOLIG + hI6LIT + RIOLI). (4.75)
Proof. The function ues ; satisfies (TC, ;), with ¢ = &. On each side, the root config-
uration described in Lemma 3.6 (and represented in Figure 3c) allows us to apply the
Calder6n projector technique as in [LR97, LR10]. Since the two roots are separated by

the real axis we only obtain one relation between the two traces at the interface: according
to [LR10, Eq. (2.37)], we have

o " 1/2 1/2 I
IIM SIS P, vitllo +Allvil + A I)/o(u Pl g dlo
+ ¥ Dy, vl o+ 10 (4.76)

together with one relation between the two traces [LR10, Eq. (2.38)]:
(1 = Opr(@yo(us ;) = Opr By )+ G 4.77)

In this last expression, a” € Sg- and b/l € S}l have principal parts respectively

r N 1
and bﬁl = (X ﬁ)
Xy =0" p,’ p;"

1)*pl,i

=
ar/l — _ )"(' '0/
0 s+ =
pi TP

where ,oj[.’jE are the roots of pfp’ j (i.e. ,ojl.’i = (d)f with p/** described in Lem-
ma 3.6) and ¥ € E>°(T*(R")) is equal to 1 in the neighborhood of the support of
XE.jxy =0+ with support in

(¢;)*E) N {xn = 0} = {(x0, §; (¥); &0, "dd; (3 ()I); (x0, . 0; Eo, 1) € &Y.

The remainder Gz/’ satisfies

. (478)

xp, =071

G 1 S h (IR v o + Al Il + W1 Dyt lo). (4.79)

The principal part of b7 satisfies
by = Cl&, €)' in supp(R),
"

as p;./"Jr and p;./’ " are tangential symbols of order one such that p;./’ - P; " does not
vanish in a neighborhood of supp(j). Let x € €°°(T*(R")) satisfy the same require-
ments as ¥ with ¥ equal to 1 in a neighborhood of the support of x. We can introduce
parametrices for Op7(b"), say Op7(e’) with e € S%-, satisfying

Op7(e) Opr(b") = Opr(R) + R", R € h®Ww >
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Note that the principal parts of the parametrices e’ are given by o(e) =

so st -
X (,Oj Pj )|y =0+
Applying these parametrices to (4.77) and arguing as in (4.50) gives

Op7(e)(1 = Opr(@)yo(ut )

" f/ 'l o Y 'l
=N (”é]",j) + Ry Dy, Ujllx,z:0+ + Ry Ujllxn:o+ +O0p7(eHG)  (4.80)

with Rgl, R;/’ € h°°\-IJ7i°°. This yields the following estimate of y, (uréé j) in terms of

/B
VO(“g’j)~

Gt Do
< bog Pl +1G3 1+ CvhN(1Ds v o+ 10 o). NeN. @81

T | x

On the other hand, replacing u, i in the first equation of (TC, ;) by its expression in
the second equation of (TC, ;) gives

s -
SﬁP(Z,j(Vo(Mfg’j) - 92@) = h(J/l (Mim)j) + Byi (u’g,j) - kVO(“Zg&’j) + Gl)-
J

By using (4.80) and the first equation of (TC, ;), this yields
r —
Qsyoug ;) = G3 (4.82)

with
S

ch
Qs =8P} +h(k—BOpr(e") (1 —Opr(a’)) —Opr(eh(1—Opr(a)) (4.83)

ic;
and
cs
J r ~ r r
Gs = SEP(;JQ(% + hG1 — hB(R| Dy, v;m:w + R{)v]’“xn:0+ + Op7(")G?)
J
~h(RIDs,vj oo+ Rovj, . +OPT(e)Gh+O0pr(e)(1 ~Opr (@)@ ; ~bk )))-
(4.84)
Here, we introduce a class of pseudo-differential operators adapted to the operator 25

in order to perform uniform estimates in the singular limit § — 0%. On the tangential

phase space W = T*(R"), we define the order function
3 h
A = —— (50, &) + —— (€0, £)),
5+h(($0 £9) +8+h<(Eo £))

associated with the metric

d (&, &)
—1d , N2 Zeus
gw = ld(xo, x)|" + (.22
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Lemma 4.7. The order function A is admissible, i.e., slowly varying and temperate.

We refer to Appendix C.8 for a proof. For a review of these notions see [Hor79] or
[Hor85a, Sec. 18.4-5], or the recent monograph [Ler10, Def. 2.2.4 and 2.2.15]. Thanks
to the previous lemma, we can define a proper Hormander-class calculus. We now prove
that Qs is elliptic in this class.

We set

s
ws = S%z);,j T+ htk— BRA = fob ).
We have (8 + 1)~ 'ws € ST(A?, gw). By (4.78) we see that
Qs — Opr(ws) € h8 W + h* WS C (h+ )W (hA* /(0. §))). gw).  (4.85)
From the definition of & in (4.10) this gives

cs
J ! ~ 1+ ,+
Im(ws) = —8-7 Re(p, ;) — (05,95, _gv + B0 9] | _gv + XIM(p; ™ + Boi' ™).
J

In this expression, we have

Re(pS ;) = C((50. &) on supp %, (4.86)

by Proposition 3.5 (see also the position of Char(P(;’ /.) in Figure 4). Next, in the region
where ¥ = 1 we have

l I+ =+
0xn ]|, =0+ T P, ¢ o+ T Moy " + Bo;' ™)
= 3Im(p; " = py )+ 3AIm(pf T = pfT) = Cl(6o. £)). (487

as Oy, (p;/’ = —% Im(,ojl»’Jr + ,ojl-’_) and by Lemma 3.8. Estimates (4.86) and (4.87) yield

lws| > C(8 + h)A?

in the region where ¥ = 1. There, the symbol (8 + k) 'ws is elliptic in the class
ST(AZ, gw). Hence, there exists [ € S7~(A‘2, gw) (with principal part )V(wgl) such that

Opr (D@ +h)~'Qs =O0pr(X)+ R, Reh®WI®,

by (4.85), for some x € €°°(T*(R")) equal to 1 on a neighborhood of supp(x ; It —o+)
and such that yx is equal to 1 on a neighborhood of supp(x).
Applying this parametrix to (4.82) gives

Wl )+ Ryl )+ Rof o = Opr(DG +h)~'Gs (4.88)

with R € h*°W > and R=0pr(x —1) OpT (X&), —0+) € hoOWw >,
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We estimate

|0p7 () + h) "' G311 = |0OpT({(€0, &) OpT(1)(8 + h) ™' G3lo

with

Op7({(80, &) Opr (DS +h) "' € ‘1’T<M, gw> = ‘I’T(;: gw>.
(8+h)A? 8((0, &) +h

We thus obtain, as OpT(W) is a Fourier multiplier,

1
|0p7 ()8 +hm)~ G|y < ‘o (—)G%
PT PT\S(&.e +1) 7,
In view of (4.84), this yields
|0p7 ()8 +h) "' G3ly

SIP, 0g -1+ 'Opfr(+>cl
~ e 3((50. ) +h
+ IR Dy, v _olo+ IRGY 0+|o+|G§|1+|G§|1+|9,:@,j|1+|9gm,j|1.

r r
+ IR Dy, v _ilo +1Rov; - _ilo

Since

h - h
(@) — )Gy |G ,
‘ pT<5((§o,§’)>+h> S5 Ctlo

and by (4.11), (4.79), and the trace formula (1.23), using also PS ;€ \IJ%- gives

|0p7 (DG + M)~ Gl < hlvily +h™ 2 (1P jvfllo + Allv] Il + %[ Dy, vf | lo)
+h= 2 (1Py, juillo + RllvjIh + B3 Dy, v . lo)

+ |9¢;,J’|1 + |9¢,j|1 + |®fp,j|0-

By (4.88), the transmission conditions (TC,_;), and (4.80) that represents y; (u ) as a

function of yo(u ) (thanks to the Calderdn projectors), we obtain

W2 1yoGil D4Ry plo S PSPy ] lo+hIv] I +121Ds, 0] o2 lo
+ 1Py jvjllo + Allvilly + A% | Dy, v}, 0+|o+h1/2|9;,.,~|1 + 12100 11 +h210] o

Inserting these estimates in (4.76) we obtain a local version of (4.75). Patching together
on M such local estimates as we did in (4.16)—(4.21) yields the result. ]

4.6. A semiglobal Carleman estimate: proof of Theorem 1.2

In this section, we explain how we can patch together the four microlocal estimates of
Propositions 4.1, 4.3, 4.4 and 4.6 to obtain a global Carleman estimate in a neighborhood
of S, and prove Theorem 1.2.
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First, let us introduce some notation. We set
BT(w) := hlwyy,—o+ 17 + h| Dy, wir,—o+ 15,
RHS" (w) := [ PJlwllg + h*[wll + h*| Dy, wye, —o+ I5,
Ry := h|®} |5 + hl6)]T + hI6LI1.

This allows us to formulate concisely the four microlocal estimates of Propositions 4.1,
4.3,4.4 and 4.6:

240" 12 + BT(E4v") < RHS" (v), (4.89)
82
eh| Egv' I} + e BT(Egv)) < (1 + ﬁ)(snwgv’né +eh* 1Dy v, o1l + eh* V1)

: 82
+eRHS' (V) +| e(h? + 8) By v" 17 | + | eh(h® + 80" I} |+ eRo + - 16,5,

(4.90)
IEzv" |17 + BT(E5v") < RHS"(v), (4.91)
IE#v' |7 + BT(Ezv') < RHS' (v') + RHS (V") + Ry. (4.92)

eh||Exv ||} + e BT(E»v") < e RHS (v") + e RHS (v)

82
+| eh(h? + %) 2 +87|9;|3+8R0, (4.93)

h2
120 I} + BT(Ev) S RHS'@) + 1 0* [ + 55— RHS"(') + Ry,
(4.94)
|Ecv” |12 + BT(Egv”) < RHS! (v') + RHS (V) + 1 |v*|? + R. (4.95)

To derive the final Carleman estimate we need to sum together these microlocal estimates
and many terms on the r.h.s. need to be absorbed by those on the Lh.s. This is a standard
procedure usually making use of the powers of the parameter £ in front of these terms
and choosing & sufficiently small. Note, however, that some powers of & are critical here
so that the related (framed) terms on the right-hand sides cannot be absorbed directly.
To overcome this problem, we have multiplied the two relevant equations by a small
parameter ¢ > 0 whose value is independent of # and §.

Note that these three atypical terms are the reason for the introduction of the microlo-
cal region .% (cf. the microlocal regions used in [LR10]). In fact, the microlocal region
Z acts as a buffer: as . is an elliptic region for both the operators P;/’ , it provides terms
on the Lh.s. of the associated microlocal estimates of better quality than those obtained in
the regions ¢4 and % (compare the powers of / in the Lh.s. terms of these estimates).

Observe that the property xs + xo + x# + xo = 1 implies (see Section 3.6)

By i+ 8z j+Ex i+ Es;={¢x0 ).

As a consequence of the definition of the operators E,, @ = &, 2, #, ¥, givenin (3.24)—
(3.25), this yields
Ee+EBx+Ez+ By =C'(x). (4.96)
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We now treat the three atypical terms and use the small parameter €.
As supp(v®) C (xg, Xo—ap) x S (see the statement of Theorem 1.2 and Section 3.3),
by (4.96), and using the transmission conditions (3.9), we have

V& = §1vs = EBev' + BV + Bz v + By’

= Bev' — Bebl,+ Bz — B0, + Ezv' — E50,+ B4 — Byh), atx, =07
Hence, for § < 8o and & < ho we can estimate the two atypical terms involving v*
in (4.90) and (4.93) as
eh8?|v* |3 < eh|Bev! |2 4 eh|E o' |7 + eh|E 20! [} + eh|E4" |7 + eRe.

When summing all the estimates (4.89)—(4.95) together and taking ¢ sufficiently small,
the four terms eh|Egv' |7, eh|E »v' |2, eh|E 2z |3, 8h|E§¢Ur|% can be absorbed by the
Lh.s. of (4.95), (4.94), (4.92), and (4.89) respectively.

The remaining atypical term is in (4.90):

2 2\ = 2 — 2
e(h” + 8| Egz v IIf < ellEgz v |7

‘We choose {4 € €>°(0, Xo) such that {4 = 1 on a neighborhood of («q, Xo—ap), g“l =1
on a neighborhood of supp(§4) and 0 < ;4 < 1. Since supp(v") C (ag, Xo — @) X S X
[0, 2¢), we have

g7V = Bgz(By + Eg)W + Eyz(l — By — Ez)ch. (4.97)

]

From Proposition B.14 and Proposition B.10, the principal symbol of the operator
Eyz(l — By — Ez)¢is

xgr (1= ¢ (g + x7 )¢ = P xgz(l — (xg + x50 =0

since xg + x# = 1 on supp(x#) by (4.12). We thus have B¢z (1 — By — Ez)¢* €
hW2' (M), so that (4.97) gives

2 2\m 2 - 2 = 2 20,7112
e(h” + 071 Byz vl S el Bgv" [T + el Ezv"II7 + eh”[lv 17

When summing all the estimates (4.89)—(4.95) together and taking ¢ sufficiently small,
the two terms || E¢v" ||%, e|Ezv" ||% in this expression can be absorbed by the Lh.s. of
(4.89) and (4.91), respectively. This is possible since these two estimates are obtained in
elliptic regions yielding better powers in /4.

Now, if we sum all the partial estimates (4.89)—(4.95), and handle the atypical terms
as explained above, we obtain

IE4v" I} + BT(Egv") + h| Eg' ] +BT(Egv) + | E2v" I + BT(Ezv") + |1 Ez v I
+BT(Ezv)) + h[|Exv" |3 + BT(Exv") + [|E20 ||}
+BT(Egv') + |Egv" |3 + BT(Egv”)

2

é
< RHS'(v) + RHS' () + (1 + ﬁ) g PLv" 13

52
"2 (4.98)

+ 13|02 + W2 Dy, v‘an:0+|g + Rp + 7|9¢
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Using supp(vr/l) C (g, X9 — ag) x S x [0, 2¢) and (4.96), we can write
ol < 1Bgv™ Il + IEZv" I + 1Bz v Il + IEgv 11,
together with
vl ol < 18gv]t o+ 1Bsvl i+ 1820 il +186v]! .
lxp=0+11 =159V o+l SF V=011 SZY) =0+ 11 SEV =0+ 11
and
|Dx,, |x _0+|0

= =
< [Dy, & *—“’U _o+lo+ 1Dy, & ufv o+ lo +1Dx, SZV) =0+ lo + [Dx, D(O@U‘xn:o+|0~

\x—

These three inequalities together with (4.98) give
ABL ”2 + h|v|x _o+t |2 + h|Dxnv|ﬁn:0+|(2J

52
SIPLIG + R IV I + B Dy, v, e l5+ (1 + ﬁ) 1z Py (1§ + 1125 v 11
2 2 2 3 2 82 2
+ R[] 4 1P| Dy, v, =0+ 1o T A7V [T+ Ro + E|9;|0~
Taking O < h < ho with h¢ sufficiently small in this expression gives
RV + a0 R+ Dy 13

52 2
<||Plvl||0+||P’v’||0+<1+ )II{P’vr||0+R9+ —16015-

Recalling the definitions of v’ = e/ hw', qu;/[, 9;{[ » ©, (see Section 3.3 and (3.3)), and
observing that

/i 7 Y 7 Y 7
le?™ " Dy wlo < 1| Dy (e o + 1B 0 ™)e?™ M wh o,

and similar inequalities for the norms at the interface {x, = 07}, we can absorb the zero-
order terms in (3.3), which concludes the proof of Theorem 1.2. ]

5. Interpolation and spectral inequalities

5.1. Interpolation inequality

Here, we prove Theorem 1.4. We start by proving a local version of the interpolation
inequality at the interface. In fact, the inequality we prove is local in (xg, x,) but global
on S. Here, we closely follow the geometrical setting of [LR10]. As in Section 3, we
use local coordinates where the interface is given by {x,, = 0}, in a small neighborhood
[0, Xo]x V.. We choose a point zg € (o1, Xo—a1). We also pick o such that 0 < «p < o
to be used when applying the Carleman estimate of Theorem 1.2.
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We define the following anisotropic distance in R:
diste (a0, an), (b, bn)) = (alag — bol* + lan — bu )2, « > 0.

We fix z, € R%.. Then, for (xo, x,) € [0, Xo] x R and « > 0, we set

— disty ((x0, X), (20, 2n)) if x, >0,
— disty ((x0, kXz), (20, 20)) ifx, <O.

Y (x0, X)) = {

We shall also consider v as a function on V;, x § x R. We note that v is continuous
across the interface {x, = 0} and that

(Xn — z2) (W (x0, )~ ifx, >0,
K (e xn — zn) (W (x0, X)) ™1 if x, <0,

8x,;l”(x0a xn) = {

which yields 9y, ¥y, —0- = Kk 0x, Y|y, =0+. We also have

O ¥ (X0, Xn) = (X0 — 20) (Y (x0, X)) ™. (.1

Let us check that the associated weight function ¢ = ¢*¥ has the properties listed in
Section 3.1.

According to Remark 3.3, it suffices to check that i satisfies (3.6) and (3.7) possibly
with different constants. In fact, we work in a sufficiently small neighborhood V = V, x
Ve of {zo} x § x {0} which does not contain (zg, y, z,) for all y € S, where V, is a
neighborhood of zg in (ag, Xo — ap) and 0 < &’ < &, so that Vi does not vanish in V.
First fixing « sufficiently small, we see that (3.6) is satisfied. Second, note that |xo — zg|
is bounded. Hence, from (5.1), we can choose the parameter « sufficiently small to have
|0x, ¥ | small as compared to inf |3y, 1|, so that (3.7) is satisfied. Level sets for the function
Y are represented in Figure 6.

The Carleman estimate of Theorem 1.2 then follows, with the weight function ¢.

We choose 0 < 51 < 5] and 0 < o < o’ such that

U = {(x0, y, xn); X0 — 20l <57, Y €S, |xn| <0’} C V.
We also set

U = {(x0,y,xn): |x0 — 20l <51, Yy €S, [xy| <o} CU".
We now choose r1 < r|{ < ra < ¥(z20,0) < r} < r3 < rj such that

C1 = {(x0,y,xp) € R x S x R; ¥(x0, x,) = r1},
Ch = {(x0, y, xp) € R x S x R; ¥r(x0, x,) = r3}

satisfy C1 N {x, < 0} Cc U, C1 N {x, > 0} NU # @, which is equivalent to

and finally Cé NU' C {x, < o}. We illustrate these choices in Figure 7. We set R; = eMi,
Ri=¢"1,j=12.3.
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=y

vl 3 /‘\I T
(z0,,0) @y Zn) X

Fig. 6. Level sets for the weight functions ¢ and ¢ = M in (xg, xn) coordinates. The manifold
S > y can be represented normal to the drawing. The Carleman estimate of Theorem 1.2 can be
applied in a region V close to {zg} x § x {0} (represented by the dashed line).

\J

Xn

Fig. 7. Neighborhoods of the point of interest for the proof of the interpolation inequality.

Following [LR95], we introduce

‘/j = {(XO, )’axn) GZ/{/’ rj < w(-x()’-xn) < rj/'}’ _] = 1725 3’



Controllability of a parabolic system with a diffusive interface 1539

and we further set

Vi = {(x0, y, xx) € Us 1] < ¥ (x0, xp) < 13},
Vl/_>3/ = {(x07 yy xl’l) € u/r ry < w(xvan) < ré}v
W3 :=V3U (Vl/»3/ \U).

The region W3 is shaded and striped in Figure 7. With the choices we have made above,
W3 is contained in {x, > O} and is finitely away from the interface Ry, x S = {x, = 0}.
For 5oy € (0, s1) we also choose Wy = V5 N {(xq, ¥, xn); |x0 — 20l < s0, ¥y € S} € U.
The region W, contains {zp} x S x {0} and is shaded in Figure 7.

Now that the geometrical context is set, we can state a local interpolation inequality
in the neighborhood of {zg} x S x {0}.

Lemma 5.1. For all §y > 0, there exist C > 0 and vy € (0, 1) such that for all § €
(0, o),

1/2
el 1wy + 8216 11 (g o
1- 2 v
< CIUILG" (lellzwy + 185, + A)Ullo) " (5:2)

forall0 <v <vyand U = (u,u’) € ICg.

This inequality can be read as the “observation” of the local IC; norm of U in the neigh-
borhood W> of any strip {zg} x S x {0} by the H! norm of u in a neighborhood away
from the interface and the IC((S) norm of (—3)%0 + As)U.

Proof. We choose x € €°(U’) independent of y € S such that x is equal to 1 on Vy/_3
and vanishes outside V|_ ;.. Then Vy , x vanishes outside V|_ 5, \ Vy'_.3, which is the
striped region in Figure 7.

For U = (u, u®) € K2, we set

Bu :=—(9% + Aou € L*((0, Xo) x Q1 U Q)),
BU = — (02 + Aps)u’ — §((c0y, ), 0+ — (€O, 1) |x,—0-) € L*((0, Xo) x 5),

and recall that u), —o- = u® = u|,, —o+. Setting W = (w, w®) with w = yu and w* =
Xlx,=ou®, we have

Bw = xBu+F, inU

B'W =1@xB°'U+©) inUNS,

Wiy, =0- = W’ = Wy, —o+ INnUNS,

where

F=[—(3 4+ Ao, x1u,
© = 8[—(0F, 4 Aces), x1u* — (€l =0+ — Clry=0-) Oy Xy =0U" -
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Using the density result of Corollary 2.6, the Carleman estimate of Theorem 1.2 can
be applied to W = (w, w*):
hlle?/ " wliG + 1 [1e?/ "V cwllg + hle? " w'|§ + 1 1e? "V, sw’ |5
SH2(02 48 1e?" x BullZ+ 12 (02 + %) e? " FIIZ+ 1382 hy BSU Z+ 13 1e? " 03,
(5.3)

Note that © is supported in V; N {x, = 0} and in this set ¢*/" < e®i/"_ Similarly, F
is supported in V{_ 5 \ Vi3 and in this set e’/ < R/ Moreover, the operators
[—(8)%0 + A.), x]and [—(3%0 + Acs), x] are of order one. We thus have

h R./h Ry/h
/" Fllo < ™5/ M lull g gy + €51 M luel 1,
< e Ml g1y + U D, e

1?1010 < e Bl | vy, o + 18122014 As—op)-

Using the trace formula together with § < 8!/ 28(1)/ 2 in this last inequality, we obtain

e/ 0lo < MMV | 0. xp)xs) + el mraey) S B IUN (5.5)
Moreover,

le?/" x Bullo < €5/ | Bull 2q0y S €/ 1(=85, + AUl o, (5.6)

81211y B UL < 8'2eM/ M B Ul 2 g mopy S €I85, + AUl g (5.7)

Concerning the Lh.s. of (5.3), we have ¥/l > eR2/h gng x = 1 on Wy, so that, using
8 < do,

h 2 3 h 2 h 2 3 h 2
hlle?" " wlig + 1 1e?/" Vg y x, wli§ + hle? " w* [§ + 171" Vo, w5

Z ]’l3€2R2/h + h3862R2/h|u3|5_11 (58)

2
el ) (WaN{x,=0})°

Using (5.4)—(5.8) in (5.3), we thus obtain

W2 (1l 1wy + 8216 | 1wy =0p))

Sh(E MU Ny + =07, + ADUllo + lull ). (5.9)

Fixing some R, € (R}, R»), we have h!/2eRe/h > R/ for all 0 < h < hy. Thus, (5.9)
becomes

Ro/h 1/2
R (el gty + 82106 L (wape, =op)
S MU + S (I1(=05, + AU llo + lull s )-
Finally, optimizing with respect to 4 as in [Rob95] we obtain the desired local interpola-
tion inequality. O
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Away from the interface, the ICg' norms, s = 0, 1, coincide with the usual H® norm, and
local interpolation inequalities similar to (5.2) are proven in [LR95, Lemme 3, p. 352].
Now that we have obtained the interpolation inequality (5.2) at the interface, we can
apply the procedure described in [LR9S5, pp. 353-356] (propagation of smallness) and
prove the desired global interpolation inequality (1.13). See [LZ98, proof of Theorem 3]
to obtain the term [|9x,u (0, x)|| 2, on the r.h.s. of (1.13). This concludes the proof of
Theorem 1.4. O

5.2. Spectral inequality

From the interpolation inequality proven in Theorem 1.4, we now deduce the uniform
spectral inequality of Theorem 1.5. Recall that & ; = (es,;, €5 j), j € N, denotes a
Hilbert basis of Hg composed of eigenfunctions of the operator As associated with the
positive eigenvalues us ; € R, j € N, sorted in an increasing sequence. We denote by
I5,,, the spectral projector over the eigenfunctions associated with eigenvalues lower
than u, i.e.,

s, Y = Z (Y, éa(g,j)Hgé%,j, Y EHg.
s, j <K

The proof of Theorem 1.5 is classical. Yet, we have to make sure that all the constants
involved are independent of the parameter 4.

First we take some Y5 = (ys, y5) € I, quv and apply the interpolation inequality
(1.13) of Theorem 1.4 to

Us = (us, u}) = Ay % sinh(xoA;/ %) Y3,

defined by using the classical functional calculus for self-adjoint operators.’
We notice that (—3§0+A5)U5 =0, Us(0, x) = 0and [|0x,us5(0, ) 12(0) = 1V8 1l 12(wr)-
Concerning the Lh.s. of the interpolation inequality (1.13), we have

2 2 2
> = ||U
”US”IC(%(O(]) jtl ||U8||Kg((11) ” 8||L2(0(1,X070‘1;Hg)

Xomer 45 12y o 12
_ / 14572 sinhroA; ) Y513, dxo
o

1

Xo—oq

—-1/2 . 1/2 [

= [ A im0 )1 g 161
ay

X()—Dt]
= [ B an Ini, = cOt.aninilR,, (5.10)
o

1

5 Note that if Aj is not invertible, i.e. 0 € Sp(As) (this occurs if 2 has no boundary), the follow-
ing analysis can be done with As 4 Id in place of As. Theorems 1.2 and 1.4 remain valid for this
operator. The spectral inequality proven for As + Id implies the same inequality for As.
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since ¢~ 1/2 sinh(x¢r!/%) > xo forr > 0. Now, concerning the r.h.s. of (1.13) we have
1/2
1Usli = 1Usllko + lAag’ Uslico + 195 Us o

Xo
2 1/2 2 2
= [0y + 1A Uy + 10 UslBy) . D)

Let us estimate the three terms in this expression. First, we have
o2 X 121 2 >
/0 1Us 30 dxo < /O 145" sinh o A" g0 1 s 13 dxo
Xo
< [ e R st < XTI,
since t~1/2 sinh(xotl/z) < xoe)“)«/‘7 for 0 <t < u. Second, we have

Xo Xo
1/2 2 . 1/2 2 2
/0 lAs Uallﬂgdxosfo || sinh(xo A )Ha,ullc(Hg)IIYaIIHgdxo

Xo
< [ A 1%y < X WTIB IR,
0 s s

together with

X

X() X() 0
1/2
[ iUl gdxo = [ coshoa}ns B dxo < [ R0 dn 1151,
0 s 0 3 0 s

< Xoe OV Y550

By using the last three estimates in (5.11), together with (5.10), the interpolation inequal-
ity (1.13) yields

X0/l 1—vp Vo
1530 = C(Xo, a) @V 1Y l30) 1yl -
Finally, for 8o > 0, there exists C > 0 such that for all 0 < § < §p and u € R, we have
11—y
Xo—2 .
slly < €™ liysllagy, Y= (s, 3) € My M-

This concludes the proof of Theorem 1.5. O

Appendix A. Derivation of the model

Here, we (formally) derive the model (1.4) studied in the main part of this article. We use
the notation of the beginning of Section 3. In a small neighborhood of the interface S we
use normal geodesic coordinates

F:Sx[-2¢2]— Vo, (y,x0) 1 F(y, xp).
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Fig. 8. Local geometry of a three-layer model near the interface S = {x, = 0}. The inner layer,
Vo, shrinks to zero as § goes to zero.

In such coordinates the metric reads

_(agrs) O

and the elliptic operators we consider,— divg ¢V, take the form —0y,cdy, — div* ¢ V5.
The interface S is given by {x, = 0}.
Let § € (0, 4¢). We consider three regions in V, as represented in Figure 8:

Vi={-2e<x, ==6/2}, Vo={(-8/2=<x,=8/2}, V2=1{8/2 <xn<2e}.
With three coefficients ¢, ¢!, ¢* we consider the following parabolic problem:
dz! —divg(c!Vez) = f/ in(0,T)xV;, j=10,2, (A.1)
along with the natural transmission conditions at x, = §/2 and x,, = —§/2, given by the
continuity of the solution and the continuity of the flux:
Urym8/2 = Ueymt/2r Lnymds2 = Lyt (A2)

and
(Cl3xnzl)|xn:—a/2 = (Co3xnzo)|xn:—5/2, (Coaxnzo)\xnzé/Z = (Czaxnzz)m:a/z- (A.3)

We now wish to describe the present three-region model as the thickness § of the inner

region, Vj, becomes asymptotically small. This implies some approximation. Resulting

approximate models can be very useful in practice as one is in need of effective models.
We introduce the mean values of z° and f 0 in the normal direction Xn,

| o2 | o2
20 = / Ox)den and f0) =~ [ 0 x)du. v €S
1) —5/2 ) —5/2

Keeping in mind that § is meant to be asymptotically small, we first make the following
approximation.

Assumption A.1. The diffusion coefficient c° does not depend on the normal variable x,,.
We set ¢*(y) = c%(y, x,).
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Under this assumption, using the transmission conditions (A.3), we have

1[92 .
Por=3 [ @ = dv (@5 dx,
/2
_ s_-ssss_l o2 0 0
=02 —div' (¢’V°Z) Oy, C 0x, 2" dxy
3 J 52

. 1
= 7" —div (V') — 5((c08x,1 O zs/z — (€282, 2") 1v=—s/2)
) e e . 1
= 87" — div’ (V') — g((623x,,22)\xn=5/2 — ('8, 2D r=ms2). (A

This provides a first transmission condition between z! and z? that involves the func-
tion z*. For the problem to be closed, we need two additional transmission conditions.

We begin with a first-order approximation of the system. Yet we show that it cannot
be used for the purpose of modeling controllability properties of the original system. We
then lower the degree of our approximations and obtain the model studied in the main
part of this article.

A.l. A first-order model

Using the transmission conditions (A.2)—(A.3) we write

§/2
2(,8/2) — ', —8/2) = 2°(v,8/2) = °(v, —=8/2) = / 32,2° (v, xn) dxy
—8/2

= [0, 20, X175 + R1 = 8/2(0,2°(y, 8/2) + 0, 2°(y, —8/2)) + Ry

=36 (c*(3.8/2)05,2° (3, 8/2) + ¢! (v, =8/2)3y,2' (v, —8/2)) + R,

. 8/2
with R| = —f_éﬂ x,,afnzo(y, Xp) dx,.

A second set of transmission conditions is needed. With two integrations by parts we
write

1 §/2 0
=7 / O

1 0 5/2 1 x,% 0 8/2 1/5/2 x,% 20
— , S (2} , — ny , d
S[xnz (v 21252 5| 2 Ot (v, xn) _5/2+ 5 )52 2 (Vs xn) dxy

1 )
==, 8/2) +2°(y, —8/2)) — §<axnz0<y, 8/2) — 85,2°(v. —8/2))

2
1 [3/2 42
+5 / 205, 2"(v xn)
—8/2

1
= E(z2<y, 8/2) +z'(y, —8/2)) + R>
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with

8/2 2

__é 0 _ 0, _ 1 Xna2 0
Ry = ——(0x,27°(y,68/2) — 0x,2°(y, =3/2)) + 0y, 27 (¥, xp) dxy.
8 8J 512 2

We now make the following assumption on the variations of z° with respect to x,,.
Assumption A.2. We have |8§nz0(y, xn)| < C uniformly in § (and x,, and y € S).

We then find that Ry = O(8%). Observe that

82

33,20 (3, 8/2) — 8, 2°(y, —6/2) =/ 33 220, xp) dxn = O(8).
2

It follows that Ry = O (8?).
To first order in § we thus obtain

22(,8/2) — 7' (v, —8/2)
= 350 (P, /285,22 (1, 8/2) + ¢! (v, =8/2)dx, 2" (v, =8/2)) (A5)
Z(y) = 32, 8/2) + 21 (v, —8/2)).

As § is small we assume that z! and z? are defined on {x,, < 0} and {x,, > 0} respec-

tively. We thus write Z\2x,,=0+ and Czaxn Z\2x,,=0+ in place of z2(y, §/2) and (C28x,lz2) (y,8/2)
and similarly Z\lx,,:of and Claxnzﬂx”:of in place of z!(y, —8/2) and (c28xnzz)(y, —5/2).

We obtain the following model:

9z) —divgc/Vezd = f7 in(0,T) xQ, j=1,2, (A.6)
and
8z — div' (V¥ 2*) = f* + 203,22 pym0r — (€' 03,21 j,m0-)
2= %(Z\zxnzm + Z\lxn:o—)’ (A7)
cor — gm0 = 2 (205,20 =0t + (€103, 2D 1,200
in (0,T) x S.

For the study of the controllability of such a parabolic model we wish to investigate
the unique continuation properties of the associated elliptic problem:

—divg¢/Voz/ = f/ in(0,T) x Qj, j=1,2, (A.8)
and
—div* (V5 2%) = ¥ + $((P0x, 2 =0t — (€105, 2) 12, =0-),
2 =3 o+ + 2} o) (A.9)
2 ot =2 oo = 2 (P05, Py, =0t + (€0, 211, =0-),

in(0,T) xS.
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Note that unique continuation holds for the original problem. This is an important
property that we wish to see preserved in this approximation process. Here, we show that
there are instances for which eigenfunctions of the elliptic operator in the approximate
model (A.8)—(A.9) vanish on one side of the interface. These eigenmodes are then invis-
ible when considering the observability of the parabolic system (A.6)—(A.7), ruining any
hope of controllability. This is similar to the situation described in Section 1.3.3.

Let us consider the following two-dimensional example: 2 = R/(2nZ) x (—m, ) is
the cylinder endowed with a flat metric. For consistency with the notation of Section 3 we
use (y, x,) as the coordinates in €2, with periodic conditions in y. We define the interface
as S = {x, =0} =R/2nZ) x {0}, so that 21 = {x;, < 0} and 2, = {x, > 0}.

Proposition A.3. Let ¢® and ¢! be constant functions such that ¢* = rc' withr > 1. For
any 8o > 0, there exist 0 < 8 < 8o, e' € €X°(Q), & € €°(S), A > 0 such that

1
—div, clvge1 =xre' inQ, —div'(*Vie’) + E(claxnel)mzof =xe’ inS,
(A.10)
and
s_ 1 1 § 1 1 .
e = Ee\xnzof’ —Cly,=0- = Z_C‘S(C Ox,€ )x,=0-> inS, (A.11)
and el1 = 0. Hence (e', e*, 0) is an eigenfunction of the elliptic operator in (A.8)—

Xp=—T
(A.9) associated with the eigenvalue A, for Dirichlet boundary conditions (in x,).

Proof. We choose k € N such that (r — 1)k > 1. For u € (0, 1) we set

( )_( 1 )Uzucos(/ur)
S=\r—nkk=u)  Tsin(um)

As g vanishes for u = 1/2 and lim,,_, ;- g(u) = —oo, there exists uo € (1/2, 1) such
that g (o) = —1. We then set

r 172 2
5:2(—) Ca=
((r = DK — ) sin(po7r)

For any given ép we can have 0 < § < §p by choosing k sufficiently large. We have

ten)
We now set
F=e®, el (yx) = asin(uon +1)e* (), —7 < x, <0.
We have e|lx,,=—n = 0. Hence the Dirichlet boundary condition is satisfied at x, = —.
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We have —c'(35 + 97 Je' = he' with & = c' (K + up). Observing that 9y,,¢|

y x,=0" =
a o cos(uom)e® we find

) o1 )
—c’ 3y2€é + —Caxne\lxnzof =c! (rk2 + % cos(umr))eA

)
2u0 4r
N | 2 _ 1 2
- (rk *3 sin(uo) COS(MO]T))ES - (rk B 5_2>es
= c!(rk* = ((r = DK* = po))e’ = 2e",

by (A.12) and the value we have assigned to §. We have thus obtained (A.10).
We now compute, using (A.12) and the value we have assigned to «,

1
Ee\lx,,=0— = %sin(,uon)es =é°.
Using (A.12) we also compute
8 . 8 cos(uom)
1 1 1 _ s
€5, =0 + g(c 0x,€ jx,=0- =« Sln(,U«OJT)(l + ;MOW e =

We have thus obtained (A.11). m]

A.2. A zero-order model

The lack of unique continuation of the previous (elliptic) model makes us consider a
simpler model. We make a lower-order approximation and we show how to formally
obtain the model studied in the main text of this article.

Neglecting the first-order terms in § in (A.5) we find

2(y,8/2) =z (v, =8/2) = 2 (y).

As 8718y, 2°(y, 8/2) — 85,2°(y, —8/2)) = O(1) we cannot neglect this term in (A.4).
Proceeding as above we thus obtain the model

&7/ —divgc/Vezd = 1 in(0,T) x @, j=1,2,

and
9zt — div (V4 Z¥) = 5 + ((¢®0x, 2D xy=0+ — (€0, 21, =0-).
2 _ _ .1
Zl)(n:OJr - ZS - len:()i’
in(0,7T) x S.

Appendix B. Facts on semiclassical operators

B.1. Results for tangential semiclassical operators on R, d > 2

Semiclassical operators are defined in Section 1.4. Here, we provide the properties that
we need in the main text.
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The composition formula for tangential symbols b € S7, b e S%”—/ is given by
(b # b/)(Z, é,/) — (2]‘[/’1)_(01_1) /f e_i(t,,‘[o/hb(z’ é_/ + ‘L'/, h) b/(Z/—Ft/,Zd, C/,h) di' dt’

-

|| <N

—zh)“"'

0%b(z. &' h) %K (2. ¢ ) +ry,  ry e WNSIEETN (B

where

(—im)N N(l—s)N 1
™= 2xh)d—D Z f

« //efﬂt”r/)/h3;_1/[)(27 g./ + ‘E/,h) Bg‘,b/(z/ —}-St/, 24, é'/, h) dr’ dr/ds,

and yields a tangential symbol in S#"’ml.

If s,m € Rand b € S7- we have the following regularity result:
IAS-Op7 (B)ull 2ray < CIAT " ull 2ma)y.  u € .S RY).

We now consider the effect of change of variables.

Theorem B.1. Let Z' and Z. be open subsets of RY~! and let k : Z' — Z. be a
diffeomorphism. If b(z, ', h) € S%"- and the kernel of Op7(b) has support contained
in K xR x K xR, with K compact and contained in Z', then the function

e 1@ 0 Opr (b)e! SN 2 = k(2 € ZL,,

. - (B.2)

bK (2/7 Zd’ C/r h) =

isin Sgi, and the kernel of Op7 (b, ) has support contained in k (K) x R x k(K) xR, and

(k ® 1d)* Opr(bo)u = Opr(B)((k ® I ),  u € . (RY). (B.3)
For b, we have the asymptotic expansion
bk (@), 24, ' ) = Te n (b)), 20, &, ) € N2V (B4)

with

t'=z'

(B.5)

—ih)ll
Ten B0 za, ¢y = 30 4 ’a,) 08 b(Z s 2a, k(@Y )gre! e DR
a<N :

where p(') = k(t") — 1 (Z') — k' (@)t — 2).
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A proof is provided in Appendix C.9. In particular we find that
be(c(2) 24, 6. h) = b(Z 20, 'k (@) ¢ h) + hr (2 za. ¢/ h)  withr € hSET!. (B.6)

The principal symbol thus transforms as the regular pullback of a function defined in
phase space (see Section 1.4.3).

Lemma B.2. Leta € S?— be such that the kernel Kp(z,t) = Kp ;,(z',t") ® 8(zq — ta)
of Opr(a) is such that Ky ,,(z',t") vanishes if |1z — t'| < n for some n > 0. Then
a € h>S:*.

Proof. We write, as an oscillatory integral,

Koy (2 t)) = / O gz ¢ hyde.

1
Qmh)d-1
Let x € €°@RI1) be such that x(z/) = 0if |Z/| < n/2 and x(z) = 1if |Z| = .
Then Kp o, (2, 1) = x(@ — t")Kh,, (. t'). Hence, x(z' — t")a(z, ¢, h) is an ampli-
tude for Op7(a). The asymptotic series providing the associated symbol, which is in fact
a(z, ¢, h), is (by [GS94])

—j)lelpa
a@. ¢~y % 0% (x (@ — a@. &' )|, _.

!
o

Because of the support of x the result follows. O

B.2. Semiclassical (tangential) operators on a manifold

In the present article, we consider semiclassical operators that act on both the xo and y
variables, xg € (0, Xp) and y € S.

Let & be a manifold of the form (0, X¢) x S x R. We denote by (xo, y, x,,) a typical
element. We also set X’ = (0, Xo) x S. By abuse of notation we shall also denote by ¢;
the map Id ® ¢; ® Id (resp. Id ® ¢;) on R x U; x R (resp. R x Uj); see Section 1.4.3
where the diffeomorphisms ¢;, j € J, are defined.

We recall the definition of a tangential semiclassical symbol in an open set O C R?.

Definition B.3. We say that a(z, ¢’, h) € STHO x RY=1Y if, for any x € €>°(0), xa €
STRY x R,

We also recall the definition of tangential semiclassical symbols and operators on a
manifold.

Definition B.4. 1. Letm € R, j € J,anda € €(T*((0, Xo) x U;) x R). We say that
a € SI(T*((0, Xo) x Up) x R) if (¢ )*a € S((0, Xo) x Uj x R x R").

2. Leta € €°(T*(X') x R). We say that a € S@”-(T*(X’) x R) if, for all j € J,
ar+(0,x0)x U xR € STT*((0, Xo) x Uj) x R).
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Definition B.5. An operator A : €2°(X) — €°°(X) is said to be tangential semiclassi-
cal on X of order m € R if:

1. Its kernel is of the form
Ky (x0, y, Xn; X0, 9, X0) = K x, (x0, ¥: X0, §) ® 8(x — X).

2. Its kernel is regularizing outside diag(X x X) in the semiclassical sense: for all x, x €
E°(X") such that supp(x) N supp(x) = ¥ we have

X(XO’ )0)2(120’ .)A})Ich,xn (.X(), yv )207 5\)) € (gOO(X/ X X’)v

and for all N, € N, and for any seminorm g on € (X’ x X’) there exists C =
C,.4.N.aq > 0such that

sup q(x (xo, )X Go, )32 K., (x0. y; R0, §)) < Ch". (B.7)

xp€R
3. Forall j € Jandall » € €2°((0, Xo) x Uj), X € € ((0, Xo) x Uj), we have
LR 5y > (qu—l)*(,\ ®1d)A¢} (h @ Id)u

in WALR"H),

In this case, we write A € \Ifgl(X ).

Note that we shall often write A and A in place of A ® Id and A ® Id respectively.
We set

h®S72°((0, Xo) x Uj x R x R") = ﬂ hYSZV((0, Xo) x Uj x R x R"),
NeN
h®WL>((0, Xo) x Uj x R) = ﬂ NN (0, Xo) x Uj x R),
NeN

Remark B.6. The first two points of Definition B.5 in fact state that the semiclassical
wave front set of the kernel of the operator is confined to the conormal bundle of the
diagonal of X. As a consequence, A maps &’ (X) into 2’ (X) [Hor90, Theorem 8.2.13].
We also note that the same properties hold for the transpose (resp. adjoint) operator. If
moreover A is properly supported then A maps

G (X)) > C0(X), EFWX) > EFEX), X)) - X)), DX > T'(X),
(B.8)
continuously, and the same holds for ‘A.

Observe that tangential semiclassical differential operators naturally have all the prop-
erties listed above.
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Proposition B.7. If A € WI(X), then for all j € J, there exists a;(xo, x', xn; 0,8 €
S™((0, X0) x Uy xRxR") such that for all . € C2°((0, Xo)xUj), » € €2°((0, Xo)xUj),

(@] )1 AP R — OpT(((@; ) M)aj)h € KW *(R" x R).
Moreover, a; is uniquely defined up to hOOS}OO((O, Xop) x ljj x R x R™).

We refer to Appendix C.10 for a proof. We say that g; is the (representative of the) local
symbol of A (modulo h°°S7_—°°) in the chart (0, Xg) % U i x R. We find that the symbol
of (¢JTI)*AA¢;‘X is given by ((¢>j_1)*)»)aj # X modulo h°°S7_-°°(]R” x R x R™), from the
previous proposition. The symbols (a;);e, follow the natural transformations when going
from one chart to another.

Proposition B.8. If U; N Uy # ¥, we introduce
Upx=¢;(UNU) CU;  and Uy = ¢(U; NUy) C Ug.
Let A € \IJII"-(X) with a;j as given in Proposition B.l. Then

N —N/2 o
k10, X0y x Ty xR — T8N (@0, x0)x T, 1 x®) € 1 ST 70, Xo) x Upj x R x R™).
We refer to Appendix C.11 for a proof. The notation T, n is defined in (B.5). The open

sets U ik and (jk, ;j are represented in Figure 2.
As a consequence, only considering the first term in the sum defining 7y, ~(a;), we

observe that the principal part of a; defined on (0, X¢) x U i x R x R" transforms as a
function on T*(X’) x R through a change of variables.
Let A € W7 (X) andletaj, j € J, be representatives of the local symbol (class) given

in the local chart by Proposition B.7. We seta = } ;. ; ¥¢}a; and find

a— ¢}aj € W (T*((0, Xo) x Uj) x R).

This defines a modulo hSS”—_1 (T*(X") x R).

Definition B.9. We define the principal symbol of A as the class of a in S7(T*(X " x
R)/hS7~'(T*(X") x R) and we denote it by o (A).

Proposition B.10. Let A € V7(X), B € \11’7"-/ (X) both be properly supported. Then
AB € \11’775"""’/()( ) and (a representative of) its local symbol in any chart (Uj, ¢;) is
given by a; # b; with the notation of Proposition B.7. In particular, 0 (AB) = o (A)o (B).

We refer to Appendix C.12 for a proof.
The following natural result is a consequence of what precedes.
Corollary B.11. If A € W7 (X) and B € \1131/(/'\? ) are both properly supported then the

commutator [A, B] € h\If;"mel (X) and (h/i){o(A), o (B)} is (a representative of) its
principal symbol.
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With the Sobolev norms defined in Section 1.4.3 we have the following result.

Proposition B.12. Ler A € \Ilé-(X ) be properly supported, £ = 0, 1. Let K be a compact
subset of X'. Then there exist L, a compact subset of X', and C > 0 such that for all
u € €2°(X") with supp(u) C K,

Oorl ife=0,

supp((Au)|x,=0) C L and [(Au)jx,=0lk < Clulerr withk = .
0 ife=1.

We refer to Appendix C.13 for a proof. The norms in the proposition are those defined
in (1.21).

B.3. A particular class of semiclassical operators on M 4

In this section, we prove that the operators E, defined in (3.24), ¢ = &, .%,9, &, are
tangential semiclassical pseudo-differential operators on M_. We also establish some
properties of their symbols.

Let 0 e €>°(0, X) that satisfies ¢% = 1 on a neighborhood of (g, Xo — ao) and
0< g“o < 1. We set

& (x0, ¥, xa) = £ (o) ().

For all j € J, we choose ;:jo € €°((0, Xo) x Ijj) with ZIQ = 1 in a neighborhood of

supp((¢; )*¢)).
Let p € S7(M?2). We define, for some j € J,

pi =@ )*p and Q= ¢} Opr(p)(#; e/

Lemma B.13. We have Q € \1'31—(/\/1+). Moreover, denoting by qy (a representative of)
the local symbol of Q in the chart Uy, we have

l. g =pj # ((¢j_1)*§j0) mod h°°S7_-°o(R” x [0, 2e] x R") and q; can be chosen such
that supp(q;) C supp(fjo) x R* x [0, 2¢] C 0,' x R" x [0, 2¢];

2. g =0ifU; NU =0;

3. g = Tpy.n(gy) mod KN/2ST N2 R? x [0, 261 x R”) for all N € N, and supp(qx) C
o (U; NU) x R" x Rifk # jand Uy N U, # 0.

Proof. Let us first check that Q € W72 (M.;). The definition of Q first yields supp(K ¢, r)

C ((0, Xo) x U; x [0, 2e])2. Then, for A € €>2((0, Xo) x Uj), = € €>((0, Xo) x U;),
we have

(@7 V20973 = (87 )1 OpT(p) (@] ) ¢)h € WER" x [0, 26]),

and the symbol of this operator is ((qﬁj_l)*A) #p# ((¢/71)*§/Q))~». According to Propo-
sition B.7, this yields g; = p; # (¢]'_1)*§]Q mod h"oSf}c>o (R™ x [0, 2e] x R™). The local
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representation ¢; can be chosen with compact support in U ; since pj = g:jo(¢>]71)* p and
supp(Z'jO) cuU ;. As a consequence, the first point is satisfied.

Taking now A and X such that supp(A) N supp(qb;‘i) = ¢, we find (¢]._1)*)»Q¢;‘)2 €
h°°\IJ7_—°° (R" x [0, 2¢]), so that the kernel of Q satisfies (B.7). Next, we take k € J, k # j
and % € €2°((0, Xo) x Uy), » € €>((0, Xo) x Uy) and compute (¢; ')* 1 Q¢} A

If U N Uy = @, this is the null operator and the second point is satisfied. If
U; N Ui # ¥, we take

. ):j € € ((0, Xo) x (U; N Uy)) such that ij = 1on supp(qb}fjo) N supp(L),
R x/(.”,/\j?) € €2°((0, Xo) x (U; N Uy)) such that A{" = )\;2) = 1 on supp(¢?) N
supp(@A).
‘We have
(& V" A0BA = (B VM@ 0@ (¢ ) A)A
where

0 = ((¢; A OpT(p)((@; "¢ 1)

The kernel of the operator Q has a compact support and we can hence apply Theo-
rem B.1. According to the change of variables formula (B.4) the symbol of the operator

(¢,:])*)L qu,fi is given by

(@ "1 # Ty v (805 # pj # (77 6)A)) # (DA

mod AN/2S5E NP ®" x [0, 2¢] x RY).

Combining the definition of 7y, v, the composition formula, and the definition of g; we
find this symbol to be
(& VA # Ty (pj # (67 )*¢)) # 4 mod RV2SIN R x [0, 26] x R™)
= (g )M # Ty, n () # 4 mod V2SIV (RY x [0, 2¢] x R,

because of the supports of A, )»j(.l) and A;z). This proves the third point. Finally, we obtain
Qe \I-’#(M.F), which concludes the proof of the lemma. ]
Proposition B.14. Let P = Y, ; ¢* opT(pj)(¢j—1)*g]9 with p; = EJQ(¢].—1)* p. Then
P e \If%”-(M+) and its principal symbol is o (P)(x, &, 1) = ¢%(x0) p(x, &, n). Moreover,
in each chart Uy, there exists a (representative of the) local symbol of P supported. in
supp(¢ "¢} ).

Proof. According to Lemma B.13, in the chart Uy, the local symbol of P is

Pt 0+ Y Ty n (0 #(@7) E)) mod KV SN2 (R 5[0, 261 x R")  (B.9)
J#k
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for all N € N. According to the composition formula (B.1) and the definition of T¢jk, N
(B.5), the principal part of this local representation is
P+ @ (i@ ) =@ gl + D @5 ¢ pe)
j#k j#k
= (@) P Y @ ) = p.
jeJ
since Zje J gjo = ;‘0, defined in Section 3.6. Moreover, for every N € N, the expres-

sion (B.9) is supported in the support of (¢, hyx p. This property can be preserved by a
representative of the asymptotic series as N — oo. This concludes the proof. O

For the Sobolev norms introduced in Section 1.4.3 we have the following natural result.
Lemma B.15. Let P be as in Proposition B.14, let v € €>°(My) and set u; =
Op7(p) (@) )*¢ v, Then

1Polle SO lujlles  1(PO—otle S Y lujpy _geles  €=0,1.
JjeJ jeJ
Proof. We treat the case of norms in all dimensions. We have Pv = ) jeJ ¢]’.‘ u;. Then
1Pvlle < I7ujlle.
jeJ

‘We then conclude with the use of Lemma 1.9. ]

Appendix C. Proofs of some technical results

C.1. Proof of Lemma 1.8
Let (gj); be a family of smooth functions on § with supp(g;) C U; and Zj g =8 =
C > 0in S. We set M, (u) = Zj |(¢j_1)*gjulfyfr(]Rn—l). It is sufficient to prove that
|(¢j_l)*‘fjuljfr(Rn—l) < CM,(u) for some constant C > 0.
We set g; = g;/g, which forms a partition of unity. We have
(@7 ) fiulsr a1y < Y17 £ 8t sor oy
k

Next
(@7 )" fi@kulser o1y < Clde ) fi8kulsor o)
as ¢ji is a ¢°° diffeomorphism between ¢;(U; N Uy) and ¢ (U; N Uy). Introducing
8k € €>°(Uy) such that g = 1 on supp(gx) we find
(@7 )" fi@kul ypr a1y < Cl( ) f8k 8k /8 e o)
= Cl(og N (f381/8) @ )* gkt o n-1y < C' (g N (8k10) yr o1y < C" My (w),

as v — v(¢k_1)*(fj§k/g) is continuous in 7" (R"~!). The proof is complete. O
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C.2. Proof of Proposition 2.2

First we note that in the proof it suffices to consider the operator As+A Id for A sufficiently
large, in place of As + AId. An inspection of the proof that follows also shows that
piecewise %! regularity of the coefficient ¢ and ¢! regularity of ¢ are sufficient to prove
the result.

We consider a finite open covering (O;); of Q together with a subordinated partition
of unity } ; 0; = 1 that satisfies moreover, if O; N S # ¢

1. we can choose local coordinates in O; such that § is given by {x, = 0}.
2. 8,79”5 = 0, i.e. 6; is flat at S in the normal direction to S.

The result of Proposition 2.2 is clear away from S by standard elliptic regularity the-
ory. We thus consider O = O; such that O; N S # §. With 6 = 6; we set v = 6z and
v¥ =60z%and V = (v, v¥). From (2.3) we have

VIl S 1F 130 (C.1)
The result will be achieved if we prove
Z i lr2congs) + 821V lu2ions) S I1E 1240 (C2)
i=1,2

uniformly in §.
We write cV,v = ¢(Vg8)z + c6(V,2). If ¢ € Hy (O) we have
(CVgU, VgIﬁ)Lz(O) = (C(VgQ)Z, ng)l](o) + (C(ng)é‘, Vggh)Lz(O)

=— Z (Ve (c(Vg0)2), ¥ 1200 T (€Vez, Ve (09)) 120y — (¢(Vg2Ve0), ¥)12(0)
i=1.2

with an integration by parts using that 9,05 = 0.
Similarly for y* € Hj (O N S) we have

(CSVSUS, szs)Lz(OﬂS) = _(VS (CS (VSG)ZS)7 1:[/S)LZ(OQS) + (CSVSZS’ VS(GwS))LZ(OmS)
— (CS(VSZSVSG), WS)L2(Oms).
Considering the weak problem (2.2) satisfied by Z we thus obtain
(cVgv, Vgl/f)L2(0) +38(c* Vi, VSWS)LZ(OQS) + A(v, 1/f)1‘2(0) + A’ Ips)]}(oms)
= (¢, 1ﬁ)LZ(o) + 5((155’ 1ﬂS)LZ(oms) (C.3)
for W = (¢, ¥*) € Hj, where ® = (¢, ¢*) € L* x L? with
P = (—Vg(c(Vg0)z) — c(V42V,0) + ef)lgi, i=1,2,
¢S — _vS(CS(VSG)ZS) _ CS(VSZSVSO) +9fs,

and by (2.3) we have
1@l < 1 Fllygo-
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We now make a local change of variable in O such that S becomes {x, = 0}. The
weak problem that (v, v*) satisfies takes the form

Z/ €y VO, ¥ dx + 8 Z/f b0, v 0y ¥ dx+,\/ vy dx
k,l o k1l ons 0

+ A8 B Y dx

ons
= / adyrdx + 8 BV dx, W= (Y, Y%) eH) (CA
o ons
where Zk,l is a sum with k, [ running over {1, ..., n} and Z;(l is a sum with k, / running
over {1, ...,n — 1}. The functions « and 8 come from Jacobians. The functions ¢y, are

piecewise €| with a discontinuity across the interface S, and the functions cy are €.

Note that v € H'(0) and v* € H'(O N S) with supports finitely away from 9 0.

We now use the Nirenberg translation method. Let & be parallel to S. Define D), by
Dp(p) = (p(x + h) — p(x))/|h]|. Observe that D_;,(Dpv) € Hé(O) and D_j,(Dpv’) €
Hol(O N S) for |A| sufficiently small and set v = D_j,(Dpv) and ¥* = D_j,(Djv*). As
(Dn f1/2) = fi(x + h) Dy f2 + (Dp f1) f> this yields

Zf ¢t (x + h)dy, Dyvdy Dyv dx + 8 Z// ¢} (x + h)dy Dyv* dy, Dyv* dx
k,l o k.l ons
+x/ a(x+h)|th|2dx+)\3/ B(x + h)|Dyv* | dx
] ons
+> / (Dicy )0 vy DyTdx +38 Y / (Dic} ) v* dyy DiT* dx
k1 o0 k1 ons

+x/ (Dha)thidx+6k/ (D B)V* Do dx
o0 ons

= / a¢pD_p(Dyv)dx +8/ Bd*D_j,(Dpv*) dx.
o ons

‘We note that

> / (Dney )3x, 03 Dy dx +8 ) / (D, )i v* 0y Dy* dx
k1 0] k.l ons

+A/ (Dha)thde+8A/ (D )V Dy dx
o0 ons

SVl D4V Iz

Ifpe HO1 (0) with support finitely away from the boundary d O then |Dy(p)|12(0)
< |VplL20) for || sufficiently small [Bre83, Proposition IX.3]. We thus have

/ a¢pD_,(Dpv)dx + 8 Bd*D_j,(Dpv°) dx
0 S

S I@lll DRV g1
on s s
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We thus find
|a; (Dpv, Dpv)| < (VIlgg + 12130 1DRV 11 < 1@ ll3401 Da ¥l
uniformly in &, using (C.1). The coercivity of a, gives
DRV li3gr S I1F ll3g0-

Fork € {1,...,n} and ¥ € €>°(0), we choose h in the direction of the x; coordinate,
le{l,...,n—1}. Then

|00, D-n¥) 1200yl = (P v, Y120yl < 1DV llggt 1V M2 S WE lggoll¥r 2

As the Lh.s. converges to |(3y, v, 3y, )20y | we see that 82 v € L? and

Xk X1

105 vll2 S NF g, (kD) # (n,m).

Similarly fork € {1,...,n — 1} and ¢* € €>°(0 N S), we choose / in the direction of
the x; coordinate, [ € {1, ..., n — 1}. We have

8121@x 0", D-n¥*) 120n)| = 8'21(Dnds v ¥¥) 120n5)) < 1PV llag 197112

S IE ol 2,

and we obtain 83/( PRINES L?*(0) and moreover

8121197 vl 200y S IFlly0.  kle{l...on—1}

From (C.4) observe now that (in a weak sense) we have in ; N O0,i =1, 2,

I
2v=——( 3 ucudyv+ad+ (B, — Aav).
Enn Nk 1) Zn.n)

It follows that 83”1)‘9,, € L?(2;) and
18, viey 2 S IFllyg. = 1.2,

which concludes the proof. O

C.3. Proof of Proposition 2.3

An inspection of the proof shows that is sufficient to assume that ¢ is piecewise €1,
c* is €™t and S is of class €2, We proceed by induction. The case m = 0 is treated
in Proposition 2.2. Let mg > 0. Assume the result is true for 0 < m < mgo — 1 and
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fio, € H™(;),i =0,1,and f* € H™(S). We thus have Z = (z,Z%) € H™MotL(Q, U
Q) x H™*1(S) with

1/2
Z ||Z|Q[- ||Hm0+l(Ql_) + 6 / |ZS|HmO+1(S)
i=1,2

S Y Mfiellamocy +8"21F L mocs) = Nung (F).
i=1,2

We use the same partition of unity 6;, j = 1, ..., N, as in the proof of Proposition 2.2.
Since the result is known away from S by standard elliptic regularity theory, we consider
O = Oj suchthat O; NS # . With 6 = 6 weset v = Oz and v* = 0z° and V =
(v, v*). With the notation of the proof of Proposition 2.2 we obtain, after a local change
of variables,

Z/ Crs VO, ¥ dx + 8 Z// b 105 v 0y ¥ dx+,\/ vy dx
k,l o k1l ons 0

+ 8 VY dx = / apydx +8 BV dx  (C.5)
ons ]

ons
for ¥V = (¥, y°) € 7—[;, where Zk’l is a sum with &,/ running over {1, ..., n} and
22,1 is a sum with k, [ running over {1,...,n — 1}. We have v € H"*1(0) and v* €

H™0+1(0 N S) with supports finitely away from 30, and ® = (¢, ¢°) is such that

D lgreilamo) +87210% mocs) S Ning (F).
i=1,2

The functions ¢; ; are piecewise %™ *! with a discontinuity across the interface S, and the
functions ¢} , are 1.
For j =1,...,n — 1,if W is chosen such that

Y=0g%, Y =05y, with (F,¥0) € (€7°(0) x €2°(S N 0) NH;,

since dy; v, € H'(Q;) and d,;0° € H'(S), we find

Z/ €y 105, VO dx + 8 Z/f i1y V" O U dx ’H‘/ oy vy dx
k,l 0] X k1 ons 0

+5x/ ﬂaxjvsaxdxzf dudx+5 | ¢S dx,
ons 0

ons
with

Z ||‘$\Q; ”H’”O*I(Qi) + 81/2|‘13S|Hm0*1(5) S Nmo(F)-
i=1,2
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The induction assumption then yields®
D 1812, L gmoti g, n0y + 8721050 | o+t (sn0y S Ning (F). (C.6)
i=1,2

From (C.5) we have in 2; N O, i = 1, 2, in a weak sense,

1
P v= ——( D 00y + ad + (0,0, 0,0 — Aaw).
= (k,))#(n,n)

As vjq; € H*(S;), this also holds in L*(€;). Thus 8} vjq, € H™(2; N 0) and

193 vig, im0 @iy S Nimg (F).

by (C.6). This concludes the proof. O

C.4. Proof of Lemma 3.6

The proof we give extends that of Lemma 3, p. 480 in [LR97]. We drop the “;” notation
here since the same argument holds for both cases. We have p, = E,% + 2i(0x,9)én +
g2 + 2ig1. We pick @ € C such that o> = (E)xn<p)2 + g2 + 2ig;. Then the imaginary
parts of the two roots of p, are —d,,¢ £ Re(a) and have opposite signs if and only if
|[Re(r)| > |9y, @|. We note that

(Im(z%))?
4A2
with a similar equivalence in the case of equalities on both sides. Substituting « for z, and
|0x, | for A, we thus find that the imaginary parts of the roots have opposite signs if and
onlyifu > 0,as u = g2 + qlz/(axn ¢)?. In the case u = 0 only one of the roots is real
and the imaginary part of the second one has the opposite sign to 9, ¢. In the case u < 0

both imaginary parts of the roots have the same sign, opposite to the sign of 9y, ¢.
If Im(p*) > Cp > 0 and Im(p~) < —Cy then |Re(e)| > |y, ¢| + Cp and by (C.7)
we obtain

Re(z)] > A & Re(z?) > A% — , zeC, (C.7)

qr

(3, 0) + g2 = Re(@?) > (|8y, 0] + Cp)* — ——A——,
3 * (13, 0| + Co)?

which gives

> Cg +2Co|0y, ¢ +412(

5 = 2) >C > 0.

(O, ) (19x, 0l + Co)

Conversely, assume that u > C; > 0. Note that for all M > 0, there exists R > 0 such
that |§| + [7]g > R = [Re(a)| > M. Actually, we have

Im(c?)?

Y

Re(o?) — M2 +

6 The induction assumption is applied to the local form of the elliptic problem here, i.e., (C.5).
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for |£0| + Inlg > R sufficiently large, which yields |Re(a)| > M by (C.7). Taking now
M = |dy,¢| + C, we obtain [Im(p*)| > C.

It suffices to take || + Inlg; < R, xo € [0, Xol, x, € [—2¢, 2¢]. The variables
(x0, ¥, Xn, &0, n) such that © > Cj are in a compact set K. Thus, ming [Im(p™®)]| is
reached. Finally, © > C; implies [Im(p*)| > C > 0 as Im(p™) does not vanish if
u > 0. This concludes the proof of the first part of the lemma.

We now address the last point of the lemma. Let 0 </ < L < ian |0x, | and let

H = L? — . In the region { > —H} we have

2
q 1 1
> 1P — (0,0 > P=@,0))H1+—— ) =P =00+ ———= ).
= 1= (0x,9)" = (7 —(0x,9)7) +12(3x,,s0)2 (0x,9)” +4i gl P
Since /1 = q2+q7/(dx, ) we then have g>+(dy, ¢)? > 1> —g3 /1, which by (C.7) yields
[Re(x)| > I. We conclude by observing that |p™ — p~| > |Im p* — Im p~| = 2|Re(a)|.
O

C.5. Proof of Lemma 3.8

We follow the notation of the proof of Lemma 3.6 above and again we drop the “/”
notation since the same argument holds for both cases. We choose o € C such that
o = (3,9)° +q2 +2iq1 = r(x,§0.1) = r(x, 35, dy) + 2iF (x, §. 1. Iy, dye),
which implies the roots are —idy,, ¢ £ ic. We set A7 = (1 + gg + |,7|§)1/2 € S%—(Mi)
and write (o/A7)% = v1 + vy with

r(x, §0, 1) 1 .

vi=——y— andu= k—z(—r(x, o> dy) + 2iF(x, &0, 0, By, dy)).
T T

To prove the first result, i.e., )(,0i € S%-(Mi), it suffices to consider Ay large, as we

already know that the two roots are smooth in supp( x). Note that there exists L > 0

such that |vy| > 2L, and |vy| < L for A large, say A7 > R;. In this region we have

Re(az/k%-) > v; — |Re(vy)| > L. In particular,
Re(a/A1) = C > 0. (C.8)
If A7 > Ry, we have thus shown that («/A7)? remains away from a neighborhood of the

branch R_ for the complex square root and we may thus choose /A1 = F((e/A7)?)
with F = €°°(C). Since (¢/A7)? € S%)-(/\/l’j_), it follows from Theorem 18.1.10 in

[Hor85a] that o/ A1 € S%)—(Mi) for A > Ry, which yields the first conclusion.

Let Cop > 0 and consider the region {u > Cp}. By Lemma 3.6 we have Im(p*) > C
> 0 and Im(p~) < —C. By (C.8), we obtain [Im(p*)| > CA7. Since Im(p*) — Im(p™)
= 2Re(a), and since [Im(p*) —Im(p )| > C, we obtain the final result from (C.8). O

C.6. Proof of Lemma 4.2
Using (3.24) we have

-1 = —1\* = =~
Op7(X.))(®; )'¢jByzv” = (¢; ) By, ;jByzv".
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We then write
Op1(xy. )@ )G Eayzv” = (97 )*Ey v — (¢ ) By j(1 — Egz )V

Note that ug ; = (¢;')*Eg jv" by (4.1). We have By ;(1 — Eyz) € h°WIC(My),
as their local symbols in every chart have disjoint supports by Proposition B.14, because
of the supports of ¢3 and ¥« #. This concludes the proof. O

C.7. Proof of Lemma 4.5
Here, all functions are evaluated at the interface, i.e. x, = 07. From (4.67) we have

5 =60 +7

with

~ (0

53" =20, ¢} |05 + 44} ; Re(0s) — 20y, 0})q5 ;
and 7 € (82/h)S3-+8S%+hSY-, according to the definitions of Z; in (4.69), o5 in (4.67),
and B{ , Bf ! BS in (4.59). Observe that x 62h+_2hZ&5(0) € S%)- and the remainder satisfies

hZ
;sz € hSY, (C.9)

since ((£0, £")) < C in supp(X).

Now, let us produce a lower bound for the symbol 53(0>~ Recalling the definition of u”
. . ro__ —1 * . F — _E S
in (3.12), denoting Wi = (¢j )*u" and 9 = lhcj. Py, j» We find

& = 3(8 N — pht k2 + iRe(z? — ot 1 g =200, ¢,
F) - 132 Xn(pj 10] /3 ,0] ql,.j xn(pj qz,j
1, 2
= 20,9} (|@ — p; " +K)/B +af /0,9 |
I

> 20,9} (Am(=9 + ;" —k)/B)* — 1),

— 1)

since ango; > C > 0and q[ j is real. Hence

1+ 6C; s I+ l,— r

Im(=? + pf " — k) = — Re pj, + (Im " —Im p} ") /2 + B3, ¢}

th J J J

as (4.10) gives —Imk = 0y, <p]l. + B0y, (p; and the properties of the roots of the polynomial
pZ’ given in (3.10) yield oy, gojl. = —(Im ,ojl.’+ + Im p]l.’_)/Z. The first point of Lemma 3.6

gives Im pjl.’+ —Im p]l.’_ > (, and thus

Im(=? + pi " — k) > K28/ h + B, ¢},
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since in the present region, Re(pfl‘)y j) is positive elliptic by Proposition 3.5 and (3.11).
Using condition (4.51), i.e., (9, go})z — ,uj’. > K > 0 we find

3 82K?2
68(0) > 2axn¢;<ﬁ + Kl).

This together with (C.9) concludes the proof. O

C.8. Proof of Lemma 4.7
Let X = (xg, x', &, &) € Wand X = (%o, ¥/, &, €) € W. If

(50, &) — (o, ENIZ
<r

X—X — , N _ (% ’~/ 2
gw,x( ) = l(x0, x") — (%0, X)|” + (o £))?

then, for r sufficiently small, we have C~! < ((&, £))/((&0, ")) < C for some C > 0.
As a consequence, C -1 < A(f( )/A(X) < C with h, § > 0 arbitrary. Hence A is slowly
varying.

Next,

(B0, €07 < (B0 €D)2(1 + I(Eo. €) — (B0, EN)
so that
AX)?/AX)? S (1 +1E0.&) — E0. 8N S 1+ g5 x (X — X)
for i, § >0 arbitrary. Here g7, denotes the dual metric on W, g%, = ((éo, £)2|d (xq, x")|?

+ |d(&y, £')|%. Hence, the order function A is temperate, which concludes the proof. O

C.9. Proof of Theorem B.1: change of variables for semiclassical operators

Here we consider operators on the whole space R” of the form

at Der) =) = f/ S Ea(e £, Du(y) dyde,  dE = (2n)"dE, (C.10)
where a(x, &, T) is smooth in x and & and satisfies, for some m € R,

920l a(x. . 1) < Capu™ P, =4 iER T2 1. (C.11)

We say that a € S(u™). We shall prove a change of variables formula for this kind

of operator. We choose this form of operator to make use of parts of existing proofs.
Operators of the form (C.10) are also called semiclassical.
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We recall that the semiclassical operators we consider in the main part of the article,
i.e., with a small parameter /2, can be put in the form (C.10). In fact, with a(x, &, h) € S™,
we write

Op(a)u(x) = wh)™" // TV E g (x, g Wyu(y) dy dE
- /f YT q(x, hE, hu(y) dy dE,
and we have |aga§a(x, he, h)| < h1Bl(hEy"—1Bl With T = 1/ h we find

030 T alx, g, h)| S TP+ & /o) TIPS 1AL

Hence, the symbol 2~ a(x, h&, h) satisfies (C.11).
Theorem B.1 is the translation for semiclassical tangential operators with a small
parameter /1 of the following theorem.

Theorem C.1. Let X and X, be open subsets of R" and let k : X — X, be a diffeomor-
phism. If a € S(u™) and the kernel of a(x, Dy, t) has compact support in X x X then
the function

=ik (x),m) D i) f oy = X
ax(y, m, 7) = {g a(x, Dx, T)e l,;y¢;(x)e < (C.12)
gy Ks

isin S(u™), the kernel of a, (x, Dy, T) has compact support in X, X X, and
(ac(x, Dy, Du) ok = a(x, Dy, t)(wok), ue S R". (C.13)

For a, we have the asymptotic expansion

(K (x),n, T)— Z

a<N

aga(x ke(x)n, ) P e S(umTNZ),(C14)

where py(y) = k(¥) — k(x) — &' (x)(y — x).

Note that p,(y) vanishes to second order at x and the terms in the series are in
S(u™~1%1/2) In fact the order of each term in the asymptotic series (C.14) is explained by
the following result that we shall use below.

Lemma C.2. We can write 0 P01 qs q linear combination of terms

[ Ttx =y ox i) [T 02 ), mye’ =0,

jeT jeJ

=<

|Z| 4+ | T | such that k < € < |a| and £ < (|| 4+ k) /2. In particular, el {Px().m)|
Ca(n)*/?.

for some matrix-valued function px,j, j € ZUJ, with |aj| = 2if j € T, k = |Z] an l]
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Proof. We note that 9y (¢! (Px():my can be written as a linear combination of terms of the
form

/ o .
OO T (@0 pe(y),m) with >~ eyl =lal, p<lal, loj| > 1.
I=j=p I=j=p

WesetZ = {1 <j=<p;laj=1andJ =1{1 <j < p; |aj|] = 2}. We have
|Z|4+|J| = p < || and moreover || > |Z|4+2|T], Whlchglves |ZI+|T| < (le|+1Z])/2.
As py(y) vanishes to second order at y = x we obtain (9, ,ox(y) m = {(x—=y,ox ;N
for some function py ; if j € Z. |

Proof of Theorem C.1. Let the kernel of a(x, Dy, t) be supported in K x K, K C X,
compact. In particular a(x, &, 7) = 0ifx ¢ K. Let¢ € €°(X) besuchthatp = lina
neighborhood of K, and q5 € €>°(X) be such that ¢~$ = 1 in a neighborhood of supp(¢).
Here, we follow the proof of Theorem 18.1.17 in [Hor85a], and we first find that for ©
fixed formula (C.13) holds for a, given by (C.12). Moreover a, is smooth with respect to
x and & and we have

ay (k(x), £) = ¢ (x) / / Y EIHKW= @M g (x £ T)p(y)dydE, x e X. (C.15)

It thus remains to prove that a, € S(u«) and the asymptotic representation (C.14) holds.
For the proof we shall distinguish two regimes: t < |5| and t 2 |n|. We thus intro-
duce w € €°(R) such that w = 1 in a neighborhood of 0 and set

yi(x,n, ) = w(r/mack(x), n,7),  y2(x,n,7) = (I —w)(t/n)ac(k(x), n, 7).
We shall prove the two propositions below.

Proposition C.3. We have y|(x, n, t) € S(u™) and

1)l
yi(e,n, 1) —w/n) Y ( ) og alx, " (x) mage O e SN,
a<N
(C.16)
Proposition C.4. We have y»(x, n, t) € S(u™) and
y2(x, 0, T) = (1= w)(t/(n)) Z aga<x fe(x)mage! P e S(um N,
a<N
(C.17)
With these two results, Theorem C.1 clearly follows as « is a diffeomorphism. O

We shall need the following result in the course of the proofs, which is the counterpart of
Proposition 18.1.4 in [H6r85a] for semiclassical symbols.



Controllability of a parabolic system with a diffusive interface 1565

Lemma C.5. Let aj(x,§,7) € S(u™), j € N, with mj — —oo as j — oo. Let
a(x, &, t) be smooth with respect to x and & such that for all o, B, for some C > 0
and v depending on a and B,

9$9fat, g Dl < Cp’, x5 eR, T2 (C.18)

Assume there is a sequence vy — —oo such that

‘a(x,é, 0 -3 a4 £, 1:)’ <CGu*, x E€R' 1>l (C.19)
Jj<k

Thena € S(uW™), m = supm;j, and a(x,&,7) — Y i _,aj(x,&,1) € S(u™) with my =

j<k
manzk m;.

The proof of Lemma C.5 is similar to that of Proposition 18.1.4 in [Hor85a]. It is left to
the reader.

Proof of Proposition C.3. We have

e, 0, 7) = w(t/m)ae(k(x), )
= w(r/(n)$(x) / / TSI M g (x £ T)p(y)dydE, xeX. (C.20)

Let max (I’ ()], [’ (»)~']) < Co. Setting ® (&, ) = [ & «OI1=I0-E)g(y) dy, one ob-
tains, by a nonstationary phase argument [Hor85a, p. 82],

D& ] < Cy(L+ &+ DY if gl < z'ic'o or &) = 2Colnl.  (C21)

Let then x (&) € €>°(R") be equal to 1 if Q2Cy~! < €] < 2Cp, and equal to O if
|E] < (4Cp)~ !, and set y; = I} + I with

Li(x,n,7)
= w(t/(nM)¢(x) / / ! TV Mg (x, &, T)G(0) (1 — X)(E/In]) dy dE
= w(r/(n)g (x)e / ¢ “Fax, £, HPE (1 — x)(E/In) d&
and
b= wie/ o) [[ OO O Dot g OG0 Iy de
= w(r/(M)$(x)e" e K1

< / / (O IO/ 4 (x wo D)F()x E)dy dE, @ = |,
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From (C.21) and as T < |n]| here we find

|11 (x, n, D) < Cylw(t/(n)] /(r +1ED™ A+ [E] + [ph)~ N FIFmge N e N,
which gives

Cnlw(@/m)I [nl + 1ED™ (1 + [&] + [p)~NFrtlEmge ifm > 0,

Li(x,n, 1) < i
ol {CN|w<r/<n>>|f<1+|s|>m<1+|s|+|n|><N+”+‘+’">ds ifm <0.

In any case we find

, lw(T/(n)] 1
|11 (x, n, T)] _CN(1+| HN —CN(r+|n|)N’

N e N. (C.22)

For the term I, we first write

L= w(t/(n)p(x)w"e &
X / / UKD 4 (x, w0, D)F(x + WX €) dydE, = 1),

to apply the stationary-phase result of Theorem 7.7.7 in [H6r90], which yields, for k > n,

L(x,n,t)—w(T/(n)p)

(- z)v oo _
x Z (By, 9 /)" (P T a(x, wE, T)P(x + ¥) X E)ly=0.6='c (0 /0)

< Co" PPu(/(m) Y sup DY ($(x + M x(Ealx, wk, D).
la|<2k ¥:§
As T < w, and £ is bounded, we observe that
lo*(DEa)(x, wE)| S (T + wlg)" ™ < (x + ).
We also have x (&) = 1 in a neighborhood of ‘k/(x)n/w. As ¢ = 1 and ¢ =1ina
neighborhood of K we thus obtain

(—i

)V
(B, 9)" ("M a(x, &, 7)o et ryn/e)

L(x,n,7) —w(t/(n >Z

< Cw<" W(z +w)"w(t/(n) S (T + Iph™ TR x e K.

We have thus obtained an asymptotic development in the form of (C.19). As each term in
the series is also a semiclassical symbol, by (C.22) we find that an estimate of the form
(C.18) is achieved when no derivation is applied to y;. Applying partial derivatives with
respect to x and 7 to y1(x, n, T) results in a sum of terms with the same form as (C.20)
with additional expressions with at most polynomial growth in n. The analysis carried out
above also yields an estimate of the form (C.18). Together with Lemma C.5 this completes
the proof. O
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Proof of Proposition C.4. We have

v2(x,n,7) =1 —w)(t/(n)ac(k(x),§)

= A= we/ e [ [ a0 ODag g g0 dyde. e X.
(C.23)
This representation is to be understood in the sense of oscillatory integrals, which justifies

the manipulations we perform below.

In the support of (1 — w)(z/(n)) we have t 2 |n|. As px(y) = k(y) — k(x) —
k' (x)(y — x) we write

yaGe. . 1) = (1 — w)(e/ () (x) / f I ER MO g (x , T(y) dy dE
— (1= w)(e/ () () / / IO g £ 4 1 (), () dy dE,
which by the Taylor formula gives y» = y» v + ry with

vo,N(x, 1, T)

| , , .
= 2 (I —w/mew) / / TSP Mg q (x, i (x)m, TP(y) dy dE

la|<N

and

(1— a)N ! , 7
/ // W e M g (x, o4k (), TG (y) dy dE do.
\(xl N

Observing that £%¢'¥=7-8) = jl*lg%e x=3-8) we find

2(x,n,7) = (A —w)(x/(n)é(x)
Jex|
<y & ’) f/ v E19¢ (G(y)e O 3¢ ax, i (x)m, T) dy dE

la|<N

)\Otl

= (1 —w)(t/(M¢(x) Z

|la|<N

3 (@(y)e PO, dfalx, 'k (x)n, T)

=1 —w(/() )

la|<N

_)ll .
( ’)' a;c(et(px(y),n))|y=xag‘a(x,’K’(x)r), T)
o
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for x € K, because of the supports of ¢ and é. From the properties of py(x) given in
Lemma C.2 each term in the sum is in S(u™~1%//2). Similarly we have

N o) (1A=
v, 1) =1 —w) (/) E)N(—i) Z Z (ﬂ) /0 ol

le|=N B=<a
< [[ @ aason@ld a0t + K Con D dy ds o (C24)

If we prove that ry < (7 + [n))™+tn+1=N/2 if N > m, we will obtain an estimate of the
form (C.19). In particular this yields |y»| < u” for some v € R.

Applying partial derivatives with respect to x and 1 to y»(x, 1, T) results in a sum of
terms with the same form as (C.23) with additional expressions with at most polynomial
growth in 7. Computing 9¢ 8,’73 y2> we may apply a similar analysis and find [9Y 8,'73 AT
for some v € R. We thus have an estimate of the form (C.18). In view of Lemma C.5 this
will complete the proof.

By Lemma C.2 the remainder term ry in (C.24) is a linear combination of terms of
the form

ry(x, . T)
1 . A o .
= (1 —w)(r/(M$(x) / (1=t / / Y EG(y) [T ox (), mye
0 jeg
< [T =y pxjIm)ogatx, o + 'k’ (x)n. 1) dy d& do
JjeT
with |oj| > 2if j € J and k = |Z| and £ = |Z| + | J| such that
k<t<|Bl<lal=N, €<(Bl+hk/2. (C.25)

Here the function ¢ has support in K and is constant on supp(¢).
As (x =y, pr,j ()€’ T8 = —i (B, px,j (y)m)e! ") we obtain

r[/\/'(-xs n, T)
1 . A o; .
= (1 — w)(r/ )P(x) /0 (1= [[ 0500 [T pr.me 000
jeJ
x [ [(9. pr.j I alx, o& + ' (x)n, T) dy @& do,

JjeT

and we may thus write ry as a linear combination of terms of the form
ry(x,n, 7)
1
= (1= w)(t/ ()¢ ) / o1 — o)~ / / TIDG () pa, y el PO
0

X 8?+Va(x, ok + 'K’ (x)n, 1) dy dt do,

where |y| = k and p(x, y, n) is a polynomial in 7 of order £ with smooth coefficients.
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We note that () 72(1 + i (£, 3,))e' *=78) = ¢/ ¥=Y:5) This yields, for g € N,

1
et =1 - w)(r/<n>)¢<x>/0 o1 — )N

x / / e TVE A —i(E, 9, (P(y) p(x, y, et PO
X <g:>—243§+ya(x, ok +'«'(x)n, 1) dy dtdo.

We choose |¢| = N > m and ¢ = n + 1. Then

0 a(x, 08 + 'k (). 1) < (x + ok + K oy NS N
We thus obtain
g Ceom, O] < 1= w) (/)] T NI E S pmttntl=N=iv],
asm— N —|y| <0and |n| < 7.Since £ < (N +k)/2 = (N + |y|)/2 this yields
|r]’(,(x, 1,1 < pmntl—(N+ly1)/2 <(t+ |n|)m+n+l—N/27

as claimed above. This concludes the proof. O

C.10. Proof of Proposition B.7

The proof partly follows the lines of that of [Hor85a, Proposition 18.1.19]. We fix j € J.
Let A;, 1 € L, be alocally finite partition of unity on (0, Xo) x U;. Forall k,l € L, we
define oy € Sﬁ,”-(R" x R x R™) as

Op7 (o) = (¢,-_1)*>»kA¢}‘Xz, where A = ¢ s
Note that supp(ox;) C (0, Xo) x Uj x R x R". We define a; := > k. Ok Where Y
denotes the sum over the pairs k, / such that supp(2;) Nsupp(Ax) # . This sum is locally
finite, which gives a; € S%”-((O, Xo) x Uj x Rx R™).
For A € €°((0, X¢) x U;) and Xe E°((0, Xo) x ﬁj) we consider

R = (¢ )*2A¢7% — ((¢;)*2) Opr(api
=Y (6 ) AAG IR — ((;7)*2) OpT ().
k.l
Note that the sum only involves k, [ such that supp(Ax) N supp(r) # @ and supp(il) N

supp(A) # . Hence, the sum is finite. We find

R= ;’(qéfl)*mAqb;I\zi — (@)") Opr(@)i + R,
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where R| is a finite sum of operators in \IJ%”-(R” x R) (and also in \11’7"—((0, Xo)x U i xR))
with kernels vanishing in a neighborhood of the diagonal. By Lemma B.2, we have R; €
hWL?(R" x R). Moreover,

(@] M AGFAL = (¢ )*H) OpT (0w

Thus R = R, from the definition of a;.
We now prove uniqueness. Let @; have the same properties as a;. Introducing b =

aj — dj, forall A € €°((0, Xo) x U;) and Xe € ((0, Xo) x Uj) we have
((¢;)*2) OpT(b)h € KWL P(R" x R).

Let K be a compact set in (0, Xp) X (7]- and choose A, A such that (¢j7])*)n = 1lon K and

A =1lon supp((qﬁj_l)*k). The symbol of((¢]f1)*,\) Op7(b)J. is in A ST (R" x R x R")
and is given by

(@7 ) Wb #7 € (¢ )" b+ hPSTPR" x R x R")
by the composition formula (B.1). As a consequence, according to Definition B.3,

b € h™S7((0, Xo) x Uj x R x R"). O

C.11. Proof of Proposition B.8

Let K be a compact set in (0, Xo) x (U; N Uy). Let A, xe (0, Xo) x (U; NU))
be equal to 1 on K. We set Ay = (¢; )*A, € = j, k. We also introduce 4, ; , =
(qﬁe_l)*kAquXg and find

A; 5. = Opr (@) mod KW °(R" x R) with a = ((¢; ) Mag# i, £ = j k.

The kernel ~of Ax,i,j (resp. A)\,i,k) has compact support in ((0, Xg) x 0j,k)2 (resp.
((0, Xo) x Uy, j)*.) Observe that

Ak,i,k = (‘/’ﬁcl)*Ax,i,jd’;k
From Theorem B.1, we have, for all N € N,
dx — Ty N (@) € BV SV @R x R x RY).
Set Ky = ¢x(K) and pick x € €>°(Ky). Since A = A = 1on K, we have
Xax = Xax modhooS}‘x’(R" x R x R™).
We also have

Xar = xTp; (@) mod k¥ S7EV2RY x R x R")

= xTp;.n(a) mod iV STV2RY x R x R"),
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because of the form of T, v in (B.5). We thus obtain

x(ax — Ty, () € KV ST V2R x R x R"). (C.26)
As K is arbitrary, (C.26) holds for any x € Saﬁcoo(f/k, ;). This gives the conclusion accord-
ing to Definition B.3. O

C.12. Proof of Proposition B.10

Let K4, and K p 5, be the kernels of A and B. We shall use the notation of Definition B.5.

As the two operators are properly supported, the composition makes sense and AB :
EX(X) — €2°(X). We denote its distribution kernel by K45 5. (Note that we use the
Riemannian structure here to identify functions, densities, and half-densities on X’.) We
have

K ap.n(xo. i 0. §) = / /X K an (X0, v: For $)K a0 o 3 R0, §) difo d¥

in the sense given at the end of Section 8.2 in [H6r90]. We choose x, ¥ € €°°(X") such
that supp(x) Nsupp(x) = @. In addition we introduce x such that supp(x)Nsupp(x) = &
and ¥ = 1 on supp()x). We then write

x (x0, Y) X (Xo, 9K ap,n(x0, y; X0, )

= X (X0, y) //X X (x0, Y) X (X0, WK a.n(x0, ¥; X0, ¥)KB.1 (X0, ¥; X0, ) dXo dy

x003) [ 70,501 = 70, 5Da a0, i Fo. Ko, 5 o 5 dio d.

In the first term, x (xg, y) X (X0, Y)Xa .1 (x0, ¥; X0, ¥) is smooth and compactly supported
because of the disjoint supports of the cut-off functions and the regularity of the kernel
ICa.n off the diagonal. In the second term, X (X9, $)(1 — x (X0, ¥))Kp n(Xo, ¥; X0, ¥) is
also smooth as supp(x) Nsupp(l — x) = @, and compactly supported as Kp j, is properly
supported. Because of (B.8) both terms then yield a smooth function in the variables
X0, ¥, X0, ¥ and estimating derivatives then yields a proper estimate of the form of (B.7).

We now consider j € J and A € €°((0, Xo) x Uj), Ae E2°((0, Xo) x f/j). We set

a = (¢; )*2AB(L).
We then introduce x, X € €°((0, Xo) x Uj) such that x = ¥ = 1 on supp(d)}‘i). We
write « = 8 + R with
B= (¢, )V*AAxZBo; (), R=(d;)*AA( = x %) B} ().

Arguing as above we find that the kernel Kz of R is a smooth function and it satisfies
an estimate of the form sup, g(Kg) < C RN for any N € N and any seminorm g on

E°((R" x R)?). Moreover its support is compact. Hence R € h°°\ll7_-°° (R"” x R).
Next, with ¥ = (¢>j_1)* X we write

B =(¢; )1AD; 1 (¢ ) L BS] (M.
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By Proposition B.7 we obtain a semiclassical tangential operator on R” x R with symbol
Bi = (@7 V) # (R (@7 )* )b;) # 5 mod ST (R" x R),

which belongs to Sglfml(R” x R). The operator AB is thus in ‘ll%"fml(R" x R).

From the composition formula B.1, because of the supports of ¥ and (qbl._l)*f( we
further obtain ’

Bi = ((qu—l)*x(a., #b;)) # % mod h™° ST (R" x R).

Hence by Proposition B.7, a; # b; is a representative of the local symbol of AB in this
chart. O

C.13. Proof of Proposition B.12

The existence of L is only related to the proper support of the kernel of A. We have

(AW g =0lk = D 1@ ) ¥ (Au) =0l
J

Let j € J. It suffices to prove that
|(¢j~71)*1//j(A“)\xn=0|k < Cxlutlpse-

We choose a partition of unity Zk Il}k = 1, subordinated to the open covering (Uy)kes
such that x@j = 1 in a neighborhood of supp(;). Then supp(l/}k) N supp(yj) = @ for
k # j. We then have . .
ViAu =Y i Afu + v Afju.
k#j
The terms in the sum are then associated with properly supported operators with smooth
kernels for which the operator continuity (after restriction to x,, = 0) is clear. To treat the
last term we choose A € €°((0, X¢) x U;) such that A = 1 on L N ((0, Xo) x supp(¥;)),
and & € €2°((0, Xo) x Uj) such that . = 1 on K N ((0, Xg) x supp((¢jf‘)*¢fj))). Then

(@7 ) i Adju = (¢ )My AgA(@; ) Pju = B ) ju  atx, =0,
with B € W%-(]R”H) by Definition B.5. Hence

(@7 U (A =ole S 1@ ) Pjulere S lulkse
by (1.22). O
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